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1. INTRODUCTION

This paper provides an assignment of type symbols
to the A\K-terms which are Bn-strongly normalizable.
The assignment can be viewed as an extension of the
formulas-as-types approach to the study of intuition-
ist logic and, consequently, may be said to have its
ultimate origins in the remarks of Curry and Feys
(1958, pp. 313-315).

The type symbols employed are formulas built up
from grouping indicators, propositional paranmeters,
>, and the new connective £. The intuitive meaning
of & can be explained by saying that to assert
A £ B is to assert that one has a reason for assert-
ing A which is alsco a reason for asserting B.
Taken together with the usual intuitionist under-
standing of =, this reading of [ provides a nice
motivation for all but one of the rules used in the
first system defined below to establish the promised
assignment of type symbols. The exception is a rule
designed to allow for as full a treatment of 1
conversion as possible.

In Curry and Feys (1958, pp. 313-315) it is point-




L1} ] 4. POTTINOER

ed out that the functional characters aasigned to
c¢losed terms in the basic theocry of functionality

ere in effect the thecrems of intuitionist propomi-
tional logic in‘which the only logical constant

which occure is . Given this, it is natural in the
present setting to define A to be a theorem iff it
is the type symbol of a closed term and then consider
the properties of @. in the light of this definition,
Although the bulk of this paper is devited to ques-
tions which arise from considering the systems pre-
sented here as providing as assignment of type sym-
bols to A-terms, the consequences of this definition
are explored briefly in section 6. In particular,

it will be shown that the behavior of = and & is
quite different from the behavior of o and” &
Thls is to be expected, since, according to the usu-
al intuitionist understanding of &, to assert

A &B 1is to assert that one has a pair of reasons,
the first of which is a reason for asserting A and
the second of which is a reason for asserting B.
Bvidently, this is quite different from the reading
for & given above. The point of section 6 is to
show how this intuitive difference manifests itself
formally.

The results proved here should be compared with
the recent work on extended type assignments for
A-terms contained in Coppo and Dezani-Ciancaglini
(1978) , sall€ (1978), Coppo, Dezani-Ciancaglini, and
Sallé (1979), and Coppo and Dezani-Ciancaglini (1980).
They are especially similar to the results presented
in Coppo and Deéahi—ciancaqlini (1980) but go beyond
the latter in that they cover the AK-terms and in-
clude a treatment of rn-cohversion. This similarity
will ke described precisely after tke necessary for

A TYDD ABBIGNMENT 563

mal machinery has been introduced.

In what follows systems will be thought of con-
catenatively, but, in accordance with Curry's policy,
no expression of these systems will be written down.
Only U-language expressions will appear in this pa-
per. Curry's punctuational convéntions will be adop-~
ted, and notations used without explanation are to
be understood according to Curry's definitions of

them. T'=! expresses identity.

2. THE SYSTEMS Sl AND 82

Statements of these systems have the form tl=A,
where t is a  AK-term and A is a formula built up
in the way described above. tlA may be interpreted
as saying that t is a reason for asserting A.l
P,Q,R... are to be lists of the form xlF=Ar...,an=An
(n > 0), where for all i,j(l <1i < 3j <n), X5 £ x..
Sequents of §; and S, have the form P F tEa.

P is the antecedent and tFA is the succedent of
of P } tEA. (Note that, according to these def-
initions, a variable may not occur twice in the ante-
cedent of a sequent. This restriction applies every-
where in what follows, and it is important. For
example, it is easy to see that the rule oI, which
will be stated momentarily, would be unsound without
it.)

Intuitively, xl}=Al,...,xn}=An F tEA is sup-
posed to mean that if Xys»eesX, were replaced by
reasons for asserting Al""’An’ respectively, in
t, then the result would be a reason for asserting
A. _

Derivations of Sl are finite, ordered trees of
sequents built up according to the following specifi-

cations.
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Axioms
P,xEA,Q F xl=a
Rules
oE P | tka oB P - uka
P | tulB
oI P,xEA,Q | tEB
P,Q | Aly/xltFA o B
provided vy # x only if y is not free in
t
8r P tka &s p} tEaé&s
P} tEa P - tEB
&1 P tka P |- tEB
A - =
P}l tkA &B
P | Ax.txEA

P |- tk=A
provided =x is not free in t

It should be clear that the axioms and rules of
S other than 1 accord with the intended meaning
of sequents. mn is a rule of type inclusion which
allows for the treatment of mconversion, It will
turn out that mnconversion must be restricted, des-
pite the presence of 1.

To try to treat nmconversion as fully as possible
is obviously reasonable from the point of view of
combinatory logic, but it is also clear that this
motive is independent of the motivation given above
for the rules of S

1
dence can be worked out formally. Let Sl-n be

other than 1. This indepen-

the system obtained from Sl by deleting 1. 1t is
not difficult to see that 5:-m assigns type symbols
to the same set of terms ak S1 {though it does not
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assign the same type aymbols), that deleting n does
not disturb the tremtment of p-conversion given in
gectlion 4, and that the set of formulas which are
theorems according to the definition given in section
1 is not changed by passing from §; to §y-m. It
also happens that the assignment of type symbols pro-
vided by Sl—n is essentially the same as that given

in Coppo and Dezani-Ciancaglini (1980) -- if one sim-

ply rewrites the notation ’[ol,...,oh]' used there
1 ' 1 1

as Al @...@.An and rewrites 'F[cl,..,on]f as

'Al @...@ a, > B', then it is almost trivial to prove

that the two assignments are the same.2 From this it
follows that these authors could have extended their
treatment of @g-conversion to the AK-terms by pro-
ceeding in the manner of section 4, below.

Although S,
in a very clear way, the presence of the rules for
@ and 1 make it hard to prove things about Sl.3
It will now be shown that these rules can be avoided

expresses the motivation given above

by enlarging the stock of axioms and altering the
form of =I. The resulting system will be called
'Sz'. First, the auxiliary system CI, must be de-
fined.

IZA,@,I&,... are to be finite sequences of formu-
las. Sequents of CL have the form T'|} A.
Axioms

T,a,A || &

Rules

T aé&s Tk aés

Dl a T B
o T|}F A AP |F B
T|F a&8B
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T| A28 T+ ADC
=)
?|} a>m dc
c |l A T'|F AoB
| = :
Tl coB
T| a>B B |} C
o)

T| Aa>c
Simple arguments by induction on the length of CL
derivations show that the following rules are admim-
sible in CL.
',ar |} B

K| F
T,a,A |+ B
I T',2,B,0 |} C
C
T, B,A,0 |} € e G
n T,2,A,A | B
W
T,a,2 | B
T a ARG B
cut|
o, |F B
?{,Y,Z,X . are to be sets of formulas. Let TI'x

1°°
be the set of formulas occurring in T% and define

cl(X) = {A: for some D, T*c<cX and T |} A
is derivable in CL}. Where % is the set of formu-
las, it is easy to see that ¢l 1s a closure opera-
tion on P34 cut|} yields the conclusion that
el(cl(X)) = cl(X), and the other conditions are im-
mediate from the definitions of CL and cl.

Where X is a non-empty set of formulas, P | tl=X
is to be a sequent having P as its antecedent and
having some member of X as the formula on the right
gide of [ in its succedent. S, is defined by the

following specifications.

Axioms P,xEA,Q | xkEcl({a])
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Rules
= As in Bl

P,xpmA;,Q | t=By ... P,xl=A,,Q | tFB,
v §

P,Q Ay[y/x]t%cl({Al D Bys...sB D Bn})
provided y # x only if y is not free in
t

3. THE EQUIVALENCE OF Sl AND 82

LEMMA 3.1 If P F t|=Al,...,P[- tf=a, are deri-
5, and A e cl({Al,...,An}), then P | tgEA

is derivable in SZ‘

vable in S

Proof. 1Induction on the complexity of t. If ¢
is a variable or t begins with .A, the required
argument is trivial. Otherwise, for all i(l<icx<
n, P F A, arises via an inference of the form

P tyFBy DAy P | u FB; .

P F tlu1}=Ai
It is easy to show that By @...éBn = Q...@An €
cl({Bl S Aqs...5B) > A_}) and that A € cl({Al A...8
A
An}). Hence, Bj f:...j.?c\Bn DA ¢ c:l({B1 =R STERRES- M
>A_}). Also, B, &..2B_e cl{({By,...,B }). By Hyp.
n 1 A D 1 n A
Ind. P b t;EB @...&Bn:A and P b u By &..
2 B, are derivable in S,, so P - tlul}=A is deri-
vable in 82 by =E.

LEMMA 3.2 1 is admissible in Sy-

proof. Suppose P f Ax.txEA is derivable in
S, and suppose x is not free in t. P - ax.txEA
is derived by an inference of the form
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Q,R F kx.tx}:cl({Bl D CyseeaBy :cn])

In turn, for each i{(l <i < n), Q,yf=Bi,R -ty ¢y
arises through an inference of the form

Q,yFB;,R | tED; ¢ Q,vEBR  yED;

Q:Y%Bi:R }' tYF:Ci
_.Since y is not free in t, it can be shown by induc-
ti&n on the length of S, derivations that, for all
i(l <i <n), 9,R | tf=Di >cy ig derivable in Sy
Also, for all i(l <i <n), QyFEB,,R | ylED; is

an axiom of S,, and, hence, D; ¢ cl({Bi}) . Le_mgt_a 3.1
implies that, for all i(l <i <n), Q,R F t}=Bi >
C.l is derivable in S . The desired conclusion fol-

lows from this and lemma 3.1.

COROLIARY 3.3. If P | tlA is derivable in
Sy, then P |- t=A is derivable in S,.

Proof. Immediate froin lemmas 3.1 and 3‘.2.
By induction on the length of 8y and S, deri-
vations it can be shown that the following rules are
admissible in S and S,.
P,xEA,Q | tkB

ek P,x=A,yEB,Q | tEC
p,yEB,xFA,Q | tEC

Wi P,xFA,yEARA,Q |- tEB
P,xEA,0 F [x/y1tEB

cut |- P} uEa P,xEA,Q  tEB
P,0 F [wxltEB
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LEMMA 3.4, If B ¢ ol((A}), then P,xmA,Q |xm3B
is derivable in sl.

Proof. By induction on the length of CIL deriva-
tions ending with A |} B. (K|} and W]} imply
that there is no loss of generality.) ©Let D be the
given derivation. If D is an axiom or ends with
8 or &I, the required argument is trivial. In the
o& case one proceeds via Hyp. Ind., K} ,:JE,@I,DI,
and n.  Hyp. Ind., Kl ,oE,oI and 1n suffice in the i
| F > case, and Hyp. Ind., K} ,2E,Cut} ,>I, and

yield the desired conclusion in the D} case.

LEMMA 3.5. If P | tiEA,...,P |- tEA are
derivable in §; and A ¢ cl({Al,...,An]), then
P | tlEA is derivable in 5.

Proof. P | tl=Al & ..@An can be derived in S,
by means of @I, and lemma 3.4 implies that P,X[F Ay
g..8 A, | xEA is derivable in s;. cutf yields

the desired conclusion.

THEOREM 3.6. P | tlA is derivable in s, iff
P [ tEA is derivable in S,.

Proof. Immediate from corollary 3.3 and lemmas
3.4 and 3.5.

From now on 'derivable' will often be written in-
stead of 'derivable in S;' and 'derivable in 5,'.
Also, if Q 1is a result of permuting elements of
P, P and Q may be identified in view of C} and
Wl . This will be done in what follows.

4, REDUCTION AND CONVERSION

Define:

Xt,Pz{A : P | tEA is derivable}

Xt=gxt,P
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t, REDla t, 122 there exist, g, x, and u s, &, X in
not free in t only if X4 % 0, and t, is a
result of replacing an occurrence of (Axt)u in ty
by an occurrence of [u/X]t.

¥ =(A >B: A,B e 7] A

£y REDln t, 1ff there exist t and x s.t. X &
cl(3), is not free in t, and t, 1is a result
of replacing an occurrence of Ax.tx in tl by an
occurrence of t,

tl REDlSn t, iff tl REDIE 2 or tl REDln t2.

=0 is the usual relation of o~conversion.

RED [t RED t2] iff there exist ViyseoaV

t
B Bn . n

(1 _<_ n) s.t. vl—tl, vn=t2, and, for all i < n, Vl—ou
Visg OF V3 REDjg Vi [V REDy g vy 1.

tl CONVB t2 [tl CONVBn t ] iff there eXist v1 .V
(1 <n) s.t. Vl=tl’ v =tsy, and for all i < n,
t] REDB t, or. t; RED, t; [ty REDg €, REDg t9].

TERM={t: X_ # 0}.

It will now be shown that if ¢ CONVBn u, then

X =X, and a fortiori, that TERM is closed under

CONVBn.

A CL derivation D is normal iff no sequent
occurrence  in D is both the conclusion of a &1
and the premiss of a @E It can be shown by induc-~
tion on the length of CI. dexivations that if
T' | A is derivable in CL, then there is a normal
CL derivation which ends with T |} A. If D is
a hormal CL derivation which ends with Al o Bl"'
A 2B, |} & £ B, induction on the length of b}
vields the conclusion that the last inference of D
is a &I. It follows that the last inference of a
normal CL derivation ending with Al 2 Bys--n ’An =

|F A >B is not a &&,
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LEMMA 4.1, 1If An:cal({klznl,...,a :B])
then there exiat ¢, @ Dl,...,c oD, € [Al =) Bl""’
A, DB, ) 8.t. A B ¢ cl((c :Dl,...,cm:Dm}),
cl,....,cm € cl({a)), and B ¢ cl({Dl,...,Dm}).

Proof. By induction on the length of normal CL
derivations ending with Ay ©By,...,A DB/ [ a2
B. (K|}, ¢|]}, and W|} imply that there is no
loss of generality.)

LEMMA 4.2. If P,xFA,Q | tkB is derivable and
A e cl(fc}), then P,xkcC,0 - tkB is derivable.

Proof. By induction on the length of S, deri-
vations.

LEMMA 4.3. If P | t;f=A is derivable and t
ty, then P | t [=A is derivable.

RED v
1
Proof. 1Induction on the complexity of tl' Hyp.

Ind. suffices if a proper part of ¢t is replaced.

1
Otherwise, lemmas 4.1, 4.2, 3.1, and cCut} yield

the desired conclusion.

IEMMA 4.4. If D is an 82 derivation ending
with P | [u/x]tkA, X = (B: for some Q and v,
v=u and Q | VvEB occurs in D}, and X c el
({c}), then p,yEc | [y/x]t=A is derivable in

Proof. 1Induction on the complexity of ' t.

LEMMA 4.5, If P | tEA is derivable and x is
free in t, then P has the form Q,x} B,R.

Proof. 1Induction on the length of S, derivations

LEMMA 4.6. If D is an 82 derivation which
ends with P,xka,Q }— tEB and P1,XFC,0; F tl{=Bj
occurs in D, then a = C.

T
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Ricof. Induction on the length of R

LEMMA 4.7. If x im free in ¢, R is an 8,
derivation which ends with P - [u/x]tlen, and
X = (B: for some Q and v, v = u and Q F vl
cccurs in D), then X # 0. ‘

Rroof.

For P = xl}=Al,...,xn1=An,yl}=B1,...,ym}=Bm and
Q= xll-cl,...,xn}=cn,zl}=nl,...,zk|7=Dk, where Yq,...
Y, 3are distinct/\from ZoyseoeesZys let P+ Q = xl]s-z\l
) Cysrnrs¥gA, & Co¥yEBys- s ¥yb Bz EDy e 2y b

Dy

Induction on the length of D.

LEMMA 4.8. If t; RED; g ¢t and P | t,FA is
derivable, then there is an R s.t. R |- t;EA iss
derivable.

Proof.
proper part of t,
Suppose t2 = [u/xX]t.

If x is not free in t, then X, £ 0. Let
Q - ukEB By K and oI P | Axtl
B DA is derivable. By lemma 4.2 and K|- P+ Q |-
ukB .and P+ Q | AxtB 2 A are derivable, so
P+ Q F (Mxt)ulEA is derivable by =E.

Induction on the complexity of t2. If a
is replaced, Hyp. Ind. suffices,

be derivable.

If x is free in t, let D, be an &, deriva-
tion ending with P |} [u/xJt|=A and let X be as
in lemma 4.7. Lemma 4.7 implies that X # O. By
lemma 4.4 P,yE3B; £..% B, I [y/x]1tl=A is deriv-
able, where X = [Bl,...,Bn]. Hence, P | ?\xtszl
£..8 B, ®A is derivable by =I. Let 0Q; - vl}z
0, I v,EB, be the sequents of the form
and Q  vEB occurs in D,
it can be

Bl,-.-

Q F vEB s.t. v =

(L<ign), v, =4

Since for all i i Tq
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shown by induction on the complexity of ViseeosVy
that Q, ~ upB,.,..,Q,  um=B are derivable. By
suppressing elements of Qpse00sQy which involve
variables not free in u and applying lemmas 4.5 and
4.6, Kl-, and c} , it follows that P k- UEBy, ey
P | ufkB are derivable. By lemma 3.1 P |- uf By
g...8 B, is derivable, so P - (Axt)ulEA is deriv-
able by =E. ‘

CORCLIARY 4.9. If t, RED

1 18 t,, then _th = th.
Proof. Immediate from lemmas 4.3 and 4.8.
LEMMA 4,10, 1f tl REDln tz% then th,P'= th,P'
Proof, Induction on the complexity of t,. If a
proper part of tl is replaced, Hyp. Ind. suffices.
Suppose tl = AX,tx. Then t2 = t.
X%x.tx,P —(-:Xt,P by mn. Suppose A ¢ Xt,P' it

will be shown by induction on the complexity of A
that A ¢ X?\x.tx,P‘ Xt,P
shown by induction on the length of CL - derivations

Since c cl(gj) , it can be
that A is not a propositional parameter.

If A = Ay D A,, the desired conclugion follows
via K}, =E, and 2I. If A = Al QAZ, apply lemma
3.1, Hyp. Ind., and lemma 3.1 again in order to com-
plete the argument.

COROLLARY 4.11. if tl RED1n t2, then th = Xt2'
Proof. Immediate from lemma 4.10.
THEOREM 4.12. If tl COI.\TVEm t2, then th = th.

Proof. As was remarked in the proof of lemma 4.8;
=, <causes no trouble, so the theorem follows from

corollaries 4.9 and 4.11.
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x is the hegsd of x. »xt ls the head of Mxt,
The head gf tu ia the head of t.

LEMMA 5.1, If t is p-normal, then the head of
t 4is a variable or t.

Proof. Induction on the complexity of t.

TEMMA 5.2. If the head of t is a variable and

£ ¢ TERM, then Xt = &

Pxoof. Induction on the complexity of t.
THEOREM 5.3. If t is @-normal, them t ¢ TERM

proof. Induction on the complexity of t, using

lemmas 5.1 and 5.2 as required. e

THEOREM 5.4. If t 1is Bn-strongly normalizable
(in the usual sense), then t e TERM.

pPxoof. The grn-strongly normalizable terms are
the same as the g-strongly normalizable terms. Pro-
ceed by induction on the maximum number of &-con-
tractions in a reduction of t to a pg-normal term,
using theorem 5.3 and theorem 4.12 as required.

In order to prove the converse of theorem 5.4, it
suffices to show that every member of TERM is g-
strongly normalizable. A method for proving this will
now be explained. .

$,Sqs00e are to be sequents of S1 and Sz. $5
g-reduces to s, iff, for some P, t, u, and A,

8, =P F tka, s, =P | uFA, and t g-reduces to
u (in the ordinary sense). s is pB-strongly noxr-
malizable iff every g-reduction of s contains

only finitely many g-contractions.
let s =P | tlA be derivable. If A is a
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propoaitional parameter and s is p-strongly nox-
malizable, then s is gompytable. If A =3, DA,
and, for every computable sequent Q [ u|=Al, P+ Q
I tulka, is computable, then s is computable.
1f A=a; £a, and P | tka; and P | tFa
are computable, then s is computable.

Given this definition, it isieasy to modify the
arguments of Stenlund (1972, pp. 126-131) so as to
prove that evéry derivable sequent is p-strongly
normalizable. The converse of theorem 5.4 follows.

THEOREM 5.5. TERM = {t: t 1is grnstrongly nor-

- malizable]

Proof. By theorem 5.4 and the method for proving
the converse of theorem 5.4 which has Jjust been des-
cribed.

6. @ AS A CONNECTIVE

It was remarked in section 1 that Q behaves
quite differently from & This will now be made
apparent.

A is a theorem iff, for some t, | tFA is
derivable. This amounts to saying that A is a
theorem iff A 1is realized by a closed member of
TERM.

Given theorem 4.12 and 5.5, it is easy to show
that the following formulas are not theorems: p 2.
g >o>p P d, P>2g=>.p 2r 2.p Dqg ) r, p 2 g>or o.p
O>.g D xr. On the other hand, the following sequents
are derivable.

F Ax.xxpEA £ (a>B o8B

F AxAy.xyE (A 2 B) & (A oC) o.A DB 2c
L axiy.xy=A>B &cCco.(aDB) & (D0
F AxAy.xykEA D C 2.A &BocC
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AN b A 8B 2.4 =
AXAY.Xyy=A =(B D C) o.A §roc
AXX = A 88 oa
AxxfEA DA &a
AXX = A £3 o8B & a
axxka BB &) oadp &c
Since the meaning of @ is reasonably clear {(to
claim that A & B is to claim that one has a reason
for asserting A which is also a reason for assert-

T T T T T

ing B), it would obviously be of interest to figure
out how to add ) to intuitionist logic and then
-consider the analysis of intuitionist mathematical
reasoning in the light of the resulting system.

FOOTNOTES =

1. This is crude, but it will suffice to motivate
the rules and axioms of the system Sl' Clearly,

it would be nice to be sble to replace this sort
of talk by a pleasant realizability interpreta-
tion. TFor those who believe that all is syntax
the results proved here will in effect do that.
It is in fact possible to produce a set theoreti-
cally based realizability interpretation for the
formal machinery employed in this paper, which
should be some comfort to those who do not be-
lieve that all is syntax. But that interpreta-
tion is far from pleasant, and this paper is too
small to contain it.

2. One needs a lemma to the effect that in an SPR

derivation mno s%%uent need ever be both theg con-
clusion of an &I and the premiss of an

(cf. the remarks preceding lemma 4.1 and the
proof of that lemma), but it is easy to prove
this by induction on the length of S5,-n deriva-
tions.

3. n is the real culprit here. If attention were
restricted to Sy= 1 then it would suffice to

control &1 and 8 in the way explained in
note 2,

4, P% = the powerset of 3.
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5, 0O = the empty set,

ACKNOWLEDGEMENTS

The research reported on here was supported in
part by NSF grants SOC 7707548 and SOC 7906386,

Earlier drafts of this paper were greatly improved
due to the suggestions of the editors and the referee
and to correspondence with M. Coppo. Peter Andrews,
Don Cohen, Eve Cohen, David Jefferson, Dale Miller,
and Oswald Wyler alsc provided much help in the pre-
paration of the final draft by pointing out various
sins of commission and ommision in the course of a

seminar presentation of the first draft.

REFERENCES

M. Coppo and M. Dezani-Ciancaglini, "A New Type Assign-
ment for A-terms", Archiv flr Mathematische
Logik und Grundlagen Forschung, vol. 12 (1978),
pp. 139-156.

M. Coppo and M. Dezani-Ciancaglini, "An Extension of
Basic Functionality Theory for A-calculus”, Notre
Dame Journal of Formal Logic (forthcoming July
1980),

M. Coppo, M. Dezani-Ciancaglini, and P. sallé, "Func-
tional Characterization of some Semantic Equali-
ties inside A~calculus”, Lecture Notes in Com-
puter Science, vol. 71 (1979), pp. 133-146.

H. B. Curry and R, Feys, Combinatory Logic vol. 1,
North Holland, 1958,

P. Sallé, "Une Extension de la Théorie des Types en
A-calcul", Lecture Notes in Computer Science,
vol. 62 (1978), pp. 398-410.

S. Stenlund, Combinators, A-terms and Proof Theory,
D. Reidel, 1972,




