
Subtyping object and recursive types logically?

(Extended Abstract)

Steffen van Bakel1 Ugo de’Liguoro2

1 Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, UK,

svb@doc.ic.ac.uk
2 Dipartimento di Informatica, Università di Torino,

Corso Svizzera 185, 10149 Torino, Italy
deliguoro@di.unito.it

Abstract. We study subtyping in first-order object calculi with respect to the
logical semantics obtained by identifying terms that satisfy the same set of pre-
dicates, as formalized through an assignment system. It is shown that equality in
the full first-orderς-calculus is modeled by this notion, which is included in a
Morris-style contextual equivalence.

1 Introduction

Subtyping is a prominent feature of type-theoretic foundation of object oriented pro-
gramming languages. The basic idea is expressed by subsumption: any piece of code
of typeA can masquerade as a code of typeB wheneverA is a subtype ofB, written
A<: B.

In typed calculi, equations are stated amongst terms of the same type; when terms
may have several types because of subsumption, it is commonly postulated that if
a = b : A andA<: B thena = b : B (but not vice-versa): let’s call thisequational
subsumption. In the realm of object calculi, object types are essentially interfaces, and
subtypinginterface extension; therefore, subsumption is justified by the intuition that
any object which is able to react to messages mentioned inA a fortiori will answer
correctly to messages in the smaller interfaces represented by its supertypes. Similarly,
equational subsumption is understood on the ground of context separability:a andb are
contextually equivalent at typeA if both are typeable byA and no context with a hole
of typeA can distinguish them. This provides an interpretation of subtyping:A<: B
should hold if any pair of terms that are contextually equivalent at typeA cannot be
separated at typeB.

Semantically this is understood in two ways, according to the existing literature
(see [12] Ch. 10 for a gentle introduction to these approaches): either by means of
coercions [6], or by inclusion of partial equivalence relations ([7, 8] and [1] Ch. 14).
But coercion semantics does not reflect the actual implementation practice of object-
oriented languages; also, PER semantics is quite complex touse for reasoning about
programs, and suffers of technical problems which are stillopen.

? Partially supported by the MIKADO project of the IST-FET Global Computing Initiative, no
IST-2001-32222

We propose a third approach which, in our view, can lead to a simpler logical frame-
work for reasoning about object oriented programs. It is based on the ideas of logical
semantics and domain logic. In the latter perspective, the meaning of a term is determ-
ined by the set of the predicates it satisfies, so that two terms are equivalent if they are
indiscernible. To account for equivalence “at” a certain typeA we relativize this form
of absolute indiscernibility to sets ofpredicatesindexed over types, calling themlan-
guages. Hencea andb are logically equivalent at typeA if they satisfy the same set of
predicates form the languageLA associated toA.

For equational subsumption to be sound in our framework, it is needed that some
relation betweenLA andLB exists wheneverA<: B. Were we dealing with a calculus
of pure objects, such a relation would be simplyLA ⊇ LB, and this is clearly enough.
However, since here we consider a richer calculus with functions and recursive types,
called FOb1<:µ in [1], this is no longer true in general, and is replaced by a more
complex inclusion relation.

The logical equivalence is indeed the theory of a model. Sucha model can be ob-
tained by the filter model construction as in [5], with a more complex structure due to
the presence of types (see [10] and [4]). Here we leave the investigation of the model
aside and concentrate on the theory itself, establishing two results:

1. if ` a↔ b : A is derivable in the equational theory of systemFOb1<:µ, thena and
b are logically equivalent at typeA;

2. two terms logically equivalent at typeA are contextually equivalent at the same
type.

The latter result is a consequence of the characterisation of convergence in terms of
derivability of non-trivial predicates inLA much as in the case ofλ-calculus and inter-
section types (see e.g. [3]). A similar result was proved forthe type-freeς-calculus in
[9].

Because of the limited space available, proofs are presented in the appendix.

1.1 Related work

The present paper follows some previous works by the authorsin [9, 10, 4]. The added
feature of this paper is the treatment of sub-typing of object and recursive types, while
sub-typing polymorphism was considered in [10] for aλ-calculus with function and
record types only. The idea of using languages to model typesin a filter model originates
from [2]: however, in Abramsky’s work the modelling of polymorphism was left out.
In this case the predicate languages cannot be disjoint; moreover, they need to have
a structure reflecting the sub-typing relation, as stressedabove, a topic which has not
been addressed in the literature.

The theory of objects in [1] is a natural environment for the investigation of the
themes we address here; Morris-style contextual equivalence for first-order object cal-
culi is introduced and studied in [11], where systemFOb1<:µ is considered: this is the
reason for the choice of the same calculus in the present paper.

2

Fig. 1 Fragments∆K ∪∆x∪∆Ob∪∆→∪∆X ∪∆µ

(Env ∅) :

∅ ` �

(Type Const) :
E ` �

E ` K

(Env x) :
E ` A

(x 6∈ E)
E, x:A ` �

(Val x) :

E
′
, x:A,E

′′ ` �

E
′
, x:A,E

′′ ` x:A

(Type Rec) :
E,X ` A

E ` µX.A

(Type Object) :

E ` Bi (∀i ∈ I)

E ` [`i:Bi
(i∈ I)]

(Type Arrow) :
E ` A E ` B

E ` A→B

(Env X) :
E ` �

(X 6∈ E)
E, X ` �

(Type X) :

E
′
, X, E

′′ ` �

E
′
, X, E

′′ ` X

We omit rules(Val Object),(Val Select),(Val Fun), (Val Appl), (Val Fold), and(Val Unfold),
since these can be easily constructed from the rules in Figure 3.

2 The systemFOb1<:µ

To keep the present exposition self-contained, we recall the definition of the system
FOb1<:µ of [1]. As usual for polymorphic calculi, we will introduce type and term
syntax in two steps: first by defining type expressions (pre-types) and pre-terms, namely
terms decorated by pre-types; types and terms are then defined together with the the type
derivation system as well-formed pre-types and well-typedpre-terms respectively.

Definition 1 (Pre-types and Pre-terms). LetK be a set of type constants, ranged over
by K, andV a set of type-variables, ranged over byX , {`i | i∈N} a denumerable set
of labels, I, J finite subsets ofIN. The set oftypesT , ranged over byA, B, C, . . . is
defined by the following grammar:

A, B ::= K | X | [`i:Bi
(i∈I)] | A→B | µX.A

The pre-terms ofFOb1<:µ are defined through the following grammar, wherec ranges
over constants:

a, b ::= x | c | λxA.a | a(b) | [`i = ς(xA
i)bi

(i∈ I)] | a.` |
a.`↼↽ς(x)b | fold(A, a) | unfold(a)

A type expression of the shape[`i:Bi
(i∈ I)] is used for an object type;A→B is

the usual functional type andµX.A is a recursive type: in the latter the type-variableX

is bound inA. In the expressionsς(xA)b andλxA.b, x is bound inb; free and bound
variables are defined as usual. Types and pre-terms are considered equal moduloα-
conversion, i.e. up to renaming of bound variables.

In [1] the system is defined as the union of several fragments,which we subdivide
into two parts; the first one concerns contexts, types and terms formation3:

3 As in [1], we will use a short-hand for rules, and write for example (whereI = {1, . . . , n})

E, xi:A `Σ bi:Bi (∀i∈I)

E `Σ [`i = ς(xA
i)bi

(i∈ I)]:A
for

E, x1:A `Σ b1:B1 . . . E, xn:A `Σ bn:Bn

E `Σ [`i = ς(xA
i)bi

(i∈ I)]:A

3

Fig. 2 Fragments∆<:∪∆<:Ob∪∆<:→∪∆<:X∪∆µ.

(Sub Refl) :
E ` A

E ` A<: A

(Sub Trans) :
E ` A<: B E ` B<: C

E ` A<: C

(Val Subsumption) :
E ` a:A E ` A<: B

E ` a:B

(Type Top) :
E ` �

E ` Top

(Sub Top) :
E ` A

E ` A<: Top

(Sub Object) :

E ` Bi (∀i ∈ I)
(J ⊆ I)

E ` [`i:Bi
i∈ I]<: [`i:Bi

i∈J]

(Sub Arrow) :

E ` A
′
<: A E ` B<: B′

E ` A→B<: A
′→B

′

(Env X<:) :
E ` A

(X 6∈ dom(E))
E, X <: A ` �

(Type X<:) :

E
′
, X <: A, E

′′ ` �

E
′
, X <: A,E

′′ ` X

(Sub X) :

E
′
, X <: A, E

′′ ` �

E
′
, X <: A, E

′′ ` X <: A

(Type Rec<:) :
E, X <: Top ` A

E ` µX.A

(Sub Rec) :
E ` µX.A E ` µY.B E, Y <: Top, X <: Y ` A<: B

E ` µX.A<: µY.B

Definition 2. 1. A contextfor a type judgement is just a finite setE of type-decorated
variables, of the shapex:A, and we writex ∈ E if there existsA such thatx:A ∈ E.

2. The system∆K ∪∆x∪∆Ob∪∆→∪∆X∪∆µ is given in Figure 1.
3. E is awell-formed contextif E ` � is derivable, andA is a type fora if there exists

E with E ` a:A.

The second one is about sub-typing:

Definition 3. The system∆<:∪∆<:Ob∪∆<:→∪∆<:X∪∆<: µ can be found in Fig-
ure 2.

It is understood that such unions produce a set of inductive clauses generating a
unique system where contexts and types in the rules from the first part can be formed
according to the rules of the second part and vice-versa. There is also a certain redund-
ancy: the contextE, X is the same asE, X <: Top. In what follows we will use the
generic notation· {·← ·} for substitution both of type-variables by type expressions
and of term-variables by terms, implicitly replacing all occurrences of the first para-
meter of{·← ·} by the second in the preceding expression; as usual the replacements
occur up toα-congruence to avoid variable clashes.

Definition 4 (Reduction). Evaluating contextsare term expressions with a hole[],
and are generated by the grammar:

E [] ::= | E [].` | E [].`↼↽ς(xA)b | E [](a) | unfold(E []) | fold(A, E []).

We will write E [a] for the replacement ofby a in E .

4

Theone-step reduction relationon terms is the binary relation defined by the fol-
lowing rules:

[`i = ς(xAi

i)bi
(i∈ I)].`j → bj{xj← [`i = ς(xAi

i)bi
(i∈ I)]}

[`i = ς(xAi

i)bi
(i∈I)].`j ↼↽ς(xA)b → [`i = ς(xAi

i)bi
i∈ I\j , `j = ς(xAj)b]

(λxA.a)(b) → a{x← b}
unfold(fold(X, a)) → a

a → b ⇒ E [a] → E [b]

The relation
∗
−→ is the reflexive and transitive closure of→ .

The one-step reduction is from [11]. In [1], Ch. 6 the operational semantics of the
object calculi is defined by means of a big-step predicatea v, wherea is a closed
term,v is avalueas it is defined by the grammar:

v ::= c | λxA.a | [`i:ς(x
A
i)bi

i∈I] | fold(A, v).

It is easy to see thata v if and only ifa
∗
−→ v. The reduction relation is more general

since it is defined for any term (possibly with free variable occurrences); it is even true
that normal forms are not necessarily values. However it is easy to adapt the arguments
in [1] to establish the following theorem:

Theorem 5 (Subject reduction property ofFOb1<:µ). If E ` a:A is derivable in the
systemFOb1<:µ anda → b, thenE ` b:A is derivable as well.

We just stress that, consistently with the definition of in [1], in the clause:

[`i = ς(xAi

i)bi
(i∈ I)].`j ↼↽ς(xA)b → [`i = ς(xAi

i)bi
i∈I\j , `j = ς(xAj)b]

a renaming of the self type of the bound variablexA into xAj occurs. This is immaterial
in the fragments of theς-calculus without sub-typing, but it is needed in the presence
of rule (Val Subsumption) since ifA = [`i:Bi

i∈I], andA<: C, then we can give type
C to any term of typeA and therefore update a method in an object of typeA with
ς(xC)b; but the result of (naively) performing the update saving the self typeC is no
longer typeable, as theselvesof the methods now have different types, so that rule
(Val Object) will not apply.

The reduction relation is trivially confluent. Even relaxing Definition 4 and taking
the closure of → under arbitrary contexts would not destroy confluence, as can be
shown e.g. by adapting the Martin-Löf technique for proving the Church-Rosser the-
orem for theλ-calculus. As for typedλ-calculi with recursion (e.g. PCF), typed terms
do not necessarily have a normal form:ΩB ≡ [` = ς(xA)x.`].` is typeable byB if A

is any object type[`:B, . . .], and it is such thatΩB → ΩB.

3 Predicates and assignment

In this section we will introduce the syntax of the predicates and an assignment sys-
tem to syntactically derive judgements associating predicates to typed terms under the
assumption of similar judgements about a finite set of typed variables.

5

Predicates are transparently intersection types for aλ-calculus with records, and
come from [9]. The essential difference is that the set of predicates is stratified into
languages (see [10, 4]), in such a way that whenever a predicate can be deduced for a
terma, it belongs to the languageLA associated withA.

Much in the style of [3], in this section we will present a notion of strict intersec-
tion types, calledstrict predicateshere; this is a technical choice and a departure from
[4], making the proof theory of the system more manageable, without loss of expressiv-
ity. Using these, we will define a notion ofpredicate assignment, which will consists
basically of associating a predicate to a typed term.

Definition 6 (Predicates). PS, the set ofstrict predicates, and the setP of intersection
predicates, both ranged over byσ, τ, . . ., are defined through:

PS ::= κ | (P → PS) | 〈`:PS〉 | µ(PS)
P ::= (PS1∧ . . .∧PSn) (n ≥ 0)

whereκ ranges over a countable set of atoms. We will writeω for an intersection of
zero strict types, and write∧nσi for σ1∧ . . .∧σn, where we assume that eachσi∈PS.
Also, rather than〈`:σ1〉∧ · · ·∧〈`:σn〉 we will write 〈`:σ1∧ · · ·∧σn〉 or 〈`:∧nσi〉, where
n = {1, . . . , n}; also, rather than〈`1:σ1〉∧ · · ·∧〈`n:σn〉 where thè i are distinct, we
will write 〈`i:σi

i∈n〉 or 〈`i:σi
(i∈ I)〉.

Atomic predicatesκ are intended to describe elements of atomic type in the do-
main of interpretation;σ→τ is the property of functions sending element satisfyingσ

into elements satisfyingτ ; 〈`:σ〉 is the property of records having values that satisfy
σ associated with the field̀. Predicatesω andσ∧τ mean ‘truth’ and ‘conjunction’ re-
spectively. It should be noted that arbitrary intersectionpredicates like(σ→τ)∧〈`:ρ〉
are allowed by the above definition.

To build a logic of predicates we need a notion of implication, writtenσ ≤ τ , which
is a reflexive and transitive relation on predicates, definedbelow.

Definition 7 (Predicate pre-order). On predicates a pre-order≤ is inductively defined
by:

σ≤σi
(∀i≤n ≥ 0)

σ≤∧nσi

(∀i≤n ≥ 1)
∧nσi≤σi

ρ≤σ τ≤µ

σ→τ≤ρ→µ

σ≤ τ≤ρ

σ≤ ρ

σ≤ τ

〈`:σ〉≤ 〈`:τ〉

σ≤ τ

µ(σ)≤µ(τ)

Finally σ = τ ⇐⇒ σ≤ τ≤σ. A predicate is calledtrivial if it is equivalent toω.

Lemma 8. The following rules are admissible

〈`i:σi
i∈I〉∧〈`j :τj

j∈J 〉≤ 〈`k:ρk
(k∈I ∪J)〉, where

ρk = σk∧τk, if k∈I∩J,

ρk = σk, if k∈I\J,

ρk = τk, if k∈J\I

(J ⊆ I)
〈`i:σi

(i∈ I)〉≤ 〈`j:σj
j∈J 〉

6

Lemma 9. 〈`i:σi
i∈I〉∧〈`j :τj

j∈J 〉 = 〈`k:ρk
(k∈I ∪J)〉, providedσi = τi for i ∈ I ∩J .

Although predicates are basically properties of untyped terms (resulting from typed
terms essentially by erasing type decorations), types are quite relevant in the equational
theory of theFOb1<:µ calculus; this was accounted for in [10, 4] by means of the notion
of predicate languages, whose definition easily extends to the present richer syntax.

Definition 10 (Languages). The set of all predicatesL is stratified into a family{LA}A
of sets of predicates calledlanguages, indexed over closed types such that:

1. for everyκ, there existsexactly oneK∈K such thatκ ∈ LK ;
2. LA is the least set (including atoms ifA ≡ K) such that

σi∈LA (∀i∈n)
(n ≥ 0)

∧nσi∈LA

σ∈LA τ ∈LB

σ→τ ∈LA→B

σ∈LA{X← µX.A}
(σ∈PS)

µ(σ)∈LµX.A

σ∈LA→Bj

(A = [`i:Bi
(i∈ I)], j∈I, σ∈PS)

〈`j :σ〉∈LA

The intuition behind languages is the following. Properties inLA give some inform-
ation about values of typeA; to be a value of typeA should then imply to enjoy at least
a non-trivial property inLA. That two values are logically equivalent at typeA means
that they satisfy the same set of properties in that language; consistentlyLTop is the set
of trivial types. A natural question is whether there existsa relation between languages
and the sub-typing relation, which is partly answered in thefollowing proposition, for
which we need to introduce the following definition.

Definition 11 (Language extension). We say thatLB is anextension ofLA (written
LA v

\ LB), if and only if∀σ ∈ LA∃τ ∈ LB. σ ≤ τ , and∀τ ∈ LB∃σ ∈ LA. σ ≤ τ .

Proposition 12.Let A andB be closed type expressions not including recursion and
such that` A<: B then:

1. if A andB are object types thenLB ⊆ LA;
2. if A andB are arrow types thenLA v\ LB.

The relationv\ is Egli-Milner pre-order of (arbitrary) sets of predicatesgenerated
by≤. Note that, sinceω ∈ LB for anyB (taken = 0 in the rule about intersection in
Definition 10) andσ ≤ ω for all σ, we have thatLB ⊆ LA impliesLA v\ LB.

The proof of Proposition 12 is by induction on the derivationof ` A<: B and does
not need to take the context into account at any step because of the assumptions (this is
no longer true when recursive types are considered).

Definition 13. A mapη from type-variables to closed types is called atype-environment.
ForE a well-formed context, we say thatη respects the contextE if for anyX <: A ∈ E

(if X ∈ E then it is read asX <: Top ∈ E) it is the case thatLη(X) v
\ Lη(A), where

η(A) is the value of application toA of the obvious extension ofη to the set of types.

7

Fig. 3 Predicate Assignment

(Val x) :

(x:B:τ ∈Γ, τ ≤ σ)
Γ ` x:B :σ

(<:) :
Γ ` a:B :σ Γ ` B<: C

(σ∈LC)
Γ ` a:C :σ

(Val Fun) :
Γ, x:A:τ ` a:B :σ

Γ ` λx
A
.a:A→B :τ→σ

(Val Appl) :
Γ ` a:A→B :τ→σ Γ ` b:A :τ

Γ ` a(b):B :σ

(Val Fold) :

Γ ` a:A{X←µX.A} :σ

Γ ` fold(µX.A, a):µX.A :µ(σ)

(Val Unfold) :

Γ ` a:µX.A :µ(σ)

Γ ` unfold(a):A{X← µX.A} :σ

(Val Select) :

Γ ` a:A :〈`j :τ→σ〉 Γ ` a:A :τ

Γ ` a.`j :Bj :σ

(Val Object) :

Γ, xi:A:τi ` bi:Bi :σi (∀i∈I)
(j ∈ I)

Γ ` [`i = ς(xA
i)bi

(i∈I)]:A :〈`j :τj→σj〉

(Val Update1) :
Γ ` a:A :σ Γ, y:A:ρ ` b:Bj :τ

Γ ` (a.`j ↼↽ ς(yA)b):A :〈`j :ρ→τ 〉

(Val Update2) :

Γ ` a:A :〈`j :σ〉 Γ, y:A:ρ ` b:Bj :τ
(i 6= j)

Γ ` (a.`j ↼↽ ς(yA)b):A :〈`j :σ〉

(ω) :
E ` a:B

(E / Γ)
Γ ` a:B :ω

(∧I) :

Γ ` a:B :σi (∀i∈n)
(n ≥ 1)

Γ ` a:B :∧nσi

A ≡ [`i:Bi
(i∈ I)] in rules(Val Select), (Val Object), (Val Update1), and(Val Update2).

Theorem 14. If E ` A<: B, then for any type-environmentη that respectsE we have
Lη(A) v

\ Lη(B).

We are now in place to introduce the main tool of the present work, namely the
predicate assignment system. It is a formal system to derivejudgements of the form
a:A :σ, whose intended meaning is: the denotation ofa satisfies the propertyσ when
seen as a value of typeA (here a “value” could be the undefined object in the domain
of interpretation: we shall see that in such a caseσ has to be trivial).

Definition 15 (Statements, bases, compatibility). 1. A statementis an expression
of the shapea:A :σ, wherea is a term,A is a type fora, andσ is a predicate;a is
called thesubjectof this statement.

2. A basisΓ is a finite set of statements with only (distinct) term-variables as subject.
3. For a basisΓ , we say thatE fits intoΓ , writtenE/Γ , if x:A:σ∈Γ impliesx:A∈E.

We writeΓ for the largest context that fits intoΓ .
4. We say that two basesΓ0, Γ1 arecompatibleif there exists a contextE including

all variables occurring in bothΓ0 andΓ1, fitting into both of them.
5. We say thatΓ preserves languagesif σ∈Lη(A) wheneverx:A:σ∈Γ andη is a

type-environment respectingΓ .
6. We extend≤ to bases by:Γ ′≤Γ if and only if for everyx:A:σ∈Γ there exists

x:A:σ′∈Γ ′ such thatσ′ ≤ σ.

8

Definition 16 (Predicate Assignment). Thepredicate assignment systemto derive judge-
ments of the formΓ ` a:B :σ whereΓ is a basis preserving languages,a a term,A a
type andσ a predicate is defined in Figure 3.

Lemma 17. 1. The rules

Γ ` a:A :σ σ ≤ τ

Γ ` a:A :τ
and

Γ ` a:A :σ σ ≤ τ Γ ` A<: B
(τ ∈ LB)

Γ ` a:B :τ

are admissible.
2. If Γ ` a:A, Γ ` A<: B and Γ ` a:B :τ , then there existsσ ∈ L(A) such that

σ ≤ τ andΓ ` a:A :σ.

4 Subject Reduction and Expansion

A minimal requirement for soundness of the assignment system is that predicates are
invariant under reduction. This is established through thefollowing result.

Theorem 18 (Subject Reduction). If Γ ` a:A :ρ, anda → a′, thenΓ ` a′:A :ρ.

Example 19.To better appreciate the importance of this standard resultin the present
setting, we review an example given in [4].

Suppose thatA ≡ [`0:Int, `1:Int] anda ≡ [`0 = ς(xA)1, `1 = ς(xA)x.`0] (using a
constant1 of typeInt), so that inFOb1<:µ we have` a:A. Then

x:A:ω ` 1:Int :O

(Val x)
x:A:〈`0:ω→O〉 ` x:A :〈`0:ω→O〉

(ω)
x:A:〈`0:ω→O〉 ` x:A :ω

(Val Select)
x:A:〈`0:ω→O〉 ` x.`0:Int :O

(Val Object,∧I)
` a:A :〈`0:ω→O, `1:〈`0:ω→O〉→O〉

where`0 is a field,`1 is the methodget`0, andO ∈ LInt is the predicate of being
anodd integer. Using rules(Val Update1), (Val Update2) and(∧I) one can derive (the
seemingly incorrect):

A
AA

�
��

` a:A:〈`0:ω→O, `1:〈`0:ω→O〉→O〉 y:A:ω ` 2:Int:E

` (a.`0 ↼↽ς(yA)2):A :〈`0:ω→E, `1:〈`0:ω→O〉→O〉

whereE ∈ LInt is the predicate of being aneveninteger. This makes sense, how-
ever, since it simply states that if the value at`0 is an odd integer, then the method`1

will return an odd integer; it also states that this is vacuously true of the actual object
a.`0↼↽ς(yA)2, since it has an even integer at`0. As a consequence of Theorem 18 we
also know that this is harmless: indeed(a.`0↼↽ς(yA)2).`1

∗
−→ 2 and we clearly as-

sume that6` 2:Int : O, so by contraposition6` (a.`0↼↽ς(yA)2).`1:Int : O. As a matter
of fact, rule (Val Select) is not applicable, since6` (a.`0↼↽ς(yA)2):A : 〈`0:ω→O〉.

9

On the other hand, the following odd-looking assignment is legal as well, this time
by rule (Val Object) and(∧I):

x:A:ω ` 1:Int:O

x:A:〈`0:ω→E〉 ` x:A :〈`0:ω→E〉 x:A:〈`0:ω→E〉 ` x:A :ω

x:A:〈`0:ω→E〉 ` (x.`0):Int:E

a ` A:〈`0:ω→O, `1:〈`0:ω→E〉→E〉

In the last case, however, the apparently odd predicate we deduce is of use to con-
clude as before:

A
AA

�
��

` a:A :〈`0:ω→O, `1:〈`0:ω→E〉→E〉 y:A:ω ` 2:Int:E

(a.`0↼↽ς(yA)2) ` A:〈`0:ω→E, `1:〈`0:ω→E〉→E〉

which is what we expected.

The invariant property of predicates w.r.t. reduction is stronger as they are preserved
even by expansion, as is the case for standard intersection type assignment systems (see
e.g. [5, 3]). However, we have to be careful, since the simplytypedλ-calculus is a sub-
calculus ofFOb1<:µ, for which it is known that subject expansion does not hold. In fact,
we can provè (λxA→A.x)(λxA.x):A→A :σ→σ, butΓ 6` yy{y← (λxC .x)}:A→A :
σ→σ, since there is no way to derive a type foryy for any choice ofΓ andC.

But subject expansion does hold for predicates whenever it is the case for types,
and this suffices for giving semantics to typed terms consistently with the restriction of
convertibility relation to terms of the same type.

Theorem 20 (Subject Expansion). If Γ ` a:A :τ , anda′ is such thatΓ ` a′:A and
a′ → a, thenΓ ` a′:A :τ .

5 The logical equivalence

The predicate assignment system of Definition 16 induces a logical notion of equival-
ence, according to whicha andb are equal atA if they can be assigned the same set
of predicates fromLA. By extending this notion to open terms, we get the following
definition.

Definition 21 (Logical Equivalence). 1. Leta andb be terms such thatE ` a:A and
E ` b:A; we define

[[a:A]]E = {σ ∈ LA | ∃Γ.Γ = E & Γ ` a:A :σ}.

2. a andb arelogically equivalent atA and environmentE (a 'L
E b : A) if

E ` a:A, E ` b:A and[[a:A]]E = [[b:A]]E .

10

Fig. 4 The equation system∆= ∪∆=x ∪∆=<: ∪∆=→ ∪∆=Ob∪∆=µ

(Eval Beta) :

E ` λx
A
b:A→B E ` a:A

E ` (λx
A

b)(a)↔ b{x← a} : B

(Eq Subsumption) :

E ` a↔a
′ : A E ` A<: B

E ` a↔a
′ : B

(Eq Top) :
E ` a:A E ` b:B

E ` a↔ b : Top

(Eq Select) :

E ` a↔a
′ : [`i:Bi

i∈I]
(j ∈ I)

E ` a.`j ↔a
′
.`j : Bj

(Eq Update) whereA ≡ [`i:Bi
(i∈I)] :

E ` a↔a
′ : A E, x:A ` b↔ b

′ : Bj
(j ∈ I)

E ` a.`j ↼↽ ς(xA)b↔ a
′
.`j ↼↽ς(xA)b′ : A

(Eq Sub Object) whereI ∩ J = ∅, A ≡ [`i:Bi
i∈I], A′ ≡ [`i:Bi

i∈I∪J] :

E, xi:A ` bi:Bi (∀i ∈ I) E, xj :A
′ ` bj :Bj (∀j ∈ J)

E ` [`i = ς(xA
i)bi

(i∈ I)]↔ [`i = ς(xA′

i)bi
i∈I∪J] : A

(Eval Select) whereI ∩ J = ∅, A ≡ [`i:Bi
i∈I], A′ ≡ [`i:Bi

i∈I∪J], a ≡ [`i = ς(xA′

i)bi
i∈I] :

E ` a:A
(j ∈ I)

E ` a.`j ↔ bj{xj← a} : Bj

(Eval Update) whereI ∩ J = ∅, A ≡ [`i:Bi
i∈I], A′ ≡ [`i:Bi

i∈I∪J], a ≡ [`i = ς(xA′

i)bi
i∈I] :

E ` a:A E, x:A ` b:Bj
(j ∈ J)

E ` a.`j ↼↽ς(xA)b↔ [`j = ς(xA′

)b, `i = ς(xA′

)bi
(i∈I∪J\{j})] : A

With respect to the original system [1], we have omitted the obvious rules, like(Eq Appl), as
well as the extensionality rules (called(Eval Eta) and(Eval Fold), respectively)

Notice that, if the basisΓ respects languages, the requirementσ ∈ LA in the above
definition is clearly redundant.

Logical equivalence is the theory of a model built out of predicates, where the de-
notation of a term is exactly the set of its properties: i.e. the filter model. It can be
constructed along the lines of [4], even if the type interpretation cannot be the same, be-
cause retractions do not model sub-typing. We leave this investigation to further study,
and concentrate here on the properties of logical equivalence.

Definition 22. Equivalence among terms ofFOb1<:µ is defined via a system deriving
statements of the shapea↔ b : A, meaning that termsa andb are equal at typeA; the
system∆= ∪∆=x ∪∆=<: ∪∆=→ ∪∆=Ob∪∆=µ is shown in Figure 4.

This notion includes (typed) convertibility but it does notcoincide with it: in fact,
‘↔’ is a congruence whereas ‘→ ’ is not closed under arbitrary contexts; more im-
portantly, this is a consequence of sub-typing and precisely of rule (Eq Sub Object)
(see the next example). Therefore, from the subject reduction and expansion theorems
it does not follow that equality implies logical equivalence.

Example 23.Consider the terms (whereA ≡ [`0:Int, `1:Int])

a ≡ [`0 = ς(xA
1)1, `1 = ς(xA

1)1], b ≡ [`0 = ς(xA
0)1, `1 = ς(xA

1)x.`0].

11

In [1], Section 7.6.2 it is argued thata andb cannot be equated atA. Indeed, they are not
logically equivalent atA since, if we assume that1 is the predicate expressing the prop-
erty of “being the number 1” (so1 ∈ LInt, and ` 1:Int:1), then ` a:A :〈`1:ω → 1〉
but 6` b:A:〈`1:ω → 1〉. Indeed (omitting some parts of the derivation for readability):

x1:A:ω ` 1:Int :1
(Val Object)

` a:A :〈`1:ω→1〉

Replacinga by b would not yield a valid derivation. The best we can do forb is instead:

x1:A:〈`0:ω→1〉 ` x1:A :〈`0:ω→1〉 x1:A:〈`0:ω→1〉 ` x1:A :ω
(Val Select)

x1:A:〈`0:ω→1〉 ` x1.`0:Int :1
(Val Object)

` b:A :〈`1:〈`0:ω→1〉→1〉

To express this in natural language, what we have proven is that the value ofa on calling
method`1 is 1, and that this is a “field”, in that it does not depend on other parts ofa;
on the other hand, forb the value returned bỳ1 depends on the actual value of`0 in b:
the predicate〈`1:〈`0:ω→1〉→1〉 expresses this.

However, in [1] paragraph 8.4.2 is observed that the equality ` a↔ b : [`0:Int] is
derivable since both

` [`0 = ς(xB
0)1]↔a : [`0:Int] and ` [`0 = ς(xB

0)1]↔ b : [`0:Int]

can be obtained by rule(Eq Sub Object); this clearly shows that ‘↔’ is not convert-
ibility, since a, b and [`0 = ς(xB

0)1] are distinct normal forms and the reduction is
confluent.

In our setting, we can show thata 'L
∅ b : [`0:Int] as well, and this is the effect of

restricting to the languageL[`0:Int]; in fact, the only non-trivial predicates inL[`0:Int]
that we can derive for eithera or b are〈`0:ω→1〉 (or greater than this w.r.t.≤).

Theorem 14 is first evidence of the consistency of the predicate assignment sys-
tem with respect to the sub-typing relation. It is however not enough, and we need to
establish the following.

Corollary 24. Ifa 'L
E b : A andE ` A<: B thena 'L

E b : B.

We conclude this section by showing that equality inFOb1<:µ system implies lo-
gical equivalence, proving that what we have seen in the Example 23 actually holds in
general.

Theorem 25. If E ` a↔ b : A thena 'L
E b : A.

6 Observational semantics and adequacy

Observational semantics forFOb1<:µ has been defined in [11] in Morris-style, called
there “contextual equivalence”. In the same paper it has been shown that this coincides

12

with a notion of bisimulation which is stronger than ‘↔’. We will adopt a slightly more
general definition (we will writeaA for a closed terma such that` a:A).

Definition 26 (Convergence). Given any (well formed) closed termaA, it converges
to valuev (a⇓ v), if a

∗
−→ v. Moreover,aA is convergent(a⇓) if there exists a valuev

such thata⇓ v, and isdivergent(a⇑) if not a⇓)

We will write :A ` C[]:B to express that the closed contextC[] is well typed with
typeB, under the assumption that the “hole” has typeA; C[a] is the result of replacing
‘ ’ by a in C[].

Definition 27 (Observational Equivalence). Two closed termsa andb are calledob-
servationally equivalent at typeA, written a 'O

A b, if both aA and bA, and for any
ground typeK and valuevK it is the case:

∀C[].(:A ` C[]:K ⇒ C[a]⇓ v ⇐⇒ C[b]⇓ v.

This differs from the definition of contextual equivalence in [11] in some respect.
First, we consider contexts of any ground type as an “experiment”; moreover, we do
not consider reduction rules for constants as “if then else”; as a consequence we cannot
discriminate between different constants liketrue andfalse. It is for that reason that we
use in Definition 21 the predicatea⇓ v instead ofa⇓.

We claim that, when restricted to closed terms, logical equivalence is included in
observational equivalence. To this aim we establish an adequacy result of the logical
semantics w.r.t. convergence, by means of a realizability interpretation of predicates,
proving that the characterisation results of [9] are preserved in the typed context of the
calculusFOb1<:µ.

Definition 28. The set of labels ofA is defined asLabel(A) = {`i | i ∈ I} only for
A ≡ [`i:Ai

(i∈ I)]; it is empty in all other cases.

If aA for some object typeA, `j ∈ Label(A) anda⇓ [`i = ς(xA
i)bi

(i∈I)], then, for
anycA, a.`(c) abbreviatesbj{xj← c}.

Definition 29 (Realizability Interpretation). The realizability interpretationof the
predicateσ is a set[[σ]] of closed terms defined by induction over the structure of pre-
dicates as follows:

1. [[κ]] = {aK | κ ∈ LK},
2. [[σ→τ]] = {aA→B | ∃x, b. a⇓ (λxA.b) & ∀cA ∈ [[σ]]. b{x← c} ∈ [[τ]]},
3. [[〈`:σ→τ〉]] = {aA | a⇓ & ` ∈ Label(A) & ∀cA ∈ [[σ]]. a.`(c) ∈ [[τ]]},
4. [[µ(σ)]] = {aµX.A | a

∗
−→ fold(µX.A, b) & bA{X← µX.A} ∈ [[σ]]},

5. [[ω]] = {aA | A is a type},
6. [[σ∧τ]] = [[σ]] ∩ [[τ]].

The next Lemma states that, for anyσ, [[σ]] is closed under reduction and expansion.

Lemma 30. If aA ∈ [[σ]] then for anybA, if a
∗
−→ b or b

∗
−→ a thenbA ∈ [[σ]].

13

Lemma 31. If σ ≤ τ then[[σ]] ⊆ [[τ]].

Theorem 32 (Realizability theorem). Let ϑ be any , andaϑ be the effect of applying
ϑ to a (with usual conventions to avoid free and bound variable clashes) . IfΓ ` a:A :σ
and for allx:B:τ ∈Γ it is the case thatϑ(x) ∈ [[τ]], thenaϑ ∈ [[σ]].

It is easily seen that valuesv can be assigned non-trivial predicates, so thata⇓ v

implies that the same predicates can be derived fora because of Theorem 20; on the
other hand a straightforward induction shows that ifσ is non-trivial, then anyaA ∈ [[σ]]
converges: by this and Theorem 32 we obtain a proof of the following corollary.

Corollary 33 (Characterization of convergence).Let aA be any closed term: thena⇓
if and only if ` a:A :σ for some non-trivialσ.

Theorem 34 (Logical Equivalence and Observational Equivalence). Suppose that for
any valuev of ground typeK we have exactly one non-trivial predicateκv ∈ LK , that
these predicates are distinct for different values and that` v:K :κv is assumed for each
v. Then for anyaA andbB, if a 'L b : A thena 'O

A b.

7 Concluding remarks

By using bisimulation and its coincidence with observational equivalence, in [11] was
shown that, takinga andb as in Example 23,a 'O

[`1:Int] b. This is intuitively clear: the

only way to separatea from b is to change the value of`0, since then the fact thatb.`1

depends on such a value whilea.`1 does not, becomes apparent; but the overriding of
`0 is inhibited in contexts with the hole of type[`1:Int], where`0 is hidden.

It is not true, however, thata 'L b : [`1:Int], because the predicate〈`1:ω→1〉 is in
L[`1:Int], it is derivable fora even at type[`1:Int] but cannot be derived forb at any type.

That language inclusion is not sufficient to account for sub-typing of object types,
while it is for record types (see [10]) is the essential reason for the presence of rule
(Val Select) in our system. It is reasonable to think that the failure of equivalencies like
a 'L b : [`1:Int] from Example 23 depends on the fact that no rule accounts for the
hiding effect of sub-typing in the case of object types. One possibility for coping with
such a limitation is the following rule:

I ∩ J = ∅, A ≡ [`i:Bi
i∈I∪J], A′ ≡ [`i:Bi

i∈J], 〈`:τ→ρ〉 ∈ LA′ :

Γ ` a:A :〈`:〈`i:σi
i∈I〉〉∧τ→ρ Γ ` a:A :〈`i:σi

i∈I〉

Γ ` a:A′ :〈`:τ→ρ〉

This rule formalises the idea that whenA<: A′ andA andA′ are object types, the
methods of any object of typeA not mentioned inA′ are hidden: therefore ifa satisfies
the premise of any arrow predicate concerning the hidden part, this will never change
in contexts of typeA′, in such a way that the latter premise can be discharged. Clearly,
with reference to Example 23, by this rule one can derive` b:[`1:Int] :〈`1:ω→1〉, which
makesa andb logically indiscernible at type[`1:Int].

The soundness with respect to observational equivalence ofthe system resulting by
adding such a rule to the predicate assignment system can be proved by means of a
modified realizability interpretation of predicates, but at the time of writing we do not
know to what extent it actually solves the problem.

14

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer, 1996.
2. S. Abramsky. Domain theory in logical form.Annals of Pure and Applied Logic, 51:1–77,

1991.
3. S. van Bakel. Intersection Type Assignment Systems.Theoretical Computer Science,

151(2):385–435, 1995.
4. S. van Bakel and U. de’Liguoro. Logical semantics of the first order sigma-calculus.Lecture

Notes in Computer Science, 2841:202–215, 2003.
5. H. P. Barendregt, M. Coppo, and M. Dezani. A filter lambda model and the completeness of

type assignment.Journal of Symbolic Logic, 48:931–940, 1983.
6. V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit coer-

cion. Information and Computation, 93:172–221, 1991.
7. K. B. Bruce and G. Longo. A modest model of records, inheritance and bounded quantifica-

tion. Information and Computation, 87:196–240, 1990.
8. K. B. Bruce and J. C. Mitchell. Per models of subtyping, recursive types and higher-order

polymorphism. InProc. of POPL, 1992.
9. U. de’Liguoro. Characterizing convergent terms in object calculi via intersection types.

Lecture Notes in Computer Science, 2004:315–328, 2001.
10. U. de’Liguoro. Subtyping in logical form. InITRS’02, ENTCS 70. Elsevier, 2002.
11. A. Gordon and G. Rees. Bisimilarity for first-order calculus of objects with subtyping. In

Proc. of POPL’96, pages 386–395, 1996.
12. J. C. Mitchell.Foundations for Programming Languages. MIT Press, 1996.

A Some proofs

We will conclude this paper by giving details of proofs of some of the results obtained
in this paper; we will normally only state the non-trivial issues.

The following Lemma is needed in the proof of Lemma 40, and states what can be
concluded from derivable type-statements. The list shouldin fact be longer, but almost
all are directly implied in Lemma 37, using part 37.1; we havelisted a few as illustration
of that fact.

Lemma 35 (Type generation lemma). 1. If E ` [`i = ς(xAi

i)bi
(i∈ I)]:A, thenAi =

Aj , for all 1 ≤ i, j ≤ n, andA1<: A.
2. If a = [`i = ς(xA

i)bj
(i∈ I)] andE ` a:C for someC, thenA<: C andE ` a:A.

3. If a = [`i = ς(xA
i)bj

(i∈ I)].`, andE ` a:C for someC, then` = `j for some
j∈I, Aj <: C, andE ` a:A whereA = [`i:Ai

(i∈I)].
...

Lemma 36. If E, x:A ` b:B, andΓ ` a:A, thenE ` b{x← a}:B.

The essential properties of the predicate assignment system, on which the sub-
sequent treatment relies, are stated in next Lemma.

Lemma 37 (Generation lemma). Let τ ∈PS.

1. If Γ ` a:B :τ , thenΓ ` a:B, and these derivations have the same structure.

15

2. If Γ, x:A:σ ` a:B :τ , andC<: A, then alsoΓ, x:C:σ ` a:B :τ .
3. If Γ ` [`i = ς(xA

i)bi
(i∈ I)]:B :τ , thenA<: B, τ = 〈`j :ρ→µ〉 for somej∈I,

Γ ` [`i = ς(xA
i)bi

(i∈ I)]:A andΓ, xj :A:ρ ` bj:Aj :τ , whereA = [`i:Ai
(i∈ I)].

4. If Γ ` a.`:B :τ , then there existsσ, A = [`i:Ai
(i∈ I)], such that̀ = `j for some

j∈I, Aj <: B, Γ ` a:A :〈`j :σ→τ〉 andΓ ` a:A :σ.
5. If Γ ` a.`↼↽ς(yA)b:B :τ , thenA<: B , τ = 〈`j :ρ→µ〉 for somej∈I, Γ ` a:A,

andΓ, y:A:ρ ` b:Aj :µ, whereA = [`i:Ai
(i∈ I)].

6. If Γ ` λxC .a:B :τ , then there existsρ, µ, D such thatτ = ρ→µ, Γ, x:C:ρ ` a:D :µ
andC→D<: B.

7. If Γ ` a(b):B :τ , then there existsσ, C, A<: B such thatΓ ` a:C→A :σ→τ and
Γ ` b:C :σ.

8. If Γ ` fold(X, a):A :σ, then there existB, τ such thatµX.B<: A, σ = µ(τ), and
Γ ` a:B{X← µX.B}.

9. If Γ ` unfold(a):A :σ, then existX, B such thatB{X← µX.B}<: A, and
Γ ` a:µX.B :µ(σ).

Proof. Straightforward.

Lemma 38 (Substitution lemma). If Γ, x:A:σ ` b:B :τ andΓ ` a:A :σ, then
Γ ` b{x← a}:B :τ .

Proof: By straightforward induction on the structure of derivations, of which we
show only the interesting cases.
(Val x) : Then either:

(b = x) : Thenσ≤ τ . Sincex{x← a} = a, the result then follows from the
second assumption and Lemma 1.

(b = y 6= x) : SinceΓ, x:A:σ ` y:B :τ , andx 6∈ FV(y), alsoΓ ` y:B :τ .
(ω) : ThenΓ , x:A ` b:B. By Lemma 36,Γ ` b{x← a}:B, and by rule(ω),

Γ ` b{x← a}:B :ω.
(∧I) : Thenτ = ∧nτi, and, for1 ≤ i ≤ n, Γ, x:A:σ ` b:τi. By induction,

Γ ` b{x←A}:τi, and, by rule(∧I), Γ ` b{x← a}:∧nτi.

We use this Lemma to show the following result.

Theorem 39 (Subject Reduction). If Γ ` a:A :ρ, anda → a′, thenΓ ` a′:A :ρ.

Proof: By induction on the definition of the reduction relation→ . We only show
one case, that does not depend on Lemma 38; the others follow easily. Assumeρ∈PS.
1. [`i = ς(xC

i)bi
(i∈ I)].`j ↼↽ς(yB)b → [`i = ς(xC

i)bi
i∈ I\j , `j = ς(yC)b]. Let

C = [`i:Ci
(i∈ I)]. By Lemma 37, there existsB<: A, τ = 〈`j :ρ→µ〉,

Γ ` [`i = ς(xC
i)bi

(i∈ I)]:B, andΓ, y:B:ρ ` b:Bj :µ,

for somej∈I, whereB = [`i:Bi
(i∈ I)]. By Lemma 35, we haveC <: B and

A
AA

�
��

Γ, xj :C ` bj :Cj (∀j∈J)

Γ ` [`i = ς(xC
j)bj

(j∈J)]:C

16

whereC = [`j:Cj
(j ∈J)]; notice thatI ⊆ J . Notice that, by Lemma 37, there

exists a derivationD′′ such thatD′′ :: Γ, y:C:σ ` b:Bj :τ and
D′′ :: Γ , y:C ` b:Bj . We can then construct:

A
AA

�
��

Γ, xi:C ` bi:Bi (∀i∈I\j)

A
AA

�
��

D′′

Γ , y:C ` b:Bj

Γ ` a′:C

A
AA

�
��

D′′

Γ, y:C:σ ` b:Bj :τ

Γ ` a′:C :σ→τ
(C <: A)

Γ ` a′:A :σ→τ

(wherea′ = [`i = ς(xC
i)bi

i∈ I\j , `j = ς(yC)b]).

Lemma 40 (Expansion lemma). If Γ ` b{x← a}:B :τ , and bothΓ , x:A ` b:B and
Γ ` a:A for someA, then there existσ such thatΓ, x:A:σ ` b:B :τ andΓ ` a:A :σ.

Proof: By induction on the structure of terms; we only show some interesting cases.
Let B = [`k:Bi

(k∈I)], and assumeτ ∈PS.
(b = y 6= x) : Sincey{x← a} = y, we getΓ ` y:B :τ , and, by Weakening,

Γ, x:A:ω ` y:B :τ . Notice that, from the fact thatΓ ` a:A, we get, by rule(ω),
Γ ` a:A :ω.

(b = c.`↼↽ς(yC)d) : If Γ ` (c.`↼↽ς(yC)d){x← a}:B :τ then by definition of
substitution,Γ ` c{x← a}.`↼↽ς(yC)d{x← a}:B :τ . By Lemma 37 this implies
Γ ` c{x← a}.`↼↽ς(yC)d{x← a}:B, so, by Lemma 35,

C<: B and bothΓ ` c{x← a}.`↼↽ς(yC)d{x← a}:C andΓ ` c{x← a}:C,

and by Lemma 37,Γ ` c{x← a}.`↼↽ς(yC)d{x← a}:C :τ . Then by rule
(Val Update), there areρ, µ such thatτ = 〈`j :ρ→µ〉 (so` = `j), and

Γ ` c{x← a}:C, andΓ, y:C:ρ ` d{x← a}:Cj :µ.

whereC = [Ci
(i∈I)]. Then, by induction, there existσ such that

Γ ` a:A :σ, andΓ, x:A:σ, y:C:ρ ` d:Cj :µ.

By assumption,Γ, x:A ` c.`↼↽ς(yC)d:B, so, by Lemma 35, alsoΓ, x:A ` c:C.
Then, by rule(Val Update),

Γ, x:A ` c.`k ↼↽ς(yC)b:C :τ

andΓ, x:A ` c.`k ↼↽ς(yC)b:B :τ follows from rule(<:).
(b = c(d)) : If Γ ` (c(d)){x← a}:B :τ , thenΓ ` c{x← a}(d{x← a}):B :τ , and by

Lemma 37 there existsρ, C, A<: B such thatΓ ` c{x← a}:C→A :ρ→τ and
Γ ` d{x← a}:C :σ. Since by assumptionΓ , x:A ` c(d):B, by Lemma 35,
Γ , x:A ` c:C→A andΓ, x:A ` d:C. Then, by induction, there existsσ1, σ2 such
thatΓ, x:A:σ1 ` c:C→A :ρ→τ andΓ ` a:A :σ1, andΓ, x:A:σ2 ` d:C :ρ and
Γ ` a:A :σ2. Then by Weakening and rule(Val Appl) we get
Γ, x:A:σ1∧σ2 ` c(d):A :τ and by rule(∧I), Γ ` a:A :σ1∧σ2.

17

Theorem 41 (Subject Expansion). If Γ ` a:A :τ , anda′ is such thatΓ ` a′:A and
a′ → a, thenΓ ` a′:A :τ .

Proof: By induction on the definition of the reduction relation→ . We only show
one case, that does not depend on Lemma 40; assumeτ ∈PS.
1. [`i = ς(xC

i)bi
(i∈ I)].`j ↼↽ς(yB)b → [`i = ς(xC

i)bi
i∈ I\j , `j = ς(yC)b]. If

Γ ` [`i = ς(xC
i)bi

i∈ I\j , `j = ς(yC)b]:A :τ

then, by Lemma 37,C <: A, τ = 〈`j :ρ→µ〉,
Γ ` [`i = ς(xC

i)bi
i∈ I\j , `j = ς(yC)b]:C andDj :: Γ, xj :C:ρ ` bj :Cj :τ , for

somej∈I, whereC = [`i:Ci
(i∈ I)].

We have assumedΓ ` [`i = ς(xC
i)bi

(i∈ I)].`j ↼↽ς(yB)b:A, which gives, by
Lemma 35,C <: B<: A, andD :: Γ ` [`i = ς(xC

i)bi
(i∈ I)]:C

We can now construct:

A
AA

�
��

D

Γ ` [`i = ς(xC
i)bi

(i∈ I)]:C

A
AA

�
��

Dj

Γ, xj :C:ρ ` bj :Cj :τ

Γ ` ([`i = ς(xC
i)bi

(i∈ I)].`j ↼↽ς(xC)b):C :ρ→τ

and the desired resultΓ ` ([`i = ς(xC
i)bi

(i∈ I)].`j ↼↽ς(xC)b):A :ρ→τ then
follows by applying rule(<:).

For τ = ∧nτi (n ≥ 0), the proof follows by easy induction.

Theorem 42. If E ` a↔ b : A thena 'L
E b : A.

Proof. By structural induction over the derivation ofE ` a↔ b : A. Most of the cases
are the same as in the proofs of Theorem 18 and 20. Case(Eq Subsumption) follows by
Corollary 24. We only show:

(Eq Sub Object) : ThenI ∩ J = ∅, A ≡ [`i:Bi
i∈I], A′ ≡ [`i:Bi

i∈I∪J], and

E, xi:A ` bi:Bi (∀i ∈ I) E, xj :A
′ ` bj :Bj (∀j ∈ J)

E ` [`i = ς(xA
i)bi

i∈I]↔ [`i = ς(xA′

i)bi
i∈I∪J] : A

Now, if σ ∈ [[a′:A]]E , wherea′ ≡ [`i = ς(xA′

i)bi
i∈I∪J], then for someΓ such that

Γ = E, we deriveΓ ` a′:A :σ; this implies, by Lemma 37, thatσ = 〈`k:τ→ρ〉 ∈
LA for certainτ, ρ andk ∈ I ∪ J and thatΓ, xk:A:τ ` bk:Bk :ρ.
Now eitherk ∈ I or k ∈ J : in the first case by rule(Val Object) we derive immedi-
ately thatσ ∈ [[a:A]]E , wherea ≡ [`i = ς(xA

i)bi
i∈I]. On the other hand, the case

k ∈ J , namelyk 6∈ I, is impossible, since then〈`k:τ→ρ〉 6∈ LA.
This proves that[[a′:A]]E ⊆ [[a:A]]E : the proof of the opposite inclusion is similar
and easier.

Let ϑ be any closed substitution, andaϑ be the effect of applyingϑ to a (with usual
conventions to avoid free and bound variable clashes).

18

Given a closed substitutionϑ we say that it respectsΓ if for all x:B:τ ∈Γ it is the
case thatϑ(x) ∈ [[τ]]. By ϑ[xj := c] we mean the same asϑ but for substitutingxj by
c.

Theorem 43 (Realizability theorem). If Γ ` a:A :σ and for all x:B:τ ∈Γ it is the
case thatϑ(x) ∈ [[τ]], thenaϑ ∈ [[σ]].

Proof. By induction on the derivation ofΓ ` a:A :σ. We only show the interesting
cases.

(unfold) : Then the derivation ends with

Γ ` a:µX.A :µ(σ)
(σ∈PS)

Γ ` unfold(a):A{X← µX.A} :σ

By inductiona
∗
−→ fold(µX.A, b) for someb ∈ [[σ]]; sinceunfold(a)

∗
−→ b, we are

done by Lemma 30.
(Val Object): The derivation ends with

Γ , xi:A ` bi:Bi (∀i∈I) Γ, xj :A:σ ` bj :Bj :τ
(j ∈ I)

Γ ` [`i = ς(xA
i)bi

(i∈ I)]:A :〈`j :σ→τ〉

Thena ≡ [`i = ς(xA
i)bi

(i∈ I)] which is a value; since substitutions preserve values,
we getaϑ⇓. That`j ∈ Label(A) follows from the side-condition of the rule. For
anycA ∈ [[σ]] we have thatϑ[xj := c] respectsΓ, xj :A:σ and

aϑ.`j(c) ≡ b(ϑ[xj := c]) ∈ [[τ]]

follows by induction.
(Val Select) : The derivation ends with

Γ ` a:A :〈`j :σ→τ〉 Γ ` a:A :σ

Γ ` a.`j:Bj :τ

By inductionaϑ⇓ v, for some valuev, `j ∈ Label(A) andaϑ.`j(c) ∈ [[τ]] for any
cA ∈ [[σ]]; sinceaϑ ∈ [[σ]] (by induction again) we have thatv ∈ [[σ]] by Lemma 30
(first part) so that:

(a.`j)ϑ
∗
−→ aϑ.`j(v) ∈ [[τ]],

and we conclude by Lemma 30 (second part).
(Val Update1) : The derivation ends with

Γ ` a:A :〈`j :ω→ρ〉 Γ, y:A:σ ` b:Bj :τ

Γ ` (a.`j ↼↽ς(yA)b):A :〈`j :σ→τ〉

By inductionaϑ ∈ [[〈`j :ω→ρ〉]], which implies thataϑ⇓ and that̀ j ∈ Label(A),
therefore(a.`j ↼↽ς(yA)b)ϑ⇓ as well. Given anycA ∈ [[σ]], ϑ[y := c] respects
Γ, y:A:σ, so that we conclude by induction

(a.`j ↼↽ς(yA)b)ϑ.`j(c) ≡ bϑ[y := c] ∈ [[τ]].

19

(Val Update2) : the last inference is an instance of the rule:

Γ ` (a.`j ↼↽ς(yA)b):A Γ ` a:A :〈`i:σ→τ〉 i 6= j

Γ ` (a.`j ↼↽ς(yA)b):A :〈`i:σ→τ〉

By induction we know thataϑ ∈ [[〈`j :ω→ρ〉]], which implies thataϑ⇓: hence
(a.`j ↼↽ς(yA)b)ϑ⇓. Moreover, sincei 6= j, (a.`j ↼↽ς(yA)b)ϑ.`i(c) ≡ aϑ.`i(c)
which is in[[τ]] whencA ∈ [[σ]] by the inductive hypothesis.

Theorem 44 (Logical Equivalence and Observational Equivalence). Suppose that for
any valuev of ground typeK we have exactly a non-trivial predicateκv ∈ LK , that
this predicates are distinct for different values and that` v:K :κv is assumed for each
v. Then for anyaA andbB, if a 'L b : A thena 'O

A b.

Proof. Towards a contradiction, assume thata 'L b : A and that there exists some
ground context :A ` C[]:K such thatC[a]⇓ v and notC[b]⇓ v. By Theorem 33 it
follows that there exists some non-trivialτ ∈ LK such thatC[a] ` K:τ is derivable,
and by the assumptionsτ = κv. By Lemma 40 we know that there exist someσ ∈ LA

such thata ` A:σ andx:A:σ ` C[x]:K :τ (or equivalently :A:σ ` C[]:K :τ); since
σ ∈ [[a:A]] = [[b:A]] by the absurd hypothesis, Lemma 38 implies that` C[b]:K :τ is
also derivable: now ifC[b]⇑, then this contradicts Corollary 33; if insteadC[b]⇓ v′ for
some valuev′ 6≡ v then ` v′:K :κv by Theorem 18 which is impossible.

20

