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1 INTRODUCTION

This paper provides an assignment of type symbols to the λK-terms which are βη-strongly
normalizable. The assignment can be viewed as an extension of the formulas-as-types ap-
proach to the study of intuitionistic logic and, consequently, may be said to have its ultimate
origins in the remarks of Curry and Feys (1958, pp. 313-315).

The type symbols employed are formulas built up from grouping indicators, propo-
sitional parameters, →, and the new connective ∩. 1 The intuitive meaning of ∩ can be
explained by saying that to assert A∩B is to assert that one has a reason for asserting A
which is also a reason for asserting B. Taken together with the usual intuitionist under-
standing of →, this reading of ∩ provides a nice motivation for all but one of the rules used
in the first system defined below to establish the promised assignment of type symbols. The
exception is a rule designed to allow for as full a treatment of η-conversion as possible.

In Curry and Feys (1958, pp. 313-315) it is pointed out that the functional characters
assigned to closed terms in the basic theory of functionality are in effect the theorems of
intuitionist propositional logic in which the only logical constant which occurs is →. Given
this, it is natural in the present setting to define A to be a theorem iff it is the type symbol of
a closed term and then consider the properties of ∩ in the light of this definition. Although
the bulk of this paper is devited 2 to questions which arise from considering the systems
presented here as providing as 3 assignment of type symbols to λ-terms, the consequences
of this definition are explored briefly in section 6. In particular, it will be shown that the
behavior of → and ∩ is quite different from the behavior of → and &. This is to be expected,
since, according to the usual intuitionist understanding of &, to assert A&B is to assert that
one has a pair of reasons, the first of which is a reason for asserting A and the second of
which is a reason for asserting B. Evidently, this is quite different from the reading for ∩

given above. The point of section 6 is to show how this intuitive difference manifests itself
formally,

The results proved here should be compared with the recent work on extended type
assignments for λ-terms contained in Coppo and Dezani-Ciancaglini (1978), Sallé (1978),
Coppo, Dezani-Ciancaglini, and Sallé (1979), and Coppo and Dezani-Ciancaglini (1980).
They are especially similar to the results presented in Coppo and Dezani-Ciancaglini (1980)
but go beyond the latter in that they cover the λK-terms and include a treatment of η-

1 The original symbols used for → and ∩ were ⊃ and &̂.
2 Should be ‘devoted’.
3 ‘as’ very likely should be ‘an’.

1



To H. B. Curry, Essays in Combinatory Logic, Lambda-Calculus and Formalism, pp. 561–577, 1980 2

conversion. This similarity will be described precisely after the necessary for mal4 machin-
ery has been introduced.

In what follows systems will be thought of concatenatively, but, in accordance with
Curry’s policy, no expression of these systems will be written down. Only U-language ex-
pressions will appear in this paper. Curry’s punctuational conventions will be adopted, and
notations used without explanation are to be understood according to Curry’s definitions of
them. ‘=’ expresses identity.

2 THE SYSTEMS S1 AND S2

Statements of these systems have the form t : A 5, where t is a λK-term and A is a formula
built up in the way described above. t : A may be interpreted as saying that t is a reason

for asserting A.1 P, Q, R. . . are to be lists of the form x1:A1, . . . , xn:An (n > 0), where for all
i, j (1 ≤ i ≤ j ≤ n), xi 6= xj. Sequents of S1 and S2 have the form P ⊢ t : A. P is the antecedent
and t : A is the succedent of of6 P ⊢ t : A. (Note that, according to these definitions, a variable
may not occur twice in the antecedent of a sequent. This restriction applies everywhere in
what follows, and it is important. For example, it is easy to see that the rule →I, which will
be stated momentarily, would be unsound without it.)

Intuitively, x1:A1, . . . xn:An ⊢ t : A is supposed to mean that if x1, . . . , xn were replaced
by reasons for asserting A1, . . . , An, respectively, in t, then the result would be a reason for
asserting A.

Derivations of S1 are finite, ordered trees of sequents built up according to the following
specifications.

Axioms

P, x:A, Q ⊢ x : A
Rules

→E
P ⊢ t : A→B P ⊢ u : A

P ⊢ tu : B

→I
P, x:A, Q ⊢ t : B

(provided y 6= x only if y is not free in t)
P, Q ⊢ λy.t[y/x] : A→B

∩E
P ⊢ t : A∩B

P ⊢ t : A

P ⊢ t : A∩B

P ⊢ t : B

∩I
P ⊢ t : A P ⊢ t : B

P ⊢ t : A∩B

η
P ⊢ λx.tx : A

(provided x is not free in t)
P ⊢ t : A

It should be clear that the axioms and rules of S1 other than η accord with the intended
meaning of sequents. η is a rule of type inclusion which allows for the treatment of η-
conversion. It will turn out that η-conversion must be restricted, despite the presence of
η.

To try to treat η-conversion as fully as possible is obviously reasonable from the point
of view of combinatory logic, but it is also clear that this motive is independent of the

4 ‘for mal’ should be ‘formal’.
5 Original notation t |= A.
6 One ‘of’ too many.
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motivation given above for the rules of S1 other than η. This independence can be worked
out formally. Let S1-η be the system obtained from S1 by deleting η. It is not difficult to see
that S1-η assigns type symbols to the same set of terms as S1 (though it does not assign the
same type symbols), that deleting η does not disturb the treatment of β-conversion given in
section 4, and that the set of formulas which are theorems according to the definition given
in section 1 is not changed by passing from S1 to S1-η. It also happens that the assignment
of type symbols provided by S1-η is is essentially the same as that given in Coppo and
Dezani-Ciancaglini (1980) – if one simply rewrites the notation ‘[σ1, . . . ,σn]’ used there as
‘A1∩ . . .∩ An’ and rewrites ‘F[σ1, . . . ,σn]τ’ as ‘(A1∩ . . .∩An)→B’, then it is almost trivial to

prove that the two assignments are the same.2 From this it follows that these authors could
have extended their treatment of β-conversion to the λK-terms by proceeding in the manner
of section 4, below.

Although S1 expresses the motivation given above in a very clear way, the presence of

the rules for ∩ and η make it hard to prove things about S1.3 It will now be shown that these
rules can be avoided by enlarging the stock of axioms and altering the form of →I. The
resulting system will be called ‘S2’. First, the auxiliary system CL must be defined.

Γ,∆,Θ, Γ1, . . . are to be finite sequences of formulas. Sequents of CL have the form
Γ ⊢⊢ A.

Axioms

Γ, A,∆ ⊢⊢ A
Rules

∩E
Γ ⊢⊢ A∩B

Γ ⊢⊢ A

Γ ⊢⊢ A∩B

Γ ⊢⊢ B

∩I
Γ ⊢⊢ A Γ ⊢⊢ B

Γ ⊢⊢ A∩B

→∩
Γ ⊢⊢ A→B Γ ⊢⊢ A→C

Γ ⊢⊢ A→B∩C

⊢⊢→
C ⊢⊢ A Γ ⊢⊢ A→B

Γ ⊢⊢ C→B

→⊢⊢
Γ ⊢⊢ A→B B ⊢⊢ C

Γ ⊢⊢ A→C

Simple arguments by induction on the length of CL derivations show that the following
rules are admissible in CL.

K⊢⊢
Γ,∆ ⊢⊢ B

Γ, A,∆ ⊢⊢ B

C⊢⊢
Γ, A, B,∆ ⊢⊢ C

Γ, B, A,∆ ⊢⊢ C

W⊢⊢
Γ, A, A.∆ ⊢⊢ B

Γ, A,∆ ⊢⊢ B

Cut⊢⊢
Γ ⊢⊢ A ∆, A,Θ ⊢⊢ B

Γ,∆, ⊢⊢ B

7

7 Θ is missing from the conclusion.
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X, Y, Z, X1 . . . are to be sets of formulas. Let Γ∗ be the set of formulas occurring in Γ,
and define

cl(X) = {A : for some Γ, Γ∗ ⊆ X and Γ ⊢⊢ A is derivable in CL}.

Where F is the set of formulas, it is easy to see that cl is a closure operation on ℘F .4 Cut⊢⊢
yields the conclusion that cl (cl (X)) = cl (X), and the other conditions are immediate from
the definitions of CL and cl.

Where X is a non-empty set of formulas, P ⊢ t : X is to be a sequent having P as its
antecedent and having some member of X as the formula on the right side of ‘:’8 in its
succedent. S2 is defined by the following specifications.

Axioms

P, x:A, Q ⊢ x : cl ({A})
Rules
→E As in S1

→I
P, x:A1, Q ⊢ t : B1 . . . P, x:An, Q ⊢ t : Bn

(provided y 6= x only if y is not free in t)
P, Q ⊢ λy.t[y/x] : cl({A1 →B1, . . . , An →Bn })

3 THE EQUIVALENCE OF S1 AND S2

Lemma 3.1 If P ⊢ t : A1,. . . P ⊢ tn : An are derivable in S2 and A ∈ cl ({A1, . . . , An }),
then P ⊢ t : A is derivable in S2.

Proof . Induction on the complexity of t. If t is a variable or t begins with λ, the required
argument is trivial. Otherwise, for all i (1 < i < n), P ⊢ Ai

9 arises via an inference of the
form

P ⊢ t1 : Bi→Ai P ⊢ u1 : Bi
(→E)

P ⊢ t1u1 : Ai

It is easy to show that B1∩ . . .∩Bn→A1∩ . . .∩ An ∈ cl ({B1→A1, . . . , Bn→An }) and that A ∈
cl ({A1 ∩ . . .∩An }). Hence, B1∩ . . .∩Bn→A ∈ cl ({B1→A1, . . . , Bn→An }). Also, B1∩ . . .∩Bn

∈ cl ({B1, . . . , Bn }). By Hyp. Ind. P ⊢ t : B1∩ . . .∩Bn→A and P ⊢ u1 : B1∩ . . .∩Bn are derivable
in S2, so P ⊢ t1u1 : A is derivable in S2 by →E.

Lemma 3.2 η is admissible in S2.

Proof . Suppose P ⊢ λx.tx : A is derivable in S2, and suppose x is not free in t. P ⊢
λx.tx : A is derived by an inference of the form

Q,y:B1, R ⊢ ty : C1 . . . Q,y:Bn, R ⊢ ty : Cn
(→I)

Q, R ⊢ λx.tx : cl({B1→C1, . . . , Bn →Cn })

In turn, for each i(l ≤ i ≤ n), Q,y:Bi, R ⊢ ty : Ci arises through an inference of the form

Q,y:Bi, R ⊢ t : Di→Ci Q,y:Bi, R ⊢ y : Di
(→E)

Q,y:Bi, R ⊢ ty : Ci

8 The original has |= in stead of ‘:’.
9 Ai should be t : Ai.
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Since y is not free in t, it can be shown by induction on the length of S2 derivations that, for
all i(l ≤ i ≤ n), Q, R ⊢ t : Di→Ci is derivable in S2. Also, for all i(l ≤ i ≤ n), Q,y:Bi, R ⊢ y : Di

is an axiom of S2, and, hence, Di ∈ cl ({Bi }). Lemma 3.1 implies that, for all i(l ≤ i ≤ n),
Q, R ⊢ t : Bi→Ci is derivable in S . 10 The desired conclusion follows from this and lemma
3.1.

Corollay 3.3 If P ⊢ t : A is derivable in S1, then P ⊢ t : A is derivable in S2.

Proof . Immediate from lemmas 3.1 and 3.2.

By induction on the length of S1 and S2 derivations it can be shown that the following
rules are admissible in S1 and S2.

K⊢
P, Q ⊢ t : B

P, x:A, Q ⊢ t : B

C⊢
P, x:A,y:B, Q ⊢ t : C

P,y:B, x:A, Q ⊢ t : C

W⊢
P, x:A,y:A, Q ⊢ t : B

Γ, x:A, Q ⊢ t[x/y] : B

Cut⊢
P ⊢ u : A P, x:A, Q ⊢ t : B

P, Q ⊢ t[u/x] : B

Lemma 3.4 If B ∈ cl ({A}), then P, x:A, Q ⊢ x : B is derivable in S1.

Proof . By induction on the length of CL derivations ending with A ⊢⊢ B. (K⊢⊢ and W⊢⊢
imply that there is no loss of generality.) Let D∼ be the given derivation. If D∼ is an axiom or
ends with ∩E or ∩I, the required argument is trivial. In the →∩ case one proceeds via Hyp.
Ind., K⊢, →E, ∩I, →I, and η. Hyp. Ind., K⊢, →E, →I and η suffice in the ⊢⊢→ case, and
Hyp. Ind., K⊢, →E, Cut⊢, →I, and η yield the desired conclusion in the → ⊢⊢ case.

Lemma 3.5 If P ⊢ t : A1, . . . , P ⊢ t : An are derivable in S1 and A ∈ cl ({A1, . . . , , A}),
then P ⊢ t : A is derivable in S1.

Proof . P ⊢ t : A1∩ . . .∩An can be derived in S1 by means of ∩I, and lemma 3.4 implies
that P, x:A1∩ . . .∩ An ⊢ x : A is derivable in S1. Cut⊢ yields the desired conclusion.

Theorem 3.6 P ⊢ t : A is derivable in S1 iff P ⊢ t : A is derivable in S2.

Proof . Immediate from corollary 3.3 and lemmas 3.4 and 3.5.

From now on ’derivable’ will often be written instead of ‘derivable in S1 and ‘derivable
in S2’. Also, if Q is a result of permuting elements of P, P and Q may be identified in view
of C⊢ and W⊢. This will be done in what follows.

4 REDUCTION AND CONVERSION

Define:
Xt,P = {A : P ⊢ t : A is derivable}.
Xt = ∪Xt,P

t1 red1β t2 iff there exists t, x, and u s.t. x is not free in t only if Xu 6= 0,5 and t2 is a result
of replacing an occurrence of (λx.t)u in t1 by an occurrence of t[u/x].

F→ = {A→B : A, B ∈ F }

10 Subscript missing here, should be S2.
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t1 red1η t2 iff there exists t and x s.t. Xt ⊆ cl(F→), x is not free in t, and t2 is a result of
replacing an occurrence of λx.tx in t1 by an occurrence of t.

t1 red1βη t2 iff t1 red1β t2 or t1 red1η t2.
=α is the usual relation of α-conversion.
t1 redβ t2[t1 redβη t2] iff there exist v1. . . . ,vn (1 ≤ n) s.t. v1 = t1, vn = t2, and, for all i < n,

v1 =α vi+l
11 or vi red1β vi+l [vi red1βη vi+l].

t1 convβ t2 [t2 convβη t2] iff there exists v1. . . . ,vn (1 ≤ n) s.t. v1 = t1, vn = t2, and, for all

i < n, t1 redβ t2 or t2 redβ t1 (t1 redβη t2 redβη t1
12).

term = { t : Xt 6= 0}.

It will now be shown that if t convβη u, then Xt = Xu, and a fortiori , that term is closed
under convβη.

A CL derivation D∼ is normal iff no sequent occurrence in D∼ is both the conclusion of a
∩I and the premiss of a ∩E. It can be shown by induction on the length of CL derivations that
if Γ ⊢⊢ A is derivable in CL, then there is a normal CL derivation which ends with Γ ⊢⊢ A.
If D∼ is a normal CL derivation which ends with A1→B1, . . . . An→Bn ⊢⊢ A∩B, induction on
the length of D∼ yields the conclusion that the last inference of D∼ is a ∩I. It follows that the
last inference of a normal CL derivation ending with A1→B1, . . . . An→Bn ⊢⊢ A∩B is not a
∩E.

Lemma 4.1 It A→B∈ cl ({A1→B1, . . . , An →Bn }), then there exist C1→D1, . . . , Cm→Dm

∈ {A1→B1, . . . , An→Bn } s.t. A→B ∈ cl ({C1→D1, . . . ,Cm→Dm }), C1. . . . ,Cm ∈ cl ({A}),
and B ∈ cl ({D1, . . . , Dm }).

Proof . By induction on the length of normal CL derivations ending with A1→B1, . . . ,
An→Bn ⊢⊢ A→B. (K⊢⊢, C⊢⊢, and W⊢⊢ imply that there is no loss of generality.)

Lemma 4.2 If P, x:A, Q ⊢ t : B is derivable and A ∈ cl ({C}), then P, x:C, Q ⊢ t : B is
derivable.

Proof . By induction on the length of S2 derivations,

Lemma 4.3 If P ⊢ t1 : A is derivable and t1 red1β t2, then P ⊢ t2 : A is derivable.

Proof . Induction on the complexity of t1. Hyp. Ind. suffices if a proper part of t1 is
replaced. Otherwise, lemmas 4.1, 4.2, 3.1, and Cut⊢ yield the desired conclusion.

Lemma 4.4 If D∼ is an S2 derivation ending with P ⊢ t[u/x] : A, X = {B : for some Q and
v, v =α u and Q ⊢ v : B occurs in D∼}, and X ⊆ cl({C}), then P,y:C ⊢ t[y/x] : A is derivable
in S2.

Proof . Induction on the complexity of t.

Lemma 4.5 If P ⊢ t : A is derivable and x is free in t, then P has the form Q, x:B, R.

Proof . Induction on the length of S2 derivations

Lemma 4.6 If D∼ is an S2 derivation which ends with P, x:A, Q ⊢ t : B and P1, x:C, Q1 ⊢
t1 : B1 occurs in D∼, then A = C.

Proof . Induction on the length of D∼.

Lemma 4.7 If x is free in t, D∼ is an S2 derivation which ends with P ⊢ t[u/x] : A, and
X = {B : for some Q and v, v =α u and Q ⊢ v : B occurs in D∼}, then X 6= 0.

11 v1 should be vi.
12 It should say ‘t1 redβη t2 or t2 redβη t1 rather than ‘t1 redβη t2 redβη t1’.
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Proof . Induction on the length of D∼.

For P = x1:A1, . . . , xn:An,y1:B1, . . . ,ym:Bm and Q = x1:C1, . . . , xn:Cn,z1:D1, . . . ,zk:Dk, where
y1, . . . ,ym are distinct from z1, . . . ,zk, let P + Q = x1:A1∩C1, . . . , xn:An ∩Cn, y1:B1, . . . ,yn:Bn,
z1:D1, . . . ,zk:Dk. 13

Lemma 4.8 If t1 red1β t2 and P ⊢ t2 : A is derivable, then there is an R s.t. R ⊢ t1 : A is
derivable.

Proof . Induction on the complexity of t2. If a proper part of t2 is replaced, Hyp. Ind.
suffices. Suppose t2 = t[u/x].

If x is not free in t, then Xu 6= 0. Let Q ⊢ u : B be derivable. By K⊢ and →I P ⊢
λx.t : B→A is derivable. By lemma 4.2 and K⊢ P + Q ⊢ u : B and P + Q ⊢ λx.t : B→A are
derivable , so P + Q ⊢ (λx.t)u : A is derivable by →E.

If x is free in t, let D∼ be an S2 derivation ending with P ⊢ t[u/x] : A and let X be as
in lemma 4.7. Lemma 4.7 implies that X 6= 0. By lemma 4.4 P,y:B1∩ . . .∩Bn ⊢ t[y/x] : A is
derivable, where X = {B1, . . . , Bn }. Hence, P ⊢ λx.t : B1∩ . . .∩Bn→ A is derivable by →I. Let
Q1 ⊢ v1 : B1, . . . , Qn ⊢ vn : Bn be the sequents of the form Q ⊢ v : B s.t v =α u and Q ⊢ v : B
occurs in D∼. Since for all i (1 ≤ i ≤ n), vi =α u it can be shown by induction on the complexity
of v1, . . . ,vn that Q1 ⊢ u : B, . . . , Qn ⊢ u : B are derivable. By suppressing elements of Q1, . . . , Qn

which involve variables not free in u and applying lemmas 4.5 and 4.6, K⊢, and C⊢, it
follows that P ⊢ u : B1, . . . , P ⊢ u : Bn are derivable. By lemma 3.1 P ⊢ u : B1∩ . . .∩Bn is
derivable, so P ⊢ (λx.t)u : A is derivable by →E.

Corollay 4.9 If t1 red1β t2, then Xt1
= Xt2 .

Proof . Immediate from lemmas 4.3 and 4.8.

Lemma 4.10 If t1 red1η t2, then Xt1 ,P = Xt2 ,P.

Proof . Induction on the complexity of t1. If a proper part of t1 is replaced, Hyp. Ind.
suffices. Suppose t1 = λx.tx. Then t2 = t.

Xλx.tx,P ⊆ Xt,P by η. Suppose A ∈ Xt,P. It will be shown by induction on the complexity
of A that A ∈ Xλx.tx,P. Since Xt,P ⊆ cl (F→), it can be shown by induction on the length of
CL derivations that A is not a propositional parameter.

If A = A1→A2, the desired conclusion follows via K⊢, →E, and →I. If A= A1∩A2,
apply lemma 3.1, Hyp. Ind., and lemma 3.1 again in order to complete the argument.

Corollay 4.11 If t1 red1η t2, then Xt1
= Xt2 .

Proof . Immediate from lemma 4.10.

Theorem 4.12 If t1 convβη t2, then Xt1
= Xt2 .

Proof . As was remarked in the proof of lemma 4.8, =α causes no trouble, so the theorem
follows from corollaries 4.9 and 4.11.

5 term IS THE SET OF βη-STRONGLY NORMALIZABLE TERMS

x is the head of x. λx.t is the head of λx.t. The head of tu is the head of t.

Lemma 5.1 If t is β-normal, then the head of t is a variable or t.

Proof . Induction on the complexity of t.

13 In the original, zk :Dk was stated as zk ⊢ Dk rather than zk |= Dk.
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Lemma 5.2 If the head of t is a variable and t ∈ term, then Xt = F .

Proof . Induction on the complexity of t.

Theorem 5.3 if t is β-normal, then t ∈ term.

Proof . Induction on the complexity of t, using lemmas 5.1 and 5.2 as required.

Theorem 5.4 If t is βη-strongly normalizable (in the usual sense), then t ∈ term.

Proof . The βη-strongly normalizable terms are the same as the β-strongly normalizable
terms. Proceed by induction on the maximum number of β-contractions in a reduction of t
to a β-normal term, using theorem 5.3 and theorem 4.12 as required.

In order to prove the converse of theorem 5.4, it suffices to show that every member of
term is β-strongly normalizable. A method for proving this will now be explained.

s, s1. . . are to be sequents of S1 and S2. s1 β-reduces to s2 iff, for some P, t, u, and A,
s1 = P ⊢ t : A, s2 = P ⊢ u : A, and t β-reduces to u (in the ordinary sense). s is β-strongly
normalizable iff every β-reduction of s contains only finitely many β-contractions.

Let s = P ⊢ t : A be derivable. If A is a propositional parameter and s is β-strongly
normalizable, then s is computable . If A = A1→A2 and, for every computable sequent
Q ⊢ u : A, P+ Q ⊢ tu : A2 is computable, then s is computable . If A = A1∩ A2 and P ⊢ t : A1

and P ⊢ t : A2 are computable, then s is computable .
Given this definition, it is easy to modify the arguments of Stenlund (1972, pp. 126-

131) so as to prove that every derivable sequent is β-strongly normalizable. The converse of
theorem 5.4 follows.

Theorem 5.5 term = { t : t is βη-strongly normalizable}

Proof . By theorem 5.4 and the method for proving the converse of theorem 5.4 which
has just been described.

6 ∩ AS A CONNECTIVE

It was remarked in section 1 that ∩ behaves quite differently from &. This will now be made
apparent.

A is a theorem iff, for some t, ⊢ t : A is derivable. This amounts to saying that A is a
theorem iff A is realized by a closed member of term.

Given theorem 4.12 and 5.5, it is easy to show that the following formulas are not
theorems: p → . q→ p∩q, p→ q → . p→ r → . p→ q∩ r, p∩q→ r → . p → . q→ r. On the other
hand, the following sequents are derivable.

⊢ λx.xx : A∩(A→B)→B
⊢ λx.λy.xy : (A→B)∩(A→C)→. A→B∩C
⊢ λx.λy, xy : A→B∩C →. (A→B)∩(A→C)
⊢ λx.λy.xy : A→C →. A∩B→C
⊢ λx.λy.x : A∩B →. A→B
⊢ λx.λy, xyy : A→(B→C)→. A∩B→C
⊢ λx.x : A∩B→A
⊢ λx.x : A→A∩A
⊢ λx.x : A∩B→B∩ A
⊢ λx.x : A∩(B∩C)→(A∩B)∩C
Since the meaning of ∩ is reasonably clear (to claim that A∩B is to claim that one has

a reason for asserting A which is also a reason for asserting B), it would obviously be of
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interest to figure out how to add ∩ to intuitionist logic and then consider the analysis of
intuitionist mathematical reasoning in the light of the resulting system.

FOOTNOTES

1. This is crude, but it will suffice to motivate the rules and axioms of the system S1.
Clearly, it would be nice to be able to replace this sort of talk by a pleasant realisability
interpretation. For those who believe that all is syntax the results proved here will in
effect do that. It is in fact possible to produce a set theoretically based realizability
interpretation for the formal machinery employed in this paper, which should be some
comfort to those who do not believe that all is syntax. But that interpretation is far from
pleasant, and this paper is too small to contain it.

2. One needs a lemma to the effect that in an S1-η derivation no sequent need ever be both
the conclusion of an ∩I and the premiss of an ∩E (cf. the remarks preceding lemma 4.1
and the proof of that lemma), but it is easy to prove this by induction on the length of
S1-η derivations.

3. η is the real culprit here. If attention were restricted to S1-η, then it would suffice to
control ∩I and ∩E in the way explained in note 2.

4. ℘(F) = the powerset of F .

5. 0 = the empty set.
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Note: When I transferred this file to latex, I was tempted to correct the small mistakes and typos that occur in
it, but decided not to. What you see here is the original text; I have only changed some notation to the one that
is nowadays current, and put in footnotes when needed. I did add the ‘.’ in all λ-abstractions, and changed the
substitution from prefix to postfix. Steffen van Bakel.
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