
Logical Semantics for the First Order ς-Calculus
(ICTCS’03, LNCS 2841, pp 202-215, 2003)

Steffen van Bakel1‡ and Ugo de’Liguoro2§

1 Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, UK,

2 Dipartimento di Informatica, Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy

deliguoro@di.unito.it

Abstract

We investigate logical semantics of the first order ς-calculus. An assignment system of predi-
cates to first order typed terms of the OB1 calculus is introduced. We define retraction models
for that calculus and an interpretation of terms, types and predicates into such models. The
assignment system is then proved to be sound and complete w.r.t. retraction models.

1 Introduction

The essence of logical semantics of a calculus is a system of predicates and a relation of
satisfiability, such that the meaning of a term in the calculus can be identified with the set of
predicates it satisfies. Examples are intersection types for the type-free λ-calculus [7, 6], pre-
locales for typed λ-calculi and domain logic [4], Hennessy-Milner logic for CCS terms [15, 3].
The present work is aimed at defining a logical semantics suitable for typed object calculi.

In [12] it is shown that certain characterizations of reduction properties of pure λ-terms via
intersection types (for which see e.g. [10, 16, 6, 11]) are smoothly inherited by the type-free
ς-calculus, provided we extend the intersection type discipline to a λ-calculus with records,
and interpret ς-terms using the self-application interpretation of [14]. Nonetheless the focus
of research in the area of object calculi is on typed systems and typed equational theories. To
make our approach applicable to the latter case we have to put on a clear footing the idea of
an assignment system of predicates to typed objects: a first investigation is [13].

For monomorphic typed calculi predicates differ from types in that each term has exactly
one type, but satisfies (often infinitely) many predicates. This difference is blurred in the
polymorphic case (indeed, in the literature, Curry types, intersection types and ML types are
considered as forms of polymorphism), but it is still true that, while predicates give partial
information about the behavior of single terms, types are concerned with general properties
of the system, like strong normalization for typed λ-calculi, or error-freeness of the reducts of
typed terms in object calculi.

The solution we propose is to consider types as languages of predicates, or even better
as theories. The denotation of a term is then a set of predicates closed under conjunction
and logical implication (technically a filter), but when such a denotation is relativized to a
type, which is the counterpart of typing the term, its denotation is restricted to the language

‡ Partially supported by EU project IST-1999-20975, SecSafe
§ Partially supported by MURST Cofin’01 COMETA Project, IST-2001-33477 DART Project and IST-2001-322222

MIKADO Project. The funding bodies are not responsible for any use that might be made of the results presented
here.

ICTCS’03, LNCS 2841, pp 202-215, 2003 2

associated with that type. This suggests a natural interpretation of features of polymorphic
typed systems, as it is the case of subtyping: A <: B if the theory associated to B is “included”
into the theory of A, which means that its discriminating power is at most that of A (for a
topological interpretation of the same idea, and its relation to realizability models and PER
inclusion see [13]).

In the present paper we investigate logical semantics of the first order ς-calculus of [1], called
there system OB1. This is the core of the object calculi studied in that book, even if it is poorly
expressive and does not include any form of subtyping. Still it is an interesting case study,
as the recursive nature of types is challenging to model (it is the most complex and contrived
part of the semantic constructions in [2, 1, 8]). It comes out that the filter model of the typed
calculus has the structure of a retraction model, in the sense of [18], where retractions map
filters of predicates to their intersection with the language associated to the given type. This
leads to a completeness theorem of the assignment system with respect to retraction models
of the calculus. We stress that languages, which define the retractions over the filter model,
are inductively defined sets of predicates: a concept of lower logical complexity, and much
easier to understand, than fixed-points of contractive operators over ideals or over complete
uniform PERs.

2 Assignment for the typed ς-calculus

In this section we introduce the calculus, its types and typing rules, the syntax of the predi-
cates and an assignment system, to syntactically derive judgements associating predicates to
typed terms under the assumption of similar judgements about a finite set of typed variables.
Predicates are transparently intersection types for a λ-calculus with records, and come from
[12]. The essential difference is that the set of predicates is stratified into languages, in such a
way that whenever a predicate can be deduced for a term aA, it belongs to the language LA
associated with A.

2.1 The calculus

Definition 2.1 (Untyped terms) Let L = {�i | i∈N} be a denumerable set of labels. The terms
of the first order ς-calculus are defined through the following grammar.

a,b ::= x | [�i = ς(xi)bi
i∈I] | a.� | a.�↼↽ς(x)b

In the expression ς(xA)b, the operator ς(·) binds x in b; free and bound variables are defined
as usual. Terms are considered equal modulo α-conversion, i.e. up to renaming of bound
variables.

Definition 2.2 (Reduction) On terms, the reduction relation is defined as the contextual, tran-
sitive closure of the following reduction rules:

[�i = ς(xi)bi
i∈I].�j → bj{xj← [�i = ς(xi)bi

i∈I]}
[�i = ς(xi)bi

i∈I].�j↼↽ς(x)b → [�i = ς(xi)bi
i∈I\j,�j = ς(x)b]

where j ∈ I and a{x← b} is the substitution of x by b in a, avoiding variable clashes.

The reduction relation is confluent (see [1] Ch. 6). Terms do not necessarily have a normal
form: e.g. Ω≡ [� = ς(x)x.�].� is such that Ω→Ω.

ICTCS’03, LNCS 2841, pp 202-215, 2003 3

2.2 The typed system

The following is a presentation of the system OB1 of [1], with minor changes consisting in
writing aA instead of a:A, and omitting rules for deriving well formed types and contexts:
first order types are indeed defined by a simple inductive definition.

Definition 2.3 (Types) Let K be a set of type constants, ranged over by K. The set of types is
defined by the following grammar:

A, B ::= K | [�i : Bi
i∈I]

where I is a finite set of indexes.

In the present setting, a context for a type judgement is just a finite set E of type decorated
variables, of the shape xA.

Definition 2.4 The type judgements are defined by the following natural deduction system
(where A = [�k : Bk

k∈I]):

(Var) (xA∈E)
E � xA (ValObject)

E, xA
i � bBi

i (∀i∈ I)
E � [�i = ς(xA

i)b
Bi
i

i∈I]A

(ValSelect)
E � aA

(j∈ I)
E � (aA .�j)

Bj
(ValUpdate)

E � aA E, xA � bBj

(j∈ I)
E � (aA.�j↼↽ς(xA)bBj)A

Having adopted the notation xA for a term variable x of type A, the context E becomes
redundant. We keep it, however, since this turns out to be useful when introducing bases in
the subsequent section.

Reduction among typed terms is defined by adapting Definition 2.2 in the obvious way. The
main result about this system (and all its extensions in [1]) is that types are preserved under
reduction: since a term of the form [�i = ς(xA)b].�j or of the form [�i = ς(xA)b].�j ↼↽ς(yA)c has
no type if i �= j, we may conclude that the reduction of typed terms will never get stuck into
not well formed terms (see [1] Ch. 7). Typed terms do not necessarily normalize, however:
�ΩA ≡ ([� = ς(x[�:A])x.�].�)A is derivable in the empty context for all types A.

2.3 A predicate system

Much in the style of [7], in this section we will present a notion of intersection types, called
predicates here; using these, we will define a notion of predicate assignment, which will consists
basically of associating a predicate to a typed term.

Definition 2.5 (Predicates) The set L of predicates is inductively defined by:

σ,τ ::= κ | ω | (σ→τ) | (σ∧τ) | 〈�i : σi
i∈I〉

where κ ranges over a countable set of atoms. On predicates a preorder ≤ is inductively
defined by:

σ ≤ σ
σ ≤ ω
ω ≤ ω→ω

σ∧τ ≤ σ, σ∧τ≤ τ

(σ→τ)∧(σ→ρ) ≤ σ→(τ∧ρ)
ρ≤ σ&τ≤µ ⇒ σ→τ≤ ρ→µ
σ≤ τ&σ≤ ρ ⇒ σ≤ τ∧ρ

σ≤ τ ⇒ 〈� : σ〉≤ 〈� : τ〉

ICTCS’03, LNCS 2841, pp 202-215, 2003 4

〈�i : σi
i∈I〉∧〈�j : τj

j∈J〉 ≤ 〈�k : ρk
(k∈ I∪ J)〉, where

ρk = σk∧τk, if k∈ I∩J,
ρk = σk, if k∈ I\J,
ρk = τk, if k∈ J\I

〈�i : σi
i∈I〉 ≤ 〈�j : σj

j∈J〉, if J ⊆ I
σ≤ τ≤ ρ ⇒ σ≤ ρ

Finally σ = τ ⇐⇒ σ≤ τ≤σ.

Atomic predicates κ are intended to describe elements of atomic type in the domain of
interpretation; σ→τ is the property of functions sending elements satisfying σ into elements
satisfying τ; 〈�i : σi

i∈I〉 is the property of records having values that satisfy σi associated with
the field �i for all i ∈ I. Predicates ω and σ∧τ mean truth and conjunction respectively; σ ≤ τ
reads as ‘σ implies τ’.

In the following we consider as ‘types’ also arrow types A→B: functional types are indeed
implicit in the interpretation of objects (especially of methods) but do not appear in the syntax
of the calculus OB1 (but they do in the calculi in [1] enriched with lambda abstraction and
functional application). Here their use allows for more transparent notations.

Definition 2.6 (Languages) The set of all predicates L is stratified into a family {LA}A of
sets of predicates called languages, indexed over types such that:

i) any κ belongs exactly to one LK, for some K∈K;
ii) any LA is the least set (including atoms if A≡ K) such that:

ω∈LA

σ∈LA τ∈LA

σ∧τ∈LA

σ∈LA τ∈LB

σ→τ∈LA→B

σ∈LA→Bj
(A = [�i : Bi

i∈I], j∈ I)〈�j : σ〉∈LA

σ∈LA
(σ≤ τ)

τ∈LA

A statement is an expression of the shape aA :σ, where a is a term, A is a type, such that
there exists E with E � aA , and σ is a predicate, and a is called the subject of this statement.

A basis Γ is a finite set of statements with only (distinct) term variables as subject, of which
the predicate is not ω. We say that Γ preserves languages if σ∈LA whenever xA :σ∈Γ.

If E is a context and Γ a basis, we say that E fits into Γ, written E � Γ, if xA :σ∈Γ implies
xA∈E. We say that two bases Γ0, Γ1 are compatible if there exists a context E including all
variables occurring in both Γ0 and Γ1, fitting into both of them.

Definition 2.7 (Predicate Assignment) Let A≡ [�i : Bi
i∈I] and B, Bi be any type, then:

(Var) (xB :σ∈Γ)
Γ � xB :σ

(TypeObject)
Γ, xA

i :σi � bBi
i :τi

(∀i∈ I & J ⊆ I)
Γ � [�i = ς(xA

i)bi
i∈I]A :〈�j:σj→τj

j∈J〉

(ValSelect)
Γ � aA : 〈�j:σj→τj

j∈J〉 Γ � aA :σk
(k∈ J)

Γ � a.�Bk
k :τk

(ValUpdate)
Γ � aA : 〈�j:σj

j∈J〉 Γ,yA :σ � bBk :τ
(k∈ J)

Γ � (a.�k↼↽ς(yA)b)A :〈�j:σj
j∈J\k,�k:σ→τ〉

ICTCS’03, LNCS 2841, pp 202-215, 2003 5

plus the following ‘logical’ rules:

(ω)
E � aB

(E � Γ)
Γ � aB :ω

(∧I)
Γ � aB :σ Γ � aB :τ

Γ � aB :σ∧τ
(≤) Γ � aB :σ σ ≤ τ

Γ � aB :τ

As a straightforward induction shows, if all bases in the derivation of Γ � aA :σ preserve
languages, then σ∈LA.

We remark that in rule (TypeObject) it is not required that the σi are equal, not even pair-
wise consistent (but for the fact that they belong to the same language LA). This should be
compared to rule (ValUpdate), which allows for replacing the subexpression σk in the predicate
〈�j:σj

j∈J〉 of the first premise by the completely unrelated predicate σ→τ in the conclusion.
This is sound, however, because of rule (ValSelect), which checks in the crucial place that the
antecedent of the arrow holds of aA, to which the self variable xA

k is bound.
These features, which surely sound odd to readers familiar with the literature on object

calculi, are indeed essential. Suppose in fact that

A≡ [�0 : I,�1 : I] and a ≡ [�0 = ς(xA)1,�1 = ς(xA)x.�0]

(using a constant 1 of type I), so that � aA. Then

xA:ω � 1 : O

xA:〈�0 : ω→O〉 � xA : 〈�0 : ω→O〉 xA:〈�0 : ω→O〉 � xA : ω

xA :〈�0 : ω→O〉 � (x.�0)
I : O

� aA :〈�0 : ω→O,�1 : 〈�0 : ω→O〉→O〉
where �0 is a field and �1 is the method get�0. By rule (ValUpdate) one might derive the
seemingly incorrect:

� aA : 〈�0 : ω→O,�1 : 〈�0 : ω→O〉→O〉 yA:ω � 2 : E

� (a.�0↼↽ς(yA)2)A : 〈�0 : ω→E,�1 : 〈�0 : ω→O〉→O〉
This makes sense, however, since it simply tells that if the value at �0 is an odd integer,

then the method �1 will return an odd integer; it also tells that this is vacuously true of the
actual object (a.�0↼↽ς(yA)2)A, since it has an even integer at �0. Moreover it is harmless:
(a.�0↼↽ς(yA)2).�1

∗→ 2 and we clearly assume that �� 2 : O; nonetheless �� (a.�0↼↽ς(yA)2).�1 : O,
because rule (ValSelect) does not apply since �� (a.�0↼↽ς(yA)2) : 〈�0 : ω→O〉.

On the other hand the following odd-looking assignment is legal as well, this time by rule
(TypeObject):

xA:ω � 1 : O

xA:〈�0 : ω→E〉 � xA : 〈�0 : ω→E〉xA :〈�0 : ω→E〉 � xA : ω

xA:〈�0 : ω→E〉 � (x.�0)
I : E

� aA :〈�0 : ω→O,�1 : 〈�0 : ω→E〉→E〉
In the last case, however, the apparently odd predicate we deduce, is of use to conclude by

rule (ValUpdate):

� aA : 〈�0 : ω→O,�1 : 〈�0 : ω→E〉→E〉 yA : ω � 2 : E

� (a.�0↼↽ς(yA)2)A : 〈�0 : ω→E,�1 : 〈�0 : ω→E〉→E〉
which is what we expected.

ICTCS’03, LNCS 2841, pp 202-215, 2003 6

The next lemma will be of use in the last section. Let Γ ≤ Γ′ mean that for all xA :τ∈Γ′
there exists σ ≤ τ such that xA :σ∈Γ.

Lemma 2.8 i) Γ ≤ Γ′ and Γ′ � aA :σ implies Γ � aA :σ.
ii) If Γ0, Γ1 are compatible bases, then there exists the basis Γ0∧Γ1 which is the greatest one such that

Γ0∧Γ1 ≤ Γi for i = 0,1.

Proof: The first part is proved by induction over the derivation of Γ′ � aA :σ, using (≤). For
the second, let Γ0∧Γ1 be the basis including exactly the statements xA :σ such that either xA :σ
is in one of the two basis and not in the other, or xA :σ0∈Γ0, xA :σ1∈Γ1 and σ ≡ σ0∧σ1.

We end this section by stating, without proof, the main theorem about syntactical properties
of the assignment system. It establishes that predicates are invariant under conversion.

Theorem 2.9 (Subject reduction and expansion) i) If Γ � aA :ρ, and a→a′, then Γ � a′A :ρ.
ii) If Γ � aA :ρ and a′→a where E � a′A for E � Γ, then Γ � a′A :ρ.

3 Models and logical semantics

There is no definite agreement about what should be considered as a model of object calculi.
Even [1] does not give a general definition of this concept. Rather it is commonly held,
especially after Cardelli’s seminal work on records calculi, that it should be a model of the
λ-calculus including operators to build, access and modify finite records, often seen as finite
functions over a set of labels.

Definition 3.1 We call a structure D = 〈D, L,emp, lcond,sel〉 an untyped ς-model if:

• D is a λ-model;
• L = {�i | i∈N} is a denumerable set of labels;
• emp∈D;
• sel : D× L→ D;
• lcond : D× L× D→ D

such that (writing lcond and sel in a Curryfied form):
i) sel(lcond x �i y)�i = y,

ii) i �= j⇒ sel(lcond x �i y)�j = sel x �j,
iii) i �= j⇒ lcond(lcond x �i y) �j z = lcond(lcond x �j z) �i y.

emp is the empty record; sel is a selection operator, depending on its second argument for
the field to be selected on its first argument; lcond is a conditional update operator, setting to
the value of its third argument the field of its first argument at the label which is the second
argument. Note that, due to the untyped nature of the structure, nothing prevents from field
selection or field update of some non record element of the domain.

An untyped ς-model is a particular case of what is called a λ, record-combinatory structure
in [17] ch. 10. Differences are that here D is a λ-model, instead of a partial combinatory
algebra, and the third axiom about lcond which is not in the original definition. The present
choices allow for a simpler treatment and are satisfied by the untyped structure in [1] ch. 14,
which is the only denotational model of the ς-calculus in the literature.

ICTCS’03, LNCS 2841, pp 202-215, 2003 7

Since any D is a λ-model, we shall freely use abstraction notation. Moreover, we use the
abbreviations:

〈·〉 = emp

〈�i = di
i∈{1,...,n}〉 = lcond(. . . (lcondemp�1 d1) . . .)�n dn

d ·�i = seld�i
d ·�i := e = lcondd�i e

A structure of this form can be constructed by solving the domain equation:

D = At + [L→ D] + [D→ D] (1)

where At is a domain interpreting atomic (namely ground) types. This equation appears in
[9, 5], and is essentially the same as in [1], where it is used to build a model of the (second
order) typed ς-calculus.

Definition 3.2 To each predicate σ we associate a subset [[σ]]Dη ⊆ D (or simply [[σ]]η when D
is clear from the context), where η sends each predicate atom κ to some subset of D, and
η(κ) ⊆ [[K]] when κ∈LK for some constant type K:

i) [[ω]]η = D,

ii) [[κ]]η = η(κ),

iii) [[σ∧τ]]η = [[σ]]η ∩ [[τ]]η ,

iv) [[σ→τ]]η = {d∈D | ∀e∈ [[σ]]η. de∈ [[τ]]η},
v) [[〈�i : σi

i∈I〉]]η = {d∈D | ∀i∈ I. d · �i∈ [[σi]]η}.

The latter definition formalizes the intended meaning of predicates by defining their exten-
sions; the subsequent proposition states that implication corresponds to set theoretic inclusion
of predicate denotations as expected.

Proposition 3.3 If σ ≤ τ then, for any η, [[σ]]η ⊆ [[τ]]η .

Definition 3.4 A type interpretation over D is a mapping associating with each type A a subset
[[A]]D ⊆ D. It is said to be consistent with the predicate interpretation [[·]]η if σ∈LA implies
[[σ]]η ⊆ [[A]].

Previous definitions provide the essentials to give meaning to aA :σ and to judgments
Γ � aA :σ.

Definition 3.5 Suppose that D is an untyped ς-model. Let the type interpretation and the
predicate interpretation be consistent, E be a context, Γ a basis and ξ a term environment:

i) ξ |= E if ξ(xA)∈ [[A]]D whenever xA∈E;

ii) E |= aA if for all ξ s.t. ξ |= E, [[aA]]Dξ ∈ [[A]]D;

iii) ξ |= Γ if xA :σ∈Γ implies ξ(xA)∈ [[σ]]η ⊆ [[A]]D;

iv) Γ |= aA :σ if for all ξ s.t. ξ |= Γ, [[aA]]Dξ ∈ [[σ]]η ⊆ [[A]]D.

3.1 A model of retractions

Let D be any domain solving the equation (1). Following [18], a retraction over D is a con-
tinuous function ρ : D→ D such that ρ2 = ρ ◦ ρ = ρ. Types can be interpreted by means of

ICTCS’03, LNCS 2841, pp 202-215, 2003 8

retractions by setting [[A]] = {d∈D | ρA(d) = d}, which is the same as the range of ρA. For
basic types one may choose ρK(d) = d if d∈At, else ⊥.

Proposition 3.6 Let A ≡ [�i : Bi
i∈I]: if ρBi is a retraction for all i∈ I, then there exists a retraction ρA

such that
ρA(d) = 〈�i = ρA→Bi(d · �i)

i∈I〉,
where ρA→B(d) = λx.ρB(d(ρA(x))) (indeed ρA→B is a retraction, if ρA and ρB are).

Proof: The function (in Curryfied form)

ΥA f d = 〈�i = λx.ρBi((d · �i)(f x)) i∈I〉
is continuous, hence it has a fixed-point ρA = Fix(ΥA) =

⊔
n Υ

(n)
A , where Υ(0) = λx.⊥, Υ

(n+1)
A =

ΥA(Υ
(n)
A). By its definition we have

ρA(d) = 〈�i = λx.ρBi ((d · �i)(ρA(x))) i∈I〉 = 〈�i = ρA→Bi(d · �i)
i∈I〉.

Observe that this is indeed a retraction:

ρ2
A(d) =

⊔
n

Υ
(n)
A (

⊔
m

Υ
(m)
A (d)) =

⊔
n,m

Υ
(n)
A (Υ

(m)
A (d)) =

⊔
n+m

Υ
(n+m)
A (d) = ρA(d).

We say that (D,{ρA}A) is a retraction model if D is an untyped ς-model and {ρA}A is a family
of retractions such that ρA(d) = 〈�i = ρA→Bi(d · �i)

i∈I〉, where A ≡ [�i : Bi
i∈I].

Definition 3.7 Let (D,{ρA}A) be a retraction model. The typed interpretation [[aA]]Dξ , where ξ
is an environment associating with each term variable an element of D, is inductively defined
by:

[[xA]]ξ = ξ(x)
[[[�i = ς(xA

i)b
Bi
i

i∈I]]]ξ = 〈�i = λd.[[bBi
i]]ξ[xi :=ρA(d)]

i∈I〉
[[(aA.�i)

Bi]]ξ = ([[aA]]ξ ·�i)[[aA]]ξ
[[aA.�i↼↽ς(xA)bBi]]ξ = [[aA]]ξ ·�i := λd.[[bBi]]ξ[x:=ρA(d)].

Theorem 3.8 (Soundness of the type system w.r.t. retraction models) If E � aA then E |=
aA.

Proof: By induction over the derivation of E � aA we prove that ρA([[aA]]ξ) = [[aA]]ξ for any
environment ξ such that ξ |= E.

Lemma 3.9 Suppose that the image of η(κ) under ρK is included into η(κ) when κ∈LK. If σ∈LA
and d∈ [[σ]]η then ρA(d)∈ [[σ]]η .

Proof: By induction on σ. Cases ω and κ are trivial, by definition and hypothesis respectively.
Case σ∧τ∈LA is immediate by induction, since then σ,τ∈LA.

(σ→τ∈LA→B) : then σ∈LA and τ∈LB; if d∈ [[σ→τ]]η then:

e∈ [[σ]]η ⇒ ρA(e)∈ [[σ]]η by ind.
⇒ d(ρA(e))∈ [[τ]]η by hyp. on d
⇒ ρB(d(ρA(e)))∈ [[τ]]η by ind.

and we conclude since ρA→B(d) = λx.ρB(d(ρA(x))).

ICTCS’03, LNCS 2841, pp 202-215, 2003 9

(〈�j : σj
j∈J〉∈LA, where A≡ [�i : Bi

j∈J] and J ⊆ I) : then σj∈LA→Bj for all j. This implies that,
if d∈ [[〈�j : σj

j∈J〉]]η then d · �j∈ [[σj]]η and by induction ρA→Bj(d)∈ [[σj]]η : the thesis follows
since ρA(d) = 〈�i = ρA→Bi(d)

i∈I〉.

Theorem 3.10 (Soundness of the predicate system w.r.t. retraction models) If Γ � aA :σ
then Γ |= aA :σ.

Proof: By induction on the derivation of Γ � aA :σ.

• The derivation ends with

(Var) (xB :σ∈Γ)
Γ � xB :σ

The thesis follows since ξ |= Γ.
• The derivation ends with:

(TypeObject)
Γ, xA

i :σi � bBi
i :τi

(∀i∈ I & J ⊆ I)
Γ � [�i = ς(xA

i)bi
i∈I]A :〈�j:σj→τj

j∈J〉

By definition ([[aA]]ξ · �j)d = [[b
Bj
j]]ξ[xj :=ρA(d)], where j∈ J ⊆ I: if d∈ [[σj]]η then, by Lemma

3.9, ρA(d)∈ [[σj]]η, since σj∈LA; therefore ξ[xj := ρA(d)] |= Γ, xA
j :σj and, consequently, by

induction, [[b
Bj
j]]ξ[xj :=ρA(d)]∈ [[τj]]η . This implies that [[aA]]ξ∈ [[〈�j:σj→τj

j∈J〉]]η .

• The derivation ends with:

(ValSelect)
Γ � aA :〈�j:σj→τj

j∈J〉 Γ � aA :σk
(k∈ J)

Γ � (a.�k)
Bk :τk

The thesis follows immediately by induction: [[aA]]ξ∈ [[〈�j:σj→τj
j∈J〉]]η and [[aA]]ξ∈ [[σk]]η

and by the definition [[(a.�k)
Bk]]ξ = ([[aA]]ξ ·�k)[[aA]]ξ .

• The derivation ends with:

(ValUpdate)
Γ � aA : 〈�j:σj

j∈J〉 Γ,yA :σ � bBk :τ
(k∈ J)

Γ � (a.�k ↼↽ς(yA)b)A : 〈�j:σj→τk
j∈J\k,�k:σ→τ〉

Define cA ≡ (aA.�k↼↽ς(yA)bBk)A, and recall that

[[cA]]ξ = [[aA]]ξ ·�k := λd.[[bBk]]ξ[y:=ρA(d)].

Let d∈ [[σj]]η for some j∈ J: if j �= k then ([[cA]]ξ ·�j)d = ([[aA]]ξ ·�j)d∈ [[τj]]η by induction.
Otherwise j = k and ([[cA]]ξ ·�j)d = [[bBk]]ξ[y:=ρA(d)]∈ [[τk]]η, again by induction.
• The derivation ends with:

(ω)
E � aA

(E � Γ)
Γ � aA :ω

Since E � aA, [[aA]]ξ is well defined: then the thesis holds trivially as [[ω]]η = D.
• The derivation ends with:

(∧I)
Γ � aB :σ Γ � aB :τ

Γ � aB :σ∧τ

ICTCS’03, LNCS 2841, pp 202-215, 2003 10

By induction both [[aA]]ξ∈ [[σ]]η and [[aA]]ξ∈ [[τ]]η, therefore [[aA]]ξ∈ [[σ]]η ∩ [[τ]]η = [[σ∧τ]]η.
• The derivation ends with:

(≤) Γ � aA :σ σ ≤ τ

Γ � aA :τ

By induction [[aA]]ξ∈ [[σ]]η; the thesis follows since [[σ]]η ⊆ [[τ]]η by Proposition 3.3.

3.2 The filter model

Definition 3.11 A filter of predicates is a subset F ⊆ L of predicates such that:
i) ω∈F,

ii) if σ,τ∈F then σ∧τ ∈ F,
iii) if σ∈F and σ ≤ τ then τ∈F.

Let F be the set of all filters of predicates.

A filter is principal if it is of the form {τ | σ ≤ τ}, which we denote by ↑σ (the upset of σ).
As is known from the literature (see e.g. [11]), F is a λ-model, where continuous functions,
that is mappings f : F → F such that f (F) =

⋃
σ∈ F f (↑σ), are representable by the filters

Ψ(f) = {σ→τ | τ∈ f (↑σ)}
and functional application is defined by:

FG = {τ | ∃σ∈G . σ→τ∈F}.
Moreover, F is a solution of the domain equation (1), hence it is a model of the type-free ς-
calculus. In the next proposition we spell out the details of the definitions of record selection
and record update operations over filters.

Proposition 3.12 The following operations on filters interpret the record constant and operations, turn-
ing F into an untyped ς-model:

i) emp = ↑〈·〉;
ii) F · �i = {σ | 〈�i : σ〉∈F};

iii) (F · �i := G) = {〈�j : σj
j∈ J〉 | (j �= i&〈�j : σ〉∈F) ∨ (j = i&σi∈G)}.

Proof: The equations of Definition 3.1 are checked by straightforward calculations.

We remark that all the operations above, as well as functional composition, are continuous
in their arguments which are filters.

Proposition 3.13 [[σ]]η = {F∈F | σ∈F} is a predicate interpretation that satisfies all clauses in Defi-
nition 3.2. Moreover, if η(κ) ⊆ [[K]] whenever κ∈LK, then [[σ]]η ⊆ [[A]] if σ∈LA.

In the following, if X is a variable ranging over filters and e[X] an expression denoting a
filter such that the function λX.e[X] is continuous, then we abuse notation writing λX.e[X] for
Ψ(λX.e[X]).

Lemma 3.14 The family {ρA}A where ρA(F) = F ∩ LA, is a family of retractions turning F into a
retraction model.

Proof: We check that F∩LA = 〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉. Observe that σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ L

ICTCS’03, LNCS 2841, pp 202-215, 2003 11

if and only if σ = 〈�j :
∧

α→β j∈J〉, where J ⊆ I and β∈ (F · �i)(↑α ∩LA) ∩LBj for each α→β in∧
α→β and j∈ J. On the other hand β∈ (F · �i)(↑α∩LA)∩LBj if and only if 〈�j : α′→β〉∈F∩LA

for some α′ ∈↑α ∩ LA.
Now, if σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi

i∈I〉 then 〈�j :
∧

α′→β j∈J〉∈F∩LA and 〈�j :
∧

α′→β j∈J〉 ≤
〈�j :

∧
α→β j∈J〉 = σ which is then in F ∩ LA.

Vice versa, if σ∈F ∩ LA then σ = 〈�j :
∧

γ→δ j∈J〉 ≥ 〈�j :
∧

α→β j∈J〉 for some J ⊆ I, α∈LA,
β∈LBj . This implies that

∧
α→β ≤ γ→δ for each j∈ J and γ→δ in

∧
γ→δ. This is true if and

only if
∧

Y≤ δ where Y = {β | α∈X} and X = {α | α≥ γ}. It follows that
∧

α→β≤∧
X→∧

Y≤
γ→δ; since X ⊆ ↑γ ∩ LA and both filters and languages are closed under finite intersections,∧

X∈↑γ∩LA, which implies δ∈(F · �j)(↑γ∩LA): now σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉

follows.

Theorem 3.15 For all aA such that E � aA, for some E, and all environment ξ such that ξ |= E:

[[aA]]Fξ = {σ | ∃Γ. ξ |= Γ & Γ � aA :σ}.
Proof: (⊇): (F ,{ρA}A) is a retraction model by Lemma 3.14 and therefore, by Theorem 3.10,
if ξ |= Γ and Γ � aA :σ then [[aA]]ξ∈ [[σ]]η, so that σ∈ [[aA]]ξ by definition of [[σ]]η .
(⊆): by induction over aA.

(xA) : if σ∈ [[xA]]Fξ = ξ(xA) ⊆ LA, then {xA:σ} is a well formed context, ξ |= {xA :σ} and
{xA :σ} � xA :σ by (Var).
A] if

σ∈ [[aA]]Fξ = 〈�i = λX.[[bBi
i]]Fξ[xi :=X∩LA]

∩ LBi
i∈I〉,

then σ = 〈�j :
∧

α→β j∈J〉∈LA for some J ⊆ I, where β∈ [[bBj
j]]Fξ[xj :=↑α∩LA]

∩ LBj . By induc-

tion hypothesis for each j∈ J there exists Γj such that ξ[xj := ↑α∩LA] |= Γj and Γj, � b
Bj
j : β:

this implies that xAj :α′ ∈Γj for some α′ ∈↑α ∩ LA. Since this holds for all j∈ J, while
clearly Γk � bBk

k :ω for all k∈ I \ J, we derive Γ′ � aA :〈�j :
∧

α′→β〉 by (ValObject), where
Γ′ = Γ \ xA

j : α for any j∈ J. Now α′ ≥ α which implies
∧

α′→β ≤A
∧

α→β and we are
done.

((aA.�i)
Bi) : if τ∈ [[(aA.�i)

Bi]]Fξ = ([[aA]]Fξ · �i)[[aA]]Fξ then there exist σ∈ [[aA]]Fξ such that 〈�i : σ→τ〉∈ [[aA]]Fξ .
By induction there are Γ0, Γ1 such that ξ |= Γi for i = 0,1, and Γ0 � aA :〈�i : σ→τ〉 and
Γ1 � aA :σ: it follows that Γ = Γ0∧Γ1 is a well formed context such that ξ |= Γ, and that
Γ � aA : 〈�i : σ→τ〉 and Γ � aA :σ. The thesis follows by (ValSelect).

((aA.�i↼↽ς(xA)bBi)A) : if

τ∈ [[(aA.�i↼↽ς(xA)bBi)A]]Fξ = [[aA]]Fξ · �i := λX.[[bBi]]Fξ[x:=X∩LA]
∩ LBi ,

then τ = 〈�j :
∧

α→β j∈J〉 for some J ⊆ I: if j �= i then 〈�j :
∧

α→β〉∈ [[aA]]Fξ , which by
induction implies that Γj � aA :〈�j :

∧
α→β〉 for some Γj such that ξ |= Γj; if j = i then

β∈ [[bBi]]Fξ[x:=↑α∩LA]
∩LBi , hence by induction there exist Γi s.t. ξ |= Γi, xA :α and Γi, xA :α � bBi : β.

Take Γ =
∧

j∈J Γj: then ξ |= Γ and Γ � aA : 〈�j :
∧

α→β〉 and Γ, xA :α � bBi : β, and we con-
clude by (ValUpdate).

Corollary 3.16 (Completeness w.r.t. retraction models) Γ � aA :σ⇐⇒Γ |= aA :σ.

Proof: The ‘only if’ part is Theorem 3.10. For the ‘if part’ define the term environment ξΓ(xB) =

ICTCS’03, LNCS 2841, pp 202-215, 2003 12

↑ τ if xB :τ ∈ Γ, ↑ ω if x does not occur in Γ: then ξΓ |= Γ, hence σ ∈ [[aA]]FξΓ
. By Theorem 3.15

there exists Γ′ such that ξΓ |= Γ′ and Γ′ � aA :σ. Now if ξΓ |= Γ′ then ξΓ(xB) ∈ [[τ′]]η (for any
η consistent with the type interpretation) when xB :τ′ ∈ Γ′; this implies that τ′ ∈ ξΓ(xB) = ↑ τ,
and xB :τ ∈ Γ: we conclude that Γ ≤ Γ′, hence Γ � aA :σ by Lemma 2.8.

4 Conclusions and further work

We have shown that an assignment system of predicates (essentially of intersection types)
to typed terms of the object calculus OB1 induces a sound and complete semantics with
respect to a family of models of the ς-calculus using the range of a family of retractions as the
interpretation of types. This is a logical semantics, since a retraction model can be constructed
in which the denotation of a term coincides with the set (namely the filter) of predicates that
can be derived for it in the system.

It remains to be seen how retraction models extend to cope with subtyping and bounded
quantification, to model the full ς-calculus. It should be also investigated the relation of
retraction models to PER models, which are used in [1] to model the calculus, e.g. along the
lines of [13]. This will be the topic of further research.

Acknowledgments

The final version of the paper profited of careful readings and remarks by anonymous referees.

References

[1] M. Abadi, L. Cardelli, A Theory of Objects, Springer 1996.
[2] M. Abadi, G.D. Plotkin, “A Per Model of Polymorphism and Recursive Types”, proc. of IEEE-LICS

1990, 3355-365.
[3] S. Abramsky, “Observation Equivalence and Testing Equivalence”, Theoretical Computer Science 53,

225–241, 1987.
[4] S. Abramsky, “Domain Theory in Logical Form”, APAL 51, 1991, 1-77.
[5] R. Amadio, “Recursion over Realizability Structures”, Info. Comp. 91, 1991, 55-85. Theoretical Com-

puter Science, 102(1):135–163, 1992.
[6] S. van Bakel. “Intersection Type Assignment Systems”, Theoretical Computer Science, 151(2):385–435,

1995.
[7] H.P. Barendregt, M. Coppo, M. Dezani, “A Filter Lambda Model and the Completeness of Type

Assignment”, JSL 48, 1983, 931-940.
[8] K.B. Bruce, J.C. Mitchell, “PER models of subtyping, recursive types and higher-order polymor-

phism”, proc. of ACM-POPL 1992.
[9] F. Cardone, “Relational semantics for recursive types and bounded quantification”, LNCS 372,

1989, 164-178.
[10] M. Coppo, M. Dezani, B. Venneri, “Functional characters of solvable terms”, Grund. der Math., 27,

1981, 45-58.
[11] M. Dezani, E. Giovannetti, U. de’ Liguoro, “Intersection types, λ-models and Böhm trees”, in [19],

45-97.
[12] U. de’Liguoro, “Characterizing convergent terms in object calculi via intersection types”, LNCS

2044, 2001.
[13] U. de’Liguoro, “Subtyping in logical form”, in ITRS’02, volume 70.1 of ENTCS. Elsevier, 2002.
[14] S. Kamin, “Inheritance in Smalltalk-80: a denotational definition”, Proc. of POPL’88, 1988, 80-87.
[15] M. Hennessy, R. Milner, “ Algebraic laws for nondeterminism and concurrency”, J. of ACM 32(1),

137–161, 1985.

ICTCS’03, LNCS 2841, pp 202-215, 2003 13

[16] J.L. Krivine, Lambda-calcul, types et modèles, Masson 1990.
[17] J.C. Mitchell, Foundations for Programming Languages, MIT Press, 1996.
[18] D. Scott, “Data types as lattices”, SIAM J. Comput. 5, n. 3, 1976, 522-587.
[19] M. Takahashi, M. Okada, M. Dezani eds., Theories of Types and Proofs, Mathematical Society of

Japan, vol. 2, 1998.

