
Implicative Logic based encoding of theλ-calculus into theπ-calculus

Steffen van Bakel, Maria Grazia Vigliotti

Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

Abstract

We study anoutput-based encoding of theλ-calculus with explicit substitution into the synchronousπ-calculus –
enriched with pairing – that has its origin in mathematical logic, and show that this encoding respects reduction. We
will define the notion of (explicit) spine reduction -which encompasses (explicit) lazy reduction- and show that the
encoding fully encodes this reduction in that term-substitution as well as each single reduction step are modelled up
to contextual similarity.

We show that all the main properties (soundness, completeness, and adequacy) hold for these four notions of
reduction, as well as that termination is preserved.

We then define a notion of type assignment for theπ-calculus that uses the type constructor→, and show that all
Curry types assignable toλ-terms are preserved by the encoding.

Key words: theλ-calculus, theπ-calculus, intuitionistic logic, classical logic, encoding, type assignment

Introduction

In this paper we present a novel investigation of the encoding from various kind of theλ-calculi into theπ-
calculus. In particular, we are concerned with aspects of the encoding from theλ-calculus into theπ-calculus such as:
(1) interpretingλ-terms underoutputby explicitly naming the implicitoutputof terms; (2) modelling of a notion of
explicit substitution into theπ-calculus; (3) modelling more than just lazy reduction through applicative bi-simulation;
(4) modelling individual steps in the reduction relation; (5) the definition a new logical notion of type assignment for
theπ-calculus; and (6) showing that implicative types forλ-terms can be assigned to their interpretation as well.

In the past, there have been several investigations of encoding from theλ-calculus into theπ-calculus [19, 24].
Research in the direction of encodings ofλ-terms was started by Milner in [19]; he defined aninput-based encoding,
and showed that the interpretation of closedλ-terms respectslazy reduction to normal form up to substitution. This
approach has been picked up by many authors since then: it hasbeen used by Sangiorgi [26], who also investigated
it in the context of the higher-orderπ-calculus; by Hondaet al. [17] with a rich type theory; and by Thielecke [28]
in the context of continuation passing style programming languages, just to name a few. Milner also defined another
input-based encoding that respectscall-by-valuereduction up to substitution, but this had fewer followers.

For many years, it seemed that the first and final word on the encoding of theλ-calculus has been said by Milner;
in fact, Milner’s encoding has set a milestone in the comparison between the functional and the concurrent paradigms,
and all the above mentioned systems present variants of Milner’s encoding1.

In [24], Sangiorgi states good reasons for obtaining an expressive encoding: (1) from the process calculi point of
view, to gain deeper insight into its theory; (2) from theλ-calculus point of view, to provide the opportunity to study
λ-terms in contexts different than the sequential or applicative one; and (3) theλ-calculus is a model for functional
language programming; these languages have never been veryefficient, and one way of improving efficiency is to use
parallel implementation.

Email addresses:s.vanbakel@imperial.ac.uk (Steffen van Bakel),maria.vigliotti@imperial.ac.uk (Maria Grazia
Vigliotti)

1Sangiorgi [23] says: “It seems established that[Milner’s encoding]is canonical, i.e. it is the ‘best’ or ‘simplest’ encoding ofthe lazyλ-calculus
into π-calculus.”

Preprint submitted to Elsevier November 5, 2010

We strongly agree with these assertions and we shall see in the course of this paper how our work on theλ-calculus
with explicit substitutionand a novel type system will shed new light on all these areas.We will choose an approach
alternative to Milner’s, interpreting terms underoutput rather than underinput, and encoding spine reduction, which
encompasses lazy reduction, in the process.

Substitution
The first question we wish to address here is:

How can we faithfully model (implicit) substitution of theλ-calculus into theπ-calculus.

This question is relevant, since Milner’s encodingdoes notmodel implicit substitution (as illustrated in Figure 1).
There are two ways to address the problem of representing implicit λ-substitution in theπ-calculus:

1. To encode theλ-calculus into the Higher-Orderπ-calculus, as in Sangiorgi [24];
2. To consider a different kind ofλ-calculus where the substitution is more ‘fine-grained’.

In this paper, we have chosen the second option, for which we need to understand what is exactly the notion of
substitution that we can faithfully encode inπ-calculus. Central to our approach is the interpretation oftheexplicit
substitutionversion of reduction, which allows us to establish a clear connection between term-substitution in the
λ-calculus, and the simulation of this operation in theπ-calculus via channel-name passing.

Notice that, although both theλ-calculus and theπ-calculus are equipped with substitution, these notions are
conceptually very different. While theλ-calculus has an intrinsic ‘high-order’ substitution mechanism by which
terms get substituted for variables ‘all in one go’, in the standardπ-calculus the substitution mechanism replaces
variables by channel names only, i.e. not by processes2. Because of this discrepancy, in the encoding of theλ-calculus
into theπ-calculus, it is not possible to assume that substitution inthe former can be handled straightforwardly by the
same mechanism in the latter.

We have to model the contraction of the redex(λx.M)N into theπ-calculus, i.e. model the implicit substitution
M[N/x]. Notice that the required number of copies needed ofN is a priori unknown, soM[N/x] has to be modelled
using replication onN, as does(λx.M)N. Since copies of replicated processes are extracted through the congruence
! P ≡ P | ! P, the replicated substitution will always be present duringthe computation of the process generated by
the encoding. This is apparent in Milner’s encoding [19] (see also the formulation of Milner’s result Theorem 16,
Theorem 18, Figure 1, and Example 22). However, terms of the substitution that are no longer needed (after all
occurrences ofx in M have been replaced) can be garbage-collected, so correctness of operational correspondence
can be achieved with the help of strong bi-simulation.

This ‘persistence’ of the substitution in theπ-calculus is absent in the standardλ-calculus, but is present in
the our version of the (lazy)λ-calculus with explicit substitution, which is called theexplicit spinecalculus. Explicit
substitution is generally considered an implementation oftheλ-calculus, where every ‘atomic step’ of the substitution
is represented in the reduction relation; in explicit spinereduction we restrict its applicability to head-variablesonly,
leaving other occurrences untouched3. We will establish a correspondence between explicit spinereduction and
synchronisation in theπ-calculus, through which we emphasise that substitution inthe π-calculus is more ‘fine-
grained’ than that inλ-calculus, since it deals with substitutions ‘one variable occurrence at a time’.

We can then focus on what exactly is the notion of substitution that Milner’s encodingdoesmodel, and shall
argue that by encodingexplicit rather than implicit substitution, Milner’s encoding willenjoy a stronger operational
correspondence (see Theorem 18), modelling individualexplicit lazyreduction steps.

In what follows, we present two results: initially we ‘re-interpret’ Milner’s encoding into thelazy explicit sub-
stitution λ-calculus. We show that if we make substitution more ‘fine-grained’, wecan obtain stronger operational
correspondence results. We tease out, in our analysis, thatsubstitution should be encoded directly – see Definition 17
– to obtain a more faithful encoding.

We will also present an encoding that isconceptually differentfrom Milner’s, being an interpretation underoutput
rather than underinput, which is a variant of the encoding presented in [7]. Anotherdifference between our approach

2This is possible in the Higher-Orderπ-calculus [24].
3This is similar to reduction in Krivine’s machine [18]

2

and Milner’s is that we model abstraction via a process that uses asynchronousoutput; this will allow us to model
reduction underλ-abstraction as well, i.e. our new encoding respects not only (explicit) lazy reduction, but also the
(larger) notion ofexplicit spine reduction. Our encoding is not the first one to do that; in [21] the encoding of spine
reductionλ-calculus into the Fusion-calculus is presented. To obtaintheir main result, in that paper there is no need
to change Milner’s encoding; that result is a consequence ofthe symmetric substitution mechanism introduced into
the Fusion-calculus. Moreover, their encoding is not related to classical logic, as is ours.

For our encoding we do obtain a strong correspondence theorem between reductions, but we shall need the help
of contextual equivalence to match terms perfectly. Furthermore, our encoding allows to establish a relationship
betweenπ-calculus and classical logic. In fact, the central idea behind this encoding interprets a redex (a logical cut)
as a synchronisation, and is essentially based on Gentzen’sencoding of Natural Deduction into the Sequent Calculus
[12]. The idea of giving a computational interpretation of the cut as a synchronisation primitive is also used by [3]
and [10]; in both papers, only a small fragment of Linear Logic was considered, and the encoding between proofs and
theπ-calculus was left rather implicit.

In summary, we feel we have gained faithfulness and clarity in considering the encoding from theλ-calculus with
explicit substitution to theπ-calculus. Our study shows that Milner’s encoding, as well as ours, cannot fully represent
implicit substitution, but does that for a limited version of explicit substitution, which, in a sense, is the minimal
substitution needed to reach head-normal form.

Type system
We will show a type preservation result for our encoding, using the type system as presented in [4]. This type

system is different from standard type systems forπ as it does not contain any channel information and in that it ex-
presses implication. It provides a logical view to theπ-calculus, whereπ-processes can be witnesses of formulae that
are provable (within the implicative fragment) in classical logic, as was shown in [4]; this implies that theπ-calculus
provides computational content to classical logic. This could suggest, in the long term, insights and advancement
towards implementation of proof search for classical logicvia abstract machines based on theπ-calculus.

We will show in this paper that our encoding preserves types assignable toλ-terms in Curry’s system. Through
this type preservation result we show that our encoding alsorespects thefunctionalbehaviour of terms, as expressed
via assignable types, and establish a stronger, deeper relationship between sequential/applicative and concurrent
paradigms. Our work differs in spirit from the results by Honda, Yoshida and Berger [17] as their type system needs
a linear restriction of the behaviour of theπ-calculus to achieve a full abstraction result, as well as a typed language
and a type-based interpretation.

The results on the type system that we present here determines the choice of theπ-calculus used for the encoding:
we use the synchronousπ-calculus enriched withpairs of names [1]. In principle, our encoding could be adapted to
the synchronous monadicπ-calculus, however we would not be able to achieve the preservation of assignable types.
Our encoding takes inspiration from, but it is a much improved version of, the encoding ofλ-terms in to the sequent
calculusX [5, 6] – a first variant was defined by Urban [29, 30];X is a sequent calculus that enjoys the Curry-Howard
correspondence for Gentzen’sLK [13] – and the encoding ofX into theπ-calculus as defined in [4].

Our work not only sheds new light on the connection between functional and concurrent computation but also
established a firm link between (classical) logic and process calculi, as first reported on in [4], a very promising area
of research.

In summary, the main achievements of this paper are:

• Reinterpretation of Milner’s encoding ofλ-calculus with explicit substitution intoπ-calculus with strong oper-
ational correspondence theorem.

• An output-based encoding of theλ-calculus with explicit substitution into the synchronousπ-calculus with
pairing is defined that preserves spine reduction for all terms up to contextual equivalence, and, by inclusion,
for lazy reduction with explicit substitution;

• The encoding respects implicit substitution, and respectsboth spine reduction and lazy reduction for closed
terms up to simulation;

3

• The encoding preserves assignable Curry types forλ-terms, with respect to the context assignment system for
π from [4].

Paper outline

In Section 1, we repeat the definition of the synchronousπ-calculus with pairing, and in Section 2 that of the
λ-calculus, where we present the notion of explicit spine reduction ‘→xS’ which takes a central role in this paper;
in Section 3 we also briefly discuss Milner’s interpretationresult for the lazyλ-calculus, as well as Sangiorgi and
Walker’suniformencoding [26]. Then, in Section 4, we will define an encoding where terms are interpreted under
outputrather thaninput (as in Milner’s), and show in Section 5 that→xS is respected by our interpretation, modulo
renaming. In Section 6, we show that this renaming is not needed when interpreting the lazyλ-calculus. To conclude,
in Section 7 we give a notion of (type) context assignment on processes inπ, and show that our interpretation preserves
types. In fact, this result is the main motivation for our interpretation, which is thereforelogical.

This paper is a modified version of the paper that appeared as [7]; we have, in particular, addressed the termination
issue.

1. The synchronousπ-calculus with pairing

The notion of synchronousπ-calculus that we consider in this paper is similar to the oneused also in [1, 4], and
is different from other systems studied in the literature [15] in a number of aspects: we add pairing, and introduce the
let-construct to deal with inputs of pairs of names that get distributed. The main reason for the addition of pairing [1]
lies in the fact that we want to preserve implicate type assignment.

Theπ-calculus is aninput-outputcalculus, where terms have not just more than oneinput, but also more than one
output. This is similar to what we find in Gentzen’sLK , where right-introduction of the arrow is represented by

(⇒R) :
Γ, A ⊢LK B, ∆

Γ ⊢LK A⇒B, ∆

with Γ and∆ multi-sets of formulae. Notice that onlyoneof the possible formulae is selected from the right context,
andtwo formulae are selected inonestep; when searching for a Curry-Howard correspondence, this will have to be
reflected in the (syntactic) witness of the proof4. Now if we want to model this inπ, i.e. want to express function
construction (abstraction), we would also need to bindtwo free names, one as name for theinput of the function, and
the other as name for itsoutput. We can thus express that a processP acts as a functiononly when fixing (binding)
bothan input andanoutputsimultaneously, i.e. in onestep; we use pairing exactly for this: interfaces for functions
are modelled by sending and receivingpairsof names.

We will introducedataas a structure over names, such that not only names but also pairs of names can be sent
(but not a pair of pairs); this way a channel may pass along either a name or a pair of names.

Definition 1 (Processes).Channel namesanddataare defined by:

a, b, c, d, x, y, z names p ::= a | a, b data

Notice that pairing isnot recursive. Processes are defined by:

P, Q ::= 0 Nil

| P | Q Composition

| ! P Replication

| (νa)P Restriction

| a(x). P Input

| a〈p〉. P Output

| let x, y = p in P Let construct

We see, as usual,ν as a binder, and call the namen boundin (νn)P; n is free in P if it occurs inP, but is not bound.
We call a variable/namevisible in P if it occurs free, and does not occur under aninput or anoutput. A context

C[·] is a process with a hole[].

4This is exactly the approach of the calculusX , where the representative of(⇒R) binds two connectors.

4

We abbreviatea(x). let y, z = x in P by a(y, z). P, and(νm)(νn)P by (νmn)P, and writea〈p〉 for a〈p〉. 0,
anda〈c, d〉. P for a〈 c, d 〉. P. A (process) context is simply a term with a hole[·].

Definition 2 (Congruence). The structural congruence is the smallest equivalence relation closed under contexts
defined by the following rules:

P | 0 ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P |(Q | R)

(νn)0 ≡ 0

(νm)(νn)P ≡ (νn)(νm)P

(νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P)

! P ≡ P | ! P

let x, y = a, b in P ≡ P[a/x, b/y]

We will consider processes modulo congruence: this impliesthat we will not deal explicitly with the process
let x, y = a, b in P, but rather withP[a/x, b/y].

Computation in theπ-calculus with pairing is expressed via the exchange ofdata.

Definition 3 (Reduction). Thereduction relationis defined by the following (elementary) rules:

a〈p〉. P | a(x). Q →π P | Q[p/x] (synchronisation)

P →π P′ ⇒ (νn)P →π (νn)P′ (hiding)

P →π P′ ⇒ P | Q →π P′ | Q (composition)

P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′ (congruence)

As usual, we write→+
π for the transitive closure of→π, →∗

π for its reflexive closure,→∗
π for its reflexive and

transitive closure, write→π (a) if we want to point out that a synchronisation took place overchannela, and write
→π (α) if we want to point out thatα-conversion has taken place during the synchronisation.

We will use the notation→+ and→∗ for all notions of reduction we discuss here.
Notice that

a〈b, c〉. P | a(x, y). Q =∆ a〈 b, c 〉. P | a(z). let x, y = z in Q →π

P | let x, y = b, c in Q ≡ P | Q[b/x, c/y].

Definition 4. 1. We writeP ↓ n (and say thatP outputs onn) if P ≡ (νb1 . . . bm) (n〈p〉 |Q) for someQ, where
n 6= b1 . . . bm.

2. We writeP ⇓ n (and say thatP will outputon n) if there existsQ such thatP →∗
π Q andQ ↓ n.

3. We writeP ∼C Q (and callP andQ contextually equivalent) if, for all contextsC[·], and for alln, C[P] ⇓ n if
and only ifC[Q] ⇓ n.

2. The Lambda Calculus (and variants thereof)

We assume the reader to be familiar with theλ-calculus; we just repeat the definition of the relevant notions.

Definition 5 (Lambda terms and β-contraction [8]). 1. The setΛ of λ-termsis defined by the grammar:

M, N ::= x | λx.M | MN

2. The one-step reduction relation→β is defined by the rules:

(β) : (λx.M)N → M[N/x] M → N ⇒











ML → NL

LM → LN

λx.M → λx.N

whereM[N/x] is the (implicit) substitution ofN for x in M, which takes place immediately and silently.

5

We will focus in this paper mainly on Call-By-Name reductionsystems, in the sense that, in an applicationMN,
reduction will take place only inM until it either (1) terminates in an abstractionλx.P, after which we will contract
the redex(λx.P)N, or (2) it will terminate when reaching a variable. The two main notions arelazyreduction, where
reduction stops onM when an abstraction is created, andspinereduction, where we also can contract (head) redexes
inside an abstraction. Since these notions are defined by limiting thecontextualreduction rules of theλ-calculus, in
all notions we present here those rules are present (as above); this is in contrast to normal presentations that leave the
contextual rules implicit. Moreover, in view of the fact that we aim to build encodings of these notions of reduction
into theπ-calculus where we encoding of normal reduction is intricate, we will consider versions of those two notions
with explicit substitution, that can be accurately encoded.

How to deal with implicit substitution[N/x] on terms plays an important role in interpretations/implementations
of the λ-calculus. To encodeβ-reduction(λx.M)N →β M[N/x] in theπ-calculus, implicit substitution has to be
modelled using synchronisation, since this is the only computational action in theπ-calculus. However, remark that
synchronisation takes place one-at-the-time (i.e.oneoutputsynchronising withoneinput); since a priori the required
number of copies needed ofN is unknown, the distributive character of the substitutionof N for x in M has to be
modelled using replication. Also, the interpretation ofM[N/x] itself is the result of running the interpretation of
(λx.M)N; since no step inπ introduces replication, it is clear that also in the latter,the interpretation ofN must
appear replicated in the same way.

As is clear from the formulation of Milner’s result (see Theorem 16), since! P ≡ P | ! P, even when allxs
in M have disappeared as result of the execution of the interpretation of the substitutionM[N/x], the replicated
substitution term will always remain. To not generate too many running copies ofN than are strictly needed, Milner
engineered his encoding to block the running of[N/x] by placing anoutput guard (as in! x(w). [[N]]M w), making
the synchronisation overx the deblocking action. Since the definition of reduction on theπ-calculus does not permit
synchronisation under replication or guard, this implies that reductions in the right-hand term of an application cannot
be modelled. Also, sinceλ-abstraction is modelled by Milner viainput, reduction under an abstraction cannot be
modelled. These two restrictions imply that, using Milner’s approach, resulting in his encoding of theλ-calculus
into the (synchronous, monadic)π-calculus as defined in Definition 13, only thelazyλ-calculus can be modelled, as
defined below.

We also definespinereduction, which we will encode in this paper.

Definition 6 (Lazy and spine reduction). 1. Lazy reduction5 for the λ-calculus [2] is defined by limiting the
one-step reduction relation to:

(λx.M)N → M[N/x] M → N ⇒ ML → NL

We writeP →L Q if P reduces toQ using lazy reduction.
2. We definespinereduction6 by limiting one-step reduction to:

(λx.M)N → M[N/x] M → N ⇒

{

ML → NL

λx.M → λx.N

We write M →S N if M reduces toN using spine reduction.

Notice that spine reduction is aptly named, since all reductions take place on the spine of theλ-tree (see [9]):
searching for a redex, starting from the root, we can walk ‘down’ and turn ‘left’, but not turn ‘right’, so stay on the
spine of the tree. This notion of reduction is shown to be head-normalising in [9] (even quasi-head normalising); in
fact, the normal forms for spine reduction are exactly the head-normal forms for normal reduction [31].

5This reduction relation is sometimes also known as ‘Call-by-Name’; since this is an overloaded concept, we stick to the terminology ‘lazy’;
the definition here is the one used in [19].

6This notion is known also as ‘strong Call-by-Name’; in [14],essentially following [9], spine reduction is defined by “just contracting redexes
that are on the spine”; headspine reduction is mentioned, but not defined, in [27].

6

Notice that spine reduction encompasses lazy reduction, since M →L N implies M →S N, but not vice-versa,
since both

(λx.(λy.M)N)L →S

{

(λx.M[N/y])L

((λy.M)N)[L/x]

whereas only(λx.(λy.M)N)L →L ((λy.M)N)[L/x].
It is worthwhile to note that, although not mentioned in [19], the proof of Milner’s main result (Theorem 16 in this

paper) treats the substitution asexplicit, not asimplicit; for example, in the proof of Lemma 4.5 in that paper, case 3
considers the termxM1· · ·Mn[N/x] andNM1· · ·Mn to bedifferent. It is therefore opportune to switch our attention
to Bloo and Rose’s calculusλx [11], a calculus with explicit substitution, where aβ-reduction of theλ-calculus is
split into several more atomic steps of computation7. Bloo and Rose add the concept of substitution to the syntax of
the calculus, making itexplicit, by adding the operatorM 〈x := N〉:

The syntax of theexplicit λ-calculusλx is an extension of that of theλ-calculus.

Definition 7 (Syntax of λx c.f. [11]). M, N ::= x | λx.M | MN | M 〈x := N〉

A term M is calledpure if it contains no explicit substitution〈x := N〉.

We writeMN 〈x := L〉 for (MN)〈x := L〉, andM 〈y := N〉〈x := L〉 for (M 〈y := N〉)〈x := L〉, and useM 〈y := L〉
as shorthand forM 〈y1 := L1〉· · ·〈yn := Ln〉, with n ≥ 0; by Barendregt’s convention, allyi are distinct.

Explicit substitution describes explicitly the process ofexecuting aβ-reduction, i.e. expresses syntactically the
details of the computation as a succession of atomic, constant-time steps (in a first-order rewriting system), where the
implicit substitution of theβ-reduction step is split into several steps.

Definition 8 (Reduction onλx). The reduction relation→x on terms inλx is defined by the following rules8:

(B) : (λx.M)P → M 〈x := P〉

(App) : (MN)〈x := P〉 → M 〈x := P〉N 〈x := P〉

(Abs) : (λy.M)〈x := P〉 → λy.(M 〈x := P〉)

(VarI) : x 〈x := P〉 → P

(gc) : M 〈x := P〉 → M, x 6∈ fv(M)

M → N ⇒































ML → NL

LM → LN

λx.M → λx.N

M 〈x := L〉 → N 〈x := L〉

L〈x := M〉 → L〈x := N〉

We write→:= if only the rules(App), (Abs), (VarI), and(VarK) are applied in the reduction.

We observe that→:= implements the implicit substitution of theλ-calculus; notice that reductions in→:= termi-
nate.

Although stated with implicit substitution, Milner’s result (Theorem 16) does not show that lazy reduction is fully
modelled, as can be observed in Figure 1; rather, it models applicative bi-simulation only. Although in the proof of
his result Milner treats substitution as explicit, carefulanalysis shows that evenλx’s reduction is not fully modelled
by Milner’s encoding; however, explicit lazy reduction – a more restricted version, that we will define below – is.

We will, in fact, distinguishtwo notions and define also explicit spine reduction; we will show that step-by-step
reduction in the first is modelled by Milner’s encoding, and that step-by-step reduction in the second is modelled by
our encoding (see Definition 25), up to renaming.

Definition 9 (λxL and λxS). 1. The syntax of theexplicit lazyλ-calculusλxL and that of theexplicit spineλ-
calculusλxS is that ofλx.

2. The explicit variant→xL of lazy reduction is defined as follows.

(λx.M)N → M 〈x := N〉

xM1· · ·Mn 〈y := L〉 〈x := N〉 → NM1· · ·Mn 〈y := L〉 〈x := N〉

M → N ⇒

{

ML → NL

M 〈x := L〉 → N 〈x := L〉

7Many other notions of calculi with explicit substitution exist, but those are not relevant to our results.
8An alternative to the fifth rule is the rule(VarK), defined byy 〈x := P〉 → y.

7

3. Explicit spine reduction→xS is defined via:

(λx.M)N → M 〈x := N〉

(λy.M)〈x := N〉 → λy.(M 〈x := N〉)

xM1· · ·Mn 〈y := L〉 〈x := N〉 → NM1· · ·Mn 〈y := L〉 〈x := N〉

M → N ⇒











ML → NL

λx.M → λx.N

M 〈x := L〉 → N 〈x := L〉

4. We callx the lazy head variableof xM1· · ·Mn 〈y := N〉, and thehead variableof λz.xM1· · ·Mn 〈y := N〉.

Notice that we deviate here from the approach ofλx by using a notion of explicit substitution that islazy, i.e. we
postpone substitutions until the (head-)reduction has reached the stage that the term to be substituted is needed in
order to be able to continue with the reduction. Remark that,in the context ofimplicit substitution, we have no choice
but to accept that, when contracting a redex(λx.M)N, the parameterN immediately gets substituted forall the
occurrences ofx in M. When moving to the context ofexplicit substitution, this is no longer the case, and we can
gain control over exactly which occurrences ofx do effectively need to be replaced immediately, and which can be
postponed until a later moment. We will see that this behaviour corresponds directly to the behaviour of the encoded
terms in theπ-calculus.

The criterion, in the context of lazy reduction, is of courseto perform only those substitutions that are essential
for the continuation of reduction: for example, when contracting (xx)〈x := λy.y〉, only the substitution to the head
variable is essential to make sure that lazy reduction can continue: this would yield((λy.y)x)〈x := λy.y〉. The
secondx will only be replaced when it becomes the head-variable9, i.e. after the redex(λy.y)x gets contracted,
yielding y 〈y := x〉 〈x := λy.y〉, which in turn reduces tox 〈y := x〉 〈x := λy.y〉; now the variable is at the head, the
postponed substitution can be applied which in turn yields(λz.z)〈y := x〉 〈x := λy.y〉 (notice that this reduction is
not in λx). So, in general, lazy explicit substitution replaces onlythe lazy head variable of a term.

Explicit lazy reduction ofλxL has similarities with Krivine’s machine [18], since the explicit substitutions cor-
respond toclosures. Krivine’s machine is deterministic and stops at weak-headnormal from, i.e. does not reduce
under an abstraction, as in the explicit lazy reduction: this is not true for explicit spine reduction. Krivine’s machine
therefore corresponds more to explicit lazy reduction.

The following is easy to show:

Proposition 10. If M →xS N, then there exists a pureλ-termL such thatN →:= L.

Since spine reduction reduces a termM to head-normal form, if it exists, this implies that also→xS reduces to
head-normal form, albeit with perhaps some substitutions still pending.

Example 11. 1. Substitutions are left after reducing, like(λz.yz)N →xS yz〈z := N〉.
We can reduce(λx.(Lz.A(Ly.M)Vx))N in two different ways:

(λx.(λz.(λy.M)x))N →xS

(λz.(λy.M)x)〈x := N〉 →xS

λz.((λy.M)x)〈x := N〉 →xS

λz.(M 〈y := x〉〈x := N〉)

(λx.(λz.(λy.M)x))N →xS

(λx.(λz.(M 〈y := x〉)))N →xS

λz.(M 〈y := x〉)〈x := N〉 →xS

λz.(M 〈y := x〉 〈x := N〉)

Notice that

(λx.xx)(λy.y) →xS xx〈x := λy.y〉 →xS

(λy.y)x〈x := λy.y〉 →xS

y〈y := x〉〈x := λy.y〉 →xS

x〈y := x〉〈x := λy.y〉 →xS (α) (λz.z)〈y := x〉〈x := λy.y〉

9This appears to be the implicit approach of [19] (see Lemma 4.5, case 3).

8

2. Of course inλxS we can have non-terminating reductions, as illustrated by:

(λx.xx)(λx.xx) →xS

xx 〈x := λy.yy〉 →xS

(λy.yy)x〈x := λy.yy〉 →xS

yy 〈y := x〉 〈x := λy.yy〉 →xS

xy 〈y := x〉 〈x := λy.yy〉 →xS (α)

(λz.zz)y〈y := x〉 〈x := λy.yy〉 →xS

zz 〈z := y〉〈y := x〉 〈x := λy.yy〉 →+
xS · · ·

zz 〈z := y〉 〈y := x〉 〈x := λy.yy〉 →+
:=

yy〈y := x〉 〈x := λy.yy〉 →+
:=

xx 〈x := λy.yy〉 →+
:=

(λy.yy)(λy.yy)

(notice theα-conversion, needed to adhere to Barendregt’s convention). This reduction is deterministic and
clearly loops; however, notice that(λx.xx)(λx.xx) does not run to itself. The second part shows that, as stated
by Proposition 12, the normal reduction result can be achieved by reduction inλx.

We can easily show the following result, that states the relation between the various notions of reduction:

Proposition 12. 1. If M →∗
L N, then there existsL ∈ λx such thatM →∗

xL L andL →∗
:= N.

2. If M →∗
L N, with N in normal form, then there existsL ∈ λx such thatL is in λxL-normal form, andM →∗

xL L
andL →∗

:= N.
3. If M →∗

S N, then there existsP, x, Q such thatM →∗
xS P〈x = Q〉 →∗

:= N, andP[Q/x] = N.
4. If M →∗

S N, andN is in →S-normal form (i.e. inβ-head-normal form), then there existsL ∈ λx such thatL is
in λxS-normal form, andM →∗

xS L andL →∗
:= N.

Notice that, in particular, the second part holds forsingle stepreductions.

3. Milner’s input -based lazy encoding

In his seminal paper [19], Milner defines an encoding of theλ-calculus into the (monadic)π-calculus, and shows
some correctness results. His Call-By-Name encoding10 is inspired by the normal semantics ofλ-terms, which states
for abstraction:

⌈⌈λx.M⌋⌋ξ
M = G(λλ d ∈M.⌈⌈M⌋⌋Mξ(d/x))

(hereM is an domain,ξ is avaluation, mapping free variables to elements of the domain,G a domain constructor,
and the body of the abstraction is interpreted in the updatedvaluation, where now alsox is mapped tod, an arbitrary
element of the domain11). So, also in the encoding, instead of executingM[N/x], M is executed in an environment
that bindsN to the variablex. This leads to:

Definition 13 (Milner’s interpretation [19]). The input-based encodingof λ-terms into theπ-calculus is defined
by:

[[x]]M a =∆ x〈a〉 x 6= a

[[λx.M]]M a =∆ a(x). a(b). [[M]]M b b fresh

[[MN]]M a =∆ (νc) ([[M]]M c | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) c, z fresh

[[x := M]]M =∆ ! x(w). [[M]]M w w fresh

Milner calls[[x := M]]M an “environment entry”; it could be omitted from the definition above, but is of use separately.
Herea is the channel along which[[M]]M receives its argument; this is used to communicate with the interpretation of
the argument, as made clear in the third case, were theinput channel of the left-hand term is used to send the name
over on which the right-hand term will receive itsinput.

10[19] also deals with Call-By-Value, which we will not consider here.
11For details, see [8].

9

We would, at this stage, like to draw attention to the ‘delay’mechanism that forms part of this encoding through
the guard on the substitution! z(w). [[N]]M w. This has not only the advantage that reduction cannot take place ‘in
the argument of substitution’[[N]]M w, also, no context can interact with this term; even after a copy has been peeled
of from the replicated term (via! x(w). [[N]]M w ≡ x(w). [[N]]M w | ! x(w). [[N]]M w) the process[[N]]M x cannot start
running, since guarded by aninput. This is made evident in the next example.

Example 14. [[(λx.x)N]]M a =∆

(νc) (c(x). c(b). x〈b〉 | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) →π (c)

(νz)(z〈a〉 | ! z(w). [[N]]M w) ≡

(νz)(z〈a〉 | z(w). [[N]]M w | ! z(w). [[N]]M w) →π (z)

(νz)([[N]]M a | ! z(w). [[N]]M w) ≡

[[N]]M a | (νz)(! z(w). [[N]]M w) ∼C [[N]]M a

Notice that[[N]]M w cannot run until the synchronisation overz has taken place, and that(νz)(! z(w). [[N]]M w) is
contextually equivalent to0.

Milner’s initial approach has since become standard; in fact, as mentioned in the introduction, Sangiorgi considers
it canonical [23].

Notice that both the body of the abstraction and the argumentin an application both get positioned under aninput,
and that therefore reductions inside these subterms cannotbe modelled; as a result, the simulation via the encoding is
limited to lazy reduction.

Example 15. Using [[·]]M ·, the interpretation of aβ-redex (only) reduces as follows:

[[(λx.M)N]]M a =∆

(νc) ([[λx.M]]M c | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) =∆

(νc) (c(x). c(b). [[M]]M b | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) →π (c)

(νcz) (c(b). [[M[z/x]]]M b | c〈a〉. [[z := N]]M) →π (c)

(νz)([[M[z/x]]]M a | [[z := N]]M) =α (z 6∈ [[M]]M b)

(νx)([[M]]M a | [[x := N]]M) =∆

(νx)([[M]]M a | ! x(w). [[N]]M w)

Now reduction can continue in (the interpretation of)M, but not inN that is still guarded by theinput on x, which
will not be used until the evaluation of[[M]]M a reaches the point whereoutput is generated overx.

Milner shows the main correctness result for his interpretation with respect to lazy reduction, which is stated as
follows:

Theorem 16 ([19]). For all closedλ-termsM, either:

1. M →∗
L λy.R[N/x], and[[M]]M u →∗

π (νx) ([[λy.R]]M u | [[x := N]]M), or
2. both M and[[M]]M u diverge.

We have already remarked that Milner’s encoding does not simulate step-by-step reduction, not even when re-
stricted to lazy reduction. To illustrate this fact, Figure1 shows the reduction of the interpretation of(λx.xx)(λy.y)
under Milner’s encoding. Notice that, there, we have executed the only possible synchronisations, and that in the
reduction path no term corresponds to

(νc) ([[λy.y]]M c | (νz) (c〈z〉. c〈a〉. [[z := λy.y]]M)) = [[(λy.y)(λy.y)]]M a

So, in particular,(νz) ([[zz]]M a | [[z := λy.y]]M) doesnot reduce to the result of the substitution,[[(λy.y)(λy.y)]]M a:
Milner’s encoding does not model implicit substitutions itself. Therefore, although(νx)([[M]]M a | [[x := N]]M) can
intuitively be seen as[[M[N/x]]]M a, these are, in fact, substantially different.

10

[[(λx.xx)(λy.y)]]M a =∆

1 : (νc) ([[λx.xx]]M c | (νz) (c〈z〉. c〈a〉. [[z := λy.y]]M)) =∆

(νc) (c(x). c(b). [[xx]]M b | (νz) (c〈z〉. c〈a〉. [[z := λy.y]]M)) →+
π (c)

2 : (νz)([[zz]]M a | [[z := λy.y]]M) =∆

(νz)((νc) ([[z]]M c | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]]M)) | [[z := λy.y]]M) =∆

(νz)((νc) (z〈c〉 | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]]M)) | [[z := λy.y]]M) ≡

(νz)((νc)(z〈c〉 | z(w). [[λy.y]]M w | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]]M)) | [[z := λy.y]]M) → (z)

3 : (νz)((νc) ([[λy.y]]M c | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]]M)) | [[z := λy.y]]M) =∆

(νz)((νc) (c(y). c(b). y〈b〉 | (νz1) (c〈z1〉. c〈a〉. [[z1 := z]]M)) | [[z := λy.y]]M) →+
π (c)

4 : (νz)((νz1)(z1〈a〉 | [[z1 := z]]M) | [[z := λy.y]]M) ≡

(νz)((νz1)(z1〈a〉 | z1(w). z〈w〉 | [[z1 := z]]M) | [[z := λy.y]]M) → (z1)

5 : (νz)((νz1)(z〈a〉 | [[z1 := z]]M) | [[z := λy.y]]M) ≡

(νz)((νz1)(z〈a〉 | [[z1 := z]]M) | z(w).[[λy.y]]M a | [[z := λy.y]]M) → (z)

6 : (νz)((νz1)([[λy.y]]M a | [[z1 := z]]M) | [[z := λy.y]]M) ≡

[[λy.y]]M a | (νz)((νz1) ([[z1 := z]]M) | [[z := λy.y]]M) ∼C [[λy.y]]M a

Figure 1: Running Milner’s encoding of(λx.xx)(λy.y).

So is there then a relation between Milner’s encoding and explicit substitution? By close inspection it becomes
clear that the reduction in Figure 1 actually simulates:

(λx.xx)(λy.y) →xL (zz) 〈z :=λy.y〉 →xL

((λy.y)z)〈z := λy.y〉 →xL

z1 〈z1 := z〉 〈z := λy.y〉 →xL

z 〈z1 := z〉 〈z :=λy.y〉 →xL (λy.y)〈z1 := z〉 〈z := λy.y〉

(where the numbered lines in Figure 1 correspond to the respective terms in this reduction). Notice that this contains
some unnecessaryα-conversions, and that the congruence rules take care of part of the propagation of the substitution
(in the last step before line3); moreover, this is not a reduction inλx: the substitution〈x := λy.y〉 does not fully
propagate in the second step, but only does so for the head-variable, and stays also on the outside, which gets only
used when the innermost reduction has taken place.

We can now show that we can generalise the above observation,and show a (more direct) simulation result for
Milner’s encoding but now for explicit lazy reduction; firstwe need to extend that encoding to have it deal with explicit
substitution as well.

Definition 17. We extend the interpretation of Definition 13 toλx (andλxL andλxS, for that matter) by adding the
case:

[[M 〈x := N〉]]M a =∆ (νx)([[M]]M a | [[x := N]]M)

Formulated using→xL , we can now show the following result for Milner’s interpretation in theλ-calculus with
explicit substitution:

Theorem 18 ([[·]]M · preserves→xL). If M →∗
xL N, then[[M]]M a →+

π [[N]]M a.

PROOF. By induction on the definition of explicit lazy reduction; we only show the basic cases.

(λy.M)N →xL M 〈y := N〉 : [[(λy.M)N]]M a =∆

(νc) (c(y). c(b). [[M]]M b | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) →+
π (c)

(νz)([[M[z/y]]]M a | [[z := N]]M) =α

(νy)([[M]]M a | [[y := N]]M) =∆ [[M 〈y := N〉]]M a
11

(xM1· · ·Mn 〈y := L〉)〈x := N〉 →xL (NM1· · ·Mn 〈y := L〉) 〈x := N〉 :

[[(xM1· · ·Mn 〈y := L〉) 〈x := N〉]]M a =∆

(νx)([[xM1· · ·Mn 〈y := L〉]]M a | [[x := N]]M) =∆

(νx)((νc)([[xM1· · ·Mn−1]]
M c | (νz)(c〈z〉. c〈a〉. [[z := Mn]]M)) | [[y := L]]M | [[x := N]]M) =∆ ,≡

(νxycc1· · ·cn−1) (x〈cn−1〉 | (νzn−1) (cn−1〈zn−1〉. cn−1〈c〉. [[zn−1 := M1]]
M) | · · · |

(νz)(c〈z〉. c〈a〉. [[z := Mn]]M) | [[y := L]]M | [[x := N]]M) ≡

(νxycc1· · ·cn−1) (x〈cn−1〉 | (νzn−1) (cn−1〈zn−1〉. cn−1〈c〉. [[zn−1 := M1]]
M) | · · · |

(νz)(c〈z〉. c〈a〉. [[z := Mn]]M) | [[y := L]]M | x(w). [[N]]M w | [[x := N]]M) →π (x)

(νxycc1· · ·cn−1) ([[N]]M cn−1 | (νzn−1) (cn−1〈zn−1〉. cn−1〈c〉. [[zn−1 := M1]]
M) | · · · |

(νz)(c〈z〉. c〈a〉. [[z := Mn]]M) | [[y := L]]M | [[x := N]]M) ≡,=∆

[[(NM1· · ·Mn 〈y := L〉) 〈x := N〉]]M a

M →xL M′ ⇒ MN →xL M′N : [[MN]]M a =∆

(νc) ([[M]]M c | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) →+
π (IH)

(νc) ([[M′]]M c | (νz) (c〈z〉. c〈a〉. [[z := N]]M)) =∆ [[M′N]]M a

M →xL M′ ⇒ M 〈x := N〉 →xL M′ 〈x := N〉 : [[M 〈x := N〉]]M a =∆

(νx)([[M]]M a | [[x := N]]M) →+
π (IH) (νx)([[M′]]M a | [[x := N]]M) =∆ [[M′ 〈x := N〉]]M a

Notice that, in particular, we do not need theλ-terms involved to be closed, but of course can show:

Corollary 19. If M is closed, andM →∗
xL (λy.N)〈x := L〉, then[[M]]M a →+

π [[λy.N]]M a | [[y := L]]M .

which is Milner’s main result, but stated using explicit substitution, as we think it should have been.
We can of course also restate these results using normal lazyreduction:

Theorem 20. 1. If M →∗
L N, then there existsM′ such that[[M]]M a →+

π [[M′]]M a, andM′ →:= N.

2. If M is closed and lazy normalising, then there existsN, x, L such thatM →L (λy.N)[L/x], and[[M]]M a →+
π

[[λy.N]]M a | [[y := L]]M .

PROOF. By Theorem 18 and Proposition 12.

After Milner’s original encoding, many variants followed,with perhaps the most expressive being the uniform
encoding[[·]]U ·, as defined in [26]. That encoding is, in particular, engineered to work in Call-By-Name, Call-By-
Value, and Call-By-Need; here we focus on theCBN component, and adapt the definition to our notation.

Definition 21 (The uniform encoding [26]). The CBN-variant of the uniform encoding of theλ-calculus into the
(synchronous)π-calculus with pairing is defined as follows:

[[x]]U p =∆ x〈p〉

[[λx.M]]U p =∆ (νv) (p〈v〉. ! v(x, q). [[M]]Uq)

[[MN]]U p =∆ (νq) ([[M]]Uq | q(v). (νx)(v〈x, p〉. ! x(w). [[N]]Uw))

This encoding contains, at least forCBN, some superfluous replication in the case that deals with abstraction, but
this is needed to successfully encode the other two reduction strategies. Although this is anoutput-based encoding, in
the sense that the (private) channelq in the encoding ofMN is used as anoutput for the encoding ofM, underneath
the encoding is essentially Milner’s.

12

Example 22. In general, the encoding of a redex runs as follows:

[[(λy.M)N]]U p =∆

(νq)([[λy.M]]Uq | q(v). (νx)(v〈x, p〉. ! x(w). [[N]]Uw)) =∆

(νq)((νv)(q〈v〉. ! v(y, r). [[M]]Ur) | q(v). (νx)(v〈x, p〉. ! x(w). [[N]]Uw)) →π (q)

(νv)(! v(y, r). [[M]]Ur | (νx)(v〈x, p〉. ! x(w). [[N]]Uw)) →π (v)

(νxv) (! v(y, r). [[M]]Ur | [[M[x/y]]]U p | ! x(w). [[N]]Uw) =α

(νyv) (! v(y, r). [[M]]Ur | [[M]]U p | ! y(w). [[N]]Uw) ≡

(νy)((νv)(! v(y, r). [[M]]Ur) | [[M]]U p | ! y(w). [[N]]Uw) ∼π

(νy)([[M]]U p | ! y(w). [[N]]Uw)

In particular:

[[(λy.y)(λz.z)]]U p →π (q, v),∼π

(νy)([[y]]U p | ! y(w). [[λz.z]]U w) =∆ ,≡

(νy)(y〈p〉 | y(w). [[λz.z]]Uw | ! y(w). [[λz.z]]U w) →π (y)

(νy)([[λz.z]]U p | ! y(w). [[λz.z]]Uw) ≡

[[λz.z]]U p | (νy)(! y(w). [[λz.z]]Uw) ∼π [[λz.z]]U p

Notice that this reduction, after the synchronisation overq, essentially runs like Milner’s encoding, but uses pairing
as in Section 4.

This example allows us to extend the uniformCBN-encoding toλx by adding:

[[M 〈x := N〉]]U p =∆ (νx)([[M]]U p | [[x := N]]U)

where, inspired by Milner’s encoding, we write[[x := N]]U for ! x(w). [[N]]Uw.
Notice that, as before, the reductions inside an abstraction, those in the right-hand side of an application, as well

as those inside the term that gets substituted, cannot be simulated, and that, therefore, this encoding models (part of)
lazy reduction. Moreover, only the head variable can get replaced; in fact, it is easy to show that also this encoding
respects explicit lazy reduction:

Theorem 23. If M →∗
xL N, then[[M]]U p →+

π [[N]]U p.

PROOF. By induction on the definition of explicit lazy reduction; we only show the basic cases.

(λx.P)Q →xL P〈x := Q〉 : By Example 22.

(zM1· · ·Mn 〈y := L〉) 〈z := N〉 →xL (NM1· · ·Mn 〈y := L〉) 〈z := N〉 :

[[(zM1· · ·Mn 〈y := L〉) 〈z := N〉]]U p =∆

(νzy) ((νq) ([[zM1· · ·Mn−1]]
Uq | q(v). (νx) (v〈x, p〉. [[x := Mn]]U)) |

[[y := L]]U | [[z := N]]U) =∆ ,≡

(νzyqq1q2· · ·qn) (z〈qn〉 | qn(vn). (νxn) (vn〈xn, qn−1〉. [[xn := M1]]
U)) | · · · |

q(v). (νx)(v〈x, p〉. [[x := Mn]]U)) | [[y := L]]U | z(w). [[N]]Uw | [[z := N]]U) →π (z)

(νzyqq1q2· · ·qn) ([[N]]Uqn | qn(vn). (νxn) (vn〈xn, qn−1〉. [[xn := M1]]
U)) | · · · |

q(v). (νx)(v〈x, p〉. [[x := Mn]]U)) | [[y := L]]U | [[z := N]]U) ≡,=∆

[[(NM1· · ·Mn 〈y := L〉) 〈z := N〉]]U p

M →xL M′ ⇒ MN →xL M′N, M 〈z := N〉 →xL M′ 〈z := N〉 : By induction.

13

Notice that, in particular, as in Theorem 18, we do not need the λ-terms involved in the reduction to be closed,
and that we model step-by-step explicit lazy reduction.

The following then becomes immediate:

Theorem 24. If M →L N, then there existsN′ such that[[M]]U p →+
π [[N′]]U p, andN′ →∗

xL N.

PROOF. By Theorem 23 and Proposition 12.

4. A logical,output -based encoding ofλ-terms

In this section, we will show that it is possible to deviate from Milner’s original approach to encoding, and
actually make a gain in the process. Inspired by the relationbetween natural deduction and the sequent calculus
[13], interpreting terms underoutput rather than underinput, and using theπ-calculus with pairing, we can define a
different encoding of theλ-calculus into theπ-calculus. Although the main objective of our encoding is toshow the
preservation of type assignment, and pairing is used in order to be able to effectively represent arrow types, we also
achieve a more expressive encoding that preserves not just lazy reduction, but also the larger notion of spine reduction.

Our encoding follows from – but is an improvement of – the concatenation of the encoding of theλ-calculus intoX
(which established a link between natural deduction and thesequent calculus) as defined in [6], and the interpretation
of X into theπ-calculus as defined in [4]. The idea behind our encoding originates from the observation that, in the
λ-calculus, allinput is named, butoutput is anonymous.Input (i.e., avariable) is named to serve as a destination
for the substitution;outputneed not be named, since all terms have only one result (represented by the term itself),
which is usedin sito12. Translating into the (multi-output) π-calculus, this locality property no longer holds; we need
to specify the destination of a term, by naming itsoutput: this is what the encoding does.

We explicitly convert ‘anoutputsent ona is to be received asinputon b’ via ‘ a(w). b〈w〉’ (called aforwarder in
[16]), which for convenience is denoted bya b.

Definition 25 (Output -based interpretation of theλ-calculus in π). The mapping · · is defined by:

x a =∆ x(z). z(w). a〈w〉 x 6= a

λx.M a =∆ (νxb) (M b | a〈x, b〉) b fresh

MN a =∆ (νc) (M c | c(b, d). (! (νw) (b〈w〉. N w) | d a)) b, c, d fresh

As for Milner’s encoding, we use the abbreviation

x := N =∆ ! (νw) (x〈w〉. N w)

Notice that the encoding is not trivial, since

λyz.y a = (νyb) ((νzb1) (y(z). z(w). b1〈w〉 | b1〈z, b1〉) | a〈y, b〉)

λx.x a = (νxb) (x(z). z(w). b〈w〉 | a〈x, b〉)

processes that differ under∼C.
In particular, notice that the operandN in the applicationMN is interpreted by a guarded replication:N itself

gets interpreted under the (output) namew, which gets sent out first over the channelb, which is theinput channel of
M, if any. SoN can only run after synchronisation overb has taken place,i.e. if an input for (the channel name that
will replace)b exists. Running the encoding will eventually simulate the substitutionx 〈x := N〉 via

x a | (νv)(x〈v〉. N v) =∆ (νv)(x(z). z(w). a〈w〉 | x〈v〉. N v) →π (x)

(νv)(v(w). a〈w〉 | N v) ∼C N a

We see the synchronisation overx as the effectuation of the substitution. Also:

12In terms ofcontinuations, the continuation of a term is not mentioned, since it is the current.

14

• We see a variablex as aninput channel, over which we receive theoutputname of the process that needs to be
substituted forx; we use this name to create aninput channel to receive theoutputof N, which we then send
out of theoutputname ofx, beinga;

• For an abstractionλx.M, we give the nameb to theoutput of M; that M hasinput x andoutput b gets sent
out overa, which is the name ofλx.M, so that a process that wants to call on this functionality, knows which
channel to send theinput to, and on which channel to pick up the result13;

• For an applicationMN, theoutputof M, transmitted overc, is received as a pairb, d of input-outputnames
in the right-hand side; the receivedinput b name is used as send the freshoutput name forN, enabling the
simulation of substitution, and the receivedoutputnamed gets redirected to theoutputof the applicationa.

Notice that only one replication is used, on the argument in an application; this corresponds, as above, to the
implementation of the (distributive) substitution onλ-terms. Also, every N a is a process thatoutputs on a non-
hidden namea (albeit perhaps not actively, as in the third case, where it will not be activated untilinput is received on
the channelc, in which case it is used tooutput the data received in on the channeld that is passed as a parameter),
and that thisoutput is unique, in the sense thata is the onlyoutputchannel, is only used once, and foroutputonly.
This implies that(νa) M a ∼C 0, for all M; these are not bi-similar, of course.

The structure of the encoding of application corresponds, in fact, to how Gentzen encodesmodus ponensin the
sequent calculus [13]: see [6], Theorem 4.8, and the proof ofTheorem 48 below.

Example 26. (λp.p)(λx.x) a =∆

(νc) ((νpb1) (p(z). z(w). b1〈w〉 | c〈p, b1〉) | c(b, d). (b := λx.x | d a)) →π (c)

(νpb1) (p(z). z(w). b1〈w〉 | p := λx.x | b1 a) ≡

(νpb1) (p(z1). z1(w). b1〈w〉 | (νy)(p〈y〉. λx.x y) | p := λx.x | b1 a) →π (p)

(νb1y)(y(w). b1〈w〉 | λx.x y | (νp)(p := λx.x) | b1 a) =∆

(νb1y)(y(w). b1〈w〉 | (νxb) (x b | y〈x, b〉) | (νp)(p := λx.x) | b1 a) →+
π (y, b1)

(νxb) (x b | a〈x, b〉) | (νp)(p := λx.x) =∆

λx.x a | (νp)(p := λx.x) ∼C λx.x a

That we use asynchronous synchronisation in our encoding ofabstraction is not only convenient – since it allows
us to express not just lazy reduction, but also spine reduction as well, as we will show in the next section – it is also
necessary:

Example 27. Assume that λx.M a = (νxb) (a〈x, b〉. M b), then (λy.y)(λx.x) a would run as follows:

(λy.y)(λx.x) a =∆

(νc) (λy.y c | c(b, d). (b := (λx.x) | d a)) =∆

(νc) ((νyb1) (c〈y, b1〉. y b1) | c(b, d). (b := (λx.x) | d a)) →π (c)

(νyb1) (y b1 | y := λx.x | b1 a) ≡,=∆

(νyb1) (y(z). z(w). b1〈w〉 | (νv)(y〈v〉. (νxb) (v〈x, b〉. x b)) | y := λx.x | b1 a) →π (y, v, b1)

(νyxb) (a〈x, b〉 | x b | y := λx.x) ≡

(νxb) (a〈x, b〉 | x b) | (νy)(y := λx.x) ∼C

(νxb) (a〈x, b〉 | x b)

Notice that then the last term would not correspond toλx.x a; this clearly shows that we generate an asynchronous
output in the interpretation for the result of the reduction. To obtain an encoding that respects reduction, we therefore
had to define it using asynchronousoutput for the abstraction.

13This view of computation is exactly that of the calculusX .

15

For the encoding presented here, the encoding of a redex runsas follows:

Example 28. (λy.P)Q a =∆

(νc) ((νyb1) (P b1 | c〈y, b1〉) | c(b, d). (b := Q | d a)) →π

(νyb1)(P b1 | y := Q | b1 a)

The encoding of the redex(λy.P)Q will yield a process containing a synchronisation that receives on theinput
channel calledy in the interpretation ofP, and the interpretation ofQ beingoutput on y (see Theorem 32). Since
P b1 is sending itsoutput on b1, which gets redirected toa, we will see this as similar to(νy)(P a | y := Q)

(see Lemma 30).

A first version of our encoding was presented in [4], where it was obtained by the concatenation of the encoding
· ·

λ of theλ-calculus into the sequent calculusX as defined in [6], and the encoding· of X into theπ-calculus,
as presented in that paper. This resulted in an interpretation · · : Λ→π of theλ-calculus inπ viaX as defined by:

M α = M α
λ , i.e.:

x α =∆ x(w). α〈w〉

λx.M α =∆ (νxβ) (! M β | α〈x, β〉), β fresh

MN α =∆ (νδc) (! M δ | ! δ c | ! c(v, d). (νβ) ! N β | β v | d α), γ, β, x, y fresh

Using, for example, the insight thatM δ | δ c is in fact computationally the same asM c, and that replication is
only needed for substitution, we simplified this encoding tothe one we presented in [7]:

x a =∆ x(w). a〈w〉 x 6= a

λx.M a =∆ (νxb) (M b | a〈x, b〉) b fresh

MN a =∆ (νc) (M c | c(b, d). (! N b | d a)) b, c, d fresh

For this encoding, we can show all the major properties that we show for the encoding of Definition 25, but for
Theorem 40; in particular, we can show that, ifM →∗

xS N, then M a ∼C N a, so these processes have the same
observable behaviour; this implies that any non-termination takes place inside a process that has no visibleoutput,
i.e. isunobservable14. Using the encoding of Definition 25, we can show preservation of termination as well.

We could have defined our encoding directly in the standard synchronousπ-calculus:

x
′
a =∆ x(z). ! z(w). a〈w〉

λx.M
′
a =∆ (νxb) (M ′ b | a〈x〉 | a〈b〉)

MN
′
a =∆ (νc) (M ′ c | c(b). c(d). (! (νw) (b〈w〉. N ′ w) | ! d a))

without losing the main reduction results for our encoding that we will show below, but this has additional replication,
is less suited for type assignment (see Section 7), and does not satisfy some of the properties we consider here.

To show the need for replication in this variant also on the interpretation of variables in · ′ · and the for-
warder, consider the reduction in Figure 2. This reduction shows that the parallel composition of the outputs ona
in (νxb) (M ′ b | a〈x〉 | a〈b〉) is necessary, similar to Example 27, as is the use of replication in the interpretation
of the variable. Sinceoutput is generated twice overv, the receiving side has to run twice, so we need replication
inside the interpretation of a variable; since we send twiceon b1, also the forwarder needs to be replicated. However,
notice that these can now execute in arbitrary order, resulting in the wrong parameter exchange; so we can no longer
guarantee operational completeness (see Theorem 39).

14This is a common fact in semantic interpretations: also the encoding of recursive programs into theλ-calculus does non respect termination;
this uses a fixed-point construction to represent recursion, typically via the termλ f .(λx. f (xx))(λx. f (xx)), which already on its own does not
terminate, leaving encoded functions with non-terminating, but unobservable parts.

16

(λy.y)(λx.x) ′ a =∆

(νc) (λy.y ′ c | c(b). c(d). (! (νw) (b〈w〉. λx.x ′ w) | ! d a)) =∆

(νc) ((νyb1) (y ′ b1 | c〈y〉 | c〈b1〉) | c(b). c(d). (! (νw) (b〈w〉. λx.x ′ w) | ! d a)) →π (c) (2×)

(νyb1) (y ′ b1 | ! (νv)(y〈v〉. λx.x ′ v) | ! b1 a) ≡,=∆

(νyb1) (y(z). ! z(w). b1〈w〉 | (νv)(y〈v〉. λx.x ′ v) | ! (νv)(y〈v〉. λx.x ′ v) | ! b1 a) →π (y)

(νb1v) (! v(w). b1〈w〉 | (νxb) (x ′ b | v〈x〉 | v〈b〉) | ! (νv)(y〈v〉. λx.x ′ v) | ! b1 a) →π (v) (2×)

(νb1vbx) (! v(w). b1〈w〉 | b1〈x〉 | b1〈b〉 | x ′ b | ! (νv)(y〈v〉. λx.x ′ v) | ! b1 a) →π (b1) (2×)

(νb1vbx) (! v(w). b1〈w〉 | a〈x〉 | a〈b〉 | x ′ b | ! (νv)(y〈v〉. λx.x ′ v) | ! b1 a) ∼π

(νxb) (x ′ b | a〈x〉 | a〈b〉) =∆ λx.x ′ a

Figure 2: Running (λy.y)(λx.x) ′ a

5. Preservation of spine reduction

We will now show that our encoding respects explicit spine reduction. By the very nature of that encoding this
result is not exactly“ If M →xS N, then M p →+

π N p ” but instead gets formulated via a relation that also
permits renaming ofoutput. Renaming is defined and justified via the following lemma, which states that we can
safely rename the (hidden)outputof an encodedλ-term, and is needed below:

Lemma 29. (νa) (c(b, d). (! b〈w〉. M w | d a) | a e) ∼C c(b, d). (νa)(! b〈w〉. M w | d a | a e)

PROOF. Any context that interacts with the either the left or the right-hand side has to do so viac〈b′, d′〉; in both
cases this yields a process equivalent to(νa)(! b′〈w〉. M w | d′ a | a e).

We use this lemma to show:

Lemma 30 (Renaming lemma). (νa)(N a | a e) ∼C N e .

PROOF. By induction on the structure of terms inλx.

N = x : (νa)(x a | a e) =∆

(νa)(x(z). z(w). a〈w〉 | a(w). e〈w〉) ∼C

x(z). z(w). e〈w〉 =∆ x e

N = λx.M : (νa)(λx.M a | a e) =∆

(νa)((νxb) (M b | a〈x, b〉) | a e) →π (a 6∈ M b)

(νxb) (M b | e〈x, b〉) =∆ λx.M e

N = PQ : (νa) (PQ a | a e) =∆

(νa)((νc) (P c | c(b, d). (b := Q | d a)) | a e) ≡

(νc)(P c | (νa)(c(b, d). (b := Q | d a) | a e)) ∼C (Lemma 29)

(νc)(P c | c(b, d). (νa)(a e | b := Q | d a)) ∼C

(νc) (P c | c(b, d). (b := Q | d e)) =∆ PQ e

N = M′ 〈x := M〉 : (νa)(M′ 〈x := M〉 a | a e) =∆

(νa)((νx)(M′ a | x := M) | a e) ≡

(νx)((νa)(M′ a | a e) | x := M) ∼C (IH)

(νx)(M′ e | x := M) =∆ M′ 〈x := M〉 e

17

Notice that, in the second part, reduction takes place over aprivate channel, so the processes involved are contextually
equivalent.

In the previous lemma we have chosen the contextual equivalence to model the substitution, because this way of
identifying programs is common for semantics of theλ-calculus as well. We could have chosen a co-inductive style
equivalence such as the expansion [24] without changing Lemma 30 and what follows.

Using the laws of Lemma 30, we can show that:

(νxb) (M b | ! (νw)(x〈w〉. N w) | b a) ∼C (νx)(M a | ! (νw)(x〈w〉. N w))

=∆ (νx)(M a | x := N)

Following on from Example 28, we can therefore justify:

Definition 31 (Output -based interpretation of λx in π). We extend the interpretation ofλ-terms in Definition 25
to λx (andλxL andλxS) by adding

M 〈x := N〉 a = (νx)(M a | x := N)

to our encoding.

As in [19, 24, 26], we can now show a reduction preservation result for explicit spine reduction. Notice that,
essentially following Milner, by using the reduction relation →xS, we show that our interpretation respects reduction
in →S upto substitution, as expressed in Theorem 35. As in Theorem18, we do not require the terms to be closed:

Theorem 32 (· · preserves→xS up to renaming). If M →xS N, then M a ∼C N a.

PROOF. By induction on the definition of explicit spine reduction;we only show the basic cases.

(λy.P)Q →xS P 〈y :=Q〉 : (λy.P)Q a =∆

(νc) ((νyb1) (P b1 | c〈y, b1〉) | c(b, d). (b := Q | d a)) →π (28)

(νyb1) (P b1 | y := Q | b1 a) ∼C (30)

(νy)(P a | y := Q) =∆ P 〈y :=Q〉 a

(λy.M)〈x := N〉 →xS λy.(M 〈x := N〉) : (λy.M) 〈x := N〉 a =∆

(νx)((νyb) (M b | a〈y, b〉) | x := N) ≡

(νxyb) (M b | a〈y, b〉 | x := N) ≡

(νyb) ((νx)(M b | x := N) | a〈y, b〉) =∆ λy.M 〈x := N〉 a

(xM1· · ·Mn 〈y := L〉)〈x := N〉 →xS (NM1· · ·Mn 〈y := L〉) 〈x := N〉 :

(xM1· · ·Mn 〈y := L〉) 〈x := N〉 a =∆

(νx)(xM1· · ·Mn 〈y := L〉 a | x := N) =∆

(νx) ((νcn) · · ·((νc2) ((νc1) (x(z). z(w). c1〈w〉 | c1(b1, d1). (b1 := M1 | d1 c2)) |

c2(b2, d2). (b2 := M2 | d2 c3)) | · · ·

cn(bn, dn). (bn := Mn | dn a)) | y := L | x := N) ≡

(νxcn· · ·c2c1) (x(z1). z1(w). c1〈w〉 | c1(b1, d1). (b1 := M1 | d1 c2) | · · ·

cn(bn, dn). (bn := Mn | dn a) | y := L | (νv)(x〈v〉. N v) | x := N) →π (x)

(νxcn· · ·c2c1v) (v(w). c1〈w〉 | c1(b1, d1). (b1 := M1 | d1 c2) | · · ·

cn(bn, dn). (bn := Mn | dn a) | y := L | N v | x := N) ∼C (30)

(νxcn· · ·c2c1) (N c1 | c1(b1, d1). (b1 := M1 | d1 c2) | · · ·

cn(bn, dn). (bn := Mn | dn a) | y := L | x := N) ≡,=∆

(NM1· · ·Mn 〈y := L〉) 〈x := N〉 a
18

(λx.(λz.(λy.M)x))N a =∆ ,≡

(νcxb1) ((λz.(λy.M)x) b1 | c〈x, b1〉 | c(b, d). (b := N | d a)) →π (c)

(νxb1) ((λz.(λy.M)x) b1 | x := N | b1 a) =∆

(νxb1) ((νzb2)((λy.M)x b2 | b1〈z, b2〉) | x := N | b1 a) =∆

(νxb1) ((νzb2)((νc1) (λy.M c1 | c1(b, d). (b := x | d b2)) | b1〈z, b2〉) | x := N | b1 a) =∆

(νxb1) ((νzb2)((νc1) ((νyb3) (M b3 | c1〈y, b3〉) |

c1(b, d). (b := x | d b2)) | b1〈z, b2〉) | x := N | b1 a) ≡

(νxb1zb2c1yb3) (M b3 | c1〈y, b3〉 | c1(b, d). (b := x | d b2) | b1〈z, b2〉 | x := N | b1 a) →π (c1)

(νxb1zb2yb3) (M b3 | y := x | b3 b2 | b1〈z, b2〉 | x := N | b1 a) →π (b1)

(νxzb2yb3) (M b3 | y := x | b3 b2 | a〈z, b2〉 | x := N) ∼C (30)

(νxzb2y) (M b2 | y := x | a〈z, b2〉 | x := N) ≡

(νzb2) ((νx)((νy)(M b2 | y := x) | x := N) | a〈z, b2〉) =∆

(νzb2) ((νx)(M 〈y := x〉 b2 | x := N) | a〈z, b2〉) =∆

(νzb2) (M 〈y := x〉 〈x := N〉 b2 | a〈z, b2〉) =∆

λz.M 〈y := x〉 〈x := N〉 a

Figure 3: An illustration to the encoding result.

M →xS M′ ⇒ MN →xS M′N : MN a =∆

(νc) (M c | c(b, d). (b := N | d a)) ∼C (IH)

(νc) (M′ c | c(b, d). (b := N | d a)) =∆ M′N a

M →xS M′ ⇒ λy.M →xS λy.M′ : Since λy.M a =∆ (νyb) (M b | a〈y, b〉), the result follows by induction.

M →xS M′ ⇒ M 〈x := N〉 →xS M′ 〈x := N〉 : Since M 〈x := N〉 a =∆ (νx)(M a | x := N), the result fol-
lows by induction.

Notice that, as in the proof of Lemma 30, in the first and third part, reduction takes place over a private channel, so the
processes involved are contextually equivalent. Notice also that the renaming reduction is crucial for the third case,
where we have(νv)(v(w). c1〈w〉 | N v), which corresponds to(νv)(v c1 | N v) and we want to yield N c1.

Remark 33. In the second case of the proof of the previous theorem, we observe that no reduction takes place
in the encoding. This is due to a discrepancy of the semanticsview of the substitution. In the reduction rule of
(λy.M)〈x := P〉 →xS λy.(M 〈x := P〉), effectively we move the substitution(M 〈x := P〉) inside theλ-abstraction.
This could be regarded, to some extent, as an associativity rule being implemented. In fact, all we do is to move the
parenthesis from theλ-abstraction to the body of the function. Since the abstraction is modelled with the composition
operator, the substitution inπ-calculus becomes a matter of associativity.

So, perhaps contrary to expectation, since abstraction is not encoded usinginput, we can without problem model
reduction, modulo renaming, under aλ-abstraction. Notice that we strongly need the asynchronous character in
the encoding of abstraction to achieve the representation of spine reduction: thanks to the fact thatλx.M a =
a〈x, b〉 | M b, the third part of the above proof is possible. This result isillustrated in Figure 3.

Example 34. As mentioned above, in→xS we can reduce as follows:

(λx.xx)(λy.y) →xS xx 〈x := (λy.y)〉 →xS

((λy.y)x)〈x := (λy.y)〉 →xS

(y 〈y := x〉) 〈x := (λy.y)〉 →xS

x 〈y := x〉 〈x := (λy.y)〉 →xS (λz.z)〈y := x〉 〈x := (λy.y)〉
19

Then, by repeatedly applying Theorem 32, only

(λx.xx)(λy.y) a ∼C xx〈x := λy.y〉 a ∼C

(λy.y)x〈x := λy.y〉 a ∼C

y〈y := x〉〈x := λy.y〉 a ∼C

x〈y := x〉〈x := λy.y〉 a ∼C (λz.z)〈y := x〉〈x := λy.y〉 a

Notice that, because the encoding implements a limited notion of substitution, as for Milner’s encoding, the
reduction doesnot run past

(νc) (λy.y c | c(b, d). (b := λy.y | d a)) =∆ (λy.y)(λy.y) a.

The only expression that gets close is that in the sixth line,which corresponds (up to renaming) to

(νx)((νc) (λy.y c | c(b, d). (b := x | d a)) | x := λy.y) =∆ ((λy.y)x) 〈x := λy.y〉 a

We can also show the following result.

Theorem 35 (Operational Soundness for explicit spine reduction). 1. If M →∗
xS N, then M a ∼C N a.

2. If M ↑ (i.e.all reduction paths in→xS starting fromM are of infinite length), thenM a ↑.

PROOF. The first is shown by induction using Theorem 32; the second follows from the observation that an infinite
reduction sequence in→xS has infinitely many applications of rule(B), and from Example 28, each(B)-reduction
step corresponds to at least oneπ-synchronisation step.

Since lazy reduction is included in spine reduction, this immediately gives the following:

Corollary 36 (Operational Soundness for explicit lazy reduction). 1. If M →∗
xL N, then M a ∼C N a.

2. If M ↑ (with respect to→xL), then M a ↑.

We can even show a similar result for spine reduction:

Theorem 37 (Operational Soundness for spine reduction). 1. If M →∗
S N, and M, N are pure terms, then

there existsP, x, Q such that M a ∼C P〈x = Q〉 a andP[Q/x] = N (or P〈x = Q〉 →:= N).
2. If M ↑ (with respect to→S), then M a ↑.

PROOF. By Theorem 35, using Proposition 12.

Of course we can state the same property for lazy reduction.
Note that this result is stronger than that for Milner’s encoding (Theorem 16). Milner’s encoding does not deal

with step-by-step reduction, whereas we treat each individual reduction step in→S.
By looking at the proof of Theorem 32 we can immediately deduce that · · preserves=xS up to∼C, which states

that our encoding gives, in fact, a semantics for the explicit substitution theλ-calculus: Milner’s encoding does not
deal with step-by-step reduction, and has its correctness expressed only through the applicative bisimulation, whereas
we correctly treat each individual reduction step.

Corollary 38 (Adequacy). If M =xS N, then M a ∼C N a.

This property also gives a proof for operational completeness forλxS:

Theorem 39 (Operational completeness forλxS). If M a →π P then there existsN ∈ λx such thatP ∼C N a,
andM →+

xS N.

PROOF. By easy induction on the structure of terms.
20

(λx.xx)(λy.y) a =∆ ,≡

(νcxb1) (xx b1 | c〈x, b1〉 | c(b, d). (b := λy.y | d a)) →π (c)

(νxb1) (xx b1 | x := λy.y | b1 a) ≡,=∆

(νxb1) (xx b1 | (νv)(x〈v〉. (νyb) (y b | v〈y, b〉)) | x := λy.y | b1 a) =∆ ,≡

(νxb1) ((νc1) (x(z). z(w). c1〈w〉 | c1(b2, d2). (b2 := x | d2 b1)) |

(νv)(x〈v〉. (νyb) (y b | v〈y, b〉)) | x := λy.y | b1 a) →π (x, v)

(νxb1) ((νc1) ((νyb) (c1〈y, b〉 | c1(b2, d2). (b2 := x | d2 b1) | y b) |

x := λy.y | b1 a)) →π (c1)

(νxb1) ((νyb) (y := x | b b1 | y b) | x := λy.y | b1 a) ≡,=∆ ,=α (u/y)

(νxb1) ((νyb)((νv)(y〈v〉. x(z). z(w). v〈w〉) | y := x | b b1 | y(z1). z1(w). b〈w〉) |

(νv1) (x〈v1〉. (νub2) (u b2 | v1〈u, b2〉)) | x := λy.y | b1 a) →π,=∆ (y)

(νxb1v) ((νb)(x(z). z(w). v〈w〉 | (νy)(y := x) | b b1 | v(z). b〈z〉) |

(νv1) (x〈v1〉. (νub2) (u b2 | v1〈u, b2〉)) | x := λy.y | b1 a) →π,=∆ (x, v1, v)

(νxb1) ((νbub2) (b〈u, b2〉 | (νy)(y := x) | b b1) | u b2 | x := λy.y | b1 a) →π,=∆ (b, b1)

λu.u a | (νx)((νy)(y := x) | x := λy.y) ∼π λu.u a

Figure 4: Running (λx.xx)(λy.y) a

We can even show that terminating→xS reductions correspond to terminating→π reductions:

Theorem 40 (Termination). If M →∗
xS M′, andM′ is in normal form, then M a ∼C M′ a, and the latter process

cannot reduce.

PROOF. If M′ is in normal form with respect to→xS, then it is of the shapeλx.zM1· · ·Mn 〈y := L〉 with z 6∈ y.
Then, by Theorem 35, we haveM a ∼C M′ a. Notice that

λx.zM1· · ·Mn 〈y := L〉 a =

(νx1b1)(· · · (νxnbn) (zM1· · ·Mn 〈y := L〉 bn | bn−1〈xn, bn〉) | · · · | a〈x1, b1〉) =

(νx1b1) (· · · (νxnbn) ((νcn) · · · ((νc2) ((νc1) (z c1 | c1(d1, e1). (d1 := M1 | e1 c2)) |

c2(d2, d2). (d2 := M2 | e2 c3)) | · · · | cn(dn, dn). (dn := Mn | en bn)) |

y := L)) | bn−1〈xn, bn〉) | · · · | a〈x1, b1〉)

Now since v := N = ! (νw)(v〈w〉. N w), it is clear that, in this process, all possible synchronisations appear
underoutput, so this process cannot reduce.

6. Emulating Milner’s reduction result

As is clear from the formulation of Corollary 36, we have modelled Milner’s main result, as stated in Theorem 19,
but not in full: notice that Milner’s result maps a lazyλ-reduction path to a reduction inπ, whereas Corollary 36 is
formulated (in part) using contextual equivalence. This isdue to the structure of the proof of Theorem 32, where this
equivalence is used.

However, we can do one better, and show that we can emulate Milner’s result through reduction only, i.e. do not
need renaming to achieve this.

Example 41. We canrun theπ-process λx.xx)(λy.y a without using renaming, as shown in Figure 4. Notice that
there we perform the two substitutions without resorting tothe renaming ofoutputs of encodedλ-terms; these are
executed after the encodings have participated in the execution.

21

In the proof of Theorem 32, in only two places do we perform a renaming (i.e. need the equivalence via Lemma
30). Notice that ifN reduces to an abstractionλz.N′, then (without loss of generality)

(νa)(a e | N a) →∗
π (νa) (a e | (νzb) (N′ b | a〈z, b〉))

≡ (νazb) (a e | N′ b | a〈z, b〉)

→π (νzb) (N′ b | e〈z, b〉)

so the renaming gets executed explicitly. When performing an explicit lazy reduction on a closed termM, then either
M is an abstraction, so in normal form, or a redex of the shape(λx.P)(λy.Q). Now this latter term gets (without
renaming) interpreted by:

(λx.P)(λy.Q) a =∆ (νc) ((νxb1) (P b1 | c〈x, b1〉) | c(b, d). (b := λy.Q | d a))

→π (c) (νxb1) (P b1 | b1 a | b := λy.Q)

Now assumeP = xP1· · ·Pn, then this reduction continues as follows:

(νxb1)(xP1· · ·Pn b1 | b1 a | b := λy.Q) =∆

(νxb1) ((νc1) (· · ·(νcn) (x(w). cn〈w〉 | cn(b, d). (b := P1 | d cn−1)) | · · · |

c1(b, d). (b := Pn | d b1)) | b1 a | b := λy.Q) ≡

(νxb1) ((νc1) (· · ·(νcn) (x(z). z(w). cn〈w〉 | cn(b, d). (b := P1 | d cn−1)) | · · · |

c1(b, d). (b := Pn | d b1)) | b1 a | (νv)(x〈v〉. (νyb2)(Q b2 | v〈y, b2〉)) | b := λy.Q) →π (x, v)

(νxb1) ((νc1) (· · ·(νcn) (cn(b, d). (b := P1 | d cn−1)) | · · · |

c1(b, d). (b := Pn | d b1)) | b1 a | (νyb2) (Q b2 | cn〈y, b2〉) | b := λy.Q) ≡

(νxb1)((λy.Q)P1· · ·Pn b1 | b1 a | b := λy.Q)

without renaming. So, by the reasoning above, when simulating lazy explicit reduction, renamings can be postponed,
and the equivalence relation is not needed.

This immediately gives that, as in Corollary 19, we can now state:

Corollary 42. If M is closed, andM →xL (λy.N)〈x := L〉, then M a →∗
π λy.N a | ! x := N .

which reproves Milner’s result, but now using the logical encoding.
As an example where the renamings donot disappear, consider

(λx.xx)(λx.xx) a =∆

(νc) ((νxb1) (xx b1 | c〈x, b1〉) | c(b, d). (b := (λx.xx) | d a)) →π (c)

(νxb1) (xx b1 | x := λy.yy | b1 a) =∆

(νxb1) ((νc) (x(z). z(w). c〈w〉 | c(b2, d). (b2 := x | d b1)) |

(νv)(x〈v〉. (νyb) (yy b | v〈y, b〉)) | x := λy.yy | b1 a) →π (x, v, c)

(νxb1) ((νyb) (y := x | b b1 | yy b) | x := λy.y | b1 a) =∆ ,≡ (c)

(νxb1) ((νyb) (x(z). z(w). y〈w〉 | y := x | b b1 | yy b) | x := λy.y | b1 a)

Notice that continuing this reduction will communicate viathe firsty in yy b, where

yy b =∆ (νc) (y(z). z(w). c〈w〉 | c(b, d). (b := y | d b))

not the second, and theoutputhidden in that term viab will never be performed, and neither will theoutputvia b1 or
a; see also Example 11 (2).

22

7. Context assignment

Theπ-calculus is equipped with a rich type theory [26]: from the basic type system for counting the arity of chan-
nels, via a systems that registers theinput-outputuse of channel names that are transmitted in [22], to sophisticated
linear types in [17], which studies a relation between Call-by-Valueλµ and a linearπ-calculus. Linearisation is used
to be able to achieve processes that are functions, by allowing outputover one channel name only, in a (λ-calculus)
natural deduction style. Moreover, the encoding presentedin [17] is type dependent, in that, for each term, different
π-processes are assigned, depending on the original type; this makes the encoding quite cumbersome.

The notion of context assignment for processes inπ we define in this section was first presented in [4] and differs
quite drastically from the standard type system presented in [26]. It describes the ‘input-outputinterface’ of a process
by assigning a left context, containing the types for theinput channels, and a right context, containing the types for
theoutputchannels; this implies that, if a name is both used to send andto receive, it will appear on both sides, and
with the same type. In our system, types give a logical view totheπ-calculus rather than an abstract specification on
how channels should behave, andinput andoutputchannels essentially have the type of the data they are sending or
receiving.

Context assignment was defined in [4] to establish preservation of assignable types under the interpretation of the
sequent calculusX , as presented in [6], into theπ-calculus. SinceX offers a natural presentation of the classical
propositional calculus with implication, and enjoys the Curry-Howard isomorphism for the implicative fragment of
Gentzen’s systemLK [12], this implies that the notion of context assignment as defined below isclassical(i.e. not
intuitionistic) in nature.

We now repeat the definition of (simple) type assignment; we first define types and contexts.

Definition 43 (Types and Contexts). 1. The set of types is defined by the grammar:

A, B ::= ϕ | A→B

whereϕ is a basic type of which there are infinitely many. The types considered in this paper are normally
known assimple(or Curry) types.

2. An input contextΓ is a mapping from names to types, denoted as a finite set ofstatementsn:A, such that the
subjectof the statements (n) are distinct. We writeΓ1, Γ2 to mean thecompatible unionof Γ1 andΓ2 (if Γ1

containsn:A1 andΓ2 containsn:A2, thenA1 = A2), and writeΓ, n:A for Γ, {n:A}.
3. Outputcontexts∆, and the notions∆1, ∆2, andn:A, ∆ are defined in a similar way.
4. If n:A ∈ Γ andn:B ∈ ∆, thenA = B.

So, when writing a context asΓ, n:A, this implies thatn:A ∈ Γ, or Γ is not defined onn.

Definition 44 ((Classical) Context Assignment).Context assignment for theπ-calculus with pairing is defined by
the following sequent system:

(0) :
0 : Γ ⊢π ∆

(!) :
P : Γ ⊢π ∆

! P : Γ ⊢π ∆

(ν) :
P : Γ, a:A ⊢π a:A, ∆

(νa)P : Γ ⊢π ∆

(|) :
P1 : Γ ⊢π ∆ · · · Pn : Γ ⊢π ∆

P1 | · · · | Pn : Γ ⊢π ∆

(W) :
P : Γ ⊢π ∆

(Γ′ ⊇ Γ, ∆
′ ⊇ ∆)

P : Γ
′ ⊢π ∆

′

(pair-out) :
P : Γ, b:A ⊢π c:B, ∆

(b 6∈ ∆; a, c 6∈ Γ)
a〈b, c〉. P : Γ, b:A ⊢π a:A→B, c:B, ∆

(out) :
P : Γ, b:A ⊢π b:A, ∆

(a 6= b)
a〈b〉. P : Γ, b:A ⊢π a:A, b:A, ∆

(let) :
P : Γ, y:B ⊢π x:A, ∆

(y, z 6∈ ∆; x 6∈ Γ)
let x, y = z in P : Γ, z:A→B ⊢π ∆

(in) :
P : Γ, x:A ⊢π x:A.∆

a(x). P : Γ, a:A ⊢π ∆

As usual, we writeP : Γ ⊢π ∆ if there exists a derivation using these rules that has this expression in the conclusion,
and writeD :: P : Γ ⊢π ∆ if we want to name that derivation.

23

The side-condition on rule(out) is there to block the derivation ofa〈a〉 : ⊢π a:A.
Notice that the above system is not trivial, since the process

(νcb) (x(w). c〈w〉 | c(v, d). (! b v | d a) | ! x(w1). b〈w1〉)

is not typeable: the left-handx would need the typeA→B, and the right-handx the typeA.

Example 45. Although we have no rule(pair-in), it is admissible, since we can derive

P : Γ, y:B ⊢π x:A, ∆
(let)

let x, y = z in P : Γ, z:A→B ⊢π ∆
(in)

a(z). let x, y = z in P : Γ, a:A→B ⊢π ∆

so the following rule is derivable:

(pair-in) :
P : Γ, y:B ⊢π x:A, ∆

a(x, y). P : Γ, a:A→B ⊢π ∆

This notion of type assignment does not (directly) relate back to the logical calculusLK . For example, rules(|)
and(!) do not change the contexts, so do not correspond to any rule inLK , not even to aλµ-style [20] activation step;
moreover, rule(ν) just removes a formula.

The weakening rule allows us to be a little less precise when we construct derivations, and allow for rules to join
contexts, by using, for example, the rule

(|) :
P : Γ1 ⊢π ∆1 Q : Γ2 ⊢π ∆2

P | Q : Γ1, Γ2 ⊢π ∆1, ∆2

so switching, without any scruples, to multiplicative style, whenever convenient. We will also write

a〈x, y〉 : x:A ⊢π a:A→B,y:B

instead of

0 : x:A ⊢π y:B

a〈x, y〉. 0 : x:A ⊢π a:A→B,y:B

We have a soundness (witness reduction) result for our notion of type assignment forπ as shown in [4].

Theorem 46 (Witness reduction [4]). If P : Γ ⊢π ∆ andP →π Q, thenQ : Γ ⊢π ∆.

We will now show that our interpretation preserves types assignable toλ-terms using Curry’s system, which is
defined as follows:

Definition 47 (Curry type assignment for theλ-calculus). Curry type assignment is defined through the following
inference rules:

(Ax) :
Γ, x:A ⊢λ x : A (→I) :

Γ, x:A ⊢λ M : B

Γ ⊢λ λx.M : A→B
(→E) :

Γ ⊢λ M : A→B Γ ⊢λ N : A

Γ ⊢λ MN : B

Type preservation via· · is expressed by:

Theorem 48. If Γ ⊢λ M : A, then M a : Γ ⊢π a:A.

PROOF. By induction on the structure of derivations in⊢λ; notice that we use implicit weakening.
24

(Ax) : ThenM = x, andΓ = Γ
′, x:A. Notice thatx(z). z(w). a〈w〉 = x a, and that15

(out)
a〈w〉 : Γ

′, w:A ⊢π a:A, w:A
(in)

z(w). a〈w〉 : Γ
′, z:A ⊢π a:A

(in)
x(z). z(w). a〈w〉 : Γ

′, x:A ⊢π a:A

(→I) : ThenM = λx.N, A = C→D, andΓ, x:C ⊢λ N : D. Then, by induction,D :: N b : Γ, x:C ⊢π b:D exists,
and we can construct:

D

N b : Γ, x:C ⊢π b:D
(pair-out)

a〈x, b〉 : x:C ⊢π a:C→D, b:D
(|)

N b | a〈x, b〉 : Γ, x:C ⊢π a:C→D, b:D
(ν)

(νb)(N b | a〈x, b〉) : Γ, x:C ⊢π a:C→D
(ν)

(νxb) (N b | a〈x, b〉) : Γ ⊢π a:C→D

Notice that(νxb) (N b | a〈x, b〉) = λx.N a.

(→E) : Then M = PQ, and there existsB such thatΓ ⊢λ P : B→A and Γ ⊢λ Q : B. By induction, there exist
derivationsD1 :: P c : Γ ⊢π c:B→A andD2 :: Q w : Γ ⊢π w:B, and we can construct:

D1

P c : Γ ⊢π c:B→A

D2

Q w : Γ ⊢π w:B
(out)

b〈w〉. Q w : Γ ⊢π b:B, w:B
(ν)

(νw)(b〈w〉. Q w) : Γ ⊢π b:B
(!)

! (νw) (b〈w〉. Q w) : Γ ⊢π b:B

(out)
a〈w〉 : w:A ⊢π a:A, w:A

(in)
d a : d:A ⊢π a:A

(|)
! (νw) (b〈w〉. Q w) | d a : Γ, d:A ⊢π a:A, b:B

(pair-in)
c(b, d). (! (νw) (b〈w〉. Q w) | d a) : Γ, c:B→A ⊢π a:A

(|)
P c | c(b, d). (! (νw) (b〈w〉. Q w)) | d a) : Γ, c:B→A ⊢π c:B→A, a:A

(ν)
(νc) (P c | c(b, d). (b := Q | d a)) : Γ ⊢π a:A

and(νc) (P c | c(b, d). (b := Q | d a)) = PQ a.

Notice that although, in the above proof, we are only interested in showing results withonetypedoutput (con-
clusion) – after all, we are interpreting the typed theλ-calculus, an intuitionistic system – we need the classical,
multi-conclusion character of our type assignment system for π to achieve this result.

15It might be tempting to see the type assignment system in the view of the traditional systems, where types contain channelinformation, and,
for example, use the rules

(out) :
P : Γ, b:A ⊢π b:A, ∆

(a 6= b)
a〈b〉. P : Γ, b:A ⊢π a:[A], b:A, ∆

(in) :
P : Γ, x:A ⊢π x:A.∆

a(x). P : Γ, a:[A] ⊢π ∆

This approach will certainly not work for· ·: notice that then we would derive

(out)
a〈w〉 : Γ

′, w:A ⊢π a:A, w:A
(in)

z(w). a〈w〉 : Γ
′, z:A ⊢π a:A

(in)
x(z). z(w). a〈w〉 : Γ

′, x:[A] ⊢π a:A

destroying the preservation of assignable types; in the third case of the proof, we would now derive the judgement! (νw) (b〈w〉 . Q w) : Γ ⊢π
b:[B], disrupting that derivation as well.

25

A natural question to ask is if also the processes created by Milner’s encoding are typeable in⊢π. To investigate
this question, essentially following Definition 13, we firstdefine aninput-based encoding ofλ-terms - a variant of
Milner’s encoding - into the synchronousπ-calculus with pairing by:

[[x]]P a =∆ x〈a〉 x 6= a

[[λx.M]]P a =∆ a(x, b). [[M]]P b b fresh

[[MN]]P a =∆ (νc) ([[M]]P c | (νz) (c〈z, a〉. [[z := N]]P)) c, z fresh

[[〈x := N〉]]P =∆ ! x(w). [[N]]P w c, z fresh

(Notice the similarity with the uniform encoding[[·]]U · from Definition 21.) Remark that now the use of synchronous
synchronisation, as evident in the third case, does not enlarge the expressiveness of the interpretation, since abstraction
is still interpreted usinginput. Notice that this interpretation is well behaved: using[[·]]P ·, the interpretation of aβ-
redex reduces as follows:

[[(λx.M)N]]P a =∆ (νc) (c(x, b). [[M]]P b | (νz) (c〈z, a〉. [[z := N]]P)) →π (c)

(νz)([[M[z/x]]]P a | [[z := N]]P) = (z 6∈ [[M]]P a)

(νx)([[M]]P a | [[x := N]]P)

exactly as expected.
Notice that, in this encoding, all theλ-calculusinput variables are interpreted asoutputchannels, and thata is the

only input variable for each encodedλ-term; so we could hope to show“ If Γ ⊢λ M : A, then[[M]]P a : a:A ⊢π Γ ” .
However, this is not possible; although it nicely holds for the first two cases of the proof, we cannot show it for the
third case:

M = PQ : ThenΓ ⊢λ P : B→A andΓ ⊢λ Q : B; then, by induction, we have derivations for[[P]]P c : c:B→A ⊢π Γ

and[[Q]]P w : w:B ⊢π Γ, and we would like to construct:

[[P]]P b : b:A ⊢π x:B, Γ
(pair-in)

c(x, b). [[P]]P b : c:B→A ⊢π Γ

[[Q]]P w : a:A, w:B ⊢π Γ
(in)

z(w). [[Q]]P w : z:B, a:A ⊢π Γ
(!)

! z(w). [[Q]]P w : z:B, a:A ⊢π Γ
(??)

c〈z, a〉. ! z(w). [[Q]]P z : z:B, a:A ⊢π c:A→B, Γ
(ν)

(νz) (c〈a, z〉. ! z(w). [[Q]]P z) : a:A ⊢π c:A→B, Γ
(|)

c(x, b). [[P]]P b | (νz) (c〈z, a〉. ! z(w). [[Q]]P z) : c:B→A, a:A ⊢π c:B→A, Γ
(ν)

[[(λx.P)Q]]P a : a:A ⊢π Γ

Notice that now rule(pair-out) cannot be applied in position(??), since it requires that the right-hand term in
the pair is anoutput; so nowa has to appear on the right of the turnstyle, which destroys the property we tried
to prove.

Type assignment fails for the uniform encoding for the same reason.

Conclusions and Future Work

We have found a new, simple and intuitive encoding ofλ-terms inπ that respects our definition of explicit spine
reduction, is similar with normal reduction, and encompasses Milner’s lazy reduction on closed terms. We have
shown that, for our context assignment system that uses the type constructor→ for π and is based on classical logic,
assignable types forλ-terms are preserved by our interpretation as typeableπ-processes. We managed this without
having to linearise the calculus as done in [17].

As we remarked in this paper, the guard we have placed on the encoding of the substitution is only there to
guarantee the termination result; it plays no role in any of the other results we show. Even without that guard in place,

26

we can show the operational soundness result; this implies that eventual non-termination as a result of the unguarded
replication is not observable. We aim to extend our results to an encoding that can representfull step-by-stepβ-
reduction; we would have to drop the guard on replication to achieve that, but this in itself would not create problems
with respect to the definition of semantics.

The classical sequent calculusX has two natural, dual notions of sub-reduction, called Call-by-Name and Call-
by-Value; we will investigate if the interpretation of these systems in to theπ-calculus gives natural notions ofCBN

of CBV reduction onπ-processes, and if this enablesCBN or CBV logical encodings of theλ-calculus.

Acknowledgements

We would like to thank Fer-Jan de Vries, Jan Willem Klop, Vincent van Oostrom, Claudio Sacerdoti Coen and
Davide Sangiorgi for useful discussions, comments and suggestions.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. InProceedings of the Fourth ACM Conference on
Computer and Communications Security, pages 36–47. ACM Press, 1997.

[2] S. Abramsky. The lazy lambda calculus. InResearch topics in functional programming, pages 65–116. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.

[3] S. Abramsky. Proofs as processes.Theoretical Computer Science, 135(1):5–9, 1994.
[4] S. van Bakel, L. Cardelli, and M.G. Vigliotti. FromX to π; Representing the Classical Sequent Calculus in theπ-calculus. InElectronic

Proceedings of International Workshop on Classical Logic and Computation 2008(CL&C’08), Reykjavik, Iceland, 2008.
[5] S. van Bakel, S. Lengrand, and P. Lescanne. The languageX : circuits, computations and Classical Logic. In M. Coppo, Elena Lodi, and

G. Michele Pinna, editors,Proceedings of Ninth ItalI.Conference on Theoretical Computer Science(ICTCS’05), Siena, Italy, volume 3701
of Lecture Notes in Computer Science, pages 81–96. Springer Verlag, 2005.

[6] S. van Bakel and P. Lescanne. Computation with ClassicalSequents.Mathematical Structures in Computer Science, 18:555–609, 2008.
[7] S. van Bakel and M.G. Vigliotti. A logical interpretation of theλ-calculus into theπ-calculus, preserving spine reduction and types. In

M. Bravetti and G. Zavattaro, editors,Proceedings of 20th International Conference on Concurrency Theory(CONCUR’09), Bologna, Italy,
volume 5710 ofLecture Notes in Computer Science, pages 84 – 98. Springer Verlag, 2009.

[8] H. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised edition, 1984.
[9] H.P. Barendregt, R. Kennaway, J.W. Klop, and M.R. Sleep.Needed Reduction and Spine Strategies for the Lambda Calculus. Information

and Computation, 75(3):191–231, 1987.
[10] G. Bellin and P.J. Scott. On the pi-Calculus and Linear Logic. Theoretical Computer Science, 135(1):11–65, 1994.
[11] R. Bloo and K.H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with Explicit Substitution andGarbage Collection.

In CSN’95 – Computer Science in the Netherlands, pages 62–72, 1995.
[12] G. Gentzen. Investigations into logical deduction. InThe Collected Papers of Gerhard Gentzen. Ed M. E. Szabo, North Holland, 68ff (1969),

1935.
[13] G. Gentzen. Untersuchungen über das Logische Schliessen.Mathematische Zeitschrift, 39:176–210 and 405–431, 1935.
[14] J. Goubault-Larrecq. A Few Remarks on SKInT. Research Report RR-3475, INRIA Rocquencourt, France, 1998.
[15] K. Honda and M. Tokoro. An object calculus for asynchronous communication. InProceedings of ECOOP’91, volume 512 ofLecture Notes

in Computer Science, pages 133–147. Springer Verlag, 1991.
[16] K. Honda and N. Yoshida. On the reduction-based processsemantics.Theoretical Computer Science, 151:437–486, 1995.
[17] K. Honda, N. Yoshida, and M. Berger. Control in theπ-Calculus. InProceedings of Fourth ACM-SIGPLAN Continuation Workshop(CW’04),

2004.
[18] J-L. Krivine. A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation, 20:199–207, 2007.
[19] R. Milner. Functions as processes.Mathematical Structures in Computer Science, 2(2):269–310, 1992.
[20] M. Parigot. An algorithmic interpretation of classical natural deduction. InProceedings of 3rd International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR’92), volume 624 ofLecture Notes in Computer Science, pages 190–201. Springer
Verlag, 1992.

[21] J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. InProceedings of of 13th Annual IEEE
Symposium on Principles on Logic in Computer Science, pages 428–440, 1998.

[22] B.C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes.Mathematical Structures in Computer Science, 6(5):409–453,
1996.

[23] D. Sangiorgi.Expressing Mobility in Process Algebra: First Order and Higher Order Paradigms. PhD thesis, Edinburgh University, 1992.
[24] D. Sangiorgi. An Investigation into Functions as Processes. InProceedings of Mathematical Foundations of Programming Semantics, 9th

International Conference, New Orleans, LA, USA, pages 143–159, 1993.
[25] D. Sangiorgi. Lazy functions and mobile processes. Rapport de Recherche 2515, INRIA, Sophia-Antipolis, France, 1995.
[26] D. Sangiorgi and D. Walker.The Pi-Calculus. Cambridge University Press, 2001.
[27] P. Sestoft. Standard ML on the Web server. Department ofMathematics and Physics, Royal Veterinary and Agricultural University, Denmark,

1996.
[28] H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh, 1997. LFCS technicalreport

ECS-LFCS-97-376.

27

[29] C. Urban.Classical Logic and Computation. PhD thesis, University of Cambridge, October 2000.
[30] C. Urban and G.M. Bierman. Strong normalisation of cut-elimination in classical logic.Fundamenta Informaticae, 45(1,2):123–155, 2001.
[31] F.-J. de Vries. Böhm trees, bisimulations and observations in lambda calculus. In T. Ida, A. Ohori, and M. Takeichi, editors,Second Fuji

International Workshop on Functional and Logic Programming Workshop, World Scientific, Singapore, pages 230–245, 1997.

28

