
An output-based semantics of Λµ

with explicit substitution in the π-calculus

Extended Abstract
(Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387)

Steffen van Bakel and Maria Grazia Vigliotti

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
s.vanbakel@imperial.ac.uk, maria.vigliotti@imperial.ac.uk

Abstract

We study the Λµ-calculus, extended with explicit substitution, and define a compositional
output-based translation into a variant of the π-calculus with pairing. We show that this trans-
lation preserves single-step explicit head reduction with respect to contextual equivalence. We
use this result to show operational soundness for head reduction, adequacy, and operational
completeness. Using a notion of implicative type-context assignment for the π-calculus, we
also show that assignable types are preserved by the translation. We finish by showing that
termination is preserved.

Introduction

Over the last two decades, the π-calculus [24] and its dialects have proven to give an inter-
esting and expressive model of computation. Encodings of variants of the pure λ-calculus
[14, 11] started with [24], which quickly led to more thorough investigations in [29, 31, 10]
and also in the direction of object oriented calculi [21, 31].

For these encodings, over the years strong properties have been shown like soundness,
completeness, termination, and full abstraction. The strength of these results has encouraged
the investigation of encodings into the π-calculus of calculi that have their foundation in
classical logic, as done in, for example, [22, 8, 15]. From these papers it might seem that the
encoding of such calculi comes at a great price; for example, to encode typed λµ [25], [22]
needs to consider a version of the π-calculus that is not only strongly typed, but, moreover,
allows reduction under guard and under replication; [8] shows preservation of reduction in X
[9] only with respect to �c, the contextual ordering; [15] defines a non-compositional encoding
of λµµ̃ [17] that strongly depends on recursion, and does not regard the logical aspect at all.

In this paper, we will show that it is possible to define a intuitive, natural, logical encoding
of λµ into the pure π-calculus that satisfies all the good properties. Although one could
justifiably argue that calculi like X and λµµ̃ are more expressive and, through their direct link
to Gentzen’s lk [18], more elegantly deal with negation and classical logic, they are also both
symmetric in nature, which makes an accurate treatment in the π-calculus more intricate, as
can be observed in [8, 15]. Moreover, as argued in [6, 5, 7], only for λµ is it possible to define
a filter semantics, which seems to strengthen the case for that calculus even more.

Reduction in λµ is confluent and non-symmetric; in fact, the main reduction rule (and the
only cause for non-termination, for example) is the β-reduction rule of the λ-calculus. In
addition to that rule, λµ has structural rules, where elimination takes place for a type that
is not the type of the term itself, but rather for one that appears in one of the alternative
conclusions of the shape α:A, where the Greek variable is the name given to a sub-term. For

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 2

the naming feature, λµ adds [α]M to the syntax which expresses that α serves as a pointer
to the term M, and pairs this with a notion of µ-abstraction µα.M, which is used to redirect
operands (terms) to those called α. It is this naming feature, together with the structural rules,
that make λµ difficult to reason over; this is reflected in [20] and [9], where the encoding of
λµ into λµµ̃ and X , respectively, does not respect normal reduction. In contrast, through our
translation we will show that it is possible to give a process semantics for λµ that very clearly
shows that the context switch µα.[β]M is, essentially, just a variant of application.

For the construction of our translation, we will start with that defined in [10], that interprets
terms under output rather than under input, by giving a name to the anonymous output of λ-
terms; we will combine this with the inherent naming mechanism of λµ. To accurately define
the notion of reduction that is modelled by our translation, we will define untyped Λµx, a
version with explicit substitution [1, 12] of the Λµ-calculus [19], itself a variant of λµ, together
with a notion of explicit head reduction1, where reduction is also allowed under abstraction. We
will define a new compositional semantic translation of Λµx into the π-calculus, and show
that it fully respects each individual explicit head reduction step.

Perhaps surprisingly, we do not need to extend the kind of process calculus at all to acco-
modate our translation, but can build that directly on the standard π-calculus; in particular,
the naming and µ-binding features of λµ are dealt with by the naming feature of the trans-
lation, and renaming, respectively. The only noteworthy change is that, when representing
application MN, the communication needs to be replicated; the translation of application and
structural substitution is almost identical.

The advantage of considering explicit substitution rather than the standard implicit sub-
stitution as considered in [31] has been strongly argued in [10]. That paper showed that
communication in the π-calculus has a fine semantic level of granularity that ‘faithfully mim-
ics’ explicit substitution, and not the implicit one; we stress this point again with the results
presented in this paper.

1 The Λµ calculus

The λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduction,
defined as an extension of the Curry type assignment system for the λ-calculus; we focus
on de Groote’s Λµ, a variant that splits the naming from the µ-binding. We will define in
particular Λµx, a variant of Λµ with explicit substitution à la λx [12], and show our results for
Λµx; since Λµx implements Λµ-reduction, this implies that we also show some of our results
for normal reduction (with implicit substitution).

Definition 1.1 (Syntax of Λµ) The Λµ-terms we consider are defined over the set of term vari-
ables represented by Roman characters, and names, or context variables, represented by Greek
characters, through the grammar:

M, N ::= x | λx.M | MN | µα.M | [β]M
variable abstraction application context abstraction naming

The notion of free and bound names is defined as can be expected, taking both λ and µ as
binders, and we assume Barendregt’s convention.

Simple type assignment for Λµ is defined as follows:

1 Called spine reduction in [10], and head spine-reduction in [32]; we prefer to use the terminology head reduction
from [33].

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 3

Definition 1.2 (Types, Contexts, and Typing) i) Types are defined by:

A, B ::= ϕ | ⊥ | A→B (A �= ⊥)

where ϕ is a basic type of which there are infinitely many.
ii) A context of inputs Γ is a mapping from term variables to types, denoted as a finite set

of statements x:A, such that the subjects of the statements (x) are distinct. We write Γ1, Γ2
for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2), and write
Γ, x:A for Γ,{x:A}.

iii) Contexts of outputs ∆, and the notions ∆1,∆2 and α:A,∆ are defined similarly.
iv) Type assignment for Λµ is defined by the following natural deduction system.

(Ax) : Γ, x:A �Λµ x : A | ∆ (µ) :
Γ �Λµ M :⊥ | α:A,∆

Γ �Λµ µα.M : A | ∆
(⊥) :

Γ �Λµ M : A | β:A,∆

Γ �Λµ [β]M :⊥ | β:A,∆

(→I) :
Γ, x:A �Λµ M : B | ∆

Γ �Λµ λx.M : A→B | ∆
(→E) :

Γ �Λµ M : A→B | ∆ Γ �Λµ N : A | ∆

Γ �Λµ MN : B | ∆

In Λµ, reduction of terms is expressed via implicit substitution; as usual, M[N/x] stands for
the substitution of all occurrences of x in M by N, and M[N·γ/α], the structural substitution,
stands for the term obtained from M in which every sub-term of the form [α]M′ is replaced
by [γ](M′N).

We have the following rules of computation in λµ:

Definition 1.3 (Λµ reduction) Λµ has two computational rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.M)N → µγ.M[N·γ/α] γ fresh

as well as the simplification rules:

renaming : µα.[β]µγ.M → µα.M[β/γ]
erasing : µα.[α]M → M if α does not occur in M.

(which are added mainly to simplify the presentation of results), and the contextual rules. We
use →βµ for this reduction, and →∗

βµ for its reflexive and transitive closure.

[26] has shown that typeable terms are strongly normalisable. It also defines extensional
rules, that we do not consider here: the model we present through our translation is not
extensional, and we can therefore not show that those rules are preserved by the translation.
That this notion of reduction is confluent was shown in [28].

2 The synchronous π-calculus with pairing

The notion of π-calculus that we consider in this paper is similar to the one used also in [2],
and is different from other systems studied in the literature [21] in that it adds pairing, and
uses a let-construct to deal with inputs of pairs of names that get distributed.

As already argued in [10], the main reason for the addition of pairing [2] lies in preservation
of (implicate, or functional) type assignment; therefore data is introduced as a structure over
names, such that not only names but also pairs of names can be sent.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 4

Definition 2.1 (Processes) Channel names and data are defined by:

a,b, c,d, x,y,z names p ::= a | 〈a,b〉 data

Notice that pairing is not recursive. Processes are defined by:

P ,Q ::= 0 | P |Q | !P | (νa)P | a(x).P | a p.P | let 〈x,y〉= p in P

A context C[·] is a process with a hole []; we call a(x) and a p guards, and call P in a(x).P
and a p.P a process under guard.

We abbreviate a(x).let 〈y,z〉=x in P by a(y,z).P , as well as (νm) (νn)P by (νmn)P , and write
a p for a p.0 , and a〈c,d〉.P for a 〈c,d〉.P . Notice that let 〈x,y〉= a in P (where a is not a variable)
is stuck.

Definition 2.2 (Congruence) The structural congruence is the smallest equivalence relation
closed under contexts defined by the following rules:

P | 0 ≡ P
P | Q ≡ Q | P

!P ≡ P | !P
!P ≡ !P | !P

(P | Q) | R ≡ P | (Q | R)
(νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P
(νn) (P | Q) ≡ P | (νn)Q if n �∈ fn(P)

let 〈x,y〉= 〈a,b〉 in P ≡ P [a/x,b/y]

As usual, we will consider processes modulo congruence and modulo α-convergence: this
implies that we will not deal explicitly with the process let 〈x,y〉= 〈a,b〉 in P , but rather with
P [a/x,b/y]. We write a b for the forwarder [31] a(x).b x.

Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 2.3 (Reduction) The reduction relation over the processes of the π-calculus is de-
fined by the following (elementary) rules:

a p.P | a(x).Q →π P | Q [p/x]
P →π P ′ ⇒ (νn)P →π (νn)P ′
P →π P ′ ⇒ P | Q →π P ′ | Q

P ≡ Q & Q →π Q ′ & Q ′ ≡ P ′ ⇒ P →π P ′

As usual, we write →+
π for the transitive closure of →π, and →∗

π for its reflexive and transitive
closure; we write →π (a) if we want to point out that a synchronisation took place over channel
a, and write →π (=α) if we want to point out that α-conversion has taken place during the
synchronisation.

Notice that a〈b,c〉 | a(x,y).Q →π Q [b/x, c/y] .

Definition 2.4 i) We write P ↓n and say that P outputs on n (or P exhibits an output barb
on n) if P ≡ (νb1) . . . bm(n p | Q) for some Q , where n �= b1 . . . bm.

ii) We write P ⇓n (P may output on n) if there exists Q such that P →∗
π Q and Q ↓n.

iii) We write P ∼c Q (P and Q are contextually equivalent) if, for all C[·], and for all n, C[P]⇓n
if and only if C[Q]⇓n.

iv) We write ∼g (called garbage collection) when we ignore a process because it is contextually
equivalent to 0 ; notice that ∼g ⊂ ∼c.

The following is a well-known result.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 5

Proposition 2.5 Let P ,Q not contain a, then

(νa) (a b.P | a(x).Q) ∼c P | Q [b/x]
(νa) (! a b.P | a(x).Q) ∼c,∼g Q [b/x]

The π-calculus is equipped with a rich type theory [31], from the basic type system for
counting the arity of channels [27] to sophisticated linear types in [22]. The notion of type
assignment we use here is the one first defined in [8] and differs from systems presented in
the past in that types do not contain channel information, and in that it expresses implication,
i.e. has functional types and describes the ‘input-output interface’ of a process.

Definition 2.6 (Context assignment for π [8]) Functional type assignment for the π-calculus
is defined by the following sequent system:

(0) : 0 : Γ �πio ∆
(!) :

P : Γ �πio ∆

! P : Γ �πio ∆

(ν) :
P : Γ, a:A �πio a:A,∆

(νa)P : Γ �πio ∆

(|) :
P : Γ �πio ∆ Q : Γ �πio ∆

P | Q : Γ �πio ∆

(Wk) :
P : Γ �πio ∆

(Γ′ ⊇ Γ,∆′ ⊇ ∆)
P : Γ′ �πio ∆′

(in) :
P : Γ, x:A �πio x:A,∆

a(x).P : Γ, a:A �πio ∆

(out) :
P : Γ,b:A �πio b:A,∆

(a �= b)
a b.P : Γ,b:A �πio a:A,b:A,∆

(〈〉-out) :
P : Γ,b:A �πio c:B,∆

(b �∈ ∆; a, c �∈ Γ)
a〈b,c〉.P : Γ,b:A �πio a:A→B, c:B,∆

(let) :
P : Γ,y:B �πio x:A,∆

(y,z �∈ ∆; x �∈ Γ)
let 〈x,y〉=z in P : Γ,z:A→B �πio ∆

We adjust the system for the type constant ⊥ by allowing that only in right-hand contexts.
We write P : Γ �π

io
∆ if there exists a derivation using these rules that has this expression in the

conclusion.

We should perhaps stress that it is not known if this system has a relation with logic.
The following rule is derivable:

(〈〉-in) :
P : Γ,y:B �πio x:A,∆

(y, a �∈ ∆, x �∈ Γ)
a(x,y).P : Γ, a:A→B �πio ∆

The soundness result is stated as:

Theorem 2.7 (Witness reduction [8]) If P : Γ �π
io

∆ and P Q , then Q : Γ �π
io

∆.

3 Context and background of this paper

In the past, there have been several investigations of encoding from the λ-calculus [11] into
the π-calculus [24, 29]. Research in this direction started by Milner’s encoding · m · of λ-terms
[24]; Milner’s encoding is input based and the translation of closed λ-terms respects large-step
lazy reduction →l [3] to normal form up to substitution. Standard operational soundness
result hold for this translation, and full abstraction has been shown by in [29] for an (input-
based, as Milner’s) encoding H · 〈·〉, of the lazy λ-calculus into the higher-order π-calculus
(where in synchronisation not names are sent, but processes).

In [10], we presented a logical, output-based translation · s · that interprets abstraction λx.M
not using input, but via an asynchronous output which leaves the translation of the body M

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 6

free to reduce. That translation is defined as:

x s a =
∆ x(w).a w

λx.M s a =
∆ (νxb)(M h b | a〈x,b〉)

MN s a =
∆ (νc) (M h c | c(v,d).(! N h v | d a))

M〈x :=N〉 s a =
∆ (νx) (M h a | ! N h x)

For this translation, [10] showed (using ↑ to denote non-termination)

i) M↑ ⇒ M s a↑, and M →xh N ⇒ M s a →∗
π∼c N h a.

ii) Γ � M : A ⇒ M s a : Γ �π
io a:A.

As argued in [10], to show the above result, which formulates a direct step-by-step relation
between β-reduction and the synchronisation in the π-calculus, it is necessary to make the
substitution explicit. This is a direct result of the fact that, in the π-calculus, λ’s implicit sub-
stitution gets ‘implemented’ one variable at the time, rather than all in one fell swoop. Since we
aim to show a similar result for Λµ, we will therefore define a notion of explicit substitution.
Although termination is not studied in that paper, it is easily achieved through restricting the
notion of reduction in the π-calculus by not allowing reduction to take place inside processes
whose output cannot be received, or by placing a guard on the replication as we do in this
paper.

A natural extension of this line of research is to see if the π-calculus can be used to interpret
more complex calculi as well, as for example calculi that relate not to intuitionistic logic, but
to classical logic, as λµ, λµµ̃, or X . There are, to date, a number of papers on this topic. In
[22] an interpretation of Call-by-Value λµ is defined that is based on Milner’s. The authors
consider typed processes only, and use a much more liberal notion of reduction on processes
by allowing reduction under guards, making the resulting calculus very different from the
original π-calculus. Types for processes prescribe usage of names

In [8] an interpretation into π of the sequent calculus X is defined that enjoys the Curry-
Howard isomorphism for Gentzen’s lk [18], which is shown to respect reduction. However,
this result is only partial, as it is formulated as “if P →X Q, then P c� Q ”, allowing P to
have more observable behaviour than Q . Although in [8] it is reasoned that this is natural in
the context of non-confluent, symmetric sequent calculi, and is shown that the interpretation
preserves types, it is a weaker result than could perhaps be expected.

An encoding of λµµ̃ is studied in [15]; the interpretation defined there strongly depends
on recursion, is not compositional, and preserves only outermost reduction; no relation with
types is shown.

4 Λµ with explicit substitution

One of the main achievements of [10] is that it establishes a strong link between reduction in
the π-calculus and step-by-step explicit substitution for the λ-calculus, by formulating a result
not only with respect to explicit head reduction and the spine encoding defined there, but
also for Milner’s encoding with respect to explicit lazy reduction.

In view of this, we decided to study a variant of Λµ with explicit substitution as well, and
present here Λµx. Explicit substitution treats substitution as a first-class operator, both for the
logical and the structural substitution, and describes all the necessary steps to effectuate both.

Definition 4.1 (Λµx) i) The syntax of the explicit Λµ calculus, Λµx, is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉 | µα.M | [β]M | M 〈α :=N·γ〉

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 7

We call a term pure if it does not contain explicit substitution.
ii) The reduction relation →x on terms in Λµx is defined as the compatible closure of the

rules (we only show the important ones):
a) Main reduction rules:

(λx.M)N → M 〈x :=N〉 N pure
(µα.M)N → µγ.M 〈α :=N·γ〉 N pure
µβ.[β]M → M if β �∈ fn(M)

µβ.[δ]µγ.M → µβ.M[δ/γ]

b) Term substitution rules, like
x 〈x :=N〉 → N

M 〈x :=N〉 → M x �∈ fv (M)

c) Structural rules, like
([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N
([β]M) 〈α :=N·γ〉 → [β](M 〈α :=N·γ〉) α �= β

M 〈α :=N·γ〉 → M α �∈ fn(M)

d) Contextual rules, like

M → N ⇒




ML → NL
LM → LN
M 〈x := L〉 → N 〈x := L〉
L 〈α :=M·γ〉 → L 〈α :=N·γ〉

iii) We define →:= as the notion of reduction where the main reduction rules are not used,
and =x as the smallest equivalence relation generated by →x.

Notice that this is a system different from that of [4], where a version with explicit substitution
is defined for a variant of λµ that uses de Bruijn indices [13].

Explicit substitution describes explicitly the process of executing a βµ-reduction, i.e. ex-
presses syntactically the details of the computation as a succession of atomic steps (like in a
first-order rewriting system), where the implicit substitution of each βµ-reduction step is split
up into reduction steps. Thereby the following is straightforward:

Proposition 4.2 (Λµx implements Λµ-reduction) i) M →βµ N ⇒ M →∗
x N.

ii) M ∈ Λµ & M →x N ⇒ ∃L ∈ Λµ [N →∗
:= L].

The notion of type assignment on Λµx is a natural extension of the system for the Λµ-
calculus of Def. 1.2 by adding rules (T-cut) and (C-cut).

Definition 4.3 Using the notion of type assignment in Def. 1.2, type assignment for Λµx is
defined by adding:

(T-cut) :
Γ, x:A �Λµ M : B | ∆ Γ �Λµ N : A | ∆

Γ �Λµ M 〈x :=N〉 : B | ∆

(C-cut) :
Γ �Λµ M : C | α:A→B,∆ Γ �Λµ N : A | ∆

Γ �Λµ M 〈α :=N·γ〉 : C | γ:B,∆

We write Γ �µx M : A for judgements derivable in this system.

We also consider the notion of head reduction;

Definition 4.4 i) We define head reduction →h as a restriction of →βµ by removing the

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 8

contextual rule M → N ⇒ LM → LN .
ii) The Λµ and Λµx head-normal forms are defined through the grammar:

H ::= xM1 · · · Mn (n ≥ 0) | λx.H | [α]H
| µα.H (H �= [α]H ′ & α �∈ H ′,H �= [β]γ.H ′)

iii) The head variable of M, hv (M), and head name hn (M) are defined as expected.

The following is straightforward:

Proposition 4.5 (→h implements Λµ’s head reduction) If M →∗
βµ N with N in head-normal

form, then there exists L in →h-normal form such that M →∗
h L, and L →∗

βµ N, and none of these
last steps are reductions in →h.

Notice that λ f .(λx. f (xx))(λx. f (xx)) →h λ f . f ((λx. f (xx))(λx. f (xx))) and this last term
is in head-normal form, and in →h-normal form.

In the context of head reduction, we can economise further on how substitution is executed,
and perform only those replacements of variables by terms that are essential for the contin-
uation of reduction. We will therefore limit substitution to allow it to only replace the head
variable or name of a term. We will show that this is exactly the kind of reduction that the
π-calculus naturally encodes.

Definition 4.6 (Explicit head reduction cf. [10]) We define explicit head reduction →xh on
Λµx as →x, but for:

i) To avoid looping unnecessarily, application of all term substitution (resp. structural) rules
on M 〈x :=N〉 (resp. M 〈α :=N·γ〉) is only allowed if hv (M) = x (resp. hn (M) = α); the
only exception are the garbage collection rules, i.e. when x �∈ fv (M) (α �∈ fn(M)).

ii) We change two cases:
(PQ) 〈x :=N〉 → (P 〈x :=N〉 Q) 〈x :=N〉 (x = hv (P))
(PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉 Q) 〈α :=N·γ〉 (α = hn (P))

iii) We add two substitution rules:
M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N〉 〈y := L〉 (y = hv (M))

M 〈α :=N·γ〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈α :=N·γ〉 〈β := L·δ〉 (α = hn (P))
iv) We remove the contextual rules:

M → N ⇒



LM → LN
L 〈x :=M〉 → L 〈x :=N〉
L 〈α :=M·γ〉 → L 〈α :=N·γ〉

Notice that, for example, in case (ii), the first of the two clauses postpones the substitution
〈x :=N〉 on Q until such time that an occurrence of the variable x in Q becomes the head-
variable. It is straightforward to show that this notion of reduction is confluent; remember
that in M 〈x :=N〉 and M 〈α :=N·γ〉, N is a pure term.

The following proposition states the relation between explicit head reduction, head reduc-
tion, and explicit reduction.

Proposition 4.7 i) If M →∗
h N, then there exists L such that M →∗

xh L and N →∗
:= L.

ii) If M →∗
h N and N is in →h-normal form, then there exists L such that M →∗

xh L and N →∗
x L.

iii) If M →∗
xh N with M ∈ Λµ and N is in →xh-normal form, then there exists L ∈ Λµ such that

N →:= L, and L is in Λµ head-normal form.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 9

x a =
∆ x(u).! u a

λx.M a =
∆ (νxb)(M b | a〈x,b〉)

MN a =
∆ (νc) (M c | ! c(v,d).(v :=N | ! d a))

M 〈x :=N〉 a =
∆ (νx)(M a | x :=N)

x := N =
∆ ! x(w). N w

µγ.M a =
∆ (ν•) M[a/γ] •

[β]M a =
∆ M β

M 〈β :=N·γ〉 a =
∆ (νβ)(M a | β :=N·γ)

α := N·γ =
∆ ! ! α(v,d).(v :=N | ! d γ)

Figure 1: The logical translation

This result gives that we can show our main results for Λµx for reductions that reduce to
head-normal form, that are naturally defined as follows:

Definition 4.8 (cf. [23]) The normal forms with respect to →xh are defined through:

N ::= xM1 · · · Mn (n ≥ 0) | λx.N | [α]N
| µα.N (N �= [α]N ′ & α �∈ N ′,N �= [β]γ.N ′)
| N 〈x :=M〉 (hv (N) �= x)
| N 〈α :=M·γ〉 (hn (N) �= α)

Notice that, for example, under head reduction, any term of the shape (λx.P)Q in one of the
Mi in xM1 · · · Mn is not considered a redex.

5 A logical translation of Λµx to π

We will now define our logical, output-based translation · · of the Λµx-calculus into the π-
calculus. The main idea behind the translation, as in [10], is to give a name to the anonymous
output of terms; it combines this with the inherent naming mechanism of Λµ. In the definition
below, for readability, we use the symbol • as a channel name to represent an output that
cannot be received from.

Definition 5.1 (Logical translation of Λµx terms) The translation of Λµx terms into the
π-calculus is defined in Fig. 1.

We would like to stress that. although inspired by logic, our translation does not depend on
types at all; in fact, we can treat untypeable terms as well, and can show that (λx.xx)(λx.xx) a
(perhaps the prototype of a non-typeable term) runs to itself (this already holds for · h · of
[10]).

Notice that, as is the case for Milner’s translation and in contrast to the interpretation of
[10], a guard is placed on the replicated terms. This is not only done with an eye on proving
preservation of termination, but more importantly, to make sure that (νx) (x :=N) ∼c 0 :
since a term can have named sub-terms, the translation will generate output not only for the
term itself, but also for those named terms, so (νx) (x := N) can have observable behaviour,
in contrast to [10], where this process is equivalent to 0 .

We could have avoided the implicit renaming in the case for µ-abstraction and defined
µγ.M a = (ν •γ) (M • | ! γ a), which is operationally (contextually) the same as (ν•) (M •)[a/γ],

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 10

but then we could not show that terms in head-normal form are translated to processes in nor-
mal form (Lem. 5.6). There is a strong relation between this encoding and the abstract machine
defined in [16], but for the fact that that only represents lazy reduction.

Notice that µγ.[β]M a =
∆ (ν•) (M β)[a/γ], so had we considered to just encode λµ, we

could have defined

µγ.[β]M a =
∆ (ν•) (M β)[a/γ] = M[a/γ] β

so λµ’s binding-and-naming has no representation in π.
Moreover, notice the similarity between

MN a = (νc) (M c | ! c(v,d).(v :=N | ! d a))
M 〈β :=N·γ〉 a = (νβ)(M a | ! β(v,d).(v :=N | ! d γ))

The first communicates N via the output channel c of M, whereas the second communicates
with all the sub-terms that have β as its output name2. This very elegantly expresses exactly
what the structural substitution does: it ‘connects’ arguments with the correct position in a
term; it also allows us to write bMN a for MN a. This stresses that the π-calculus constitutes
a very powerful abstract machine indeed: although the notion of structural reduction in λµ
is very different from normal β-reduction, no special measures had to be taken in order to
be able to express it; the component of our encoding that deals with pure λ-terms is almost
exactly that of [10] (ignoring for the moment that substitution is modelled using a guard,
which affects also the interpretation of variables), but for the use of replication in the case for
application. In fact, the distributive character of structural substitution is dealt with entirely
by congruence; see also Ex. 5.5. As standard in the literature [30], we say that a name a occurs
in the output subject position of a process P if P⇓ a.

Lemma 5.2 i) Assume that a is only used for output R , Q . Then:
(νa) (! a(x).P | Q | R) ∼c (νa) (! a(x).P | Q) | (νb) (! b(x).P | R [b/a])

ii) Assume that a is only used for input in R , Q . Then:
(νa) (! a p.P | Q | R) ∼c (νa) (! a p.P | Q) | (νb) (! b p.P | R [b/a])

iii) (νa) (P a | ! a(p).Q) ∼c (νa) ((νb) (P b | ! b(p).Q) | ! a(p).Q)

To underline the significance of our results, notice that the translation is not trivial, since
λy.y and λyz.y are interpreted by, respectively, the processes (νyb)(y(u).!u b | a〈y,b〉) and
(νyb)((νzb)(y(u).!u b | b〈z,b〉) | a〈y,b〉), that differ under ∼c.

It is straightforward to show that typeability is preserved:

Theorem 5.3 (Type preservation) If Γ �µx M : A | ∆, then M a : Γ �π
io a:A,∆.

Proof: By induction on the structure of derivations in �µx; we only show one case:

((C-cut)) : Then M = P 〈α :=Q·γ〉 and we have both Γ �µx P : C | α:A→B,∆ and Γ �µx Q : A |
γ:B,∆ for some B. By induction, there exist D1 :: P a : Γ �πio a:C,α:A→B,∆ and, since a is

2 A similar observation can be made for the encoding of λµ in X ; see [9].

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 11

fresh, D2 :: Q w : Γ �π
io w:B,∆, and we can construct

D1

P a : Γ �πio a:B→A,∆

D2

Q w : Γ �πio w:B,∆
(out)

b w. Q w : Γ �πio b:B,w:B,∆
(ν)

(νw) (b w. Q w) : Γ �πio b:B,∆
(!)

! (νw) (b w. Q w) : Γ �πio b:B,∆

(0)
0 : w:A �πio w:A

(out)
γ w : w:A �πio γ:A,w:A

(in)
d γ : d:A �πio γ:A

(!)
! d γ : d:A �πio γ:A

(|)
b :=Q | ! d γ : Γ,d:A �πio γ:A,b:B,∆

(〈〉-in)
α(b,d).(b :=Q | ! d γ) : Γ,α:B→A �πio γ:A,∆

(!)
! α(b,d).(b :=Q | ! d γ) : Γ,α:B→A �πio γ:A,∆

(|)
P a | ! α(b,d).(b :=Q | ! d γ) : Γ,α:B→A �πio γ:A,∆

(ν)
(να)(P a | α :=Q·γ) : Γ �πio γ:A,∆

and (να)(P a | α :=Q·γ) = P〈α :=Q·γ〉 a .

We will now show that our translation fully respects the explicit reduction →x, modulo con-
textual equivalence, using renaming of output and garbage collection. Renaming is defined
and justified via the following lemma.

Lemma 5.4 (Renaming lemma) i) (νa) (! a e | M a) ∼c M[e/a] e.
ii) (νa) (! a e | M b) ∼c M[e/a] b.

We will use ∼r if we want to emphasise that two processes are equivalent just using renam-
ing and write →≈ ∗

π for the relation →∗
π ∪ ∼g ∪ ∼r.

Using this lemma, we can show the following:

Example 5.5 The translation of a β-redex reduces as:

(λx.P)Q a =
∆

(νc) ((νxb)(P b | c〈x,b〉) | !c(v,d).(v :=Q | !d a)) →π (c)
(νbx) (P b | !b a | x := Q) | (νc) (! !c(v,d).(v :=Q | !d a)) ∼g
(νbx) (P b | !b a | x := Q) ∼r (5.4)
(νx)(P a | x :=Q) =

∆ P〈x :=Q〉 a

This implies that β-reduction is implemented in π by at least one π-reduction.
On the other hand, µ-reduction consists of a reorganisation of the structure of a term by

changing its applicative structure. Since application is essentially modelled through parallel
composition, this implies that the translation of a µ-redex is essentially dealt with by congru-
ence and renaming. For example,

(µβ.[β]P)Q a =
∆

(νc) ((ν•) (P β)[c/β] | ! c(v,d).(v :=Q | ! d a)) ∼c (=α)
(νβ) (P β | ! β(v,d).(v :=Q | ! d a))

We can show, using Lem. 5.2, this last process is contextually equivalent to

(νγ) ((νβ) (P γ | ! ! β(v,d).(v :=Q | !d a)) | ! !γ(v,d).(v :=Q | ! d a))
=
∆ P〈β :=Q·a〉Q a

(notice that we have separated out the outside name of the term P, being β, which we renamed
to γ; this leaves two context substitutions, one dealing with the occurrences of β inside P, and

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 12

(λx.x)(µα.[α](λq.q)(µβ.[α]λy.y)) a =
∆

(νc) ((νxb)(x b | c〈x,b〉) | ! c(v,d).(v :=µα.[α](λq.q)(µβ.[α]λy.y) | ! d a)) → (c)
(νxb) (x b | x :=µα.[α](λq.q)(µβ.[α]λy.y) | ! b a) | (νc) (! c(v,d). · · ·) ≡,=

∆ ,∼g

(νxb) (x(u).!u b | ! x(w). µα.[α](λq.q)(µβ.[α]λy.y) w | ! b a) → (x)
(νwb) (! w b | µα.[α](λq.q)(µβ.[α]λy.y) w | ! b a) | (νx) (! (νw) (x w. · · ·)) =

∆ ,∼g,=α

(ναb) (! α b | (ν•) ([α](λq.q)(µβ.[α]λy.y) •) | ! b a) =
∆ ,≡

(ναb) (! α b | (νc) ((νqb)(q b | c〈q,b〉) |
c :=µβ.[α]λy.y·α) | ! b a) → (c),∼g,=

∆

(ναb) (! α b | (νqb1) (q(u).!u b1 |
! q(w). µβ.[α]λy.y w | ! b1 α) | ! b a) → (q),∼g,=

∆ ,≡
(ναb) (! α b | λy.y α | ! b a) =

∆ ,∼r,∼g (νyb)(y b | a〈y,b〉)
Figure 2: The translation of a term with double output

one with γ 3).

Translations of terms in →xh-normal form are in normal form as well.

Lemma 5.6 N is a →xh-nf implies N a is irreducible.

To illustrate the expressiveness of our translation, we give some examples:

Example 5.7 i) In Fig. 2 we run (λx.x)(µα.[α](λq.q)(µβ.[α]λy.y)) a,
as an example of a term that generates two outputs over α, and highlights the need for

the repeated use of replication.
ii) PQR a =

∆ ,≡ (νcc′)(P c′ | ! ! c′(v,d).(v :=Q | ! d c) |
! ! c(v,d).(v :=R | ! d a))

so components of applications are placed in parallel under the translation. Similarly,

M〈α :=N·β〉〈γ := L·δ〉 a = (νγα) (M a | α :=N·β | γ :=L·δ)

so repeated structural substitutions are also placed in parallel under the translation and
can be applied independently.

6 Soundness, completeness, and termination

As in [24, 31], we can now show a reduction preservation result for explicit head reduction
for Λµx, by showing that · · preserves →xh up to →≈ ∗

π. Since reduction in interpreted terms
takes place over hidden channels exclusively, by Lem. 2.5, →≈ ∗

π ⊆∼c, so we could have shown
the following result using ∼c as well, but the current formulation is more expressive; notice
that we do not require the terms to be closed.

Theorem 6.1 (Soundness) M →xh N ⇒ M a →≈ ∗
π N a.

Proof: We show only the interesting cases.

3 This corresponds to the behaviour of rule (†imp-out) in X .

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 13

(x 〈x :=N〉 → N) : x〈x :=N〉 a =
∆

(νx)(x a | x :=N) ≡
(νx) (x(u).! u a | x(w). N w | x :=N) →π (x)
(νw) (! w a | N w) | (νx) (x :=N) ∼r,∼g N a

((PQ) 〈x :=N〉 → (P 〈x :=N〉Q) 〈x :=N〉, x = hv (P)) : (PQ)〈x :=N〉 a =
∆

(νx)((νc′) (P c′ | ! c′(v,d).(v :=Q | ! d a)) | x :=N) ∼c (5.2)
(νx)((νc′) ((νx)(P c′ | x :=N) | !c′(v,d).(v :=Q | !d a)) | x :=N) =

∆

(νx)((νc′) (P 〈x :=N〉 c′ | ! c′(v,d).(v :=Q | ! d a)) | x :=N) =
∆ ,≡

(νx)(P 〈x :=N〉Q a | x :=N) =
∆

(P 〈x :=N〉Q)〈x :=N〉 a

((µβ.M)N → µγ.M 〈β :=N·γ〉, γ fresh) : (µβ.M)N a =
∆

(νc) ((ν•) (M •)[c/β] | !c(v,d).(v :=N | !d a)) =α

(νβ) ((ν•) (M •) | ! β(v,d).(v :=N | ! d a)) ≡,=
(ν•) ((νβ)(M • | ! β(v,d).(v :=N | ! d γ)))[a/γ] =

∆

µγ.M〈β :=N·γ〉 a

(([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N) : ([α]M)〈α :=N·γ〉 =
∆

(να)(M α | ! α(v,d).(v :=N | ! d γ)) ∼c (5.2)
(νc) ((να)(M c | ! α(v,d).(v :=N | ! d γ)) |

c :=N·γ) =
∆

(νc) (M 〈α :=N·γ〉 c | ! c(v,d).(v :=N | ! d γ)) =
∆

[γ]M〈α :=N·γ〉N

The main soundness result is formulated as:

Theorem 6.2 (Operational Soundness for →xh) i) M →∗
xh N ⇒ M a →≈ ∗

π N a.
ii) M ↑xh ⇒ M a↑π.

Since →≈ ∗
π ⊆ ∼c, which is symmetric, Thm. 6.2 gives that · · preserves =xh up to ∼c.

Corollary 6.3 (Adequacy) M =xh N ⇒ M a ∼c N a.

This result states that our encoding gives, in fact, a semantics for the explicit head reduction
for Λµ. As for a full abstraction result, note that we cannot show the reverse of Cor. 6.3, since
different unsolvable terms like (λx.xx)(λx.xx) and (λw.www)(λw.www) are not equivalent
under =xh, but are contextually equivalent under · · , i.e. have the same observable behaviour,
as is illustrated by the fact that their translations never exhibit an output.

We can also show operational completeness for →xh.

Theorem 6.4 (Operational completeness for →xh) If M a →π P then there exists N such
that P →≈ ∗

π N a, and M →+
xh N.

This in turn can be used to show:

Lemma 6.5 i) Let M be a term in Λµx. If M a →∗
π N a then M →∗

xh N.
ii) Let M ∈ Λµ, i.e. a (pure) Λµ-term. If M a →π P then there exists N ∈ Λµx and L ∈ Λµ such

that P ∼c N a, and M →∗
xh N and N →∗

:= L.

We can show the following termination results:

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 14

Theorem 6.6 (Termination) i) If M →∗
xh N, with N in explicit head-normal from, then M a↓π .

ii) If M →∗
βµ N, with N in head-normal from, then M a↓π .

iii) Let M ∈ Λµ. If M a↓π then there exists N ∈ Λµx and L in →λµ-head normal form such that
M a ∼c N a, and M →∗

xh N and N →∗
:= L.

Notice that, in the first case, the normal form of M a need not be N a; a similar observation
can be made with respect to Milner’s encoding. Notice also that this result is stronger than the
formulation of the termination result for Milner’s encoding in [31], since it models reduction
to head-normal form, not just normal form. However, since terms that have a normal form
have a head-normal form as well, Thm. 6.6 immediately leads to:

Corollary 6.7 If M ↓βµ, then M a↓π .

Conclusions

We have defined an output based, logic inspired translation of untyped Λµ with explicit sub-
stitution into the π-calculus and shown that it respects step-by-step head-reduction, assignable
types, head-conversion, and termination. We conjecture that we can show the results shown
above also for head reduction with implicit substitution; for this we would need to show that,
if M →∗

:= N, then M a ∼c N a. It seems that the approach via Levy-Longo trees is more
suitable for that.

There are many alternatives to the approach we have chosen to follow here; especially our
choice for contextual equivalence (inspired by λ-calculus semantics) could be replaced by
branching semantics, or a bisimulation-like equivalence. The natural question is then, which
of our properties would be affected? Would branching and non-branching equivalences to
coincide, maybe by exploiting some confluence properties?

We leave these issues for future work.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. JFP, 1(4):375–416, 1991.
[2] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. CCS’97, pp 36–47, 1997.
[3] S. Abramsky. The lazy lambda calculus. Research topics in functional programming, pages 65–116. Addison-

Wesley, 1990.
[4] P. Audebaud. Explicit Substitutions for the Λµ Calculus. RR 94-26, ÉNS de Lyon, 1994.
[5] S. van Bakel. Completeness and Partial Soundness Results for Intersection & Union Typing for λµµ̃. Annals

of Pure and Applied Logic, 161:1400–1430, 2010.
[6] S. van Bakel. Completeness and Soundness results for X with Intersection and Union Types. Fundamenta

Informaticae, 2012. To appear.
[7] S. van Bakel, F. Barbanera, and U’ de’Liguoro. A Filter Model for λµ. TLCA’11, LNCS 6690, pp. 213–228,

2011.
[8] S. van Bakel, L. Cardelli, and M.G. Vigliotti. From X to π; Representing the Classical Sequent Calculus in

the π-calculus. CL&C’08, 2008.
[9] S. van Bakel and P. Lescanne. Computation with Classical Sequents. MSCS, 18:555–609, 2008.

[10] S. van Bakel and M.G. Vigliotti. A logical interpretation of the λ-calculus into the π-calculus, preserving
spine reduction and types. CONCUR’09, LNCS 5710, pp 84 – 98, 2009.

[11] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.
[12] R. Bloo and K.H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with Explicit Sub-

stitution and Garbage Collection. CSN’95, pp 62–72, 1995.
[13] N.G. de Bruijn. Lambda Calculus Notation with Nameless Dummies: A Tool for Automatic Formula Manip-

ulation, with Application to the Church-Rosser Theorem. Ind. Math., 34:381–392, 1972.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 15

[14] A. Church. A Note on the Entscheidungsproblem. JSL, 1(1):40–41, 1936.
[15] M. Cimini, C. Sacerdoti Coen, and D. Sangiorgi. λµµ̃ calculus, π-calculus, and abstract machines. EX-

PRESS’09, 2009.
[16] T. Crolard. A confluent lambda-calculus with a catch/throw mechanism. JFP, 9(6):625–647, 1999.
[17] P.-L. Curien and H. Herbelin. The Duality of Computation. ICFP’00, pp 233–243. ACM, 2000.
[18] G. Gentzen. Investigations into logical deduction. The Collected Papers of Gerhard Gentzen. Ed M. E. Szabo,

North Holland, 68ff (1969), 1935.
[19] Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential control.

LPAR’94, LNCS 822, pp 31–43, 1994.
[20] H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire d’habilitation, Université Paris 11,

2005.
[21] K. Honda and M. Tokoro. An object calculus for asynchronous communication. ECOOP’91, LNCS 512, pp

133–147, 1991.
[22] K. Honda, N. Yoshida, and M. Berger. Control in the π-Calculus. CW’04, 2004.
[23] S.B. Lassen. Head Normal Form Bisimulation for Pairs and the λµ-Calculus. LICS’06, pp 297–306, 2006.
[24] R. Milner. Functions as processes. MSCS, 2(2):269–310, 1992.
[25] M. Parigot. An algorithmic interpretation of classical natural deduction. LPAR’92, LNCS 624, pp 190–201,

1992.
[26] M. Parigot. Strong Normalization for Second Order Classical Natural Deduction. LICS’93, pp 39–46, 1993.
[27] B.C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. MSCS, 6(5):409–453, 1996.
[28] W. Py. Confluence en λµ-calcul. Phd thesis, Univ. Savoie, 1998.
[29] D. Sangiorgi. Expressing Mobility in Process Algebra: First Order and Higher Order Paradigms. PhD thesis,

Univ. Edinburgh, 1992.
[30] D. Sangiorgi. Lazy functions and mobile processes. RR 2515, INRIA, Sophia-Antipolis, France, 1995.
[31] D. Sangiorgi and D. Walker. The Pi-Calculus. Cambridge University Press, 2001.
[32] P. Sestoft. Demonstrating Lambda Calculus Reduction. The Essence of Computation, LNCS 2566, pp 420–435,

2001.
[33] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-models of

the lambda-calculus. SIAM JoC, 5:488–521, 1976.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 16

Appendix A Proofs of the main results

Proposition A.1 (νxb) (c(v,d).(! b v | d e)) ∼c (νa) (a e | (νxb) (c(v,d).(! b v | d a))).

We use this result to show the following:

Lemma 5.4 (Renaming lemma) i) (νa) (! a e | M a) ∼c M[e/a] e.
ii) (νa) (! a e | M b) ∼c M[e/a] b.

Lemma 5.6 N is a →xh-nf implies N α is irreducible.

Proof. (xM1 · · · Mn (n ≥ 0)) : xM1 · · · Mn a =
∆

(νc′) (xM1 · · · Mn c′ | ! c′(v,d).(v :=Nn | ! d a)) =
∆

(νcn) (xM1 · · · Mn−1 cn | cn := Mn·a) =
∆

(νcn) (xM1 · · · Mn−2 cn−1 | cn−1 := Mn·cn | cn := Mn·a) =
∆

(νcn · · · c1) (x c1 | c1 := M1·c2 | · · · | cn := Mn·a)

Since ci := Mi·ci+1 = ! ! ci(v,d).(! v(w). Mi w | ! d ci+1) all Mi w appear under input,
so no synchronisation inside one of the Mi w is possible, nor over one of the ci.

(λx.N :) : Since λx.N a = (νxb)(N b | a〈x,b〉), and, by induction, N b is in normal form; since
that process does not input over a, so is λx.N a.

([β]N :) : Since [β]N a = N β, this follows immediately by induction.

(µα.N (N �= [α]N ′ & α �∈ N ′,N �= [β]γ.N ′) :) : Notice that µβ.N a = (ν•) N[a/β] • =
(ν•) (N[a/β] •); by induction, since a is fresh, N[a/β] • is in normal form, so so is
µβ.N a.

(N 〈x :=M〉 (hv (N) �= x) :) : Notice that N〈x :=M〉 a = (νx)(N a | ! x(w). M w). By induc-
tion, N a is in normal form; since x is not the head-variable of N, the process N a has no
reachable input over x, so no synchronisation is possible over x; also, no synchronisation
is possible inside M w, as above.

(N 〈α :=M·γ〉 (hn (N) �= α) :) : Notice that

N〈α :=M·γ〉 a = (να)(N a | ! α(v,d).(v :=M | ! d γ)).

By induction, N a is in normal form. Note that α is only a reachable output in N a if
N is an abstraction and a = α; this is impossible, since we choose a fresh. As above, no
synchronisation is possible inside M w.

Theorem 6.1 (Soundness) M →xh N ⇒ M a →≈ ∗
π N a.

Proof. We show only the interesting cases.

(x 〈x :=N〉 → N) : x〈x :=N〉 a =
∆

(νx)(x a | x :=N) ≡
(νx) (x(u).! u a | ! x(w). N w | x :=N) →π (x)
(νxw) (! w(u).a u | N w | x :=N) ∼r (5.4,w fresh)
N a | (νx) (x :=N) ∼g N a

(M 〈x :=N〉 → M, x �∈ fv (M)) : M〈x :=N〉 a =
∆ (νx)(M a | x :=N) ∼g M a

((λx.M)N → M 〈x :=N〉) : (λx.M)N a =
∆

(νc) ((νxb)(M b | c〈x,b〉) | ! c(v,d).(v :=N | ! d a)) →π (c),∼g
(νb) (M b | x :=N | !b a) ∼r
(νx)(M a | x :=N)

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 17

((PQ) 〈x :=N〉 → (P 〈x :=N〉Q) 〈x :=N〉) :
(PQ)〈x :=N〉 a =

∆

(νx)((νc) (P c | !c(v,d).(v :=Q | !d a)) | x :=N) ≡
(νx)((νc) ((νx)(P c | x :=N) | ! c(v,d).(v :=Q | ! d a)) | x :=N) =

∆

(νx)((νc) (P 〈x :=N〉 c | ! c(v,d).(v :=Q | ! d a)) | x :=N) =
∆

(νx)(P 〈x :=N〉Q a | x :=N) =
∆

(P 〈x :=N〉Q)〈x :=N〉 a

((µβ.M)N → µγ.M 〈β :=N·γ〉) : (µβ.M)N a =
∆

(νc) (µβ.M c | ! c(v,d).(v :=N | !d a)) =
∆

(νc) ((ν•) (M •)[c/β] | ! c(v,d).(v :=N | ! d a)) =α

(νβ) ((ν•) (M •) | ! β(v,d).(v :=N | !d a)) ≡
(ν•) ((νβ) (M • | ! β(v,d).(v :=N | !d a))) =
(ν•) ((νβ)(M • | ! β(v,d).(v :=N | !d γ)))[a/γ] =

∆

(ν•) (M 〈β :=N·γ〉 •)[a/γ] =
∆ µγ.M〈β :=N·γ〉 a

(([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N) : ([α]M)〈α :=N·γ〉 =
∆

(να)(M α | !α(v,d).(v :=N | !d γ)) ≡,=α

(νc) ((να)(M c | !α(v,d).(v :=N | ! d γ)) | ! c(v,d).(v :=N | ! d γ)) =
∆

(νc) (M 〈α :=N·γ〉 c | !c(v,d).(v :=N | !d γ)) =
∆

[γ]M〈α :=N·γ〉N
Theorem 6.2 (Operational Soundness for →xh) i) M →∗

xh N ⇒ M a ∼c N a.
ii) M ↑xh ⇒ M a↑π .

Proof. The first is shown by induction using Thm. 6.1, using the fact that →≈ ∗
π ⊆∼c for

reduction in interpreted terms; the second follows from Ex. 5.5, and the fact that µ-reduction
and substitution do not loop [28] (i.e. non-termination is caused only by β-reduction).

Theorem 6.4 (Operational completeness for →xh) If M a →π P then there exists N such
that P →+

π ,∼r,∼g N a, and M →+
xh N.

Proof. By easy induction on the structure of terms, using the fact that all reductions that
are possible in M a are generated by the encoding, and correspond to β-contractions or are
the result of reduction over y in (νy) ((νxb)(M b | y〈x,b〉) | y a), and is then the result of
executing a substitution y 〈y :=λx.M〉.

Lemma 6.5 i) Let M be a term in Λµx. If M a →∗
π N a then M →∗

xh N.
ii) Let M ∈ Λµ, i.e. a (pure) Λµ-term. If M a →π P then there exists N ∈ Λµx and L ∈ Λµ such

that P ∼c N a, and M →∗
xh N and N →∗

:= L.

Proof. The first is an obvious consequence of Thm. 6.4, the second follows from Lem. 4.5,
Lem. 4.2, and Thm. 6.4.

Theorem 6.6 (Termination) i) If M →∗
xh N, with N in explicit head-normal from, then M a↓π.

ii) If M →∗
βµ N, with N in head-normal from, then M a ↓π.

iii) Let M ∈ Λµ. If M a↓π then there exists N ∈ Λµx and L in →λµ-head normal form such that
M a ∼c N a, and M →∗

xh N and N →∗
:= L.

Proof. i) By Lem. 5.6, if N is in explicit head-normal from, then N a is in normal form,
and by Thm 6.1, M a →∗

π P with P ∼r,∼g N a. Since ∼g only removes processes in
normal form, this implies that P is in normal form.

Proceedings of IFIP TCS 2012, LNCS 7604, pp 372–387 18

ii) By Prop. 4.5, there exists L in head-normal form such that M →∗
βµ L; by the previous part,

M a↓π.
iii) By Lem. 6.5, and Prop. 4.7.

