Implicative Logic based encoding of tiecalculus into ther-calculus

Steffen van Bakel, Maria Grazia Vigliotti
Department of Computing, Imperial College, 180 Queen’seGlabndon SW7 2BZ, UK

Abstract

We study anoutputbased encoding of th&-calculus with explicit substitution into the synchronousalculus —
enriched with pairing — that has its origin in mathematicajit, and show that this encoding respects reduction. We
will define the notion of (explicit) spine reduction -which@mpasses (explicit) lazy reduction- and show that the
encoding fully encodes this reduction in that term-substih as well as each single reduction step are modelled up
to contextual similarity.

We show that all the main properties (soundness, complesead adequacy) hold for these four notions of
reduction, as well as that termination is preserved.

We then define a notion of type assignment forthealculus that uses the type constructer and show that all
Curry types assignable foterms are preserved by the encoding.

Key words: the A-calculus, thet-calculus, intuitionistic logic, classical logic, encadi type assignment

Introduction

In this paper we present a novel investigation of the enapétiom various kind of ther-calculi into the -
calculus. In particular, we are concerned with aspectseétitoding from tha-calculus into ther-calculus such as:
(1) interpretingA-terms undeputputby explicitly naming the implicibutputof terms; (2) modelling of a notion of
explicit substitution into ther-calculus; (3) modelling more than just lazy reduction tigb applicative bi-simulation;
(4) modelling individual steps in the reduction relatioB) the definition a new logical notion of type assignment for
the rr-calculus; and (6) showing that implicative types fioterms can be assigned to their interpretation as well.

In the past, there have been several investigations of émgdem theA-calculus into ther-calculus [19, 24].
Research in the direction of encodingsieferms was started by Milner in [19]; he definediaput-based encoding,
and showed that the interpretation of closeterms respectmzy reduction to normal form up to substitution. This
approach has been picked up by many authors since then: litdtessused by Sangiorgi [26], who also investigated
it in the context of the higher-order-calculus; by Hondat al. [17] with a rich type theory; and by Thielecke [28]
in the context of continuation passing style programmimgyieages, just to name a few. Milner also defined another
input-based encoding that respectdl-by-valuereduction up to substitution, but this had fewer followers.

For many years, it seemed that the first and final word on thedéng of theA-calculus has been said by Milner;
in fact, Milner's encoding has set a milestone in the congmerbetween the functional and the concurrent paradigms,
and all the above mentioned systems present variants oeN&lancoding.

In [24], Sangiorgi states good reasons for obtaining anesgive encoding: (1) from the process calculi point of
view, to gain deeper insight into its theory; (2) from thecalculus point of view, to provide the opportunity to study
A-terms in contexts different than the sequential or aptilieaone; and (3) thé-calculus is a model for functional
language programming; these languages have never beeeffieignt, and one way of improving efficiency is to use
parallel implementation.

Email addressess. vanbakel @ nperi al . ac. uk (Steffen van Bakel)pari a. vi gl i otti @ nperi al . ac. uk (Maria Grazia
Vigliotti)
1sangiorgi [23] says: It seems established thiliiner’s encoding]is canonical, i.e. it is the ‘best’ or ‘simplest’ encodingtbé lazyA-calculus
into 7r-calculus”

Preprint submitted to Elsevier November 5, 2010

We strongly agree with these assertions and we shall see gotirse of this paper how our work on thealculus
with explicit substitutiorand a novel type system will shed new light on all these and&swill choose an approach
alternative to Milner’s, interpreting terms undawtputrather than undenput and encoding spine reduction, which
encompasses lazy reduction, in the process.

Substitution
The first question we wish to address here is:

How can we faithfully model (implicit) substitution of the-calculus into thet-calculus.

This question is relevant, since Milner’'s encoddaes nomodel implicit substitution (as illustrated in Figure 1).
There are two ways to address the problem of representiniicimp-substitution in ther-calculus:

1. To encode tha-calculus into the Higher-Order-calculus, as in Sangiorgi [24];
2. To consider a different kind of-calculus where the substitution is more ‘fine-grained'.

In this paper, we have chosen the second option, for whicheeel to understand what is exactly the notion of
substitution that we can faithfully encode #rrcalculus. Central to our approach is the interpretatiotheexplicit
substitutionversion of reduction, which allows us to establish a cleamestion between term-substitution in the
A-calculus, and the simulation of this operation in thealculus via channel-name passing.

Notice that, although both th&-calculus and ther-calculus are equipped with substitution, these notiomes ar
conceptually very different. While th&-calculus has an intrinsichigh-ordef substitution mechanism by which
terms get substituted for variablesll'in one gd, in the standardr-calculus the substitution mechanism replaces
variables by channel names only, i.e. not by procés&escause of this discrepancy, in the encoding ofttrealculus
into therr-calculus, it is not possible to assume that substitutichéformer can be handled straightforwardly by the
same mechanism in the latter.

We have to model the contraction of the redeéx.M)N into thet-calculus, i.e. model the implicit substitution
MIN /x]. Notice that the required number of copies neede &f a priori unknown, saVI[N /x| has to be modelled
using replication orN, as doegAx.M)N. Since copies of replicated processes are extracted thitbegongruence
!P = P|!P, the replicated substitution will always be present dutimg computation of the process generated by
the encoding. This is apparent in Milner's encoding [19k(s¢so the formulation of Milner's result Theorem 16,
Theorem 18, Figure 1, and Example 22). However, terms of tifsstgution that are no longer needed (after all
occurrences of in M have been replaced) can be garbage-collected, so corssaifeperational correspondence
can be achieved with the help of strong bi-simulation.

This ‘persistence’ of the substitution in the-calculus is absent in the standatecalculus, but is present in
the our version of the (lazy)-calculus with explicit substitution, which is called teeplicit spinecalculus. Explicit
substitution is generally considered an implementatichef -calculus, where every ‘atomic step’ of the substitution
is represented in the reduction relation; in explicit spie@uction we restrict its applicability to head-variabbedy,
leaving other occurrences untouchedVe will establish a correspondence between explicit spéiction and
synchronisation in ther-calculus, through which we emphasise that substitutiothévr-calculus is more ‘fine-
grained’ than that in\-calculus, since it deals with substitutiomse variable occurrence at a time

We can then focus on what exactly is the notion of substitutiat Milner's encodingloesmodel, and shall
argue that by encodingxplicit rather than implicit substitution, Milner's encoding wihjoy a stronger operational
correspondence (see Theorem 18), modelling individyplicit lazyreduction steps.

In what follows, we present two results: initially we ‘retémpret’ Milner's encoding into théazy explicit sub-
stitution A-calculus We show that if we make substitution more ‘fine-grained’,e@® obtain stronger operational
correspondence results. We tease out, in our analysisubatitution should be encoded directly — see Definition 17
— to obtain a more faithful encoding.

We will also present an encoding thatisnceptually differenfrom Milner’s, being an interpretation undeutput
rather than undanput which is a variant of the encoding presented in [7]. Anottiference between our approach

2This is possible in the Higher-Order-calculus [24].
3This is similar to reduction in Krivine’s machine [18]

and Milner’s is that we model abstraction via a process teaswasynchronowsutput this will allow us to model
reduction unden-abstraction as well, i.e. our new encoding respects ngt @xplicit) lazy reduction, but also the
(larger) notion ofexplicit spine reductionOur encoding is not the first one to do that; in [21] the encgdif spine
reductionA-calculus into the Fusion-calculus is presented. To olitegir main result, in that paper there is no need
to change Milner’s encoding; that result is a consequentkeofymmetric substitution mechanism introduced into
the Fusion-calculus. Moreover, their encoding is not esldb classical logic, as is ours.

For our encoding we do obtain a strong correspondence timeloegveen reductions, but we shall need the help
of contextual equivalence to match terms perfectly. Furtfige, our encoding allows to establish a relationship
betweenr-calculus and classical logic. In fact, the central ideaitethis encoding interprets a redex (a logical cut)
as a synchronisation, and is essentially based on Geniecdgling of Natural Deduction into the Sequent Calculus
[12]. The idea of giving a computational interpretation lo€ tcut as a synchronisation primitive is also used by [3]
and [10]; in both papers, only a small fragment of Linear loogas considered, and the encoding between proofs and
the rt-calculus was left rather implicit.

In summary, we feel we have gained faithfulness and clamigonsidering the encoding from thiecalculus with
explicit substitution to ther-calculus. Our study shows that Milner’s encoding, as webars, cannot fully represent
implicit substitution, but does that for a limited versiohexplicit substitution, which, in a sense, is the minimal
substitution needed to reach head-normal form.

Type system

We will show a type preservation result for our encodingngghe type system as presented in [4]. This type
system is different from standard type systemsrfas it does not contain any channel information and in that-it e
presses implication. It provides a logical view to thealculus, wherer-processes can be withesses of formulae that
are provable (within the implicative fragment) in classicgic, as was shown in [4]; this implies that thecalculus
provides computational content to classical logic. Thialdesuggest, in the long term, insights and advancement
towards implementation of proof search for classical laggcabstract machines based on thealculus.

We will show in this paper that our encoding preserves typgsgaable tol-terms in Curry’s system. Through
this type preservation result we show that our encodingraispects théunctionalbehaviour of terms, as expressed
via assignable types, and establish a stronger, deepdionslaip between sequential/applicative and concurrent
paradigms. Our work differs in spirit from the results by Han Yoshida and Berger [17] as their type system needs
a linear restriction of the behaviour of thecalculus to achieve a full abstraction result, as well agad language
and a type-based interpretation.

The results on the type system that we present here deteythimehoice of ther-calculus used for the encoding:
we use the synchronouscalculus enriched witpairs of names [1]. In principle, our encoding could be adapted to
the synchronous monadic-calculus, however we would not be able to achieve the pratien of assignable types.
Our encoding takes inspiration from, but it is a much impibversion of, the encoding df-terms in to the sequent
calculusX [5, 6] — a first variant was defined by Urban [29, 38];is a sequent calculus that enjoys the Curry-Howard
correspondence for Gentzen’ [13] — and the encoding ot into the r-calculus as defined in [4].

Our work not only sheds new light on the connection betweetianal and concurrent computation but also
established a firm link between (classical) logic and precadculi, as first reported on in [4], a very promising area
of research.

In summary, the main achievements of this paper are:

o Reinterpretation of Milner’'s encoding dfcalculus with explicit substitution inta-calculus with strong oper-
ational correspondence theorem.

e An outputbased encoding of thé-calculus with explicit substitution into the synchronousalculus with
pairing is defined that preserves spine reduction for athsenp to contextual equivalence, and, by inclusion,
for lazy reduction with explicit substitution;

e The encoding respects implicit substitution, and respleeth spine reduction and lazy reduction for closed
terms up to simulation;

e The encoding preserves assignable Curry typed flarms, with respect to the context assignment system for
7t from [4].

Paper outline

In Section 1, we repeat the definition of the synchronatsalculus with pairing, and in Section 2 that of the
A-calculus, where we present the notion of explicit spinauctidn ‘—s' which takes a central role in this paper;
in Section 3 we also briefly discuss Milner’s interpretatiesult for the lazyA-calculus, as well as Sangiorgi and
Walker’s uniform encoding [26]. Then, in Section 4, we will define an encodirigere terms are interpreted under
outputrather thannput (as in Milner’s), and show in Section 5 thats is respected by our interpretation, modulo
renaming. In Section 6, we show that this renaming is not @@&chen interpreting the laz\+calculus. To conclude,
in Section 7 we give a notion of (type) context assignmentrongsses imr, and show that our interpretation preserves
types. In fact, this result is the main motivation for ouseirgretation, which is therefolegical

This paper is a modified version of the paper that appearet];asg have, in particular, addressed the termination
issue.

1. The synchronousr-calculus with pairing

The notion of synchronous-calculus that we consider in this paper is similar to the wsed also in [1, 4], and
is different from other systems studied in the literaturg] jh a number of aspects: we add pairing, and introduce the
let-construct to deal with inputs of pairs of names that getithisted. The main reason for the addition of pairing [1]
lies in the fact that we want to preserve implicate type asgignt.

Thert-calculus is arinput-outputcalculus, where terms have not just more thaniopet but also more than one
output This is similar to what we find in Gentzen's , where right-introduction of the arrow is represented by

(=R):

with I' andA multi-sets of formulae. Notice that onbneof the possible formulae is selected from the right context,
andtwo formulae are selected wnestep; when searching for a Curry-Howard correspondenisewii have to be
reflected in the (syntactic) witness of the prboNow if we want to model this int, i.e. want to express function
construction (abstraction), we would also need to alfree names, one as name for thput of the function, and
the other as name for igutput We can thus express that a proc@sacts as a functioonly when fixing (binding)
bothan input and an outputsimultaneouslyi.e. in onestep; we use pairing exactly for this: interfaces for fuoict
are modelled by sending and receivipgjrs of names.

We will introducedataas a structure over names, such that not only names but dtsoopamames can be sent
(but not a pair of pairs); this way a channel may pass alomged name or a pair of names.

I,AkR« B,A
I'H« A=B,A

Definition 1 (Processes)Channel nameanddataare defined by:
a,b,c,d x,y,z names p == al(ab) data

Notice that pairing isotrecursive. Processes are defined by:

P,Q Nil

=0 | a(x).P Input
| P|Q Composition o P

| | a(p).P Output
|

'p Replication)
| let(x,y)=pinP Letconstruct

(va)P Restriction
We see, as usual,as a binder, and call the naméoundin (vn) P; n is freein P if it occurs in P, but is not bound.

We call a variable/nameisiblein P if it occurs free, and does not occur underiaput or anoutput A context
C[-] is a process with a holg.

4This is exactly the approach of the calcult's where the representative of R) binds two connectors.
4

We abbreviater(x). let(y,z) = x in P by a(y, z). P, and (vm) (vn) P by (vmn) P, and writea(p) for a(p).0,
anda(c,d). P fora((c,d)).P. A (process) context is simply a term with a hole

Definition 2 (Congruence). The structural congruence is the smallest equivalencéiorlalosed under contexts
defined by the following rules:

PO = P (vm)(vn)P = (vn)(vm)P

PlQ = QIP (vn)(P|Q) = P[wn)Q ifngin(P)
(PIQ)[R = P|QIR) 'P = P|P

(vn)0 = 0 let(x,yy=<a,byinP = Pla/x,b/y]

We will consider processes modulo congruence: this imghas we will not deal explicitly with the process
let(x,y) =(a, b)in P, but rather withP[a/x, b/y].
Computation in ther-calculus with pairing is expressed via the exchangeéasé

Definition 3 (Reduction). Thereduction relations defined by the following (elementary) rules:

a(p).Pla(x).Q —= P|Q[p/x] (synchronisatiop
P—,P = (vn)P—y (vn)P’ (hiding)
P—z P = P|Q—=xP[Q (composition
P=0& 00—, 0 & Q' =P = PP (congruence

As usual, we write— for the transitive closure of+,, —% for its reflexive closure— for its reflexive and
transitive closure, write~, (a) if we want to point out that a synchronisation took place asrannek, and write
— () if we want to point out thak-conversion has taken place during the synchronisation.

We will use the notation~" and—* for all notions of reduction we discuss here.
Notice that

a(b,c).Pla(x,y).Q £ a{b,c).Pla(z).letix,y)=2zinQ —x
P|let(x,y)=<(b,c)in Q = P|Q[b/x,c/y].

Definiton4. 1. We writeP | n (and say thaP outpus onn) if P = (vby...by) (1(p) | Q) for someQ, where
n#by.. by
2. We writeP |} n (and say thaP will outputon n) if there existQ such that? —; Q andQ | n.
3. We writeP ~¢ Q (and callP andQ contextually equivaleptf, for all contextsC|-], and for alln, C[P] | n if
and only ifC[Q] | n.
2. The Lambda Calculus (and variants thereof)
We assume the reader to be familiar with thealculus; we just repeat the definition of the relevantomi
Definition 5 (Lambda terms and g-contraction [8]). 1. The setA of A-termsis defined by the grammar:
M,N == x|Ax.M|MN

2. The one-step reduction relatieng is defined by the rules:

ML — NL
(B): (Ax.M)N — M][N/x] M—N = LM — LN
Ax.M — Ax.N

whereM|[N /x] is the (implicit) substitution oN for x in M, which takes place immediately and silently.
5

We will focus in this paper mainly on Call-By-Name reductsystems, in the sense that, in an applicafiéiv,
reduction will take place only itM until it either (1) terminates in an abstractian.P, after which we will contract
the redex Ax.P)N, or (2) it will terminate when reaching a variable. The twoimmotions ardazyreduction, where
reduction stops oM when an abstraction is created, apihereduction, where we also can contract (head) redexes
inside an abstraction. Since these notions are defined lynigmhe contextuakeduction rules of thé-calculus, in
all notions we present here those rules are present (as)altiugds in contrast to normal presentations that leave the
contextual rules implicit. Moreover, in view of the fact thvae aim to build encodings of these notions of reduction
into thert-calculus where we encoding of normal reduction is intecate will consider versions of those two notions
with explicit substitutionthat can be accurately encoded.

How to deal with implicit substitutionN / x] on terms plays an important role in interpretations/immetations
of the A-calculus. To encodg-reduction(Ax.M)N — g M[N/x] in the r-calculus, implicit substitution has to be
modelled using synchronisation, since this is the only agstaonal action in ther-calculus. However, remark that
synchronisation takes place one-at-the-time @reoutputsynchronising wittoneinput); since a priori the required
number of copies needed 6f is unknown, the distributive character of the substitutddriN for x in M has to be
modelled using replication. Also, the interpretationMfN /x] itself is the result of running the interpretation of
(Ax.M)N; since no step int introduces replication, it is clear that also in the latthg interpretation ofN must
appear replicated in the same way.

As is clear from the formulation of Milner’s result (see Them 16), sincd P = P | ! P, even when allks
in M have disappeared as result of the execution of the inteetof the substitutioilMI[N /x], the replicated
substitution term will always remain. To not generate tomynainning copies oN than are strictly needed, Milner
engineered his encoding to block the runnindg§f/ x| by placing anoutputguard (as in x(w). [N]" w), making
the synchronisation overthe deblocking action. Since the definition of reductionleat-calculus does not permit
synchronisation under replication or guard, this impliest reductions in the right-hand term of an application cénn
be modelled. Also, sinca-abstraction is modelled by Milner vi@put reduction under an abstraction cannot be
modelled. These two restrictions imply that, using Milseapproach, resulting in his encoding of thecalculus
into the (synchronous, monadia}calculus as defined in Definition 13, only tlazy A-calculus can be modelled, as
defined below.

We also definspinereduction, which we will encode in this paper.

Definition 6 (Lazy and spine reduction). 1. Lazy reductior® for the A-calculus [2] is defined by limiting the
one-step reduction relation to:

(Ax.M)N — M|N/x] M—N = ML—NL

We write P — Q if P reduces td using lazy reduction.
2. We definespinereductiolf by limiting one-step reduction to:

ML — NL

] M— N
(Ax.M)N — MIN/x] N = {/\x.M — Ax.N

We write M —s N if M reduces taN using spine reduction.

Notice that spine reduction is aptly named, since all redasttake place on the spine of thetree (see [9]):
searching for a redex, starting from the root, we can walkvidcand turn ‘left’, but not turn ‘right’, so stay on the
spine of the tree. This notion of reduction is shown to be haamnalising in [9] (even quasi-head normalising); in
fact, the normal forms for spine reduction are exactly thedheormal forms for normal reduction [31].

5This reduction relation is sometimes also known as ‘CalN@me’; since this is an overloaded concept, we stick to¢mminology ‘lazy’;
the definition here is the one used in [19].

6This notion is known also as ‘strong Call-by-Name’; in [1d§sentially following [9], spine reduction is defined hyst contracting redexes
that are on the spirfe headspine reduction is mentioned, but not defined, in [27].

Notice that spine reduction encompasses lazy reductioogdil —_ N implies M —s N, but not vice-versa,
since both
(Ax.M[N/y])L

(Ax.(Ay.M)N)L —s {((Ay.M)N)[L/x}

whereas onlyAx.(Ay.M)N)L — ((Ay.M)N)[L/x].

It is worthwhile to note that, although not mentioned in [1t8 proof of Milner’s main result (Theorem 16 in this
paper) treats the substitution aplicit, not asimplicit; for example, in the proof of Lemma 4.5 in that paper, case 3
considers the termM; - - -M,, [N /x] andN M - - - M, to bedifferent Itis therefore opportune to switch our attention
to Bloo and Rose’s calculudx [11], a calculus with explicit substitution, whereBareduction of theA-calculus is
split into several more atomic steps of computatioBloo and Rose add the concept of substitution to the syrftax o
the calculus, making iéxplicit, by adding the operatavl (x := N):

The syntax of thexplicit A-calculusAx is an extension of that of thie-calculus.

Definition 7 (Syntax of Ax c.f. [11]). M,N == x|Ax.M | MN | M(x:=N)
Aterm M is calledpureif it contains no explicit substitutiogx := N).
We write MN (x:=L) for (MN) (x:=L),andM (y:=N) (x:=L) for (M (y:=N)) (x:=L), and useM (y:=L)
as shorthand foM (y; := L1)- - -(y» := L), with n > 0; by Barendregt’s convention, aj} are distinct.
Explicit substitution describes explicitly the processeatcuting g8-reduction, i.e. expresses syntactically the

details of the computation as a succession of atomic, colstae steps (in a first-order rewriting system), where the
implicit substitution of the3-reduction step is split into several steps.

Definition 8 (Reduction onAx). The reduction relation+, on terms in\x is defined by the following rulés

(B) : (Ax.M)P — M (x:=P) ML — NL
(App): (MN){(x:=P) — M{x:=P)N(x:=P) LM — LN
(Abs) : (Ay.M)(x:=P) — Ay.(M(x:=P)) M—N = { AxM — Ax.N
(Varl) : x(x:=P) — P M(x:=L) — N(x:=L)

(gc) : M(x:=P) — M, x ¢ fv(M) L(x:=M) — L(x:=N)

We write —- if only the rules(App), (Abs), (Varl), and(VarK) are applied in the reduction.

We observe that».- implements the implicit substitution of the-calculus; notice that reductions i#.- termi-
nate.

Although stated with implicit substitution, Milner’s rel§(iTheorem 16) does not show that lazy reduction is fully
modelled, as can be observed in Figure 1; rather, it modglcagive bi-simulation only. Although in the proof of
his result Milner treats substitution as explicit, carefnblysis shows that evexx’s reduction is not fully modelled
by Milner’s encoding; however, explicit lazy reduction — ama restricted version, that we will define below — is.

We will, in fact, distinguishtwo notions and define also explicit spine reduction; we willwghbat step-by-step
reduction in the first is modelled by Milner's encoding, ahdttstep-by-step reduction in the second is modelled by
our encoding (see Definition 25), up to renaming.

Definition 9 (AXL and AxS). 1. The syntax of thexplicit lazy A-calculusAxL and that of theexplicit spineA-
calculusAxsis that of Ax.
2. The explicit variant»y,_ of lazy reduction is defined as follows.
(AxM)N — M{x:=N)

[—_—

xMi-- My (y:=L)(x:=N) — NM;j---M,(y:=L)(x:=N)

ML — NL

M=N-= {M<x::L>—>N<x::L>

“Many other notions of calculi with explicit substitutionist but those are not relevant to our results.
8An alternative to the fifth rule is the rulg/arK), defined byy (x :=P) — y.

7

3. Explicit spine reduction—ys is defined via:

(AxM) — M(:=N)
(Ay.M)(x:=N) — Ay.(M < =N))
XMy My (y:=L){(x:=N) — NM;-- n<y.—L> (x:=N)
ML — NL

M—N = Ax.M — Ax.N
M(x:=L) — N{(x:=1L)

4. We callx thelazy head variabl®f xM; - - -Mj, (y := N), and thehead variableof AZ.xMj- - -M,, (y := N).

Notice that we deviate here from the approaciwfby using a notion of explicit substitution thatleszy, i.e. we
postpone substitutions until the (head-)reduction hashed the stage that the term to be substituted is needed in
order to be able to continue with the reduction. Remark thahe context ofmplicit substitution, we have no choice
but to accept that, when contracting a redéx.M)N, the parameteN immediately gets substituted fatl the
occurrences of in M. When moving to the context @xplicit substitution, this is no longer the case, and we can
gain control over exactly which occurrenceswoflo effectively need to be replaced immediately, and which
postponed until a later moment. We will see that this behaworresponds directly to the behaviour of the encoded
terms in therr-calculus.

The criterion, in the context of lazy reduction, is of coutsgerform only those substitutions that are essential
for the continuation of reduction: for example, when codiirey (xx) (x := Ay.y), only the substitution to the head
variable is essential to make sure that lazy reduction catirage: this would yield((Ay.y)x) (x:= Ay.y). The
secondx will only be replaced when it becomes the head-varijhile. after the redexAy.y)x gets contracted,
yieldingy (y := x) (x:= Ay.y), which in turn reduces to (y := x) (x := Ay.y); now the variable is at the head, the
postponed substitution can be applied which in turn yi¢htsz) (v := x) (x := Ay.y) (notice that this reduction is
not in Ax). So, in general, lazy explicit substitution replaces dhkylazy head variable of a term.

Explicit lazy reduction ofAxL has similarities with Krivine’s machine [18], since the #gjp substitutions cor-
respond toclosures Krivine's machine is deterministic and stops at weak-heaanal from, i.e. does not reduce
under an abstraction, as in the explicit lazy reductiors thinot true for explicit spine reduction. Krivine's machin
therefore corresponds more to explicit lazy reduction.

The following is easy to show:

Proposition 10. If M —4s N, then there exists a puretermL such thatN —.- L.

Since spine reduction reduces a tedMito head-normal form, if it exists, this implies that alsgs reduces to
head-normal form, albeit with perhaps some substitutitiigpending.

Example 11. 1. Substitutions are left after reducing, likéz.yz) N —s yz (z:= N).
We can reducéAx.(Lz.A(Ly.M)Vx))N in two different ways:

(Ax.(Az.(Ay-M)x))N = (Ax.(Az.(Ay-M)x))N —s
(/\ (AyM)x)(x:=N) —xs (Ax.(Az(M{y:=x))))N —xs
Az.((Ay.) J(x:=N) = Az (M(y:=x)) (x:=N) —xs
Az (M{y:=x) (x:=N)) Az (M{y:=x) (x:=N))
Notice that
(Axxx)(Ayy) —xs xx{x:=Ay.y) —rxs

(Ayy)x(x:=Ayy) —xs
Yy =x){x:=Ayy) —xs
x(y:=x)(x:=Ayy) —xs (@) (Az.z)(y:=x)(x:=Ay.y)

9This appears to be the implicit approach of [19] (see LemiGachse 3).
8

2. Of course imxs we can have non-terminating reductions, as illustrated by:

(Ax.xx)(Ax.xx) —ys

xx (x 1= Ay.yy) —xs zz(z:=y) (y:=x) (x:=Ay.yy) —I

(Ay.yy)x (x:=Ay.yy) —xs yy (y:=x) (x:=Ay.yy) —1

yy (y:=x) (x:=Ay.yy) —xs xx (x:=Ay.yy) —1
xy (y:=x) (x:=Ay.yy) —xs (@) (Ay.yy) (Ay-yy)

(/\ZZZ)y<y x)(x:=Ay.yy) —xs
zz(z:=y) (y:=x) (x:=Ay.yy) s

(notice thex-conversion, needed to adhere to Barendregt’s conventibhis reduction is deterministic and
clearly loops; however, notice th@tx.xx)(Ax.xx) does notrun to itself. The second part shows that, as stated
by Proposition 12, the normal reduction result can be aelidy reduction imx.

We can easily show the following result, that states thdimeidetween the various notions of reduction:

Proposition 12. 1. If M —* N, then there exists € Ax such thatM —;, L andL —% N.
2. If M — N, with N in normal form, then there existse Ax such thatl is in AxL-normal form, andV —, L
andL —X N.
3. If M —¢ N, then there exist®, %, O such thatM —; P(x = Q) —% N, andP[Q/x] =
4. If M = N, andN is in —s-normal form (i.e. in3-head-normal form), then there exidtss Ax such thatL is
in Axs-normal form, and\l —;; L andL —X N.

Notice that, in particular, the second part holdsdimgle stegeductions.

3. Milner’s input-based lazy encoding

In his seminal paper [19], Milner defines an encoding oftkealculus into the (monadicj-calculus, and shows
some correctness results. His Call-By-Name encddiisgnspired by the normal semanticsoterms, which states
for abstraction:

TaaMmllzt = GAde MM,)

(hereM is an domaing is avaluation mapping free variables to elements of the domé&ira domain constructor,
and the body of the abstraction is interpreted in the updakdation, where now also is mapped tal, an arbitrary
element of the domaird). So, also in the encoding, instead of executiifN / x], M is executed in an environment
that bindsN to the variablex. This leads to:

Definition 13 (Milner’s interpretation [19]). The inputbased encodingf A-terms into therr-calculus is defined

by:
[xMa £ x(a) x#a
[Ax.MMa 2 a(x).a(b).[M]Mb b fresh
[MNT"a 2 (ve) ([M]"c|(vz) (c(z).¢(a).[z:= N]")) c,zfresh
[x =M™ £ !x(w).[MMw w fresh

Milner calls[x := M]" an “environment entry it could be omitted from the definition above, but is of usparately.
Herea is the channel along whichM " receives its argument; this is used to communicate withrttegpretation of

the argument, as made clear in the third case, weréjég channel of the left-hand term is used to send the name
over on which the right-hand term will receive itgput

10119] also deals with Call-By-Value, which we will not consichere.
11For details, see [8].

9

We would, at this stage, like to draw attention to the ‘delaygchanism that forms part of this encoding through
the guard on the substitutidrz(w). [N]" w. This has not only the advantage that reduction cannot tkie pin
the argument of substitutioffN]* w, also, no context can interact with this term; even aftergydms been peeled
of from the replicated term (viex(w). [N[M w = x(w). [N]Mw | ' x(w). [N]" w) the proces§ N]" x cannot start
running, since guarded by amput This is made evident in the next example.

[I>

Example 14. [(Ax.x)N]"a

)
(ve) (e(x).c(b). x(b >\(v2) ((z).¢(a).[z:= N]")) == ()
(vz) (2(a) ['z(w). [N]"w =
(vz) (z(a) | 2(w) -HNHMWI!Z(W)-HNHMW) - (2)
(vz) (INT"a[!z(w). [N]"w) =
[N]"a](vz) (tz(w). [N]" w) ~c [N]'a

Notice that[N]"w cannot run until the synchronisation ovehas taken place, and thatz) (!z(w). [N[" w) is
contextually equivalent to.

Milner’s initial approach has since become standard; ity EEmentioned in the introduction, Sangiorgi considers
it canonical [23].

Notice that both the body of the abstraction and the arguimeart application both get positioned underiaput,
and that therefore reductions inside these subterms caemabdelled; as a result, the simulation via the encoding is
limited to lazy reduction.

Example 15. Using[-]" -, the interpretation of #-redex (only) reduces as follows:

[(Ax.M)N]"a A

(ve) ([Ax-M]" e[(vz) (¢(z).(a). [z := NT")) 2

(ve) (e(x).c(). [M]"b| (vz) (¢(z).c(a). [z := N]")) —x ()

(vez) (e(b). [M[z/x]]"b|(a). [z := N]*") = (¢)

(vz) ([M[z/x]]" a| [z := N]") =a (2 [M]"D)
(vx) ([M]"a | [x = NJ") 2

(vx) ([M]"a [! x(w). [N]" w)

Now reduction can continue in (the interpretation) but not inN that is still guarded by théput on x, which
will not be used until the evaluation ¢ [" a reaches the point whewmitputis generated over.

Milner shows the main correctness result for his interpi@tawith respect to lazy reduction, which is stated as
follows:

Theorem 16 ([19]). For all closedA-termsM, either:

1. M = Ay.R[N/x], and[M]M u —% (7%) ([Ay.R]Mu|[x:= NJ"), 0
2. bothM and [M]" u diverge.

We have already remarked that Milner’s encoding does notlsii® step-by-step reduction, not even when re-
stricted to lazy reduction. To illustrate this fact, Figdrehows the reduction of the interpretation(afc.xx) (Ay.y)
under Milner’s encoding. Notice that, there, we have exagttihe only possible synchronisations, and that in the
reduction path no term corresponds to

(ve) ([Ayy]" e[(vz) (€(z).c(a). [z :== Ayy]")) = [(Avy)(Ayy)['a

So, in particular(vz) ([zz]"a | [z := Ay.y]") doesnotreduce to the result of the substitutidiAy.y) (Ay.y)]" a
Milner’s encoding does not model implicit substitutiorseif. Therefore, althougtvx) ([M]"a|[x := N]*) can
intuitively be seen aM[N /x|]" a, these are, in fact, substantially different.

10

[(Ax.xx)(Ay.y)]"a =
L: (ve) ([Axxx]"c| (vz) (c(z).c(a). [z := Ay.y]")) =

(ve) (e(x).c(b). [xx]"b] (vz) (¢(z).c(a). [z := Ay.y]")) —% ()
2: (vz) ([zz]"a| [z :== Ayy]") 2

(vz) ((ve) ([z]" ¢ | (vz1) (€(z1).€(a). [z1 := z]")) | [z := Ay.y]") =

(vz) ((ve) (z(c) | (vz1) (€(z1).c(a). [z1 := z]")) | [z := Ay.y]") =

(vz) ((ve) (Z(c) | z(w). [Ayy[" w | (vz1) (€(z1).(a). [z1 := z]")) | [z := Ayy]") — (2)
3: (vz) ((ve) ([Ayy]" el (vz1) (¢(z1).E(a). [z1 == z]")) | [z := Ay-y]™) =

(vz) ((ve) (c(y).c(b).y(b) | (vz1) (E(z1).¢(a). [z1 := z]")) | [z := Ay.y]") =% (c)
4:(vz) ((vz1) (z1(a) | [z1 == z]") [[z := Ay.y]") =

(vz) ((vz1) (z1(a) | z1(w) . Z(w) | [21 := z]") | [z := Ay.y]") — (1)
5:(vz) ((vz1) (2(a) | [z1 := z]") | [z := Ay.y]") =

(vz) ((vz1) (Z(a) | [z1 := z]") | z(w).[Ay.y]" a | [z == Ay.y]") - (2)
6: (vz) ((vz1) ([Ayy]"a|[z1 == z]") | [z == Ay.y]") =

[Ayy]¥al(vz) ((vz1) ([z1 == z]") | [z :== Ay.y]™) ~c [Ayy]“a

Figure 1: Running Milner's encoding ¢fix.xx)(Ay.y).

So is there then a relation between Milner's encoding andi@ipubstitution? By close inspection it becomes
clear that the reduction in Figure 1 actually simulates:

(Axxx)(Ayy) —x (22)(z:=Ayy) —xL
(Ayy)z) (z:=Ayy) —a
z1(z1:=2) (z:=Ayy) —wu
z(z1:=z)(z:=Ayy) —wa (Ayy)(z1:=2)(z:=Ay.y)
(where the numbered lines in Figure 1 correspond to the ctispéerms in this reduction). Notice that this contains
some unnecessawyconversions, and that the congruence rules take caretoffgthe propagation of the substitution
(in the last step before lin®); moreover, this is not a reduction itx: the substitution(x := Ay.y) does not fully
propagate in the second step, but only does so for the he&@bla and stays also on the outside, which gets only
used when the innermost reduction has taken place.
We can now show that we can generalise the above observatidrshow a (more direct) simulation result for

Milner’s encoding but now for explicit lazy reduction; firge need to extend that encoding to have it deal with explicit
substitution as well.

Definition 17. We extend the interpretation of Definition 13ia (and AxL andAxs, for that matter) by adding the
case:
[M{x:=N)[Ma & (vx)([M]a]|[x:=N]")

Formulated using-x., we can now show the following result for Milner’s interpaiion in theA-calculus with
explicit substitution:

Theorem 18 (-] - preserves—y,). If M — N, then[M["a —} [N]"a.

PrRoOFE By induction on the definition of explicit lazy reductiongvanly show the basic cases.

(Ay.M)N —y M{(y:=N): [(Ay.M)N]"a A
(ve) (e(y).c(b). [M]"b] (vz) (c(z).c(a). [z:= N]")) —7 (o)
(vz) ([M[z/y]]"a| [z := NI") =a
(vy) (IM]"a| [y := NT") £ [M{y:==N)]"a

11

(xMi---My (y:=L)) (x:=N) —=x (NM;---M, (y:=L)) (x:=N) :

[(xM;y---My <y —L> (x:=N)["a 4
(vx) ([xM;- - —UﬂMﬂ\ﬂx = N[") 4
(Vx)((VC)([[XMl M, 1]V ¢ (vz) (E(z).¢(a). [z := Mu]")) | [y == L]" | [x := N]") &,=
(vxieer---cy1) (X <Cn 1) | (vzn-1) (ni—1(zn-1)-cn—1(c) . [zn—1:= M1 [") | -+ - |

(vz

~—

)-
(c(z).c(a). [z := Mu]") [[y := L™ | [x :== N]¥)
(vageer- - -cn1) (X(cn-1) | (vzu—1) (Cn—1(zn-1)-Cu1(c) . [zn—1:= M1]") | - -+ |

(vz) (€(z).c(a). [z == Mu]") [[y == L]" [x(w). [N["w[[x := N]¥) —r (x)
(vageer- - cu1) (IN]" ep1| (vzu—1) (€i—1(zn-1)-cn—1(c)- [zn—1 := Mi]") | --- |

(v2) (2).ola). [z := M) | [y = IF | [vi= NI") =2
[(NM;---My (y:=L))(x:=N)["a
M =y M' = MN = M'N: [MN]"a A
(ve) ([M]" e[(vz) (e(z).€(@). [z := N]")) —7 (IH)
(ve) (IM']" ¢ | (vz) ((z).€(a). [z:=N]")) £ [M'N]"a
M =y M' = M(x:=N) - M (x:=N): [M(x:=N)["a 4
(vx) ([M["a| [x:= N]") =7 (H) (vx)([M']"a|[x:=N]") 2 [M'(x:=N)]"a [

Notice that, in particular, we do not need the¢erms involved to be closed, but of course can show:
Corollary 19. If M is closed, and\I —; (Ay.N){x:=L), then[M["a —} [Ay.N]"a|[y := L]".

which is Milner’s main result, but stated using explicit stitution, as we think it should have been.
We can of course also restate these results using normalddmgtion:

Theorem 20. 1. If M — N, then there existd1’ such thaf M a —+ [M']Ma, andM’ —.- N.
2. If M is closed and lazy normalising, then there existst, L such thatM —, (Ay.N)[L/x], and[M]["a —+
[Ay.NMa|[y:=L].

PrRoOOF By Theorem 18 and Proposition 12. O

After Milner’s original encoding, many variants followedjth perhaps the most expressive being the uniform
encoding[-]", as defined in [26]. That encoding is, in particular, engiadeo work in Call-By-Name, Call-By-
Value, and Call-By-Need; here we focus on tten component, and adapt the definition to our notation.

Definition 21 (The uniform encoding [26]). The cBN-variant of the uniform encoding of th&-calculus into the
(synchronousjt-calculus with pairing is defined as follows:

[x]'p 2 =(p)
[AxM]'p £ (vo)(p(v).!o(x,q). [M]"q)
[MN]’p £ (vq) ([M]"q|q(v). (vx)(@(x, p).! x(w).[N]'w))

This encoding contains, at least foBN, some superfluous replication in the case that deals withaadtion, but
this is needed to successfully encode the other two redustiategies. Although this is autputbased encoding, in
the sense that the (private) chanpéh the encoding oM N is used as aoutputfor the encoding oM, underneath
the encoding is essentially Milner’s.

12

Example 22. In general, the encoding of a redex runs as follows:

[(Ay.M)N]"p 2

(vq) ([Ay-M]°q | q(v). (vx) (o(x, p). ! x(w). [N] w)) =

(vq) ((vo) (7 < v). Loy,). [M]'r) [q(v). (vx) (O(x, p). ! x(w). [N]"w)) —» (q)
(vo) (to(y, r). [M]°r | (vx) (o(x, p). ! x(w). [N]"w)) —r ()
(vxo) (to(y, r). [M]r | [M[x/y]]"p | ! x(w). [N]"w) =u
(vyo) (to(y,r). [M]°r | [M]°p | ty(w). [N]"w) =

(vy) ((vo) (Mo(y, r). [M]°r) | [M]°p |y (w). [N]"w) o

(vy) (IM]°p |y (w). [N]"w)

In particular:

[(Ay.y)(Az.z)]Yp —r
(vy) ([y1°p [ty (w). [Az.z] w)

(vy) @(p) ly(w). [Azz] w]| y(w). [Azz]Yw) —
(

[

~

> =
(e
_/
¢
N

el
—~
<
N

vy) ([Az2]°p [ty (w). [Az2]"w)
Azz]Vp | (vy) (y(w). [Az.z] w) [Az.z]p

Notice that this reduction, after the synchronisation gvesssentially runs like Milner’s encoding, but uses pairing
as in Section 4.

2
N

This example allows us to extend the unifooBN-encoding toAx by adding:

[M(x=N)["p & (vx)([M]°p|[x:=N]")

where, inspired by Milner’s encoding, we wrife := NV for ! x(w). [N] w.

Notice that, as before, the reductions inside an abstradtimse in the right-hand side of an application, as well
as those inside the term that gets substituted, cannot headed, and that, therefore, this encoding models (part of)
lazy reduction. Moreover, only the head variable can gdacsal; in fact, it is easy to show that also this encoding
respects explicit lazy reduction:

Theorem 23. If M —; N, then[M]"p =1 [N]"p.

PrRoOOFE By induction on the definition of explicit lazy reductiongwnly show the basic cases.
(Ax.P)Q —y. P{x:=Q) : By Example 22.

(M- My (y:=L)) (z:=N) = (NMy---M, {y:=L)) (z:=N) :

[(zMy-- My (y:=L)) (z:=N)]"p 2
(vzy) ((vq) ([zM1- - -Myp—1]"q [q(0). (vx) (0(x, p). [x := My]")) |
[y:=L]°[[z:=N]") 2,

(vziaq1q2- - qn) (Z(qn) | qn (o). (vXn) (On(Xn, gn-1) - [xn := M1]°)) [- - |

q(0). (vx) (@(x, p). [x := Mu]")) | [y := L]° | 2(w). [N]'w | [z := N]*) == (2)
(vziq9192- - -qn) (IN1°n | gn(0n). (van) (@n(xn, gu-1)- [xn := M1]")) | - --

g0, (x) (0(x, p). [x = Mu]")) | [y := L] |[z:= N]") =2

[(NMy---M, {y:=L}) (z:=N)]"p

M — M' = MN —y M'N, M (z:=N) —y M'(z:=N) : Byinduction. O
13

Notice that, in particular, as in Theorem 18, we do not needitterms involved in the reduction to be closed,
and that we model step-by-step explicit lazy reduction.
The following then becomes immediate:

Theorem 24. If M —_ N, then there existd/’ such thaf M]"p —7 [N']Yp, andN’ —;, N.

PrROOF By Theorem 23 and Proposition 12. O

4. Alogical, output-based encoding ofA-terms

In this section, we will show that it is possible to deviaterfr Milner's original approach to encoding, and
actually make a gain in the process. Inspired by the reldietween natural deduction and the sequent calculus
[13], interpreting terms undeyutputrather than undeinput and using thet-calculus with pairing, we can define a
different encoding of tha-calculus into ther-calculus. Although the main objective of our encoding istow the
preservation of type assignment, and pairing is used inrdodiee able to effectively represent arrow types, we also
achieve a more expressive encoding that preserves naapystdduction, but also the larger notion of spine reduction

Our encoding follows from — but is an improvement of — the @ianation of the encoding of thecalculus intat’
(which established a link between natural deduction andeél@ent calculus) as defined in [6], and the interpretation
of X into thert-calculus as defined in [4]. The idea behind our encodingraigs from the observation that, in the
A-calculus, allinput is named, bubutputis anonymous.J/nput (i.e., avariablg is named to serve as a destination
for the substitutionputputneed not be named, since all terms have only one result éeped by the term itself),
which is usedn sito!2. Translating into the (multdutpud r-calculus, this locality property no longer holds; we need
to specify the destination of a term, by namingatgput this is what the encoding does.

We explicitly convert an outputsent oru is to be received agputonb’ via ‘a(w).b(w)’ (called aforwarderin
[16]), which for convenience is denoted by b.

Definition 25 (Output -based interpretation of the A-calculus in 7r). The mappind'-j - is defined by:

Txja £ x(z).z(w).a(w) x#a
fAx.Mya £ (vxb) (TMyb|a(x,b)) b fresh
TMNja 2 (ve) (TMyc|c(b,d). (! (vw) (b{w). Njw) |d—a)) b,c,d fresh

As for Milner’s encoding, we use the abbreviation
Tx:=Nj 2 !(vw)®w).Njw)

Notice that the encoding is not trivial, since

Myzyja (vyb) ((vzbr) (y(2).z(w). by (w) | b1{z,b1)) |a(y, b))
b

Ax.xja = (vxb) (x(z).z(w).b{w) |a(x,b))

processes that differ under..

In particular, notice that the operamd in the applicationMIN is interpreted by a guarded replicatioN: itself
gets interpreted under theutpud namew, which gets sent out first over the chanhglvhich is theinput channel of
M, if any. SoN can only run after synchronisation ouehas taken placeé.e. if an input for (the channel name that
will replace)b exists. Running the encoding will eventually simulate thiestitutionx (x := N) via

Txja| (vo) (X(v).INjv) £ (vo)(x(2).z(w).@(w) |¥{v).TNJv) —r (x)
(vo) (v(w).a{w) | TN|v) ~c [Nja

We see the synchronisation oveas the effectuation of the substitution. Also:

12In terms ofcontinuations the continuation of a term is not mentioned, since it is teent.

14

e \We see a variable as aninput channel, over which we receive tetputname of the process that needs to be
substituted forr; we use this name to create aaput channel to receive theutputof N, which we then send
out of theoutputname ofx, beinga;

e For an abstractionx.M, we give the namé to the outputof M; that M hasinput x and outputb gets sent
out overa, which is the name ofx.M, so that a process that wants to call on this functionalitgvis which
channel to send thimputto, and on which channel to pick up the re&git

e For an applicatiolM N, the outputof M, transmitted ove, is received as a paib, d) of input-outputnames
in the right-hand side; the receivégput b name is used as send the fremltput name forN, enabling the
simulation of substitution, and the receivedtputnamed gets redirected to theutputof the application.

Notice that only one replication is used, on the argumentiraplication; this corresponds, as above, to the
implementation of the (distributive) substitution drterms. Also, evenyNja is a process thatutpus on a non-
hidden name (albeit perhaps not actively, as in the third case, wherdlitat be activated untilnputis received on
the channet, in which case it is used toutputthe data received in on the chandehat is passed as a parameter),
and that thisoutputis unique in the sense that is the onlyoutputchannel, is only used once, and fawtputonly.
This implies that(va) TMjja ~c 0, for all M; these are not bi-similar, of course.

The structure of the encoding of application correspormd&dét, to how Gentzen encode®dus poneni the
sequent calculus [13]: see [6], Theorem 4.8, and the prodhebrem 48 below.

Example 26. [(Ap.p)(Ax.x)ja A
(ve) ((vpby) (p(2)-2(w). by (w) |€(p, b1)) | e(b, d). (b := Ax.xj |[d—~a)) —n (c)
(vpb) (p(2). (). By (1) | Tp 5= Axxi [by-+0) =
(vpb1) (p(z1)- 21 (w). b (w) | (vy) (P(y). TAx.xiy) [Tp := Axxj |br~a) =z (p)
(vbry) (y(w). b (w) | PAxxjy | (vp) (Tp := Axxy) [Br~a) 2
vbiy) (y(w). by (w) | (vab) (Txyb | y{x, b)) | (vp) (Tp := Ax.x)) [br—a) —F (y,b1)
x, b)) | (vp) (Tp := Ax.x)

[l>

(
(vab) (MTxyb|a(
Mxxjal(vp)(Tp = Ax.x)) ~c MAx.xja

That we use asynchronous synchronisation in our encodiagsifaction is not only convenient — since it allows
us to express not just lazy reduction, but also spine resluets well, as we will show in the next section — it is also
necessary:

Example 27. Assume thafAx.M|ja = (vxb) (a(x,b). M| b), thenl(Ay.y)(Ax.x)|a would run as follows:

T(Ay.y)(Ax.x)|a A

(ve) (TAy.yjc|cb,d). (Th:= (Ax.x)| |d—~a)) 4

(v) ((vyb) (ely, bu)- Tyibr) | (b,). (T := (Axx)j | d=a)) e ()
(vybr) (Tyy by | Ty := Ax.xy) | by—~a) =4

(vyb1) (y(2).2(w). by (w) | (v0) (F(v). (vxb) (B(x, b). Txyb)) | Ty := Ax.xj [br~a) == (y,0,b1)
(vyxb) (@{x,b) | Tx)b| My := Ax.x)) =

(veb) (@,) | Tagb) | (vy) (Ty = A e

(veb) (alx, by | Txqb)

Notice that then the last term would not corresponfXe.x | a; this clearly shows that we generate an asynchronous
outputin the interpretation for the result of the reduction. Toadbian encoding that respects reduction, we therefore
had to define it using asynchronoaistputfor the abstraction.

13This view of computation is exactly that of the calculiis

15

For the encoding presented here, the encoding of a redexasuioiows:

[l

Example 28. [(Ay.P)Qya
(ve) ((vybr) (TPyby [E(y, 1)) [c(b,d). (Tb:= Q) [d—~a)) —n
(vybr) (TPyby | Ty := Qy | by +a)
The encoding of the redef\y.P)Q will yield a process containing a synchronisation that rezeon theinput
channel called in the interpretation oP, and the interpretation d beingoutputony (see Theorem 32). Since

TP by is sending itsoutputon by, which gets redirected to, we will see this as similar tévy) (TPja |y := Q))
(see Lemma 30).

A first version of our encoding was presented in [4], wheredswbtained by the concatenation of the encoding
M.A of the A-calculus into the sequent calculdsas defined in [6], and the encodifig] of X into the r-calculus,
as presented in that paper. This resulted in an interpoettj - : A— 7t of the A-calculus inrr via X' as defined by:
TMya = [TM]L], ie.

Txja 2 x(w).&(w)
Mx.Mja 2 (vxB) (! TMyB|a(x,B)), B fresh
TMNja £ (véc)("TMys|16-c|tc(v,d).(vB)!TNyB|B—v|d—a), «,B, xyfresh

Using, for example, the insight th&M |5 | 5 c is in fact computationally the same &1 c, and that replication is
only needed for substitution, we simplified this encodinthone we presented in [7]:

Txja 2 x(w).a{w) x#a
Mx.Mja 2 (vxb) (TMyb|a(x,b)) b fresh
TMNja 2 (vc)(TMjc|c(b,d).(!TNjb|d—a)) b,c, dfresh

For this encoding, we can show all the major properties tleashow for the encoding of Definition 25, but for
Theorem 40; in particular, we can show thatMf — N, thenTMja ~c [Na, so these processes have the same
observable behaviour; this implies that any non-termamatakes place inside a process that has no vigibtput
i.e. isunobservabl&. Using the encoding of Definition 25, we can show preservatidermination as well.

We could have defined our encoding directly in the standandrepnoust-calculus:

Tx)'a 2 x(z).'z(w).q7(w)
TAx.M)'a 2 (vxb) (TM)'b|a(x) |a(b))
IMNy'a 2 (ve) (TM)/ ¢ |c(b).c(d). (! (vw) (b(w). TN} w) | 1d-+a))

without losing the main reduction results for our encodimeat tve will show below, but this has additional replication,
is less suited for type assignment (see Section 7), and daesitisfy some of the properties we consider here.

To show the need for replication in this variant also on theerjpretation of variables id-|’- and the for-
warder, consider the reduction in Figure 2. This reductioowss that the parallel composition of the outputsaon
in (vxb) (TM)'b|a(x) |a(b)) is necessary, similar to Example 27, as is the use of refgitat the interpretation
of the variable. Sinceutputis generated twice over, the receiving side has to run twice, so we need replication
inside the interpretation of a variable; since we send twitg,, also the forwarder needs to be replicated. However,
notice that these can now execute in arbitrary order, lieguth the wrong parameter exchange; so we can no longer
guarantee operational completeness (see Theorem 39).

14This is a common fact in semantic interpretations: also tieéing of recursive programs into thecalculus does non respect termination;
this uses a fixed-point construction to represent recursjguically via the termA f.(Ax.f(xx))(Ax.f(xx)), which already on its own does not
terminate, leaving encoded functions with non-termirggtiout unobservable parts.

16

T(Ay.y)(Ax.x)| a 4
ve) (My.yy'cle(b).c(d). (! (veo) (b(w). Thx.x) w) | 1d—a)) 2
ve) ((vybr) (Tyy" by [€(y) [€(b1)) [€(b).c(d). (! (vw) (b(w). TAx.x) w) [1d—=a)) —x (c) (2x)
vybr) (Tyy" by [(vo) (y(0). TAx.x) o) [by~ a) =2

w) | (vo) (Y (v). TAx.x’v) | ! (vo
) (Txyb19(x) [9(b)) | (vo)
{

(G(v). TAx.x|'0) |1 by—+a) —x ()

vybr) (y(z).1z(w). by
\ (0). MAx.x'v) | 1by—~a) —x (v) (2%)

(

(

(

()
(vb1o) (to(w). by (w) (¥
(

(

(

vbyobx) (o(w). by (w) | b1(x) [br(b) | Txyb]! (vo) (7(v). TAx.x) v) [101 +a) —n (b1) (2%)
Vbrobe) (1o(w). By () | (%) |2(8) | T b | (v) (7o) Thxxy0) | thyoa) o
vxb) (Txy'b |a(x) |a(b)) L Mx.x|'a

Figure 2: Running’ (Ay.y) (Ax.x) | a

5. Preservation of spine reduction

We will now show that our encoding respects explicit spirdurion. By the very nature of that encoding this
result is not exactly” If M —s N, thenTMp — TNjp” butinstead gets formulated via a relation that also
permits renaming obutput Renaming is defined and justified via the following lemmajohtstates that we can
safely rename the (hiddentputof an encoded-term, and is needed below:

Lemma29. (va)(c(b,d).('b(w).TMw|d—a)|a—e) ~c c(b,d).(va)('b{w).Mjw|d—a|a—e)

PROOF. Any context that interacts with the either the left or thghtihand side has to do so vi@b’, d’); in both
cases this yields a process equivalertuto) (!0’ (w). TMjw |d'~a | a—e).]

We use this lemma to show:
Lemma 30 (Renaming lemma). (va) (TNja|a—e) ~c [Nje .

PrRoOOFE By induction on the structure of terms Ax.

N=x: (va)(xja|a—e)
(va) (x(z).z(w).a(w) | a(w).e(w))

C

II> ¢

Mxje

[l

N=AxM: (va)(TAx.Mja|a—e)
(va) ((vxb) (TMyb|a(x,b))|a—»e) —x (agMyb)

(vxb) (TMyb|e(x, b)) L TAax.Mje
N=PQ: (va)(TPQya|a—e) A

(va) ((ve) (TPjcle(b,d). (Tb:= Q) [d—~a))|a—e) =

(ve) (TPyc | (va) (c(b,d). (Tb:= Q) |d—a) [a—e)) ~c (Lemma 29

(ve) (TPyc|e(b,d). (va) (a—e|Tb:= Q| [d—~a)) ~c

(ve) (TPicle(b,d). (T := Qj [d—e)) 2 TPQye
N=M(x:=M): (va)(TM'{x:=M)ja|a—e) 2

(va) ((vx) (TM'ja | Tx := M]) | a—e) =

(vx) ((va) ("M'ja|a—e) | Tx := M]) ~c (IH)

(vx) (TM'je| Tx := M) L M (x:=M)je a

17

Notice that, in the second part, reduction takes place opéwate channel, so the processes involved are contextuall
equivalent.

In the previous lemma we have chosen the contextual eqaial® model the substitution, because this way of
identifying programs is common for semantics of thealculus as well. We could have chosen a co-inductive style
equivalence such as the expansion [24] without changinghh&30 and what follows.

Using the laws of Lemma 30, we can show that:

(vab) (TMb | ! (vw) (X(w). INjw) |b+a) ~c (vx)(TMja|! (vw) (F(w). [Njw))
& (vx)(TMya|lx:= Ny)
Following on from Example 28, we can therefore justify:

Definition 31 (Output -based interpretation of Ax in 7r). We extend the interpretation dfterms in Definition 25
to Ax (andAxL andAxs) by adding

TM{x:=N)ja = (vx)(TMja|lx:= Nj)

to our encoding.

As in [19, 24, 26], we can now show a reduction preservaticultdor explicit spine reduction. Notice that,
essentially following Milner, by using the reduction rétet —s, we show that our interpretation respects reduction
in —¢ upto substitution, as expressed in Theorem 35. As in The@&we do not require the terms to be closed:

Theorem 32 (- |- preserves—s up to renaming). If M —4s N, thenTMja ~¢ TN a.

PrROOFE By induction on the definition of explicit spine reductiave only show the basic cases.

(Ay.P)Q —=xs P(y:=Q): M(Ay.P)Qya =
(ve) ((vybr) (TPyby [(y, b1)) [c(b,d). (Tb:= Qi |[d~a)) —r (28)
(vyby) (TPyby | Ty == Qi | by—a) ~c (30
(vy) (TPya| Ty := Qy) = IP(y:=Q)ya
(Ay.M) (x:=N) =xs Ay.(M{(x:=N)): [(Ay.M)(x:=N)ja £
(vx) ((vyb) (TMb |2y, 5)) | T := Ny) -
(vxyb) (TMyb|aly, b) | Tx := Njj) =
(vyb) ((vx) (TMyb| Tx := Ny) |a(y, b)) 2 MAy.M(x:=N)ja
(xMy---My {y:=1L)) (x:=N) =xs (NMy---My {y:=L}) (x:=N) :
T(xM- - My (y:=L)) (x:= N)ja A
(vx) (TxMy- - My, (y:=L)ja|lx:= Nj) A
(vx) ((ven) -+ ((vea) ((ver) (x(2).z(w).Er(w) [1 (by, di). (Tby == M| [d1~c2)) |

ca(by, da). (Tby := My |dy—c3)) |- - -
cn(bu,dn). (Thy := My |dy—a)) |y :== Ly | Tx := NJ)
(vxey- - -coer) (x(z1).z1(w). ey (w) | c1 (b1, dv). (Tby := My |dy—c2) |-
Cu(bn,dn). (Tby := My |dy—a) | Ty := Ly | (vo) (%(0). WNJU) |Tx:=Nj) =z (x)
(vxey: - -coc10) (v(w). Cr(w) | e1(by, dq). (Thy := My |dy—c2) |-
cn(bu,dn). (Tby := Myl |dy—a) | Ty := L] | INjo|lx:=Nj) ~c (30)
(vxcy: - -cac1) (TNJeq | er(by, dy). (Tby := My |dy—cp) |- - -
cn(bu,dn). (Tby := My |dy—a) | Ty =L | Tx:=Ny) =
T(NM;---M, (y:=L)) (x:=N)ja

18

T(Ax.(Az.(Ay.M)x))Nja A

(vexby) (T(Az.(Ay.M)x) by | €(x,by) | c(b,d). (Tb := Ny |d~a)) = (c)
(vaby) (M(Az.(Ay.M)x) by | Tx := Ny | by—~a) A
(vaby) ((vzba) (T(Ay-M)xyby | by (z,b2)) | Tx := Ny [b1—a) 2
(vxby) ((vzby)((ver) (MAy.Micy | c1(b,d). (Tb:= x| d=b2)) | b1 (2, b2)) | x := Ny [by—a) £
(vabr) ((vzba)((ver) ((vybs) (TM)bs |1 (y, b3)) |

c1(b,d). (b := x |d—b2)) | b1 (z,b2)) | Tx := Ny | by»a) =
(vxbrzbyerybs) (TMybs | E1{y, b3) | c1(b,d). (Tb == x) [d=by) | b1 (2, b2) | Tx := N [b1+a) —r (c1)
(vxbyzbaybs) (TMybs | Ty := x | b3 bz | by (2, b2) | Tx := Ny | by—~a) —r (b1)
(vaxzbyybs) (TMybs | Ty := x| | b3~ by | a(z, by) | Tx := NJ) ~¢ (30)
(vxzbyy) (TMyby | Ty := x| |a(z,b2) | Tx := NJ)
(vzby) ((vx) ((vy) (TMybp [Ty == x) | T := Ny) [a(z, b))
(vzba) ((vx) (TM(y —x>ﬂbz| Fx :=Ni)|a(z,b2))
(vzby) (TM(y :=x) (x:= N) b2 | a(z, by))
MAz.M{y:=x)(x:=N)|a

> e 1=l

Figure 3: An illustration to the encoding result.

M —ys M’ = MN —ys M'N : TMN a A
(ve) (TMyc|e(b,d).(Tb:= N |d—»a)) ~c (IH)
(ve) (TM'jc|c(b,d).(Th := N |d—a)) £ TM'Nja

M —ys M’ = Ay.M —xs Ay.M’ : SincelAy.Mya £ (vyb) (TM|b|a(y, b)), the result follows by induction.

(
M —ys M' = M (x:=N) —xs M’ (x:=N) : Since[M (x:=N)ja & (vx)(TMja|x:= NJ), the result fol-
lows by induction. O

Notice that, as in the proof of Lemma 30, in the first and thiad preduction takes place over a private channel, so the
processes involved are contextually equivalent. Notise #iat the renaming reduction is crucial for the third case,
where we havévo) (v(w).c1(w) | TN|v), which corresponds tbvo) (v—c; | TN jv) and we want to yield N c;.

Remark 33. In the second case of the proof of the previous theorem, werebghat no reduction takes place
in the encoding. This is due to a discrepancy of the semamiiwg of the substitution. In the reduction rule of
(Ay.M) (x:=P) —ys Ay.(M (x:=P)), effectively we move the substitutiqi (x := P)) inside theA-abstraction.
This could be regarded, to some extent, as an associatiléyeing implemented. In fact, all we do is to move the
parenthesis from th&-abstraction to the body of the function. Since the abstraés modelled with the composition
operator, the substitution im-calculus becomes a matter of associativity.

So, perhaps contrary to expectation, since abstractiootisncoded usingnput, we can without problem model
reduction, modulo renaming, underiaabstraction. Notice that we strongly need the asynchrembaracter in
the encoding of abstraction to achieve the representafipioe reduction: thanks to the fact thBtx.Mja =
a(x,b) | TM b, the third part of the above proof is possible. This resdiltustrated in Figure 3.

Example 34. As mentioned above, ifrss We can reduce as follows:

(Axxx)(Ayy) —xs xx(x:=(Ay.y)) —xs
((Ay. y)x) (x:=(Ayy)) —xs
(y{y:==x)) (x:=(Ay.y)) —xs
x(yi=1) x F= () e (122 lyi=x) (2= Q)

Then, by repeatedly applying Theorem 32, only

T(Ax.xx)(Ayy)ja ~c Mxx{x:=Ay.y)ja ~c
MAyy)x(x:=Ayy)ja ~c
y(y:=x){x:=Ayy)ja ~c
Tx(y:=x)(x:=Ayy)ja ~c [(Azz){y:=x)(x:=Ay.y)ja

Notice that, because the encoding implements a limitedonaaf substitution, as for Milner's encoding, the
reduction doesiotrun past

(ve) (My.ygele(b,d). (b := Ay.y) |[d—a)) £ [(Ayy)(Ay.y)ja.
The only expression that gets close is that in the sixth Wirfech corresponds (up to renaming) to
(vx) ((ve) (My.yge|e(b,d). (Tb:= xy [d=a)) | Tx = Ayy)) 2 T((Ay.y)x) (x:=Ayy)ya
We can also show the following result.

Theorem 35 (Operational Soundness for explicit spine reduon). 1. If M =} N, then[Mjja ~c TNa.
2. If M1 (i.e.all reduction paths in—s starting fromM are of infinite length), theAM ja 1.

PROOF The first is shown by induction using Theorem 32; the secofidvis from the observation that an infinite
reduction sequence ifs has infinitely many applications of rulg), and from Example 28, ead®)-reduction
step corresponds to at least amesynchronisation step.]

Since lazy reduction is included in spine reduction, thimiediately gives the following:

Corollary 36 (Operational Soundness for explicit lazy redation). 1. If M — N, thenlMja ~c Na.
2. If M T (with respect to—y,), then[Mjja T.

We can even show a similar result for spine reduction:

Theorem 37 (Operational Soundness for spine reduction). 1. If M —4 N, and M, N are pure terms, then

there exist®, x, Q such that’Ma ~c TP(x = Q)ja andP[Q/x] = N (or P(x = Q) —= N).
2. If M T (with respect to—s), thenTMa 1.
PrROOFE By Theorem 35, using Proposition 12.]

Of course we can state the same property for lazy reduction.

Note that this result is stronger than that for Milner’s eticg (Theorem 16). Milner’s encoding does not deal
with step-by-step reduction, whereas we treat each indaliceduction step ifr>s.

By looking at the proof of Theorem 32 we can immediately dedhat/- | - preserves=ys up to~, which states
that our encoding gives, in fact, a semantics for the expdigbstitution the\-calculus: Milner's encoding does not
deal with step-by-step reduction, and has its correctngeessed only through the applicative bisimulation, where
we correctly treat each individual reduction step.

Corollary 38 (Adequacy). If M = N, thenMjja ~c [N a.
This property also gives a proof for operational complessrierAxs:

Theorem 39 (Operational completeness foixs). If TM|ja —, P then there exist® € Ax such thatP ~. TN|a,
andM —& N.

PROOF By easy induction on the structure of terms. U
20

T(Ax.xx)(Ay.y)ja 4

(vexby) (Txx by [€(x, by) | c(b,d). (b := Ay.yy | d—a)) =z (0)
(vxby) (Txxyby | Mx := Ay.y) | by—>a) =4
(vxby) (Mxx by | (vo) (F(v). (vyb) (Tyy |3y, b)) | Tx == Ay.yj | br—a) L=
(vabr) ((ver) (x(z).z(w). c1(w) | e1(ba, d2). (sz 1= x| |dy—b1)) |

cr(w
(vo) (X(v). (vyb) (Tygb|o(y, b)) | Tx == Ay.yy |b1—>a) == (x,0)
(vaby) ((ver) ((vyb) (C1(y, b) [c1(b2, d2). (Tby == x| [da—b1) | Tyjb) |

Tx:=Ayyi[b1—~a)) —= (c1)
(vaby) ((vyb) (Ty == xf | b=b1 | Tyyb) | Tx := Ay.yy [b1+a) = £, =« (u/y)
(vxb) ((vyb) ((vo) (7(0). x(2). 2(w). 5(w)) | Ty := x [b=b1 | y(21).21(w).b(w)) |

(vor) ((o1). (vuby) (Tuyby |57 (u, b)) | Tx := Ay.yy [br—~a) =z, 2 (y)
(vxbyo) ((vb) (x(2).2(w). T(w) | (vy) (Ty := xy) [b=b1 | 0(2).b(2)) |

(vor) (X(v1). (vuby) (Tuyby | T1(u, by))) | T := Ayy) [br+a) —r, 2 (x,01,0)
(vxby) ((vbuby) (b{u, by) | (vy) (Ty := xy) |b=b1) | Tuyby | Tx := Ay.yy | by~ a) =2 (bb)

Dhuagal (v) (o) (Ty = 1) | Fx o= Ay.gy) e Dhuaga
Figure 4: Running (Ax.xx) (Ay.y) | a

We can even show that terminatingys reductions correspond to terminating, reductions:

Theorem 40 (Termination). If M — M’, andM’ is in normal form, thed Mja ~c TM’|a, and the latter process
cannot reduce.

PrROOF If M’ is in normal form with respect te+s, then it is of the shapax.zM;---M, (y:=L) with z & 7.
Then, by Theorem 35, we haV@/1a ~c M’ a. Notice that

A%.zMy-- My (y:=L)ja

(varbr) (- -+ (vxnbn) (TzMy- - -My (y 2= L) 1 bu [b1 (xn, b)) | -+ [(x1, b1))
(vx1by) (- - - (vanby) ((ven) - -+ ((vea) ((ver) (Tzjeq | e1(dy, er). (Tdy := My |e1—+c3)) |
Cz(dz,dz). (ﬂdz = Mzﬂ ‘Esz:;)) ‘ s ‘ Cn<dn,dn). (ﬂdn = Mnﬂ ‘Enwbn)) |
Ty :=Li)) byt (xn, b)) | -+ [a(x1,b1))
Now sincellv := N|| = ! (vw) (3{w). TNw), it is clear that, in this process, all possible synchrdiosa appear
underoutput so this process cannot reduce.]

6. Emulating Milner’s reduction result

As is clear from the formulation of Corollary 36, we have mitetkMilner's main result, as stated in Theorem 19,
but not in full: notice that Milner’s result maps a lazyreduction path to a reduction im, whereas Corollary 36 is
formulated (in part) using contextual equivalence. Thiduse to the structure of the proof of Theorem 32, where this
equivalence is used.

However, we can do one better, and show that we can emulatefilresult through reduction only, i.e. do not
need renaming to achieve this.

Example 41. We canrun thert-process Ax.xx) (Ay.y|a without using renaming, as shown in Figure 4. Notice that
there we perform the two substitutions without resortinghte renaming obutpus of encoded\-terms; these are
executed after the encodings have participated in the &recu

21

In the proof of Theorem 32, in only two places do we performrearaing (i.e. need the equivalence via Lemma
30). Notice that ifN reduces to an abstractidm.N’, then (without loss of generality)

(va) (a—»e|Nja) —% (va)(a—e]|(vzb) (IN'|b|a(z,b)))
= (vazb)(a—e|N'|b|a(z,b))
—x (vzb) (TN’yb|e(z, b))
so the renaming gets executed explicitly. When performimgxlicit lazy reduction on a closed terd, then either

M is an abstraction, so in normal form, or a redex of the shapeP)(Ay.Q). Now this latter term gets (without
renaming) interpreted by:

AP (AyQa A (ve) (veby) (TPyby [20x, b)) | (b, d). (T = Ay.Qf | d-+a)
—x (c) (vaby) (TPyby | by—a| b := Ay.Q))

Now assume® = xP; - - - Py, then this reduction continues as follows:

>

(vxby) (TxPy- - -Pjby [by—a | b := Ay.QJ)
(vxby) ((ver) (- ~(ven) (x(w).Cu(w) [en(b, d). (Tb:= Pyj |d>cy1)) | - |
Cl(b,d). (ﬂb = Py |dﬂ>b1)) ‘ b]wa‘ My .=)\yQﬂ)

(vxbr) ((ver) (- (ven) (x(2).z(w) .G (w) [en(b, d). (b := Pyy [d—cp1)) | -+ |

c1(b,d). (Mo := Puj |d=b1)) [b1—a] (vo) (X(v). (vyb2) (TQIb2 [B(y, b2))) | Tb := Ay.Q1) —r (x,0)
(vxby) ((ver) (- +(ven) (cu(b,d). (b= Prj [d=cp1)) | -+ |

c1(b,d). (To == Pyj [d=b1)) [br—~a | (vyb2) (TQyb2 [Ty, b2)) | T0:= Ay.Q)) =

(vaby) (T(Ay.Q)Pr- - -Puyby [br—=a | b := Ay.Qy)

without renaming. So, by the reasoning above, when sinmgdaizy explicit reduction, renamings can be postponed,

and the equivalence relation is not needed.
This immediately gives that, as in Corollary 19, we can naatest

Corollary 42. If M is closed, andl —, (Ay.N)(x:=L), thenMja —% TAy.Nja|!Tx := NJ.

which reproves Milner’s result, but now using the logicateding.
As an example where the renamingsrai disappear, consider

T(Ax.xx)(Ax.xx)|a A
¢) ((vxby) (Txx by [2(x, b1)) | (b, d). (Tb := (Ax.xx)| |d—a)) —n (c)

(v
(vxby) (Txx by | T == Ay.yyy | b1 a)
(vaby) ((ve) (x(2).z(w).€(w) [e(ba, d). (Tby := x) [d~D1)) |
(vo) (X(o)- (vyb) (Tyyyb|o(y, b)) | Tx := Ay.yyy [br~a) == (x,0,¢)
(vaby) ((vyb) (Ty := xy |b»bl [Tyyyb) | Tx = Ay.yy | br—~a) 2= (c)
(vaby) ((vyb) (x(2).z(w). F(w) | Ty := xy [b=by | Tyyyb) [Tx := Ay.yy [by—+a)
Notice that continuing this reduction will communicate the firsty in yy b, where

Tyyib £ (ve) (y(2).2(w).c(w) | c(b,d). (Tb == yj [d~D))

not the second, and ttastputhidden in that term vi& will never be performed, and neither will tleertputvia by or
a; see also Example 11 (2).

22

7. Context assignment

The t-calculus is equipped with a rich type theory [26]: from tesie type system for counting the arity of chan-
nels, via a systems that registers thput-outputuse of channel names that are transmitted in [22], to sapist
linear types in [17], which studies a relation between ®gHvalueAy and a lineart-calculus. Linearisation is used
to be able to achieve processes that are functions, by alipmitputover one channel name only, in &-Calculus)
natural deduction style. Moreover, the encoding present§hi7] is type dependent, in that, for each term, different
rT-processes are assigned, depending on the original tyipen#kes the encoding quite cumbersome.

The notion of context assignment for processes ime define in this section was first presented in [4] and differs
quite drastically from the standard type system presentgbi. It describes thanputoutputinterface of a process
by assigning a left context, containing the types for ittygut channels, and a right context, containing the types for
the outputchannels; this implies that, if a name is both used to sendareteive, it will appear on both sides, and
with the same type. In our system, types give a logical viethéor-calculus rather than an abstract specification on
how channels should behave, angut andoutputchannels essentially have the type of the data they arersgnodi
receiving.

Context assignment was defined in [4] to establish preservaf assignable types under the interpretation of the
sequent calculug’, as presented in [6], into the-calculus. Sincet’ offers a natural presentation of the classical
propositional calculus with implication, and enjoys ther@tHoward isomorphism for the implicative fragment of
Gentzen’s systemk [12], this implies that the notion of context assignment afiréd below isclassical(i.e. not
intuitionistic) in nature.

We now repeat the definition of (simple) type assignment; vet diefine types and contexts.

Definition 43 (Types and Contexts). 1. The set of types is defined by the grammar:
AB = ¢|A—B

whereg is a basic type of which there are infinitely many. The typessiatered in this paper are normally
known assimple(or Curry) types.

2. Aninputcontextl’ is a mapping from names to types, denoted as a finite sstatdments: A, such that the
subjectof the statementsi) are distinct. We writd’y, ', to mean thecompatible uniorof T'; andT, (if Ty
contains1:A; andI'; containsi:A;, thenA; = A,), and writel, n: A for T, {n:A}.

3. OutputcontextsA, and the notionaq, Ay, andn: A, A are defined in a similar way.

4. If n:A €T andn:B € A, thenA = B.

So, when writing a context d§ n: A, this implies thati:A € T, orT is not defined om.

Definition 44 ((Classical) Context Assignment).Context assignment for the-calculus with pairing is defined by
the following sequent system:

0 . P:TH A (. D P:T,b:Ab c:B,A beA .
: o air-oul ;4a,
©: orma Wigrna P 2b,0) P T, bA L aiAB, B, A L F Ve ED)
P:T,a:Aba:A AN P:T,b:Ab b:A A
(v): u (out) : = il (a#Db)
(va)P: T A a(b).P:T,b:A b a:Ab:A A
Pi:THA -+ P:THA P:T,y:Bb; x:A A
(D ! u - u (Iet): y u (y,z N x ¢T)
Py| - |Pr:Th A let(x,y)=zinP:T,zzA—B kA
P:ThH A P:T,x:Ab; x:AA
(W): ——"— (I"'2T,A' 2 4) (in) : z
P:T' A a(x).P:T,a:Ab A

As usual, we writeP : T I A if there exists a derivation using these rules that has #isssion in the conclusion,
and writeD :: P : T b A if we want to name that derivation.

23

The side-condition on ruléou) is there to block the derivation @fa) : H; a:A.
Notice that the above system is not trivial, since the preces

(veb) (x(w).c(w) | c(v,d). ("b—v|d—a) | x(w).b{w;))
is not typeable: the left-handwould need the typel— B, and the right-hand the typeA.

Example 45. Although we have no rulépair-in), it is admissible, since we can derive

P:T,y:Blg x:A A
let(x,y)=zinP :T,z2A—=B k5 A
a(z).let{x,y)=zinP:T,a:A—=B bk A

(let)
(in)

so the following rule is derivable:

P:T,y:Bh x:A A
a(x,y).P:T,a:A—=Bk A

(pair-in)

This notion of type assignment does not (directly) relatektta the logical calculusk. For example, ruleg|)
and(!) do not change the contexts, so do not correspond to any rule,inot even to a y-style [20] activation step;
moreover, rulgv) just removes a formula.

The weakening rule allows us to be a little less precise wherganstruct derivations, and allow for rules to join
contexts, by using, for example, the rule

PZF1FHA1 Qirzb-[Az
P[Q:Ty,To b Ay, Ay

()

so switching, without any scruples, to multiplicative stylvhenever convenient. We will also write

a(x,y) : x:A b a:A—B,y:B
instead of

0:x:Alzy:B
a(x,y).0: x:A b a:A—B,y:B

We have a soundness (witness reduction) result for ourmofitype assignment for as shown in [4].
Theorem 46 (Witness reduction [4]).If P: T 5 AandP —,; Q,thenQ : T 5 A.

We will now show that our interpretation preserves typesgasble toA-terms using Curry’s system, which is
defined as follows:

Definition 47 (Curry type assignment for the A-calculus). Curry type assignment is defined through the following
inference rules:

Ix:AFy M:B 'y M:A—-B THFyN:A
—_— (—E):
'y Ax.M: A—B ', MN:B

(AX): T Al x:A (=1):
Type preservation vid- || - is expressed by:

Theorem 48.If T -y M: A, thenlMja :T b5 a:A.

PrROOF By induction on the structure of derivationst; notice that we use implicit weakening.
24

(Ax) : ThenM = x, andl’ = I, x:A. Notice thatr(z).z(w).a(w) = lx|a, and that®

(out)
(in)
(in)

a(w) : T, wA b a:A,w:A
z(w).a(w) : T/, z:A b5 a:A
x(z).z(w). @{w) : T/, x:A b a:A

(—1): ThenM = Ax.N, A = C—D, andl', x:C) N:D. Then, by inductionD :: [N b : T, x:C b5 b:D exists,
and we can construct:

\ P / = (pair-out)
TNIb: T, x:C 5 b:D a{x,b) : x:C b a:C—D, b:D

TNyb|a(x,b) : T,x:C b a:C—D,b:D
(vb)(TNb|a(x,b)) : T,x:C by a:C—D
(vxb) (TN b|a(x,b)) : T b a:C—D
Notice that(vxb) (TN b |a(x,b)) = TAx.N|a.

v

v

(—E): ThenM = PQ, and there exist® such thafl' -, P: B—A andT -, Q:B. By induction, there exist
derivationsD; :: [Pjjc: T b c:B—A andD, :: [Qw : T 5 w:B, and we can construct:

MQlw : T bk w:B
= (out)
b{w).TQw : T b b:B, w:B
(vw) (b{w). TQyw) : T b5 b:B) a(w) : w:A b a:A,w:A (?Ut)
! (vo) (b(w) Q@) T 1 0B doadAmaa
| D / (vw) (b(w). TQw) |d—~a:T,d:A b a:A,b:B (pa(zl'i—in)
[Plc:T b c:B—A c(b,d). (! (vw) (b{w). TQw) |d—+a) : T,c:B—A b a:A
TPyc|c(b,d). (! (vw) (b{w). Q) w)) |d—+a) : T,c:B—A b c:B—A,a:A
(ve) (TPyce(b,d). (To = Q| |d—+a)) : T b a:A !
and(ve) (TPyc|c(b,d). (Mo := Q) |d—a)) = TPQya. a

Notice that although, in the above proof, we are only intexeéén showing results witbnetyped output(con-
clusion) — after all, we are interpreting the typed thealculus, an intuitionistic system — we need the classical
multi-conclusion character of our type assignment systamxfto achieve this result.

151t might be tempting to see the type assignment system initive of the traditional systems, where types contain chaimietmation, and,
for example, use the rules

P:T,b:A b b:A A P:T,x:Ab x:AA

(out) : () P T, bA b ai[ALbA D (a#b) (in) : a(x).P:T,a:[A] b A

This approach will certainly not work fo[Hj -: notice that then we would derive

a(w) : T/, w:A b quA(OUt)
z(w).a{w) : T/, z:A uA()
x(z).z(w).a{w) : T/, x:[A] b a:A

destroylng the preservation of assignable types; in thi ttase of the proof, we would now derive the judgemigitw) (b(w). WQJ w):T
b:[B], disrupting that derivation as well.

(in)

25

A natural question to ask is if also the processes createdilmeNt encoding are typeable . To investigate
this question, essentially following Definition 13, we fidgfine aninput-based encoding of-terms - a variant of
Milner’s encoding - into the synchronomscalculus with pairing by:

[x[Pa 2 =x{a) x#a

[Ax.MJPa 2 a(x,b).[MJFb b fresh
[MNJPa 2 (vo) ([MJPc|(vz) (c(z,a).[z := N]J?)) ¢, zfresh
[(x:=N)]P £ !x(w).[N]Pw ¢,z fresh

(Notice the similarity with the uniform encodirjg]]V- from Definition 21.) Remark that now the use of synchronous
synchronisation, as evident in the third case, does notgamthe expressiveness of the interpretation, since altistna

is still interpreted usingnput Notice that this interpretation is well behaved: usjnff -, the interpretation of #-
redex reduces as follows:

[(Ax.M)NTPa & (vc) (c(x,b). [MIPb| (vz) (c{z,a).[z:= N]?)) —r (c)
(vz) ([M[z/x][Pa [z := N]?) = (z¢[MJa)
(vx) ([M]Pa|[x := NT?)

exactly as expected.

Notice that, in this encoding, all the-calculusinput variables are interpreted asitputchannels, and thatis the
only input variable for each encodedterm; so we could hope to shdWf T'-, M: A, then[MJPa:a:A b T .
However, this is not possible; although it nicely holds foe first two cases of the proof, we cannot show it for the
third case:

M = PQ: ThenT F, P:B—A andI' -, Q: B; then, by induction, we have derivations fpP[°c: c:B—A b T
and[QJfw : w:B b T, and we would like to construct:

\ |

[QFw:a:A,w:Bk T
z(w). [Qfw: z:B,a:A b T (I?)
\ / 'z(w). [Qfw: z:B,a:Al T o
[PTPb: b:A b x:B,T ¢(z,a).'z(w).[QFz: z:B,a:A b c:A—B, T
c(x,b).[PFb:c:B—A T (vz)(¢{a,z).'z(w).[QFz) : a:A br :A—B,T
c(x,b).[PTb] (vz) (¢{z,a).!z(w).[Q z) : :B—A,a:A b ¢:B—A,T
[(Ax.P)Qfa:a:At T (

(pair-in) v

(1)

14

Notice that now rulg pair-ouy cannot be applied in positiof??), since it requires that the right-hand term in
the pair is aroutput so nowa has to appear on the right of the turnstyle, which destrogptiperty we tried
to prove.

Type assignment fails for the uniform encoding for the sagason.

Conclusions and Future Work

We have found a new, simple and intuitive encodind.derms inst that respects our definition of explicit spine
reduction, is similar with normal reduction, and encompadslilner’s lazy reduction on closed terms. We have
shown that, for our context assignment system that usegpeecbnstructor for 7t and is based on classical logic,
assignable types for-terms are preserved by our interpretation as typeabeocesses. We managed this without
having to linearise the calculus as done in [17].

As we remarked in this paper, the guard we have placed on tbedery of the substitution is only there to
guarantee the termination result; it plays no role in anyefdther results we show. Even without that guard in place,

26

we can show the operational soundness result; this implesezentual non-termination as a result of the unguarded
replication is not observable. We aim to extend our resuwltart encoding that can represéull step-by-steggs-
reduction; we would have to drop the guard on replicatiorctuieve that, but this in itself would not create problems
with respect to the definition of semantics.

The classical sequent calculdshas two natural, dual notions of sub-reduction, called-6giName and Call-
by-Value; we will investigate if the interpretation of tleesystems in to the-calculus gives natural notions BN
of cBV reduction onvr-processes, and if this enablesN or cBv logical encodings of thé-calculus.

Acknowledgements

We would like to thank Fer-Jan de Vries, Jan Willem Klop, \@ntvan Oostrom, Claudio Sacerdoti Coen and
Davide Sangiorgi for useful discussions, comments andestgms.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic pobls: The spi calculus. IRroceedings of the Fourth ACM Conference on
Computer and Communications Securfipges 36—-47. ACM Press, 1997.

[2] S. Abramsky. The lazy lambda calculus.Research topics in functional programmjmages 65-116. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.

[3] S. Abramsky. Proofs as process@#eoretical Computer Sciencé35(1):5-9, 1994.

[4] S.van Bakel, L. Cardelli, and M.G. Vigliotti. FromX” to 7r; Representing the Classical Sequent Calculus inttelculus. InElectronic
Proceedings of International Workshop on Classical Logid £&omputation 2008CL&C’08), Reykjavik, Iceland2008.

[5] S.van Bakel, S. Lengrand, and P. Lescanne. The langdagearcuits, computations and Classical Logic. In M. Coppterta Lodi, and
G. Michele Pinna, editors?roceedings of Ninth Itall. Conference on Theoretical Catap SciencgICTCS’05), Siena, Italy volume 3701
of Lecture Notes in Computer Sciengages 81-96. Springer Verlag, 2005.

[6] S.van Bakel and P. Lescanne. Computation with ClasSlegluentsMathematical Structures in Computer Scient®:555-609, 2008.

[7] S. van Bakel and M.G. Vigliotti. A logical interpretatioof the A-calculus into ther-calculus, preserving spine reduction and types. In
M. Bravetti and G. Zavattaro, editorBroceedings of 20th International Conference on Concuyefheory(CONCUR’09) Bologna, Italy,
volume 5710 ot ecture Notes in Computer Scienpages 84 — 98. Springer Verlag, 2009.

[8] H.Barendregt.The Lambda Calculus: its Syntax and Semantisrth-Holland, Amsterdam, revised edition, 1984.

[9] H.P. Barendregt, R. Kennaway, J.W. Klop, and M.R. Slelpeded Reduction and Spine Strategies for the Lambda @Qaldunformation
and Computation75(3):191-231, 1987.

[10] G. Bellin and P.J. Scott. On the pi-Calculus and Lineagic. Theoretical Computer Scienc&35(1):11-65, 1994.

[11] R.Bloo and K.H. Rose. Preservation of Strong Normélisein Named Lambda Calculi with Explicit Substitution a@@rbage Collection.
In CSN’95 — Computer Science in the Netherlamiges 62—-72, 1995.

[12] G. Gentzen. Investigations into logical deductionThe Collected Papers of Gerhard GentzEd M. E. Szabo, North Holland, 68ff (1969),
1935.

[13] G. Gentzen. Untersuchungen uiber das Logische SekleMathematische Zeitschrif89:176—210 and 405-431, 1935.

[14] J. Goubault-Larrecqg. A Few Remarks on SKInT. ReseargpoR RR-3475, INRIA Rocquencourt, France, 1998.

[15] K.Honda and M. Tokoro. An object calculus for asynctoos communication. |Rroceedings of ECOOP’9¥0lume 512 ol ecture Notes
in Computer Scien¢gpages 133-147. Springer Verlag, 1991.

[16] K. Honda and N. Yoshida. On the reduction-based prosesgntics Theoretical Computer Scienc&51:437-486, 1995.

[17] K.Honda, N. Yoshida, and M. Berger. Control in theCalculus. InProceedings of Fourth ACM-SIGPLAN Continuation Workst@y/'04),
2004.

[18] J-L. Krivine. A call-by-name lambda-calculus machimtigher Order and Symbolic Computatio0:199-207, 2007.

[19] R. Milner. Functions as processedathematical Structures in Computer Scien2€?):269-310, 1992.

[20] M. Parigot. An algorithmic interpretation of classiaaatural deduction. IrProceedings of 3rd International Conference on Logic for
Programming, Atrtificial Intelligence, and Reasoning (LP38, volume 624 oLecture Notes in Computer Scienpages 190-201. Springer
Verlag, 1992.

[21] J. Parrow and B. Victor. The Fusion Calculus: Expressass and Symmetry in Mobile ProcessesPioceedings of of 13th Annual IEEE
Symposium on Principles on Logic in Computer Sciepeges 428-440, 1998.

[22] B.C. Pierce and D. Sangiorgi. Typing and Subtyping fasb¥le ProcessesMathematical Structures in Computer Scien6¢5):409-453,
1996.

[23] D. Sangiorgi.Expressing Mobility in Process Algebra: First Order and Heg Order ParadigmsPhD thesis, Edinburgh University, 1992.

[24] D. Sangiorgi. An Investigation into Functions as Pss®s. IrProceedings of Mathematical Foundations of Programming&ics, 9th
International Conference, New Orleans, LA, UPAges 143-159, 1993.

[25] D. Sangiorgi. Lazy functions and mobile processes.d®éapde Recherche 2515, INRIA, Sophia-Antipolis, Fran@95L

[26] D. Sangiorgi and D. WalkeiThe Pi-Calculus Cambridge University Press, 2001.

[27] P. Sestoft. Standard ML on the Web server. Departmehtathematics and Physics, Royal Veterinary and AgricultUraversity, Denmark,
1996.

[28] H. Thielecke. Categorical Structure of Continuation Passing StylehD thesis, University of Edinburgh, 1997. LFCS techniegdort
ECS-LFCS-97-376.

27

[29] C. Urban.Classical Logic and ComputatioPhD thesis, University of Cambridge, October 2000.

[30] C. Urban and G.M. Bierman. Strong normalisation of elitrination in classical logicFundamenta Informaticael5(1,2):123-155, 2001.

[31] F.-J. de Vries. Bdhm trees, bisimulations and obg@ma in lambda calculus. In T. Ida, A. Ohori, and M. Takejaditors,Second Fuji
International Workshop on Functional and Logic Programgnivorkshop, World Scientific, Singapppages 230-245, 1997.

28

