Subtyping object and recursive types logically
(Extended Abstract)

Steffen van Bakél Ugo de’Liguor@

! Department of Computing, Imperial College,

180 Queen’s Gate, London SW7 2BZ, UK,
svb@loc. i c. ac. uk

2 Dipartimento di Informatica, Universita di Torino,
Corso Svizzera 185, 10149 Torino, Italy
deli guoro@i .unito.it

Abstract. We study subtyping in first-order object calculi with resptxthe
logical semantics obtained by identifying terms that $atise same set of pre-
dicates, as formalized through an assignment system. hbisrs that equality in
the full first-orders-calculus is modeled by this notion, which is included in a
Morris-style contextual equivalence.

1 Introduction

Subtyping is a prominent feature of type-theoretic fouimaabf object oriented pro-
gramming languages. The basic idea is expressed by sulisamgy piece of code
of type A can masquerade as a code of typevheneverA is a subtype of3, written
A<:B.

In typed calculi, equations are stated amongst terms ofahedype; when terms
may have several types because of subsumption, it is conynpastulated that if
a=0b:AandA<: Bthena = b : B (but not vice-versa): let's call thisquational
subsumptionin the realm of object calculi, object types are essentiaterfaces and
subtypinginterface extensigrtherefore, subsumption is justified by the intuition that
any object which is able to react to messages mentionet anfortiori will answer
correctly to messages in the smaller interfaces represéytés supertypes. Similarly,
equational subsumption is understood on the ground of gbseéparabilitya andb are
contextually equivalent at typé if both are typeable byl and no context with a hole
of type A can distinguish them. This provides an interpretation ditygoing: A<: B
should hold if any pair of terms that are contextually eqlgmbat typeA cannot be
separated at typB.

Semantically this is understood in two ways, according ® éRisting literature
(see [12] Ch. 10 for a gentle introduction to these approsicledther by means of
coercions [6], or by inclusion of partial equivalence riglas ([7, 8] and [1] Ch. 14).
But coercion semantics does not reflect the actual implestientpractice of object-
oriented languages; also, PER semantics is quite complesddor reasoning about
programs, and suffers of technical problems which areciiin.

* Partially supported by the MIKADO project of the IST-FET G Computing Initiative, no
IST-2001-32222

We propose a third approach which, in our view, can lead tonaler logical frame-
work for reasoning about object oriented programs. It iedamn the ideas of logical
semantics and domain logic. In the latter perspective, thamimg of a term is determ-
ined by the set of the predicates it satisfies, so that twodema equivalent if they are
indiscernible. To account for equivalence “at” a certaipetyl we relativize this form
of absolute indiscernibility to sets giredicatesndexed over types, calling thelan-
guagesHencea andb are logically equivalent at typd if they satisfy the same set of
predicates form the language, associated tal.

For equational subsumption to be sound in our frameworls, itdeded that some
relation betweerf 4 andL g exists wheneved <: B. Were we dealing with a calculus
of pure objects, such a relation would be simgly O Lz, and this is clearly enough.
However, since here we consider a richer calculus with fonstand recursive types,
called FOb, ., in [1], this is no longer true in general, and is replaced by @en
complex inclusion relation.

The logical equivalence is indeed the theory of a model. Sugiodel can be ob-
tained by the filter model construction as in [5], with a mooenplex structure due to
the presence of types (see [10] and [4]). Here we leave thesiigation of the model
aside and concentrate on the theory itself, establishiogésults:

1. if -a«<b: Ais derivable in the equational theory of systemb; ..,,, thena and
b are logically equivalent at typ4;

2. two terms logically equivalent at typé are contextually equivalent at the same
type.

The latter result is a consequence of the characterisafieorovergence in terms of
derivability of non-trivial predicates iff 4 much as in the case ofcalculus and inter-
section types (see e.g. [3]). A similar result was provedHertype-free-calculus in

[9].

Because of the limited space available, proofs are pred@mtbe appendix.

1.1 Related work

The present paper follows some previous works by the authd®s 10, 4]. The added

feature of this paper is the treatment of sub-typing of dig@cl recursive types, while
sub-typing polymorphism was considered in [10] foA&alculus with function and

record types only. The idea of using languages to model fyyeeBlter model originates

from [2]: however, in Abramsky’s work the modelling of polymphism was left out.

In this case the predicate languages cannot be disjointeawer, they need to have
a structure reflecting the sub-typing relation, as stresbede, a topic which has not
been addressed in the literature.

The theory of objects in [1] is a natural environment for theeistigation of the
themes we address here; Morris-style contextual equigaléor first-order object cal-
culiis introduced and studied in [11], where systE@b; ., is considered: this is the
reason for the choice of the same calculus in the present.pape

Fig. 1 FragmentsA g UA, UAQpUA_UAxUA,

(Env () : (Type Const) : (Envz) : (Val z) : (Type Rec) :
Elro EFA (x ¢ B) E A E"Fo EXFA
—(z
0o EFK E,x:AFo E A E'v2:A EFuX.A
(Type Object) : (Type Arrow) : (Env X) : (Type X) :
E+-B, (Viel) E+A EF+B Ero (X ¢) E X,E'Fo
Er[:B; "Dl Ev A-B E,XFo E X, E'FX

We omit rules(Val Object),(Val Select),(Val Fun), (Val Appl), (Val Fold), and(Val Unfold),
since these can be easily constructed from the rules in &@ur

2 The systenFob; .,

To keep the present exposition self-contained, we recalldgfinition of the system
FOb; ., of [1]. As usual for polymorphic calculi, we will introducge and term
syntax in two steps: first by defining type expressions (ppe4) and pre-terms, namely
terms decorated by pre-types; types and terms are thendéfigether with the the type
derivation system as well-formed pre-types and well-typesiterms respectively.

Definition 1 (Pre-types and Pre-terms). Let K be a set of type constants, ranged over
by K, andV a set of type-variables, ranged over Ky {¢; | i€ N} a denumerable set
of labels I, J finite subsets ofN. The set oftypes7, ranged over by, B, C, ... is
defined by the following grammar:

AB:=K|X|[li:B; C€D]| A-»B | uX.A

The pre-terms oFOb, .., are defined through the following grammar, whemanges
over constants:

a,bu=x || xta|a®d)| [l = c(x)b; CED] | a.l |
a.l&=¢(xz)b | fold(A, a) | unfold(a)

A type expression of the shap&:B; (“<7)] is used for an object typed— B is
the usual functional type andX . A is a recursive type: in the latter the type-varialile
is bound inA. In the expressions(z*)b and \z4.b, = is bound inb; free and bound
variables are defined as usual. Types and pre-terms aredeoagiequal module:-
conversion, i.e. up to renaming of bound variables.

In [1] the system is defined as the union of several fragmevitgsh we subdivide
into two parts; the first one concerns contexts, types amastéormatior:

3 As in [1], we will use a short-hand for rules, and write for eyale (wherel = {1,...,n})
E,Z‘Z':A }—2 bi:Bi (VZEI) E,:EllA I—E bllBl E,l?n:A }—2 bn:Bn
- or _
Ebs [t =cxMb; C€D):A Ebs [t =zt “€D:A

Fig. 2FragmentsA.. UA _ opUA«. UAx UA,,.

(Sub Refl) : (Sub Trans) : (Val Subsumption) :
EFA EFrHA<:B EFB<:C EtraA EFA<:B

EFA<A EFA<C EraB

(Type Top) : (Sub Top) : (Sub Object) :
Eto EFA EFB;, (Viel)
eI i€ J (ng)
E + Top Er+ A<:Top Er [6i:B; 'S 7] <: [0i:B; " &)
(Sub Arrow) : (Env X <) : (Type X<:) :
E+-A'<tA E+B<:B E+A E' X<:AE'Fo
5 T x o Ao (X ¢ dom(E) ; 7
EFE+A—-B<:A—B E,X<:AFo EF X<:AE'FX
(Sub X) : (Type Rec<:) :
E' X< AE"Fo E,X<:Tophk A
E X<:AE'FX<A EFuX.A

(Sub Rec) :
E+ruXA EFuY.B EY<:TopX<:YFA<B

EtruX A< uY.B

Definition 2. 1. A contexffor a type judgementis just a finite setof type-decorated
variables, of the shape A, and we writer € F if there existsA suchthatr:A € F.
2. The systemA\ g UA, UAQpUA_UAxUA, is given in Figure 1.
3. Fis awell-formed contexf E | ¢ is derivable, andi is a type fora if there exists
E with E + a:A.

The second one is about sub-typing:

Definition 3. The systemA_.UA_.opUA...UA .xUAL., can be found in Fig-
ure 2.

It is understood that such unions produce a set of inductaeses generating a
unique system where contexts and types in the rules fromrdtepfart can be formed
according to the rules of the second part and vice-versaglibalso a certain redund-
ancy: the contextr, X is the same a#’, X <: Top. In what follows we will use the
generic notation {- < -} for substitution both of type-variables by type expression
and of term-variables by terms, implicitly replacing allcacrences of the first para-
meter of{- — -} by the second in the preceding expression; as usual thecespénts
occur up ton-congruence to avoid variable clashes.

Definition 4 (Reduction). Evaluating contextsire term expressions with a hdlé,
and are generated by the grammar:

£ v=_| €Ll | ELJ-b=c(x™)b | £[](a) | unfold(E]]) | fold(A, EL]).

We will write £[a] for the replacement afby a in €.

The one-step reduction relatioan terms is the binary relation defined by the fol-
lowing rules:

[glfg(“)b; (zeI)] — bi{z; [l 7§(b (zeI)]}
16 = ()b, CEDLE (o A) (6 = (@b = ()]
()\x a)(b) — a{x—b}
unfold(fold(X,a)) — a
a — b = Ela] — &[]

The relation— is the reflexive and transitive closure ofs .

The one-step reduction is from [11]. In [1], Ch. 6 the openadil semantics of the
object calculi is defined by means of a big-step predieate v, whereq is a closed
term,v is avalueas it is defined by the grammar:

vu=c| Axta | [Gic(x)b; €] | fold(A, v).

Itis easy to see that~ v if and only ifa« — v. The reduction relation is more general
since it is defined for any term (possibly with free variabtewrences); it is even true

that normal forms are not necessarily values. However &y €0 adapt the arguments
in [1] to establish the following theorem:

Theorem 5 (Subject reduction property ofFOb; ..,). If £+ a:A is derivable in the
systemFOb, .., anda — b, thenE - b:A is derivable as well.

We just stress that, consistently with the definition-efin [1], in the clause:
[0 = o(x)b; CEDLL =g — [l = ¢(z)b €N 0 = ¢(x9)b)]

arenaming of the self type of the bound variabfeinto 247 occurs. This is immaterial

in the fragments of the-calculus without sub-typing, but it is needed in the presen
of rule (Val Subsumption) since if A = [¢;:B;€!], and A <: C, then we can give type
C' to any term of typed and therefore update a method in an object of typwith
s(z)b; but the result of (naively) performing the update saving $klf typeC is no
longer typeable, as theelvesof the methods now have different types, so that rule
(Val Object) will not apply.

The reduction relation is trivially confluent. Even relagiDefinition 4 and taking
the closure of — under arbitrary contexts would not destroy confluence, asbea
shown e.g. by adapting the Martin-Lof technique for pravihe Church-Rosser the-
orem for thel-calculus. As for typed\-calculi with recursion (e.g. PCF), typed terms
do not necessarily have a normal forfg = [¢ = ¢(z4)x.¢].¢ is typeable byB if A
is any object typé/: B, ..], and itis such tha@p — 5.

3 Predicates and assignment

In this section we will introduce the syntax of the predisaé@d an assignment sys-
tem to syntactically derive judgements associating pegdgto typed terms under the
assumption of similar judgements about a finite set of tyfthbles.

Predicates are transparently intersection types farcalculus with records, and
come from [9]. The essential difference is that the set oflipages is stratified into
languages (see [10, 4]), in such a way that whenever a ptediea be deduced for a
terma, it belongs to the languag®&, associated witt.

Much in the style of [3], in this section we will present a rootiof strict intersec-
tion types calledstrict predicateshere; this is a technical choice and a departure from
[4], making the proof theory of the system more manageahthpwt loss of expressiv-
ity. Using these, we will define a notion pfedicate assignmenivhich will consists
basically of associating a predicate to a typed term.

Definition 6 (Predicates). Ps, the set oftrict predicatesand the seP of intersection
predicatesboth ranged over by, 7, . . ., are defined through:

K| (P — Ps) | (&:Ps) | u(Ps)
(PsiA...APsy) (n>0)

Ps
P

wherex ranges over a countable set of atoms. We will weitéor an intersection of
zero strict types, and write,,o; for o1A ... Aoy, Where we assume that eaghe Ps.
Also, rather thar{¢:o1)A - - - A(l:0y,) we will write (¢:a1A - - - Aoy,) OF (£:An0;), Where
n = {1,...,n}; also, rather thari¢;:01)A - - - A(£,:0,,) Where thel; are distinct, we
will write (¢;:0;°€2) or (£;:0; (€D,

Atomic predicates: are intended to describe elements of atomic type in the do-
main of interpretationy— 7 is the property of functions sending element satisfying
into elements satisfying; (¢:0) is the property of records having values that satisfy
o associated with the fielél Predicates) andoAT mean truth’ and ‘conjunctionre-
spectively. It should be noted that arbitrary intersecpoadicates like(c—7)A{¢:p)
are allowed by the above definition.

To build a logic of predicates we need a notion of implicatierittenc < 7, which
is a reflexive and transitive relation on predicates, defivdw.

Definition 7 (Predicate pre-order). On predicates a pre-orderis inductively defined
by:

<o, .
i(VignzO) — (Vi<n>1)
0 < Apoj 2

p<Lo T c<7<p o<T o<T

o—r<pop o<p (Lo)<(T) (o)< p(r)
Finallyo = 7 <= 0 <7 <0. A predicate is calletrivial if it is equivalent tow.

Lemma 8. The following rules are admissible

Pk = ORNTk, if kelInd,

0o SN (0 €7y < (U pr, FETU DY where q o = o, TheIN,
(o Y A (Lo ST) < (Cepr) op =10, ifkeJ\I
Jcn

<€i:0—i (iEI)>S<£j:O_ijJ> -

Lemma 9. (£;:0;' €Y A (0;:77€7) = (b:pr, FETYD), providedo; = 7; fori € TN J.

Although predicates are basically properties of untypedsgresulting from typed
terms essentially by erasing type decorations), typestte elevant in the equational
theory of theFOb; .., calculus; this was accounted for in [10, 4] by means of theonot
of predicate languagesvhose definition easily extends to the present richer gynta

Definition 10 (Languages). The set of all predicateSis stratified into afamily{£ 4} ,
of sets of predicates calldanguagesindexed over closed types such that:

1. for everyk, there existexactly onek € K such thak € L;
2. L, isthe least set (including atomsAf = K) such that

€L Vie el
oicly (Vien) (n>0) o€ly TELp TELAX —iux.A) (cePy)

Anoi €LA c—=TELA B H’(U)G‘CHX~A

(oS £A—>Bj

m (A = [ng»L (iel)],jEI,O'EPs)
j-

The intuition behind languages is the following. Properiie’ 4 give some inform-
ation about values of typ4; to be a value of typel should then imply to enjoy at least
a non-trivial property in 4. That two values are logically equivalent at tydemeans
that they satisfy the same set of properties in that Ianglmmsistently,CTop is the set
of trivial types. A natural question is whether there exételation between languages
and the sub-typing relation, which is partly answered inftilewing proposition, for
which we need to introduce the following definition.

Definition 11 (Language extension). We say thatC 5 is anextension ofL 4 (written
LA T Lp),ifandonlyifVo € L4371 € L. o < 71,andVT € Lo € L4. 0 < T.

Proposition 12.Let A and B be closed type expressions not including recursion and
such that+ A<: B then:

1. if AandB are object types thefiz C L4;
2. if AandB are arrow types thefiy C! L.

The relationC? is Egli-Milner pre-order of (arbitrary) sets of predicatgnerated
by <. Note that, sincev € Lp for any B (taken = 0 in the rule about intersection in
Definition 10) andr < w for all o, we have thaz C £, implies£4 C% Lp.

The proof of Proposition 12 is by induction on the derivatidri- A <: B and does
not need to take the context into account at any step becétise assumptions (this is
no longer true when recursive types are considered).

Definition 13. A mapn from type-variablesto closed types is calldglge-environment
For E a well-formed context, we say thatespects the conteg ifforany X <: A €
(if X € Ethenitis read as{ <: Top € FE) itis the case thaL, x, Ct L4y, where
n(A) is the value of application td of the obvious extension ofto the set of types.

Fig. 3 Predicate Assignment

(val z) - (<1:ﬂ); B:o T'FB<:C
——— (©:Bitel7<o0) @50 < cr
I't@:B:o I'FaC:o (e€Le)
(Val Fun) : (Val Appl) :
I'z:Ait-a:B:o I'ra:A—B:t—o I'FbA:T
I'txx?.a:A—B:1—0 I'a(b):B:o
(Val Fold) : (Val Unfold) :
I'-a:A{X —uX.A}:o I'auX.A:p(o)
I'fold(uX. A, a):uX.A:p(o) I' - unfold(a): A{X — uX.A}:0
(Val Select) : (Val Object) :
I'ta:A:{ljit—o) TI'FaA:r Iz Ay F bi:Biioy (Viel) Gen
- S
I'-ad;:Bj:o I'v 6= o(z)bs (ZEI)]:A: (lj:m5—0j) J
(Val Update,) : (Val Update,) :
I'Fa:A:oc I,y A:pkFbBj:T I'ta:A:{ljio) I,y:Aipbb:Bj:T £)
TF (al; =< (y)b):A: (L;p—7) TF (al; =<(y)b):A: (£;:0) J
EFa:B I'+a:B:o; (Vien)
—(E<D) (n>1)
I'FaB:w I'-a:B: Ao

A = [6::B; “€D]in rules(Val Select), (Val Object), (Val Update,), and(Val Update,).

Theorem 14. If E+ A<: B, then for any type-environmenthat respects we have
Lya) B L)

We are now in place to introduce the main tool of the presenkweamely the
predicate assignment system. It is a formal system to dardgements of the form
a:A:o0, whose intended meaning is: the denotation afatisfies the property when
seen as a value of typé (here a “value” could be the undefined object in the domain
of interpretation: we shall see that in such a cases to be trivial).

Definition 15 (Statements, bases, compatibility). 1. A statemenis an expression
of the shape::A: 0, wherea is a term,A is a type fora, ando is a predicateq is
called thesubjectof this statement.

2. AbasisI is a finite set of statements with only (distinct) term-vhlés as subject.

3. Forabasig’, we say thatZ fits intoI”, written E< ", if x: A:o € " impliesxz: A€ E.
We write I” for the largest context that fits into.

4. We say that two basd$, I} arecompatibleif there exists a context’ including
all variables occurring in bothy and 7, fitting into both of them.

5. We say that" preserves languages o € £, 1) Wheneverz:A:c€ 1" andn is a
type-environment respecting.

6. We extend< to bases byZ” < I' if and only if for everyx:A:oc € I" there exists
x:A:0’ e I such that’ < o.

Definition 16 (Predicate Assignment). Thepredicate assignment systéorderive judge-
ments of the forml" + a: B:o wherel is a basis preserving languagesa term,A a
type ands a predicate is defined in Figure 3.

Lemma1l7. 1. Therules

I'a:Aio o< I'Fa:Aio o<t THA<:B
and (r € Lp)
I'a:A:r I'ta:B:T

are admissible.
2. fI'Fa:A, I'- A<: B and I' - a:B: 7, then there exists € L(A) such that
c<rtandl't a:A:o.

4 Subject Reduction and Expansion

A minimal requirement for soundness of the assignment systethat predicates are
invariant under reduction. This is established througHalewing result.

Theorem 18 (Subject Reduction). If I't+a:A:p,anda — o', thenl"Fa':A:p.

Example 19.To better appreciate the importance of this standard rasthe present
setting, we review an example given in [4].

Suppose thal = [(:Int, £1:Int] anda = [¢y = ¢(z?)1, 41 = s(x™)x.4o] (using a
constantl of typelnt), so that inFOb, ., we havet a:A. Then

(Val z) (w)
z:A:(lo:w—0) F z:A: (ly:w—0O) z:A:{(lo:w—0) F z:A:w
(Val Select)

z:Aww F 1:nt: O 2:A:(o:w—0) F z.4p:Int: O
Fa:A: {ly:w—0, l1:(£o:w—0)—0)

(Val Object, Al)

where(y is a field,/; is the methodyet /o, andO € L)t is the predicate of being
anoddinteger. Using rule$val Update,), (Val Update,) and(Al) one can derive (the
seemingly incorrect):

Fa:A:(ly:w—0, l1:(ly:w—0)—0) y:Aw F 2:nt:E
F (alo=s(y™)2):A: (Lo:w—E, l1:(fy:w—0)—0)

whereE € Lt is the predicate of being agveninteger. This makes sense, how-
ever, since it simply states that if the value/gis an odd integer, then the methéd
will return an odd integer; it also states that this is vaalptrue of the actual object
a.lo=¢(y?)2, since it has an even integerfat As a consequence of Theorem 18 we
also know that this is harmless: indegd/, = (y*)2).t; — 2 and we clearly as-
sume that/ 2:Int : O, so by contrapositioft (a.lo<¢(y*)2).4;:Int : O. As a matter
of fact, rule {al Select) is not applicable, sincg (a.fo&=(y?)2):A : (£y:w—0).

On the other hand, the following odd-looking assignmengggl as well, this time
by rule (val Object) and(Al):

x:A:{ly:w—E) F x:A: ({y:w—E) x:A:{ly:w—E) Fx:A:w
r:A:w - 1:Int: O x:A:{lg:w—E) b (x.4y):Int: E
at A:{ly:w—0, ly:(ly:w—E)—E)

In the last case, however, the apparently odd predicate deocgds of use to con-
clude as before:

Fa:A: (y:w—0,¥¢:(ly:w—E)—E) y:Aw b 2:nt: E
(a.lo=c(y™)2) F A:(ly:w—E, {1:({y:w—E)—E)

which is what we expected.

The invariant property of predicates w.r.t. reductionisisger as they are preserved
even by expansion, as is the case for standard intersegfierassignment systems (see
e.g. [5, 3]). However, we have to be careful, since the sinypgdA-calculus is a sub-
calculus ofFOb; ., for which it is known that subject expansion does not haidatt,
we can prove- (A\zA74 z)(Azt .2):A— A o—o, butl Y yy{y «— (A€ .2)}: A=A -
o—0, since there is no way to derive a type fgr for any choice of” andC.

But subject expansion does hold for predicates wheneverthta case for types,
and this suffices for giving semantics to typed terms coastht with the restriction of
convertibility relation to terms of the same type.

Theorem 20 (Subject Expansion). If '+ a:A:7, anda’ is such thatl" - a’:A and
a — a,then'Fa:A:T.

5 The logical equivalence

The predicate assignment system of Definition 16 inducegiadbnotion of equival-
ence, according to whickh andb are equal atd if they can be assigned the same set
of predicates fronC 4. By extending this notion to open terms, we get the following
definition.

Definition 21 (Logical Equivalence). 1. Leta andb be terms such thdf - a: A and
E+ b:A; we define

la:A]l, ={c€La] ArT=E & I'Fa:A:o}.
2. a andb arelogically equivalent atd and environmenE (a ~% b : A) if

EraA EFbAand[a:A]; = [b:A] 5.

10

Fig.4 The equation system_ UA_, UA__. UA__ UA_ogpU A_,

(Eval Beta) : (Eq Subsumption) : (Eq Top) :
EF A z?b:A—B EFa:A Eta—d:A E-A<:B FEtraA EFbB

EF (\z?b)(a) = b{z«a}: B EFa—d:B EFa<b:Top

(Eq Select) : (Eq Update) whereA = [¢;:B; (€D :
El—a<—>a’:[£¢:B¢i€I](b N Eta—d:A E,xzAFbeb : B,
€
EVval;—ad.l:B;j J Ebalj=cz™b—d Li=cx™) : A

Gel

(Eq Sub Object) whereI N J =0, A= [¢;:B; ‘€], A’ = [£;:B; "€1°7] .

E,Z‘Z':A Fb;:B; (VZ c I) E7 :Ej:A/ = bj:Bj (V] S J)
EF [l =cxMb; CSD) o[l = o(z)b €1V7) A

(Eval Select) whereI N J = 0, A = [(;:B; *€'], A’ = [0;:B; €™V, a = [t; = o(2)bi 7] :
EraA

EFG/[J' <—>bj{xj<—|a} : Bj

(el

(Eval Update) whereI N J = 0, A = [6;:B; 7], A’ = [6;:B; *€7°7], a = [t; = <(a)b; €] :
EtraA E,x:AlF b:B; Ged
; ‘ , - €
EF al; =z)b [l; = o(zX)b, li = o(z)b CEIONGD]. 4V
With respect to the original system [1], we have omitted thei@us rules, like(Eq Appl), as
well as the extensionality rules (call¢Bval Eta) and(Eval Fold), respectively)

Notice that, if the basig” respects languages, the requirement L4 in the above
definition is clearly redundant.

Logical equivalence is the theory of a model built out of peates, where the de-
notation of a term is exactly the set of its properties: it ftiter model It can be
constructed along the lines of [4], even if the type intetg@tion cannot be the same, be-
cause retractions do not model sub-typing. We leave thisshiyation to further study,
and concentrate here on the properties of logical equigalen

Definition 22. Equivalence among terms Bbb; .., is defined via a system deriving
statements of the shape— b : A, meaning that terms andb are equal at typel; the
systemA_ U A_, UA-.. UA__, UA_gpU A—, is shown in Figure 4.

This notion includes (typed) convertibility but it does matincide with it: in fact,
‘'’ is a congruence whereas— ' is not closed under arbitrary contexts; more im-
portantly, this is a consequence of sub-typing and precisktule (Eq Sub Object)
(see the next example). Therefore, from the subject resluetnd expansion theorems
it does not follow that equality implies logical equivalenc

Example 23.Consider the terms (wheté = [¢y:Int, £;:Int])

a=[lo =z, 0 =c(z)1],b = [lo = s(x)1, 61 = c(xH)z.4o].

11

In[1], Section 7.6.2 it is argued thatandb cannot be equated 4t Indeed, they are not
logically equivalent atd since, if we assume thatis the predicate expressing the prop-
erty of “being the number 1" (s € Ljnt, and F 1:Int: 1), then - a:A: (¢1:w — 1)
butt/ b:A:(¢;:w — 1). Indeed (omitting some parts of the derivation for readahil

z1:A:w bk Lint:1
FaA:(l:w—1)

(Val Object)

Replacingz: by b would not yield a valid derivation. The best we can dots instead:

x1:A:(lp:w—1) F a1: A (lg:w—1) x1:A:{lpw—1) F xp:Aiw
x1:A:(lp:w—1) F 21 Lo:Int: 1
Fb:A:(l:(lg:w—1)—1)

(val Select)

(Val Object)

To express this in natural language, what we have proveaisthh value of: on calling
method/; is 1, and that this is a “field”, in that it does not depend on othatgpofa;
on the other hand, fdrthe value returned bg; depends on the actual value#fin b:
the predicaté/;:(¢y:w—1)—1) expresses this.

However, in [1] paragraph 8.4.2 is observed that the equaliti — b : [{:Int] is
derivable since both

Fllo =s(zd)]«a:[le:Int] and [y =c(zf)1] b [fo:Ing]

can be obtained by ruléEq Sub Object); this clearly shows that<’ is not convert-
ibility, since a, b and[¢, = ¢(zF)1] are distinct normal forms and the reduction is
confluent.

In our setting, we can show thatzqf b : [¢p:Int] as well, and this is the effect of
restricting to the languagé, |ny; in fact, the only non-trivial predicates ifi;, |y
that we can derive for eitheror b are({y:w—1) (or greater than this w.r.x).

Theorem 14 is first evidence of the consistency of the prégliaasignment sys-
tem with respect to the sub-typing relation. It is howeverr erough, and we need to
establish the following.

Corollary 24. Ifa ~%£b: AandE - A<: B thena ~%b: B.

We conclude this section by showing that equalityf®b; ., System implies lo-
gical equivalence, proving that what we have seen in the Bi@@8 actually holds in
general.

Theorem 25.If E+a«b: Athena ~% b: A.

6 Observational semantics and adequacy

Observational semantics fé0b; .., has been defined in [11] in Morris-style, called
there “contextual equivalence”. In the same paper it haa bbBewn that this coincides

12

with a notion of bisimulation which is stronger thar'. We will adopt a slightly more
general definition (we will writex” for a closed terna such that- a:A).

Definition 26 (Convergence). Given any (well formed) closed term”, it converges
to valuev (a |} v), if a = v. Moreovera? is convergenta }) if there exists a value
such that: |} v, and isdivergent(a f}) if not a })

We will write _: A - C[_]: B to express that the closed conté}t] is well typed with
type B, under the assumption that the “halédnas typeA; Cla] is the result of replacing
JbyainCL.

Definition 27 (Observational Equivalence). Two closed termg andb are calledb-
servationally equivalent at typd, written ¢ ~9 b, if both ¢ andb*, and for any
ground typeK and valuevk it is the case:

VC[].(2AFC[):K = Cla]{v <= C[b]{v.

This differs from the definition of contextual equivalencg11] in some respect.
First, we consider contexts of any ground type as an “expartfn moreover, we do
not consider reduction rules for constants as “if then glas’a consequence we cannot
discriminate between different constants likee andfalse It is for that reason that we
use in Definition 21 the predicate|} v instead ofa .

We claim that, when restricted to closed terms, logical egjance is included in
observational equivalence. To this aim we establish anwatggresult of the logical
semantics w.r.t. convergence, by means of a realizabiligrpretation of predicates,
proving that the characterisation results of [9] are pnesgbin the typed context of the
calculusFOb; <. .

Definition 28. The set of labels ofi is defined ad.abelA) = {¢; | i € I} only for
A=[t;:A; C€D];itis empty in all other cases.

If a** for some object type, ¢; € LabelA) anda || [¢; = ¢(x*)b; €], then, for
anyc?, a.f(c) abbreviate$;{z; < c}.

Definition 29 (Realizability Interpretation). The realizability interpretationof the
predicater is a set]o] of closed terms defined by induction over the structure of pre
dicates as follows:

1. [x] = {a" | K € LK},

2. [o—7] = {a*~8 | Jx,b. a | MzA.b) & Vet € [o]. b{z e} € [7]},
3. [(t:o—7)] = {a? | a| & ¢ € LabelA) & Vet € [o]. a.l(c) € [r]},
4. [u(o)] = {a"X4 | a = fold(uX . A, b) & bagx i ux.ay € [0]},

5. [w] = {a? | Aisatypg,

6. [ont] = [o] N [r].

The next Lemma states that, for amy[o] is closed under reduction and expansion.

Lemma 30. If a* € [o] then for any?, if a — b or b — a thenb? € [o].

13

Lemma 31. If o < 7 then[o] C [7].

Theorem 32 (Realizability theorem). Let} be any, andi be the effect of applying
9 to a (with usual conventions to avoid free and bound variablshea) . Ifl" - a:A: o
and for allz: B:7 € I' it is the case that(z) € [7], thena?d € [o].

It is easily seen that valuascan be assigned non-trivial predicates, so thi
implies that the same predicates can be derived:fbecause of Theorem 20; on the
other hand a straightforward induction shows thati§ non-trivial, then any:* € [o]
converges: by this and Theorem 32 we obtain a proof of theviatig corollary.

Corollary 33 (Characterization of convergencel.et a” be any closed term: then|.
if and only if F a:A:o for some non-triviab.

Theorem 34 (Logical Equivalence and Observational Equivance). Suppose that for
any valuev of ground typeK” we have exactly one non-trivial predicatg € L, that
these predicates are distinct for different values andthatK : x,, is assumed for each
v. Then for anya” andbg, if a ~* b : A thena ~9 b.

7 Concluding remarks

By using bisimulation and its coincidence with observagiocgguivalence, in [11] was
shown that, taking andb as in Example 23 :[%‘lm] b. This is intuitively clear: the

only way to separate from b is to change the value df), since then the fact that/,
depends on such a value while¢/; does not, becomes apparent; but the overriding of
£y is inhibited in contexts with the hole of typé :Int], where(, is hidden.

It is not true, however, that ~* b : [¢;:Int], because the predicaté, :w—1) is in
ﬁ[él:lnt]’ it is derivable fore even at typg/; :Int] but cannot be derived férat any type.

That language inclusion is not sufficient to account for sybng of object types,
while it is for record types (see [10]) is the essential reafaw the presence of rule
(Val Select) in our system. It is reasonable to think that the failure afieglencies like
a ~* b : [¢1:Int] from Example 23 depends on the fact that no rule accountshéor t
hiding effect of sub-typing in the case of object types. Oasgbility for coping with
such a limitation is the following rule:

Iﬂ J = (Z), A = [Esz iEIU']], AI = [Esz iEJ]7 <£T—>p> (S EA/ .
I'Fa:A:(b:(li:o; STYWAT—p TFa:A:{l;:0; '€
't a:A":(:r—p)

This rule formalises the idea that wheh<: A’ and A and A’ are object types, the
methods of any object of typé not mentioned imd’ are hidden: therefore if satisfies
the premise of any arrow predicate concerning the hiddet) {hés will never change
in contexts of typed’, in such a way that the latter premise can be dischargedtiZlea
with reference to Example 23, by this rule one can defive[¢;:Int] : (¢1:w—1), which
makesz andb logically indiscernible at typ& :Int].

The soundness with respect to observational equivalentte aystem resulting by
adding such a rule to the predicate assignment system carobedpby means of a

modified realizability interpretation of predicates, butlse time of writing we do not
know to what extent it actually solves the problem.

14

References

1. M. Abadi and L. CardelliA Theory of ObjectsSpringer, 1996.
2. S. Abramsky. Domain theory in logical forrnnals of Pure and Applied Logi&1:1-77,
1991.
3. S. van Bakel. Intersection Type Assignment Systenfheoretical Computer Science
151(2):385-435, 1995.
4. S.van Bakel and U. de’Liguoro. Logical semantics of th& firder sigma-calculus.ecture
Notes in Computer Scienc2841:202-215, 2003.
5. H. P. Barendregt, M. Coppo, and M. Dezani. A filter lambdalel@nd the completeness of
type assignmentiournal of Symbolic Logic48:931-940, 1983.
6. V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrderitance as implicit coer-
cion. Information and Computatiqrd3:172—-221, 1991.
7. K.B.Bruce and G. Longo. A modest model of records, inaarde and bounded quantifica-
tion. Information and Computatiqr87:196—240, 1990.
8. K. B. Bruce and J. C. Mitchell. Per models of subtypingursive types and higher-order
polymorphism. InProc. of POPL, 1992.
9. U. de'Liguoro. Characterizing convergent terms in objealculi via intersection types.
Lecture Notes in Computer Scien@®04:315-328, 2001.
10. U. de’Liguoro. Subtyping in logical form. IITRS’02 ENTCS 70. Elsevier, 2002.
11. A. Gordon and G. Rees. Bisimilarity for first-order cédlsuof objects with subtyping. In
Proc. of POPL’96 pages 386—395, 1996.
12. J. C. Mitchell.Foundations for Programming LanguagedIT Press, 1996.

A Some proofs

We will conclude this paper by giving details of proofs of soof the results obtained
in this paper; we will normally only state the non-triviaiges.

The following Lemma is needed in the proof of Lemma 40, antestevhat can be
concluded from derivable type-statements. The list shuldct be longer, but almost
all are directly implied in Lemma 37, using part 37.1; we hiisted a few as illustration
of that fact.

Lemma 35 (Type generation lemma). 1. If B+ [¢; = (x7*)b; (€D]: A, thenA; =
Aj, foralll <i,j <n,andA4; <: A.
2. Ifa=[l; =s(x)b; “€D] andE F a:C for someC, thenA<: C andE F a: A.
3. Ifa = [t; = s(x)b; (€D].4, and E - a:C for someC, then! = ¢; for some
jel, A;<:C,andE - a:A whereA = [(;:A; C€D].

Lemma36. If E,z:At b:B,andl" + a:A, thenE F b{zx < a}:B.

The essential properties of the predicate assignmentrsyste which the sub-
sequent treatment relies, are stated in next Lemma.

Lemma 37 (Generation lemma). Let 7 € Ps.

1. f '+ a:B: 7, thenl F a:B, and these derivations have the same structure.

15

2. fIz:A:o b a:B:7,andC<: A, thenalsdl, x:C:oc - a:B: 7.

3. fI'F [l = ()b, C€D):B:7,thenA<: B, 7 = ({;:p—u) for somej €I,
T+ [Ez = C(l’?)bz (iEI)]ZA andF, ,CCjZAZp H ijAj :7, WhereA = [flAl (iEI)].

4. If I' a.l:B:7, then there exists, A = [¢;:A; “*<D)], such that = ¢; for some
jel,A;j<:B, T'Fa:A:({j;o—7)andl'F a:A:o.

5. f I'al&s(y)o:B:7, thenA<: B, 7 = ({;:p—p) for somejel, '+ a:A,
andl’, y:A:p F b:A; :p, whereA = [¢;:A; C€ D],

6. If I' - Az .a:B:7, then there exists, 11, D suchthat = p—pu, I' 2:C:pt a:D:
andC—D<: B.

7. If '+ a(b):B: 7, then there exists, C, A<: B such thatl" ++ a:C—A:0—7 and
I'Eb:C:o.

8. If I'Ffold(X, a):A: 0, then there exisB, 7 such thauX.B<: A, 0 = pu(7), and
I't a:B{X «1uX.B}.

9. If I' - unfold(a): A: o, then existX, B such thatB{ X «— uX.B} <: A, and
I'ta:pX.B:u(o).

Proof. Straightforward. [|

Lemma 38 (Substitution lemma). If I',z:A:0c - b:B:7andl'+ a:A:o0, then
I'+b{z—a}:B:T.

Proof. By straightforward induction on the structure of deriea, of which we
show only the interesting cases.
(val z) : Then either:
(b=2x): Theno<r.Sincex{z — a} = a, the result then follows from the
second assumption and Lemma 1.
(b=y#x): Sincel,z:A:c t+y:B:71,andz ¢ FV(y), alsol' + y:B:T.
(w): Thenl',z:A+ b:B. By Lemma 36/ F b{z < a}:B, and by rulg(w),
I'tbo{z—a}:B:w.
(Al) : Thent = A7, and, forl <4 <n, I', z:A:0 - b:7;. By induction,
I'Fb{z— A}y, and, by rulg(Al), I' F b{z — a}:A, 7. |

We use this Lemma to show the following result.

Theorem 39 (Subject Reduction). If I'ta:A:p,anda — d,thenl"Fa':A:p.

Proof By induction on the definition of the reduction relation- . We only show
one case, that does not depend on Lemma 38; the others fakily.eAssumep € Ps.
1. [l = (@) CEDL;=c(yP)b — [l = c(29)bi €IV) = ¢(y©)D). Let

7 A

C = [¢;:C; “€D]. By Lemma 37, there exisB <: A, 7 = (£;:p—p),
T [t = s(x)b; DB, and I, y:B:p - b:B;: 1,

for somej € I, whereB = [¢;:B; “€1)]. By Lemma 35, we hav€' <: B and

N

Iz;:CFbi:C; (Vield)
T = g(xjc)bj GeN.c

16

whereC = [¢;:C; U<7)]; notice that C .J. Notice that, by Lemma 37, there
exists a derivatio” such thatD” :: I',y:C:o - b:B;:7 and
D" :: I',y:C - b:B;. We can then construct:

N

I2;:CFbi:B; (Viel\j) T, y:C+ b:B;
I'+d:C I'y:Cio - b:Bj:7
I'+d:C:o—t1
— (C<: A)
I'd:A:o—71
(wherea’ = [¢; = ¢(2{)bi" €™V, £; = <(y“)b). L

Lemma 40 (Expansion lemma). If I'Fb{x a}:B:7, and bothl", z:A - b:B and
I' + a: A for someA, then there exist such thatl”, z:A:oc - b:B:7andl"'F a:A:o.

Proof. By induction on the structure of terms; we only show somerigdting cases.

Let B = [¢:B; (*€1)], and assume € Ps.

(b=y #x): Sincey{x —a} =y, we getl" + y:B:7, and, by Weakening,
I',x:A:w I y:B: 7. Notice that, from the fact thaf - a: A, we get, by rulgw),
I'FaA:w.

(b=cl=s(yY)d) : If 't (cl=c(y)d){z < a}:B:7 then by definition of
substitution” - ¢{z «+a}.£=¢(y°)d{x < a}:B:7. By Lemma 37 this implies
Tt c{z—a}l=c(y°)d{x a}:B, so, by Lemma 35,

C<:Bandbothl" F ¢{z < a}.L=c(y°)d{z a}:C andT F c¢{z —a}:C,

and by Lemma 37[" F c{x < a} L=¢(y“)d{x < a}:C:7. Then by rule
(Val Update), there arep, 1o such thatr = (¢;:p—p) (sof = ¢;), and

I't+c{z—a}:C, andl,y:C:pt d{z 1 a}:C;: p.
whereC = [C; (‘¢ D]. Then, by induction, there existsuch that
I'ta:A:o, andl, z:A:0,y:CipF d:Cj: .

By assumption]", 2: A - c.0<=¢(y©)d: B, so, by Lemma 35, alsb, 2: A - ¢:C.
Then, by rulgval Update),

IaAl el =s(y9)b:C:r

andl', z: A & c.ly &=(y©)b:B: 7 follows from rule(<:).

(b=c(d): f '+ (c(d){x <« a}:B:7,thenl" - c{x —a}(d{x < a}):B:7, and by
Lemma 37 there exists C, A<: B suchthat" - ¢{z — a}:C—A: p—7 and
' d{z ++a}:C:0. Since by assumptiof, z:A I ¢(d): B, by Lemma 35,
I,2:AF c:C—Aandl’,z:AF d:C. Then, by induction, there exists, o, such
thatl', x:A:0q F c:C—A:p—7andl' - a:A:0q, andl’, z:A:09 - d:C': p and
I' - a:A:0,. Then by Weakening and ru(&al Appl) we get
I'z:A:o1A02 - e(d):A: 7 and by rule(Al), I' F a:A: o1 Ao. []

17

Theorem 41 (Subject Expansion). If I' - a:A:7, anda’ is such thatl" - a’: A and
a — a,then'Fa":A:T.

Proof By induction on the definition of the reduction relation- . We only show
one case, that does not depend on Lemma 40; ass@a.

L[l = c(zf)bs CEDLLi=c(yP)b — [l = (e)i’ STV 45 = o(y©)b]. If
I = (@) 1N 1 = ¢(yO)b):A: 7

then, by Lemma 37C'<: A, 7 = ({;:p—p),

Tt =s@9)b €N 1 = ¢(y©)b):C andD; :: I',x;:C:p & b;:C;:7, for
somej € I, whereC' = [¢;:C; C€D].

We have assumefl I [¢; = ¢(z$)b; (€D].0; <=(y®)b: A, which gives, by
Lemma35C<:B<: A,andD :: T F [{; = ¢(x%)b; C€D].C

We can now construct:

NEN

Tt = s(af)b; ten.c I'z;:Cipkb;:C:7
IE ([t =s(@)b; €D =629):Cip—r

and the desired result - ([¢; = ¢(z$)b; (€ D] =¢(x)b): A: p—7 then
follows by applying rulg<:).
ForT = A, 7 (n > 0), the proof follows by easy induction. [|

Theorem 42.If E-a«b: Athena ~£ b: A.

Proof. By structural induction over the derivation &f+ a < b : A. Most of the cases
are the same as in the proofs of Theorem 18 and 20. Easgubsumption) follows by
Corollary 24. We only show:

(Eq Sub Object) : ThenINnJ = (Z), A= [ﬂiZBi iEI], A = [lel iEIUJ], and

E, x;:AFb;:B; (VZ S I) E,l’j!A/ = bj!Bj (V_] S J)

EF+ [El = §(l’;4)bz iEI] — [ﬂz = C(,Tf‘)bl ieIUJ] t A

Now, if & € [a’:A] 5, whered’ = [¢; = ¢(z*')b; "€197], then for somd” such that
I' = E, we derivel - a’:A:0; this implies, by Lemma 37, that = ({:7—p) €

L 4 for certainr, p andk € I U J and thatl", x: A:7 F by: By : p.

Now eitherk € I or k € J: in the first case by ruléval Object) we derive immedi-
ately thato € [a:A], , wherea = [¢; = ¢(z{*)b; *¢!]. On the other hand, the case
k € J, namelyk ¢ I, is impossible, since theff;,:7—p) & L 4.

This proves thafa’:A] , C [a:A] z: the proof of the opposite inclusion is similar
and easier.]

Let) be any closed substitution, and be the effect of applying to a (with usual
conventions to avoid free and bound variable clashes).

18

Given a closed substitutiof we say that it respects if for all z:B:7€ I it is the
case that)(z) € [r]. By ¥[z; :=] we mean the same a@sbut for substitutinge; by
C.

Theorem 43 (Realizability theorem). If I'F a:A:0 and for allz:B:7€ ' it is the
case that!(z) € [], thenad € [o].

Proof. By induction on the derivation of ' a:A:0. We only show the interesting
cases.

(unfold) : Then the derivation ends with
I'tapX.A:u(o)
I' Funfold(a): A{X <« uX.A}:0

(c€Ps)

By inductiona —— fold(uX.A, b) for someb € [o]; sinceunfold(a) —— b, we are
done by Lemma 30.
(Val Object): The derivation ends with

Iz AFbi:B; (Viel) T, xj:Aio b biByT
I+, = g(zf)bi (iEI)]:A: (j:0—T)

(el

Thena = [¢; = <(x{)b; “<D] which is a value; since substitutions preserve values,
we getad). Thatl; € Label A) follows from the side-condition of the rule. For
anyc? € [o] we have that)[z; :=] respectd’, z;:A:0 and

a¥ lj(c) = bWz :=c]) € [1]
follows by induction.
(val Select) : The derivation ends with
I'ra:A:{{j:o—1) T'FaA:c
'+ a.ijBj T

By inductiona? | v, for some value, ¢; € Label4) andad.¢;(c) € [r] for any
c? € [o]; sincead) € [o] (by induction again) we have thatc [o] by Lemma 30
(first part) so that:

(a.;)9 — av.l;(v) € [1],

and we conclude by Lemma 30 (second part).
(Val Update,) : The derivation ends with

I'FaA:(ljw—p) IyAckbBj:T
I'k(a.l; #g(yA)b):A: (lj:0—T)

By inductionad € [(¢;:w—p)], which implies that#} and that/; € LabelA),
therefore(a.l; =<(y*)b)d |} as well. Given any? € [o], J]y := c] respects
I',y:A:0, so that we conclude by induction

(a.l; #g(yA)b)ﬂ.ﬁj(c) = by :=] € [7].

19

(val Update,) : the last inference is an instance of the rule:

TF(alj=c(yMb):A T'ka:A:{lio—T) i
Ik (alj=cs(y™)b):A: (lio—T)

By induction we know thatd € [(¢;:w—p)], which implies thata?{}: hence
(a.l;j=s(y*)b)d .. Moreover, since # j, (a.lj=c(y?)b)d.Li(c) = ad.li(c)
which is in[7] whenc” € [o] by the inductive hypothesis.]

Theorem 44 (Logical Equivalence and Observational Equivance). Suppose that for
any valuev of ground typeK we have exactly a non-trivial predicate € L, that
this predicates are distinct for different values and that: K : x,, is assumed for each
v. Then for anya” andbg, if a ~* b : A thena ~9 b.

Proof. Towards a contradiction, assume that-“ b: A and that there exists some
ground context:A F C[]: K such thatCla] | v and notC[b] |} v. By Theorem 33 it
follows that there exists some non-triviale Ly such thatC[a] F K:7 is derivable,
and by the assumptions= k,,. By Lemma 40 we know that there exist some £ 4
such thata - A:0 andz:A:o F Clz]: K :7 (or equivalently_:A:o F C[]:K :7); since

o € [a:A] = [b:A] by the absurd hypothesis, Lemma 38 implies thaf'[b]: K : 7 is
also derivable: now i€ [b] 1, then this contradicts Corollary 33; if insteatj] | v’ for
some value’ # v then - v": K : k,, by Theorem 18 which is impossible. [

20

