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Abstract

We investigate semantics-based type assignment for class-based object-oriented programming. Our mo-

tivation is developing a theoretical basis for practical, expressive, type-based analysis of the functional

behaviour of object-oriented programs. We focus our research using Featherweight Java, studying two

notions of type assignment:- one usingintersectiontypes, the other a ‘logical’ restriction of recursive

types.

We extend to the object-oriented setting some existing results for intersection type systems. In do-

ing so, we contribute to the study of denotational semanticsfor object-oriented languages. We define a

model for Featherweight Java based onapproximation, which we relate to our intersection type system

via an Approximation Result, proved using a notion of reduction on typing derivations that we show

to be strongly normalising. We consider restrictions of oursystem for which type assignment is decid-

able, observing that the implicit recursion present in the class mechanism is a limiting factor in making

practical use of the expressive power of intersection types.

To overcome this, we consider type assignment based on recursive types. Such types traditionally

suffer from the inability to characterise convergence, a key element of our approach. To obtain a se-

mantic system of recursive types for Featherweight Java we study Nakano’s systems, whose key feature

is an approximation modality which leads to a ‘logical’ system expressing both functional behaviour

and convergence. For Nakano’s system, we consider the open problem of type inference. We introduce

insertionvariables (similar to the expansion variables of Kfoury andWells), which allow to infer when

the approximation modality is required. We define a type inference procedure, and conjecture its sound-

ness based on a technique of Cardone and Coppo. Finally, we consider how Nakano’s approach may be

applied to Featherweight Java and discuss how intersectionand logical recursive types may be brought

together into a single system.
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1. Introduction

Type theory constitutes a form of abstract reasoning, or interpretation of programs. It provides a way of

classifying programs according to the kinds of values they compute [88]. More generally, type systems

specify schemes for associating syntactic entities (types) with programs, in such a way that they reflect

abstract properties about the behaviour of those programs.Thus, typeability effectivelyguaranteeswell-

behavedness, as famously stated by Milner when he said that “Well-typed programs can’t go wrong”

[79], where ‘wrong’ is a semantic concept defined in that paper.

In type theory, systems in theintersection type discipline(itd) stand out as being able to express

both the functional behaviour of programs and their termination properties. Intersection types were

first introduced in [40] as an extension to Curry’s basic functionality theory for the Lambda Calculus

(λ-calculus orlc) [45]. Since then, the intersection type approach has been extended to many different

models of computation including Term Rewriting Systems (trs) [14, 15], sequent calculi [101, 102],

object calculi [18, 13], and concurrent calculi [37, 87] proving its versatility as an analytical technique

for program verification. Furthermore, intersection typeshave been put to use in analysing not just

termination properties but in dead code analysis [47], strictness analysis [70], and control-flow analysis

[17]. It is obvious, then, that intersection types have a great potential as a basis for expressive, type-based

analysis of programs.

The expressive power of intersection types stems from theirdeep connection with the mathematical,

or denotational, semantics of programming languages [96, 97]. It was first demonstrated in [20] that the

set of intersection types assignable to any given term formsa filter, and that the set of such filters forms

a domain, which can be used to give a denotational model to theλ-calculus. Denotational models for

λ-calculus were connected with a more ‘operational’ view of computation in [105] via the concept of

approximant, which is a term approximating the final result of a computation. Approximants essentially

correspond to Böhm trees [19], and aλ-model can be given by considering the interpretation of a term

to be the set of all such approximations of its (possibly infinite) normal form. Intersection types have

been related to theseapproximationsemantics (see e.g. [95, 9, 15]) through approximationresults. These

results consider the typeability of approximants and relate the typeability of a term with the typeability of

its approximants, showing that every intersection type that can be assigned to a term can also be assigned

to one of its approximants and vice-versa. This general result relates intersection types to the operational

behaviour of terms, and shows that intersection types completely characterise the behavioural properties

of programs.

The object-oriented paradigm (oo) is one of the principal styles of programming in use today. Object-

oriented concepts were first introduced in the 1960s by the language Simula [46], and since then have

been incorporated and extended by many programming languages from Smalltalk [60], C++ [98], Java

[61] and ECMAscript (or Javascript) [68], through to C# [69], Python [103], Ruby [1] and Scala [56],

amongst many others. The basic premise is centred on the concept of anobject, which is an entity that

binds together state (in the form of data fields) along with the functions or operations that act upon it,
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such operations being calledmethods. Computation is mediated and carried out by objects throughthe

act of sending messages to one another whichinvokethe execution of their methods.

Initial versions of object-oriented concepts wereclass-based, a style in which programmers write

classes that act as fixed templates, which areinstantiatedby individual objects. This style facilitates a

notion of specialisation and sharing of behaviour (methods) through the concept ofinheritancebetween

classes. Later, a pure object, or prototype-based approachwas developed in which methods and fields

can be added to (and even removed from) individual objects atany time during execution. Specialisation

and behaviour-sharing is achieved in this approach viadelegationbetween objects. Both class-based

and object-based approaches have persisted in popularity.A second dichotomy exists in the object-

oriented world, which is that between (strongly) typed and untyped (ordynamicallytyped) languages.

Strongly typedoo languages provide the benefit that guarantees can be given about the behaviour of

the programs written in them. From the outset, class-basedoo languages have been of the typed variety;

since objects must adhere to a pre-defined template or interface, classes naturally act as types that specify

the (potential) behaviour of programs, as well as being ableto classify the values resulting from their

execution, i.e. objects. As object-oriented programmers began to demand a more flexible style, object-

based languages were developed which did not impose the uncompromising rigidity of a type system.

From the 1980s onwards, researchers began to look for ways ofdescribing the object-oriented style

of computation from a theoretical point of view. This took place from both an operational perspective,

as well as a (denotational) semantic one. For example, Kamin[72] considered a denotational model

for Smalltalk, while Reddy worked on a more language-agnostic denotational approach to understand-

ing objects [92]. They subsequently unified their approaches [73]. On the other hand, a number of

operational models were developed, based on extending theλ-calculus with records and interpreting or

encoding objects and object-oriented features in these models. These notably include work by Cardelli

[31, 33, 32], Mitchell [81], Cook and Palsberg [39], Fisher et al. [58, 59], Pierce et al. [89, 63], and

Abadi, Cardelli and Viswanathan [3, 104]. As well as to give an operational account ofoo, the aim of

this work was also to understand the object-oriented paradigm on a more fundamental,type-theoretic

level. Many of these operational models have been accompanied by a denotational approach in which

the semantics of both terms and types are closely linked, andrelated to System F-typedλ-models.

While this was a largely successful programme, and led to a much deeper theoretical understanding

of object-oriented concepts, the encoding-based approachproved a complex one requiring, at times,

attention to ‘low-level’ details. This motivated Abadi andCardelli to develop theς-calculus, in which

objects and object-oriented mechanisms were ‘first-class’entities [2]. Abadi and Cardelli also defined a

denotational PER model for this calculus, which they used toshow that well-typed expressions do not

correspond to theError value in the semantic domain, i.e. do not go “wrong”. Similarto this, Bruce [27]

and Castagna [36] have also defined typed calculi with object-oriented primitives.

While these calculi represent comprehensive attempts to capture the plethora of features found in

object-oriented languages, they are firmly rooted in the object-based approach tooo. They contain

many features (e.g. method override) which are not expressed in the class-based variant. An alternative

model specifically tailored to the class-based approach wasdeveloped in Featherweight Java (fj) [66].

This has been used as the basis for investigating the theoretical aspects of many proposed extensions

to class-based mechanisms (e.g. [65, 54, 21, 76]).fj is a purely operational model, however, and it

must be remarked that there has been relatively little work in treating class-basedoo from a denotational
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position. Studer [99] defined a semantics for FeatherweightJava using a model based on Feferman’s

Explicit Mathematics formalism [57], but remarks on the weakness of the model. Alves-Foss [4] has

done work on giving a denotational semantics to the full Javalanguage. His system is impressively

comprehensive but, as far as we can see, it is not used for any kind of analysis - at least not in [4]. Burt,

in his PhD thesis [30], builds a denotational model for a stateful, featherweight model of Java based on

game semantics, via a translation to a PCF-like language.

Despite the great wealth of semantic and type-theoretic research into the foundations of object-

oriented programming, the intersection type approach has not been brought to bear on this problem

until more recently. De’Liguoro and van Bakel have defined and developed an intersection type system

for theς-calculus, and show that it gives rise to a denotational model [11]. The key aspect of their system

is that it assigns intersection types totypedς-calculus terms. As such, their intersection types actually

constitute logical predicates for typed terms. They also capture the notion of contextual equivalence,

and characterise the convergence of terms which is shown by considering a realizability interpretation

of intersection types.

In this thesis, we continue that program of research by applying the intersection type discipline to the

class-basedvariant ofoo, as expressed in the operational modelfj. Our approach will be to build an

approximation-based denotational model, and show an approximation result for an intersection type as-

signment system. Thus, we aim to develop a type-based characterisation of the computational behaviour

of class-based object-oriented programs. Our technique for showing such an approximation result will

be based upon defining a notion of reduction for intersectiontype assignmentderivationsand showing

it to be strongly normalising, a technique which has been employed for example in [15, 10]. This notion

of reduction can be seen as an analogue of cut-elimination informal logics. Using this result, we show

that our intersection type system characterises the convergence of terms, as well as providing an analysis

of functional behaviour.

One of our motivations for undertaking this programme of research is to develop a strong theoretical

basis for the development of practical and expressive toolsthat can both help programmers to reason

about the code that they write, and verify its correct behaviour. To that end, a significant part of this re-

search pertains to typeinference, which is the primary mechanism for implementing type-based program

analysis. The strong expressive capabilities of the intersection type discipline are, in a sense,too pow-

erful: since intersection types completely characterise strongly normalising terms, full type assignment

is undecidable. The intersection type discipline has the advantage, however, that decidable restrictions

exist which preserve the strong semantic nature of type assignment. We investigate such a restriction for

our system and show it to be decidable by giving a principal typings result. We observe, however, that it

is not entirely adequate for thepractical analysis of class-basedoo programs: the implicit recursive na-

ture of the class mechanism means that we cannot infer informative types for ‘typically’ object-oriented

programs.

To enhance the practicality of our type analysis we look to a ‘logical’ variant of recursive types, due to

Nakano [83, 84], which is able to express the convergence properties of terms through the use of a modal

type operator•, or ‘bullet’, that constrains the folding of certain recursive types during assignment.

This allows their incorporation into the semantic framework given by our intersection type treatment.

Nakano’s system is presented for theλ-calculus and leaves unanswered the question of the decidability

of its type assignment relation. Furthermore, although he does discuss its potential applicability to the
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analysis ofoo programs, details of how this may be achieved are elided.

We address each of these two issues in turn. First, we consider a unification-based type inference

procedure. We are inspired by theexpansion variablesof Kfoury and Wells [75], used to facilitate type

inference for intersection types, and introduceinsertionvariables which we use to infer when the modal

bullet operator is required to unify two types. In an extension of a technique due to Cardone and Coppo

[35], we define our unification procedure through a derivability relation on unification judgements which

we argue is decidable, thus leading to a terminating unification algorithm. Secondly, we give a type

system which assigns logical recursive types tofj programs. We do not present formal results for that

system in this thesis, leaving the proof of properties such as convergence and approximation for future

work. We discuss the typeability of various illustrative examples using this system, as well as how we

might extend the type inference algorithm from theλ-calculus setting to the object-oriented one. Finally,

we consider how to incorporate both intersection types and logical recursive types within a single type

system.

Outline of the Thesis

This thesis naturally splits into two parts - chapters 2 through to 7 are concerned with intersection type

assignment, while chapters 8 to 10 deal with Nakano’s logical recursive types and how they can be

applied to the object-oriented paradigm.

In Chapter 2, we give a short introduction to the intersection type discipline, as it applies to Lambda

Calculus and the objectς-calculus, reviewing the main results admitted by the intersection type systems

for these computational models. Chapter 3 presents the class-based model of object-orientation that we

focus on - Featherweight Java - and defines a system for assigning intersection types to Featherweight

Java Programs. The main result of this chapter is that assignable types are preserved under conversion.

We continue, in Chapter 4, by considering a notion of reduction on intersection type derivations and

proving it to be strongly normalising. This lays the groundwork for our Approximation Result which

links our notion of type assignment with the denotational semantics of programs, and forms the subject of

Chapter 5. In Chapter 6 we consider some example programs andhow to type them using our intersection

type system, including an encoding of Combinatory Logic. Wealso make a detailed comparison between

the intersection type system and the nominally-based approach to typing class-basedoo. We finish the

first part of the thesis by considering, in Chapter 7, a type inference procedure.

The inadequacies of intersection type inference suggest a different approach to typing object-oriented

programs using recursive types, which we investigate in thesecond half of the thesis. We begin by

giving an explanation of the ‘illogical’ nature of conventional systems of recursive types, and reviewing

Nakano’s modal logic-inspired systems of recursive types in Chapter 8. In Chapter 9 we describe a

procedure for inferring types in a variant of Nakano’s system. We sketch a proof of its decidability and

consider examples suggesting the generality of our approach. Lastly, in Chapter 10, we describe how this

can be applied tooo by defining a type system assigning Nakano-style recursive types to Featherweight

Java. We revisit the example programs of Chapter 6 and demonstrate how the system of recursive types

handles them. We also consider how Nakano types might be integrated with intersection types. We

conclude the thesis in Chapter 11, giving a summary of the contributions of our work, and discussing

how it may be extended in the future.
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Notational Preliminaries

Throughout the thesis we will make heavy use of the followingnotational conventions for dealing with

sequences of syntactic entities.

1. A sequencesof n elementsa1, . . . ,an is denoted byan; the subscript can be omitted when the exact

number of elements in the sequence is not relevant.

2. We writea ∈ an whenever there exists somei ∈ {1, . . . ,n} such thata = ai . Similarly, we write

a < an whenever there doesnot exist ani ∈ {1, . . . ,n} such thata= ai .

3. We usen (wheren is natural number) to represent the sequence 1, . . . ,n.

4. For a constant termc,cn represents the sequence ofn occurrences ofc.

5. The empty sequence is denoted byǫ, and concatenation on sequences bys1 ·s2.
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Simple Intersection Types
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2. The Intersection Type Discipline

In this chapter, we will give a brief overview of the main details and relevant results of the intersection

type discipline by presenting an intersection type system for theλ-calculus. We will also present a

(restricted version) of the intersection type system of [13] for the ς-calculus, with the aim of better

placing our research in context, and to be able to make comparisons later on.

Intersection types were first developed for theλ-calculus in the late ’70s and early ’80s by Coppo

and Dezani [41] and extended in, among others, [42, 20]. The motivation was to extend Curry’s basic

functional type theory [45] in order to be able to type a larger class of ‘meaningful’ terms; that is, all

terms with a head normal form.

The basic idea is surprisingly simple: allowing term variables to be assigned more than one type. This

ostensibly modest extension belies a greater generality since the different types that we are now allowed

to assign to term variables need not be unifiable - that is, they are allowed to be fundamentally different.

For example, we may allow to assign to a variable both a type variable ϕ (or a ground type)and a

function type whose domain is that very type variable (e.g.ϕ→ σ). This is interpreted in the functional

theory as meaning that the variable denotes both a function and an argument that can be provided to that

function. In other words, it allows to type theself-application x x. This leads to great expressive power:

using intersection types, all and only strongly normalising terms can be given a type. By adding a type

constantω, assignable to all terms, the resulting system is able to characterise strongly normalising,

weakly normalising, and head normalising terms.

2.1. Lambda Calculus

Theλ-calculus, first introduced by Church in the 1930s [38], is a model of computation at the core of

which lies the notion of function. It has two basic notions: (function) abstraction and (function) applica-

tion, and from these two elements arises a model which fully captures the notion of computability (it is

able to express all computable functions). Theλ-calculus forms the basis on the functional programming

paradigm, and languages such as ML [80] are based directly upon it.

Definition 2.1 (λ-terms). Terms M, N, etc., in theλ-calculus are built from a set of termvariables

(ranged over by x, y, z, etc.), a term constructorλ which abstractsover a named variable, and the

applicationof one term to another.

M,N ::= x | (λx.M) | (M N)

Repeated abstractions can be abbreviated (i.e.λx.λy.λz.M is written asλxyz.M) and left-most, outer-

most brackets in function applications can be omitted.

In the termλx.M, the variablex is said to bebound. If a variable does not appear within the scope of

aλ that names it, then the variable is said to befree. The notationM[N/x] denotes theλ-term obtained
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by replacing all the (free) occurrences ofx in M by N. During this substitution, the free variables ofN

should not inadvertently become bound, and if necessary thefree variables ofN and the bound variables

of M can be (consistently) renamed so that they are separate (this process is calledα-conversion).

Computation is then expressed as a formalreductionrelation, calledβ-reduction, over terms. The

basic operation of computation is to reduce terms of the form(λx.M)N, called redexes(or reducible

expressions), by substituting the termN for all occurrences of the bound variablex in M.

Definition 2.2 (β-reduction). The reduction relation→β, calledβ-reduction, is the smallest preorder on

λ-terms satisfying the following conditions:

(λx.M)N→β M[N/x]

M→β N⇒



P M→β PN

M P→β N P

λx.M→β λx.N

This reduction relation induces an equivalence onλ-terms, calledβ-equivalence orβ-convertibility,

and this equivalence captures a certain notion of equality between functions. In one sense, the study of

theλ-calculus can be seen as the study of this equivalence.

Definition 2.3 (β-equivalence). The equivalence relation=β is the smallest equivalence relation onλ-

terms satisfying the condition:

M→β N⇒ M =β N

The reduction behaviour ofλ-terms can be characterised using variations on the conceptof normal

form, expressing when the result of computation has been achieved.

Definition 2.4 (Normal Forms and Normalisability). 1. A term is inhead-normal formif it is in the

formλx1 · · · xn.yM1 · · ·Mn′ (n,n′ ≥ 0). A term is inweakhead normal form if it is of the formλx.M.

2. A term is innormal formif it does not contain a redex. Terms in normal form can be defined by

the grammar:

N ::= x | λx.N | xN1 · · ·Nn (n≥ 0)

By definition, a term in normal form is also in head-normal form.

3. A term is (weakly)head normalisablewhenever it has a (weak) head normal form, i.e. if there

exists a term N in (weak) head normal form such that M=β N.

4. A term isnormalisablewhenever it has a normal form. A term isstronglynormalisable whenever

it does not have any infinite reduction sequence

M→β M′→β M′′→β . . .

Notice that by definition, all strongly normalisable terms are normalisable, and all normalisable

terms are head-normalisable.

Intersection types are formed using the type constructor∩ . The intersection type system that we

will present here is actually thestrict intersection type system of van Bakel [7], which only allows
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intersections to occur on the left-hand sides of function types. This represents a restricted type language

with respect to e.g. [20], but is still fully expressive.

Definition 2.5 (Intersection Types [7, Def. 2.1]). The set of intersection types (ranged over byφ, ψ) and

its (strict) subset ofstrict intersection types (ranged over byσ, τ) are defined by the following grammar:

σ,τ ::= ϕ | φ→ σ

φ,ψ ::= σ1 ∩ . . . ∩σn (n≥ 0)

whereϕ ranges over a denumerable set of typevariables; we will use the notationω as a shorthand for

σ1 ∩ . . . ∩σn where n= 0, i.e. theemptyintersection.

Intersection types are assigned toλ-terms as follows:

Definition 2.6 (Intersection Type Assignment [7, Def. 2.2]). 1. Atype statementis of the form M: φ

where M is aλ-term andφ is an intersection type. The term M is called thesubjectof the

statement.

2. AbasisB is a finite set of type statements such that the subject of each statement is auniqueterm

variable. We write B, x : φ for the basis B∪{x : φ} where x does not appear as the subject of any

statement in B.

3. Type assignment⊢ is a relation between bases and type statements, and is defined by the following

natural deduction system.

( ∩E) : (n> 0,1≤ i ≤ n)
B, x : σ1 ∩ . . . ∩σn ⊢ x : σi

(→ I ) :
B, x : φ ⊢ M : σ

B ⊢ λx.M : φ→ σ

( ∩ I ) :
B ⊢ M : σ1 B ⊢ M : σn

(n≥ 0)
B ⊢ M : σ1 ∩ . . . ∩σn

(→ E) :
B ⊢ M : φ→ σ B ⊢ N : φ

B ⊢ M N : σ

We point out that, alternatively,ω could be defined to be a typeconstant. Defining it to be the empty

intersection, however, simplifies the presentation of the type assignment rules, in that we can combine

the rule that assignsω to any arbitrary term with the intersection introduction rule (∩ I ), of which it is

now just a special case. Another justification for defining itto be the empty intersection is semantic:

when considering an interpretation⌈⌈·⌋⌋ of types as the set ofλ-terms to which they are assignable, we

have the property that for all strict typesσ1, . . ., σn

⌈⌈σ1 ∩ . . .σn⌋⌋ ⊆ ⌈⌈σ1 ∩ . . .σn−1⌋⌋ ⊆ . . . ⊆ ⌈⌈σ1⌋⌋

It is natural to extend this sequence with⌈⌈σ1⌋⌋ ⊆ ⌈⌈⌋⌋, and therefore to define that the semantics of the

empty intersection is the entire set ofλ-terms; this is justified, since via the rule (∩ I ) we haveB ⊢ M : ω

for all termsM.

In the intersection type discipline, types are preserved under conversion, an important semantic prop-

erty.

Theorem 2.7([7, Corollary 2.11]). Let M=β N; then B⊢ M : σ if and only if B⊢ N : σ.

21



As well as expressing a basic functionality theory (i.e. a theory ofλ-terms as functions), intersection

type systems forλ-calculus also capture the termination, or convergence properties of terms.

Theorem 2.8(Characterisation of Convergence, [7, Corollary 2.17 and Theorem 3.29]).

1. B⊢ M : σ withσ , ω if and only if M has a head-normal form.

2. B⊢ M : σ withσ , ω and B not containingω if and only if M has a normal form.

3. B⊢ M : σ withoutω begin used at all during type assignment if and only if M is strongly normal-

isable.

As mentioned in the introduction, the intersection type discipline gives more than just a termination

analysis and a theory of functional equality. By considering an approximation semantics forλ-terms, we

see a deep connection between intersection types and the computational behaviour of terms.

The notion of approximant was first introduced by Wadsworth in [105]. Essentially, approximants

are partially evaluated expressions in which the locationsof incomplete evaluation (i.e. where reduction

maystill take place) are explicitly marked by the element⊥; thus, theyapproximatethe result of com-

putations; intuitively, an approximant can be seen as a ‘snapshot’ of a computation, where we focus on

that part of the resulting program which will no longer change (i.e. the observableoutput).

Definition 2.9 (Approximateλ-Terms [10, Def. 4.1]). 1. The set ofapproximateλ-terms is the con-

ventional set ofλ-terms extended with an extra constant,⊥. It can be defined by the following

grammar:

M,N ::= ⊥ | x | (λx.M) | (M N)

Notice that the set ofλ-terms is a subset of the set of approximateλ-terms.

2. The reduction relation→β is extended to approximate terms by the following rules

λx.⊥→β⊥ ⊥ ⊥M→β⊥ ⊥

3. The set ofnormal formswith respect to the extended reduction relation→β⊥ is characterised by

the following grammar:

A ::= ⊥ | λx.A (A, ⊥) | xA1 . . .An (n≥ 0)

Approximants are approximate normal forms which match the structure of aλ-term up to occurrences

of ⊥. Since, for approximate normal forms, no further reductionis possible, their structure is fixed. This

means that they (partially) represent the normal form of aλ-term and thus, they ‘approximate’ the output

of the computation being carried out by the term.

Definition 2.10 (Approximants [10, Def. 4.2]). 1. The relation⊑ is defined as the smallest relation

on approximateλ-terms satisfying the following:

⊥ ⊑ M (for all M)

M ⊑ N⇒ λx.M ⊑ λx.N

M ⊑ N & M′ ⊑ N′⇒ M M′ ⊑ N N′

22



2. The set ofapproximantsof a λ-term M is denoted byA(M), and is defined byA(M) = {A |

∃N.M =β N & A⊑ N }.

Notice that if two terms are equivalent,M =β N, then they have the same set of approximantsA(M) =

A(N). Thus, we can give a semantics ofλ-calculus by interpreting a term by its set of approximants.

We can define a notion of intersection type assignment for approximateλ-terms (and thus approxi-

mants themselves), with little difficulty: exactly the same rules can be applied, we simply allowapprox-

imate terms to appear in the type statements. Since we do not add a specific type assignment rule for

the new term⊥, this means that the only type that can be assigned to⊥ is ω, the empty intersection.

Equipped with a notion of type assignment for approximants,the intersection type system admits an

Approximation Result, which links intersection types with approximants:

Theorem 2.11(Approximation Result, [7, Theorem 2.22(ii)]). B ⊢ M : σ if and only if there exists some

A ∈ A(M) such that B⊢ A : σ.

This result states that every type which can be assigned to a term can also be assigned to one of its

approximants. This is a powerful result because it shows that the intersection types assignable to a term

actuallypredict the outcome of the computation, the normal form of the term. To see how they achieve

this, recall that we said the intersection type assignment system is syntax-directed. This means that for

each different form that a type may take (e.g. function type, intersection, etc.) there is exactly one rule

which assigns that form of type to aλ-term. Thus, the structure of a type exactly dictates the structure

of the approximate normal form that it can be assigned to.

2.2. Object Calculus

The ς-calculus [2] was developed by Abadi and Cardelli in the 1990s with the objective of providing

a minimal, fundamental calculus capable of modelling as many features found in object-oriented lan-

guages as possible. It is fundamentally anobject-basedcalculus, and incorporates the ability to directly

update objects by adding and overriding methods as a primitive operation, however it is capable of mod-

elling the class mechanism showing that, in essence, objects are more fundamental than classes. Starting

from an untyped calculus, Abadi and Cardelli define a type system of several tiers, ranging from sim-

ple, first order system of object types through to a sophisticated second order system with subtyping,

as well as developing an equational theory for objects. Using their calculus, they successfully gave a

comprehensive theoretical treatment to complex issues in object-oriented programming.

The full type system of Abadi and Cardelli is extensive, and here we only present a subset which is

sufficient to demonstrate its basic character and how intersection types have been applied to it.

Definition 2.12(ς-calculus Syntax). Let l range over a set of (method) labels. Also, let x, y, z range over

a set of term variables and X, Y, Z range over a set of type variables. Types and terms in theς-calculus
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are defined as follows:

Types

A,B ::= X | [l1:B1, . . . , ln:Bn] (n≥ 0) | A→ B | µX .A

Terms

a,b,c ::= x | λxA.b | ab

| [l1:ς(xA1
1 )b1, . . . , ln:ς(xAn

n )bn]

| a.l | a.l ↼↽ ς(xA)b

| fold(A,a) | unfold(a)

Values

v ::= [l1:ς(xA1
1 )b1, . . . , ln:ς(xAn

n )bn] | λx.a

We use[l i :Bi
i ∈ 1..n] to abbreviate the type[l1:B1, . . . , ln:Bn], and[l i :ς(xAi )bi

i ∈ 1..n
] to abbreviate the term

[l1:ς(xA1
1 )b1, . . . , ln:ς(xAn

n )bn], where we assume that each label li is distinct.

Thus, we have objects [l i :ς(xAi )bi
i ∈ 1..n

] which are collections of methods of the formς(xA)b. Methods

can be invoked by the syntaxa.l, or overridden with a new method using the syntaxa.l ↼↽ ς(xA)b. Like λ,

ς is abinder, so the term variablex is bound in the methodς(xA)b. Theς binder plays a slightly different

role, however, which is to refer to the object that contains the method (the self, or receiver) within the

body of the method itself. The intended semantics of this construction is that when a method is invoked,

using the syntax [l i :ς(xAi )bi
i ∈ 1..n

].l i , the result is given by returning the method body and replacing all

occurrences of the self-bound variable by the object on which the method was invoked. We will see this

more clearly when we define the notion of reduction below.

In this presentation, the syntax of theλ-calculus is embedded into theς-calculus, and so we more pre-

cisely be said to be presenting theςλ-calculus. Embedding theλ-calculus does not confer any additional

expressive power, however, since it can be encoded within the pureς-calculus. For convenience, though,

we will use the embedded, rather than the encoded,λ-calculus. Then,λ-abstractions can be used to

model methods which take arguments. Fields can be modelled as methods which do not take arguments.

For simplicity, we have not included any term constants in this presentation, although these are incorpo-

rated in the full treatment, and may contain elements such asnumbers, boolean values, etc. Recursive

typesµX .A can be used to type objects containing methods which return self, an important feature in

the object-oriented setting. Notice that folding and unfolding of recursive types is syntax-directed, using

the termsfold(A,a) andunfold(a).

Theς-calculus is a typed calculus in which types are embedded into the syntax of terms. Anuntyped

version of the calculus can be obtained simply by erasing this type information. As with theλ-calculus,

in the ς-calculus we have notion of free and bound variables, and of substitution which again drives

reduction. For uniformity of notation, we will denote substitution in theς-calculus in the same way as we

did for λ-calculus in the previous section. Specifically, the notation a[b/x] will denote the term obtained

by replacing all the free occurrence of the term variablex in the terma by the termb. Similarly, the type

constructorµ is a binder of type variablesX, and we assume the same notation to denote substitution of

types.

Definition 2.13 (Reduction). 1. Anevaluation contextis a term with a hole[_], and is defined by the
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following grammar:

E[_] ::= _ | E[_].l | E[_].l ↼↽ ς(xA)b

E[a] denotes filling the hole inE with a.

2. The one-step reduction relation→ on terms is the smallest binary relation defined by the following

rules:

(λxA.a)b → a[b/x]

[l i :ς(xAi )bi
i ∈ 1..n

].l j → b j [[ l i :ς(xAi )bi
i ∈ 1..n

]/x j ] (1 ≤ j ≤ n)

[l i :ς(xAi )bi
i ∈ 1..n

].l j ↼↽ ς(xA)b →

[l1:ς(xA1
1 )b1, . . . , l j:ς(xA)b, . . . , ln:ς(xAn

n )bn] (1 ≤ j ≤ n)

a→ b ⇒ E[a]→E[b]

3. The relation→∗ is the reflexive and transitive closure of→.

4. If a→∗ v then we say that aconvergesto the value v, and write a⇓ v.

Types are now assigned to terms as follows.

Definition 2.14 (ς-calculus Type Assignment). 1. A type statement is of the form a: A where a is a

term and A is a type. The term a is called thesubjectof the statement.

2. An environment E is a finite set of type statements in which the subject of each statement is a

uniqueterm variable. The notation E, x : A stands for the environment E∪ {x : A} where x does

not appear as the subject of any statement in E.

3. Types assignment is relation⊢ between environments and type statements, and is defined by the

following natural deduction system:

(Val x) : (Val Object) : (where A= [l i :Bi
i ∈ 1..n])

E, x:A ⊢ x : A

E, x : A ⊢ bi : Bi (∀ 1≤ i ≤ n)

E ⊢ [l i :ς(x
A)bi

i ∈ 1..n
] : A

(Val Select) : (Val Override) : (where A= [l i :Bi
i ∈ 1..n])

E ⊢ a : [l i :Bi
i ∈ 1..n]

(1≤ j ≤ n)
E ⊢ a.l j : B j

E ⊢ a : A E, x : A ⊢ b : B j
(1≤ j ≤ n)

E ⊢ a.l j ↼↽ ς(x
A)b : A

(Val Fun) : (Val App) :
E, x:B ⊢ b : C

E ⊢ λxB.b : B→C

E ⊢ a : B→C E ⊢ b : B

E ⊢ ab : C

(Val Fold) : (Val Unfold) :
E ⊢ a : A[µX .A/X]

E ⊢ fold(µX .A, a) : µX .A

E ⊢ a : µX .A

E ⊢ unfold(a) : A[µX .A/X]

Abadi and Cardelli show that this type assignment system hasthe subjectreduction property, so

assignable types are preserved by reduction. Thus, typeable terms do not ‘get stuck’.
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Theorem 2.15([13, Theorem 1.17]). If E ⊢ a : A and a→ b, then E⊢ b : A.

It does not, however, preserve typeability underexpansion.

Over several papers [48, 49, 11, 12, 13], van Bakel and de’Liguoro demonstrated how the intersection

type discipline could be applied to theς-calculus. Like the previous systems of intersection typesfor

λ-calculus andtrs, their system for the object calculus gives rise to semanticmodels and a characterisa-

tion of convergence. They also use their intersection type discipline to give a treatment of observational

equivalence for objects. A key aspect of that work was that the intersection type system was defined as

anadditional layer on top the existing object type system of Abadi and Cardelli. This is in contrast to the

approach taken forλ-calculus andtrs, in which the intersection types are utilised as a standalone type

system to replace (or rather, extend) the previous Curry-style type systems. For this reason, de’Liguoro

and van Bakel dubbed their intersection types ‘predicates’, since they constituted an extra layer of logical

information about terms, over and above the existing ‘types’.

Definition 2.16 (ς-calculus Predicates). 1. The set of predicates (ranged over byφ, ψ, etc.) and its

subset ofstrict predicates (ranged over byσ, τ, etc.) are defined by the following grammar:

σ,τ ::= ω | (φ→ σ) | 〈l:σ〉 | µ(σ)

φ,ψ ::= σ1 ∩ . . . ∩σn (n≥ 1)

2. The subtyping relation≤ is defined as the least preorder on predicates satisfying thefollowing

conditions:

a) σ ≤ ω, for all σ;

b) σ1 ∩ . . . ∩σn ≤ σi for all 1≤ i ≤ n;

c) φ ≤ σi for each1≤ i ≤ n⇒ φ ≤ σ1 ∩ . . . ∩σn;

d) (σ→ ω) ≤ (ω→ ω) for all σ;

e) σ ≤ τ andψ ≤ φ⇒ (φ→ σ) ≤ (ψ→ τ);

f) σ ≤ τ⇒ 〈l:σ〉 ≤ 〈l:τ〉 for any label l.

Notice that this predicate language differs from that of the intersection type system we presented for

theλ-calculus above. Here,ω is a separate type constant, and is treated as a strict type. We also have that

types of the formσ→ ω arenot equivalent to the typeω itself, which differs from the usual equivalence

and subtyping relations defined for intersection types in the λ-calculus. Predicates and subtyping are

defined this way for theς-calculus because the reduction relation islazy- i.e. no reduction occurs under

ς (or λ) binders. Thus objects (and abstractions) are considered to be values, and even if invoking a

method (or applying a term to an abstraction) does not returna result.

The predicate assignment system, then, assigns predicatesto typeable terms. Part of van Bakel and

de’Liguoro’s work was to consider the relationship betweentheir logical predicates and the types of the

ς-calculus, and so they also study a notion of predicate assignment for types, which defines a family

of predicates for each type. We will not present this aspect of their work here, as it does not relate to

our research which is not currently concerned with the relationship between intersection types and the

existing (nominal class) types for object-oriented programs.

Definition 2.17 (Predicate Assignment). 1. Apredicatedtype statement is of the form a: A : φ, where

a is a term, A is a type andφ is a predicate. The term a is called thesubjectof the statement.
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2. A predicatedenvironment,Γ, is a sequence of predicated type statements in which the subject

of each statement is auniqueterm variable. The notationΓ, x : A : φ stands for the predicated

environmentΓ∪{x : A : φ} where x does not appear as the subject of any statement inΓ.

3. Γ̂ denotes the environment obtained by discarding the predicate information from each statement

in Γ, ie Γ̂ = {x : A | ∃φ . x : A : φ ∈ Γ}.

4. Predicate assignment⊢ is a relation between predicated environments and predicate type state-

ments, and is defined by the following natural deduction system, in which we take A= [l i :Bi
i ∈ 1..n]:

(Val x) :

(n≥ 1,1≤ i ≤ n)
Γ, x : B : σ1 ∩ . . . ∩σn ⊢ x : B : σi

(ω) : ( ∩ I ) :

Γ̂ ⊢ a : B

Γ ⊢ a : B : ω

Γ ⊢ a : B : σi (∀1≤ i ≤ n)
(n≥ 1)

Γ ⊢ a : B : σ1 ∩ . . . ∩σn

(Val Fun) : (Val Object) :
Γ, x : B : φ ⊢ b : C : σ

E ⊢ λxB.b : B→C : φ→ σ

Γ, x : A : φi ⊢ bi : Bi : σi (∀ 1≤ i ≤ n)
(1≤ j ≤ n)

Γ ⊢ [l i :ς(x
A)bi

i ∈ 1..n
] : A : 〈l j :φ j → σ j〉

(Val App) : (Val Select) :
Γ ⊢ a : B→C : φ→ σ Γ ⊢ b : B : φ

Γ ⊢ ab : C : σ

Γ ⊢ a : A : 〈l j :φ→ σ〉 Γ ⊢ a : A : φ
(1≤ j ≤ n)

Γ ⊢ a.l j : B j : σ

(Val Fold) : (Val Update1) :
Γ ⊢ a : A[µX .A/X] : σ

Γ ⊢ fold(µX .A, a) : µX .A : µ(σ)

Γ ⊢ a : A : σ Γ, x : A : φ ⊢ b : B j : τ
(1≤ j ≤ n)

E ⊢ a.l j ↼↽ ς(x
A)b : A : 〈l j :φ→ τ〉

(Val Unfold) : (Val Update2) :

Γ ⊢ a : µX .A : µ(σ)

Γ ⊢ unfold(a) : A[µX .A/X] : σ

Γ ⊢ a : A : 〈l i :σ〉 Γ̂, x : A ⊢ b : B j
(1≤ i , j ≤ n)

E ⊢ a.l j ↼↽ ς(x
A)b : A : 〈l i :σ〉

The predicate system displays the usual type preservation results for intersection type systems, al-

though since the system only assigns predicate totypeableterms, the subject expansion result only holds

modulo typeability.

Theorem 2.18([13, Theorems 4.3 and 4.6]). 1. If Γ ⊢ a : A : σ and a→ b, thenΓ ⊢ b : A : σ.

2. If Γ ⊢ b : A : σ and a→ b with Γ̂ ⊢ a : A, thenΓ ⊢ a : A : σ.

To show that the predicate system characterises the convergence of (typeable) terms, arealizability

interpretation of types as sets of closed (typeable) terms is given.

Definition 2.19 (Realizability Interpretation). Therealizability interpretationof the predicateσ is a set

⌈⌈σ⌋⌋ of closed terms defined by induction over the structure of predicates as follows:

1. ⌈⌈ω⌋⌋ = {a | ∅ ⊢ a : A for some A}

2. ⌈⌈φ→ σ⌋⌋ = {a | ∅ ⊢ a : A→ B & (a ⇓ λxA.b⇒∀c ∈ ⌈⌈φ⌋⌋.∅ ⊢ c : A⇒ b[c/x] ∈ ⌈⌈σ⌋⌋)}
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3. ⌈⌈〈l:φ→ σ〉⌋⌋ = {a | ∅ ⊢ a : A & (a ⇓ [l i :ς(xA)bi
i ∈ 1..n

] ⇒ ∃1≤ j ≤ n.l = l j & ∀c ∈ ⌈⌈φ⌋⌋.∅ ⊢ c : A⇒

b j [c/x] ∈ ⌈⌈σ⌋⌋)}, where A= [l i :Bi
i ∈ 1..n]

4. ⌈⌈µ(σ)⌋⌋ = {a | ∅ ⊢ a : µX .A & (a→∗ fold(µX .A, b)⇒ b∈ ⌈⌈σ⌋⌋)}

5. ⌈⌈σ1 ∩ . . . ∩σn⌋⌋ = ⌈⌈σ1⌋⌋ ∩ . . . ∩⌈⌈σn⌋⌋

This interpretation admits a realizability theorem: that given a typeable term, if we substitute vari-

ables by terms in the interpretation of their assumed types,we obtain a (necessarily closed) term in the

interpretation of the original term’s type.

Theorem 2.20(Realizability Theorem, [13, Theorem 6.5]). Let ϑ be a substitution of term variables

for terms andϑ(a) denote the result of applyingϑ to the term a; ifΓ ⊢ b : A : σ andϑ(x) ∈ ⌈⌈φ⌋⌋ for all

x : B : φ ∈ Γ, thenϑ(b) ∈ ⌈⌈σ⌋⌋.

A characterisation of convergent (typeable and closed) terms then follows as a corollary since, on the

one hand all values can be assigned a non-trivial predicate (i.e. notω) which is preserved by expansion,

and on the other hand a straightforward induction on the structure of predicates that ifa ∈ ⌈⌈σ⌋⌋ thena

converges.

Corollary 2.21 (Characterisation of Convergence, [13, Corollary 6.6]). Let a be any closed term such

that ⊢ a : A for some type A; then a⇓ v for some v if and only if⊢ a : A : σ for some non-trivial predicate

σ.
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3. Intersection Types for Featherweight Java

3.1. Featherweight Java

Featherweight Java [66], orfj, is a calculus specifying the operational semantics of a minimal subset of

Java. It was defined with the purpose of succinctly capturingthe core features of a class-based object-

oriented programming languages, and with the aim of providing a setting in which the formal study of

class-based object-oriented features could be more easilycarried out.

Featherweight Java incorporates a native notion of classes. A class represents an abstraction encapsu-

lating both data (stored infields) and the operations to be performed on that data (encoded asmethods).

Sharing of behaviour is accomplished through theinheritanceof fields and methods from parent classes.

Computation is mediated viaobjects, which areinstancesof these classes, and interact with one another

by calling (also calledinvoking) methods on each other and accessing each other’s (or their own) fields.

Featherweight Java also includes the concept ofcasts, which allow the programmer to insert runtime

type checks into the code, and are used in [66] to encodegenerics[25].

In this section, we will define a variant of Featherweight Java, which we simplify by removing casts.

For this reason we call our calculusfj¢. Also, since the notion of constructors in the original formulation

of fj was not associated with any operational behaviour (i.e. constructors were purely syntactic), we

leave them as implicit in our formulation. We use familiar meta-variables in our formulation to range

over class names (C andD), field names or identifiers (f), method names (m) and variables (x). We

distinguish the class nameObject (which denotes the root of the class inheritance hierarchy in all

programs) and the variablethis , used to refer to the receiver object in method bodies.

Definition 3.1 (fj¢ Syntax). fj¢ programs P consist of aclass tableCT , comprising theclass declarations,

and anexpressione to be run (corresponding to the body of themain method in a real Java program).

They are defined by the grammar:

e ::= x | new C( e) | e.f | e.m( e)

fd ::= C f;

md ::= D m( C1 x1, . . . ,Cn xn) { return e; }

cd ::= class C extends C’ { fd md } (C , Object )

CT ::= cd

P ::= (CT ,e)

The remaining concepts that we will define below are dependent, or more precisely parametric on a

given class table. For example, the reduction relation we will define uses the class table to look up fields

and method bodies in order to direct reduction. Our type assignment system will do similar. Thus, there

is a reduction relation and type assignment systemfor each program. However, since the class table

is a fixed entity (i.e. it is not changed during reduction, or during type assignment), it will be left as
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an implicit parameter in the definitions that follow. This isdone in the interests of readability, and is a

standard simplification in the literature (e.g. [66]).

Here, we also point out that we only consider programs which conform to some sensible well-

formedness criteria: that there are no cycles in the inheritance hierarchy, and that fields and methods

in any given branch of the inheritance hierarchy are uniquely named. An exception is made to allow

the redeclaration of methods, providing that only thebodyof the method differs from the previous dec-

laration. This is the class-based version of methodoverride, which is to be distinguished from the

object-based version that allows method bodies to be redefined on a per-object basis. Lastly, the method

bodies of well-formed programs only use the variables whichare declared as formal parameters in the

method declaration, apart from the distinguished self variable,this .

We define the following functions to look up elements of the definitions given in the class table.

Definition 3.2 (Lookup Functions). The following lookup functions are defined to extract the names of

fields and bodies of methods belonging to (and inherited by) aclass.

1. The following functions retrieve the name of a class, method or field from its definition:

CN (class C extends D { fd md } ) = C

FN (C f) = f

MN (D m( C1 x1, . . . ,Cn xn) { return e; } ) = m

2. In an abuse of notation, we will treat theclass table, CT, as a partial map from class names to

class definitions:

CT (C) = cd if and only ifcd ∈ CT andCN (cd) = C

3. The list of fields belonging to a classC (including those it inherits) is given by the functionF ,

which is defined as follows:

a) F (Object ) = ǫ.

b) F (C) = F (C’) ·fn, if CT (C) = class C extends C’ { fdn md } andFN(fdi) = fi for

all i ∈ n.

4. The functionMb, given a class nameC and method namem, returns a tuple(x,e), consisting of a

sequence of the method’s formal parameters and its body:

a) if CT (C) is undefined then so isMb(C,m), for all m andC.

b) Mb(C,m) = (xn,e), if CT (C) = class C extends C’ { fd md } and there is a method

C0 m( C1 x1, . . . ,Cn xn) { return e; } ∈ md for someC0 andCn.

c) Mb(C,m) =Mb(C’,m), if CT (C) = class C extends C’ { fd md } andMN(md) , m

for all md ∈ md.

5. The functionvars returns the set of variables used in an expression.

Substitutionis the basic mechanism for reduction also in our calculus: when a method is invoked on

an object (thereceiver) the invocation is replaced by the body of the method that is called, and each of

the variables is replaced by a corresponding argument.
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Definition 3.3 (Reduction). 1. A term substitutionS = {x1 7→e1, . . . ,xn 7→en} is defined in the stan-

dard way as a total function on expressions that systematically replaces all occurrences of the

variablesxi by their corresponding expressionei . We writeeS for S(e).

2. The reduction relation→ is the smallest relation on expressions satisfying:

new C( en). fi → ei if F (C) = fn and i∈ n

new C( e). m( e’n) → eS ifMb(C,m) = (xn,e)

whereS = { this 7→new C( e) , x1 7→e’1, . . . , xn 7→e’n }

3. We add the usual congruence rules for allowing reduction in subexpressions.

4. If e→ e’, thene is theredexande’ thecontractum.

5. The reflexive and transitive closure of→ is denoted by→∗.

This notion of reduction isconfluent, which is easily shown by a ‘colouring’ argument (as done in [19]

for lc).

3.2. Intersection Type Assignment

In this section we will defined a type assignment system following in theintersection type discipline; it

is influenced by the predicate system for the object calculus[13], and is ultimately based upon the strict

intersection type system forlc (see [9] for a survey). Our types can be seen as describing thecapabilities

of an expression (or rather, the object to which that expression evaluates) in terms of (1)the operations

that may be performed on it (i.e. accessing a field or invokinga method), and (2) theoutcomeof perform-

ing those operations,where dependencies between the inputs and outputs of methods are tracked using

(type) variables. In this way they express detailed properties about the contexts in which expressions

can be safely used. More intuitively, they capture a certainnotion of observational equivalence: two

expressions with the same (non-empty) set of assignable types will be observationally indistinguishable.

Our types thus constitutesemantic predicatesdescribing the functional behaviour of expressions.

We call our types ‘simple’ because they are essentially function types, of a similar order to the types

used in the simply typed Lambda Calculus.

Definition 3.4 (Simple Intersection Types). The set offj¢ simple intersection types(ranged over byφ,

ψ) and its subset ofstrict simple intersection types (ranged over byσ) are defined by the following

grammar (whereϕ ranges over a denumerable set of typevariables, andC ranges over the set of class

names):
σ ::= ϕ | C | 〈f :σ〉 | 〈m : (φ1, . . . ,φn)→ σ〉 (n≥ 0)

φ,ψ ::= ω | σ | φ ∩ψ

We may abbreviate method types〈m : (φ1, . . . ,φn)→ σ〉 by writing 〈m : (φn)→ σ〉.

The key feature of our types is that they may group information about many operations together into

intersectionsfrom which any specific one can be selected for an expression as demanded by the context

in which it appears. In particular, an intersection may combine two or more different analyses (in the

sense that they are not unifiable) of thesamefield or method. Types are therefore not records: records
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can be characterised as intersection types of the shape〈l1 :σ1〉 ∩ . . . ∩〈ln :σn〉where allσi are intersection

free, and all labelsl i are distinct; in other words, records are intersection types, but not vice-versa.

In the language of intersection type systems, our types arestrict (in the sense of [7]), since they

must describe the outcome of performing an operation in terms of anothersingleoperation rather than

an intersection. We include a type constant for each class, which we can use to type objects when

a more detailed analysis of the object’s fields and methods isnot possible. This may be because the

object does not contain any fields or methods (as is the case for Object ) or more generally because no

fields or methods can be safely invoked. The type constantω is a top (maximal) type, assignable to all

expressions.

We also define a subtype relation that facilitates the selection of individual behaviours from intersec-

tions.

Definition 3.5 (Subtyping). The subtype relationP is the smallest preorder satisfying the following

conditions:
φ P ω for all φ φ ∩ψ P φ

φP ψ & φP ψ′ ⇒ φP ψ ∩ψ′ φ ∩ψ P ψ

We write∼ for the equivalence relation generated byP, extended by

1. 〈f :σ〉 ∼ 〈f :σ′〉, if σ ∼ σ′;

2. 〈m : (φ1, . . . ,φn)→ σ〉 ∼ 〈m : (φ′1, . . . ,φ
′
n)→ σ′〉, if σ ∼ σ′ andφ′i ∼ φ

′
i for all i ∈ n.

Notice thatφ ∩ω ∼ ω ∩φ ∼ φ.

We will consider types modulo∼; in particular, all types in an intersection are different andω does

not appear in an intersection. It is easy to show that∩ is associative and commutative with respect to∼,

so we will abuse notation slightly and writeσ1 ∩ . . . ∩σn (wheren≥ 2) to denote a general intersection,

where eachσi is distinct and the order is unimportant. In a further abuse of notation,φ1 ∩ . . . ∩φn will

denote the typeφ1 whenn= 1, andω whenn= 0.

Definition 3.6 (Type Environments). 1. A type statementis of the forme : φ, wheree is called the

subjectof the statement.

2. An environmentΠ is a set of type statements with (distinct) variables as subjects;Π,x:φ stands

for the environmentΠ∪{x:φ} wherex does not appear as the subject of any statement inΠ.

3. We extend the subtyping relation to environments by:Π′ P Π if and only if for all statements

x:φ ∈Π there is a statementx:φ′ ∈ Π′ such thatφ′ P φ.

4. IfΠn is a sequence of environments, then
⋂
Πn is the environment defined as follows:x:φ1 ∩ . . . ∩φm∈⋂

Πn if and only if{x:φ1, . . . ,x:φm} is the non-empty set of all statements in the union of the envi-

ronments that havex as the subject.

Notice that, as for types themselves, the intersection of environments is a subenvironment of each

individual environment in the intersection.

Lemma 3.7. LetΠn be type environments; then
⋂
Πn P Πi for each i ∈ n.

Proof. Directly by Definitions 3.6(4) and 3.5. �

We will now define our notion of intersection type assignmentfor fj¢.
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(var) : (φP σ)
Π,x:φ ⊢ x : σ (ω) :

Π ⊢ e : ω
(join) :

Π ⊢ e : σ1 . . . Π ⊢ e : σn
(n≥ 2)

Π ⊢ e : σ1∩ . . . ∩σn

(fld) :
Π ⊢ e : 〈f :σ〉

Π ⊢ e.f : σ
(invk) :

Π ⊢ e : 〈m : (φn)→ σ〉 Π ⊢ e1 : φ1 . . . Π ⊢ en : φn

Π ⊢ e.m(en) : σ

(obj) :
Π ⊢ e1 : φ1 . . . Π ⊢ en : φn

(F (C) = fn)
Π ⊢ new C(en) : C

(newF) :
Π ⊢ e1 : φ1 . . . Π ⊢ en : φn

(F (C) = fn, i ∈ n, σ = φi ,n≥ 1)
Π ⊢ new C(en) : 〈fi :σ〉

(newM) :
{this:ψ,x1:φ1, . . . ,xn:φn} ⊢ eb : σ Π ⊢ new C(e) : ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn) → σ〉

Figure 3.1.: Predicate Assignment forfj¢

Definition 3.8 (Intersection Type Assignment). Intersection type assignment forfj¢ is defined by the

natural deduction system given in Figure 3.1.

The rules of our type assignment system are fairly straightforward generalisations tooo of the rules

of the strict intersection type assignment system forlc: e.g. (fld) and (invk) are analogous to (→E);

(newF) and (newM) are a form of (→I); and (obj) can be seen as a universal (ω)-like rule for objects

only. Notice that objectsnew C() without fields can be dealt with by both the (newM) and (obj) rules,

and then the environment can be anything, as is also the case with the (ω) rule.

The only non-standard rule from the point of view of similar work for term rewriting and traditional

nominaloo type systems is (newM), which derives a type for an object that presents an analysis of a

method. It makes sense however when viewed as an abstractionintroduction rule. Like the correspond-

ing lc typing rule (→I), the analysis involves typing the body of the abstraction (i.e. the method body),

and the assumptions (i.e. requirements) on the formal parameters are encoded in the derived type (to be

checked on invocation). However, a method body may also makerequirements on thereceiver, through

the use of the variablethis . In our system we check that these holdat the same timeas typing the

method body, so-calledearly self typing, whereas withlateself typing (as used in [13]) we would check

the type of the receiver at the point of invocation. This checking of requirements on the object itself is

where the expressive power of our system resides. If a methodcalls itself recursively, this recursive call

must be checked, but – crucially – carries adifferenttype if a valid derivation is to be found. Thus only

recursive calls which terminate at a certain point (i.e. which can be assignedω, and thus ignored) will

be permitted by the system.

We discuss several extended examples of type assignment using this system in Chapter 6.

3.3. Subject Reduction& Expansion

As is standard for intersection type assignment systems, our system exhibits both subject reductionand

subject expansion. We first show aweakeninglemma, which allows to increase the typing environment

where necessary, and will be used in the proof of subject expansion.

Lemma 3.9(Weakening). LetΠ′ PΠ; thenΠ ⊢ e : φ⇒ Π′ ⊢ e : φ

Proof. By easy induction on the structure of derivations. The base case of (ω) follows immediately, and

for (var) it follows by transitivity of the subtype relation. The other cases follow easily by induction.�
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We also need to show replacement and expansion lemmas. The replacement lemma states that, for

a typeable expression, if we replace all its variables by appropriately typed expressions (i.e. typeable

using the same type assumed for the variable being replaced)then the result can be assigned the same

type as the original expression. The extraction lemma states the opposite: if the result of substituting

expressions for variables is typeable, then we can also typethe substituting and original expressions.

Lemma 3.10. 1. (Replacement) If {x1:φ1, . . . ,xn:φn} ⊢ e : φ and there existsΠ anden such thatΠ ⊢

ei : φi for each i∈ n, thenΠ ⊢ eS : φ whereS = {x1 7→ e1, . . . ,xn 7→ en}.

2. (Extraction) Let S = {x1 7→ e1, . . . ,xn 7→ en} be a term substitution ande be an expression with

vars(e) ⊆ {x1, . . . ,xn}, if Π ⊢ eS : φ, then there is someφn such thatΠ ⊢ ei : φi for each i∈ n and

{x1:φ1, . . . ,xn:φn} ⊢ e : φ.

Proof. 1. By induction on the structure of derivations.

(ω): Immediate.

(var): Thene = xi for somei ∈ n andeS = ei . Also,φ =σ with φi Pσ, thusφi =σ1 ∩ . . . ∩σn and

σ = σ j for some j ∈ n. SinceΠ ⊢ ei : φi it follows from rule (join) thatΠ ⊢ ei : σk for each

k ∈ n. So, in particular,Π ⊢ ei : σ j .

(fld), (join), (invk), (obj), (newF), (newM): These cases follow straightforwardly by induction.

2. Also by induction on the structure of derivations.

(ω): By the (ω) rule,Π ⊢ ei : ω for eachi ∈ n and{x1:ω, . . . ,xn:ω} ⊢ e : ω.

(var): Thenφ is a strict type (hereafter calledσ), andx:ψ ∈ Π with ψ P σ. Also, it must be that

e = xi for somei ∈ n andei = x. We then takeφi =σ andφ j =ω for eachj ∈ n such thatj , i.

By assumptionΠ ⊢ x : σ (that isΠ ⊢ ei : φi). Also, by the (ω) rule, we can deriveΠ ⊢ e j : ω

for each j ∈ n such thatj , i. Lastly, by (var) we have{x1:ω, . . . ,xi :σ, . . . ,xn:ω} ⊢ xi : σ.

(newF): TheneS = new C( e’n′ ) andφ = 〈f :σ〉 with F (C) = fn′ andf = fj for some j ∈ n′.

Also, there isφn′ such thatΠ ⊢ e’k′ : φk′ for eachk′ ∈ n′, andσ P φ j . There are two cases to

consider fore:

a) e= xi for somei ∈ n. Thenei = new C( e’n′ ) . Takeφi = 〈f :σ〉 andφk =ω for eachk∈ n

such thatk , i. By assumption we haveΠ ⊢ new C( e’n′ ) : 〈f :σ〉 (that isΠ ⊢ ei : φi).

Also, by rule (ω) Π ⊢ ek : ω for eachk ∈ n such thatk , i, and lastly by rule (var)

Π′ ⊢ xi : 〈f :σ〉 whereΠ′ = {x1:ω, . . . ,xi:〈f :σ〉, . . . ,xn:ω}.

b) e = new C( e’’n′) with e’’k′
S = e’k′ for eachk′ ∈ n′. Notice thatvars(e’’k′) ⊆ vars(e) ⊆

{x1, . . . ,xn} for eachk′ ∈ n′. So, by induction, for eachk′ ∈ n′ there isφk′n such that

Π ⊢ ei : φk′,i for eachi ∈ n andΠk′ ⊢ e’’k′ : φk′ whereΠk′ = {x1:φk′,1, . . . ,xn:φk′,n}. Let

the environmentΠ′ =
⋂
Πn′ , that isΠ′ = {x1:φ1,1 ∩ . . . ∩φn′,1, . . . ,xn:φ1,n ∩ . . . ∩φn′,n}.

Notice thatΠ′ P Πk′ for eachk′ ∈ n′, so by Lemma 3.9Π′ ⊢ e’’k′ : φk′ for eachk ∈ n′.

Then by the (newF) rule,Π′ ⊢ new C( e’’n′ ) : 〈f :σ〉 and so by (join) we can derive

Π ⊢ ei : φ1,i ∩ . . . ∩φn′,i for eachi ∈ n.

(fld), (join), (invk), (obj), (newM): These cases are similar to (newF).

�
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We can now prove subject reduction, or soundness, as well as subject expansion, or completeness.

Theorem 3.11(Subject reduction and expansion). Lete→ e’; thenΠ ⊢ e’ : φ if and only ifΠ ⊢ e : φ.

Proof. By double induction - the outer induction on the definition of→ and the inner on the structure

of types. For the outer induction, we show the cases for the two forms of redex and one inductive case

(the others are similar). For the inner induction, we show only the case thatφ is strict; whenφ = ω the

result follows immediately since we can always type bothe ande’ using the (ω) rule, and whenφ is an

intersection the result follows trivially from the inductive hypothesis and the (join) rule.

(F (C) = fn⇒ new C( en). fj→ e j , j ∈ n):

(if) : We begin by assumingΠ ⊢ new C( en). fj : σ. The last rule applied in this derivation must

be (fld) soΠ ⊢ new C( en) : 〈fj :σ〉. This is turn must have been derived using the (newF)

rule and so there areφ1, . . . ,φn such thatΠ ⊢ ei : φi for eachi ∈ n. FurthermoreσP φ j and so

it must be thatφ j = σ. ThusΠ ⊢ e j : σ.

(only if) : We begin by assumingΠ ⊢ e j :σ. Notice that using (ω) we can deriveΠ ⊢ ei :ω for each

i ∈ n such thati , j. Then, using the (newF) rule, we can deriveΠ ⊢ new C( en) : 〈fj :σ〉

and by (fld) alsoΠ ⊢ new C( en). fj : σ.

(Mb(C,m) = (xn,eb)⇒ new C( e’). m( en) → eb
S):

whereS = {this 7→ new C( e’) ,x1 7→ e1, . . . ,xn 7→ en}.

(if) : We begin by assumingΠ ⊢ new C( e’). m( en) : σ. The last rule applied in the derivation

must be (invk), so there isφn such that we can deriveΠ ⊢ new C( e’) : 〈m : (φn)→σ〉 andΠ ⊢

ei : φi for eachi ∈ n. Furthermore, the last rule applied in the derivation ofΠ ⊢ new C( e’) :

〈m : (φn)→ σ〉must be (newM) and so there is some typeψ such thatΠ ⊢ new C( e’) : ψ and

Π′ ⊢ eb : σ whereΠ′ = {this :ψ,x1:φi , . . . ,xn:φn}. Then from Lemma 3.10(1) it follows that

Π ⊢ eb
S : σ.

(only if) : We begin by assuming thatΠ ⊢ eb
S : σ. Then by Lemma 3.10(2) it follows that there

is ψ, φn such thatΠ′ ⊢ eb : σ where the environmentΠ′ = {this :ψ,x1:φi , . . . ,xn:φn} with

Π ⊢ new C( e’) : ψ andΠ ⊢ ei : φi for eachi ∈ n. By the (newM) rule we can then derive

Π ⊢ new C( e’) : 〈m : (φn)→ σ〉, and by the (invk) rule thatΠ ⊢ new C( e’). m( en) : σ.

(e→ e’⇒ e. f→ e’. f):

(if) : We begin by assuming thatΠ ⊢ e.f : σ. The last rule applied in the derivation must be (fld)

and so we have thatΠ ⊢ e : 〈f :σ〉. By the inductive hypothesis it follows thatΠ ⊢ e’ : 〈f :σ〉,

and so by (fld) thatΠ ⊢ e’.f : σ.

(only if) : We begin by assuming thatΠ ⊢ e’.f : σ. The last rule applied in the derivation must

be (fld) and so we have thatΠ ⊢ e’ : 〈f :σ〉. By the inductive hypothesis it follows that

Π ⊢ e : 〈f :σ〉, and so by (fld) thatΠ ⊢ e.f : σ.

�
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4. Strong Normalisation of Derivation Reduction

In this chapter we will lay the foundations for our main result linking type assignment with semantics:

the approximation result, presented in the next chapter. This result shows the deep relationship between

the intersection types assignable to an expression and its reduction behaviour, and this link is rooted in

the notion we define in this chapter - that of areductionrelation onderivations. Through this relation, the

coupling between typeability, as witnessed by derivations, and the computational behaviour of programs,

which is modelled via reduction, is made absolutely explicit.

The approximation result, and the various characterisations of the reduction behaviour of expressions,

follows from the fact that the reduction relation on intersection type derivations isstrongly normalising,

i.e. terminating. We will show that this is the case using Tait’s computabilitytechnique [100]. The

general technique of showing approximation using derivation reduction has also been used in the context

of thetrs [15] andλ-calculus [10].

Our notion ofderivation reductionis essentially a form of cut-elimination on type derivations [91].

The two ‘cut’ rules in our type system are (newF) and (newM), and they are eliminated from derivations

using the following transformations:

D1
Π ⊢ e1 : φ1 . . .

Dn

Π ⊢ en : φn

Π ⊢ new C( en) : 〈fi :σ〉

Π ⊢ new C( en). fi : σ

→D

Di

Π ⊢ ei : σ

.

.

.

.

.

Db

{this :ψ,x1:φ1, . . . ,xn:φn} ⊢ eb : σ
Dself

Π ⊢ new C( e’) : ψ

Π ⊢ new C( e’) : 〈m : (φn)→ σ〉

D1
Π ⊢ e1 : φ1 . . .

Dn

Π ⊢ en : φn

Π ⊢ new C( e’). m( en) : σ →D
Db
S

Π ⊢ eb
S : σ

whereDb
S is the derivation obtained fromDb by replacing all sub-derivations of the form〈var〉 ::

Π,xi :φi ⊢ xi : σ by appropriately typed sub-derivations ofDi, and sub-derivations of the form〈var〉 ::

Π, this :ψ ⊢ this : σ by appropriately typed sub-derivations ofDself. Similarly, eb
S is the expres-

sion obtained fromeb by replacing each variablexi by the expressionei, and the variablethis by

new C( e’) .

This reduction creates exactly the derivation for a contractum as suggested by the proof of the subject

reduction, but is explicit in all its details, which gives the expressive power to show the approximation

result. An important feature of derivation reduction is that sub-derivations of the form〈ω〉 :: Π ⊢ e : ω

do not reduce, althoughe might; that is, they are already in normal form. This is crucial for the strong

normalisability of derivation reduction, since it decouples the reduction of a derivation from the possibly

infinite reduction sequence of the expression which it types.
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To formalise this notion of derivation reduction, it will beconvenient to introduce a notation for

describing and specifying the structure of derivations.

Definition 4.1 (Notation for Derivations). The meta-variableD ranges over derivations. We will use the

notation〈D1, . . . ,Dn, r〉 :: Π ⊢ e : φ to represent the derivation concluding with the judgementΠ ⊢ e : φ

where the last rule applied is r andD1, . . . ,Dn are the (sub) derivations for each of that rule’s premises.

In an abuse of notation, we may sometimes writeD :: Π ⊢ e : φ for D = 〈D1, . . . ,Dn, r〉 :: Π ⊢ e : φ when

the structure ofD is not relevant or is implied by the context, and also write〈D1, . . . ,Dn, r〉 when the

conclusion of the derivation is similarly irrelevant or implied.

We also introduce some further notational concepts to aid us. The first of these is the notion of

positionwithin an expression or derivation. We then extend expressions and derivations with a notion of

placeholder, so that we can refer to and reason about specificsubexpressions and subderivations.

Definition 4.2 (Position). Theposition p of one (sub) expression – similarly of one (sub) derivation–

within another is a non-empty sequence of integers:

1. Positions within expressions are defined inductively as follows:

i) The position of an expressione within itself is 0.

ii) If the position ofe’ within e is p, then the position ofe’ within e. f is 0 · p.

iii) If the position ofe’ within e is p, then the position ofe’ within e. m( e) is 0 · p.

iv) For a sequence of expressionsen, if the position ofe’ within somee j is p, then the position

of e’ within e. m( e) is j · p.

v) For a sequence of expressionsen, if the position ofe’ within somee j is p, then the position

of e’ within new C( e) is j · p.

2. Positions within derivations are defined inductively as follows:

i) The position of a derivationD within itself is 0.

ii) For D = 〈Db,D
′′,newM〉, if the position ofD′ within D′′ is p then so is the position ofD′

withinD.

iii) For D = 〈Dn, join〉, if the position ofD′ withinDj is p for some j∈ n then so is position of

D′ withinD.

iv) For D = 〈D′′,fld〉, if the position ofD′ within D′′ is p then the position ofD′ within D is

0 · p.

v) ForD = 〈D′′,Dn, invk〉, if the position ofD′ withinD′′ is p the the position ofD′ withinD

is 0 · p.

vi) For D = 〈D′′,Dn, invk〉, if the position ofD′ withinDj is p for some j∈ n then the position

ofD′ withinD is j · p.

vii) For D = 〈Dn,obj〉, if the position ofD′ withinDj is p for some j∈ n then the position ofD′

withinD is j · p.

viii) For D = 〈Dn,newF〉, if the position ofD′ withinDj is p for some j∈ n then the position of

D′ withinD is j · p.

Notice that due to the(join) rule, positions in derivations are not necessarily unique.

3. We define the following terminology:
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• If the position ofe’ (D′) within e (D) is p, then we say thate’ (D′) appears at positionp

within e (D).

• If there exists somee’ (D′) that appears in position p withine (D), then we say that position

p exists withine (D).

Definition 4.3 (Expression Contexts). 1. Anexpression contextC is an expression containing a ‘hole’

(denoted by[ ] ) defined by the following grammar:

C ::= [ ] | C. f | C. m( e) |

e. m( . . . ,ei−1,C,ei+1, . . .) | new C( . . . ,ei−1,C,ei+1, . . .)

2. C[e] denotes the expression obtained by replacing the hole inC with e.

3. We writeCp to indicate that the hole inC appears at position p.

4. ContextsCp where p= 0n are calledneutral; by extension,expressionsof the formC[x] whereC

is neutral are also neutral.

Definition 4.4 (Derivation Contexts). 1. Aderivation contextD(p,σ) is a derivation concluding with

a statement assigning a strict type to a neutral context, in which the hole appears at position p

and has typeσ. We abuse the notation for derivations in order to more easily formalise the notion

of derivation context:

a) D(0,σ) = 〈[ ] 〉 :: Π ⊢ [ ] : σ is a derivation context.

b) If D(p,σ) :: Π ⊢ C : 〈f :σ′〉 is a derivation context, thenD′(0·p,σ) = 〈D,fld〉 :: Π ⊢ C. f : σ′ is

also a derivation context.

c) if D(p,σ) :: Π ⊢ C : 〈m : (φn)→ σ′〉 is a derivation context andDn is a sequence of derivations

such thatDi :: Π ⊢ e : φi for each i∈ n, thenD′(0·p,σ) = 〈D,Dn, invk〉 :: Π ⊢ C. m( en) : σ′ is

also a derivation context.

2. For a derivationD :: Π ⊢ e : σ and derivation contextD(p,σ) :: Π ⊢ C : σ′, we writeD(p,σ)[D] ::

Π ⊢ C[e] : σ′ to denote the derivation obtained by replacing the hole inD byD.

We now define an explicitweakeningoperation on derivations, which is also extended to derivation

contexts. This will be crucial in defining our notion ofcomputabilitywhich we will use to show that

derivation reduction is strongly normalising.

Definition 4.5 (Weakening). A weakening, written [Π′PΠ] whereΠ′PΠ, is an operation that replaces

environments by sub-environments. It is defined on derivations and derivation contexts as follows:

1. For derivationsD ::Π ⊢ e : φ,D[Π′ PΠ] is defined as the derivationD′ of exactly the same shape

asD such thatD′ :: Π′ ⊢ e : φ.

2. For derivation contextsD(p,σ) :: Π ⊢ Cp : φ, D(p,σ)[Π′ P Π] is defined as the derivation context

D′(p,σ) of exactly the same shape asD(p,σ) such thatD′(p,σ) :: Π′ ⊢ Cp : φ.

The following two basic properties of the weakening operation on derivations will be needed later

when showing that it preserves computability.
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Lemma 4.6. LetΠ1, Π2, Π3 andΠ4 be type environments such that

• Π2 P Π1, andΠ3 P Π1;

• Π4 P Π2, andΠ4 P Π3;

andD be a derivation such thatD :: Π1 ⊢ e : φ. Then

1. D[Π2 P Π1][Π4 PΠ2] =D[Π4 P Π1].

2. D[Π2 P Π1][Π4 PΠ2] =D[Π3 P Π1][Π4 P Π3].

Proof. Directly by Definition 4.5. �

We also show the following two properties of weakening for derivation contexts and substitutions,

which will be used in the proof of Lemma 4.28 to show that computability is preserved by derivation

expansion.

Lemma 4.7. LetD(p,σ) :: Π ⊢ Cp : φ be a derivation context andD :: Π ⊢ e : σ be a derivation. Also, let

[Π′ P Π] be a weakening. Then

D(p,σ)[D][Π′ P Π] =D(p,σ)[Π
′
P Π][D[Π′ P Π]]

Proof. By easy induction on the structure of derivation contexts. �

We now define two important sets of derivations, the strong and ω-safe derivations. The idea be-

hind these kinds of derivation is to restrict the use of the (ω) rule in order to preclude non-termination

(i.e. guarantee normalisation). In strong derivations, wedo not allow the (ω) rule to be used at all. This

restriction is relaxed slightly forω-safe derivations in thatω may be used to type the arguments to a

method call. The idea behind this is that when those arguments disappear during reduction it is ‘safe’ to

type them withω since non-termination at these locations can be ignored. Wewill show later that our

definitions do indeed entail the desired properties, since expressions typeable using strong derivations

are strongly normalising, and expressions which can be typed with ω-safe derivations using anω-safe

environment, while not necessarily being strongly normalising, have a normal form.

Definition 4.8 (Strong Derivations). 1. Strong derivations are defined inductively as follows:

• Derivations of the form〈var〉 are strong.

• Derivations of the form〈Dn, join〉, 〈Dn,obj〉 and 〈Dn,newF〉 are strong, if each derivation

Di is strong.

• Derivations of the form〈D,fld〉 are strong, ifD is strong.

• Derivations of the form〈D,Dn, invk〉 are strong, ifD is strong and also each derivationDi

is strong.

• Derivations of the form〈D,D′,newM〉 are strong, if bothD andD′ are strong.

2. We call a typeφ strong if it does not containω; we call a type environmentΠ strong if for all

x:φ ∈Π, φ is strong.

Notice that a strong derivation need not derive a strong type. This is due to that fact that a strong

derivation is not required to use a strong type environment.For example, if the typeφ of a variablex

in the type environmentΠ containsω, then a non-strong type may be derived forx using the (var) rule.

Similarly, if a formal parameterx does not appear in the body of some methodm, then that method body
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may be typed using an environment that associatesω with x; then, using the (newM) rule, a method type

containingωmay be derived for anew C( e) expression, for a classC containing methodm. The crucial

feature of strong derivations is that they cannot deriveω as a type for an expression. Furthermore, while

a strong (sub)derivation may derive a method type containing ω as an argument type, theinvocationof

that method cannot then be typed with a strong derivation, since no expression passed as that argument

can be assignedω in a subderivation. This restriction is relaxed forω-safe derivations, which are defined

as follows.

Definition 4.9 (ω-safe Derivations). 1. ω-safe derivations are defined inductively as follows:

• Derivations of the form〈var〉 areω-safe.

• Derivations of the form〈Dn, join〉, 〈Dn,obj〉 and 〈Dn,newF〉 areω-safe, if each derivation

Di isω-safe.

• Derivations of the form〈D,fld〉 areω-safe, ifD isω-safe.

• Derivations of the form〈D,Dn, invk〉 areω-safe, ifD isω-safe and for eachDi eitherDi is

ω-safe orDi is of the form〈ω〉 :: Π ⊢ e : ω.

• Derivations of the form〈D,D′,newM〉 areω-safe, if bothD andD′ areω-safe.

2. We call an environmentΠ ω-safe if, for allx:φ ∈ Π, φ = ω or φ is strong.

Continuing with the definition of derivation reduction we point out that, just as substitution is the

main engine for reduction on expressions, a notion of substitution for derivations will form the basis of

derivation reduction. The notion of derivation substitution essentially replaces (sub)derivations of the

form 〈var〉 :: Π ⊢ x : σ by derivationsD :: Π′ ⊢ e : σ. This is illustrated in the following example.

Example 4.10(Derivation Reduction). Consider the derivations below for two expressionse1 ande2:

D1

Π ⊢ e1 : 〈m : (σ1 ∩σ2)→ τ〉

D′2
Π ⊢ e2 : σ1

D′′2
Π ⊢ e2 : σ2

D2 :: Π ⊢ e2 : σ1 ∩σ2

and also the following derivationD of the method invocationx. m( y) , where the environmentΠ′ =

{x:〈m : (σ1 ∩σ2)→ τ〉,y:σ1 ∩σ2, }:

Π′ ⊢ x : 〈m : (σ1 ∩σ2)→ τ〉

Π′ ⊢ y : σ1 Π′ ⊢ y : σ2

Π ⊢ y : σ1 ∩σ2

D :: Π′ ⊢ x. m( y) : τ

LetS denote the derivation substitution{x 7→D1,y 7→D2}; then the result of substitutingD1 for x and

D2 for y in D is the following derivation, where instances of the(var) rule inD have been replaced by

the appropriate (sub) derivations inD1 andD2:

D1
Π ⊢ e1 : 〈m : (σ1 ∩σ2)→ τ〉

D′2
Π ⊢ e2 : σ1

D′′2
Π ⊢ e2 : σ2

Π ⊢ e2 : σ1 ∩σ2

DS :: Π ⊢ e1. m( e2) : τ

Formally, derivation substitution is defined as follows.

Definition 4.11 (Derivation Substitution). 1. Aderivation substitutionis a partial function from deriva-

tions to derivations.
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2. LetD1 ::Π′ ⊢ e1 : φ1, . . . ,Dn ::Π′ ⊢ en : φn be derivations, andx1, . . . ,xn be distinct variables; then

S = {x1 7→ D1, . . . ,xn 7→ Dn} is a derivation substitutionbased onΠ′. When eachDi is strong then

we say thatS is also strong.S is ω-safe when eachDi is eitherω-safe or an instance of the(ω)

rule.

3. If D :: Π ⊢ e : φ is a derivation such thatΠ ⊆ {x1:φ1, . . . ,xn:φn}, then we say thatS is applicable

toD, and the result of applyingS toD (writtenDS) is defined inductively as follows (whereS is

the term substitution induced byS, i.e.S = {x1 7→ e1, . . . ,xn 7→ en}):

(D = 〈var〉 :: Π ⊢ x : σ): Then there are two cases to consider.

a) Eitherx:σ ∈ Π and sox = xi for some i∈ n withDi :: Π′ ⊢ ei : σ, thenDS =Di;

b) or x:φ ∈ Π with φ = σ1 ∩ . . . ∩σn′ andσ = σ j for some j∈ n′. Also in this casex = xi

for some i∈ n, so thenDi = 〈D
′
1, . . . ,D

′
n′ , join〉 :: Π

′ ⊢ ei : φ andDS =D′j :: Π′ ⊢ ei : σ j.

(D = 〈Db,D
′,newM〉 :: Π ⊢ new C( e) : 〈m : (φ)→ σ〉):

ThenDS = 〈Db,D
′S,newM〉 :: Π ⊢ new C( e) S : 〈m : (φ)→ σ〉

(D = 〈D1, . . . ,Dn, r〉 :: Π ⊢ e : φ, r < {(var), (newM)}):

ThenDS = 〈D1
S, . . . ,Dn

S, r〉 :: Π′ ⊢ eS : φ.

Notice that the last case includes as a special case the base case of derivations of the form〈ω〉 ::

Π ⊢ e : ω.

4. We extend the weakening operation to derivation substitutions as follows: for a derivation sub-

stitution S = {x1 7→ D1 :: Π ⊢ e1 : φ1, . . . ,xn 7→ Dn :: Π ⊢ en : φn}, S[Π′ P Π] is the derivation

substitution{x1 7→ D1[Π′ P Π], . . . ,xn 7→ Dn[Π′ P Π]}.

Lemma 4.12 (Soundness of Derivation Substitution). LetD :: Π ⊢ e : φ be a derivation andS be a

derivation substitution based onΠ′ and applicable toD; thenDS :: Π′ ⊢ eS : φ whereS is the term

substitution induced byS, is well-defined.

Proof. By easy induction on the structure of derivations. Notice that when a substitution is applicable to

a derivation then it is also applicable to its subderivations, and so when applying the inductive hypothesis

we leave this to be noted implicitly.

〈ω〉: ThenD :: Π ⊢ e : ω. Notice thateS is always well-defined and so and by the (ω) rule, so is the

derivation〈ω〉 :: Π′ ⊢ eS :ω. By the definition of derivation substitutionDS = 〈ω〉 :: Π′ ⊢ eS :ω so

it follows thatDS is well-defined andDS :: Π′ ⊢ eS : ω.

〈var〉: ThenD = 〈var〉 ::Π ⊢ x :σ. LetS= {x1 7→D1, . . . ,xn 7→Dn}; notice, by definition, that eachDi is

well-defined (and therefore so are its subderivations). By the definition of derivation substitution

DS is (a subderivation of) someDj, and so therefore is a well-defined derivation. Also, sinceS is

applicable toD, it follows thatx = xk for somek ∈ n, thusxS = xk
S = ek, and by the definition of

derivation substitutionDS :: Π′ ⊢ ek : σ.

〈D′,fld〉: ThenD = 〈D′,fld〉 ::Π ⊢ e. f : σ andD′ ::Π ⊢ e : 〈f :σ〉. By inductionD′S ::Π′ ⊢ eS : 〈f :σ〉

and is well-defined. Then by the (fld) rule 〈D′S,fld〉 :: Π′ ⊢ eS. f : σ is also a well-defined

derivation. SinceeS. f = e. fS it follows from the definition of derivation substitution thatDS ::

Π′ ⊢ e. fS : σ and is well-defined.
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(invk), (obj), (newF), (newM), (join): These cases are similar to (fld) and follow straightforwardly by

induction. �

Derivation substitution preserves strong andω-safe derivations.

Lemma 4.13. If D is strong (ω-safe) then, for any strong (ω-safe) derivation substitutionS applicable

toD,DS is also strong (ω-safe).

Proof. By straightforward induction on the structure ofD.

〈ω〉: Vacuously true since〈ω〉 derivations are neither strong norω-safe.

〈var〉: LetS= {x1 7→D1, . . . ,xn 7→Dn}; thenD= 〈var〉 ::Π,x j:φ ⊢x :σ for somej ∈ nwithDj ::Π′ ⊢e : φ

andφ P σ. By Definition 4.11,DS is eitherDj itself (if φ is strict), or one of its immediate

subderivations (ifφ is an intersection).

If S is strong, it follows by Definition 4.11 that eachDi is strong. In particular, this means

thatDj is strong and, in the case thatφ is an intersection, by Definition 4.8 it follows that the

immediate subderivations ofDj are also strong. Thus,DS is strong.

If S is ω-safe, then eachDi is eitherω-safe or an instance of the (ω) rule. We know that

Dj cannot be an instance of the (ω) rule because if it were then, sinceS is applicable toD, it

would then follow thatφ = ω which cannot be the case sinceφ P σ, which is strict. Thus,Dj

is ω-safe and, in the case thatφ is an intersection, by Definition 4.9 so are all of its immediate

subderivations. Thus,DS isω-safe.

〈D′,fld〉: ThenD = 〈D′,fld〉 and by Definition 4.11DS = 〈D′S,fld〉. By inductionD′S is strong

(ω-safe), and so by Definition 4.8 (Definition 4.9) it follows thatDS is also strong (ω-safe).

(invk), (obj), (newF), (newM), (join): These cases are similar to (fld) and follow straightforwardly by

induction. �

We also show that the operations of weakening and derivationsubstitution are commutative.

Lemma 4.14. LetD :: Π′′ ⊢ e : φ be a derivation andS be a derivation substitution based onΠ and

applicable toD. Also let[Π′ P Π] be a weakening, thenDS[Π′ P Π] =DS[Π′PΠ].

Proof. By induction on the structure ofD.

〈ω〉: ThenD = 〈ω〉 :: Π′′ ⊢ e : ω. By Definition 4.11DS = 〈ω〉 :: Π ⊢ eS : ω whereS is the term

substitution induced byS. Then by Definition 4.5DS[Π′ P Π] = 〈ω〉 :: Π′ ⊢ eS : ω. Notice

that by Definition 4.11S[Π′ P Π] is a derivation substitution still applicable toD but now based

on Π′. Furthermore notice thatS is also the term substitution induced byS[Π′ P Π]. Thus by

Definition 4.11 again,DS[Π′PΠ] = 〈ω〉 :: Π′ ⊢ eS : ω =DS[Π′ P Π].

〈var〉: ThenD = 〈var〉 :: Π′′ ⊢ x : σ. S is based onΠand applicable toD so letS = {x1 7→ D1 :: Π ⊢ e1 :

φ1, . . . ,x1 7→ Dn :: Π ⊢ en : φn} with Π′′ ⊆ {x1:φ1, . . . ,xn:φn}. Then by Definition 4.11,

S[Π′ PΠ] = {x1 7→ D1[Π′ P Π] :: Π′ ⊢ e1 : φ1, . . . ,xn 7→ Dn[Π′ P Π] :: Π′ ⊢ en : φn}

Now, there are two cases to consider:
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1. x:σ ∈ Π′′, then sinceΠ′′ ⊆ {x1:φ1, . . . ,xn:φn} it follows thatx = xi for somei ∈ n andφi = σ.

By Definition 4.11DS =Di :: Π ⊢ ei : σ and then by Definition 4.5DS[Π′ P Π] =Di [Π′ P

Π] :: Π′ ⊢ ei : σ. Furthermore, by Definition 4.11DS[Π′PΠ] =Di [Π′ PΠ] :: Π′ ⊢ ei : σ. Thus

DS[Π′ P Π] =DS[Π′PΠ].

2. x:φ ∈ Π with φ = σ1 ∩ . . . ∩σn′ andσ = σ j for some j ∈ n′. SinceΠ′′ ⊆ {x1:φ1, . . . ,xn:φn}

it follows thatx = xi for somei ∈ n andφi = φ. So thenDi = 〈D
′
1, . . . ,D

′
n′ , join〉 with D′k ::

Π ⊢ ei : σk for eachk ∈ n′. By Definition 4.11DS =D′j :: Π ⊢ ei : σ j and by Definition 4.5

DS[Π′ P Π] =D′j [Π
′ P Π] :: Π′ ⊢ ei : σ j . Furthermore, by Definition 4.5

Di [Π
′
P Π] = 〈D′1[Π′ P Π], . . . ,D′′n′ [Π

′
P Π], join〉

So by Definition 4.11DS[Π′PΠ] =Di[Π′ P Π]. ThusDS[Π′ P Π] =DS[Π′PΠ].

〈D′,fld〉: D = 〈D′,fld〉 ⇒ (Def. 4.11)

DS = 〈D′S,fld〉 ⇒ (Def. 4.5)

DS[Π′ P Π] = 〈D′S[Π′ P Π],fld〉 ⇒ (Inductive Hypothesis)

DS[Π′ P Π] = 〈D′S[Π′PΠ] ,fld〉 ⇒ (Def. 4.11)

DS[Π′ P Π] =DS[Π′PΠ]

(invk), (obj), (newF), (newM), (join): These cases are similar to (fld) and follow straightforwardly by

induction. �

Definition 4.15 (Identity Substitutions). Each environmentΠ induces a derivation substitutionIdΠ
which is called theidentity substitutionfor Π. LetΠ= {x1:φ1, . . . , xn:φn}; thenIdΠ , {x1 7→ D1, . . . ,xn 7→

Dn} where for each i∈ n:

• If φi = ω thenDi = 〈ω〉 :: Π ⊢ xi : ω;

• If φi is a strict typeσ thenDi = 〈var〉 :: Π ⊢ xi : σ;

• If φi = σ1 ∩ . . . ∩σn for some n≥ 2 thenDi = 〈D
′
n, join〉 :: Π ⊢ x : σ1 ∩ . . . ∩σn, withD′j = 〈var〉 ::

Π ⊢ xi : σ j for each j∈ n.

Notice that for every environmentΠ, the identity substitutionIdΠ is based onΠ.

It is easy to show thatIdΠ is indeed the identity for the substitution operation on derivations usingΠ.

Lemma 4.16. LetD :: Π ⊢ e : φ and IdΠ be the identity substitution forΠ; thenDIdΠ =D.

Proof. By straightforward induction on the structure ofD. �

Before defining the notion of derivation reduction itself, we first define the auxiliary notion ofad-

vancinga derivation. This is an operation which contracts redexes at some given position in expressions

covered byω in derivations. This operation will be used to reduce derivations which introduce intersec-

tions.

Definition 4.17 (Advancing). 1. Theadvanceoperation{ on expressions contracts the redex at a

given position p ine if it exists, and is undefined otherwise. It is defined as the smallest relation

on tuples(p,e) and expressions satisfying the following properties (where we writee {p e’ to
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mean((p,e),e’) ∈{):

F (C) = fn & e = Cp[new C( en). fi] (i ∈ n) ⇒ e {
p Cp[ei ]

Mb(C,m) = (xn,eb) & e = Cp[new C( e’). m( en) ] ⇒ e {
p Cp[eb

S]

whereS = {this 7→ new C( e’) ,x1 7→ e1, . . . ,xn 7→ en}

2. We extend{ to derivations via the following inductive definition (where we writeD {p D′ to

mean((p,D),D′) ∈{):

a) If e {p e’, thenD :: Π ⊢ e : ω {p 〈ω〉 :: Π ⊢ e’ : ω.

b) If 〈D,fld〉 :: Π ⊢ e.f : σ andD {p D′, then〈D,fld〉 {0 · p 〈D′,fld〉.

c) If 〈D,Dn, invk〉 :: Π ⊢ e.m( en) : σ andD {p D′, then〈D,Dn, invk〉 {
0 · p 〈D′,Dn, invk〉.

d) If 〈D,Dn, invk〉 :: Π ⊢ e.m( en) : σ andDj {
p D′j for some j∈ n, then〈D,Dn, invk〉 {

j · p

〈D,D′n, invk〉 whereD′i =Di for each i∈ n such that i, j.

e) If 〈Dn,obj〉 ::Π ⊢ new C( en) : C andDj {
p D′j for some j∈ n, then〈Dn,obj〉 {

j · p 〈D′n,obj〉

whereD′i =Di for each i∈ n such that i, j.

f) If 〈Dn,newF〉 :: Π ⊢ new C( en) : 〈f :σ〉 andDj {
p D′j for some j∈ n, then〈Dn,newF〉 {j · p

〈D′n,newF〉 whereD′i =Di for each i∈ n such that i, j.

g) If 〈Db,D,newM〉 :: Π ⊢ new C( e) : 〈m : (φ)→ σ〉 andD {p D′, then〈Db,D,newM〉 {p

〈Db,D
′,newM〉.

h) If 〈Dn, join〉 :: Π ⊢ e : φ andDi {
p D′i for each i∈ n, then〈Dn, join〉 {

p 〈D′n, join〉.

Notice that the advance operation does not change thestructureof derivations. Exactly the same rules

are applied and the same types derived; only expressions which are typed withω are altered.

Lemma 4.18(Soundness of Advancing). LetD :: Π ⊢ e : φ; thenD {p D′ for someD′ if and only if a

redex appears at position p ine and no derivation redex appears at p inD, with e {p e’ for somee’

andD′ :: Π ⊢ e’ : φ.

Proof. By straightforward well-founded induction on (p,D). �

The advance operation preserves strong (andω-safe) typeability.

Lemma 4.19. If D {p D′ is defined, andD is strong (ω-safe), thenD′ is also strong (ω-safe).

Proof. Straightforward, by induction on the definition of the advance operation for derivations. �

The notion of derivation reduction is defined in two stages. First, the more specific notion of reduction

at a certain position (i.e. within a given subderivation) isintroduced. The full notion of derivation

reduction is then a straightforward generalisation of thisposition-specific reduction over all positions.

Definition 4.20 (Derivation Reduction). 1. The reduction of a derivationD at position p toD′ is de-

noted byD _
p D′, and is defined inductively on(p,D) as follows:

a) Let〈〈Dn,newF〉,fld〉 :: Π ⊢ new C( e). fi : σ; then〈〈Dn,newF〉,fld〉 _
0 Di for each i∈ n.

b) Let〈〈Db,D
′,newM〉,Dn, invk〉 :: Π ⊢ new C( e’). m( en) : σ withMb(C,m) = (xn,eb);

then〈〈Db,D
′,newM〉,Dn, invk〉 _

0 Db
S, whereS = {this 7→D′,x1 7→D1, . . . ,xn 7→Dn}.

c) If 〈D,fld〉 :: Π ⊢ e.f : σ andD _
p D′, then〈D,fld〉 _

0 · p 〈D′,fld〉.
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d) If 〈D,Dn, invk〉 :: Π ⊢ e.m( en) : σ andD _
p D′, then〈D,Dn, invk〉 _

0 · p 〈D′,Dn, invk〉.

e) If 〈D,Dn, invk〉 :: Π ⊢ e.m( en) : σ andDj _
p D′j for some j∈ n,

then〈D,Dn, invk〉 _
j · p 〈D,D′n, invk〉 whereD′i =Di for each i∈ n such that i, j.

f) If 〈Dn,obj〉 :: Π ⊢ new C( en) : C andDj _
p D′j for some j∈ n,

then〈Dn,obj〉 _
j · p 〈D′n,obj〉 whereD′i =Di for each i∈ n such that i, j.

g) If 〈Dn,newF〉 :: Π ⊢ new C( en) : 〈f :σ〉 andDj _
p D′j for some j∈ n,

then〈Dn,newF〉 _
j · p 〈D′n,newF〉 whereD′i =Di for each i∈ n such that i, j.

h) If 〈Db,D,newM〉 :: Π ⊢ new C( e) : 〈m : (φ)→ σ〉 andD _
p D′,

then〈Db,D,newM〉 _
p 〈Db,D

′,newM〉.

i) If 〈Dn, join〉 ::Π ⊢ e : φ,Dj _
p D′j for some j∈ n and for each i∈ n such that i, j, eitherDi _

p D′i

or Di {
p D′i , then〈Dn, join〉 _

p 〈D′n, join〉.

2. The full reduction relation on derivations→D is defined by:

D→D D
′
, ∃ p [D _

p D′ ]

The reflexive and transitive closure of→D is denoted by→∗
D

.

3. We write SN(D) whenever the derivationD is strongly normalising with respect to→∗
D

.

Similarly to reduction for expressions, ifD →D D′ then we callD a derivation redexandD′ its

derivation contractum.

The following properties hold of derivation reduction. They are used in the proofs of Theorem 4.27

and Lemma 4.30.

Lemma 4.21. 1. SN(〈D,fld〉 :: Π ⊢ e.f : σ)⇔ SN(D :: Π ⊢ e : 〈f :σ〉)

2. SN(〈D,D1, . . . ,Dn, invk〉 :: Π ⊢ e. m( en) : σ)⇒ SN(D) & ∀ i ∈ n [ SN(Di) ]

3. For neutral contextsC,

SN(D′ :: Π ⊢ C[x] : 〈m : (φn)→ σ〉) & ∀ i ∈ n [ SN(Di :: Π ⊢ ei : φi) ]⇒

SN(〈D′,D1, . . . ,Dn, invk〉 :: Π ⊢ C[x]. m( en) : σ)

4. SN(〈Dn,obj〉 :: Π ⊢ new C( en) : C)⇔∃ φn [∀ i ∈ n [ SN(Di :: Π ⊢ ei : φi) ] ]

5. SN(〈D1, . . . ,Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn)⇔∀ i ∈ n [ SN(Di :: Π ⊢ e : σi) ]

6. SN(D[Π′ P Π])⇔ SN(D)

7. LetC be a class such thatF (C) = fn, then for all j∈ n:

SN(〈Dn,newF〉 :: Π ⊢ new C( en) : 〈fj :σ〉)⇔∃ φn [σP φ j & ∀ i ∈ n [ SN(Di :: Π ⊢ ei : φi) ] ]

8. LetC be a class such thatF (C) = fn, then for all j∈ n:

SN(D(p,σ′)[Dj ] :: Π ⊢ Cp[e j] : σ) & ∀ i ∈ n [ i , j⇒∃ φ [ SN(Di :: Π ⊢ ei : φ) ] ]

⇒ SN(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π ⊢ Cp[new C( en). fj] : σ)
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9. LetC be a class such thatMb(C,m) = (xn,eb) andDb :: { this :ψ,x1:φ1, . . . ,xn:φn} ⊢ eb : σ′, then

for all derivation contextsD(p,σ′) and expression contextsC:

SN(D(p,σ′)[Db
S] :: Π ⊢ Cp[eb

S] : σ) & SN(D0 :: Π ⊢ new C( e’) : ψ) &

∀ i ∈ n [ SN(Di ::Π ⊢ ei : φi) ]⇒ SN(D(p,σ′)[〈D,Dn, invk〉] :: Π ⊢ Cp[new C( e’). m( en) ] : σ)

whereD = 〈Db,D0,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ′〉,

S = { this 7→D0,x1 7→D1, . . . ,xn 7→Dn },

S = { this 7→new C( e’) ,x1 7→e1, . . . ,xn 7→en }

Proof. By Definition 4.20 �

Our notion of derivation reduction is not onlysound(i.e. produces valid derivations) but, most impor-

tantly, we have that it corresponds to reduction on expressions.

Lemma 4.22.D _
p D′ if and only if there is a derivation redex at position p inD.

Proof. (if): By easy induction on the structure ofp.

(only if): By easy induction on definition of derivation reduction. �

Theorem 4.23(Soundness of Derivation Reduction). If D _
p D′, thenD′ is a well-defined derivation,

i.e. there exists somee’ such thatD′ :: Π ⊢ e’ : φ; moreover, thene {p e’.

Proof. By induction on the definition of derivation reduction. The interesting cases are the two redex

cases, and also the case for (join), since in general there may be more than one redex to contract (i.e. cor-

responding reductions and advances must be made ineachsubderivation simultaneously). The other

cases follow straightforwardly by induction: we demonstrate the case for field access.

(〈〈Dn,newF〉,fld〉 :: Π ⊢ new C( e). fi : σ _
0 Di , i ∈ n):

By Definition 4.20,〈〈Dn,newF〉,fld〉 ::Π ⊢ new C( e). fi :σ is a well-defined derivation, and so:

• by (fld), 〈Dn,newF〉 :: Π ⊢ new C( e) : 〈fi :σ〉 is a well-defined derivation;

• by (newF),Dj :: Π ⊢ e j : φ j is a well-defined derivation for eachj ∈ n, with φ j = σ.

In particularDi :: Π ⊢ ei : φi is a well-defined derivation. Furthermore notice that by Definition

3.3,new C( e). fi→ ei. Also notice that by Definition 4.3,new C( e). fi = C0[new C( e). fi]

andei = C0[ei ] whereC is the empty context [ ]. Thus by Definition 4.17,new C( e). fi {
0 ei.

(〈〈Db,D
′,newM〉,Dn, invk〉 :: Π ⊢ new C( e’). m( en) : σ _

0 Db
S):

withMb(C,m) = (xn,eb), whereS = {this 7→D′,x1 7→D1, . . . ,xn 7→Dn}.

By Definition 4.20,〈〈Db,D
′,newM〉,Dn, invk〉 :: Π ⊢ new C( e’). m( en) : σ is a well-defined

derivation, and so:

by (invk): 1. Di :: Π ⊢ ei : φi is a well-defined derivation for eachi ∈ n; and

2. 〈Db,D
′,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ〉 is a well-defined derivation.

by (newM): 1. D′ :: Π ⊢ new C( e’) : ψ is a well-defined derivation; and

2. by (newM), Db :: { this :ψ,x1:φ1, . . . ,xn:φn } ⊢ eb : σ is a well-defined derivation.

Then by Definition 4.11,S is a well-defined derivation substitution based onΠ, and applicable

to Db. By Lemma 4.12, it follows thatDb
S :: Π ⊢ eb

S : σ is a well-defined derivation, where

47



S = {this 7→ new C( e’) ,x1 7→ e1, . . . ,xn 7→ en} is the term substitution induced byS. Further-

more, notice that by Definition 3.3,new C( e’). m( en) → eb
S. Also notice that by Definition 4.3,

new C( e’). m( en) = C0[new C( e’). m( en) ] andeb
S = C0[eb

S], whereC is the empty context

[ ]. Thus by Definition 4.17,new C( e’). m( en) {
0 eb

S.

(〈Dn, join〉 _
p 〈D′n, join〉):

with Dj _
p D′j for some j ∈ n, and for eachi ∈ n such thati , j, eitherDi _

p D′i orDi {
p D′i

as well as〈Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn. SinceDj _
p D′j for some j ∈ n, it follows by the

inductive hypothesis thatD′j :: Π ⊢ e’ : σ j is a well-defined derivation ande {p e’ for somee’.

Notice that by Definition 4.3, there is then an expression contextCp such thate = Cp[er ] for some

redexer with er → ec ande’ = Cp[ec]. Now, we examine eachD′i for i ∈ n such thati , j. For

each suchi, there are two possibilities:

1. Di _
p D′i ; then by the inductive hypothesis it follows that there is some expressione’’ such

thatD′i :: Π ⊢ e’’ : σi is a well-defined derivation ande {p e’’. Then, by Definition 4.3,

there is then an expression contextC′p such thate = C′p[e’r ] for some redexe’r with e’r → e’c

ande’’= C′p[e’c]. It follows thatC′p[e’r ] = eCp[er ], and soC′p = Cp ande’r = er . Thuse’c = ec

ande’’ = C′p[e’c] = Cp[ec] = e’.

2. Di {
p D′i , in which case it follows by Lemma 4.18 thate {p e’’ for some expressione’’

withD′i :: Π ⊢ e’’ : σi. By the same reasoning as in the alternative case above, it follows that

e’’ = e’.

Thuse {p e’ and, for eachi ∈ n, we haveD′i ::Π ⊢ e’ :σi. So by (join), it follows that〈D′n, join〉 ::

Π ⊢ e’ : σ1 ∩ . . . ∩σn is a well-defined derivation.

(〈D,fld〉 :: Π ⊢ e.f : σ & D _
p D′⇒ 〈D,fld〉 _

0 · p 〈D′,fld〉):

Since〈D,fld〉 :: Π ⊢ e.f : σ it follows by rule (fld) thatD :: Π ⊢ e : 〈f :σ〉. Also, sinceD _
p D′

it follows from the inductive hypothesis thatD′ is a well-defined derivation and thatD′ :: Π ⊢ e’ :

〈f :σ〉 for somee’ with e {
p e’. Then, by rule (fld), we have that〈D′,fld〉 :: Π ⊢ e’.f : σ is also

a well-defined derivation. Furthermore, sincee {p e’, by Definition 4.3 it follows that there is

some expression contextCp such thate = Cp[er ] for some redexer with er → ec ande’ = Cp[ec].

Take the expression contextC′0·p = Cp. f; thene.f = Cp[er ]. f = C′0·p[er ] ande’.f = Cp[ec]. f =

C′0·p[ec]. Then, by Definition 4.17,e.f {0 · p e’.f. �

We can also show that strong andω-safe derivations are preserved by derivation reduction.

Lemma 4.24. If D is strong (ω-safe) andD→DD′, thenD′ is strong (ω-safe).

Proof. By induction on the definition of derivation reduction.

(〈〈Dn,newF〉,fld〉 :: Π ⊢ new C( e). fi : σ _
0 Dj , j ∈ n):

If 〈〈Dn,newF〉,fld〉 is a strong (ω-safe) derivation, then it follows from Definition 4.8 (Definition

4.9) that〈Dn,newF〉 is also strong (ω-safe), and then also that eachDi is strong (ω-safe). So, in

particularDj is strong (ω-safe).

(〈〈Db,D
′,newM〉,Dn, invk〉 :: Π ⊢ new C( e’). m( en) : σ _

0 Db
S):

withMb(C,m) = (xn,eb), whereS = {this 7→D′,x1 7→D1, . . . ,xn 7→Dn}.
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By rule (invk) we have that〈Db,D
′,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ〉 and also thatDi ::

Π ⊢ ei : φi for eachi ∈ n. Then also, by rule (newM) we have thatDb :: { this :ψ,x1:φ1, . . . ,xn:φn } ⊢

eb : σ andD′ :: Π ⊢ new C( e’) : ψ. Notice that this means thatS is applicable toDb.

If 〈〈Db,D
′,newM〉,Dn, invk〉 is a strong derivation then it follows from Definition 4.8 that each

Di (i ∈ n) is strong, and also that〈Db,D
′,newM〉 is strong. Then it also follows that bothDb and

D′ are strong. Notice then thatS is a strong derivation substitution, and so by Lemma 4.13 it

follows thatDb
S is also a strong derivation.

If 〈〈Db,D
′,newM〉,Dn, invk〉 is anω-safe derivation then it follows from Definition 4.9 that

eachDi (i ∈ n) is eitherω-safe or an instance of the (ω) rule, and also that〈Db,D
′,newM〉 is

ω-safe. Then it also follows that bothDb andD′ areω-safe. Notice then thatS is anω-safe

derivation substitution, and so by Lemma 4.13 it follows that Db
S is also anω-safe derivation.

(〈Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn & Dj _
p D′j , j ∈ n⇒ 〈Dn, join〉 _

p 〈D′n, join〉):

where for eachi ∈ n such thati , j, eitherDi _
p D′i orDi {

p D′i .

If 〈D1, . . . ,Dn, join〉 is a strong (ω-safe) derivation, then it follows from Definition 4.8 (Definition

4.9) that eachDi is also strong (ω-safe). Then, by induction it follows thatD′j is strong (ω-safe).

Now, for eachi ∈ n such thati , j, eitherDi _
p D′i in which case it again follows by induction that

D′i is a strong (ω-safe) derivation, orDi {
p D′i in which case it follows by Lemma 4.19 thatD′i

is strong (ω-safe). Thus, for eachi ∈ n we have thatD′i is strong (ω-safe) and thus by Definition

4.8 (Definition 4.9) it follows that〈D′n, join〉 is a strong (ω-safe) derivation.

(〈D,fld〉 :: Π ⊢ e.f : σ & D _
p D′⇒ 〈D,fld〉 _

0 · p 〈D′,fld〉):

If 〈D,fld〉 is a strong (ω-safe) derivation then it follows from Definition 4.8 (Definition 4.9) that

D is also strong (ω-safe). Then, sinceD _
p D′ it follows by induction thatD′ is strong (ω-safe),

and thus by Definition 4.8 (Definition 4.9) so too is〈D′,fld〉. �

Our aim is to prove that this notion of derivation reduction is strongly normalising, i.e. terminating.

In other words, all derivations have anormal formwith respect to→D. Our proof uses the well-known

technique ofcomputability[100]. As is standard, our notion is defined inductively overthe structure of

types, and is defined in such a way as to guarantee that computable derivations are strongly normalising.

Definition 4.25 (Computability). 1. The set ofcomputablederivations is defined as the smallest set

satisfying the following conditions (where Comp(D) denotes thatD is a member of the set of

computable derivations):

a) Comp(〈ω〉 :: Π ⊢ e : ω).

b) Comp(D :: Π ⊢ e : ϕ)⇔ SN(D :: Π ⊢ e : ϕ).

c) Comp(D :: Π ⊢ e : C)⇔ SN(D :: Π ⊢ e : C).

d) Comp(D :: Π ⊢ e : 〈f :σ〉)⇔ Comp(〈D,fld〉 :: Π ⊢ e.f : σ).

e) Comp(D :: Π ⊢ e : 〈m : (φn)→ σ〉)⇔

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D′,D′1, . . . ,D
′
n, invk〉 :: Π

′ ⊢ e.m( en) : σ) ]

whereD′ =D[Π′ P Π] andD′i =Di [Π′ P Πi] for each i∈ n withΠ′ =
⋂
Π ·Πn.
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f) Comp(〈D1, . . . ,Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn)⇔∀ i ∈ n [ Comp(Di) ].

2. A derivation substitutionS = {x1 7→D1, . . . ,xn 7→Dn} is computable in an environmentΠ if and

only if for all x:φ ∈ Π there exists some i∈ n such thatx = xi and Comp(Di).

The weakening operation preserves computability:

Lemma 4.26. Comp(D :: Π ⊢ e : φ)⇔ Comp(D[Π′ P Π] :: Π′ ⊢ e : φ).

Proof. By straightforward induction on the structure of types.

(ω): Immediate since thenD = 〈ω〉 :: Π ⊢ e : ω andD[Π′ P Π] = 〈ω〉 :: Π′ ⊢ e : ω, which are both

computable by Definition 4.25.

(ϕ): Comp(D :: Π ⊢ e : ϕ) ⇔ (Def. 4.25)

SN(D :: Π ⊢ e : ϕ) ⇔ (Lem. 4.21(6))

SN(D[Π′ P Π] :: Π′ ⊢ e : ϕ) ⇔ (Def. 4.25)

Comp(D[Π′ P Π] :: Π′ ⊢ e : ϕ)

(C): Comp(D :: Π ⊢ e : C) ⇔ (Def. 4.25)

SN(D :: Π ⊢ e : C) ⇔ (Lem. 4.21(6))

SN(D[Π′ PΠ] :: Π′ ⊢ e : C) ⇔ (Def. 4.25)

Comp(D[Π′ PΠ] :: Π′ ⊢ e : C)

(〈f :σ〉): Comp(D :: Π ⊢ e : 〈f :σ〉) ⇔ (Def. 4.25)

Comp(〈D,fld〉 :: Π ⊢ e. f : σ) ⇔ (Inductive Hypothesis)

Comp(〈D,fld〉[Π′ P Π] :: Π′ ⊢ e. f : σ) ≡ (Def. 4.5)

Comp(〈D[Π′ P Π],fld〉 :: Π′ ⊢ e. f : σ) ⇔ (Def. 4.25)

Comp(D[Π′ P Π] :: Π′ ⊢ e : 〈f :σ〉)

(〈m : (φn)→ σ〉):

Comp(D :: Π ⊢ e : 〈m : (φn)→ σ〉) ⇔ (Def. 4.25)

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D[Πα P Π],D1[Πα P Π1], . . . ,Dn[Πα P Πn], invk〉 :: Πα ⊢ e. m( en) : σ) ]

whereΠα =
⋂
Π ·Πn

⇔ (Inductive Hypothesis)

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D[Πα P Π],D1[Πα P Π1], . . . ,Dn[Πα P Πn], invk〉[Πβ P Πα] :: Πβ ⊢ e. m( en) : σ) ]

whereΠβ =
⋂
Π′ ·Πn

≡ (Def. 4.5)

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D[Πα P Π][Πβ P Πα],D1[Πα P Π1][Πβ P Πα], . . . ,Dn[Πα P Πn][Πβ P Πα], invk〉

:: Πβ ⊢ e. m( en) : σ) ] ≡ (Lem. 4.6)

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D[Π′ P Π][Πβ P Π′],D1[Πβ P Π1], . . . ,Dn[Πβ P Πn], invk〉 :: Πβ ⊢ e. m( en) : σ) ]

⇔ (Def. 4.25)

Comp(D[Π′ P Π] :: Π′ ⊢ e : 〈m : (φn)→ σ〉)
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(σ1 ∩ . . . ∩σn): Comp(〈Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn) ⇔ (Def. 4.25)

∀ i ∈ n [ Comp(Di :: Π ⊢ e : σi) ] ⇔ (Inductive Hypothesis)

∀ i ∈ n [ Comp(Di [Π′ P Π] :: Π′ ⊢ e : σi) ] ⇔ (Def. 4.25)

Comp(〈D1[Π′ P Π], . . . ,Dn[Π′ P Π], join〉 :: Π′ ⊢ e : σ1 ∩ . . . ∩σn)

≡ (Def. 4.5)

Comp(〈Dn, join〉[Π′ PΠ] :: Π′ ⊢ e : σ1 ∩ . . . ∩σn)

�

The key property of computable derivations, however, is that they are strongly normalising as shown

in the first part of the following theorem.

Theorem 4.27. 1. Comp(D :: Π ⊢ e : φ)⇒ SN(D :: Π ⊢ e : φ).

2. For neutral contextsC, SN(D :: Π ⊢ C[x] : φ)⇒ Comp(D :: Π ⊢ C[x] : φ).

Proof. By simultaneous induction on the structure of types.

(ω): The result follows immediately, by Definition 4.20 in the case of (1), and by Definition 4.25 in the

case of (2).

(ϕ), (C): Immediate, by Definition 4.25.

(〈f :σ〉): 1. Comp(D :: Π ⊢ e : 〈f :σ〉) ⇒ (Def. 4.25)

Comp(〈D,fld〉 :: Π ⊢ e. f : σ) ⇒ (Inductive Hypothesis (1))

SN(〈D,fld〉 :: Π ⊢ e. f : σ) ⇒ (Lem. 4.21)

SN(D :: Π ⊢ e : 〈f :σ〉)

2. Assuming SN(D :: Π ⊢ C[x] : 〈f :σ〉) with C a neutral context, it follows by Lemma 4.21 that

SN(〈D,fld〉 :: Π ⊢ C[x]. f : σ). Now, take the expression contextC′ = C. f; notice that by

Definitions 4.2 and 4.3,C′ is a neutral context andC[x]. f = C′[x]. Thus SN(〈D,fld〉 :: Π ⊢

C′[x] : σ) and by induction it follows thatComp(〈D,fld〉 :: Π ⊢ C′[x] : σ). Then from the

definition ofC′ we haveComp(〈D,fld〉 ::Π ⊢C[x]. f :σ) and by Definition 4.25 thatComp(D ::

Π ⊢ C[x] : 〈f :σ〉).

(〈m : (φn)→ σ〉): 1. AssumeComp(D ::Π ⊢ e : 〈m : (φn)→σ〉). For eachi ∈ n, we take a fresh variable

xi and construct a derivationDi as follows:

• If φi = ω thenDi = 〈ω〉 :: Πi ⊢ xi : ω, with Πi = ∅;

• If φi is a strict typeσ thenDi = 〈var〉 :: Πi ⊢ xi : σ, with Πi = {xi:σ};

• If φi =σ1 ∩ . . . ∩σni with ni ≥ 2 thenDi = 〈D
′
(i,1), . . . ,D

′
(i,ni ), join〉 ::Πi ⊢ x :σ1 ∩ . . . ∩φni

with Πi = {xi:φi} andD′(i, j) = 〈var〉 :: Πi ⊢ xi : σ j for each j ∈ ni .

Notice that eachDi is in normal form, so SN(Di) for eachi ∈ n. Notice also thatDi :: Πi ⊢

C[xi ] : φi for eachi ∈ n whereC is the neutral context [ ]. So, by the second inductive hypoth-

esisComp(Di) for eachi ∈ n. Then by Definition 4.25 it follows thatComp(〈D′,D′n, invk〉 ::

Π′ ⊢ e. m( xn) : σ), whereD′ = D[Π′ P Π] and D′i = Di[Π′ P Πi] for each i ∈ n with

Π′ =
⋂
Π ·Πn. So, by the first inductive hypothesis it then follows that SN(〈D′,D′n, invk〉 ::

Π′ ⊢ e. m( xn) : σ). Lastly by Lemma 4.21(2) we have SN(D′), and from Lemma 4.21(6)

that SN(D).
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2. Assume SN(D :: Π ⊢ C[x] : 〈m : (φn)→ σ〉) with C a neutral context. Also assume that there

exist derivationsD1, . . . ,Dn such thatComp(Di :: Πi ⊢ ei : φi) for eachi ∈ n. Then it follows

from the first inductive hypothesis that SN(Di ::Πi ⊢ ei : φi) for eachi ∈ n. LetΠ′ =
⋂
Π ·Πn;

notice that by Definition 3.6,Π′ P Π andΠ′ P Πi for eachi ∈ n. Then by Lemma 4.21(6),

it follows that SN(D[Π′ P Π]) and SN(Di [Π′ P Πi ]) for each i ∈ n. By Lemma 4.21(3),

we then have SN(〈D′,D′1, . . . ,D
′
n, invk〉 :: Π

′ ⊢ C[x]. m( en) : σ) whereD′ =D[Π′ P Π] and

D′i =Di[Π′PΠi] for eachi ∈ n. Now, take the expression contextC′ = C. m( en) ; notice that,

sinceC is neutral, by Definitions 4.2 and 4.3,C′ is a neutral context andC[x]. m( en) = C′[x].

Thus by the second inductive hypothesis it follows thatComp(〈D′,D′1, . . . ,D
′
n, invk〉 :: Π′ ⊢

C[x]. m( en) : σ). Since the derivationsD1, . . . ,Dn were arbitrary, the following implication

holds

∀Dn [ ∀ i ∈ n [ Comp(Di :: Πi ⊢ ei : φi) ]⇒

Comp(〈D′,D′1, . . . ,D
′
n, invk〉 :: Π

′ ⊢ e.m( en) : σ) ]

whereD′ = D[Π′ P Π] andD′i = Di [Π′ P Πi ] for each i ∈ n with Π′ =
⋂
Π ·Πn. So by

Definition 4.25 we haveComp(D :: Π ⊢ e : 〈m : (φn)→ σ〉).

(σ1 ∩ . . . ∩σn,n≥ 2): 1. ThenComp(〈D1, . . . ,Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn) and so by Definition

4.25 we haveComp(Di :: Π ⊢ e : σi) for eachi ∈ n. From this it follows by induction that

SN(Di) for eachi ∈ n and so by Lemma 4.21 that SN(〈D1, . . . ,Dn, join〉).

2. Then SN(〈D1, . . . ,Dn, join〉 ::Π ⊢C[x] : σ1 ∩ . . . ∩σn) and so by Lemma 4.21 we have SN(Di ::

Π ⊢ C[x] : σi) for eachi ∈ n. From this it follows by induction thatComp(Di) for eachi ∈ n

and so by Definition 4.25 thatComp(〈D1, . . . ,Dn, join〉). �

From this, we can show that computability is closed for derivation expansion - that is, if a deriva-

tion contractum is computable then so is its redex. This property will be important when showing the

replacementlemma below.

Lemma 4.28. 1. LetC be a class such thatF (C) = fn, then for all j∈ n:

Comp(D(p,σ′)[Dj] :: Π ⊢ Cp[e j ] : σ) & ∀ i ∈ n, i , j [∃ φ [ Comp(Di :: Π ⊢ ei : φ) ] ]

⇒ Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π ⊢ Cp[new C( en). fj] : σ)

2. LetC be a class such thatMb(C,m) = (xn,eb) andDb :: { this :ψ,x1:φ1, . . . ,xn: φn } ⊢ eb : σ′, then

for derivation contextsD(p,σ′) and expression contextsC:

Comp(D(p,σ′)[Db
S] :: Π ⊢ Cp[eb

S] : σ)

& Comp(D0 :: Π ⊢ new C( e’) : ψ) & ∀ i ∈ n [ Comp(Di :: Π ⊢ ei : φi) ]

⇒Comp(D(p,σ′)[〈D,Dn, invk〉] :: Π ⊢ Cp[new C( e’). m( en) ] : σ)

whereD = 〈Db,D0,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ′〉,

S = { this 7→D0,x1 7→D1, . . . ,xn 7→Dn },

S = { this 7→new C( e’) ,x1 7→e1, . . . ,xn 7→en }

Proof. 1. By induction on the structure of strict types.
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(σ = ϕ): AssumeComp(D(p,σ)[Dj ] :: Π ⊢ Cp[e j] : ϕ) and∃ φ [ Comp(Di :: Π ⊢ ei : φ) ] for each

i ∈ n such thati , j. By Theorem 4.27 it follows that SN(D(p,σ)[Dj ] :: Π ⊢ Cp[e j ] : ϕ) and

∃ φ [SN(Di ::Π ⊢ ei : φ) ] for eachi ∈ n such thati , j. Then by Lemma 4.21(8) we have that

SN(D(p,σ)[〈〈Dn,newF〉,fld〉] :: Π ⊢ Cp[new C( en). fj] : ϕ)

And the result follows by Definition 4.25

(σ = C): Similar to the case for type variables.

(σ = 〈f :σ〉): AssumeComp(D(p,σ′)[Dj ] :: Π ⊢ Cp[e j] : 〈f :σ〉) and∃ φ [ Comp(Di :: Π ⊢ ei : φ) ]

for eachi ∈ n such thati , j. By Definition 4.25,Comp(〈D(p,σ′)[Dj ],fld〉 :: Π ⊢ Cp[e j]. f :

σ). Now, take the expression contextC′0·p = Cp. f and the derivation contextD′(0·p,σ′) =

〈D(p,σ′),fld〉 :: Π ⊢ Cp. f : σ. Notice that

〈D(p,σ′)[Dj ],fld〉 :: Π ⊢ Cp[e j]. f : σ =D′(0·p,σ′)[Dj ] :: Π ⊢ C′0·p[e j] : σ

Thus we haveComp(D′(0·p,σ′)[Dj] :: Π ⊢ C′0·p[e j ] : σ). Then by the inductive hypothesis it

follows that

Comp(D′(0·p,σ′)[〈〈Dn,newF〉,fld〉] :: Π ⊢ C′0·p[new C( en). fj] : σ)

So by the definition ofD′ we have

Comp(〈D(p,σ′)[〈〈Dn,newF〉,fld〉],fld〉 :: Π ⊢ Cp[new C( en). fj]. f : σ)

Then by Definition 4.25 we have

Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π ⊢ Cp[new C( en). fj] : 〈f :σ〉)

(σ = 〈m : (φn′)→ σ〉): AssumeComp(D(p,σ′)[Dj ] :: Π ⊢ Cp[e j ] : 〈m : (φn′)→ σ〉) and, for eachi ∈

n such thati , j, there is someφ such thatComp(Di :: Π ⊢ ei : φ). Now, take arbitrary

derivationsD′1, . . . ,D′n′ such thatComp(D′k :: Πk ⊢ e’k : φk) for eachk ∈ n′. By Definition

4.25, it then follows thatComp(〈D′,D′′n′ , invk〉) :: Π′ ⊢ Cp[e j ]. m( e’n′ ) : σ whereΠ′ =
⋂
Π ·Πn′ and also thatD′ = D(p,σ′)[Dj ][Π′ P Π], with D′′k =D′k[Π′ P Πk] for eachk ∈ n.

By Lemma 4.7, we have

D′ = D(p,σ′)[Dj ][Π
′
P Π] =D(p,σ′)[Π

′
P Π][Dj [Π

′
P Π]]

Now, take the expression contextC′0·p = Cp. m( e’n′ ) and the derivation contextD′(0·p,σ′) =

〈D(p,σ)[Π′ P Π],D′′n′ , invk〉 :: Π′ ⊢ Cp. m( e’n′ ) : σ. Notice that

〈D′,D′′n′ , invk〉 =D
′
(0·p,σ′)[Dj[Π

′
PΠ]] :: Π′ ⊢ C′0·p[e j ] : σ

So we have

Comp(D′(0·p,σ′)[Dj [Π
′
PΠ]] :: Π′ ⊢ C′[e j ] : σ)
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Now, by Lemma 4.26, it follows that∃ φ [ Comp(Di [Π′ P Π] :: Π′ ⊢ ei : φ) ] for eachi ∈ n

such thati , j. Then by the inductive hypothesis it follows that

Comp(D′(0·p,σ′)[〈〈D1[Π′ P Π], . . . ,Dn[Π′ P Π],newF〉,fld〉]

:: Π′ ⊢ C′0·p[new C( en). fj] : σ)

So by the definition ofD′, this give us that

Comp(〈D(p,σ′)[Π
′
P Π][〈〈D1[Π′ P Π], . . . ,Dn[Π′ P Π],newF〉,fld〉],D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( en). fj]. m( e’n′ ) : σ)

And then by Definition 4.5

Comp(〈D(p,σ′)[Π
′
P Π][〈〈Dn,newF〉,fld〉[Π′ PΠ]] ,D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( en). fj]. m( e’n′ ) : σ)

And by Lemma 4.7

Comp(〈D(p,σ′)[〈〈Dn,newF〉,fld〉][Π′ P Π],D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( en). fj]. m( e’n′ ) : σ)

Since the derivationsD′1, . . . ,D′n′ were arbitrary, the following implication holds:

∀D′n′ [∀ i ∈ n′ [ Comp(D′i :: Πi ⊢ e’i : φi) ]⇒

Comp(〈D,D′′n′ , invk〉 :: Π
′ ⊢ Cp[new C( en). fj]. m( e’n′ ) : σ) ]

whereD =D(p,σ)[〈〈Dn,newF〉,fld〉][Π′ P Π]. Thus the result follows by Definition 4.25

Comp(D(p,σ′)[〈〈Dn,newF〉,fld〉] :: Π ⊢ Cp[new C( en). fj] : 〈m : (φn′)→ σ〉)

2. By induction on the structure of strict types.

(σ = ϕ): AssumeComp(D(p,σ)[Db
S] :: Π ⊢ Cp[eb

S] : ϕ) andComp(D0 ::Π ⊢ new C( e’) : ψ) with

Comp(Di ::Π ⊢ ei : φi) for eachi ∈ n, whereS = { this 7→ D0,x1 7→ D1, . . . ,xn 7→ Dn}, andS

is the term substitution induced byS. Then by Theorem 4.27 it follows that SN(D(p,σ)[Db
S] ::

Π ⊢ Cp[eb
S] : ϕ), SN(D0 :: Π ⊢ new C( e’) : ψ) and SN(Di :: Π ⊢ ei : φi) for eachi ∈ n. By

Lemma 4.21(9) we have that

SN(D(p,σ)[〈D,Dn, invk〉] :: Π ⊢ Cp[new C( e’). m( en) ] : ϕ)

whereD = 〈Db,D0,newM〉 ::Π ⊢ new C( e’) : 〈m : (φn)→σ〉, and the result follows by Def-

inition 4.25

(σ = C): Similar to the case for type variables.
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(σ = 〈f :σ〉): AssumeComp(D(p,σ′)[Db
S] :: Π ⊢Cp[eb

S] : 〈f :σ〉) andComp(D0 ::Π ⊢ new C( e’) :

ψ) with Comp(Di :: Π ⊢ ei : φi) for all i ∈ n, whereS = {this 7→ D0,x1 7→ D1, . . . ,xn 7→ Dn},

andS is the term substitution induced byS. By Definition 4.25 it follows that

Comp(〈D(p,σ′)[Db
S],fld〉 :: Π ⊢ Cp[eb

S]. f : σ)

Take the expression contextC′0·p = Cp. f and the derivation contextD′(0·p,σ′) = 〈D(p,σ′),fld〉 ::

Π ⊢ Cp. f : σ. Notice that

〈D(p,σ′)[Db
S],fld〉 :: Π ⊢ Cp[eb

S]. f : σ =D′(0·p,σ′)[Db
S] :: Π ⊢ C′0·p[eb

S] : σ

So we have

Comp(D′(0·p,σ′)[Db
S] :: Π ⊢ C′0·p[eb

S] : σ)

Then by the inductive hypothesis it follows that

Comp(D′(0·p,σ′)[〈D,Dn, invk〉] :: Π ⊢ C′0·p[new C( e’). m( en) ] : σ)

whereD = 〈Db,D0,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ′〉. So by the definition ofD′

this gives us

Comp(〈D(p,σ′)[〈D,Dn, invk〉],fld〉 :: Π ⊢ Cp[new C( e’). m( en) ]. f : σ)

and by Definition 4.25 it follows that

Comp(D(p,σ′)[〈D,Dn, invk〉] :: Π ⊢ Cp[new C( e’). m( en) ] : 〈f :σ〉)

(σ = 〈m′ : (φ′n′)→ σ〉): Assume thatComp(D(p,σ′)[Db
S] :: Π ⊢ Cp[eb

S] : 〈m′ : (φ′n′) → σ〉) with

Comp(D0 ::Π ⊢ new C( e’) : ψ) andComp(Di ::Π ⊢ ei : φi) for all i ∈ n, whereS = {this 7→

D0,x1 7→ D1, . . . ,xn 7→ Dn}, and S is the term substitution induced byS. Now, take ar-

bitrary derivationsD′1, . . . ,D′n′ such thatComp(D′k :: Πk ⊢ e’’k : φ′k) for eachk ∈ n′. By

Definition 4.25 it follows thatComp(〈D′,D′′n′ , invk〉 :: Π′ ⊢ Cp[eb
S]. m′( e’’n′ ) : σ) where

Π′ =
⋂
Π ·Πn′ , D′ = D(p,σ′)[Db

S][Π′ P Π] andD′′k = D′k[Π′ P Πk] for eachk ∈ n′. By

Lemma 4.7

D′ =D(p,σ′)[Db
S][Π′ P Π] =D(p,σ′)[Π

′
P Π][Db

S[Π′ P Π]]

Now, take the expression contextC′0·p = Cp. m′( e’’n′ ) and the derivation contextD′(0·p,σ′) =

〈D(p,σ)[Π′ P Π],D′′n′ , invk〉 :: Π′ ⊢ Cp. m′( e’’n′ ) : σ. Notice that

〈D′,D′′n′ , invk〉 =D
′
(0·p,σ′)[Db

S[Π′ P Π]] :: Π′ ⊢ C′0·p[eb
S] : σ

So we haveComp(D′(0·p,σ′)[Db
S[Π′ P Π]] :: Π′ ⊢ C′0·p[eb

S] : σ), and then by Lemma 4.14,

Comp(D′(0·p,σ′)[Db
S[Π′PΠ] ] :: Π′ ⊢ C′0·p[eb

S] : σ). Now, by Lemma 4.26,Comp(D0[Π′ PΠ] ::

Π ⊢ new C( e’) : ψ) andComp(Di [Π′ PΠ] :: Π ⊢ ei : φi) for all i ∈ n. Thus, by the inductive
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hypothesis

Comp(D′(0·p,σ′)[〈D
′′,D1[Π′ P Π], . . . ,Dn[Π′ P Π], invk〉]

:: Π′ ⊢ C′0·p[new C( e’). m( en) ] : σ)

whereD′′ = 〈Db,D0[Π′ PΠ],newM〉 :: Π′ ⊢ new C( e’) : 〈m : (φn)→ σ′〉. So, by the defini-

tion ofD′, this gives us

Comp(〈D(p,σ′)[Π
′
P Π][〈D′′,D1[Π′ P Π], . . . ,Dn[Π′ P Π], invk〉],D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( e’). m( en) ]. m′( e’’n′ ) : σ)

Then by Definition 4.5 it follows that

Comp(〈D(p,σ′)[Π
′
P Π][〈D,Dn, invk〉[Π

′
P Π]] ,D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( e’). m( en) ]. m′( e’’n′ ) : σ)

whereD = 〈Db,D0,newM〉 :: Π ⊢ new C( e’) : 〈m : (φn)→ σ′〉, and by Lemma 4.7 we have

Comp(〈D(p,σ′)[〈D,Dn, invk〉][Π
′
P Π],D′′n′ , invk〉

:: Π′ ⊢ Cp[new C( e’). m( en) ]. m′( e’’n′ ) : σ)

Since the choice of the derivationsD′1, . . . ,D′n′ was arbitrary, the following implication

holds:

∀D′n′ [ ∀ i ∈ n [ Comp(D′i :: Πi ⊢ e’’i : φ′i ) ]⇒

Comp(〈D′′′,D′′1, . . . ,D′′n′ , invk〉 :: Π
′ ⊢ e.m( en) : σ) ]

whereD′′′ = D(p,σ′)[〈D,Dn, invk〉][Π′ P Π] andD′′k =D′k[Π′ P Πk] for eachk ∈ n′. Then,

by Definition 4.25 we have

Comp(D(p,σ′)[〈D,Dn, invk〉] :: Π ⊢ Cp[new C( e’). m( en) ] : 〈m′ : (φ′n′)→ σ〉)

�

Another corollary of Theorem 4.27 is that identity (derivation) substitutions are computable in their

own environments.

Lemma 4.29. LetΠ be a type environment; thenIdΠ is computable inΠ.

Proof. Let Π = {x1:φ1, . . . ,xn:φn}. So IdΠ = {x1 7→ D1 :: Π ⊢ x1 : φ1, . . . ,xn 7→ Dn :: Π ⊢ x1 : φ1}, by

Definition 4.15. Notice that for eachi ∈ n the derivationDi contains no derivation redexes, i.e. it is in

normal form and thus SN(Di). Notice also that, sincexi = C[xi] whereC is the empty context [ ] (see

Definition 4.3), SN(Di ::Π ⊢C[x] : φi) for eachi ∈ n. Then, by Theorem 4.27(2) it follows thatComp(Di).

Thus, for eachx:φ ∈ Π there is somei ∈ n such thatx = xi andComp(Di) and so by Definition 4.25,IdΠ
is computable inΠ. �
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The final piece of the strong normalisation proof is the derivation replacement lemma, which shows

that when we perform derivation substitution using computable derivations we obtain a derivation that is

overall computable. In [10], where a proof of the strong normalisation of derivation reduction is given for

λ-calculus, this part of the proof is achieved by a routine induction on the structure of derivations. In [15]

however, where this result is shown for combinator systems,the replacement lemma was proved using

anencompassmentrelation on terms. For that system, this was the only way to prove the lemma since

the intersection type derivations in that system do not contain all the reduction information for the terms

they type - some of the reduction behaviour is hidden becausetypes for the combinators themselves are

taken from an environment. Given the similarities between the reduction model of class-based programs

and combinator systems, ortrs in general, one might think that a similar approach would be necessary

for fj¢. This is not the case however, since our type system incorporates a novel feature: method bodies

are typed foreachindividual invocation, and are part of the overall derivation. Thus, there will be sub-

derivations for the constituents of each redex that will appear during reduction. The consequence of this

is that, like for theλ-calculus, we are able to prove the replacement lemma by straightforward induction

on derivations.

Lemma 4.30. If D :: Π ⊢ e : φ andS is a derivation substitution computable inΠ and applicable toD,

then Comp(DS).

Proof. By induction on the structure ofD. The (newF) and (newM) cases are particularly tricky, and

use Lemma 4.28. LetΠ = {x1:φ′1, . . . ,xn:φ′n′} andS = {x’1 7→ D′1 :: Π′ ⊢ e’’1 : φ′1, . . . ,x’n′′ 7→ D
′
n′′ :: Π′ ⊢

e’’n′′ : φ′n′′} with {x1, . . . ,xn′} ⊆ {x’1, . . . ,x’n′′}. Also let S be the term substitution induced byS. As for

Lemma 4.12, when applying the inductive hypothesis we note implicitly that if S is applicable toD then

it is also applicable to subderivations ofD.

(ω): Immediately by Definition 4.25 sinceDS = 〈ω〉 :: Π′ ⊢ eS : ω.

(var): ThenD :: Π ⊢ x : σ. We examine the different possibilities forDS:

• x:σ ∈ Π, so x = x’i for somei ∈ n′′ andD′i :: Π′ ⊢ e’’i : σ. ThenDS = D′i. SinceS is

computable inΠ it follows thatComp(D′i), and soComp(DS).

• x:φ ∈ Π for someφ P σ, soφ = σ1 ∩ . . . ∩σn with σ = σi for somei ∈ n. Also, x = x’j for

somej ∈ n′′ andD′j ::Π′ ⊢ e’’j : φ, soD′′j = 〈D′′n, join〉 withD′′k ::Π′ ⊢ e’’j :σk for eachk∈ n.

Now, by Definition 4.11,DS =D′′i :: Π′ ⊢ e’’j : σi . SinceS is computable inΠ it follows that

Comp(D′j), and then, by Definition 4.25, thatComp(D′′k) for eachk ∈ n. Thus, in particular

Comp(D′′i), and soComp(DS).

(fld): ThenD = 〈D′,fld〉 :: Π ⊢ e. f : σ andD′ :: Π ⊢ e : 〈f :σ〉. By inductionComp(D′S :: Π′ ⊢ eS :

〈f :σ〉). Then by Definition 4.25,Comp(〈D′S,fld〉 :: Π′ ⊢ eS. f : σ). Notice that〈D′S,fld〉 =DS

and soComp(DS).

(invk): ThenD= 〈D0,Dn, invk〉 ::Π ⊢ e0. m( en) :σwithD0 ::Π ⊢ e0 : 〈m : (φn)→σ〉 andDi ::Π ⊢ ei : φi

for eachi ∈ n. By induction we have thatComp(D0
S :: Π′ ⊢ e0

S : 〈m : (φn)→ σ〉) and also that

Comp(Di
S :: Π′ ⊢ ei

S : φi) for eachi ∈ n. Then, by Definition 4.25, it follows that

Comp(〈D0
S[Π′′ P Π′],D1

S[Π′′ P Π′], . . . ,Dn
S[Π′′ P Π′], invk〉
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:: Π′′ ⊢ e0
S. m( e0

S, . . ., en
S) : σ)

whereΠ′′ =
⋂
Π′ ·Πn andΠi =Π

′ for eachi ∈ n. Notice thatΠ′′ =Π′ and that for allD ::Π ⊢ e : φ,

D[Π PΠ] =D, so it follows that

Comp(〈D0
S,D1

S, . . . ,Dn
S, invk〉 :: Π′ ⊢ e0

S. m( e0
S, . . ., en

S) : σ)

Notice that〈D0
S,D1

S, . . . ,Dn
S, invk〉 =DS and soComp(DS).

(join): ThenD = 〈Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn andDi :: Π ⊢ e : σi for eachi ∈ n. By induction,

Comp(Di
S :: Π′ ⊢ eS : σi) for eachi ∈ n and so by Definition 4.25,Comp(〈D1

S, . . . ,Dn
S, join〉 ::

Π′ ⊢ eS : σ1 ∩ . . . ∩σn). Notice that〈D1
S, . . . ,Dn

S, join〉 =DS and soComp(DS).

(obj): ThenD = 〈Dn,obj〉 ::Π ⊢ new C( en) : C and for eachi ∈ nDi ::Π ⊢ ei : φi for someφi . By induc-

tion it follows thatComp(Di
S ::Π′ ⊢ ei

S : φi) for eachi ∈ n and then by Theorem 4.27 we have that

SN(Di
S ::Π′ ⊢ ei

S : φi) for eachi ∈ n. So by Lemma 4.21(4) we have that SN(〈D1
S, . . . ,Dn

S,obj〉 ::

Π′ ⊢ new C( e1
S, . . ., en

S) : C) and thus by Definition 4.25 thatComp(〈D1
S, . . . ,Dn

S,obj〉 :: Π ⊢

new C( e1
S, . . ., en

S) : C). Notice that〈D1
S, . . . ,Dn

S,obj〉 =DS and soComp(DS).

(newF): ThenD = 〈Dn,newF〉 :: Π ⊢ new C( en) : 〈fj :σ〉 with F (C) = fn and j ∈ n, and there is some

φn such thatDi :: Π ⊢ ei : φi for eachi ∈ n with φ j P σ andφ j , ω. By inductionComp(Di
S ::

Π ⊢ ei : φi) for eachi ∈ n. Now, takeD(0,σ) = 〈[ ] 〉 andC = [ ]. Notice thatD(0,σ)[Dj
S] :: Π ⊢

C[e j
S] : σ =Dj

S ::Π ⊢ e j
S : φ j and soComp(D(0,σ)[Dj

S] :: Π ⊢ C[e j
S] : φ j). Then by Lemma 4.28

it follows that Comp(D(0,σ)[〈〈Di
S, . . . ,Dj

S,newF〉,fld〉] :: Π ⊢ C[new C( e1
S, . . ., en

S). fj] : σ),

that isComp(〈〈Di
S, . . . ,Dj

S,newF〉,fld〉 :: Π ⊢ new C( e1
S, . . ., en

S). fj : σ). Then by Definition

4.25 we have thatComp(〈Di
S, . . . ,Dj

S,newF〉 :: Π ⊢ new C( e1
S, . . ., en

S) : 〈fj :σ〉). Notice that

〈Di
S, . . . ,Dj

S,newF〉 =DS and soComp(DS).

(newM): ThenD = 〈Db,D0,newM〉 :: Π ⊢ new C( e) : 〈m : (φn)→ σ〉 with Mb(C,m) = (x’’n,eb) such

thatDb :: Π′′ ⊢ eb : σ andD0 :: Π ⊢ new C( e) : ψ whereΠ′′ = {this :ψ,x’’1:φ1, . . . ,x’’n:φn}. By

induction we haveComp(D0
S :: Π′ ⊢ new C( e) S : ψ). Now, assume there exist derivationsD1 ::

Π1 ⊢ e’1 : φ1, . . . ,D1 :: Πn ⊢ e’n : φn such thatComp(Di) for eachi ∈ n. LetΠ′′′ =
⋂
Π′ ·Πn; notice,

by Lemma 3.7, thatΠ′′′ P Πi for eachi ∈ n so from Lemma 4.6 it follows thatComp(Di [Π′′′ P

Πi ] :: Π′′′ ⊢ e’i : φi) for each. Also by Lemma 3.7,Π′′′ P Π′ and so then too by Lemma 4.6 we

haveComp(D0
S[Π′′′ P Π′] :: Π′′′ ⊢ new C( e) S : ψ). Now consider the derivation substitution

S′ = {this 7→ D0
S[Π′′′ P Π′], x’’1 7→ D1[Π′′′ P Π1], . . . , x’’n 7→ Dn[Π′′′ P Πn]}. Notice thatS′ is

computable inΠ′′ and applicable toDb. So by induction it follows thatComp(Db
S′ :: Π′′′ ⊢ eb

S′ :

σ) whereS′ is the term substitution induced byS′. Taking the derivation contextD(0,σ) = 〈[ ] 〉 and

the expression contextC = [ ], notice thatD(0,σ)[Db
S′ ] :: Π′′′ ⊢ C[eb

S′ ] : σ =Db
S′ :: Π′′′ ⊢ eb

S′ : σ,

and soComp(D(0,σ)[Db
S′ ] :: Π′′′ ⊢ C[eb

S′ ] : σ). From Lemma 4.28 we then have

Comp(D(0,σ)[〈D
′,D1[Π′′′ P Π1], . . . ,Dn[Π′′′ P Πn], invk〉]

:: Π′′′ ⊢ C[new C( e) S. m( e’n) ] : σ)
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whereD′ = 〈Db,D0
S[Π′′′ P Π′],newM〉, that is

Comp(〈D′,D1[Π′′′ P Π1], . . . ,Dn[Π′′′ P Πn], invk〉 :: Π′′′ ⊢ new C( e) S. m( e’n) : σ)

Notice thatD′ =DS[Π′ P Π′′′]. Since the existence of the derivationsD1, . . . ,Dn was assumed,

the following implication holds:

∀Dn [ Comp(Di :: Πi ⊢ e’i : φi) ]⇒

Comp(〈D′′,D′1, . . . ,D
′
n, invk〉 :: Π

′′′ ⊢ new C( e). m( e’n) : σ)

whereD′′ =DS[Π′′′ P Π′] andD′i =Di[Π′′′ P Πi ] for eachi ∈ n, with Π′′′ =
⋂
Π′ ·Πn. So, by

Definition 4.25 it follows thatComp(DS :: Π′ ⊢ new C( e) S : 〈m : (φn)→ σ〉).

�

Using this, we can show that all valid derivations are computable.

Lemma 4.31.D :: Π ⊢ e : φ⇒ Comp(D :: Π ⊢ e : φ)

Proof. SupposeΠ= {x1:φ1, . . . ,xn:φn}, then we take the identity substitutionIdΠ which, by Lemma 4.29,

is computable inΠ. Notice also that, by Definition 4.11,IdΠ is applicable toD. Then from Lemma 4.30

we haveComp(DIdΠ) and since, by Lemma 4.16,DIdΠ =D it follows thatComp(D). �

Then the main result of this chapter follows directly.

Theorem 4.32(Strong Normalisation for Derivations). If D :: Π ⊢ e : φ then SN(D).

Proof. By Lemma 4.31 and Theorem 4.27(1) �
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5. The Approximation Result: Linking Types with

Semantics

5.1. Approximation Semantics

In this section we will define anapproximation semanticsfor fj¢ by generalising the notion of approx-

imant for theλ-calculus that was discussed in Section 3.2. The concept of approximants in the context

of fj¢ can be illustrated using the class table given on the following page in Figure 5.1. This program

codes lists of integers and uses them to implement the Prime Sieve algorithm of Eratosthenes. It is not

quite a properfj¢ program, since it uses some extensions to the language, namely pure integer values

and arithmetic operations on them, and anif-then-else construct. Note that these features can be

encoded in purefj¢ (see Section 6.4), and so these extensions serve merely as a syntactic convenience

for the purposes of illustration.

Lists of integers are coded in this program as expressions ofthe following form:

new NonEmpty(n 1, new NonEmpty(n 2, ...

new NonEmpty(n k, new IntList()) ...))

To denote such lists, we will use the shorthand notationn1:n 2:...:n k:[] . To illustrate the concept of

approximants we will first consider calling thesquare method on a list of integers, which returns a list

containing the squares of all the numbers in the original list. The reduction behaviour of such a program

is given below, where we also give the corresponding (direct) approximant for each stage of execution:

The expression: has the approximant:

(1:2:3:[]).square() ⊥

→∗ 1:(2:3:[]).square() 1: ⊥

→∗ 1:4:(3:[]).square() 1:4: ⊥

→∗ 1:4:9:([]).square() 1:4:9: ⊥

→∗ 1:4:9:[] 1:4:9:[]

In this case, the output is finite, and the final approximant isthe end-result of the computation itself. Not

all computations are terminating, however, but might stillproduce output. An example of such a program

is the prime sieve algorithm, which is initiated in the program of Figure 5.1 by calling theprimes

method (note that in the following we have abbreviated the method nameremoveMultiplesOf to
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class IntList extends Object {
IntList square() { return new IntList(); }
IntList removeMultiplesOf(int n) { return new IntList(); }
IntList sieve() { return new IntList(); }
IntList listFrom(int n) { return new NonEmpty(n, this.list From(n+1)); }
IntList primes() { return this.listFrom(2).sieve(); }

}

class NonEmpty extends IntList {
int val;
IntList tail;
IntList square() {

return new NonEmpty(this.val * this.val, this.tail.squar e()); }
IntList removeMultiplesOf(int n) {

if (this.val % n == 0) return this.tail.removeMultiplesOf( n);
else return new NonEmpty(this.val, this.tail.removeMult iplesOf(n));

}
IntList sieve() {

return new NonEmpty(this.val,
this.tail.removeMultiplesOf(this.val).sieve());

}
}

Figure 5.1.: The class table for the Sieve of Eratosthenes infj
¢

rMO):

The expression: has the approximant:

new IntList().primes() ⊥

→∗ (2:3:4:5:6:7:8:9:10:11:...).sieve() ⊥

→∗ 2:(3:(4:5:6:7:8:9:10:11:...).rMO(2)).sieve() 2: ⊥

→∗ 2:3:(((5:6:7:8:9:10:11:...)

.rMO(2)).rMO(3)).sieve() 2:3: ⊥

→∗ 2:3:5:((((7:8:9:10:11:...)

.rMO(2)).rMO(3)).rMO(5)).sieve() 2:3:5: ⊥

...
...

The output keeps on ‘growing’ as the computation progresses, and thus it is infinite - there is no final

approximant since the ‘result’ is never reached. Thus⊥ is in every approximant since, at every stage of

the computation, reduction may still take place.

The approximation semantics is constructed by interpreting an expression as the set of all such ap-

proximations of its reduction sequence. We formalise this notion below and, as we will show shortly,

such a semantics has a very direct and strong correspondencewith the types that can be assigned to an

expression.

Definition 5.1 (Approximate Expressions). 1. The set ofapproximatefj¢ expressions is defined by

the following grammar:

a ::= x | ⊥ | a.f | a.m( an) | new C( an) (n≥ 0)

2. The set ofnormalapproximate expressions,A, ranged over byA, is a strict subset of the set of
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approximate expressions and is defined by the following grammar:

A ::= x | ⊥ | new C( An) (F (C) = fn)

| A.f | A.m( A) (A , ⊥, A , new C( An) )

The reason for namingnormal approximate expressions becomes apparent when we considerthe

expressions that they approximate - namely expressions in (head) normal form. In addition, if we extend

the notion of reduction so that field accesses and method calls on⊥ are themselves reduced to⊥, then we

find that the normal approximate expressions are normal forms with respect to this extended reduction

relation. Note that we enforce for normal approximate expressions of the formnew C( A) that the

expression comprise the correct number of field values for the declared classC. We elaborate on this in

Section 5.3 below.

Remark. It is easy to show that all (normal approximate) expressionsof formA. f andA. m( A) must

necessarily be neutral (i.e. must have a variable in head position).

The notion of approximation is formalised as follows.

Definition 5.2 (Approximation Relation). The approximation relation⊑ is defined as the contextual

closure of the smallest preorder on approximate expressions satisfying⊥ ⊑ a, for all a.

The relationship between the approximation relation and reduction is characterised by the following

result.

Lemma 5.3. If A ⊑ e ande→∗ e’, thenA ⊑ e’.

Proof. By induction on the definition of→∗.

(e→∗ e): A ⊑ e by assumption.

(e→∗ e’’& e’’→∗ e’): Double application of the inductive hypothesis.

(e→ e’): By induction on the structure of normal approximate expressions.

(⊥): Immediate, since⊥ ⊑ e’ by definition.

(x): Trivial, sincex does not reduce.

(A. f): Thene = e’’. f with A ⊑ e’’. Also, sinceA , new C( An) it follows from Definition 5.2

thate’’ , new C( en) . Thuse is not a redex and the reduction must take place ine’, that is

e’ = e’’’. f with e’’→ e’’’. Then, by induction,A ⊑ e’’’ and soA. f ⊑ e’’’. f.

(A. m( An) ): Thene’ = e’0. m( en) with A ⊑ e’0 andAi ⊑ ei for eachi ∈ n. SinceA , new C( A) it

follows thate’0 , new C( e’) . Sincee is not a redex, there are only two possibilities for the

reduction step:

1. e0→ e’0 ande’ = e’0. m( en) . By inductionA ⊑ e’0 and so alsoA. m( An) ⊑ e’0. m( en) .

2. e j → e’j for some j ∈ n ande’ = e0. m( e’n) with e’k = ek for eachk ∈ n such thatk, j.

Then, clearlyAk ⊑ e’k for eachk ∈ n such thatk , j. Also, by inductionAj ⊑ e’j . Thus

A. m( An) ⊑ e0. m( e’n) .
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(new C( An) ): Thene = new C( en) with Ai ⊑ ei for eachi ∈ n. Alsoe j→ e’j for somej ∈ n and

e’ = new C( e’n) wheree’k = ek for eachk ∈ n such thatk , j. Then, clearlyAk ⊑ e’k for

eachk ∈ n such thatk , j and by inductionAj ⊑ e’j. Thus, by Definition 5.2,new C( An) ⊑

new C( e’n) . �

Notice that this property expresses that the observable behaviour of a program can only increase (in

terms of⊑) through reduction.

We also define ajoin operation on approximate expressions.

Definition 5.4 (Join Operation). 1. The join operation⊔ on approximate expressions is a partial

mapping defined as the smallest reflexive and contextual closure of:

⊥⊔a = a⊔⊥ = a

2. We extend the join operation to sequences of approximate expressions as follows:

⊔ ǫ = ⊥

⊔a ·an = a⊔ (⊔an)

The following lemma shows that⊔ acts as an upper bound on approximate expressions, and that it is

closed over the set ofnormalapproximate expressions.

Lemma 5.5. Leta1, a2 anda be approximate expressions such thata1 ⊑ a anda2 ⊑ a; thena1⊔a2 ⊑ a,

with botha1 ⊑ a1 ⊔a2 anda2 ⊑ a1 ⊔a2. Moreover, ifa1 anda2 are normalapproximate expressions,

then so isa1⊔a2.

Proof. By induction on the structure ofa.

(a = ⊥): Then by Definition 5.2,a1 = a2 = ⊥ (so they are normal approximate expressions) and by

Definition 5.4,a1 ⊔a2 = ⊥ (which is also normal). By Definition 5.2,⊥ ⊑ ⊥, and so the result

follows immediately.

(a = x): Then we consider the different possibilities fora1 anda2 (notice in all cases botha1 anda2 are

normal):

(a1 = ⊥,a2 = ⊥): By Definition 5.4,a1 ⊔a2 = ⊥⊔⊥ = ⊥ (which is normal). By Definition 5.2,

⊥ ⊑ a and soa1⊔a2 ⊑ a, and also⊥ ⊑ ⊥ so thusa1 ⊑ a1⊔a2 anda2 ⊑ a1⊔a2.

(a1 = ⊥,a2 = x): By Definition 5.4,a1 ⊔ a2 = ⊥⊔ x = x (which is normal). By Definition 5.2,

x ⊑ x and soa1⊔a2 ⊑ a anda2 ⊑ a1⊔a2. Also by Definition 5.2,⊥ ⊑ x and soa1 ⊑ a1⊔a2.

(a1 = x,a2 = ⊥): Symmetric to the case (a1 = ⊥,a2 = x) above.

(a1 = x,a2 = x): By Definition 5.4,a1⊔a2 = x⊔x = x (which is normal). The result follows from

the fact that, by Definition 5.2,x ⊑ x.

(a = a’. f): Then again we consider the different possibilities fora1 anda2.

(a1 = ⊥,a2 = ⊥): By Definition 5.4,a1 ⊔a2 = ⊥⊔⊥ = ⊥ (which is normal). By Definition 5.2,

⊥ ⊑ a and soa1⊔a2 ⊑ a, and also⊥ ⊑ ⊥ so thusa1 ⊑ a1⊔a2 anda2 ⊑ a1⊔a2.
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(a1 = ⊥,a2 , ⊥): Notice⊥ is normal. By Definition 5.4,a1 ⊔ a2 = ⊥⊔ a2 = a2, and soa1 ⊔ a2
is trivially normal if a2 is normal. By Definition 5.2,⊥ ⊑ a2 and soa1 ⊑ a1 ⊔a2. Also by

Definition 5.2,a2 ⊑ a2 and soa2 ⊑ a1 ⊔a2. Finally, sincea2 ⊑ a by assumption, it follows

thata1⊔a2 ⊑ a.

(a1 , ⊥,a2 = ⊥): Symmetric to the case above.

(a1 = a’1. f,a2 = a’2. f,a’1 ⊑ a’,a’2 ⊑ a’): By induction it follows thata’1 ⊔ a’2 ⊑ a’ with a’1 ⊑

a’1⊔a’2 anda’2 ⊑ a’1⊔a’2. Then by Definition 5.2 it immediately follows thata’1⊔a’2. f ⊑

a’. f with a’1. f ⊑ a’1⊔a’2. f anda’2. f ⊑ a’1⊔a’2. f. The result follows from the fact that,

by Definition 5.4,a1⊔a2 = a’1⊔a’2. f.

Moreover, ifa1 anda2 are normal, then by definition so area’1 anda’2, with botha’1
anda’2 being neither⊥, nor of the formnew C( a’’n) . Then by inductiona’1 ⊔a’2 is also

normal, and by Definition 5.4 the join is neither equal to⊥ nor of the formnew C( a’’n) .

Thus, by Definition 5.2,a’1⊔a’2. f = a1⊔a2 is a normal approximate expression.

(a = a’. m( a’n) ), (a = new C( a’n) ): By straightforward induction similar to the casea = a’. f. �

Definition 5.6 (Approximants). The functionA returns the set ofapproximantsof an expressione and

is defined by:

A(e) = { A | ∃ e’ [e→∗ e’ & A ⊑ e’ ] }

Thus, an approximant is a normal approximate expression that approximates some (intermediate)

stage of execution. This notion of approximant allows us to define an approximation model forfj¢.

Definition 5.7 (Approximation Semantics). Theapproximation modelfor an fj¢ program is a structure

〈℘(A), ⌈⌈·⌋⌋〉, where the interpretation function⌈⌈·⌋⌋, mapping expressions to elements of the domain,℘(A),

is defined by⌈⌈e⌋⌋ =A(e).

As for models oflc, our approximation semantics equates pairs of expressionsthat are in the reduction

relation, as shown by the following theorem.

Theorem 5.8. e1→
∗ e2⇒A(e1) =A(e2).

Proof. (⊇): e1→
∗ e2 & A ∈ A(e2) ⇒ (Def. 5.6)

e1→
∗ e2 & ∃e3 [e2→

∗ e3 & A ⊑ e3 ] ⇒ (trans.→∗)

∃e3 [e1→
∗ e3 & A ⊑ e3 ] ⇒ (Def. 5.6)

A ∈ A(e1)

(⊆): e1→
∗ e2 & A ∈ A(e1) ⇒ (Def. 5.6)

e1→
∗ e2 & ∃e3 [e1→

∗ e3 & A ⊑ e3 ] ⇒ (Church-Rosser)

∃e3,e4 [e1→
∗ e2 & e2→

∗ e4 & e1→
∗ e3 & e3→

∗ e4 & A ⊑ e3 ] ⇒ (Lem. 5.3)

∃e4 [e2→
∗ e4 & A ⊑ e4 ] ⇒ (Def. 5.6)

A ∈ A(e2)
�
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5.2. The Approximation Result

We will now describe the relationship that our intersectiontype system from Chapter 3 has with the

semantics that we defined in the previous section. This takesthe form of anApproximation Theorem,

which states that for every typeable approximant of an expression, the same type can be assigned to the

expression itself:

Π ⊢ e : φ⇔∃ A ∈ A(e) [Π ⊢ A : φ]

As in other systems [15, 10], this result is a direct consequence of the strong normalisability of derivation

reduction, which was demonstrated in Chapter 4. In this section, we will show that the structure of the

normal form of a given derivation exactly corresponds to thestructure of the approximant which can be

typed. This is a very strong property since, as we will demonstrate, it means that typeability provides a

sufficient condition for the (head) normalisation ofexpressions, i.e. it leads to aterminationanalysis for

fj
¢.

Definition 5.9 (Type Assignment for Approximate Expressions). Type assignment for approximate ex-

pressions is defined exactly as for expressions, using the rules given in Figure 3.1.

Since we have not modified the type assignment rules in any wayother than allowing them to operate

over the (larger) set ofapproximateexpressions, note that all the results from Chapters 3 and 4 hold of

this extended type assignment. Furthermore, since there isno extra explicit rule for typing⊥, the only

type which may be assigned to⊥ isω. Indeed, this is the case for any expression of the formC[⊥] where

C is a neutral context.

To use the result of Theorem. 4.32 to show the Approximation Result, we first need to show some

intermediate properties. Firstly, we show thatω-safe derivations in normal form do not type expressions

containing⊥; it is from this property that we can show theω-safe typeability guarantees normalisation.

Lemma 5.10. If D ::Π ⊢ A : φ withω-safeD andΠ, thenA does not contain⊥; moreover, ifA is neutral,

thenφ does not containω.

Proof. By induction on the structure ofD.

〈ω〉: Vacuously true since〈ω〉 derivations are notω-safe.

〈var〉: ThenA = x and so does not contain⊥. Sincex is neutral, we must also show thatφ does not

containω. Noticeφ is strict and there is someψ P φ such thatx:ψ ∈ Π. Sinceφ is strict,ψ , ω

and sinceΠ isω-safe it follows thatψ does not containω; therefore, neither doesφ.

〈D′,Dn, invk〉: ThenA = A′. m( An) andφ is strict, hereafter calledσ. AlsoD′ :: Π ⊢ A′ : 〈m : (φn)→ σ〉

with D′ ω-safe, andDi :: Π ⊢ Ai : φi for eachi ∈ n. By inductionA′ must not contain⊥. Also,

notice thatA must be neutral, and therefore so mustA′. Then it also follows by induction that

〈m : (φn)→ σ〉 does not containω. This means that noφi = ω, and so it must be that eachDi is

ω-safe; thus by induction it follows that noAi contains⊥ either. Consequently,A′. m( An) does

not contain⊥ andσ does not containω.

〈Db,D
′,newM〉: ThenDb :: Π′ ⊢ eb : σ with this :ψ ∈ Π′ andD′ :: Π ⊢ A : ψ. SinceD isω-safe so also

isD′ and by induction it then follows thatA does not contain⊥.
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(fld), (obj), (newF), (join): These cases follow straightforwardly by induction. �

The next lemma simply states the soundness of type assignment with respect to the approximation

relation.

Lemma 5.11. If D :: Π ⊢ a : φ (withD ω-safe) anda ⊑ a’ then there exists a derivationD′ :: Π ⊢ a’ : φ

(whereD′ isω-safe).

Proof. By induction on the structure ofD.

(ω): Immediate, takingD′ = 〈ω〉 :: Π ⊢ a’ : ω. In theω-safe version of the result, this case is vacuously

true sinceD :: Π ⊢ a : ω is not anω-safe derivation.

(var): Thena = x andD = 〈var〉 :: Π ⊢ x : σ. By Definition 5.2, it must be thata’ = x, and so we take

D′ =D. Notice thatD is anω-safe derivation.

(fld): Thena = a1. f andD = 〈D′,fld〉 :: Π ⊢ a1. f : σ with D′ :: Π ⊢ a1 : 〈f :σ〉 (notice that ifD is

ω-safe then by definition so isD′). Sincea1. f ⊑ a’, by Definition 5.2 it follows thata’ = a2. f

with a1 ⊑ a2. By the inductive hypothesis there then exists a derivationD′′ such thatD′′ :: Π ⊢

a2 : 〈f :σ〉 (with D′′ ω-safe) and by rule (fld) it follows that 〈D′′,fld〉 :: Π ⊢ a2. f : σ (which by

definition isω-safe ifD′′ is).

(join), (invk), (Obj), (newF), (newM): These cases follow straightforwardly by induction, similar to the

case for (fld) above. �

We can show that we can type the join of normal approximate expressions with the intersection of all

the types which they can be individually assigned.

Lemma 5.12. LetA1, . . . ,An be normal approximate expressions with n≥ 2 ande be an expression such

that Ai ⊑ e for each i∈ n; if there are (ω-safe) derivationsDn such thatDi :: Π ⊢ Ai : φi for each i∈ n,

then⊔An ⊑ e and there are (ω-safe) derivationsD′n such thatD′i ::Π ⊢ ⊔An : φi for each i∈ n. Moreover,

⊔An is also a normal approximate expression.

Proof. By induction onn.

(n= 2): Then there areA1 andA2 such thatA1 ⊑ e andA2 ⊑ e. By Lemma 5.5 it follows thatA1⊔A2 ⊑ e

with A1 ⊔ A2 a normal approximate expression, and also thatA1 ⊑ A1 ⊔ A2 and A1 ⊑ A2 ⊔ A2.

Therefore, given thatD1 :: Π ⊢ A1 : φ1 andD2 :: Π ⊢ A2 : φ2 (with ω-safeD1 andD2), it follows

from Lemma 5.11 that there exist derivationsD′1 andD′2 such thatD′1 :: Π ⊢ A1 ⊔A2 : φ1 (with

D′1 ω-safe) andD′2 :: Π ⊢ A1 ⊔A2 : φ2 (with D′2 ω-safe). The result then follows from the fact

that, by Definition 5.4

⊔A2 = A1⊔ (⊔A2 · ǫ)

= A1⊔ (A2⊔ (⊔ ǫ))

= A1⊔ (A2⊔⊥)

= A1⊔A2

(n> 2): By assumptionAi ⊑ e andDi :: Π ⊢ Ai : φi (with Di ω-safe) for eachi ∈ n. Notice thatAn =

A1 ·A’n′ wheren= n′+1 andA’i = Ai+1 for eachi ∈ n′. ThusA’i ⊑ e andDi+1 ::Π ⊢ A’i : φi+1 for
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eachi ∈ n′. Therefore by the inductive hypothesis it follows that⊔A’n′ ⊑ e with ⊔A’n′ a normal

approximate expression, andD′i ::Π ⊢ ⊔A’n′ : φi+1 (withD′i ω-safe) for eachi ∈ n′. Then we have

by Lemma 5.5 thatA1⊔ (⊔A’n′) ⊑ e with A1⊔ (⊔A’n′) a normal approximate expression, and also

thatA1 ⊑ A1⊔ (⊔A’n′) with ⊔A’n′ ⊑ A1⊔ (⊔A’n′). So by Lemma 5.11 there is a derivationD′′′

(with D′′′ ω-safe) such thatD′′′ :: Π ⊢ A1 ⊔ (⊔ A’n′) : φ1, and (ω-safe) derivationsD′′n′ such

thatD′′i :: Π ⊢ A1 ⊔ (⊔A’n′) : φi+1 for eachi ∈ n′. The result then follows from the fact that, by

Definition 5.4,⊔An = A1⊔ (⊔A’n′). �

The next property is the most important, since it is this thatexpresses the relationship between the

structure of a derivation and the typed approximant.

Lemma 5.13. If D :: Π ⊢ e : φ (withD ω-safe) andD is in normal form with respect to→D, then there

existsA and (ω-safe)D′ such thatA ⊑ e andD′ :: Π ⊢ A : φ.

Proof. By induction on the structure ofD.

(ω): TakeA = ⊥. Notice that⊥ ⊑ e by Definition 5.2, and by (ω) we can takeD′ = 〈ω〉 :: Π ⊢ ⊥ : ω. In

theω-safe version of the result, this case is vacuously true since the derivationD = 〈ω〉 ::Π ⊢ e :ω

is notω-safe.

(var): Then e = x andD = 〈var〉 :: Π ⊢ x : σ (notice that this is a derivation in normal form). By

Definition 5.1,x is already an approximate normal form andx ⊑ x by Definition 5.2. So we take

A = x andD′ =D. Moreover, notice that by Definition 4.9,D is anω-safe derivation.

(join): ThenD = 〈Dn, join〉 :: Π ⊢ e : σ1 ∩ . . . ∩σn with n ≥ 2 andDi :: Π ⊢ e : σi for eachi ∈ n. Since

D is in normal form it follows that eachDi (i ∈ n) is in normal form too (and also, ifD is ω-safe

then by Definition 4.9 eachDi is ω-safe too). By induction there then exist normal approximate

expressionsAn and (ω-safe) derivationsD′n such that, for eachi ∈ n, Ai ⊑ e andD′i :: Π ⊢ e :

σi . Now, by Lemma 5.12 it follows that⊔An ⊑ e with ⊔An normal and that there are (ω-safe)

derivationsD′′n such thatD′′i ::Π ⊢ ⊔An : σi for eachi ∈ n. Finally, by the (join) rule we can take

(ω-safe)D′ = 〈D′′n, join〉 :: Π ⊢ ⊔An : σ1 ∩ . . . ∩σn.

(fld): Thene = e’. f andD = 〈D′,fld〉 :: Π ⊢ e’. f : σ with D′ :: Π ⊢ e’ : 〈f :σ〉. SinceD is in normal

form, so too isD′. Furthermore, ifD is ω-safe then by Definition 4.9 so too isD′. By the

inductive hypothesis it follows that there is someA and (ω-safe) derivationD′′ such thatA ⊑ e’

andD′′ :: Π ⊢ A : 〈f :σ〉. Then by rule (fld), 〈D′′,fld〉 :: Π ⊢ A. f : σ and by Definition 5.2,

A. f ⊑ e’. f. Moreover, by Definition 4.9, whenD′′ isω-safe so too is〈D′′,fld〉.

(invk), (obj), (newF), (newM): These cases follow straightforwardly by induction similar to (fld). �

The above result shows that the derivationD′ that types the approximant is constructed from the

normal formD by replacing sub-derivations of the form〈ω〉 ::Π ⊢ e :ω by 〈ω〉 ::Π ⊢ ⊥ :ω (thus covering

any redexes appearing ine). SinceD is in normal form, there are also notypedredexes, ensuring that

the expression typed in the conclusion ofD′ is a normal approximate expression. The ‘only if’ part

of the approximation result itself then follows easily fromthe fact that→D corresponds to reduction of

expressions, soAis also anapproximantof e. The ‘if’ part follows from the first property above and

subject expansion.
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Theorem 5.14(Approximation). Π ⊢ e : φ if and only if there existsA ∈ A(e) such thatΠ ⊢ A : φ.

Proof. (if): By assumption, there is an approximantA of e such thatΠ ⊢ A : φ, soe→∗ e’ with A ⊑ e’.

Then, by Lemma 5.11,Π ⊢ e’ : φ and by subject expansion (Theorem 3.11) alsoΠ ⊢ e : φ.

(only if): Let D :: Π ⊢ e : φ, then by Theorem 4.32,D is strongly normalising. Take the normal form

D′; by the soundness of derivation reduction (Theorem 4.23),D′ :: Π ⊢ e’ : φ ande→∗ e’. By

Lemma 5.13, there is some normal approximate expressionA such thatΠ ⊢ A : φ andA ⊑ e’. Thus

by Definition 5.6,A ∈ A(e). �

5.3. Characterisation of Normalisation

As in other intersection type systems [15, 10], the approximation theorem underpins characterisation

results for various forms of termination. Our intersectiontype system gives full characterisations of head

normalising and strongly normalising expressions. As regards to normalisation however, our system

only gives a guarantee rather than a full characterisation,sinceω-safe derivations are not preserved by

derivation expansion.

We will begin by defining (head) normal forms forfj¢.

Definition 5.15 (fj¢ Normal Forms). 1. The set of (well-formed)head-normal forms(ranged over by

H) is defined by:
H ::= x | new C( en) (F (C) = fn)

| H. f | H. m( e) (H , new C( e) )

2. The set of (well-formed)normalforms (ranged over byN) is defined by:

N ::= x | new C( Nn) (F (C) = fn)

| N. f | N. m( N) (N , new C( N) )

Notice that the difference between normal and head-normal forms sits in the second and fourth alterna-

tives, where head-normal forms allow arbitrary expressions to be used. Also note that we stipulate that a

(head) normal expression of the formnew C( e) must have the correct number of field values as defined

in the declaration of classC. This ties in with our notion of normal approximate expressions (see Defini-

tion 5.6), and thus approximants, which also must have the correct number of field values. Expressions

of this form with either less or more field values maytechnicallyconstitute (head) normal forms in that

they cannot be (head) reduced further, but we discount them as malformed since they do not ‘morally’

constitute valid objects according to the class table. Thisdecision is motivated from a technical point of

view, too. According to the typing rules (in particular, the(obj) and (newF) rules), object expressions

can only be assigned non-trivial types if they have the correct number of field values. So in order to

ensure that all head normal forms are non-trivially typeable, and thus obtain a full characterisation of

head normalising expressions, we restrict (head) normal expressions to be ‘well-formed’.

The following lemma shows that normal approximate expressions which are not⊥ are (head) normal

forms.

Lemma 5.16. 1. If A , ⊥ andA ⊑ e, thene is a head-normal form.
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2. If A ⊑ e andA does not contain⊥, thene is a normal form.

Proof. By straightforward induction on the structure ofA using Definition 5.2. �

Thus any type, or more accurately any type derivation other than those of the form〈ω〉 (correspond-

ing to the approximant⊥), specifies the structure of a (head) normal form via the normal form of its

derivation.

An important part of the characterisation of normalisationis that every (head) normal form is non-

trivially typeable.

Lemma 5.17(Typeability of (head) normal forms). 1. If e is a head-normal form then there exists

a strict typeσ and type environmentΠ such thatΠ ⊢ e : σ; moreover, ife is not of the form

new C( en) then for any arbitrary strict typeσ there is an environment such thatΠ ⊢ e : σ.

2. If e is a normal form then there exist strong strict typeσ, type environmentΠ and derivationD

such thatD ::Π ⊢ e : σ; moreover, ife is not of the formnew C( en) then for any arbitrary strong

strict type there exist strongD andΠ such thatD :: Π ⊢ e : σ.

Proof. 1. By induction on the structure of head normal forms.

(x): By the (var) rule, {x:σ} ⊢ x : σ for any arbitrary strict type.

(new C( en) ): Notice thatF (C) = fn, by definition of the head normal form. Let us take the

empty type environment,∅. Notice that by rule (ω) we can derive∅ ⊢ ei : ω for eachi ∈ n.

Then, by rule (obj) we can derive∅ ⊢ new C( en) : C for any type environment.

(H.f): Notice that, by definition,H is a head normal expressionnot of the formnew C( en) , thus

by induction for any arbitrary strict typeσ there is an environmentΠ such thatΠ ⊢ H : σ.

Let us pick some (other) arbitrary strict typeσ′, then there is an environmentΠ such that

Π ⊢ H : 〈f :σ′〉. Thus, by rule (fld) we can deriveΠ ⊢ H.f : σ′ for any arbitrary strict typeσ′.

(H. m( en) ): This case is very similar to the previous one. Notice that,by definition,H is a head

normal expressionnotof the formnew C( en) , thus by induction for any arbitrary strict type

σ there is an environmentΠ such thatΠ ⊢ H : σ. Let us pick some (other) arbitrary strict type

σ′, then there is an environmentΠ such thatΠ ⊢ H : 〈m : (ωn)→ σ′〉. Notice that by rule (ω)

we can deriveΠ ⊢ ei : ω for eachi ∈ n. Thus, by rule (invk) we can deriveΠ ⊢ H.m( en) : σ′

for any arbitrary strict typeσ′.

2. By induction on the structure of normal forms.

(x): By the (var) rule, {x:σ} ⊢ x : σ for any arbitrary strict type, and in particular this holds for

any arbitrarystrongstrict type. Also, notice that derivations of the form〈var〉 are strong by

Definition 4.8.

(new C( Nn) ): Notice thatF (C) = fn by the definition of normal forms. Since eachNi is a normal

form for i ∈ n, it follows by induction that there are strong strict typesσn, environmentsΠn

and derivationsDn such thatDi :: Πi ⊢ Ni : σi for eachi ∈ n. Let the environmentΠ′ =
⋂
Πn;

notice that, by Definition 3.6,Π′ P Πi for eachi ∈ n, and also that since eachΠi is strong so

isΠ′. Thus, [Π′ P Πi] is a weakening for eachi ∈ n andDi [Π′ P Πi] :: Π′ ⊢ Ni : σi for each
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i ∈ n. Notice that, by Definition 4.5, weakening does not change the structure of derivations,

therefore for eachi ∈ n,Di[Π′ P Πi] is a strong derivation. Now, by rule (obj) we can derive

〈D1[Π′ P Π1], . . . ,Dn[Π′ P Πn],obj〉 :: Π′ ⊢ new C( Nn) : C

Notice thatC is a strong strict type, and that since each derivationDi[Π′ PΠi] is strong then,

by Definition 4.8, so is〈D1[Π′ P Π1], . . . ,Dn[Π′ P Πn],obj〉.

(N.f): Notice that, by definition,N is a normal expressionnot of the formnew C( Nn) , thus by

induction for any arbitrary strong strict typeσ there is a strong environmentΠ and derivation

D such thatΠ ⊢ N : σ. Let us pick some (other) arbitrary strong strict typeσ′, then there are

strongΠ andD such thatD :: Π ⊢ N : 〈f :σ′〉. Thus, by rule (fld) we can derive〈D,fld〉 ::

Π ⊢ N.f : σ′ for any arbitrary strict typeσ′. Furthermore, notice that sinceD is strong it

follows from Definition 4.8 that〈D,fld〉 is also strong.

(N. m( Nn) ): Since eachNi for i ∈ n is a normal form it follows by induction that there are strong

strict typesσn, environmentsΠn and derivationsDn such thatDi ::Πi ⊢ Ni : σi for eachi ∈ n.

Also notice that, by definition,N is a normal expressionnot of the formnew C( Nn) , thus

by induction for any arbitrary strict typeσ there is a strong environmentΠ and derivationD

such thatΠ ⊢ N : σ. Let us pick some (other) arbitrary strict typeσ′, then there areΠ and

D such thatD :: Π ⊢ N : 〈m : (σn)→ σ′〉. Let the environmentΠ′ =
⋂
Π ·Πn notice that, by

Definition 3.6,Π′ P Π andΠ′ P Πi for eachi ∈ n, and also that sinceΠ is strong and each

Πi is strong then so isΠ′. Thus, [Π′ P Π] is a weakening and [Π′ P Πi ] is a weakening for

eachi ∈ n. ThenD[Π′ PΠ] :: Π′ ⊢ N : 〈m : (σn)→σ′〉 andDi[Π′ PΠi] :: Π′ ⊢ Ni : σi for each

i ∈ n. Notice that, by Definition 4.5, weakening does not change the structure of derivations,

thereforeD[Π′ P Π] is strong and for eachi ∈ n, Di[Π′ P Πi] is also strong. Now, by rule

(invk)

〈D[Π′ P Π],D1[Π′ P Π1], . . . ,Dn[Π′ P Πn], invk〉 :: Π′ ⊢ N.m( Nn) : σ′

for any arbitrary strong strict typeσ′. Furthermore, by Definition 4.8, we have that

〈D[Π′ P Π],D1[Π′ P Π1], . . . ,Dn[Π′ P Πn], invk〉

is a strong derivation. �

Now, using the approximation result and the above properties, the following characterisation of head-

normalisation follows easily.

Theorem 5.18(Head-normalisation). Π ⊢ e : σ if and only ife has a head-normal form.

Proof. (if): Let e’ be a head-normal ofe. By Lemma 5.17(1) there exists a strict typeσ and a type

environmentΠ such thatΠ ⊢ e’ : σ. Then by subject expansion (Theorem 3.11) it follows that

Π ⊢ e : σ.

(only if): By the approximation theorem, there is an approximant A of e such thatΠ ⊢ A : σ. Thus

e→∗ e’ with A ⊑ e’. Sinceσ is strict, it follows thatA ,⊥, so by Lemma 5.16e’ is a head-normal

form. �
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As we saw in Chapter 2 (Section 2.1), normalisability for theLambda Calculus can be characterised

in itd as follows:

B ⊢ M : σ with B andσ strong⇔ M has a normal form

This result does not hold forfj¢ (a counter-example can be found in one of the worked examplesof

the following chapter, namely the third expression in Example 6.11). In our system, in order to reason

about the normalisation of expressions we must refer to properties of derivations aswhole, and not just

the environment and type used in the final judgement. In fact,we have already defined the conditions

that derivations must satisfy in order to guarantee normalising since infj¢ expressions - namely, the

conditions forω-safe derivability.

In general, our type system only allows for a semi-characterisation result:

Theorem 5.19(Normalisation). If D :: Π ⊢ e : σ withD andΠ ω-safe thene has a normal form.

Proof. By the approximation theorem, there is an approximantA of e and derivationD′ such thatD′ ::

Π ⊢ A : σ andD→∗
D
D′. Thuse→∗ e’ with A ⊑ e’. Also, since derivation reduction preservesω-safe

derivations (Lemma 4.24), it follows thatD′ is ω-safe and thus by Lemma 5.10 thatA does not contain

⊥. Then by Lemma 5.16 we have thate’ is a normal form. �

The reverse implication does not hold in general since our notion of ω-safe typeability is too fragile:

it is not preserved by (derivation) expansion. Consider that while anω-safe derivation may exist for

Π ⊢ ei : σ, noω-safe derivation may exist forΠ ⊢ new C(en). fi : σ (due to non-termination in the

other expressionse j) even though this expression too has a normal form, namely the same normal form

asei . Such a completeness resultcan hold for certain particular programs, though. We will return to

this in the following chapter, where we will give a class table and specify a set of expressions for which

normalisation can be fully characterised by thefj¢ intersection type system (see Section 6.5).

While we do not have a general characterisation of normalisation, wecanshow that the set of strongly

normalising expressions are exactly those typeable using strong derivations. This follows from the fact

that in such derivations, all redexes in the typed expression correspond to redexes in the derivation, and

then any reduction step that can be made by the expression (via→) is then matched by a corresponding

reduction of the derivation (via→D).

Theorem 5.20(Strong Normalisation for Expressions). e is strongly normalisable if and only ifD ::

Π ⊢ e : σ withD strong.

Proof. (if): SinceD is strong, all redexes ine are typed and therefore each possible reduction ofe

is matched by a corresponding derivation reduction ofD. By Lemma 4.24 it follows that no

reduction ofD introduces subderivations of the form〈ω〉, and so sinceD is strongly normalising

(Theorem 4.32) so too ise.

(only if): By induction on the maximum lengths of left-most outer-most reduction sequences for strongly

normalising expressions, using the fact that all normal forms are typeable with strong derivations

and that strong typeability is preserved under left-most outer-most redex expansion. �
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6. Worked Examples

In this chapter, we will give several example programs and discuss how they are typed in the simple

intersection type system. We will begin with some relatively simple examples, and then deal with some

more complex programs. We will end the chapter by comparing the intersection type system with the

nominal, class-based type system of Featherweight Java.

6.1. A Self-Returning Object

Perhaps the simplest example program that captures the essence of (the class-based approach to) object-

orientation is that of an object that returns itself. This can be achieved using the following class:

class SR extends Object {

SR self() { return this; }

}

Then, the expressionnew SR().self() reduces in a single step tonew SR() . In fact, any arbitrary

length sequence of calls to theself method on anew SR() object results, eventually, in an instance of

theSRclass:

new SR().self() . . . .self() →∗ new SR()

This potentiality of behaviour is captured by the type analysis given to the expressionnew SR() by the

intersection type system. We can assign it any of the infinitefamily of types:

{SR, 〈self : ( )→ SR〉, 〈self : ( )→ 〈self : ( )→ SR〉〉,

〈self : ( )→ 〈self : ( )→ 〈self : ( )→ SR〉〉〉, . . .}

Derivations assigning these types tonew SR() are given below.

(obj)
⊢ new SR() : SR

(var)
this :SR⊢ this : SR

(obj)
⊢ new SR() : SR

(newM)
⊢ new SR() : 〈self : ( )→ SR〉

(var)
{ this :〈self : ( )→SR〉 } ⊢ this : 〈self : ( )→ SR〉 .

.

.

(var)
this :SR⊢ this : SR

(obj)
⊢ new SR() : SR

(newM)
⊢ new SR() : 〈self : ( )→SR〉

(newM)
⊢ new SR() : 〈self : 〈self : ( )→ SR〉〉
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(var)
{ this :σ } ⊢ this : σ .

.

.

(var)
{ this :〈self : ( )→SR〉 } ⊢ this : 〈self : ( )→SR〉 .

.

.

(var)
this :SR⊢ this : SR

(obj)
⊢ new SR() : SR

(newM)
⊢ new SR() : 〈self : ( )→SR〉

(newM)
⊢ new SR() : 〈self : 〈self : ( )→SR〉〉

(newM)
⊢ new SR() : 〈self : 〈self : 〈self : ( )→SR〉〉〉

whereσ = 〈self :〈self : ( )→ SR〉〉

A variation on this is possible in the class-based paradigm,in which the object has a method that

returns a newinstanceof the class of which itself is an instance:

class SR extends Object {

SR newInst() { return new SR(); }

}

This program has the same behaviour as the previous one: invoking thenewInst method on anew SR()

object results in anew SR() object, and we can continue calling thenewInst method as many times as

we like. Thus, as expected, we can assign the types〈newInst : ( )→SR〉, 〈newInst : ( )→〈newInst : ( )→

SR〉〉, etc. For example:

.

.

.

.

.

.

(obj)
{ this :SR} ⊢ new SR() : SR

(obj)
{ this :SR} ⊢ new SR() : SR

(newM)
{ this :SR} ⊢ new SR() : 〈newInst : ( )→ SR〉

(obj)
{ this :SR} ⊢ new SR() : SR

(newM)
{ this :SR} ⊢ new SR() : 〈newInst : ( )→ 〈newInst : ( )→SR〉〉

(obj)
⊢ new SR() : SR

(newM)
⊢ new SR() : 〈newInst : ( )→ 〈newInst : ( )→ 〈newInst : ( )→ SR〉〉〉

Notice that there is a symmetry between this derivation for the newInst method, and the equivalent

derivation for theself method. This is certainly to be expected since, operationally (in a pure functional

setting at least), the use within method bodies of the self variable this and the new instancenew SR()

are interchangeable. In terms of the type analysis, the method types〈newInst : ( )→ σ〉 are derived

within the analysis for the method body whereas, on the otherhand, each〈self : ( )→ σ〉 is assumed

for the self this when analysing the method body, and its derivation is deferred until the self types

are checked for the receiver. Either way, however, there is always a subderivation assigning each type

〈self : ( )→ σ〉 to an instance ofnew SR() .

6.2. An Unsolvable Program

Let us now examine how the predicate system deals with programs that do not have a head-normal

form. The approximation theorem states that any predicate which we can assign to an expression is also

assignable to an approximant of that expression. As we mentioned in the previous chapter, approximants

are snapshots of evaluation: they represent the information computed during evaluation. But by their

very nature, programs which do not have a head-normal form donot compute any information. Formally,

then, the characteristic property of unsolvable expressions (i.e. those without a head normal form) is that

they donot have non-trivial approximants: their only approximant is⊥. From the approximation result
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(var)
this :ψ ⊢ this : 〈loop : ()→ ϕ〉

(invk)
this :ψ ⊢ this.loop() : ϕ

D′

∅ ⊢ new NT() : ψ
(newM)

∅ ⊢ new NT() : 〈loop : ()→ ϕ〉

(var)
this :〈loop : ()→ ϕ〉 ⊢ this : 〈loop : ()→ ϕ〉

(invk)
this :〈loop : ()→ ϕ〉 ⊢ this.loop() : ϕ

(var)
this :〈loop : ()→ ϕ〉 ⊢ this : 〈loop : ()→ ϕ〉

(invk)
this :〈loop : ()→ ϕ〉 ⊢ this.loop() : ϕ .

.

.

.

.

.

does not exist
..
.

∅ ⊢ new NT() : 〈loop : ()→ ϕ〉

(newM)
∅ ⊢ new NT() : 〈loop : ()→ ϕ〉

.

.

.

.

.

(newM)
∅ ⊢ new NT() : 〈loop : ()→ ϕ〉

Figure 6.1.: Predicate Non-Derivations for a Non-Terminating Program

it therefore follows that we cannot build any derivation forthese expressions that assigns a predicate

other thanω (since that is the only predicate assignable to⊥).

To illustrate this, consider the following program which constitutes perhaps the simplest example of

unsolvability inoo:

class NT extends Object {

NT loop() { return this.loop(); }

}

The classNT contains a methodloop which, when invoked (recursively) invokes itself on the receiver.

Thus the expressionnew NT().loop() , executed using the above class table, will simply run to itself

resulting in a non-terminating (and non-output producing)loop.

Figure 6.1 shows two candidate derivations assigning a non-trivial type to the non-terminating ex-

pressionnew NT().loop() , the first of which we can more accurately call a derivationschemasince

it specifies the form that any such derivation must take. Whentrying to assign a non-trivial type to the

invocation of the methodloop on new NT() we can proceed, without loss of generality, by building

a derivation assigning a predicate variableϕ, since we may then simply substitute any suitable (strict)

predicate forϕ in the derivation.

The derivation we need to build assigns the predicateϕ to a method invocation so we must first build a

derivationD that assigns the method predicate〈loop : ()→ ϕ〉 to the receivernew NT() . Thisderivation

is constructed by examining the method body -this.loop() - and finding a derivation which assigns

ϕ to it. This analysis reveals that the variablethis must be assigned a predicate for the methodloop

which will be of the form〈loop : ()→ ϕ〉; new NT() (the receiver) must also satisfy the predicateψ

used forthis . Finally, in order for the (var) leaf of the derivation to be valid the predicateψ must

satisfy the constraint thatψP 〈loop : ()→ ϕ〉.

The second derivation of Figure 6.1 is an attempt at instantiating the schema that we have just con-

structed. In order to make the instantiation, we must pick a concrete predicate forφ satisfying the

aforementioned constraint. Perhaps the simplest thing to do would be to pickφ = 〈loop : ()→ ϕ〉. Next,
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we must instantiate the derivationD′ assigning this predicate to the receivernew NT() . Here we run

into trouble because, in order to achieve this, we must againtype the body of methodm, i.e. solve the

same problem that we started with - we see that our instantiation of the derivationD′ must be of exactly

the same shape as our instantiation of the derivationD; of course, this is impossible sinceD′ is a proper

subderivation ofD and so no such derivation exists. Notice however, that the receivernew NT() itself

is not unsolvable - indeed, it is a normal form - and so we can assign to it a non-trivial type. Namely,

using the (obj) rule we can derive⊢ new NT() : NT.

6.3. Lists

Recall that at the beginning of Chapter 5 we illustrated the concept of approximants using a program

that manipulated lists of integers. In this section, we willreturn to the example of programming lists in

fj
¢ and briefly discuss two important features of the type analysis of the list construction.

The basic list construction infj¢ consists of two classes - one to represent an empty list (EL), and

the second to represent a non-empty list (NEL), i.e. a list with a head and a tail. In ourfj¢ program, we

will also define aList class, which will specify the basic interface for lists. These classes will also

contain any methods that implement the operations that we would like to carry out on lists. We may

write specialise lists in any way that we like, perhaps by writing subclasses that declare more methods

implementing behaviour specific to different types of list (as in the program of Figure 5.1), but for now

let us consider a basic list with one method to insert an element at the head of the list (cons ) and another

method to append one list onto the end of another:

class List extends Object {

List cons(Object o) { return this; }

List append(List l) { return this; }

}

class EL extends List {

List cons(Object o) { return new NEL(o, this); }

List append(List l) { return l; }

}

class NEL extends List {

Object head;

List tail;

List cons(Object o) { return new NEL(o, this); }

List append(List l) {

return new NEL(this.head,

this.tail.append(l)); }

}

If we have some objectso1, . . . ,on, then the listo1: . . .: on:[] (where [] denotes the empty list) is

represented using the above program by the expression:

new NEL(o1, new NEL( o2, . . . new NEL(on, new EL()) . . . ))
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The first key feature of the analysis of such a program provided by our intersection type system is that

it is generic, in the sense that the type analysis reflects the capabilities of the actual objects in the list,

no matter what kind of objects they are. For example, supposewe have some classesCircle , Square ,

Triangle , etc. representing different kinds of shapes, and each class contains adraw method. If we

have a list containing instances of these classes then we canassign types to it that allow us to access

these elements and invoke theirdraw method:

Π ⊢ new Square( . . .) : 〈draw : (σ)→ τ〉 .
.
.
.

(newO)
Π ⊢ new NEL(new Circle( . . .), new EL()) : NEL

(newF)
Π ⊢ new Square():new Circle():[] : 〈head : 〈draw : (σ)→ τ〉〉

(newO)
Π ⊢ new Square() : Square .

.

.

.

Π ⊢ new Circle( . . .) : 〈draw : (σ)→ τ〉 .
.
.
.

(newO)
Π ⊢ new EL() : EL

(newF)
Π ⊢ new Circle( . . .):[] : 〈head : 〈draw : (σ)→ τ〉〉

(newF)
Π ⊢ new Square():new Circle():[] : 〈tail : 〈head : 〈draw : (σ)→ τ〉〉〉

If we had a different list containing objects implementing a different interface with some methodfoo ,

then the type system would provide an appropriate analysis,similar to the one described above, but

assigning method types forfoo instead. This is in contrast to the capabilities of Java (andfj). If the

above list construction were to be written and typed infj, while we would be allowed, via subsumption,

to add any kind of object we chose to the list (since all classes are subtypes ofObject ), when retrieving

elements from the list we would only be allowed to treat them as instances ofObject , and thus not be

able to invoke any of their methods. If we wanted to create lists of Shape objects and be able to invoke

the draw method on those objects that we retrieve from it, we would either need to write new classes

that code for lists ofShape objectsspecifically, or we would need to extend the type system with a

mechanism forgenerics.

The second feature of the intersection type analysis for lists is that it allows forheterogeneity, or the

ability to store objects of different kinds. There is nothing about the derivations above that forces the

types derived for each element of the list to be the same. In general, for any typeσi that can be derived

for a list elementoi, the type

〈tail :〈tail : . . .︸                 ︷︷                 ︸
i−1 times

〈head :σi〉 . . .〉〉

can be given to the listo1: . . .: oi : . . .:[] as illustrated by the diagram below:
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.

.

.

.

.

.

.

.

.

.

(var)
Π1 ⊢ o : τ

(var)
Π1 ⊢ this : 〈head :σ〉

(newF)
Π2 ⊢ new NEL(o, this) : 〈tail : 〈head :σ〉〉

(var)
Π1 ⊢ o : σ

(var)
Π1 ⊢ this : NEL

(newF)
Π1 ⊢ new NEL(o, this) : 〈head :σ〉

(newM)
Π1 ⊢ new NEL(o, this) : 〈cons : (τ)→ 〈tail : 〈head :σ〉〉〉

(newO)
Π ⊢ l : (N)EL

(newM)
Π ⊢ l : 〈cons : (σ)→ 〈cons : (τ)→ 〈tail : 〈head :σ〉〉〉〉

whereΠ1 = { this :(N)EL,o:σ}

Π2 = { this :〈head :σ〉,o:τ}

Figure 6.2.: Derivation for a heterogeneouscons method.

Π ⊢ o1 : σ1

.
.

.
.

.
.

.

.

.

.

Π ⊢ oi : σi

.
.

.
.

.
.

.

Π ⊢ . . . : τ
(newF)

Π ⊢ new NEL(oi, . . .) : 〈head :σi〉

(newF)
Π ⊢ . . .: oi: . . .:[] : 〈tail : . . . 〈head :σi〉 . . .〉

(newF)
Π ⊢ o1: . . .: oi: . . .:[] : 〈tail : 〈tail : . . . 〈head :σi〉 . . .〉〉

More important, perhaps, is that we can give types to the methodscons andappend which allows us

to create heterogeneous lists by invoking them. For example, for any typesσ andτ, we can assign to

a list l the type〈cons : (σ)→ 〈cons : (τ)→ 〈tail :〈head :σ〉〉〉〉, as shown in the derivation in Figure

6.2. Types allowing the creation, viacons , of heterogeneous lists of any length can be derived however,

obviously, the type derivations soon become monstrous! This fine-grained level of analysis is something

which is not available via generics, which only allow forhomogeneouslists.

6.4. Object-Oriented Arithmetic

We will now consider an encoding of natural numbers and some simple arithmetical operations on them.

We remark that Abadi and Cardelli defined an object-orientedencoding of natural numbers in theς-cal-

culus. In their encoding, the successor of a number is obtained by calling a method on the encoding

of that number, and due to the ability to override (i.e. replace) method bodies, only the encoding of

zero need be defined explicitly. Since the class-based paradigm does not allow such an operation, our

encoding must be slightly different.

The motivation for this example is twofold. Firstly, it serves as a simple, but effective illustration of

the expressive power of intersection types. Secondly, and precisely because it is a program that admits

of such expressive type analysis, it is a perfect program formapping out the limits of type inference for
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the intersection type system. Indeed, when we define a type inference procedure in the next chapter, we

will consider the types that we may then infer for this program as an illustration of its limitations.

Our encoding is straightforward, and uses two classes - one to represent the number zero, and one to

represent the successor of a(n encoded) number. As with the list example above, we will define aNat

class which simply serves to specify the interface of natural numbers. The full program is given below.

class Nat extends Object {

Nat add(Nat x) { return this; }

Nat mult(Nat x) { return this; }

}

class Zero extends Nat {

Nat add(Nat x) { return x; }

Nat mult(Nat x) { return this; }

}

class Suc extends Nat {

Nat pred;

Nat add(Nat x) { return new Suc(this.pred.add(x)); }

Nat mult(Nat x) { return x.add(this.pred.mult(x)); }

}

The Suc class, representing the successor of a number uses a field to store its predecessor. The

methods that implement addition and multiplication do so bytranslating the usual arithmetic identities

for these operations into Featherweight Java syntax. Natural numbers are then encoded in the obvious

fashion, as follows:

⌈⌈0⌋⌋N = new Zero()

⌈⌈i +1⌋⌋N = new Suc( ⌈⌈i⌋⌋N)

Notice that each numbern, then, has acharacteristictypeνn which can be assigned to that number and

that number alone:

ν0 = Zero

νi+1 = 〈pred :νi〉

This is already a powerful property for a type system, however in our intersection type system this

has some very potent consequences. Because our system has the subject expansion property (Theorem

3.11), we can assign to any expression the characteristic type for its result. Thus, it is possible to prove

statements like the following:

∀n,m∈ N . ⊢ ⌈⌈n⌋⌋N.add( ⌈⌈m⌋⌋N) : νn+m

∀n,m∈ N . ⊢ ⌈⌈n⌋⌋N.mult( ⌈⌈m⌋⌋N) : νn∗m

For the simple operations of addition and multiplication this is more than straightforward. Notwith-

standing, consider adding methods that implement more complex, indeed arbitrarily complex, arith-
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metic functions. As a further example, we have included in the Appendix a type-based analysis of an

implementation of Ackermann’s function using our intersection type system.

The corollary to this is that we may also derive arbitrarily complex types describing the behaviour

of the methods ofZero andSuc objects. The derivability of the typing statements that we gave above

implies that we can also prove statements such as the following:

∀n,m∈ N . ∃ σ. ⊢ ⌈⌈m⌋⌋N : σ & ⊢ ⌈⌈n⌋⌋N : 〈mult : (σ)→ νn∗m〉

Notice that we have not given the statement∀n,m∈ N . ⊢ ⌈⌈n⌋⌋N : 〈mult : (νm)→ νm∗n〉 since it is not

necessarily the case thatνm is the type satisfying the requirements of themult method on its argument.

Indeed, it isnot that simple - consider that themult method (for positive numbers) needs to be able to

call theadd method on its argument.

To present another scenario, suppose for example that we were to combine our arithmetic program

above with the list program of the previous section, and write a methodfactors that produces a list of

the factors of a number (say, excluding one and itself) - a perfectly algorithmic process. The encodings

of prime numbers then, would have the characteristic type〈factors : ( ) → EL〉, expressing that the

result of calling this method on them is the empty list, i.e. that they have no factors. It then becomes

clear what the implications of a type inference procedure for this system are. If such a thing were to

exist, we would need only to write a program implementing a function of interest, pass it to the type

inference procedure, and run off a list of its number-theoretic properties.

As we have remarked previously, type assignment for a full intersection type system is undecidable,

meaning there is no complete type inference algorithm. The challenge then becomes to restrict the

intersection type system in such a way that type assignment becomes decidable (or simply to define an

incomplete type inference algorithm) while still being able to assign useful types for programs. It is this

last element of the problem which is the harder to achieve. Inthe next chapter, we will consider restricted

notions of type assignment for our intersection type system, but observe that the conventional method of

restricting intersection type assignment (based on rank) does not interact well with the object-oriented

style of programming.

6.5. A Type-Preserving Encoding of Combinatory Logic

In this section, we show how Combinatory Logic can be encodedwithin fj¢. We also show that our

encoding preserves Curry types, a result which could easilybe generalised to intersection types. This

is a very powerful result, since it proves that the intersection type system forfj¢ facilitates a functional

analysis of all computable functions. Furthermore, using the results from the previous chapter, we

can show that the type system also gives afull characterisation of the normalisation properties of the

encoding.

Combinatory Logic (cl) is a Turing complete model of computation defined by H.B. Curry [44] in-

dependently oflc. It can be seen as a higher-order term rewriting systemtrs consisting of the function

symbolsS,K where terms are defined over the grammar

t ::= x | S | K | t1 t2
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class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}

class K extends Combinator {
Combinator app(Combinator x) { return new K 1(x); }

}

class K 1 extends K {
Combinator x;
Combinator app(Combinator y) { return this.x; }

}

class S extends Combinator {
Combinator app(Combinator x) { return new S 1(x); }

}

class S 1 extends S {
Combinator x;
Combinator app(Combinator y) { return new S 2(this.x, y); }

}

class S 2 extends S 1 {
Combinator y;
Combinator app(Combinator z) {

return this.x.app(z).app(this.y.app(z)); }
}

Figure 6.3.: The class table for Object-Oriented Combinatory Logic (oocl) programs

and the reduction is defined via following rewrite rules:

K x y → x

S x y z → x z(y z)

Through our encoding, and the results we have shown in the previous chapter, we can achieve a

type-based characterisation of all (terminating) computable functions inoo (see Theorem 6.10).

Our encoding ofcl in fj¢ is based on a Curryfied first-order version of the system above(see [14] for

details), where the rules forS andK are expanded so that each new rewrite rule has asingleoperand,

allowing for the partial application of function symbols. Application, the basic engine of reduction in

trs, is modelled via the invocation of a method namedapp . The reduction rules of Curryfiedcl each

apply to (or are ‘triggered’ by) different ‘versions’ of theS andK combinators; in our encoding these

rules are implemented by the bodies of five different versions of theapp method which are each attached

to different classes representing the different versions of theSandK combinators. In order to make our

encoding a valid (typeable) program in full Java, we have defined aCombinator class containing an

app method from which all the others inherit, essentially acting as aninterfaceto which all encoded

versions ofSandK must adhere.

Definition 6.1. The encoding of Combinatory Logic into thefj¢ programoocl (Object-Oriented Com-

binatory Logic) is defined using the class table given in Figure 6.3 and the function⌈⌈·⌋⌋ which translates
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terms ofcl into fj¢ expressions, and is defined as follows:

⌈⌈x⌋⌋ = x

⌈⌈t1 t2⌋⌋ = ⌈⌈t1⌋⌋.app( ⌈⌈t2⌋⌋)

⌈⌈K ⌋⌋ = new K()

⌈⌈S⌋⌋ = new S()

The reduction behaviour ofoocl mirrors that ofcl.

Theorem 6.2. If t1, t2 are terms ofcl and t1→
∗ t2, then⌈⌈t1⌋⌋ →

∗ ⌈⌈t2⌋⌋ in oocl.

Proof. By induction on the definition of reduction incl; we only show the case forS:

⌈⌈St1 t2 t3⌋⌋

=
∆ new S().app( ⌈⌈t1⌋⌋).app( ⌈⌈t2⌋⌋).app( ⌈⌈t3⌋⌋)

→ new S1( ⌈⌈t1⌋⌋).app( ⌈⌈t2⌋⌋).app( ⌈⌈t3⌋⌋)

→ new S2(this.x,y).app( ⌈⌈t3⌋⌋)

[this 7→new S1( ⌈⌈t1⌋⌋) ,y 7→⌈⌈t2⌋⌋]

= new S2(new S 1( ⌈⌈t1⌋⌋).x, ⌈⌈t2⌋⌋).app( ⌈⌈t3⌋⌋)

→ new S2( ⌈⌈t1⌋⌋, ⌈⌈t2⌋⌋).app( ⌈⌈t3⌋⌋)

→ this.x.app(z).app(this.y.app(z))

[this 7→new S2( ⌈⌈t1⌋⌋, ⌈⌈t2⌋⌋) ,z 7→⌈⌈t3⌋⌋]

= new S2( ⌈⌈t1⌋⌋, ⌈⌈t2⌋⌋).x.app( ⌈⌈t3⌋⌋)

.app(new S 2( ⌈⌈t1⌋⌋. ⌈⌈t2⌋⌋).y.app( ⌈⌈t3⌋⌋))

→∗ ⌈⌈t1⌋⌋.app( ⌈⌈t3⌋⌋).app( ⌈⌈t2⌋⌋.app( ⌈⌈t3⌋⌋))

=
∆ ⌈⌈t1 t3 (t2 t3)⌋⌋

The case forK is similar, and the rest is straightforward. �

Given the Turing completeness ofcl, this result shows thatfj¢ is also Turing complete. Although we

are sure this does not come as a surprise, it is a nice formal property for our calculus to have. In addition,

our type system can perform the same ‘functional’ analysis as itd doescl, as well aslc since there are

also type preserving translations fromlc to cl [50]. We illustrate this by way of atype preservation

result. Firstly, we describe Curry’s type system forcl and then show we can give equivalent types to

oocl programs.

Definition 6.3 (Curry Type Assignment forcl). 1. The set ofsimple types(also known as Curry

types) is defined by the following grammar:

A,B ::= ϕ | A→ B

2. A basisΓ is a mapping from variables to Curry types, written as a set ofstatements of the form

x:A in which each of the variablesx is distinct.
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3. Simple types are assigned tocl-terms using the following natural deduction system:

(Ax) : (x:A ∈ Γ)
Γ ⊢cl x:A (→E) :

Γ ⊢cl t1:A→ B Γ ⊢cl t2:A

Γ ⊢cl t 1t2:B

(K ) :
Γ ⊢cl K :A→ B→ A (S) :

Γ ⊢cl S:(A→ B→C)→ (A→ B)→ A→C

The elegance of this approach is that we can now link types assigned to combinators to types assignable

to object-oriented programs. To show this type preservation, we need to define what the equivalent of

Curry’s types are in terms of ourfj¢ types. To this end, we define the following translation of Curry

types.

Definition 6.4 (Type Translation). The function⌈⌈·⌋⌋, which transforms Curry types1, is defined as fol-

lows:
⌈⌈ϕ⌋⌋ = ϕ

⌈⌈A→ B⌋⌋ = 〈app : (⌈⌈A⌋⌋)→ ⌈⌈B⌋⌋〉

It is extended to contexts as follows:⌈⌈Γ⌋⌋ = {x:⌈⌈A⌋⌋ | x:A ∈ Γ}.

We can now show the type preservation result.

Theorem 6.5(Preservation of Types). If Γ ⊢
cl

t:A then⌈⌈Γ⌋⌋ ⊢ ⌈⌈t⌋⌋ : ⌈⌈A⌋⌋.

Proof. By induction on the derivation ofΓ ⊢
cl

t:A. The cases for (var) and (→E) are trivial. For the rules

(K ) and (S), Figure 6.4 gives derivation schemas for assigning the translation of the respective Curry

type schemes to theoocl translations ofK andS. �

Furthermore, since Curry’s well-known translation of the simply typedlc into cl preserves typeability

(see [50, 15]), we can also construct a type-preserving encoding of lc into fj¢; it is straightforward to

extend this preservation result to full-blown strict intersection types. We stress that this result really

demonstrates the validity of our approach. Indeed, our typesystem actually has more power than inter-

section type systems forcl as presented in [15], since there not all normal forms are typeable using strict

types, whereas in our system they are. This is because our type system, in addition to giving afunctional

analysis, also gives astructuralanalysis through the class name type constants.

Example 6.6. Let δ be thecl-termS (S K K ) (S K K ). Notice thatδ δ→∗ δ δ, i.e. it is unsolvable, and

thus can only be given the typeω (this is also true for⌈⌈δ δ⌋⌋). Now, consider the termt = S (K δ) (K δ).

Notice that it is a normal form (⌈⌈t⌋⌋ has a normal form also), but that for any termt’, S (K δ) (K δ) t’→∗

δ δ. In a strict system, no functional analysis is possible fort sinceφ→ ω is not a type and so the only

way we can type this term is withω2.

In our type system however we may assign several different types to⌈⌈t⌋⌋. Most simply we can derive

⊢ ⌈⌈t⌋⌋ : S2, but even though a ‘functional’ analysis via theapp method is impossible, it is still safe to

access the fields of the value resulting from⌈⌈t⌋⌋ – both⊢ ⌈⌈t⌋⌋ : 〈x :K2〉 and⊢ ⌈⌈t⌋⌋ : 〈y :K2〉 are also easily

derivable statements. In fact, we can derive even more informative types: the expression⌈⌈K δ⌋⌋ can

be assigned types of the formσKδ = 〈app : (σ1)→ 〈app : (σ2∩ 〈app : (σ2)→ σ3〉)→ σ3〉〉, and so we

1Note we haveoverloadedthe notation⌈⌈·⌋⌋, which we also use for the translation ofcl terms tofj¢ expressions.
2In other intersection type systems (e.g. [20])φ→ ω is a permissible type, but is equivalent toω (that isω ≤ (φ→ ω) ≤ ω)

and so semantics based on these type systems identify terms of typeφ→ ω with unsolvable terms.
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can also assign〈x :σKδ〉 and〈y :σKδ〉 to ⌈⌈t⌋⌋. Notice that the equivalentλ-term tot is λy.(λx.xx)(λx.xx),

which is aweakhead-normal form without a head-normal form. The ‘functional’ view is that such terms

are observationally indistinguishable from unsolvable terms. When encoded infj¢ however, our type

system shows that these terms become meaningful (head-normalisable). This is of course as expected,

given that the notion of reduction infj¢ is weak.

Our termination results from the previous chapter can be illustrated by applying them in the context

of oocl.

Definition 6.7 (oocl normal forms). Let the set ofoocl normal forms be the set of expressionsn such

thatn is the normal form of the image⌈⌈t⌋⌋ of somecl termt. Notice that it can be defined by the following

grammar:
n ::= x | new K() | new K1( n) |

new S() | new S1( n) | new S2( n1, n2) |

n.app( n’) (n , new C( en) )

Eachoocl normal form corresponds to acl normal form, the translation of which can also be typed

with anω-safe derivation for each type assignable to the normal form.

Lemma 6.8. If e is an oocl normal form, then there exists acl normal form t such that⌈⌈t⌋⌋ →∗ e

and for all ω-safeD andΠ such thatD :: Π ⊢ e : σ, there exists anω-safe derivationD′ such that

D′ :: Π ⊢ ⌈⌈t⌋⌋ : σ.

Proof. By induction on the structure ofoocl normal forms. �

We can also show thatω-safe typeability is preserved under expansion for the images ofcl-terms in

oocl.

Lemma 6.9. Let t1 and t2 becl-terms such thatt1→ t2; if there is anω-safe derivationD and environ-

mentΠ, and a strict typeσ such thatD :: Π ⊢ ⌈⌈t2⌋⌋ : σ, then there exists anotherω-safe derivationD′

such thatD′ :: Π ⊢ ⌈⌈t1⌋⌋ : σ.

Proof. By induction on the definition of reduction forcl. �

This property of course also extends to multi-step reduction.

Together with the lemma preceding it (and the fact that all normal forms can by typed with anω-safe

derivation), this leads to both a sound andcompletecharacterisation of normalisability for the images of

cl-terms inoocl.

Theorem 6.10. Let t be acl-term: thent is normalisable if and only if there areω-safeD andΠ, and

strict typeσ such thatD :: Π ⊢ ⌈⌈t⌋⌋ : σ.

Proof. (if): Directly by Theorem 5.19.

(only if): Let t’ be the normal form oft; then, by Theorem 6.2,⌈⌈t⌋⌋ →∗ ⌈⌈t’⌋⌋. Since reduction incl is

confluent,⌈⌈t’⌋⌋ is normalisable as well; lete be the normal form of⌈⌈t’⌋⌋. Then by Lemma 5.17(2)

there are strong strict typeσ, environmentΠ and derivationD such thatΠ ⊢ e : σ. SinceD and

Π are strong, they are alsoω-safe. Then, by Lemma 6.8 and 6.9, there existsω-safeD′ such that

D′ :: Π ⊢ ⌈⌈t⌋⌋ : σ. �
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.

.

.

(var)
{ this :〈x :σ1〉,y :σ2 } ⊢ this : 〈x :σ1〉

(fld)
{ this :〈x :σ1〉,y :σ2 } ⊢ this.x : σ1

(var)
{ this :K,x :σ1 } ⊢ x : σ1

(newF)
{ this :K,x :σ1 } ⊢ new K1(x) : 〈x :σ1〉

(newM)
{ this :K,x :σ1 } ⊢ new K1(x) : 〈app :σ2→ σ1〉

(obj)
⊢ new K() : K

(newM)
⊢ new K() : 〈app :σ1→ 〈app :σ2→ σ1〉〉

D1 : (var)
Π ⊢ this : 〈x : 〈app :σ1→ 〈app :σ2→ σ3〉〉〉

(fld)
Π ⊢ this.x : 〈app :σ1→ 〈app :σ2→ σ3〉〉

(var)
Π ⊢ z : σ1

(newM)
Π ⊢ this.x.app(z) : 〈app :σ2→ σ3〉 .

.

.

.

.

.

.

.

(var)
Π ⊢ this : 〈y : 〈app :σ1→ σ2〉〉

(fld)
Π ⊢ this.y : 〈app :σ1→ σ2〉

(var)
Π ⊢ z : σ1

(invk)
Π ⊢ this.y.app(z) : σ2

(invk)
Π ⊢ this.x.app(z).app(this.y.app(z)) : σ3

D2 :

(var)
Π′ ⊢ this : 〈x :τ1〉

(fld)
Π′ ⊢ this.x : τ1

(newF)
Π′ ⊢ new S2(this.x, y) 〈x :τ1〉 :

(var)
Π′ ⊢ y : τ2

(newF)
Π′ ⊢ new S2(this.x, y) 〈y :τ2〉 :

(join)
Π′ ⊢ new S2(this.x, y) : 〈x :τ1〉 ∩〈y :τ2〉

.

.

.

.

.

.

.

.

.

.

D1

Π ⊢ this.x.app(z).app(this.y.app(z)) : σ3

D2

Π′ ⊢ new S2(this.x, y) 〈x :τ1〉 ∩〈y :τ2〉 :
(newM)

Π′ ⊢ new S2(this.x, y) 〈app :σ1→ σ3〉 :

(var)
{ this :S,x :τ1 } ⊢ x : τ1

(newF)
{ this :S,x :τ1 } ⊢ new S1(x) : 〈x :τ1〉

(newM)
{ this :S,x :τ1 } ⊢ new S1(x) : 〈app :τ2→ 〈app :σ1→ σ3〉〉 .

.

.

(obj)
∅ ⊢ new S() : S

(newM)
∅ ⊢ new S() : 〈app :τ1→ 〈app :τ2→ 〈app :σ1→ σ3〉〉〉

where τ1 = 〈app :σ1→ 〈app :σ2→ σ3〉〉, τ2 = 〈app :σ1→ σ2〉,

Π = { this :〈x :τ1〉 ∩〈y :τ2〉,z :σ1}, and

Π′ = { this :〈x :τ1〉,y :τ2 }

Figure 6.4.: Derivation schemes for the translations ofSandK
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.

.

.

.

.

.

(var)
{ this :〈x :ϕ1〉,y :ϕ2 } ⊢ this : 〈x :ϕ1〉

(fld)
{ this :〈x :ϕ1〉,y :ϕ2 } ⊢ this.x : ϕ1

(var)
{ this :K,x :ϕ1 } ⊢ x : ϕ1

(newF)
{ this :K,x :ϕ1 } ⊢ new K1(x) : 〈x :ϕ1〉

(newM)
{ this :K,x :ϕ1 } ⊢ new K1(x) : 〈app : (ϕ2)→ ϕ1〉

(obj)
{x :ϕ1,y :ϕ2 } ⊢ new K() : K

(newM)
{x :ϕ1,y :ϕ2 } ⊢ new K() : 〈app : (ϕ1)→ 〈app : (ϕ2)→ ϕ1〉〉

(var)
{x :ϕ1,y :ϕ2 } ⊢ x : ϕ1

(invk)
{x :ϕ1,y :ϕ2 } ⊢ new K().app(x) : 〈app : (ϕ2)→ ϕ1〉

(var)
{x :ϕ1,y :ϕ2 } ⊢ y : ϕ2

(invk)
{x :ϕ1,y :ϕ2 } ⊢ new K().app(x).app(y) : ϕ1

.

.

.

.

.

.

(var)
{ this :〈x :ϕ〉,y :ω } ⊢ this : 〈x :ϕ〉

(fld)
{ this :〈x :ϕ〉,y :ω } ⊢ this.x : ϕ

(var)
{ this :K,x :ϕ } ⊢ x : ϕ

(newF)
{ this :K,x :ϕ } ⊢ new K1(x) : 〈x :ϕ〉

(newM)
{ this :K,x :ϕ } ⊢ new K1(x) : 〈app : (ω)→ ϕ〉

(obj)
{x :ϕ } ⊢ new K() : K

(newM)
{x :ϕ } ⊢ new K() : 〈app : (ϕ)→ 〈app : (ω)→ ϕ〉〉

(var)
{x :ϕ } ⊢ x : ϕ

(invk)
{x :ϕ } ⊢ new K().app(x) : 〈app : (ω)→ ϕ〉

(ω)
{x :ϕ } ⊢ ⌈⌈δδ⌋⌋ : ω

(invk)
{x :ϕ } ⊢ new K().app(x).app( ⌈⌈δδ⌋⌋) : ϕ

(ω)
this :K1,x :ω ⊢ x : ω

(obj)
this :K,x :ω ⊢ new K1(x) : K1

(obj)
∅ ⊢ new K() : K

(newM)
∅ ⊢ new K() : 〈app : (ω)→K1〉

(ω)
∅ ⊢ ⌈⌈δδ⌋⌋ : ω

(invk)
∅ ⊢ new K().app( ⌈⌈δδ⌋⌋) : K1

Figure 6.5.: Derivations for Example 6.11
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Theoocl program very nicely illustrates the various characterisations of terminating behaviour that

the intersection type assignment system gives.

Example 6.11.Letδ be thecl-termS (S K K ) (S K K ) – i.e.δδ is an unsolvable term. Figure 6.5 shows,

respectively,

• a strong derivation typing a strongly normalising expression of oocl;

• anω-safe derivation of a normalising (but not strongly normalising) expression ofoocl; and

• a derivation (notω-safe) assigning a non-trivial type for a head-normalising(but not normalising)

oocl expression,

The last of these examples was referred to in Section 5.3 as anillustration of the difference between

the characterisation of normalising expression initd for lc and the corresponding characterisation infj¢.

It shows that we cannot look just at the derived type (and typeenvironment) in order to know if some

expression has a normal form - we must look at the whole typingderivation, as in the second example

above.

The examples that we have discussed so far have not directly illustrated the Approximation Theorem

(5.14). To finish this section, we will now look at an example which shows how the types we can assign

in the intersection type system predict the approximants ofan expression, and therefore provide infor-

mation about runtime behaviour. The example that we will look at is that of afixed-point combinator.

Theoocl program only contains classes to encode the combinatorsS andK and, while it is possible to

construct terms using onlyS andK which are fixed-point operators, there is no reason that we cannot

extend our program and define new combinators directly.

A fixed-pointof a functionF is a valueM such thatM = F(M); a fixed-pointcombinator(or operator)

is a (higher-order) function that returns a fixed-point of its argument (another function). Thus, a fixed-

point combinatorG has the property thatG F = F (G F) for any functionF. Turing’s well-known fixed-

point combinator in theλ-calculus is the following term:

Tur = ΘΘ = (λxy.y(xxy))(λxy.y(xxy))

ThatTur provides a fixed-point constructor is easy to check:

Tur f = (λxy.y(xxy))Θ f →∗
β

f (ΘΘ f ) = f (Tur f)

The termTur itself has the reduction behaviour

Tur= (λxy.y(xxy))Θ →β λy.y(ΘΘy)

→β λy.y((λz.z(ΘΘz))y)

→β λy.y(y(ΘΘy))
...

which implies it has the following set of approximants:

{⊥, λy.y⊥, λy.y(y⊥), . . .}

Thus, if z is a term variable, the approximants ofTur z are⊥,z⊥,z(z⊥), etc. As well as satisfying the
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D1 ::

.

.

.

.

.

.

.

.

(var)
Π2 ⊢ x : 〈app : (ω)→ ϕ2〉

(ω)
Π2 ⊢ this.app(x) : ω

(invk)
Π2 ⊢ x.app(this.app(x)) : ϕ

(ω)
Π1 ⊢ new T() : ω

(newM)
Π1 ⊢ new T() : 〈app : (〈app : (ω)→ ϕ〉)→ ϕ〉

(var)
Π1 ⊢ z : 〈app : (ω)→ ϕ〉

(invk)
Π1 ⊢ new T().app(z) : ϕ

D2 ::
(var)

Π1 ⊢ z : 〈app : (ω)→ ϕ〉
(ω)

Π1 ⊢ new T().app(z) : ω
(invk)

Π1 ⊢ z.app(new T().app(z)) : ϕ

D3 ::
(var)

Π1 ⊢ z : 〈app : (ω)→ ϕ〉
(ω)

Π1 ⊢ ⊥ : ω
(invk)

Π1 ⊢ z.app( ⊥) : ϕ

whereΠ1 = {z :〈app : (ω)→ ϕ〉}, Π2 = {this :ω,x :〈app : (ω)→ ϕ〉}

Figure 6.6.: Type Derivations for the Fixed-Point Construction Example

characteristic property of fixed-point combinators mentioned above, the termTur satisfies the stronger

property thatTur M→∗
β

M(Tur M) for any termM.

It is straightforward to define a newfj¢ class that can be added to theoocl program which mirrors this

behaviour:

class T extends Combinator {

combinator app(Combinator x) {

return x.app(this.app(x));

}

}

The body of theapp method in the classT encodes the reduction behaviour we saw forTur above. For

anyfj¢ expressione:

new T().app( e) → e.app(new T().app( e))

So, takingM = new T().app( e) , we have

M → e.app( M)

Thus, by Theorem 5.8, the fixed pointM of e (as returned by the fixed point combinator classT) is

semantically equivalent toe.app( M) , and sonew T().app( ·) does indeed represent a fixed-point

constructor.

The (executable) expressione = new T().app(z) has the reduction behaviour

new T().app(z) → z.app(new T.app(z))

→ z.app(z.app(new T.app(z)))
...
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so has the following (infinite) set of approximants:

{⊥, z.app( ⊥) , z.app(z.app( ⊥)) , . . .}

Notice that these exactly correspond to the set of the approximants for theλ-termTur z that we consid-

ered above. The derivationD1 in Figure 6.6 shows a possible derivation assigning the typeϕ to e. In

fact, the normal form of this derivation corresponds to the approximantz.app( ⊥) , which we will now

demonstrate.

The derivationD1 comprises atyped redex, in this case a derivation of the form〈〈·, ·,newM〉, ·, invk〉,

thus it will reduce. The derivationD2 shows the result of performing the reduction step. In this example,

the typeω is assigned to the receivernew T() , since that is the type associated withthis in the

environmentΠ2 used when typing the method body. It would have been possibleto use a more specific

type for this in Π2 (consequently requiring a more structured subderivation for the receiver), but even

had we done so the information contained in this subderivation would have been ‘thrown away’ by the

derivation substitution operation during the reduction step, since the occurrence of the variablethis in

the method body is still covered byω (i.e. any information aboutthis in the environmentΠ2 is not

used).

The derivationD2 is now in normal formsince although the expression that it types still contains a

redex, that redex is covered byω and so no further (derivation) reduction can take place there. The

structure of this derivation therefore dictates the structure of an approximant ofe: the approximant is

formed by replacing all sub-expressions typed withω by the element⊥. When we do this, we obtain the

derivationD3 as given in the figure.

Although this example is relatively simple (we chose the derivation corresponding to the simplest non-

trivial approximant), it does demonstrate the central concepts involved in the approximation theorem.

6.6. Comparison with Nominal Typing

To give a more intuitive understanding of both the differences and advantages of our approach over the

conventional nominal approach to object-oriented static analysis (as exemplified in Featherweight Java),

we will first define the nominal type system forfj¢, and then discuss some examples which illustrate the

main issues.

Our nominal type system is almost exactly the same as the system presented in [66], except that it will

exclude casts. It is defined as follows.

Definition 6.12 (Member type lookup). The lookup functionsFT andMT return the class type decla-

ration for a given field or methods of a given class. They are defined by:

FT (C,f) =



D if CT (C) = class C extends C’ {fd md}

& D f ∈ fd

FT (C’,f) if CT (C) = class C extends C’ {fd md}

& D f < fd
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MT (C,m) =



Cn→ D if CT (C) = class C extends C’ {fd md}

& D m( C x) {e} ∈ md

MT (C’,m) if CT (C) = class C extends C’ {fd md}

& D m( C xn) {e} < md

Nominal type assignment infj¢ is a relatively easy affair, and more or less guided by the class hierar-

chy.

Definition 6.13 (Nominal Subtyping). The sub-typing relation<: on class types is generated by the

extends construct in the languagefj¢, and is defined as the smallest pre-order satisfying:

class C extends D { fd md } ∈ CT ⇒ C <: D

Notice that this relation depends on the class table, so the symbol P should be indexed byCT ; how-

ever, in keeping with the convention mentioned previously in Chapter 3, we leave this implicit.

Definition 6.14 (Nominal type assignment forfj¢).

1. Thenominaltype assignment relation⊢ν is defined by the following natural deduction system:

(var ) :
Π,x:C ⊢ν x : C (fld ) :

Π ⊢ν e : D
(FT (D,f) = C)

Π ⊢ν e.f : C

(sub ) :
Π ⊢ν e : D

(D <: C)
Π ⊢ν e : C

(invk ) :
Π ⊢ν e : E Π ⊢ν ei : Ci (∀i ∈ n)

Π ⊢ν e.m( en) : D
(MT (E,m) = Cn→ D)

(new) :
Π ⊢ν ei : Ci (∀i ∈ n)

(F (D) = fn & FT (D,fi) = Ci (∀i ∈ n))
Π ⊢ν new D( en) : D

2. A declaration of methodm in the classC is well typed when the type returned byMT (m,C) deter-

mines a type assignment for the method body.

x:C, this :D ⊢ν eb : G
(MT (m,D) = C→ G)

G m( C x) { return eb; } OK IN D

3. Classes are well typed when so are all their methods, and a program is well typed when all the

classes are themselves well typed, and the executable expression is typeable.

mdi OK IN C (∀i ∈ n)

class C extends D { fd; mdn } OK

cd OK Γ ⊢ν e : C

(cd,e) OK

Notice that in the nominal system, classes are typed once, and this typecheckingallows for a con-

sistency check on the class type annotations that the programmer has given for each class declaration.

Once the program has been verified consistent in this way, thedeclared types can then be used to type

executable expressions. This is in contrast to the approachof our intersection type system which, rather

than typing classes, has the two rules (newF) and (newM) that create a field or method type for an object

on demand. In this approach, method bodies are checkedevery timewe need that an object has a specific

method type, and the various types for a method used throughout a program need not be the same, as is

essentially the case for the nominal system.

90



There are immediate differences between the nominal type system and our intersection type system

since the former allows for the typing of non-terminating (unsolvable) programs. Consider the unsolv-

able expressionnew NT().loop() from Section 6.2, for which⊢ν new NT().loop() : NT can be

derived.

Restricting our attention to (head) normalising terms, then, we can see that the intersection type system

permits the typing of more programs. Consider the followingtwo classes:

class A extends Object {

A self() { return this; }

A foo() { return this.self(); }

}

class B extends A {

A f;

A foo() { return this.self().f; }

}

The classB is not well typed according to the nominal type system, sinceits foo method is not well

typed: it attempts to access the fieldf on the expressionthis.self() which, according to the decla-

ration of theself method, has typeA and the classA has nof field.

The intersection type system, on the other hand, can type theexpressionnew B(new A()).foo()

as shown by the following derivation:

(var)
{ this :〈self : ( )→ 〈f :A〉〉 } ⊢ this : 〈self : ( )→ 〈f :A〉〉

(invk)
{ this :〈self : ( )→ 〈f :A〉〉 } ⊢ this.self() : 〈f :A〉

(fld)
{ this :〈self : ( )→ 〈f :A〉〉 } ⊢ this.self().f : A .

.

.

.

.

.

.

.

(var)
{ this :〈f :A〉 } ⊢ this : 〈f :A〉 .

.

.

.

(obj)
⊢ new A() : A

(newF)
⊢ new B(new A()) : 〈f :A〉

(newM)
⊢ new B(new A()) : 〈self : ( )→ 〈f :A〉〉

(newM)
⊢ new B(new A()) : 〈foo : ( )→A〉

(invk)
⊢ new B(new A()).foo() : A

The example above might seem rather contrived, but the same essential situation occurs in the ubiq-

uitousColourPoint example which is used as a standard benchmark for object-oriented type systems.

Assuming integers and strings, and boolean values and operators forfj¢, this example can be expressed

as follows:

class Point extends Object {

int x;

int y;

bool equals(Point p) {

return (this.x == p.x) && (this.y == p.y);

}

}
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class ColourPoint extends Point {

string colour;

bool equals(Point p) {

return (this.x == p.x) && (this.y == p.y) &&

(this.colour == p.colour);

}

}

In this example we have a classPoint which encodes a cartesian co-ordinate, with integer valuesfor

thex andy positions. ThePoint class also contains a methodequals , which compares twoPoint in-

stances and indicates if they represent the same co-ordinate. TheColourPoint class is an extension of

thePoint class which adds an extra dimension toPoint objects - a colour. Now, to determine the equal-

ity of ColourPoint objects, we must check that their colours match in addition to their co-ordinate po-

sitions. The nominal system is unable to handle this since when theequals method is overridden in the

ColourPoint class, it must maintain the same type signature as in thePoint class, i.e. it is constrained

to only acceptPoint objects (which do not contain acolour field), and notColourPoint objects, as

is required for the correctfunctionalbehaviour. Thus, theColourPoint class is not well typed.

A solution to this problem comes in the form of casts. In orderto make theColourPoint class well

typed (in the nominal type system), wecastthe argumentp of theequals method to be aColourPoint

object as follows:

class ColourPoint extends Point {

string colour;

bool equals(Point p) {

return (this.x == p.x) && (this.y == p.y) &&

(this.colour == ((ColourPoint) p).colour);

}

}

The cast in the expression((ColourPoint) p) tells the type system that it should be considered to

be of typeColourPoint , and so the access of thecolour field can be considered well typed. Using

a cast, therefore, is comparable to a promise by the programmer that the casted expression will at run

time evaluate to an object having the specified class (or a subclass thereof). This is expressed in the type

system by the following additional rule:

(cast ) :
Π ⊢ν e : C

(D <: C)
Π ⊢ν ( D) e : D

For soundness reasons, this now requires doing a run-time check, which is expressed by the following

extension to the reduction relation:

(C) new D(...) → new D(...) (if D <: C)

Once this check has been carried out the cast disappears. As the ColourPoint example shows, in a

nominal type system, (down) casts are essential for full programming convenience, and to be able to

obtain the correct behaviour in overloaded methods.
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This newcast rule now allows for theColourPoint class above to be well typed, thus giving us

that the following executable expressions are typeable:

new Point(1,2).equals(new Point(3,4))

new Point(1,2).equals(new ColourPoint(3,4,"red"))

new ColourPoint(1,2,"red")

.equals(new ColourPoint(3,4,"blue"))

The disadvantage to casts, however, is that they may result in a certain (albeit well-defined) form of

‘stuck execution’ - aClassCastException - as happens when executing the following expression:

new ColourPoint(1,2,"red").equals(new Point(3,4))

Here, execution results in the cast(ColourPoint) new Point(3,4) which obviously fails, asPoint

is not a subclass ofColourPoint (rather, the other way around).

Our intersection type system could, with the appropriate extensions for booleans, integers and strings,

perform a precise type analysis on theColourPoint programwithout the need for casts, correctly

typing the first three expressions above, and rejecting the fourth as ill-typed. Rather than add such

extensions to support this claim we will now present anotherexample which is, in a sense, equivalent

to theColourPoint example in that it suffers from the same typing issues, however it is formulated

completely withinfj¢.

Our example models a situation involving cars and drivers. We can imagine that the scenario may

be arbitrarily complex and that our classes implement all the functionality we need, however for our

example we will focus on a single aspect: the action of a driver starting a car. For our purposes, we will

assume that a car is started when its driver turns the ignition key and so the classesCar andDriver

contain the following code:

class Car {

Driver driver;

Car start() { return this.driver.turnIgnition(this); }

}

class Driver {

Car turnIgnition(Car c) { return c; }

}

Since we are working with a featherweight model of the language, we have had to abstract away some

detail and are subject to certain restrictions. For instance, the operation of turning the ignition of the car

may actually be modelled in a more detailed way, but for our illustration it is sufficient to assume that

the act of calling the method itself models the action. Also,since in Featherweight Java we do not have

a void return type, we return theCar object itself from thestart andturnIgnition methods.

Now suppose that we are required to extend our model to include a special type of car - apolice
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car. In our model a police car naturally does all the things that an ordinary car does. In addition it

may chase other cars, however in order to do so the police officer driving the car must first report to the

headquarters. Thus, only police officers may initiate car chases.

Since we need police cars to behave as ordinary cars in all aspects other than being able to chase

other cars, it makes sense to write aPoliceCar class thatextendsthe Car class, and thus inherits

all its methods and behaviour. Similarly, we will have to make thePoliceOfficer class extend the

Driver class so that police officers are capable of driving cars (including police cars). Here we run

into a problem, however, since the nominal approach to object-orientation imposes some restrictions:

namely that when we override method definitions we must use the same type signature (i.e. we are not

allowed to specialise the argument or return types), nor arewe allowed to specialise the types of fields3

that are inherited. Thus, we must define our new classes as follows, again as above modelling the extra

functionality via methods that simply return the (police) car object involved:

class PoliceCar extends Car {

PoliceCar chaseCar(Car c) {

return this.driver.reportChase(this);

}

}

class PoliceOfficer extends Driver {

PoliceCar reportChase(PoliceCar c) { return c; }

}

Before considering typing our extra classes, let us examinetheir behaviour from a purely operational

point of view. As desired, a police car driven by a police officer is able to chase another car (the method

invocation results in avalue, i.e. an object):

new PoliceCar(new PoliceOfficer())

.chaseCar(new Car(new Driver()))

→ new PoliceCar(new PoliceOfficer()).driver

.reportChase(new PoliceCar(new PoliceOfficer()))

→ new PoliceOfficer()

.reportChase(new PoliceCar(new PoliceOfficer()))

→ new PoliceCar(new PoliceOfficer())

However, if a police car driven by anordinary driver attempts to chase a car we run into trouble:

new PoliceCar(new Driver())

3The full Java language allows fields to be declared in a subclass with the same name as fields that exists in the superclasses,
however the semantics of this construction is that anewfield is created whichhidesthe previously declared field; while
this serves to mitigate the specific problem we are discussing here, it does introduce its own new problems.
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.chaseCar(new Car(new Driver()))

→ new PoliceCar(new Driver()).driver

.reportChase(new PoliceCar(new Driver()))

→ new Driver()

.reportChase(new PoliceCar(new Driver()))

Here, we getstucktrying to invoke thereportChase method on aDriver object since theDriver

class does not contain such a method. This is the infamous ‘message not understood’ error.

The nominal approach to static type analysis is twofold: firstly, to ensurethat the values assigned

to the fields of an object match their declared type; and then secondly, enforce within the bodies of the

methods that the fields are used in a way consistent with theirdeclared type. Thus, while it is type safe to

allow thedriver field of aPoliceCar object to contain aPoliceOfficer (sincePoliceOfficer

is a subtype ofDriver ), trying to invoke thereportChase method on thedriver field in the body

of the chaseCar method isnot type safe since such an action is not consistent with the declared type

(Driver ) of the driver field. In such a situation, where a method body uses a field inconsistently,

the nominal approach is to brand the entire class unsafe and prevent any instances being created. Thus,

in Featherweight Java (as in full Java), thesubexpressionnew PoliceCar(new Driver()) is not

well-typed, consequently entailing that the full expression

new PoliceCar(new Driver()).chaseCar(new Car(new Driver ()))

is not well-typed.

This leaves us in an uncomfortable position, since we have seen thatsomeinstances of thePoliceCar

class (namely, those that havePoliceOfficer drivers) are perfectly safe, and thus preventing us from

creating any instances at all seems a little heavy-handed. There are two solutions to this problem. The

first is to rewrite thePoliceCar andPoliceOfficer classes so that they donot extend the classes

Car andDriver . That way, we are free to declare thedriver field of thePolieCar class to be of type

PoliceOfficer . However, this would mean having toreimplementall the functionality ofCar and

Driver . The other solution is to usecasts: in the body of thechaseCar method we cast thedriver ,

telling the type system that it is safe to consider thedriver field to be of typePoliceOfficer :

class PoliceCar extends Car {

PoliceCar chaseCar(Car c) {

return ((PoliceOfficer) this.driver)

.reportChase(this);

}

}

Now, thePoliceCar class is type safe: we can create instances of it andPoliceCar objects with

PoliceOfficer drivers can chase cars:

new PoliceCar(new PoliceOfficer())
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.chaseCar(new Car(new Driver()))

→ ((PoliceOfficer)

new PoliceCar(new PoliceOfficer()).driver)

.reportChase(new PoliceCar(new PoliceOfficer()))

→ ((PoliceOfficer) new PoliceOfficer())

.reportChase(new PoliceCar(new PoliceOfficer()))

→ new PoliceOfficer()

.reportChase(new PoliceCar(new PoliceOfficer()))

→ new PoliceCar(new PoliceOfficer())

However we are not entirely home and dry, since to regain typesoundness in the presence of casts we

now have to check at runtime that the cast is valid:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver ()))

→ ((PoliceOfficer) new PoliceCar(new Driver()).driver)

.reportChase(new PoliceCar(new Driver()))

→ ((PoliceOfficer) new Driver())

.reportChase(new PoliceCar(new Driver()))

As the above reduction sequence shows, the ‘message not understood’ error from before has merely

beentransformedinto a runtime ‘cast exception’ which occurs when we try to cast thenew Driver()

object to aPoliceOfficer object. Using the nominal approach to static typing, we are forced to

choose the ‘lesser of many evils’, as it were: being unable towrite typeable programs that implement

what we desire; being unable to share implementations between classes; or having to allow some runtime

exceptions (albeit only with the explicit permission of theprogrammer). We should point out here that

some other solutions to this particular problem have been proposed in the literature (see, for example,

the work on family polymorphism [55, 67]), but these solutions persist in the nominal typing approach

and can thus only be achieved by extending the language itself.

The fj¢ intersection type system has two main characteristics thatdistinguish it from the traditional

(nominal) type systems for object-orientation. Firstly, our types are structural and so provide a fully

functional analysis of the behaviour of objects. We also keep the analysis of methods and fieldsinde-

pendentfrom one another, allowing for a fine-grain analysis. This means that not all methodsneedbe

typeable - we do not reject instances of a class as ill-typed simply because they cannot satisfyall of the

interface specified by the class (in terms of being able tosafely- in a semantic sense - invoke all the

methods). In other words, if we cannot assign a type to any particular method body from a given class,

then this does not prevent us from creating instances of the class if other methods may be safely invoked

and typed. In Figure 6.7 we can see a typing derivation in the intersection type system that assign a type

for thechaseCar method to aPoliceCar object withPoliceOfficer driver (for space reasons, we

have used some abbreviations:POfor PoliceOfficer , PCfor PoliceCar andrC for reportChase ).

Now consider replacing thePoliceOfficer object in this derivation with aDriver object, as we

would have to do if we wanted to try and assign this type to aPoliceCar object with an ‘ordinary’
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(var)
Π1 ⊢ this : 〈driver : 〈rC :PC→ PC〉〉

(fld)
Π1 ⊢ this.driver : 〈rC :PC→PC〉

(var)
Π1 ⊢ this : PC

(invk)
Π1 ⊢ this.driver.rC(this) : PC .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(var)
Π2 ⊢ c : PC

(newO)
⊢ new PO() : PO

(newM)
⊢ new PO() : 〈rC :PC→ PC〉

(newF)
⊢ new PC(new PO()) : 〈driver : 〈rC :PC→PC〉〉

(newO)
⊢ new PO() : PO

(newO)
⊢ new PC(new PO()) : PC

(join)
⊢ new PC(new PO()) : 〈driver : 〈rC :PC→ PC〉〉 ∩PC

(newM)
⊢ new PC(new PO()) : 〈chaseCar :Car → PC〉

whereΠ1 = { this : 〈driver : 〈rC :PC→ PC〉〉 ∩PC, c : Car }

Π2 = { this :PO, c :PC}

Figure 6.7.: Typing derivation for thechaseCar method of a PoliceCar object with a
PoliceOfficer driver.

Driver driver. In doing so, we would run into problems since we wouldultimately have to assign

a type for thereportChase method to the driver (as has been done in the topmost subderivation in

Figure 6.7) - obviously impossible seeing as no such method exists in theDriver class. This does not

mean however that we should not be able to create suchPoliceCar objects. After all,PoliceCar s are

supposed to behave in all other respects as ordinary cars, soperhaps we might want ordinaryDriver s to

be able to use them as such. In Figure 6.8 we can see a typing derivation assigning a type for thestart

method to aPoliceCar object with aDriver driver, showing that this is indeed possible. Notice that

this is also sound from an operational point of view too:

new PoliceCar(new Driver()).start()

→ new PoliceCar(new Driver()).driver

.turnIgnition(new PoliceCar(new Driver()))

→ new Driver()

.turnIgnition(new PoliceCar(new Driver()))

→ new PoliceCar(new Driver())

The second characteristic is that our type system is a true type inferencesystem. That is, no type

annotations are required in the program itself in order for the type system to verify its correctness4. In

the typecheckingapproach, the programmer specifies the type that their program must satisfy. As our

example shows, this can sometimes lead to inflexibility: in some cases, multiple types may exist for a

given program (as in a system without finitely representableprincipal types) and then the programmer

is forced to choose just one of them; in the worst case, a suitable type may not even be expressible in

4It is true thatfj¢ retains class type annotations, however this is a syntacticlegacy due to the fact that we would like our
calculus to be considered a true sibling of Featherweight Java, and nominal class type no longer constitute true types inour
system.
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(var)
Π1 ⊢ this : 〈driver : 〈sI :PC→ PC〉〉

(fld)
Π1 ⊢ this.driver : 〈sI :PC→PC〉

(var)
Π1 ⊢ this : PC

(invk)
Π1 ⊢ this.driver.sI(this) : PC .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(var)
Π2 ⊢ c : PC

(newO)
⊢ new Driver() : Driver

(newM)
⊢ new Driver() : 〈sI :PC→PC〉

(newF)
⊢ new PC(new Driver()) : 〈driver : 〈sI :PC→ PC〉〉

(newO)
⊢ new Driver() : Driver

(newO)
⊢ new PC(new Driver()) : PC

(join)
⊢ new PC(new Driver()) : 〈driver : 〈sI :PC→PC〉〉 ∩PC

(newM)
⊢ new PC(new Driver()) : 〈start : ()→PC〉

where

Π1 = { this : 〈driver : 〈sI :PC→ PC〉〉 ∩PC}

Π2 = { this : Driver , c :PC}

Figure 6.8.: Typing derivation for thestart method of aPoliceCar object with aDriver driver.

the language. This is the case for our nominally typed cars example: the samePoliceCar class may

give rise to objects which behave differently depending on the particular values assigned to their fields;

this should be expressed through multiple different typings, however in the nominal system there is no

way to express them. Our system does not force the programmerto choose a type for the program, thus

retaining flexibility. Moreover, since our system is semantically complete, all safe behaviour is typeable

and so it provides themaximumflexibility possible. Lastly, we have achieved this result without having

to extend the programming language in any way.

The combination of the characteristics that we have described above constitutes a subtle shift in the

philosophy of static analysis for class-basedoo. In the traditional approach, the programmer specifies

the class types that each input to the program (i.e. field values and method arguments) should have,

on the understanding that the typecheckingsystem will guarantee that the inputs do indeed have these

types. Since a class type represents the entire interface defined in the class declaration, the programmer

acts on the assumption that they may safely call any method within this interface. Consequently, to keep

up their end of the ‘bargain’, the programmer is under an obligation to ensure that the value returned

by their program safely provides thewholeinterface of its declared type. In the approach suggested by

our type system, by firstly removing the requirement to safely implement a full collection of methods

regardless of the input values, the programmer is afforded a certain expressive freedom. Secondly, while

they can no longer rely on the fact that all objects of a given class provide a particular interface, this

apparent problem is obviated by typeinference, which presents the programmer with an ‘if-then’ input-

output analysis of class constructors and method calls. If aprogrammer wishes to create instances of

some particular class (perhaps from a third party) and call its methods in order to utilise some given

functionality, then it is up to them to ensure that they pass appropriate inputs (either field values or

method arguments) that guarantee the behaviour they require.
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7. Type Inference

In this chapter, we will consider a type inference procedurefor the system that we defined in Chapter 3,

or rather we will define a type inference algorithm for a restricted version of that system. Since the full

intersection type system can characterise strongly normalising expressions it is, naturally, undecidable.

Thus, to obtain a terminating type inference algorithm we must restrict the system in some way, ac-

cepting that not all (strongly) normalising expressions will be typeable. The key property that any such

restriction should exhibit, however, issoundnesswith respect to the full system. In other words, if we

assign some typing to an expression in the restricted system, then we can also assign that typing to the

expression in the full system. Such a soundness property will allow the restricted system to inherit all

the semantic results of the full system. Namely, typeability will still guarantee (strong) normalisation,

and imply the existence of similarly typeable approximantsmeaning that restricted type assignment still

describes the functional properties of expressions.

In the context of theλ-calculus type inference algorithms for intersection typeassignment have mainly

focused on restricting the full system using on a notion ofrank, essentially placing a limit on how deeply

intersections can be nested within any given type. Two notable exceptions are [94], which gives a semi-

algorithm for type inference in the full system, and [43] which defines a restriction based on relevance

rather than rank. Van Bakel gave a type inference algorithm for a rank-2 restriction [8], and later Kfoury

and Wells showed that anyfinite rank restriction is decidable [74].

We can define a similar notion of rank for our intersection types. However, unlike forλ-calculus,

every finite-rank restriction of our system is onlysemi-decidable. We will begin by defining the most

restricted type assignment system in this family, the rank-0 system which essentially corresponds to

Curry’s type assignment system. We will then explain why thetype inference algorithm for this system

only terminates forsomeprograms. Since all such systems will suffer from the same semi-decidability

problem, we opt not to define further, more expressive, restrictions, but instead we decide to modify our

system in a different way – by addingrecursivetypes. This work forms the second part of this thesis,

and we will motivate it further at the end of this chapter.

7.1. A Restricted Type Assignment System

Our first task will be to define a restricted version of our fullintersection type assignment system. As

mentioned in the introduction to this chapter, we will be defining a system that is essentially equivalent

to Curry’s system of simple types for theλ-calculus. Thus, while we retain the structural nature of types

(i.e. we have class names, field and method types), we will notallow any intersections. As we will

show later, even this very severe restriction of the system is only semi-decidable. More specifically, the

algorithm that we will derive for this system only terminates when running onnon-recursiveprograms,

a property of programs that we will formally define later, butwhich intuitively expresses that no method

creates a new instance of the class to which it belongs.
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Definition 7.1 (Simple Types). Simpletypes arefj¢ types without intersections orω. They are defined

by the following grammar:

σ,τ ::= C | ϕ | 〈f :σ〉 | 〈m : (σn)→ τ〉

Note that previously, we have used the metavariableσ referred tostrict predicates (possibly containing

intersections andω), however in this chapter, we will use it to refer to simple types only. Notice that

the set of simple types is a subset of the set of strict types. This fact will be used when showing the

soundness of the restricted type assignment with respect tothe full type assignment system.

Definition 7.2 (Simple Type Environments). 1. A simple type statementis of the formℓ:σ whereℓ

is either a field namef or a variablex (and called thesubjectof the statement), andσ is a simple

type.

2. A simple type environmentΓ is a finite set of simple type statements in which the subjectsare all

unique. We may refer to simple type environments as just type environments.

3. If there is a statementℓ:σ ∈ Γ then, in an abuse of notation, we writeℓ ∈ Γ. In a further abuse of

notation, we may writeΓ(ℓ) = σ.

4. We relate simple type environments to intersection type environments by extending the subtyping

relation P (Definition 3.5) as follows:

ΠP Γ⇔∀x:σ ∈ Γ [∃ φP σ [x:φ ∈ Π ] ] & ∀f:σ ∈ Γ [∃ φP σ [ this :φ ∈ Π ] ]

& this :σ ∈ Γ⇒∃ φP σ [ this :φ ∈ Π ]

The following defines a function that returns the set of type variables used in a simple type or type

environment.

Definition 7.3 (Type Variable Extraction). 1. The functionTV returns the set of type variables oc-

curring in a simple type. It is defined as follows:

tv(C) = ∅

tv(ϕ) = {ϕ}

tv(〈f :σ〉) = tv(σ)

tv(〈m : (σn)→ σ〉) = tv(σ)∪ tv(σ1)∪ . . .∪ tv(σn)

2. TV is extended to simple type environments as follows:

tv(Γ) =
(⋃

x:σ∈Γ tv(σ)
)
∪

(⋃
f:σ∈Γ tv(σ)

)

Definition 7.4 (Simple Type Assignment). Simple type assignment⊢s is a relation on simple type en-

vironments and simple type statements. It is defined by the natural deduction system given in Figure

7.1.

As we mentioned in the introduction to this chapter, a crucial property of our restricted type assign-

ment system is that it is sound with respect to the full intersection type assignment system.
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(var) : (x , this)
Γ,x:σ ⊢s x :σ (self-obj) :

Γ, this :C ⊢s this :C

(self-fld) : (f ∈ F (C))
Γ, this :C,f:σ ⊢s this : 〈f :σ〉 (fld) :

Γ ⊢s e : 〈f :σ〉

Γ ⊢s e. f :σ

(invk) :
Γ ⊢s e : 〈m : (σn)→ σ〉 Γ ⊢s e1 :σ1 . . . Γ ⊢s en :σn

Γ ⊢s e. m( en) :σ

(newObj) :
Γ ⊢s e1 :σ1 . . . Γ ⊢s en :σn

(F (C) = fn)
Γ ⊢s new C( en) :C

(newF) :
Γ ⊢s e1 :σ1 . . . Γ ⊢s en :σn

(F (C) = fn, i ∈ n)
Γ ⊢s new C( en) : 〈fi :σi〉

(newM) :
{f1:σ′1, . . . ,fn′ :σ

′
n′ , this :C, x1:σ1, . . . ,xn:σn } ⊢s eb :σ Γ ⊢s ei :σ

′
i (∀ i ∈ n′)

Γ ⊢s new C( en′) : 〈m : (σn)→ σ〉

(F (C) = fn′ ,Mb(C,m) = (xn,eb))

Figure 7.1.: Simple Type Assignment forfj¢

Theorem 7.5(Soundness of Simple Predicate Assignment). If Γ ⊢s e :σ, then there exists a strong deriva-

tionD such thatD :: Π ⊢ e : σ, whereΠ is the smallest intersection type environment satisfyingΠP Γ.

Proof. By induction on the structure of simple type assignment derivations. The only interesting case is

for the (newM) rule. ThenΓ ⊢s new D( en) : 〈m : (τ′n′)→ τ〉 andΓ ⊢s ei :τi for eachi ∈mwith F (D) = f′m,

Mb(D,m) = (x’m′ ,e0) and, moreover,{ this :D,f′1:τ1, . . . ,f
′
m:τ′m,x’1:τ′1, . . . ,x’m′ :τ

′
m′ } ⊢s e0 :τ. Thus, by in-

duction we haveDi ::Π ⊢ ei : τi withDi strong for eachi ∈m, and we also have thatD0 ::Π′ ⊢ e0 : τ with

D0 strong whereΠ′ = { this :D ∩ 〈f′1 :τ1〉 ∩ . . . ∩ 〈f
′
m:τm〉,x’1:τ′1, . . . ,x’m′ :τ

′
m′ }. Notice that then, by the

(obj) rule of the full intersection type assignment system, it follows that〈Dm,obj〉 :: Π ⊢ new D( en) : D

is a strong derivation, and also by the (newF) rule of the full intersection type system we have that

〈Dm,newF〉 ::Π ⊢ new D( en) : 〈f′i :τi〉 is a strong derivation for eachi ∈m. Thus, by the (join) rule it fol-

lows that there is a strong derivationD such thatD ::Π ⊢ new D( en) : D ∩〈f′1 :τ1〉 ∩ . . . ∩〈f
′
m:τm〉. Then

finally, by (newM) of the full intersection type system it follows that〈D0,D,newM〉 :: Π ⊢ new D( en) :

〈m : (τ′m′)→ τ〉 is a strong derivation. �

Because simple type assignment is sound with respect to the full intersection type assignment system,

we obtain a strong normalisation guarantee ‘for free’.

Corollary 7.6. If Γ ⊢s e :σ thene is strongly normalising.

Proof. By Theorems 7.5 and 5.20. �

We can also prove a weakening lemma for this system, which we will need in order to show soundness

of principal typings. Notice that we do not need a notion of subtyping for simple types, and so weakening

in this context is simply widening.

Lemma 7.7(Widening). LetΓ,Γ′ be simple type environments such thatΓ⊆ Γ′; if Γ ⊢s e :σ, thenΓ′ ⊢s e :σ.

Proof. By easy induction on the structure of simple type derivations. �
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(self-fld)
{ this :K1,x :σ1,y :σ2 } ⊢s this : 〈x :σ1〉

(fld)
{ this :K1,x :σ1,y :σ2 } ⊢s this.x :σ1

(var)
{ this :K,x :σ1 } ⊢s x :σ1

(newM)
{ this :K,x :σ1 } ⊢s new K1(x) : 〈app :σ2→ σ1〉

(newM)
⊢snew K() : 〈app :σ1→ 〈app :σ2→ σ1〉〉

.

.

.

.

.

.

.

.

.

.

(self-fld)
Γ′ ⊢s this : 〈x : 〈app :σ1→ 〈app :σ2→ σ3〉〉〉

(fld)
Γ′ ⊢s this.x : 〈app :σ1→ 〈app :σ2→ σ3〉〉

(var)
Γ′ ⊢s z :σ1

(invk)
Γ′ ⊢s this.x.app(z) : 〈app :σ2→ σ3〉 .

.

.

.

.

.

.

.

(self-fld)
Γ′ ⊢s this : 〈y : 〈app :σ1→ σ2〉〉

(fld)
Γ′ ⊢s this.y : 〈app :σ1→ σ2〉

(var)
Γ′ ⊢s z :σ1

(invk)
Γ′ ⊢s this.y.app(z) :σ2

(invk)
Γ′ ⊢s this.x.app(z).app(this.y.app(z)) :σ3

(self-fld)
Γ ⊢s this : 〈x :τ1〉

(fld)
Γ ⊢s this.x :τ1

(var)
Γ ⊢s y :τ2

(newM)
Γ ⊢s new S2(this.x,y) : 〈app :σ1→ σ3〉

(var)
{ this :S,x :τ1 } ⊢s x :τ1

(newM)
{ this :S,x :τ1 } ⊢s new S1(x) : 〈app :τ2→ 〈app :σ1→ σ3〉〉

(newM)
⊢snew S() : 〈app :τ1→ 〈app :τ2→ 〈app :σ1→ σ3〉〉〉

whereτ1 = 〈app :σ1→ 〈app :σ2→ σ3〉〉, τ2 = 〈app :σ1→ σ2〉,

Γ = { this :S1,x:τ1,y :τ2 } andΓ′ = { this :S2,x :τ1,y :τ2,z:σ1}.

Figure 7.2.: Simple Type Assignment Derivation Schemes fortheoocl Translations ofS andK

The simple type assignment system is expressive enough to typeoocl, the encoding of Combinatory

Logic into fj¢ that we gave in Section 6.5. Figure 7.2 gives simple type assignment derivation schemes

assigning the principal Curry types ofSandK to theiroocl translations.

7.2. Substitution and Unification

In this section we will define a notion of substitution on simple types, which is sound with respect to

the type assignment system. We will also define an extension of Robinson’s unification algorithm which

we will use to unify simple types. These two operations will be central to showing the principal typings

property for the system.

Definition 7.8 (Simple Type Substitutions). 1. A simple type substitutions is a particular kind of

operation on simple types, which replaces type variables bysimple types. Formally, substitutions

are mappings (total functions) from simple types to simple types satisfying the following criteria:

a) thevariable domain(or simply thedomain), dom(s) , {ϕ | s(ϕ) , ϕ}, is finite;

b) s(C) = C for all C;

c) s(〈f :σ′〉) = 〈f : s(σ′)〉; and
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d) s(〈m : (σn)→ σ′〉) = 〈m : (s(σ1), . . . , s(σn))→ s(σ′)〉.

2. The operation of substitution is extended to type environments by s(Π) = {ℓ:s(σ) | ℓ:σ ∈ Π}.

3. The notation[ϕ 7→ σ] stands for the substitution s withdom(s) = {ϕ} such that s(ϕ) = σ.

4. Id denotes the identity substitution, i.e.dom(Id) = ∅.

5. If s1 and s2 are simple type substitutions such thatdom(s1) = dom(s2) and s1(ϕ) = s2(ϕ) for each

ϕ in their shared domain, then we write s1 = s2.

6. Whendom(s)∩ tv(σ) = dom(s)∩ tv(Γ) = ∅, then we say thatdom(s) is distinct from σ and Γ.

Notice that, in this case, s(σ) = σ and s(Γ) = Γ.

It is straightforward to show that the composition of two simple type substitutions is itself a simple

type substitution.

Lemma 7.9(Substitution Composition). If s1 and s2 are substitutions, then so is the composition s2◦ s1.

Proof. Using Definition 7.8 for each ofs1 ands2.

1. The domain ofs2 ◦ s1 is finite, sincedom(s2 ◦ s1) ⊆ dom(s2)∪ dom(s1): take any type variable

ϕ and supposeϕ ∈ dom(s2 ◦ s1), then eitherϕ ∈ dom(s1) or ϕ ∈ dom(s2) otherwises2 ◦ s1(ϕ) =

s2(s1(ϕ)) = s2(ϕ) = ϕ and thenϕ<dom(s2◦ s1).

2. s2◦ s1(C) = s2(s1(C)) = s2(C) = C.

3. s2◦ s1(〈f :σ〉) = s2(s1(〈f :σ〉)) = s2(〈f : s1(σ)〉) = 〈f : s2(s1(σ))〉 = 〈f : s2◦ s1(σ)〉.

4. s2◦ s1(〈m : (σn)→ σ′〉) = s2(s1(〈m : (σn)→ σ′〉))

= s2(〈m : (s1(σ1), . . . , s1(σn))→ s1(σ′)〉)

= 〈m : (s2(s1(σ1)), . . . , s2(s1(σn)))→ s2(s1(σ′))〉

= 〈m : (s2◦ s1(σ1), . . . , s2◦ s1(σn))→ s2◦ s1(σ′)〉

�

A key result in the principal typings result is that substitution is a sound operation with respect to

simple type assignment.

Theorem 7.10(Soundness of Substitution). For all substitutions s, ifΓ ⊢s e :σ then s(Γ) ⊢s e : s(σ).

Proof. By straightforward induction on the structure of derivations. �

Using the notion of simple type substitution defined above, we will now define a procedure which will

unify two simple types. This will be a central element of the definition of principal typings.

Definition 7.11 (Unification Problems). 1. A unification problemu is a (possibly empty)sequence

of pairs of simple types(σ,σ′).

2. Substitutions are extended to unification problems as follows:

s(ǫ) = ǫ

s((σ,σ′) ·u) = (s(σ), s(σ′)) · s(u)
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Definition 7.12 (Unifiers). 1. If s is a substitution such that s(σ) = s(σ′), then we say that s is a

unifier of (σ,σ′).

2. If s is a unifier of each pair(σ,σ′) ∈ u, then we say that s is a unifier of u.

3. A unifier s of u ismost generalif and only if for every unifier s′ of u, there exists a substitution s′′

such that s′ = s′′ ◦ s.

Composition of substitutions preserves unifiers:

Property 7.13. 1. If s is a unifier ofσ1 andσ2, then s′ ◦ s is a unifier ofσ1 andσ2, for all s′.

2. If s is a unifier of u, then s′ ◦ s is a unifier of u, for all u, s′.

Proof. 1. s is a unifier ofσ1 andσ2, so s(σ1) = s(σ2). Then s′ ◦ s(σ1) = s′(s(σ1)) = s′(s(σ2)) =

s′ ◦ s(σ2).

2. Take any pair (σ1,σ2) ∈ u. Sinces is a unifier ofu it follows by Definition 7.12 thats is a unifier

of σ1 andσ2. Then, by the first property, so iss′ ◦ s. Since (σ1,σ2) was arbitrary, we have that

s′ ◦ s is a unifier of all pairs inu, and thus is a unifier ofu. �

We will now define our unification procedure for simple types,which is a straightforward extension

of Robinson’s algorithm [93] to our system.

Definition 7.14 (Unification Procedure). 1. The procedureUnify takes a pair of simple predicates

(σ,σ′) and returns a (unifying) substitution (when it exists, and is undefined otherwise). It is

defined as follows:

Unify(ϕ,ϕ′) = [ϕ 7→ ϕ′]

Unify(ϕ,σ)

Unify(σ,ϕ)


= [ϕ 7→ σ] if σ not a type variable andϕ does not occur inσ

Unify(C,C) = Id

Unify(〈f :σ〉, 〈f′ :σ′〉) = Unify(σ,σ′) if f = f′

Unify(〈m : (σn)→ σ〉, 〈m′ : (σ′n)→ σ′〉)

= s′ ◦ sn◦ . . .◦ s1 if m = m′ and

si = Unify(si−1 ◦ . . .◦ s1(σi),

si−1 ◦ . . .◦ s1(σ′i )) for each i∈ n

s′ = Unify(sn◦ . . .◦ s1(σ),

sn◦ . . .◦ s1(σ′))

2. TheUnify function is generalised to unification problems as follows:

Unify(ǫ) = Id

Unify((σ,σ′) ·u) = s2◦ s1 if s1 = Unify(σ,σ′) and

s2 = Unify(s1(u))

3. whenUnify is undefined, we say that unificationfails.
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Notice that the generalisation of unification to unificationproblemsis merely a convenience, since for

any unification problemu = (σ1,σ
′
1), . . . , (σn,σ

′
n), we can obtain the same result asUnify(u) by calling

the unification procedure for pairsUnify(〈m : (σn−1)→ σn〉, 〈m : (σ′n−1)→ σ′n〉), for any method namem.

In addition to showing that unification is a termianting procedure, Robinson showed that it produces

most general unifiers, and that if a unification problem has a unifier, then it has a most general unifier.

Property 7.15 (Robinson [93]). Unify is a terminating procedure; furthermore, ifUnify(u) = s then s

is a most general unifier of u, and if s is a unifier of u, then there exists a substitution s′ such that

Unify(u) = s′.

Notice that Robinson’s results trivially apply to our extended notion of unification given in Definition

7.14 since our simple types are merely function typesdecoratedwith labels. Removing these labels

yields ordinary function types (augmented, of course, withtype constants for each class). Thus, for any

unification problem involving our simple types, an equivalent problem can be formulated for Robinson’s

algorithm as given in [93] by simply erasing the field and method annotations.

The following definition allows type environments to be unified.

Definition 7.16(Type Environment Unification Problems). LetΓn be a sequence of simple type environ-

ments and let u be a unification problem satisfying the following:

i, j ∈ n & i , j &

((x:σ1 ∈ Γi andx:σ2 ∈ Γ j) or (f:σ1 ∈ Γi andf:σ2 ∈ Γ j)

⇒ (σ1,σ2) ∈ u

Then u is calledcharacteristicfor Γn. If there is no smaller characteristic unification problem than u,

then u is calledminimal.

Notice that minimal characteristic unification problems for any given environmentΓ are unique up to

reordering of their constituent pairs.

Lemma 7.17(Unification of Type Environments). 1. If u is characteristic forΓ and u⊆ u′, then u′

is also characteristic forΓ.

2. Let u be a characteristic unification problem forΓn, and let s be a unifier of u; thenΓ = s(Γ1)∪

. . .∪ s(Γn) is a simple type environment.

3. LetΓ andΓn be a simple type environments and s a simple type substitution; if s(Γi) ⊆ Γ for each

i ∈ n, then s is a unifier of any minimal characteristic unification problem forΓn.

Proof. 1. Take statementsx:σ1 andx:σ2 such thatx:σ1 ∈ Γi andx:σ1 ∈ Γ j for somei, j ∈ n such that

i , j, Then, sinceu is characteristic forΓ it follows that (σ1,σ2) ∈ u and then sinceu⊆ u′ it also

follows that (σ1,σ2) ∈ u′. The case for statements with field name subjects is similar.

2. Γ is clearly finite since eachΓi is. We must also show that the subject of each statement inΓ is

unique. Suppose that this is not the case, and thus there are two statementsℓ:σ1 andℓ:σ2 in Γwith

σ1 , σ2. Then it must be that there arei, j ∈ n with i , j, andℓ:σ′1 ∈ Γi andℓ:σ′2 ∈ Γ j for someσ′1
andσ′2, with s(σ′1) =σ1 ands(σ′2) =σ2. Thuss(σ′1) , s(σ′2). However, it must be that (σ′1,σ

′
2) ∈ u
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sinceu is characteristic forΓn, and sinces unifiesu it follows that s(σ′1) = s(σ′2). Since we have

derived a contradiction, it must be that the subject of each statement inΓ is unique.

3. Let u be a minimal characteristic unification problem forΓn and take any (σ,τ) ∈ u. Sinceu is

minimal it must be thatℓ:σ ∈ Γi andℓ:τ ∈ Γ j for someℓ andi, j ∈ n such thati , j. By assumption,

both s(Γi) ⊆ Γ and s(Γ j) ⊆ Γ, and so bothℓ:s(σ) ∈ Γ and ℓ:s(τ) ∈ Γ. Then, sinceΓ is a type

environment the subject of each statement inΓ is unique, and therefore it must be thats(σ) = s(τ).

Thus,sunifies all pairs inu. �

7.3. Principal Typings

We will now define a notion of principal typings for the simpletype assignment system defined earlier.

A typing is a pair consisting of a simple type environment anda simple type. As we will see, a principal

typing for our system is actually asetof typings. We have chosen to formulate our principal typings in

this way not because an object (or expression) may potentially contain many fields and methods (notice

that traditional record types can handle this), but becauseeven though the simple types assignable in this

system do not contain intersections, a method may in generaladmit more than one analysis. This is due

to the presence of class name constants in the type language.Takeoocl for example, our object-oriented

encoding of Combinatory Logic, defined in Section 6.5. Theapp method of the objectnew K() has

both of following (principal) type schemes:

⊢s new K() :〈app : (ϕ)→ K1〉

⊢s new K() :〈app : (ϕ1)→ 〈app : (ϕ2)→ ϕ1〉〉

In general then, although we do not admit intersection in thetype language, the principal type of an

expression is in fact an intersection, even in the simple type assignment system. Thus, in the general

case, no single record type is sufficient to capture all of the type information inferrable for an object in

our system. Given this situation, the most efficient and straightforward way to deal with the ‘principal’

typing of an expression is simply to use the set of all the (strict) types in this intersection.

Definition 7.18 (Typings). 1. A typing is a pair [Γ, σ] of a simple type environment and a simple

type.

2. The functionTV is extended to operate on typings by:tv([Γ, σ]) , tv(Γ)∪ tv(σ).

As we mentioned above, the principal type of an expression isa set of such typings. We will model

this situation by defining arelation between expressions and typings. In this way, an expressionmay be

related to any number of typings, and we will formulate our definition so that the typings that any given

expression is related to areprincipal for it, in the sense that any other typing assignable to the expression

having the same overall structure as the principal one can begenerated from it using substitution and

widening. After defining the principal typing relation, we will show that it does indeed capture the notion

of ‘principality’ by proving it sound and complete.

Definition 7.19 (Principal Typings). PTS is a relation between expressions and typings. In an abuse

of notation, we will write[Γ, σ] ∈ PTS(e) whenever(e, [Γ, σ]) ∈ PTS, and thusPTS(e) denotes the
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set{ [Γ, σ] | [Γ, σ] ∈ PTS(e)}. It is defined inductively as the smallest relation satisfying the following

conditions:

1. [{x:ϕ}, ϕ] ∈ PTS(x) for all x , this , ϕ.

2. [{ this :C}, C ] ∈ PTS(this ) for all C.

3. [{ this :C}, 〈f :ϕ〉] ∈ PTS(this ) for all ϕ, C andf ∈ F (C).

4. If [Γ, σ] ∈ PTS(e) and s= Unify(σ, 〈f :ϕ〉) with ϕ<tv([Γ, σ]), then

[s(Γ), s(ϕ)] ∈ PTS(e.f).

5. If [Γi , σi] ∈ PTS(ei) for all 0 ≤ i ≤ n, and s= Unify((σ0, 〈m : (σn〉 → ϕ)) · u), where u is a mini-

mal characteristic unification problem forΓ0, . . . ,Γn andϕ<tv([Γi , σi]) for each0 ≤ i ≤ n, then

[s(Γ), s(ϕ)] ∈ PTS(e0. m( en) ), whereΓ = Γ0∪ . . .∪Γn.

6. If [Γi , σi] ∈ PTS(ei) for all i ∈ n and s= Unify(u), where u is a minimal characteristic unification

problem forΓn, then

a) [s(Γ), C ] ∈ PTS(new C( en) ) for all C such thatF (C) = fn; and

b) [s(Γ), s(〈fi :σi〉)] ∈ PTS(new C( en) ) for all C such thatF (C) = fn and i∈ n

whereΓ = Γ1∪ . . .∪Γn.

7. For all C, m, fn, e0, andxn′ such thatMb(C,m) = (xn′ ,e0) andF (C) = fn, if [Γi , σi] ∈ PTS(ei) for

each0≤ i ≤ n and s= Unify(u′ ·u) then:

[s(Γ), s(〈m : (τ′n′)→ σ0〉)] ∈ PTS(new C( en) )

where

a) u is a minimal characteristic unification problem forΓn;

b) u′ = (C,σ) · (τ1,σ1) · . . . · (τn,σn) if this :σ ∈ Γ0,

u′ = (τ1,σ1) · . . . · (τn,σn) otherwise; and

c) Γ = Γ1∪ . . .∪Γn

with

a) ϕ a sequence of n+ n′ distinct type variables such that noϕ j occurs in anytv([Γi , σi])

(0≤ i ≤ n,0< j ≤ n+n′);

b) τn a sequence of simple types satisfying:

i. fi:σ′i ∈ Γ0⇒ τi = σ
′
i and ii. fi<Γ0⇒ τi = ϕi

for each i∈ n; and

c) τ′n′ a sequence of simple types satisfying:

i. xi :σ′i ∈ Γ0⇒ τ′i = σ
′
i and ii.xi <Γ0⇒ τ′i = ϕn+i

for each i∈ n′.

The following lemma states that the environment of a principal typing is ‘minimal’, that is it does not

contain any more statements than is necessary to type the expression for which it is principal.

Lemma 7.20(Minimality of Principal Environments). Let [Γ, σ] ∈ PTS(e); then x ∈ Γ if and only if

x ∈ vars(e), and if this :C ∈ Γ, thenf ∈ F (C) for all f ∈ Γ.
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Proof. By straightforward induction on the definition of principaltypings. �

In order to show that our definition of principal typings above is adequate, we must show soundness

and completeness. In other words, that any principal typingof an expression can be assigned to that

expression (soundness), and that wheneverΓ ⊢s e :σ, e has aprincipal typing [Γ′, σ′] such that there is a

substitutionswith s(σ′) = σ ands(Γ′) ⊆ Γ.

Theorem 7.21(Soundness of Principal Typings). If [Γ, σ] ∈ PTS(e), thenΓ ⊢s e :σ.

Proof. By induction on the definition of principal typings.

[{x:ϕ}, ϕ] ∈ PTS(x): wherex , this . Then{x:ϕ} ⊢s x :ϕ by rule (var).

[{ this :C}, C ] ∈ PTS(this ): for someC. Then{ this :C } ⊢s this :C by rule (self-obj).

[{ this :C,f:ϕ}, 〈f :ϕ〉] ∈ PTS(this ): for someC andf ∈F (C). Then by rule (self-fld), { this :C,f:ϕ} ⊢s
this :〈f :ϕ〉.

[s(Γ), s(ϕ)] ∈ PTS(e.f): where [Γ, σ] ∈ PTS(e) ands= Unify(σ, 〈f :ϕ〉). By inductionΓ ⊢s e :σ. Then

by Theorem 7.10,s(Γ) ⊢s e : 〈f : s(ϕ)〉 and by rule (fld), it follows thats(Γ) ⊢s e.f : s(ϕ).

[s(Γ), s(ϕ)] ∈ PTS(e0. m( en) ): where [Γi , σi] ∈ PTS(ei) for each 0≤ i ≤ n, s= Unify((σ0, 〈m : (σn)→

ϕ〉) ·u) with u a minimal characteristic unification problem forΓ0, . . . ,Γn, andΓ = Γ0∪ . . .∪Γn. By

inductionΓi ⊢s ei :σi for each 0≤ i ≤ n. Then by Theorem 7.10,s(Γi) ⊢s ei : s(σi) for each 0≤ i ≤ n.

Sinceu is characteristic forΓ0, . . . ,Γn, it follows from Lemma 7.17 that so is (σ0, 〈m : (σn)→ ϕ〉) ·u

and thus thats(Γ0)∪ . . .∪ s(Γn) = s(Γ) is a type environment. Notice thats(Γi) ⊆ s(Γ) for each

0≤ i ≤ n and thus by Lemma 7.7,s(Γ) ⊢s ei : s(σi) for each 0≤ i ≤ n. Furthermore, fore0 this gives

s(Γ) ⊢s e0 :〈m : (s(σ1), . . . , s(σn))→ s(ϕ)〉. Then by rule (invk) we have thats(Γ) ⊢s e0. m( en) : s(ϕ).

[s(Γ), C ] ∈ PTS(new C( en) ): whereF (C) = fn, [Γi , σi ] ∈ PTS(ei) for eachi ∈ n, Γ = Γ1∪ . . .∪Γn, and

s= Unify(u) with u a minimal characteristic unification problem forΓn. By induction we have

Γi ⊢s ei :σi for eachi ∈ n and by Theorem 7.10, thats(Γi) ⊢s ei : s(σi). Sinceu is characteristic for

Γn, it follows from Lemma 7.17 thats(Γ1)∪ . . .∪ s(Γn) = s(Γ) is a type environment. Notice that

s(Γi) ⊆ s(Γ) for eachi ∈ n and so by Lemma 7.7,s(Γ) ⊢s ei : s(σi) for eachi ∈ n. Then by rule

(newObj), s(Γ) ⊢s new C( en) :C.

[s(Γ), s(〈fj :σ j〉)] ∈ PTS(new C( en) ): whereF (C) = fn, [Γi , σi ] ∈ PTS(ei) for eachi ∈ n, j ∈ n, Γ =

Γ1∪ . . .∪ Γn, and s= Unify(u) with u a minimal characteristic unification problem forΓn. By

induction we haveΓi ⊢s ei :σi for eachi ∈ n and by Theorem 7.10, thats(Γi) ⊢s ei : s(σi). Since

u is characteristic forΓn, it follows from Lemma 7.17 thats(Γ1)∪ . . .∪ s(Γn) = s(Γ) is a type

environment. Notice thats(Γi) ⊆ s(Γ) for eachi ∈ n and so by Lemma 7.7,s(Γ) ⊢s ei : s(σi) for each

i ∈ n. Then by rule (newF), s(Γ) ⊢s new C( en) :〈fj : s(σ j)〉.

[s(Γ), s(〈m : (τ′n′)→ σ0〉)] ∈ PTS(new C( en) ): with F (C) = fn andMb(C,m) = (xn′ ,e0), and where

[Γi , σi] ∈ PTS(ei) for each 0≤ i ≤ n, Γ = Γ1∪ . . .∪ Γn and s= Unify(u′ · u), with u a minimal

characteristic unification problem forΓn; see Definition 7.19(7) for the conditions holding of the

unification problemu′ and the typesτ′n′ .

By inductionΓ0 ⊢s e0 :σ0. Notice thatvars(e0) ⊆ xn′ since we assume all programs to be well
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formed. By Lemma 7.20 it follows thatΓ0 ⊆ {x1:τ′1, . . . ,xn′ :τ′n′ }. Then sinces is a unifier ofu′ it

follows that if this ∈ Γ0 thenΓ0(this ) = C and thus thatf ∈ F (C) for all f ∈ Γ0. Then, it must

be that

s(Γ0) ⊆ Γ′ = { this :C,f1:s(σ1), . . . ,f1:s(σ1),x1:s(τ′1), . . . ,x1:s(τ′1)}

So, by Theorem 7.10 and Lemma 7.7,Γ′ ⊢s e0 : s(σ0).

By inductionΓi ⊢s ei :σi for eachi ∈ n, and by Theorem 7.10 thats(Γi) ⊢s ei : s(σi). Sinceu is

characteristic forΓn, it follows from Lemma 7.17 that so too isu′ · u and thus thats(Γ1)∪ . . .∪

s(Γn) = s(Γ) is a type environment. Notice thats(Γi) ⊆ s(Γ) for eachi ∈ n and thus by Lemma

7.7, s(Γ) ⊢s ei : s(σi) for eachi ∈ n. Then the result follows by rule (newM), that is we haves(Γ) ⊢s
new C( en) : 〈m : (s(τ′1), . . . , s(τ′n′))→ s(σ0)〉. �

We now consider the completeness of our definition of principal typings.

Theorem 7.22(Completeness of Principal Typings). If Γ ⊢s e :σ then there is a typing[Γ′, σ′] ∈ PTS(e)

and a simple type substitution s such that s(Γ′) ⊆ Γ and s(σ′) = σ.

Proof. By induction on the definition of simple type assignment.

(var): ThenΓ,x:σ ⊢s x :σ with x , this . By Definition 7.19, [{x:ϕ}, ϕ] ∈ PTS(x) for all ϕ, so take any

such typing and lets= [ϕ 7→ σ]. Thens(ϕ) = σ ands({x:ϕ}) = {x:σ} ⊆ Γ,x:σ.

(self-obj): ThenΓ, this :C ⊢s this :C. [{ this :C}, C ] ∈ PTS(this ) by Definition 7.19, ands(C) = C for

any s, and sos({ this :C}) = { this :C} ⊆ Γ, this :C.

(self-fld): ThenΓ, this :C,f:σ ⊢s this :〈f :σ〉 with f ∈ F (C). By Definition 7.19 it follows that, for

all ϕ, [{ this :C,f:ϕ}, 〈f :ϕ〉] ∈ PTS(this ), so take any such typing and lets= [ϕ 7→ σ]. Then

s(〈f :ϕ〉) = 〈f :σ〉 ands({ this :C,f:ϕ}) = { this :C,f:σ} ⊆ Γ, this :C,f:σ.

(fld): ThenΓ ⊢s e.f :σ with Γ ⊢s e :〈f :σ〉. by induction there is a typing [Γ′, σ′] ∈ PTS(e) and a sub-

stitution s such thats(σ′) = 〈f :σ〉 and s(Γ′) ⊆ Γ. Let ϕ be a type variable not occurring in

σ, Γ or dom(s). Then [ϕ 7→ σ] ◦ s(Γ′) = s(Γ′). Notice, also, that [ϕ 7→ σ] ◦ s(σ′) = 〈f :σ〉 and

[ϕ 7→ σ] ◦ s(〈f :ϕ〉) = 〈f :σ〉. Thus, [ϕ 7→ σ] ◦ s unifies (σ′, 〈f :ϕ〉). By Property 7.15, then, there

are substitutionss′ and s′′ such thats′ = Unify(σ′, 〈f :ϕ〉) and [ϕ 7→ σ] ◦ s= s′′ ◦ s′. Now, by

Definition 7.19, [s′(Γ′), s′(ϕ)] ∈ PTS(e.f). Then,

s′′(s′(ϕ)) = s′′ ◦ s′(ϕ) = [ϕ 7→ σ] ◦ s(ϕ) = σ

and also

s′′(s′(Γ′)) = s′′ ◦ s′(Γ′) = [ϕ 7→ σ] ◦ s(Γ′) = s(Γ′) ⊆ Γ

(invk): ThenΓ ⊢s e0. m( en) :σ with Γ ⊢s e0 :〈m : (σn)→ σ〉 andΓ ⊢s ei :σi for eachi ∈ n. By induction,

there are typings [Γ0, τ0], . . . , [Γn, τn] and substitutionss0, . . . , sn such that [Γi , τi ] ∈ PTS(ei) with

s(Γi) ⊆ Γ ands(τi) = σi for each 0≤ i ≤ n.

Without loss of generality, we can assume that [Γ, 〈m : (σn)→σ〉] and each [Γi , τi ] (0≤ i ≤ n) do

not have any type variables in common with each other; that is, their sets of type variables are all

pairwise distinct. We can also assume that, for each 0≤ i ≤ n, dom(si) ⊆ tv([Γi , σi]), since we are
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always able to construct substitutionss′i such thatdom(s′i )= dom(si)∩tv([Γi , τi ]) ands′i (ϕ)= si(ϕ)

for all ϕ ∈ dom(s′i ), and thuss′i ([Γi , τi]) = si([Γi , τi ]).

Now, take some type variableϕ not occurring in any [Γi , τi ] (0≤ i ≤ n), or in [Γ, 〈m : (σn)→σ〉, ];

then lets= [ϕ 7→ σ] ◦ sn◦ . . .◦ s0. Notice that:

1. s(Γi) ⊆ Γ for each 0≤ i ≤ n.

Take anyi; remember thatsi(Γi) ⊆ Γ. Then sinceϕ does not occur inΓ, it follows that

[ϕ 7→ σ](si(Γi)) = s(Γi). Furthermore, sincedom(sj) is distinct fromΓ for all 0≤ j ≤ n,

it follows that sn◦ . . .◦ si+1(si(Γi)) = si(Γ). Thirdly, sincedom(sj) is distinct fromΓi for

each 0≤ j ≤ n such thati , j, si−1◦ . . .◦ s0(Γi) = Γi. Thus:

[ϕ 7→ σ](si(Γi)) = [ϕ 7→ σ](sn◦ . . .◦ si+1(si(Γi)))

= [ϕ 7→ σ](sn◦ . . .◦ si+1(si(si−1 ◦ . . .◦ s0(Γi))))

= s(Γi) ⊆ Γ

2. sunifies (τ0, 〈m : (τn)→ ϕ〉):

a) Sincedom(si) is distinct from〈m : (σn)→ σ〉 for all 0 ≤ i ≤ n, sn◦ . . .◦ s1(〈m : (σn)→

σ〉) = 〈m : (σn)→ σ〉. Also, sinceϕ does not occur in〈m : (σn)→ σ〉, it follows that

[ϕ 7→ σ](〈m : (σn)→ σ〉) = [ϕ 7→ σ](sn◦ . . .◦ s1(〈m : (σn)→ σ〉))

= 〈m : (σn)→ σ〉

Thus: s(τ0) = [ϕ 7→ σ] ◦ sn◦ . . .◦ s0(τ0)

= [ϕ 7→ σ] ◦ sn◦ . . .◦ s1(〈m : (σn)→ σ〉)

= 〈m : (σn)→ σ〉

b) i. Sinceϕ does not occur in any [Γi , τi ], si(ϕ)=ϕ for all 0≤ i ≤ n and thussn◦ . . .◦ s0(ϕ)=

ϕ; thens(ϕ) = [ϕ 7→ σ](sn◦ . . .◦ s0(ϕ)) = [ϕ 7→ σ](ϕ) = σ.

ii. We show thats(τi) = σi for all 0 ≤ i ≤ n. Take anyi; sincedom(sj) is distinct

from τi for each 0≤ j ≤ n such thati , j, it follows that si−1◦ . . .◦ s0(τi) = τi . Also,

since for all 0≤ j ≤ n dom(sj) is distinct from〈m : (σn)→ σ〉, it is therefore distinct

from σi; thus sn◦ . . .◦ si+1(σi) = σi . Lastly, sinceϕ does not occur in anyσ j ( j ∈ n),

[ϕ 7→ σ](σi) = [ϕ 7→ σ](sn ◦ . . .◦ si+1(σi)) = σi. Then, sincesi(τi) = σi, we have:

[ϕ 7→ σ](sn ◦ . . .◦ si+1(σi)) = [ϕ 7→ σ](sn◦ . . .◦ si+1(si(τi)))

= [ϕ 7→ σ](sn◦ . . .◦ si+1(si(si−1 ◦ . . .◦ s0(τi))))

= s(τi)

= σi

Thus s(〈m : (τn)→ ϕ〉) = 〈m : (s(τ1), . . . , s(τn))→ s(ϕ)〉

= 〈m : (σn)→ σ〉

Let u be a minimal characteristic unification problem forΓ0, . . . ,Γn. By point 1 above and Lemma
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7.17(3), s is a unifier ofu. We therefore have thats unifies ((τ0, 〈m : (τn)→ ϕ〉) · u) and thus by

Property 7.15 there ares′ and s′′ such thats′ = Unify((τ0, 〈m : (τn)→ ϕ〉) · u) and s= s′′ ◦ s′. By

Definition 7.19, [s′(Γ′), s(ϕ)] ∈ PTS(e0. m( en) ) whereΓ′ = Γ0∪ . . .∪Γn. By point (1) above, it

follows thats(Γ0)∪ . . .∪ s(Γn) ⊆ Γ. Notice then thats′′(s′(Γ′)) = s′′ ◦ s′(Γ′) = s(Γ′) = s(Γ0)∪ . . .∪

s(Γn) ⊆ Γ and also by point 2(b)i above thats′′(s′(ϕ)) = s′′ ◦ s′(ϕ) = s(ϕ) = σ.

(newObj): ThenΓ ⊢s new C( en) :C for someC such thatF (C) = fn with Γ ⊢s ei :σi for eachi ∈ n. By

induction, there are typings [Γ1, τ1], . . . , [Γn, τn] and simple type substitutionssn such that [Γi , τi] ∈

PTS(ei) with si(Γi) ⊆ Γ andsi(τi) = σi for eachi ∈ n. Without loss of generality, we can assume

that [Γ, C] and each [Γi , τi ] (i ∈ n) do not have any type variables in common with one another, and

thatdom(si) ⊆ tv([Γi , τi ]).

Let s= sn◦ . . .◦ s1. Now, take anyΓi . Remember thatsi(Γi) ⊆ Γ. Sincedom(sj) is distinct from

Γ for each j ∈ n, we havesn◦ . . .◦ si+1(si(Γi)) = si(Γi). Also, sincedom(sj) is distinct fromΓi for

each j ∈ n such thati , j, it follows thatsi−1◦ . . .◦ s1(Γi) = Γi. Therefore

si(Γi) = sn◦ . . .◦ si+1(si(Γi))

= sn◦ . . .◦ si+1(si(si−1 ◦ . . .◦ s1(Γi)))

= s(Γi) ⊆ Γ

And thuss(Γi) ⊆ Γ for eachi ∈ n. Let u be a minimal characteristic unification problem forΓn.

By Lemma 7.17(3) it follows thats is a unifier ofu and so by Property 7.15 there ares′ and s′′

such thats′ = Unify(u) ands= s′′ ◦ s′. By Definition 7.19, [s′(Γ′), C ] ∈ PTS(new C( en) ) where

Γ′ = Γ1∪ . . .∪ Γn. Sinces(Γi) ⊆ Γ for eachi ∈ n, it follows that s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ, and so

s′′(s′(Γ′)) = s′′ ◦ s′(Γ′) = s(Γ′) = s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ. Also we have thats′′(C) = C by definition.

(newF): ThenΓ ⊢s new C( en) :〈fj :σ j〉 for someC such thatF (C) = fn with Γ ⊢s ei :σi for eachi ∈ n,

and wherej ∈ n. By induction, there are typings [Γ1, τ1], . . . , [Γn, τn] and simple type substitutions

sn such that [Γi , τi ] ∈ PTS(ei) with si(Γi) ⊆ Γ andsi(τi) = σi for eachi ∈ n. Without loss of gen-

erality, we can assume that each [Γi , τi ] (i ∈ n) do not have any type variables in common with

one another, and that each [Γi , τi ] does not share any type variables withΓ andσn. We can also

assume thatdom(si) ⊆ tv([Γi , τi ]).

Let s= sn ◦ . . . ◦ s1. Sincedom(si) is distinct fromτ j for eachi ∈ n such thati , j, it fol-

lows thatsj−1 ◦ . . .◦ s1(τ j) = τ j . Also, sincedom(si) is distinct fromσ j for eachi ∈ n, we have

sn◦ . . .◦ sj+1(σ j) = σ j. Then, sincesj(τ j) = σ j, it follows that:

sj(τ j) = sn◦ . . .◦ sj+1(sj(τ j))

= sn◦ . . .◦ sj+1(sj(sj−1 ◦ . . .◦ s1(τ j)))

= s(τ j)

= σ j

Next, take anyΓi . Remember thatsi(Γi) ⊆ Γ. Sincedom(sj) is distinct fromΓ for each j ∈ n, we

havesn◦ . . .◦ si+1(si(Γi)) = si(Γi). Also, sincedom(sj) is distinct fromΓi for each j ∈ n such that
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i , j, it follows thatsi−1◦ . . .◦ s1(Γi) = Γi. Therefore

si(Γi) = sn◦ . . .◦ si+1(si(Γi))

= sn◦ . . .◦ si+1(si(si−1 ◦ . . .◦ s1(Γi)))

= s(Γi) ⊆ Γ

And thuss(Γi) ⊆ Γ for eachi ∈ n. Let u be a minimal characteristic unification problem forΓn. By

Lemma 7.17(3) it follows thats is a unifier ofu and so by Property 7.15 there ares′ ands′′ such

that s′ = Unify(u) and s= s′′ ◦ s′. By Definition 7.19, [s′(Γ′), s′(〈fj :τ j〉)] ∈ PTS(new C( en) )

whereΓ′ = Γ1∪ . . .∪Γn. Sinces(Γi) ⊆ Γ for eachi ∈ n, it follows that s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ, and

so s′′(s′(Γ′)) = s′′ ◦ s′(Γ′) = s(Γ′) = s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ. We also have thats′′(s′(〈fj :τ j〉)) =

s′′ ◦ s′(〈fj :τ j〉) = s(〈fj :τ j〉) = 〈fj :σ j〉.

(newM): Then Γ ⊢s new C( en) : 〈m : (σ′n′)→ σ0〉 with Γ′ ⊢s e0 :σ0 andΓ ⊢s ei :σi for eachi ∈ n, where

F (C) = fn,Mb(C,m) = (xn′ ,e0) andΓ′ = { this :C, f1:σ1, . . . ,fn:σn,x1:σ′1, . . . ,xn′ :σ′n′ }.

By induction there are typings [Γ1, τ
′′
1 ], . . . , [Γn, τ

′′
n ] and simple type substitutionssn such that

[Γi , τ
′′
i ] ∈ PTS(ei) with si(Γi) ⊆ Γ and si(τ′′i ) = σi for eachi ∈ n, and there is a typing [Γ0, τ

′′
0 ] ∈

PTS(e0) and a substitutions0 such thats0(Γ0) ⊆ Γ′ ands0(τ′′0 ) = σ0). Without loss of generality,

we can assume that each [Γi , τ
′′
i ] (0 ≤ i ≤ n) do not have any type variables in common with one

another, and that each [Γi , τ
′′
i ] (0≤ i ≤ n) does not share any type variables withΓ, 〈m : (σ′n′)→σ0〉

andσn. We can also assume thatdom(si) ⊆ tv([Γi , τi ]) for each 0≤ i ≤ n.

Let ϕn and ϕ′n′ be distinct type variables not occurring in any [Γi , τ
′′
i ] (0 ≤ i ≤ n), or Γ,

〈m : (σ′n′)→ σ0〉 andσn, and lets′ be the type substitution such that: i)dom(s′) = {ϕ1, . . . , ϕn, ϕ
′
1,

. . . , ϕ′n′ }; ii) s′(ϕi) = σi for all i ∈ n; and iii) s′(ϕ′i ) = σ
′
i for all i ∈ n′. Then lets= s′ ◦ sn◦ . . .◦ s0.

Take anyΓi (i ∈ n); remember thatsi(Γi) ⊆ Γ. Sincedom(sj) is distinct fromΓi for each

0 ≤ j ≤ n such thati , j, it follows that si−1 ◦ . . . s0(Γi) = Γi. Also, sincedom(sj) is distinct

from Γ for each 0≤ j ≤ n, and noϕk (k ∈ n) or ϕ′k (k ∈ n′) occurs inΓ, it then follows that

s′ ◦ sn◦ . . .◦ si+1(si(Γi)) = si(Γi). Thus:

si(Γi) = s′ ◦ sn◦ . . .◦ si+1(si(Γi))

= s′ ◦ sn◦ . . .◦ si+1(si(si−1 ◦ . . . s0(Γi)))

= s(Γi) ⊆ Γ

And sos(Γi) ⊆ Γ for all i ∈ n. Let u be a minimal characteristic unification problem forΓn, then by

Lemma 7.17(3),sunifiesu.

Let τn be a sequence of simple types satisfying

i) fi:σ′′i ∈ Γ0⇒ τi = σ
′′
i ; and ii)fi <Γ0⇒ τi = ϕi

for eachi ∈ n, andτ′n′ be a sequence of types satisfying

i) xi :σ′′i ∈ Γ0⇒ τ′i = σ
′′
i ; and ii)xi <Γ0⇒ τ′i = ϕ

′
i

for eachi ∈ n′. If this ∈ Γ0 then letu′ = (C,Γ0(this )) · (τ1, τ
′′
1 ) · . . . · (τn, τ

′′
n ), otherwise letu′ =

(τ1, τ
′′
1 ) · . . . · (τn, τ

′′
n ). If this ∈ Γ0 then, sinces0(Γ0) ⊆ Γ′, s0(Γ0(this )) = C and so by Definition

7.8,Γ0(this ) = C. Thuss(C) = s(Γ0(this )) = C. Now, take any (τi , τ
′′
i ) (i ∈ n); we will show that

s(τi) = s(τ′′i ).
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a) There are two cases forτi :

(fi ∈ Γ0): thenτi =Γ0(fi); notice that sinces0(Γ0)⊆ Γ andΓ′(fi)=σi, it must be thats0(τi)=

σi . Then sincedom(sj) is distinct fromσi for all 0≤ j ≤ n, and noϕk (k ∈ n) or ϕ′k (k ∈

n′) occurs inσi, we haves′ ◦ sn◦ . . .◦ s1(σi) = σi . Thuss(τi) = s′ ◦ sn◦ . . .◦ s1◦ s0(τi) =

s′ ◦ sn◦ . . .◦ s1(σi) = σi.

(fi<Γ0): thenτi = ϕi and sinceϕi does not occur in any typing [Γi , τ
′′
i ] for (0 ≤ i ≤ n), we have

thatϕi <dom(sj) for any 0≤ j ≤ n and sosn◦ . . .◦ s0(ϕi) = ϕi. Notice thats′(ϕi) = σi and

thuss(τi) = s(ϕi) = s′ ◦ sn◦ . . .◦ s0(ϕi) = s′(ϕi) = σi.

So,s(τi) = σi .

b) Sincedom(sj) is distinct fromτ′′i for all 0≤ j ≤ nsuch thati , j, it follows thatsi−1 ◦ . . .◦ s0(τ′′i )

= τ′′i . Also, sincedom(sj) is distinct fromσi for all j ∈ n, and noϕk (k∈ n) orϕ′k (k∈ n′) occurs

in σi, we have thats′ ◦ sn◦ . . .◦ si+1(σi) = σi. Thus, sincesi(τ′′i ) = σi, it follows that

si(τ
′′
i ) = s′ ◦ sn◦ . . .◦ si+1(si(τ

′′
i ))

= s′ ◦ sn◦ . . .◦ si+1(si(si−1 ◦ . . .◦ s0(τ′′i )))

= s(τ′′i ) = σi

Thus, we can concludesunifiesu′. We will now show thats(〈m : (τ′n′)→ τ′′0 〉) = 〈m : (σ′n′)→ σ0〉.

a) Take anyτ′i (i ∈ n′; there are two cases:

(xi ∈ Γ0): thenτ′i = Γ0(xi); notice that sinces0(Γ0) ⊆ Γ andΓ′(xi) = σ′i , it must be thats0(τ′i ) =

σ′i . Then sincedom(sj) is distinct fromσ′i for all 0≤ j ≤ n, and noϕk (k∈ n) or ϕ′k (k ∈ n′)

occurs inσ′i , it follows thats′ ◦ sn◦ . . .◦ s1(σ′i ) =σ
′
i . Thuss(τ′i ) = s′ ◦ sn◦ . . .◦ s1◦ s0(τ′i ) =

s′ ◦ sn◦ . . .◦ s1(σ′i ) = σ
′
i .

(xi <Γ0): thenτ′i = ϕ
′
i and sinceϕ′i does not occur in any typing [Γi , τ

′′
i ] for (0 ≤ i ≤ n), we have

thatϕ′i <dom(sj) for any 0≤ j ≤ n and sosn◦ . . .◦ s0(ϕ′i ) = ϕ
′
i . Notice thats′(ϕ′i ) = σ

′
i and

thuss(τ′i ) = s(ϕ′i ) = s′ ◦ sn◦ . . .◦ s0(ϕ′i ) = s′(ϕ′i ) = σ
′
i .

So,s(τ′i ) = σ
′
i for all i ∈ n′.

b) We have thats0(τ′′0 ) = σ0. Also, sincedom(si) is distinct fromσ0 for all 0 ≤ i ≤ n and no

ϕk (k ∈ n) or ϕ′k (k ∈ n′) occurs inσ0, it follows that s′ ◦ sn◦ . . .◦ s1(σ0) = σ0. So s(τ′′0 ) =

s′ ◦ sn◦ . . .◦ s1◦ s0(τ′′0 ) = s′ ◦ sn◦ . . .◦ s1(σ0) = σ0.

Thus we can conclude that

s(〈m : (τ′n′)→ τ′′0 〉) = 〈m : (s(τ′1), . . . , s(τ′n′)))→ s(τ′′0 )〉

= 〈m : (σ′n′)→ σ0〉

Now, sinces unifies bothu andu′, it follows thatsunifiesu′ ·u and so by Property 7.15 there are

s′′′ ands′′ such thats′′ =Unify(u′ ·u) ands= s′′′ ◦ s′′. By Definition 7.19, [s′′(Γ′′), s′′(〈m : (τ′n′)→

τ′′0 〉)] ∈ PTS(new C( en) ) whereΓ′′ = Γ1∪ . . .∪Γn. Sinces(Γi) ⊆ Γ for eachi ∈ n, it follows that

s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ, and sos′′′(s′′(Γ′′)) = s′′′ ◦ s′′(Γ′′) = s(Γ′′) = s(Γ1)∪ . . .∪ s(Γn) ⊆ Γ. Finally,

s′′′(s′′(〈m : (τ′n′)→ τ′′0 〉)) = s′′′ ◦ s′′(〈m : (τ′n′)→ τ′′0 〉) = s(〈m : (τ′n′)→ τ′′0 〉) = 〈m : (σ′n′)→ σ0〉. �

To address the question of the decidability of simple type assignment, we turn the above definition of

principal typings into the followingalgorithm. We can then reason about its termination properties.
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Definition 7.23 (Principal Typings Algorithm). The semi-algorithmPTS computes the set of principal

typings for an expression. It is defined, in the context of a program P, by cases as follows:

PTS(x) = if (x = this ) then

let T = ∅

for each classC in the program

add [{ this :C}, C ] to T

for each fieldf in F (C)

let ϕ be fresh

add [{ this :C, f:ϕ}, 〈f :ϕ〉] to T

return T

else

let ϕ be fresh

return { [{x:ϕ}, ϕ ] }

PTS(e.f) = let T = ∅

T′ = PTS(e)

for each[Γ, σ] ∈ T′

let ϕ be fresh

s= Unify(σ, 〈f :ϕ〉)

if unification did not fail, then add[s(Γ), s(ϕ)] to T

return T

PTS(e0. m( en) ) =

let T = ∅

Ti = PTS(ei) for each0≤ i ≤ n

for each combination of[Γ0, σ0], . . . , [Γn, σn] such that

[Γi , σi ] ∈ Ti for 0≤ i ≤ n

let u be a minimal characteristic unification problem forΓ0, . . . ,Γn

Γ = Γ0∪ . . .∪Γn

ϕ be fresh

s= Unify((σ0, 〈m : (σn)→ ϕ〉) ·u)

if unification did not fail, add[s(Γ), s(ϕ)] to T

return T

PTS(new C( en) ) =

let fm = F (C)

if (n=m) then

let T = ∅

Ti = PTS(ei) for each i∈ n

for each combination of[Γ1, σ1], . . . , [Γn, σn] such that

[Γi , σi] ∈ Ti for all i ∈ n

let Γ = Γ1∪ . . .∪Γn

u be a minimal characteristic unification problem forΓn

s= Unify(u)
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if unification did not fail, then

add [s(Γ), C ] to T

for each i∈ n

add [s(Γ), s(〈fi :σi〉)] to T

for each methodm in C

letMb(C,m) = (xn′ ,e0)

T0 = PTS(e0)

for each combination of[Γ0, σ0], . . . , [Γn, σn] such that

[Γi , σi ] ∈ Ti for 0≤ i ≤ n

let Γ = Γ1∪ . . .∪Γn

u be a minimal characteristic unification problem forΓn

u′ = (τ1,σ1) · . . . · (τn,σn)

where for each i∈ n

τi = Γ0(fi) if fi ∈ σ0 and

τ′i = ϕ otherwise, withϕ fresh

s= Unify(u′ ·u)

if unification did not fail, add[s(Γ), s(〈m : (τ′n′)→ σ0〉)] to T

where for each i∈ n′

τ′i = Γ0(xi) if xi ∈ σ0 and

τ′i = ϕ otherwise, withϕ fresh

return T

PTS is indeed a semi-algorithm because for certain programs it will loop forever, never returning any

output. Consider the self-returning objects that we considered in Section 6.1, which are instances of the

following class:

class SR extends Object {

SR self() { return this; }

SR newInst() { return new SR(); }

}

If we run the algorithm on the expressionnew SR() , it will successfully add the typing [∅, 〈self : ( )→

SR〉] to its setT of principal typings. However, when it comes to analyse thenewInst method, it will

recursively call itself on the body of the method, which is again the expressionnew SR() , thus entering

a non-terminating loop.

The program we have just considered is an example ofrecursiveprogram - it contains a class that

has a method which, when invoked, results in the creation of anew instance of the class itself. For any

such program, the algorithmPTS will not terminate. However, fornon-recursive programs, it correctly

computes principal typing sets.

We formalise the notion of recursive (and non-recursive) programs by defining adependencyrelation

on the classes in a program. This notion of dependency first relies on a notion of subexpression:

Definition 7.24 (Subexpression Relation). Thesubexpressionrelation< is defined as the smallest tran-

115



sitive relation on expressions satisfying the following:

e <


e. f

e. m( e)

(for all i ∈ n) ei <


e. m( en)

new C( en)

Notice that the subexpression relation we have just defined is astrict order, i.e. it is irreflexive. This

fact will be an important component in the proof of Theorem 7.28.

When the body of a method in classC refers to a classD, then we say thatC dependsonD.

Definition 7.25(Class Dependency Relation). The class dependency relation≺ is defined as the smallest

transitive relation on classes satisfying the following:

Mb(C,m) = (x,new D( e) )⇒ D ≺ C

Mb(C,m) = (x,e) & new D( e) < e⇒ D ≺ C

Definition 7.26 (Recursive Programs). 1. We say that a classC is recursiveif C ≺ C.

2. We say that a program is recursive if it contains at least one recursive class.

3. We say that a program isnon-recursiveif it is not recursive.

To show that the algorithmPTS terminates for non-recursive programs, we will define an encompass-

ment relation on expressions. For non-recursive programs,this encompassment relation turns out to be

well-founded.

Definition 7.27 (Encompassment). Theencompassmentrelation⊳ on expressions (for a program P), is

the smallest relation on expressions satisfying the following two conditions:

e < e’⇒ e ⊳ e’

Mb(C,m) = (x,e)⇒ e ⊳ new C( e) (for all e)

Theorem 7.28(Well-foundedness of Encompassment). If P is a non-recusive program, then its encom-

passment relation is well-founded.

Proof. We prove the contrapositive: i.e. if the encompassment relation of P is not well-founded, then

P is recursive. Take any programP and assume its encompassment relation is not well-founded.Then

there exists some infinite descending chain

e1 ⊲ e2 ⊲ e3 . . .

By Definition 7.27, for eachei andei+1 in the chain, eitherei+1 < ei or ei is of the formnew C( e) and

there is somem such thatMb(C,m) = (x,ei+1). Notice that these two possibilities are mutually exclusive.

Since the chain is infinite and for everyei+1 < ei , ei+1 is strictly smaller thanei , there must therefore be
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an infinite number of pairs of expressionse j, e j+1 in the chain such thate j is of the formnew C( e) and

Mb(C,m) = (x,e j+1). Thus, the chain is as follows:

e1
1 > . . . > e1

n1
> new C1( e) ⊲ e2

1 > . . . > e2
n2
> new C2( e) ⊲ e3

1 > . . .

where, for eachi ≥ 1, either

1. ni+1 = 0, soMb(Ci,m) = (x,new Ci+1( e) ) for somem, and thus by Definition 7.25 we have

Ci ≻ Ci+1; or

2. ni+1 > 0, soMb(Ci,m) = (x,ei+1
1 ) for somem; then since< is a transitive relation, it follows that

ei+1
1 > new Ci+1( e) and thus by Definition 7.25 we haveCi ≻ Ci+1.

Therefore, there is an infinite chainC1 ≻ C2 ≻ C3 ≻ . . . and by transitivity of the class dependency relation,

Ci ≻ Cj for all i, j ≥ 1 such thati < j. Now, since the program must be finite (i.e. contain a finite number

of classes), there must bei, j ≥ 1 such thati < j andCi = Cj, and so there is a class that depends on itself.

Thus, the program is recursive. �

Now, using the fact that the encompassment relation for non-recursive programs is well-founded, we

can show a termination result forPTS.

Theorem 7.29(Termination ofPTS). For non-recursive programs,PTS(e) terminates on all expres-

sions.

Proof. By Noetherian induction on⊳, which is well-founded for non-recursive programs. We do a case

analysis one:

(x): If x, this then we simply have to construct a single typing and return it; if x= this , then we have

to do this for each class in the program and each of their fields. Since there are a finite number of

these, this will terminate.

(e.f): First of all, we recursively call the algorithm one; sincee ⊳ e.f, by induction we know this

will terminate, and if it does not fail it must necessarily return a finite set of typings. For each of

these typings we must unify a pair of types and apply the resulting substitution, all of which are

terminating procedures.

(e0. m( en) ): Firstly, we recursively call the algorithm on each expression ei . Since for eachi, ei ⊳

e0. m( en) , by induction each of these calls will terminate. If none of them fail, they must each

necessarily return a finite set of typings. Thus, the number of all possible combinations for choos-

ing a typing from each set is finite. For each of these combinations, we must build a unification

problem, call theUnify procedure on it, generate a typing and apply a substitution to it. Since the

type environment of each typing is finite, we can compute the minimal characteristic unification

problem. The procedureUnify always terminates (Property 7.15). As remarked in the previous

case, generating typings and applying substitutions are also terminating procedures.

(new C( en) ): The number of fields in a class is finite and (for well-formedprograms), the lookup

procedure for fields is terminating. If the number of expressions in en matches the number of

fields, we recursively call the type inference algorithm on each one. Sinceei ⊳ new C( en) each

of these calls will terminate. If none of them fail, they musteach necessarily return a finite set of

typings. In this case, the algorithm has two main tasks:
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1. For each combination of choosing a typing from each setPTS(ei), the algorithm must con-

struct a (minimal) unification problem for the type environments which, as remarked above,

is a terminating procedure. The algorithm then applies theUnify procedure, which is termi-

nating (Property 7.15), and adds a typing for the class typeC, and one for each field ofC, of

which there are a finite number.

2. For each methodm in C, we lookup the method’s formal parameters and body,Mb(C,m) =

(x,e0). As for field lookup, this is a terminating procedure for well-formed programs, and

there are a finite number of methods. The algorithm then recursively calls itself on the

method bodye0. Sincee0 ⊳ new C( en) , by the inductive hypothesis this is terminating,

and necessarily returns a finite set of typings. Since each set is finite, the number of combi-

nations of typings chosen from the principal typing set of each e0, . . . ,en is finite. For each

combination, the algorithm builds a (minimal) characteristic unification problem for the type

environments, and also constructs a second unification problem of sizen. These both take

finite time. It then combines the two and applies theUnify procedure, which is terminat-

ing. If unification succeeds, it builds a typing and applies asubstitution, as remarked, both

terminating procedures.

�

Notice that since a program is a finite entity, and the number of classes it contains is finite, it is

decidable whether any given program is recursive or not. Thus, we can always insert a pre-processing

step prior to type inference which checks if the input program is non-recursive.

This restricted form of type assignment and its type inference algorithm could straightforwardly be

extended to incorporate intersections of finite rank. This is not much help, though, in a typical object-

oriented setting, since the ‘natural’ way to program in sucha context is with recursive classes. Consider

theoo arithmetic program of Section 6.4 - there theSuc class depends (in the sense of Def. 7.25) upon

itself. If this example seems too ‘esoteric’, consider instead the program of Section 6.3 defining lists, an

integral component of any serious programmer’s collectionof tools.

A slightly different approach to type inference that we could take is to keeptrack, as we recurse

through the program, of all the classes that we have already ‘looked inside’ - i.e. all those classes for

which we have already looked up method bodies. Then, whenever we encounter anew C( e) expression,

if the classC is in the list of previously examined classes, we only allow the algorithm to infer typings of

the form [Γ, C ] or [Γ, 〈f :σ〉]. That is, we do not allow it to look inside the method definitions a second

time.

We could also modify the definition of simple type assignmentto reflect this, by defining the type

assignment judgement to refer to a second environmentΣ containing class names. This second envi-

ronment would allow the system to keep track of which class definitions it has already ‘unfolded’. The

only type assignment rule that would need modifying is the (newM) rule, which would be redefined as

follows:

Σ∪{C }; {f1:σ′1, . . . ,fn′ :σ
′
n′ , this :C, x1:σ1, . . . ,xn:σn } ⊢s eb :σ Σ;Γ ⊢s ei :σ

′
i (∀ i ∈ n′)

Σ;Γ ⊢s new C( en′ ) : 〈m : (σn)→ σ〉

(F (C) = fn′ ,Mb(C,m) = (xn,eb), C<Σ)
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The modified type inference algorithm would then be completewith respect to this modified type assign-

ment system. It would also be terminating for all programs. From a practical point of view, however, this

does not constitute a great improvement in the object-oriented setting - the types inferred for recursive

programs are quite limiting. Take, for example, theoo arithmetic program: the set of principal typings

for new Suc( ⌈⌈n⌋⌋N) objects in our decidable type inference system (for any finite rank of intersection)

only contains typings of the following general forms:

[Γ, Suc] [Γ, 〈pred :σ〉]

[Γ, 〈add : (ϕ)→ Suc〉] [Γ, 〈add : (ϕ)→ 〈pred :σ〉〉]

The set of principal typings fornew Zero() consists of the following two typings:

[∅, Zero ] [∅, 〈add : (ϕ)→ ϕ〉]

Thus, while we can infer the ‘characteristic’ type for each object-oriented natural number (as discussed

in Section 6.4), the types we can infer for the methodsadd andmult are the limiting factor. For example,

these types do allow us to add an arbitrary sequence of numbers together by writing an expression of

the form⌈⌈n1⌋⌋N.add( ⌈⌈n2⌋⌋N.add( . . ..add( ⌈⌈nm⌋⌋N))) . However, ‘equivalent’ expressions of the form

⌈⌈n1⌋⌋N.add( ⌈⌈n2⌋⌋N). . . ..add( ⌈⌈nm⌋⌋N) are rejected as ill-typed (unless eachn, . . ., nm−1 is zero) since

the only type we can derive for the expression⌈⌈n1⌋⌋N.add( ⌈⌈n2⌋⌋N) is Suc, preventing us from invoking

the remainingadd methods.

The situation is even worse if we consider themult method. Fornew Zero() , we can derive types of

the form〈mult : (ϕ)→ Zero 〉, leaving us in pretty much the same situation as with theadd method. For

new Suc(new Zero()) , the encoding of one, we are slightly more restricted: we canassign types of

the form〈mult :〈add :Zero → ϕ〉 → ϕ〉. Since, as we have seen,〈add :Zero → ϕ〉 is not a type we can

infer for any number, we must substitute the type variableϕ for something in order to make this into a

type we can use for an invocation of themult method. There are two candidates:〈add :Zero → Zero 〉,

which we can infer fornew Zero() , or 〈add :Zero → Suc〉 which we can infer for encodings of

positive numbers. Thus, we may only type the multiplicationof 1 by a single number. For the encoding

of any number greater than one, we can only infer the single type 〈mult :〈add :Zero → Zero 〉 →

Zero 〉, meaning that forn≥ 2 we may only type the expressions⌈⌈n⌋⌋N.mult(new Zero()) . From this

discussion, it should be obvious that the utility of our typeinference procedure is limited - it types too

few programs.

To consider a final example, we turn our attention to the list program of Section 6.3. This is quite

similar to the case for theadd method in the arithmetic program. Indeed, theappend method functions

in an almost identical manner. This means that our type inference algorithm can only infer types of the

form 〈append : (ϕ)→ ϕ〉 for empty lists, and the types〈append : (ϕ)→ 〈tail : . . . 〈tail︸              ︷︷              ︸
n times

:ϕ〉 . . . 〉〉 for

lists of sizen. As for thecons method, we obtain the type schemes〈cons : (ϕ)→ NEL〉, 〈cons : (ϕ)→

〈head :ϕ〉〉, and〈cons : (ϕ)→ 〈tail :NEL〉〉 for non-empty lists, and for empty lists the additional type

scheme〈cons : (ϕ′)→ σ〉, whereσ is one the three type schemes for non-empty lists.

At this point, it is natural to ask the question whether thereis any way to modify the system so that we

can infer more useful types for recursively defined programs. An answer to this question can be found
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if we go back a step and consider, not the types that we can algorithmically infer for say, the arithmetic

program, but the (infinite) set of principal types it has according to Definition 7.19. Let us not be too

ambitious, and restrict ourselves to considering just those types which pertain to theadd method. What

we find is that, even though this set of types is infinite, it isregular. Namely, for each encoded number,

we can assign the following sequence of types:

〈add : (ϕ)→ Suc〉

〈add : (〈add : (ϕ)→ Suc〉)→ 〈add : (ϕ)→ Suc〉〉

〈add : (〈add : (〈add : (ϕ)→ Suc〉)→ 〈add : (ϕ)→ Suc〉〉)

→ 〈add : (〈add : (ϕ)→ Suc〉)→ 〈add : (ϕ)→ Suc〉〉〉 . . .

As can be seen, each successive type for theadd method forms both the argument and the result type of

the subsequent type. In the limit, if we were to allow types tobe of infinite size, we would obtain a type

σ which is characterised by the following equation:

σ = 〈add :σ→ σ〉

In a certain sense, this type is themost specific, or principal one because it contains the most information.

The type in the above equation is defined, or expressed in terms of itself, and as such can be described

by recursivetypeµX . 〈add :X→ X〉 which denotes the type which is the solution to the above equation.

This type also nicely illustrates the object-oriented concept of abinary method, which is a method that

takes as an argument an object of thesamekind as the receiver. This is expressed in the nominal typing

system (see Section 6.6) by specifying in the type annotation for the formal parameter the same class

as the method is declared in. For the arithmetic program, this can be seen in the specification of the

add method in theNat class (interface), which specifies that the argument shouldbe of classNat . The

recursive type that we have given above expresses this relationship via the use of therecursively bound

type variableX.

We do not have to look at a program as relatively complex as thearithmetic program to make this

observation regarding recursive types. We remarked in Section 6.1 that the self-returning object program

defines a class whose instances can be given the infinite, but regular family of types〈self : ( )→ SR〉,

〈self : ( )→ 〈self : ( )→ SR〉〉, . . ., etc. As for theadd method, the (infinite) type which is the limit of

this sequence can be denoted by the recursive typeµX . 〈self : ( )→ X〉.

The use of recursive types to describe object-oriented programs is not new. We have already seen

in Chapter 2, for example, that Abadi and Cardelli consider recursive types for theς-calculus. The

problem with such recursive types is that, traditionally, they do not capture the termination properties

of programs, which is one of the key advantages of the intersection type discipline. In the second part

of this thesis, we will consider a particular variation on the theme of recursive types that we claim will

allow us to do just that, and so obtain a system with similar expressive power toitd, but which also

admits the inference of useful types for recursively definedclasses.
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Part II.

Logical Recursive Types
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8. Logical vs. Non-Logical Recursive Types

At the end of the first part of this thesis, we remarked that recursive types very naturally and effectively

capture the behaviour of object-oriented programs, since they are finite representations of (regular) infi-

nite types. As we also mentioned, this is well known. In this second part of the thesis, we will investigate

the potential for semantically-based, decidable type inference foroo provided by a particular flavour of

so-called ‘logical’ recursive types.

In this chapter, we will review the relevant background and current research in this area. We start by

presenting a basic extension of the simple type theory for the λ-calculus which incorporates recursive

types. This very simple extension of the type theory shows that a naive treatment of recursive types

leads to logical inconsistency, and therefore does not provide a soundsemanticbasis for type analysis.

At heart, this is a very old result, the essence of which was first formulated mathematically by Bertrand

Russell, but analogous logical paradoxes involving self-reference have been known to philosophers since

antiquity.

The situation is not a hopeless one, however. The logical inconsistency we describe stems from using

unrestrictedself-reference, the operative term here begin ‘unrestricted’. By placing restrictions on the

form that self-reference may take, logical consistency canbe regained. A well-known result of Mendler

[78] in the theory of recursive types is that by disallowingnegativeself-reference (i.e. occurrences of

recursively bound type variables on the left-hand sides of arrow, or function, types), typeable terms once

again become strongly normalising as for Simply Typedλ-calculus. In the setting ofoo however, this is

not an altogether viable solution, since there are quintessentially object-oriented features such as binary

methods (discussed in the previous chapter) which require negative self-reference.

An alternative approach to restricting self-reference hasbeen described by Nakano, who has devel-

oped a family of type systems with recursive types which do not suffer from the aforementioned logical

paradox, and which also do not forbid negative occurrences of recursively bound variables. As such,

these type systems allow a form of characterisation of normalisation. They are not as powerful as sys-

tems in the intersection type discipline, since they do not characterise normalising or strong normalising

terms, however they do give head normalisation and weak normalisation guarantees.

We believe that Nakano’s variant of recursive type assignment is therefore a good starting point for

building semantic, decidable type systems which are well-suited to the object-oriented programming

paradigm. This observation is made by Nakano himself, however he does not describe explicitly how

his type systems might be applied in the context ofoo, nor does he discuss a type inference procedure.

This is where we take up the baton: the answering of these questions is that which shall concern us in

the remainder of this thesis, and wherein the contribution of our work lies.
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8.1. Non-Logical Recursive Types

While recursive types very naturally capture the behaviourof recursively defined constructions, if we are

not careful we can introduce logical inconsistency into thetype analysis of such entities. As we will later

point out, this kind of logical inconsistency is not preclusive to the functional analysis of programs, but

limits the analysis to an expression ofpartial correctness only. That is, it does capture the termination

properties of programs, and therefore cannot be called fully semantic.

This can be illustrated by using a straightforward extension of the simply typedλ-calculus to recursive

types. In [34] Cardone and Coppo present a comprehensive description of recursive type systems for

λ-calculus, and in [35] they review the results on the decidability of equality of recursive types. Here we

present one of the type systems described in [34], in which the logical inconsistency can be illustrated.

We shall call the system that we describe belowλµ (a name given by Nakano, which we borrow since it

is unnamed in [34]).

Definition 8.1 (Types). The types ofλµ are defined by the following grammar, where X, Y, Z. . . range

over a denumerable set of type variables:

A,B,C ::= X | A→ B | µX .A

We say that the type variable X isbound in the typeµX .A, and defined the usual notion of free and

bound type variables. The notation A[B/X] denotes the type formed by replacing all free occurrences of

X in A by the type B.

The typeµX .A is a recursive type, which can be ‘unfolded’ toA[µX .A/X]. This process of unfolding

and folding of recursive types induces a notion of equivalence.

Definition 8.2 (Equivalence of Types). The equivalence relation∼ is defined as the smallest such rela-

tion onλµ types satisfying the following conditions:

µX .A ∼ A[µX .A/X]

A∼ B ⇒ µX .A∼ µX .B

A∼C & B∼ D ⇒ A→ B∼C→ D

This notion of equivalence is the weaker of the two equivalence relations described by Cardone and

Coppo in [34]. The stronger notion is derived by allowing type expressions to be infinite, and considering

two (recursive) types to be equivalent when their infinite unfoldings are equal to one another.

This equivalence relation plays a crucial role in type assignment, since we allow types to be replaced

‘like-for-like’ during assignment. This means that, because a recursive type is equivalent to its unfolding,

types can be folded and unfolded as desired during type assignment. It is this capability that will lead to

logical inconsistency, as we will explain shortly.

Definition 8.3 (Type Assignment). 1. A typestatementis of the form M: A where M is aλ-term,

and A is aλµ type; the term M is called thesubjectof the statement.

2. A typeenvironmentΓ is a finite set of type statements in which the subject of each statement is a

uniqueterm variable. The notationΓ, x : A stands for the type environmentΓ∪ {x : A} where x

does not appear as the subject of any statement inΓ.
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3. TypeassignmentΓ ⊢ M : A is a relation between type environments and type statements. It is

defined by the following natural deduction system:

(Var) :
Γ, x : A ⊢ x : A

(→ I ) :
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A→ B

(∼) :
Γ ⊢ M : A

(A∼ B)
Γ ⊢ M : B

(→ E) :
Γ ⊢ M : A→ B Γ ⊢ N : A

Γ ⊢ M N : B

The system enjoys the usual property that is desired in a typesystem, namely subject reduction [34,

Lemma 2.5]. It does not have a principal typings property [34, Remark 2.13], although its sibling

system based on the stronger notion of equivalence that we mentioned above does have this property

[34, Theorem 2.9].

The logical inconsistency permitted by this type assignment system is manifested in the fact that to

some terms, we can assign any and all types. An example of sucha term is (λx.x x) (λx.x x). Let A be

any type ofλµ, and letB= µX .X→ A. Then we can derive⊢ (λx.x x) (λx.x x) : A as witnessed by the

following derivation schema:

(Var)
x : B ⊢ x : B

(∼)
x : B ⊢ x : B→ A

(Var)
x : B ⊢ x : B

(→ E)
x : B ⊢ x x : A

(→ I )
⊢ λx.x x : B→ A

(Var)
x : B ⊢ x : B

(∼)
x : B ⊢ x : B→ A

(Var)
x : B ⊢ x : B

(→ E)
x : B ⊢ x x : A

(→ I )
⊢ λx.x x : B→ A

(∼)
Γ ⊢ λx.x x : B

(→ E)
Γ ⊢ (λx.x x) (λx.x x) : A

The reason for calling this a logical inconsistency becomesapparent when considering a Curry-

Howard correspondence [64] between the type system and a formal logic. In this correspondence, types

are seen as logical formulae, and the type assignment rules are viewed as inference rules for a formal

logical system, obtained by erasing the allλ-terms in the type statements. Then, derivations of the type

assignment system become derivations of formulas in the logical system, i.e. proofs. A formal logical

system is said to inconsistent if every formula is derivable(i.e. has a proof). Thus, the derivation above

constitutes a proof for every formula, and the corresponding logic is therefore inconsistent. The connec-

tion with self-reference comes from noticing that recursive types, when viewed as logical formulae, are

logical statements that refer to themselves.

The significance of this result in the context of our researchis that for such logically inconsistent

type systems, type assignment is no longer semantically grounded. That is, it no longer expresses the

termination properties of typeable terms. This can be seen to derive from the fact that we can no longer

show an approximation result for such systems - types no longer correspond to approximants. Consider,

again, the term that we have just typed above: it is an unsolvable (non-terminating) term and so has only

the approximant⊥. The only type assignable to⊥ is the top typeω, however we are able to assignany

type to the original term.

Even though these non-logical systems no longer capture thetermination properties of programs, they

do still constitute a functional analysis. Since for typeable terms it must be that all the subterms are

typeable, and since the system has the subject reduction property, we are guaranteed that all applications

that appear during reduction are well-typed, and thus will not go awry. A semantic basis for this result

is also given in [77]. Therefore, we can describe these non-logical systems as providing apartial cor-
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rectness analysis, as opposed to the fully correct analysisgiven by intersection type assignment which

guarantees termination as well as functional correctness.

While we have formulated and demonstrated the illogical character of the (unrestricted) recursive

type assignment within the context ofλ-calculus, this result is by no means limited to that system.The

inconsistency is inherent to the recursive types themselves. As an example, we will consider a typeable

term in theς-calculus of objects of Abadi and Cardelli that displays thesame logical inconsistency. We

refer the reader back to Section 2.2 for the details of the calculus and the type system.

Consider the (untyped) object:

o= [m= ς(z).λx.z.m(x)]

We will give a derivation schema that assigns any arbitrary type A to the termo.m(o) - i.e. theself-

applicationof the objecto. We will use the recursive object typeO= µX . [m : X→ A]. Notice that we

can assign the type [m : O→ A] to the objecto itself, using the following derivationD:

(Val x)
{z : [m : O→ A], x : O} ⊢ z : [m : O→ A]

(Val Select)
{z : [m : O→ A], x : O} ⊢ z.m : O→ A

(Val x)
{z : [m : O→ A], x : O} ⊢ x : O

(Val App)
{z : [m : O→ A], x : O} ⊢ z.m(x) : A

(Val Fun)
{z : [m : O→ A] } ⊢ λx.z.m(x) : O→ A

(Val Object)
⊢ [m= ς(z : [m : O→ A]).λx.z.m(x)] : [m : O→ A]

Then, we can fold this type up into the recursive typeO and type the self application:

D

⊢ o : [m : O→ A]
(Val Select)

⊢ o.m : O→ A

D

⊢ o : [m : O→ A]
(Val Fold)

⊢ fold(O,o) : O
(Val App)

⊢ o.m(fold(O,o)) : A

In fact since theς binder represents animplicit form of recursion (similar to that represented by the

class mechanism itself, which we shall discuss later in Section 10.3.4), we do not even need recursive

types to derive this logical inconsistency in theς-calculus.

(Val x)
{z : [m : A] } ⊢ z : [m : A]

(Val Select)
{z : [m : A] } ⊢ z.m : A

(Val Object)
⊢ [ m= ς(z : [m : A]).z.m] : [m : A]

(val Select)
⊢ [ m= ς(z : [m : A]).z.m].m : A

As a last example, we can also do the same thing in (nominally typed)fj (andfj¢) and Java. Recall the

non-terminating program from Section 6.2. There, the classNT declared aloop method which called

itself recursively on the receiver. Remember also that the method was declared to return a value of (class)

typeNT. In fact, we can declare this method to returnanyclass type (as long as the class is declared in

the class table), and the method will be well-typed.

8.2. Nakano’s Logical Systems

Nakano defines a family of four related systems of recursive types for theλ-calculus [84], and introduces

anapproximationmodality which essentially controls the folding of these recursive types. In this section,

we will give a presentation of Nakano’s family of type systems and discuss their main properties. The
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family of systems can collectively be calledλ•µ, and is characterised by a core set of type assignment

rules. The four variants are named S-λ•µ, S-λ•µ+, F-λ•µ and F-λ•µ+, and are defined by different

subtyping relations.

8.2.1. The Type Systems

The type language of Nakano’s systems is essentially that ofSimply Typed Lambda Calculus, extended

with recursive types and the• approximation modality (called “bullet”), which is a unarytype construc-

tor. Intuitively, this operator ensures that recursive references are ‘well-behaved’, and its ability to do so

derives from the requirement that every recursive reference must occur within the scope of the approx-

imation modality. Since this syntactic property is non-local, we must first define a set ofpretypes(or

pseudo type expressions, as Nakano calls them).

Definition 8.4 (λ•µ Pretypes). 1. The set ofλ•µ pretypesare defined by the following grammar:

P,Q,T ::= X | •P | P→ Q | µX . (P→ Q)

where X, Y, Z range over a denumerable set of typevariables.

2. The notation•n P denotes the pretype• . . .•︸︷︷︸
n times

P, where n≥ 0.

The type constructorµ is abinderand we can define the usual notion of free and bound occurrences of

type variables. Also, for a pretypeµX .P we will call all bound occurrences ofX in P recursivevariables.

Certain types inλ•µ are equivalent to the typeω of the intersection type discipline, and can be assigned

to all terms. These types are called⊤-variants.

Definition 8.5 (⊤-Variants). 1. A pretype P is an F-⊤-variant if and only if P is of the form

•m0 µX1 .•
m1 µX2 . . . .µXn .•

mn Xi

for some n> 0 and1≤ i ≤ n with mi + . . .+mn > 0.

2. Let(·)∗ be the following transformation on pretypes1:

X∗ = X

(•X)∗ = •(X∗)

(P→ Q)∗ = Q∗

(µX .P)∗ = µX .P∗

Then a pretype P is an S-⊤-variant if and only if P∗ is an F-⊤-variant.

3. We will use the constant⊤ to denote any F-⊤-variant or S-⊤-variant.

The well-behavedness property on recursive references that we mentioned above is expressed formally

through the notion of properness:

1Nakano uses the notationP to denote this transformation, however since we use this notation for another purpose, we have
defined an alternative.
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Definition 8.6 (Properness). A pretype P is calledF-proper(respectivelyS-proper) in a type variable

X whenever X occurs freely in P only (a) within the scope of the• type constructor; or (b) in a subex-

pression Q→ T where T is an F-⊤-variant (resp. S-⊤-variant). We may simply write that a pretype is

properin X when it is clear from the context whether we mean F-properor S-proper.

The types ofλ•µ are those pretypes which are proper in all their recursive type variables.

Definition 8.7 (λ•µ Types). The set of F- (respectively S-)typesconsists of those pretypes P such that

P is F-proper (resp. S-proper) in X for all of its subexpressions of the formµX .Q. The metavariables A,

B, C, D will be used to range over typesonly.

Types are considered moduloα-equivalence (renaming of type variables respectingµ-bindings), and the

notationA[B/X], as usual, stands for the typeA in which all the (free) occurrences ofX have been

replaced by the typeB.

An equivalence relation is given for each set ofλ•µ types.

Definition 8.8 (λ•µ Type Equivalence). The equivalence relation≃ on F-types (respectively, S-types) is

defined as the smallest such equivalence relation (i.e. reflexive, transitive and symmetric) satisfying the

following conditions:

(≃-•) If A ≃ B then•A≃ •B.

(≃-→) If A ≃ B and C≃ D then A→C ≃ B→ D.

(≃-fix) µX .A≃ A[µX .A/X].

(≃-uniq) If A ≃ B[A/X] and B is (F/S-)proper in X, then A≃ µX .B.

where the equivalence relation on F-types satisfies the additional condition:

(≃-⊤) A→⊤ ≃ B→⊤ (for all F-λ•µ types A and B).

and the equivalence relation on S-types satisfies the additional condition:

(≃-⊤) A→⊤ ≃ ⊤ (for all S-λ•µ types A).

Nakano remarks that two types are equivalent according to this relation whenever their possibly infinite

unfolding (according to the (≃ -fix) rule above) is the same. He does not explicitly define types to be

infinite expressions which is what would be required for his remark to hold true. However, it seems

obvious from his remark that this is the implicit intention in the definition. As we mentioned in the

previous section when considering the systemλµ of [34], we may define types to be either finite or

infinite expressions. If one only allows type expressions tobe finite, then the notion of equality given by

≃ is calledweakand, conversely, if one allows type expressions to be infinite then≃ is calledstrong. In

the following chapter, when we define a type inference procedure for Nakano’s systems, we use a notion

of weak equivalence.

The approximation modality induces a subtyping relation� for each of the four systems, which

Nakano defines in the style of Amadio and Cardelli [5] using a derivability relation on subtypingjudge-

ments.

Definition 8.9 (Subtyping Relation). 1. a subtypingstatementis of the form A� B.
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2. A subtypingassumptionγ is a set of subtyping statements X� Y (that is the types in the statement

arevariables, and for each such statement inγ, X and Y do not appear in any other statement inγ.

We writeγ1∪γ2 only whenγ1 andγ2 are subtyping assumptions and their union is also a (valid)

subtyping assumption.

3. A subtypingjudgementis of the formγ ⊢ A � B. Valid subtyping judgements are derived by the

following derivation rules:

(�-assump) :
γ ∪{X � Y} ⊢ X � Y (�-⊤) :

γ ⊢ A� ⊤

(�-approx) :
γ ⊢ A� •A (�-reflex) : (A≃ B)

γ ⊢ A� B

(�-trans) :
γ1 ⊢ A� B γ2 ⊢ B�C

γ1∪γ2 ⊢ A�C

(�-•) :
γ ⊢ A� B

γ ⊢ •A� •B
(�-→) :

γ1 ⊢C � A γ2 ⊢ B� D

γ1∪γ2 ⊢ A→ B�C→ D

(�-µ) :
γ ∪{X � Y} ⊢ A� B

γ ⊢ µX .A� µY.B

(
X, Y do not occur free in A, B resp.

A and B proper in X, Y resp.

)

where, for the systems F-λ•µ and F-λ•µ+ (respectively S-λ•µ and S-λ•µ+), ⊤ ranges over F-⊤

variants (respectively S-⊤-variants) and≃ is the equivalence relation on F-types (respectively

S-types); and additionally:

a) the subtyping relation for the systems F-λ•µ and F-λ•µ+ satisfies the rule:

(�-→•) :
γ ⊢ A→ B� •A→•B

b) the subtyping relation for the systems S-λ•µ and S-λ•µ+ satisfies the rule:

(�-→•) :
γ ⊢ •(A→ B) � •A→ •B

c) the subtyping relation for the systems F-λ•µ+ and S-λ•µ+ satisfies the rule:

(�-→•) :
γ ⊢ •A→ •B� •(A→ B)

4. We write A� B whenever⊢ A� B is a valid subtyping judgement.

F- and S-types are assigned toλ-terms as follows.

Definition 8.10 (λ•µ Type Assignment). 1. An F-type (respectively S-type) statement is of the form

M : A where M is aλ-term and A is an F-type (resp. S-type). Theλ-term M is called thesubject

of the statement.

2. An F-type (respectively S-type) environmentΓ is a set of F-type (resp, S-type) statements in which

the subject of each statement is a term variable, and is alsounique. We writeΓ, x : A for the F-type

(resp. S-type) environmentΓ∪{x : A} where x does not appear as the subject of any statement in

Γ. If Γ = {x1 : A1, . . . , xn : An }, then•Γ denotes the type environment{x1 : •A1, . . . , xn : •An }.

3. Type assignment⊢ in the systems F-λ•µ and F-λ•µ+ (respectively S-λ•µ and S-λ•µ+) is a relation
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between F-type (resp. S-type) environments and F-type (resp. S-type) statements. It is defined by

the following natural deduction rules:

(var) :
Γ, x : A ⊢ x : A

(nec) :
Γ ⊢ M : A

•Γ ⊢ M : •A

(→ I ) :
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A→ B

(⊤) :
Γ ⊢ M : ⊤

(�) :
Γ ⊢ M:A

(A� B)
Γ ⊢ M:B

(→ E) :
Γ ⊢ M : •n(A→ B) Γ ⊢ N : •n A

Γ ⊢ M N : •n B

where⊤ ranges over F-⊤-variants (resp. S-⊤-variants) and the subtyping relation in the(sub)

rule is appropriate to the system being defined. Furthermore, the system F-λ•µ+ (resp. S-λ•µ+)

has the following additional rule:

(•) :
•Γ ⊢ M : •A

Γ ⊢ M : A

Notice that in the system S-λ•µ and its extension S-λ•µ+, since the subtyping relation gives us•(A→ B)�

•A→ •B, the rule for application can be simplified to its standard form:

Γ ⊢ M : A→ B Γ ⊢ N : A

Γ ⊢ M N : B

Also, in the systems F-λ•µ+ and S-λ•µ+ we can show that the (nec) rule is redundant.

Nakano motivates these different systems by giving a realizability interpretation of types over various

classes of Kripke frames, into models of the untypedλ-calculus. The reason for calling the systems

F-λ•µ and S-λ•µ then becomes clear, since the semantics of these systems corresponds, respectively,

to the F-semantics and the Simple semantics of types (cf. [62]). The precise details of these semantics

are not immediately relevant to the research in this thesis,and so we will not discuss them here. The

interested reader is referred to [82, 84]. The important feature of the semantics, however, is that they

allow to show a number of convergence results for typeable terms, which we describe next.

8.2.2. Convergence Properties

Definition 8.11 (Tail Finite Types). A type A istail finite if and only if

A≃ •m1(B1→ •
m1(B2→ . . .•mn Bn→ X))

for some n,m1, . . . ,mn ≥ 0 and types B1, . . . ,Bn and type variable X.

Using this notion of tail finiteness, we can state some convergence properties of typeable terms in

Nakano’s systems.

Theorem 8.12(Convergence [84, Theorem 2]). LetΓ ⊢ M : A be derivable in any of the systems F-λ•µ,

F-λ•µ+, S-λ•µ or S-λ•µ+, and letΓ ⊢ N : B be derivable in either F-λ•µ or F-λ•µ+; then

1. if A is tail finite, then M is head normalisable.

2. if B; ⊤ then N is weakly head normalisable (i.e. reduces to aλ-abstraction).
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To provide some intuition as to why typeability in Nakano’s systems entails these convergence prop-

erties, let us consider how we might try and modify the derivation of the unsolvable term (λx.x x)(λx.x x)

given in Section 8.1 to be a valid derivation in Nakano’s typeassignment systems. The crucial element

is that the typeµX . (X→ A) is now no longer well-formed since the recursive variableX does not occur

under the scope of the• type constructor. Let us modify it, then, as follows, and letB′ = µX . (•X→ A).

Now notice that we may only assign the typeB′→ A to the termλx.x x:

(var)
x : B′ ⊢ x : B′

(�)
x : B′ ⊢ x : •B′→ A

(var)
x : B′ ⊢ x : B′

(�)
x : B′ ⊢ x : •B′

(→ E)
x : B′ ⊢ x x : A

(→ I )
⊢ λx.x x : B′→ A

The unfolding of the typeB′ is •B′→ A; notice that we have•B′→ A� B′→ A butnot the converse.

Therefore, we cannot ‘fold’ the typeB′→ A back up into the typeB′ in order to type the application of

λx.x x to itself. We could try adding a bullet to the type assumptionfor x, but this does not get us very

far, as then we will have to derive the type statementλx.x x : •B′→ •A:

(var)
x : •B′ ⊢ x : •B′

(�)
x : B′ ⊢ x : •(•B′→ A)

(var)
x : •B′ ⊢ x : •B′

(�)
x : •B′ ⊢ x : ••B′

(→ E)
x : •B′ ⊢ x x : •A

(→ I )
⊢ λx.x x : •B′→ •A

and again, the subtyping relation gives us•B′→ A� •B′→•A, but not the converse. Notice also that

•B′→•A� •(B′→ A), thus we may only derivesupertypesof •B′→ A, and so we will never be able to

fold up the type we derive into the typeB′ itself. It is for this reason that we describe the approximation

modality• as controlling thefolding of recursive types.

This also shows why we call Nakano’s systems ‘logical’. Since we cannot assign types (other than⊤)

to terms such as (λx.x x) (λx.x x), there are now no longer terms for which any typeA can be derived. In

other words, viewing the type system as a logic, it is not possible to derive all formulas. In [84], Nakano

explores the notion of his type systems as modal logics and makes the observation that, viewed as such,

they are extensions of the intuitionistic logic of provability GL [23].
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8.2.3. A Type for Fixed-Point Operators

After its logical character and convergence properties, the most important feature of theλ•µ type sys-

tems for our work is that terms which arefixed-point combinators(cf. Section 6.5) have the charac-

teristic type scheme (•A→ A) → A. This can be illustrated using Curry’s fixed-point operatorY =

λ f .(λx. f (x x)) (λx. f (x x)) and the following derivation, which is valid in each of thefour systems we

have described above, LetD be the following derivation:

(var)
{ f : •A→ A, x : •B′ } ⊢ f : •A→ A .

.

.

.

(var)
{ f : •A→ A, x : •B′ } ⊢ x : •B′

(�)
{ f : •A→ A, x : •B′ } ⊢ x : •(•B′→ A)

(var)
{ f : •A→ A, x : •B′ } ⊢ x : •B′

(�)
{ f : •A→ A, x : •B′ } ⊢ x : ••B′

(→ E)
{ f : •A→ A, x : •B′ } ⊢ x x : •A

(→ E)
{ f : •A→ A, x : •B′ } ⊢ f (x x) : A

(→ I )
{ f : •A→ A} ⊢ λx. f (x x) : •B′→ A

whereB′ = µX . (•X→ A) is the type that we considered above. Then we can derive:

D

{ f : (•A→ A) } ⊢ λx. f (x x) : •B′→ A

D

{ f : (•A→ A) } ⊢ λx. f (x x) : •B′→ A
(�)

{ f : (•A→ A) } ⊢ λx. f (x x) : •B′
(→ E)

{ f : (•A→ A) } ⊢ (λx. f (x x)) (λx. f (x x)) : A
(→ I )

⊢ λ f .(λx. f (x x)) (λx. f (x x)) : (•A→ A)→ A

The powerful corollary to this result is that this allows us to give a logical, type-based treatment to re-

cursion, and more specifically, to recursively definedclasses. However, before describing how Nakano’s

approach can be applied in the object-oriented setting, in the following chapter we will consider a type

inference procedure for Nakano’s systems.

One final remark that we will make first, though, concerns Nakano’s definition of⊤-variants in

the different systems. We point out that Nakano’s definition distinguishes each of the type schemes

µX . (A→ •X), A→⊤ and⊤ in the F-λ•µ systems butnot in the S-λ•µ systems. It is for this reason,

essentially, that the F-systems can give weak head normalisation guarantees whereas the S-systems can-

not, as the first two of these types can be assigned to weakly head normalisable terms that do not have

head normal forms:

⊢ Y : (•µX . (A→•X)→ µX . (A→•X))→ µX . (A→•X)

(var)
{ x : •µX . (A→•X),y : A} ⊢ x : •µX . (A→•X)

(→ I )
{ x : •µX . (A→ •X) } ⊢ λy.x : A→•µX . (A→•X)

(→ I )
⊢ λxy.x : •µX . (A→ •X)→ A→ •µX . (A→ •X)

(�)
⊢ λxy.x : •µX . (A→ •X)→ µX . (A→ •X)

(→ E)
⊢ Y (λxy.x) : µX . (A→ •X)

(⊤)
{y : A} ⊢ (λx.x x) (λx.x x) : ⊤

(→ I )
⊢ λy.(λx.x x) (λx.x x) : A→⊤
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We do not see the necessity of making this distinction for thetwo systems, from a semantic point of

view. We believe that by adopting a uniform definition for⊤-variants across all the systems, the S-λ•µ

systems could also enjoy weak head normalisation. In the following chapter, we will use such a system

when formulating a type inference procedure, since we wouldlike to distinguish the typeµX . (A→•X)

from⊤, while being able to rely on the equivalence•(A→ B) ≃ •A→•B.

Indeed, the first term we have typed above is a crucial examplein demonstrating the application of

this approach tooo, since it corresponds to the self-returning object that we considered in Section 6.1.

Notice that we may assign to this term the more particular typeµX . (⊤→ •X), and this in turn allows us

to type, with thatsametype, any application of the formY (λxy.x) M1 . . .Mn, for arbitrarily large values

of n. This type analysis reflects the fact that the term has the reduction behaviourY (λxy.x) M1 . . .Mn→
∗

Y (λxy.x) for anyn. Compare this with the behaviour of the self-returning object which has the reduction

behaviournew SR().self() . . . .self() →∗ new SR() for any number of consecutive invocations

of the self method. That we can draw this parallel between a (conventionally) ‘meaningless’ term in

λ-calculus and a meaningful term in an object-oriented modelshould not come as a great surprise since,

as we remarked in Section 6.5, when we interpretλ-calculus in systems with weak reduction, such terms

become meaningful.
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9. Type Inference for Nakano’s System

In this chapter, we will present an algorithm which we claim decides if a term is typeable in Nakano’s

type system (or rather, the type system S-λ•µ+ strengthened by assuming the definition for F-⊤-variants

rather than S-⊤-variants). Our algorithm is actually based on avariation of Nakano’s system, the main

feature of which is the introduction of a new set of (type) variables, which we nameinsertionvariables.

These variables actually act us unary type constructors, and are designed to allow extra bullets to be

inserted into types during unification. To support this intended functionality for insertion variables, we

define an operation calledinsertion. Insertions can be viewed as an analogue, or parallel, to theoperation

of substitutionwhich replaces ordinary type variables. Similarities can also be drawn with theexpansion

variables of Kfoury and Wells [74, 75]. It is this operation of insertion (mediated via insertion variables)

which makes the type inference possible, thus insertion variables really play a key role. This is discussed

more fully with examples towards the end of the chapter.

We also make some other minor modifications to Nakano’s system. The most obvious one is that we

define recursive types using de Bruijn indices instead of explicitly naming the (recursive) type variables

which are bound by theµ type constructor; we do this in order to avoid having to deal with α-conversion

during unification. Lastly, to simplify the formalism at this early stage of development, we do not

consider a ‘top’ type. Reincorporating the top type is an objective for future research.

An important remark to make regarding our type inference procedure is that it isunification-based:

typings are first inferred for subterms and the algorithm then searches for operations on the types they

contain such that applying the operations to the typings makes them equal. This leads to type inference

since the operations are sound with respect to the type assignment system - in other words, the operations

on the types actually correspond to operations on the typingderivations themselves. This approach

contrasts with theconstraint-based approach to type inference in which sets of typing constraints are

constructed for each subterm and then combined. Thus the algorithm infers constraint sets rather than

typings, the solution of which implies and provides a (principal) typing for the term. It is this latter

approach that is employed by Kfoury and Wells [75], for example, as well as Boudol [24], in their type

inference algorithms foritd, by Palsberg and others [86, 71] in their system of (non-logical) recursive

types forλ-calculus, and also for many type inference algorithms for object-oriented type systems [90,

51, 52, 85, 106, 29, 6].

The two approaches to type inference are, in effect, equivalent in the sense that two types are unifiable

if and only if an appropriate set of constraints is solvable.One can view the unification-based approach as

solving the constraints ‘on the fly’, as they are generated, while the constraint-based approach collects all

the constraints together first and then solves them all at theend. One might have a better understanding

of one over the other, or find one or the other more intuitive - it is largely a matter of personal taste. We

find the unification-based approach the more intuitive, which is the primary (or perhaps the sole) reason

for this research taking that direction.

The aim in defining the following type system, and associatedinference procedures, is to show that
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type inference for Nakano’s system is decidable. Our work isat an early stage and, as such, we do not

give proofs for many propositions in this chapter. Therefore, we do not claim a formal result, but instead

present our work in this chapter as a proofsketchof the intended results.

9.1. Types

We define a set of pretypes, constructed from two set of variables (ordinary type variables, and insertion

variables) and Nakano’s approximation type operator, as well as the familiar arrow, or function, type

constructor. We also have recursive types, which we formulate in anα-independent fashion using de

Bruijn indices.

Definition 9.1 (Pretypes). 1. The set ofpretypes(ranged over byπ), and its (strict) subset offunc-

tional pretypes (ranged over byφ) are defined by the following grammar, where de Bruijn indices

n range over the set of natural numbers,ϕ ranges over a denumerable set of type variables, andι

ranges over a denumerable set of insertion variables:

π ::= ϕ | n | •π | ιπ | φ

φ ::= π1→ π2 | •φ | ιφ | µ.φ

2. We use the shorthand notation•nπ (where n≥ 0) to denote the pretypeπ prefixed by n occurrences

of the• operator, i.e.• . . .•︸︷︷︸
n times

π.

3. We use the shorthand notationιnπ (where n≥ 0) to denote the pretypeπ prefixed by eachιk in

turn, i.e.ι1 . . . ιnπ.

We also define the following functions which return various different sets of variables that occur in a

pretype.

Definition 9.2 (Type Variable Set). The functiontv takes a pretypeπ and returns the set of type variables

occurring in it. It is defined inductively on the structure ofpretypes as follows:

tv(ϕ) = {ϕ}

tv(n) = ∅

tv(•π) = tv(π)

tv(ι π) = tv(π)

tv(π1→ π2) = tv(π1)∪ tv(π2)

tv(µ.φ) = tv(φ)

Definition 9.3 (Decrement Operation). If X is a set of de Bruijn indices (i.e. natural numbers) then the

set X↓ is defined by X↓= {n | n+1∈ X}. That is, all the de Bruijn indices have been decremented by1.

Definition 9.4 (Free Variable Set). The functionfv takes a pretypeπ and returns the set of de Bruijn

indices representing the free recursive ‘variables’ ofπ. It is defined inductively on the structure of

pretypes as follows:

fv(ϕ) = ∅

fv(n) = {n}

fv(•π) = fv(π)

fv(ιπ) = fv(π)

fv(π1→ π2) = fv(π1)∪ fv(π2)

fv(µ.φ) = fv(φ) ↓
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We say that a pretypeπ is closedwhen it contains no free recursive variables, i.e.fv(π) = ∅.

Definition 9.5 (Raw Variable Set). 1. The functionrawµ takes a pretypeπ and returns the set of its

raw recursive variables - those recursive variables (i.e. de Bruijn indices) occurring inπ which do

not occur within the scope of a•. It is defined inductively on the structure of pretypes as follows:

rawµ(ϕ) = ∅

rawµ(n) = {n}

rawµ(•π) = ∅

rawµ(ιπ) = rawµ(π)

rawµ(π1→ π2) = rawµ(π1)∪rawµ(π2)

rawµ(µ.φ) = rawµ(φ) ↓

2. The functionrawϕ takes a pretypeπ and returns the set of its rawtypevariables - the set of type

variables occurring inπ which do not occur within the scope ofeithera bullet or an insertion

variable. It is defined inductively on the structure of pretypes as follows:

rawϕ(ϕ) = {ϕ}

rawϕ(n) = ∅

rawϕ(•π) = ∅

rawϕ(ιπ) = ∅

rawϕ(π1→ π2) = rawϕ(π1)∪rawϕ(π2)

rawϕ(µ.φ) = rawϕ(φ)

We will now use this concept of ‘raw’ (recursive) variables to impose an extra property, calledad-

equacy, on pretypes which will be a necessary condition for considering a pretype to be a true type.

We have also extended the concept of rawness to ordinary typevariables, although we have relaxed the

notion slightly - a type variable is only considered raw whenit does not fall under the scope ofeithera

bullet or an insertion variable. This is because later, when we come todefine a unification procedure for

types, we will want to ensure that certain type variables always fall under the scope of a bullet. Because

we will also define an operation that converts insertion variables into bullets, it will be sufficient for

those given type variables to fall under the scope of either abullet or an insertion variable.

Our notion of adequacy is equivalent to Nakano’s notion of properness (see previous chapter).

Definition 9.6 (Adequacy). The set ofadequatepretypes are those pretypes for which everyµ binder

binds at least one occurrence of its associated recursive variable, and everyboundrecursive variable

occurs within the scope of a•. It is defined as the smallest set of pretypes satisfying the following

conditions:

1. ϕ is adequate, for allϕ;

2. n is adequate, for alln;

3. if π is adequate, then so are•π and ιπ;

4. if π1 andπ2 are both adequate, then so isπ1→ π2;

5. if φ is adequate and0∈ fv(φ) \rawµ(φ), thenµ.φ is adequate.

Definition 9.7 (Types). We call a pretypeπ a typewhenever it isbothadequateandclosed. The set of

types is thus a (strict) subset of the set of pretypes.

The following substitution operation allows us to formallydescribe how recursive types are folded

and unfolded, and thus also plays a role in the definition of the subtyping relation.

Definition 9.8 (µ-substitution). A µ-substitution is a function from pretypes to pretypes. Letφ be a

functional pretype, then theµ-substitution[n 7→ µ.φ] is defined by induction on the structure of pretypes
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simultaneously for everyn ∈ N as follows:

[n 7→ µ.φ](ϕ) = ϕ

[n 7→ µ.φ](n′) =


µ.φ if n = n′

n′ otherwise

[n 7→ µ.φ](•π) = •([n 7→ µ.φ](π))

[n 7→ µ.φ](ιπ) = ι ([n 7→ µ.φ](π))

[n 7→ µ.φ](π1→ π2) = ([n 7→ µ.φ](π1))→ ([n 7→ µ.φ](π2))

[n 7→ µ.φ](µ.φ′) = µ.([n+1 7→ µ.φ](φ′))

Notice thatµ-substitution has no effect ontypessince they areclosed.

Lemma 9.9. Let [n 7→ µ.φ] be a µ-substitution andπ be a pretype such thatn < fv(σ), then [n 7→

µ.φ](π) = π.

Proof. By straightforward induction on the structure of pretypes. �

Corollary 9.10. Let [n 7→ µ.φ] be anyµ-substitution andσ be any type, then the following equation

holds: [n 7→ µ.φ](σ) = σ.

Proof. Sinceσ is a type, it follows from Definition 9.7 thatfv(σ) = ∅, thus triviallyn < fv(σ). Then the

result follows immediately by Lemma 9.9. �

We now define asubtypingrelation on pretypes. As we mentioned at the end of the previous chapter

and in the introduction to the current one, our subtyping relation is based on the subtyping relation for

the system S-λ•µ+, so we have the equivalence•(σ→ τ) ≃ •σ→•τ. The rules defining our subtyping

relation are thus a simple extension of Nakano’s to apply to insertion variables as well as the• operator.

Definition 9.11 (Subtyping). The subtype relation≤ on pretypes is defined as the smallest preorder on

pretypes satisfying the following conditions:

π ≤ •π

π ≤ ιπ

• ιπ ≤ ι•π

ι•π ≤ • ιπ

•(π1→ π2) ≤ •π1→ •π2

ι (π1→ π2) ≤ ιπ1→ ιπ2

µ.φ ≤ [0 7→ µ.φ](φ)

π1 ≤ π2⇒


•π1 ≤ •π2

ιπ1 ≤ ιπ2

ι1 ι2π ≤ ι2 ι1π

•π1→ •π2 ≤ •(π1→ π2)

ιπ1→ ιπ2 ≤ ι (π1→ π2)

[0 7→ µ.φ](φ) ≤ µ.φ

φ1 ≤ φ2⇒ µ.φ1 ≤ µ.φ2

π′1 ≤ π1 & π2 ≤ π
′
2⇒ π1→ π2 ≤ π

′
1→ π′2
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We writeπ1 ≃ π2 whenever bothπ1 ≤ π2 andπ2 ≤ π1.

The following properties hold of the subtype relation.

Lemma 9.12. 1. If π ≤ π′ thenπ ≤ ιπ′ and ιπ ≤ ιπ′ for all sequencesι.

2. If ι′ is a permutation ofι, thenιπ ≃ ιπ for all pretypesπ.

Proof. By Defintion 9.11. �

We now define a subset of pretypes by specifying acanonicalform. This canonical form will play a

central role in our type inference algorithm by allowing us to separate thestrucutral content of a type

from its logical content, as encoded in the bullets and insertion variables.If pretypes are seen as trees,

then canonical pretypes are the trees in which all the bullets and insertion variables have been collected

at the leaves (the type variables and de Bruijn indices), or at the head ofµ-recursive types. As we will

see in sections 9.4 and 9.5, this allows for a clean separation of the two orthogonal subproblems involved

in unification and type inference.

Definition 9.13 (Canonical Types). 1. The set ofcanonicalpretypes (ranged over byκ), and its

(strict) subsets ofexactcanonical pretypes (ranged over byξ), approximativecanonical pretypes

(ranged over byα) andpartially approximative canonical pretypes (ranged over byβ) are defined

by the following grammar:

κ ::= β | κ1→ κ2

β ::= α | ιβ

α ::= ξ | •α

ξ ::= ϕ | n | µ.(κ1→ κ2)

2. Canonical types are canonical pretypes which are both adequate and closed.

The following lemma shows that our grammatical definition ofcanonicity defined above is adequate.

Lemma 9.14. For every pretypeπ there exists a canonical pretypeκ such thatπ ≃ κ.

Proof. By straightforward induction on the structure of pretypes. �

9.2. Type Assignment

We will now define our variant of Nakano’s type assignment. The type assignment rules are almost

identical to those of Nakano’s original system - the difference lies almost entirely in the type language

and the subtyping relation. Nakano’s original typing rulesthemselves are almost identical to the familiar

type assignment rules for theλ-calculus: there is just one additional rule that deals withthe approxima-

tion • type constructor. Similarly, our system, having added insertion variables, includes one extra rule

which is simply the analogue of Nakano’s rule, but for insertion variables.

Definition 9.15 (Type Environments). 1. A typestatementis of the form M:σ, where M is aλ-term

andσ is a type. We call M thesubjectof the statement.
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2. A typeenvironmentΠ is a finite set of type statements such that the subject of eachstatement inΠ

is avariable, and is alsounique.

3. We write x∈ Π if and only if there is a statement x:σ ∈ Π. Similarly, we write x<Π if and only if

there isnostatement x:σ ∈ Π.

4. The notationΠ, x:σ denotes the type environmentΠ∪{x:σ}where x does not appear as the subject

of any statement inΠ.

5. The notation•Π denotes the type environment{x:•σ | x:σ ∈Π} and similarly the environmentιΠ

denotes the type environment{x: ισ | x:σ ∈ Π}.

6. The subtyping relation is extended to type environments as follows:

Π2 ≤ Π1 if and only if∀x:σ ∈ Π1 . ∃τ ≤ σ . x:τ ∈ Π2

Definition 9.16 (Type Assignment). TypeassignmentΠ ⊢ M:σ is a relation between type environments

and type statements. It is defined by the following natural deduction system:

(var) :
Π, x:σ ⊢ x:σ (sub) :

Π ⊢ M:σ
(σ≤τ)

Π ⊢ M:τ

(•) :
•Π ⊢ M:•σ

Π ⊢ M:σ
(ι) :

ιΠ ⊢ M: ισ

Π ⊢ M:σ

(→I) :
Π, x:σ ⊢ M:τ

Π ⊢ λx.M:σ→ τ
(→E) :

Π ⊢ M:σ→ τ Π ⊢ N:σ

Π ⊢ M N:τ

If Π ⊢ M:σ holds, then we say that the term M can beassignedthe typeσ using the type environmentΠ.

Lemma 9.17(Weakening). LetΠ2 ≤ Π1; if Π1 ⊢ M:σ thenΠ2 ⊢ M:σ.

Proof. By straightforward induction on the structure of typing derivations. �

The following holds of type assignment in our system (noticethat the result as stated for the• type

constructor is shown in Nakano’s paper, and its extension toinsertion variables for our system also

holds).

Lemma 9.18. LetΠ1 andΠ2 bedisjoint type environments (i.e. the set of subjects used in the statements

of Π1 is disjoint from the set of subjects used in the statements ofΠ2); if Π1∪Π2 ⊢ M:σ is derivable,

then so are•Π1∪Π2 ⊢ M:•σ and ιΠ1∪Π2 ⊢ M: ισ.

Proof. By induction on the structure of typing derivations. �

We claim the completeness of our system with respect to Nakano’s original system S-λ•µ+. We do

not give a rigorous proof, which would include defining a translation from our types based on de Bruijn

indices to Nakano’s types usingµ-bound type variables and also showing that subtyping is preserved via

this translation. However, we appeal to the reader’s intuition to see that this result holds: one can imagine

defining a one-to-one mapping between de Bruijn indices and type variables, and using this mapping to

define a translation of types. It should be easy to see that under such a translation, subtyping in the one

system mirrors subtyping in the other. Nakano types do not, of course, include insertion variables, and
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thus neither would their translation, however any type without insertion variables is also a type in our

system. The result then follows since all the rules of Nakano’s type system are contained in our system.

Proposition 9.19 (Completeness of Type Assignment). If a term M is typeable in Nakano’s system

S-λ•µ+ without using⊤-variants, then it is also typeable in our type assignment system of Definition

9.16.

We will also claim thesoundnessof our system with respect to Nakano’s, however in order to dothis

we will need to define some operations on types, which we will do in the following section.

9.3. Operations on Types

We are almost ready to define our unification and type inference procedures. However, in order to do

so we will need to define a set ofoperationsthat transform (pre)types. We do so in this section. The

operations include the familiar one ofsubstitution, although we define a slight variant of the traditional

notion which ensures (and, more importantly for our algorithm, preserves) the canonical structure of

pretypes. We also define the new operation ofinsertion, which allows us to place bullets (and other

insertion variables) in types by replacing insertion variables.

We begin by defining operations which push bullets innermostand insertion variables to the outermost

occurrence along each path of a bullet or insertion variable.

Definition 9.20 (Push). 1. The bullet pushing operationbPush is defined inductively on the struc-

ture of pretypes as follows:

bPush(ϕ) = •ϕ

bPush(n) = •n

bPush(•π) = •(bPush(π))

bPush(ιπ) = ι (bPush(π))

bPush(π1→ π2) = (bPush(π1))→ (bPush(π2))

bPush(µ.φ) = •µ.φ

We use the shorthand notationbPush[n] to denote the composition ofbPush n times: formally,

we define inductively over n:

bPush[1] = bPush

bPush[n+1] = bPush◦bPush[n]

with bPush[0] denoting the identity function.

2. For each insertion variableι, the insertion variable pushing operationiPush[ι] is defined induc-

tively over the structure of pretypes as follows:

iPush[ι](ϕ) = ιϕ

iPush[ι](n) = ιn
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iPush[ι](•π) = ι•π

iPush[ι](ι′ π) = ι ι′π

iPush[ι](π1→ π2) = (iPush[ι](π1))→ (iPush[ι](π2))

iPush[ι](µ.φ) = ιµ.φ

We use the notationiPush[ιr ] (where r> 0) to denote the composition of eachiPush[ιk], that is

iPush[ι1] ◦ . . .◦ iPush[ιr ]. The notationiPush[ǫ] denotes the identity function on pretypes.

We use this operation to define ourcanonicalisingsubstitution operation.

Definition 9.21 (Canonicalising Type Substitution). A canonicalising type substitutionis an operation

on pretypes that replaces type variables by (canonical) pretypes, while at the same time converting the

resulting type to a canonical form. Letϕ be a type variable andκ be a canonical pretype; then the

canonicalising type substitution[ϕ 7→ κ] is defined inductively on the structure of pretypes as follows:

[ϕ 7→ κ](ϕ′) =


κ if ϕ = ϕ′

ϕ′ otherwise

[ϕ 7→ κ](n) = n

[ϕ 7→ κ](•π) = bPush([ϕ 7→ κ](π))

[ϕ 7→ κ](ι π) = iPush[ι]([ϕ 7→ κ](π))

[ϕ 7→ κ](π1→ π2) = ([ϕ 7→ κ](π1))→ ([ϕ 7→ κ](π2))

[ϕ 7→ κ](µ.φ) = µ.([ϕ 7→ κ](φ))

It is straightforward to show that the result of apply a canonicalising substitution is a canonical type.

Lemma 9.22. 1. Letκ be a canonical type; thenbPush(κ) and iPush(κ) are both canonical types.

2. Letπ be a type and[ϕ 7→ κ] be a canonicalising substitution; then[ϕ 7→ κ](π) is a canonical type.

Proof. 1. By straightforward induction on the structure of canonical pretypes.

2. By straightforward induction on the structure of pretypes, using the first part for the cases where

π = •π′ andπ = ιπ′. �

As we have already mentioned, the insertion operation replaces insertion variables by sequences of

insertion variables and bullets. Insertions are needed fortype inference, and in Section 9.6.1 we will

discuss in detail why this is.

Definition 9.23(Insertion). An insertionI is a function from pretypes to pretypes which inserts a number

of insertion variables and/or bullets in to a pretype at specific locations by replacing insertion variables,

and then canonicalises the resulting type. Ifι is a sequence of insertion variables, then the insertion

[ι 7→ ι•r ] (where r≥ 0) is defined inductively over the structure of pretypes as follows:

[ι 7→ ι•r ](ϕ) = ϕ

[ι 7→ ι•r ](n) = n

[ι 7→ ι•r ](•π) = •([ι 7→ ι•r ](π))
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[ι 7→ ι•r ](ι′ π) =


ι (bPush[r]([ ι 7→ ι•r ](π))) if ι = ι′

ι′ ([ι 7→ ι•r ](π)) otherwise

[ι 7→ ι•r ](π1→ π2) = ([ι 7→ ι•r ](π1))→ ([ι 7→ ι•r ](π2))

[ι 7→ ι•r ](µ.φ) = µ.([ι 7→ ι•r ](φ))

We may write[ι 7→ ι] for [ι 7→ ι•r ] where r= 0.

We now abstract each of the specific operations into a single concept.

Definition 9.24 (Operations). We defineoperationsO as follows:

1. The identity functionId on pretypes is an operation;

2. Canonicalising type substitutions are operations;

3. Insertions are operations;

4. if O1 andO2 are operations, then so is their compositionO2◦O1, whereO2◦O1(π) = O2(O1(π))

for all pretypesπ.

The operations we have defined above should exhibit a number of soundness properties of these oper-

ations with respect to subtyping and type assignment. Thesesoundness properties will be necessary in

order to show the soundness of our unification and type inference procedures.

Proposition 9.25. Let O be an operation; ifσ is a type, then so isO(σ).

Proof technique.The proof is by induction on the structure of pretypes. We must first show this holds

for the operationsbPush andiPush, and then we use this to show that it holds for each different kind of

operation.

Proposition 9.26. Let O be an operation, andπ1,π2 be pretypes such thatπ1 ≤ π2; thenO(π1) ≤ O(π2)

also holds.

Proof technique.By induction on the definition of subtyping. Again, we must prove for the operations

bPush andiPush first, and then for each kind of operation.

Most importantly, using these previous results, we would beable to show that operations are sound

with respect to type assignment.

Proposition 9.27. If Π ⊢ M:σ thenO(Π) ⊢ M:O(σ) for all operationsO.

Proof technique.By induction on the structure of typing derivations. As before, we must show the result

for bPush, iPush and each kind of operation in turn. The case for the subtypingrule (sub) would the

soundness result we formulated previously, Proposition 9.26.

We claim as a corollary of this, that our system is sound with respect to Nakano’s system.

Proposition 9.28(Soundness of Type Assignment). If the term M is typeable in system of Definition

9.16, then it is typeable in Nakano’s system S-λ•µ+.
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Proof technique.For any typing derivation, we can construct an operation which removes all the inser-

tion variables from the types it contains - if{ ι1, . . . , ιn} is the set of all insertion variables mentioned in the

derivation, we simply construct the operationO = [ι1 7→ ǫ] ◦ . . .◦ [ιn 7→ ǫ]. Applying this operation to any

type in the derivation would result in a type not containing any insertion variables, i.e. a straightforward

Nakano type (modulo the translation between de Bruijn indices andµ-bound type variables discussed in

the previous section). It is then unproblematic to show by induction on the structure of derivations in our

type system that a typing derivation for the term exists in Nakano’s system, as the structure of the rules

in our variant of type assignment are identical to the rules of Nakano’s system, apart from the (ι) rule,

which is in any case obviated by the operationO since it removes all insertion variables.

9.4. A Decision Procedure for Subtyping

In this section we will give a procedure for deciding whetherone type is a subtype of another. It will be

defined oncanonicaltypes, which implies a decision procedure for all types since it is straightforward

to find, for any given type, the canonical type to which it is equivalent. The procedure we will define is

sound, butincomplete, so it returns either the answer “yes”, or “unknown”.

Our approach to deciding subtyping is to split the question into two orthogonal sub-questions: a

structuralone, and alogical one. The logical information of a type is encoded by the bullet constructor,

while the structural information is captured using the function (→) and recursive (µ) type constructors.

The use ofcanonicaltypes (in which bullets – and insertion variables – are pushed innermost) allows

us to collect all the logical constraints into one place where they can be checked independently of the

structural constraints. The structural part of the problemthen turns out to be the same as that of for

non-logical recursive types, which is shown to be decidablein [35]. The logical constraints boil down,

in the end, to simple (in)equalities on natural numbers and sequences of insertion variables.

As in [35], we will define an inference system whose judgements assert that one pretype is a subtype

of another which we will then show to be decidable. However, before we do this we will need to define

a notion that allows us to check the logical constraints expressed by the insertion variables in a type.

Definition 9.29 (Permutation Suffix). Let ι and ι′ be two sequences of insertion variables; ifι′′ and ι′′′

are permutations ofι and ι′ respectively, such thatι′′′ is a suffix of ι′′ (i.e. ι′′ = ι′′′′ · ι′′′ for someι′′′′)

then we say thatι′ is apermutation suffix of ι and writeι ⊑ ι′.

Notice that the permutation suffix property is decidable since it can be computed by the following

procedure. First, count the number of occurrences of each insertion variable in the sequencesι and ι′.

Secondly, check that each insertion variable occurs at least as often inι as it does inι′. If this is the case,

thenι ⊑ ι′, otherwise not.

We can now define our subtyping inference system.

Definition 9.30 (Subtype Inference). 1. A subtyping judgement asserts that one (canonical) pretype

is a subtype of another, and is of the form⊢ κ1 ≤ κ2.

2. Valid subtyping judgements are derived using the following natural deduction inference system:

(st-var) : (r ≤ s & ι′ ⊑ ι)
⊢ ι•r ϕ ≤ ι′ •sϕ
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(st-recvar) : (r ≤ s& ι′ ⊑ ι)
⊢ ι•r n ≤ ι′ •sn

(st-fun) :
⊢ κ′1 ≤ κ1 ⊢ κ2 ≤ κ

′
2

⊢ κ1→ κ2 ≤ κ
′
1→ κ′2

(st-recfun) :
⊢ κ1→ κ2 ≤ κ

′
1→ κ′2

(r ≤ s & ι′ ⊑ ι)
⊢ ι•r µ.(κ1→ κ2) ≤ ι′ •sµ.(κ′1→ κ′2)

(st-unfoldL) :
⊢ iPush[ι](bPush[r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2))) ≤ κ′1→ κ′2

⊢ ι•r µ.(κ1→ κ2) ≤ κ′1→ κ′2

(st-unfoldR) :
⊢ κ1→ κ2 ≤ iPush[ι](bPush[s]([0 7→ µ.(κ′1→ κ′2)](κ′1→ κ′2)))

⊢ κ1→ κ2 ≤ ι•
sµ.(κ′1→ κ′2)

3. We will write⊢ π1 ≃ π2 whenever both⊢ π1 ≤ π2 and⊢ π2 ≤ π1 are valid subtyping judgements; we

will also write0 π1 ≤ π2 whenever the judgement⊢ π1 ≤ π2 is not derivable.

Derivability in this inference system implies subtyping.

Lemma 9.31. If ⊢ π1 ≤ π2 is derivable thenπ1 ≤ π2.

Proof. By straightforward induction on the structure of derivations. Each rule corresponds to a case in

Definition 9.11. �

We have remarked that our decision procedure is not completewith respect to the subtyping relation.

Thus, there exist typesσ andτ such thatσ ≤ τ but⊢ σ ≤ τ is not derivable. This stems from the fact that

the subtyping relation is defined through aninterplay of structural and logical rules, but the inference

system deals first with the structure of a pretype, and only secondly with the logical aspect.

Example 9.32(Counter-example to completeness). The pair of canonical pretypes(ϕ→ ϕ, •ϕ→•ϕ)

is in the subtype relation, but the corresponding subtype inference judgement⊢ ϕ→ ϕ ≤ •ϕ→ •ϕ is not

derivable.

1. ϕ→ ϕ ≤ •(ϕ→ ϕ) ≤ •ϕ→•ϕ

2. Suppose a derivation exists for the judgement⊢ ϕ→ ϕ ≤ •ϕ→ •ϕ. The last rule applied must be

(st-fun), and thus both the judgements⊢ •ϕ ≤ ϕ and⊢ ϕ ≤ •ϕ must also be derivable. The latter

of these follows immediately from the(st-var) rule, but the former (which could only be derived

using the(st-var) rule again) is not valid since the side condition does not hold: the left hand

type in the judgement has one more bullet than the right hand type. Thus, the original judgement

⊢ ϕ→ ϕ ≤ •ϕ→ •ϕ is not derivable.

We now aim to show that derivability in the subtyping inference system is decidable. To this end we

define a mapping which identifies astructural representativefor each pretype. These structural repre-

sentatives are themselves pretypes, but ones that do not contain any bullets or insertion variables (indeed,

they are ordinary, ‘non-logical’ recursive types); thus, they contain only thestructural information of a

pretype. We will use these structural representatives to argue that the amount of structural information

in a pretype is a calculable, finite quantity. We will also usethem to argue that the structure of any

derivation depends only on the structure of the types in the judgement, and thus that the structure of
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derivations in the subtyping inference system have a well-defined bound - implying the decidability of

derivability.

Definition 9.33 (Structural Representatives). Thestructural representativeof a pretypeπ is defined in-

ductively in the structure of pretypes as follows:

struct(ϕ) = ϕ

struct(n) = n

struct(•π)

struct(ιπ)


= struct(π)

struct(π1→ π2) = (struct(π1))→ (struct(π2))

struct(µ.φ) = µ.(struct(φ))

We now define a notion, called thestructural closure, that allows us to calculate how much structural

information a pretype contains. It is inspired by thesubterm closureconstruction given in [26, 35],

however we have chosen to give our definition a slightly different name since it does not includeall

syntactic subterms of a type, instead abstracting away bullets and insertion variables.

Definition 9.34 (Structural Closure). 1. Thestructural closureof a pretypeπ is defined by cases as

follows:

SC(ϕ) = {ϕ}

SC(n) = {n}

SC(•π) = SC(π)

SC(ιπ) = SC(π)

SC(π1→ π2) = {struct(π1→ π2)}∪SC(π1)∪SC(π2)

SC(µ.φ) = {struct(µ.φ)}∪SC(φ)∪SC([0 7→ µ.φ](φ))

2. We extend the notion of structural closure to sets of pretypes P as follows:

SC(P) =
⋃

π∈P

SC(π)

The following result was stated in [35], and proven in [26], and implies that we can easily compute

the structural closure.

Proposition 9.35. For any pretypeπ, the setSC(π) is finite.

We admit that the system presented here is slightly different from the systems in those papers, in that

our treatment uses de Bruijn indices instead ofµ-bound variables, and so the proof given by Brandt and

Henglein does not automatically justify the result as formulated for our system. However, we point to

recent work by Endrulliset al [53] which presents a much fuller treatment of the question of the decid-

ability of weakµ-equality and the subterm closure construction, includingα-independent representations

of µ-terms (i.e. de Bruijn indices). For now, given that our system is clearly a variant in this family, we
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conjecture that the result holds for our formulation. Proving this result holds for our system specifically

is left for future work.

This result immediately implies the following corollary.

Lemma 9.36. Let P be a set of pretypes; if P is finite, then so isSC(P).

Proof. Immediate, by Proposition 9.35 sinceSC(P) is simply the union of the structural closures of each

π ∈ P, which given thatP is finite, is thus a finite union of finite sets. �

The following properties hold of the structural closure construction. They are needed to show Lemma

9.39 below.

Lemma 9.37(Properties of Structural Closures). 1. struct(π) ∈ SC(π).

2. SC(bPush[n](π)) = SC(π).

3. SC(iPush[ι](π)) = SC(π).

Proof. By straightforward induction on the structure of pretypes,using Definition 9.34. �

Returning to the question at hand, we note that the inferencesystem possesses two properties which

result in the decidability of derivability. The first is thatit is entirelystructure directed: each rule matches

a structural feature of types (with the logical constraintschecked as side conditions). In addition, it is

entirelydeterministic: for each structural combination there is exactly one rule and so the structure of a

pair of pretypes in the subtype relationuniquelydetermines the derivation that witnesses the validity of

subtyping.

Proposition 9.38.LetD1 andD2 be the derivations for⊢ κ1 ≤ κ2 and⊢ κ′1 ≤ κ
′
2 respectively; ifstruct(κ1)=

struct(κ′1) and struct(κ2) = struct(κ′2), thenD1 andD2 have the same structure (i.e. the same rules are

applied in the same order).

Proof technique.By induction on the structure of subtype inference derivations.

Secondly, for any derivation the structural representatives of the types in the statements it contains

are all themselves members of a well-defined and, most importantly,finite set - the union of the subterm

closures of the structural representatives of the pretypesin the derived judgement.

Proposition 9.39. LetD be a derivation of⊢ κ1 ≤ κ2, then all the statementsκ′1 ≤ κ
′
2 occurring in it are

such that bothstruct(κ′1) andstruct(κ′2) are in the setSC({κ1, κ2 }).

Proof technique.By induction on the structure of subtype inference derivations.

This means that the height of any derivation in the subtypinginference system is finitely bounded.

Consequently, to decide if any given subtyping judgement isderivable, we need only check the validity

(i.e. derivability) of a finite number of statements.

Corollary 9.40. LetD be a derivation for⊢ κ ≤ κ′; then the height ofD is no greater than|SC({κ,κ′ })|2.

Proof. By contradiction.

Let D be the setSC(struct(κ)) ∪SC(struct(κ′)) and letD be the derivation for⊢ κ ≤ κ′. Assume

D has a heighth > |D|2, then there are derivationsD1, . . . ,Dh such thatD = D1 and for eachi ∈ h
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the derivationsDi+1, . . . ,Dh are (proper) subderivations ofDi. Thus there is a set of pairs of pretypes

{(κ1, κ
′
1), . . . , (κh, κ

′
h)}which are the pretypes in the final judgements of each of the derivationsD1, . . . ,Dh.

By Proposition 9.39 we know that for each pair (κi , κ
′
i ), bothstruct(κi) andstruct(κ′i ) are inD.

Since the number of unique pairs (π, π′) such that bothπ andπ′ are inD is |D|2 < h, it must be that

there are two distinctj,k≤ h such thatstruct(κ j ) = struct(κk) andstruct(κ′j) = struct(κ′k). Then we know

by Proposition 9.38 thatDj andDk have the same structure and must therefore have the same height.

However, sincej andk are distinct, it must be that eitherj < k or k< j, and so either one ofDj orDk is

a proper subderivation of the other. This is impossible however, since the two derivations must have the

same structure. Therefore, the height ofD cannot exceed|D|2. �

The subtyping inference system defined above can thus very straightforwardly be turned into atermi-

nating algorithmwhich decides if any given subtyping judgement is derivable.

Definition 9.41 (Subtyping Decision Algorithm). The algorithmInf≤ takes in two (canonical) pretypes

and an integer parameter as input and returns eithertrue or false. It is defined as follows (where in case

the input does not match any of the clauses, the algorithm returns false):

Inf≤(d, ι•
r ϕ, ι′ •sϕ) = true (if d > 0 with r ≤ s andι′ ⊑ ι)

Inf≤(d, ι•
r n, ι′ •sn) = true (if d > 0 with r ≤ s andι′ ⊑ ι)

Inf≤(d, κ1→ κ2, κ
′
1→ κ′2) = (if d > 0)

Inf≤(d−1, κ′1, κ1)∧ Inf≤(d−1, κ2, κ
′
2)

Inf≤(d, ι•
r µ.(κ1→ κ2), ι′ •sµ.(κ′1→ κ′2)) = (if d > 0 with r ≤ s andι′ ⊑ ι)

Inf≤(d−1, κ1→ κ2, κ
′
1→ κ′2)

Inf≤(d, ι•
r µ.(κ1→ κ2), κ′1→ κ′2) = (if d > 0)

Inf≤(d−1, iPush[ι](bPush[r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2))), κ′1→ κ′2)

Inf≤(d, κ1→ κ2, ι•
sµ.(κ′1→ κ′2)) = (if d > 0)

Inf≤(d−1, κ1→ κ2, iPush[ι](bPush[s]([0 7→ µ.(κ′1→ κ′2)](κ′1→ κ′2))))

Proposition 9.42(Soundness and Completeness forInf≤). 1. ∃ d [ Inf≤(d,π1,π2)= true ]⇒⊢ π1 ≤ π2.

2. IfD is the derivation for⊢ π1 ≤ π2 andD has height h, then for all d≥ h, Inf≤(d,π1,π2) = true.

Proof technique. 1. By induction on the definition ofInf≤.

2. By induction on the structure of subtype inference derivations.

This immediately gives us a partial correctness result for the subtyping decision algorithm.
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Conjecture 9.43(Partial Correctness forInf≤). Let d= |SC({π1,π2})|2, then⊢ π1 ≤ π2⇔ Inf≤(d,π1,π2) =

true

Proof technique.By Proposition 9.42.

Lastly, we must show that the algorithmInf≤ terminates.

Theorem 9.44(Termination ofInf≤). The algorithmInf≤ terminates on all inputs(d,π1,π2).

Proof. By easy induction ond. In the base case (d = 0), Definition 9.41 gives that the algorithm ter-

minates returning false, since no cases apply. For the inductive case, we do a case analysis onπ1 and

π2. If they are both either type or recursive variables (prefixed by some number of bullets and insertion

variables), then the algorithm terminates returning either true or false depending on the relative number

of bullets prefixing each type and whether the insertion variables prefixing the one type are a permuta-

tion suffix of those prefixing the other. In the other defined cases, the termination of the recursive calls,

and thus the outer call, follows by the inductive hypothesis. In all other undefined cases, Definition 9.41

gives that the algorithm returns false. �

9.5. Unification

In this section we will define a procedure to unify two canonical types modulo the subtype relation. That

is, our procedure, when given two typesσ andτ, will return an operationO such thatO(σ) ≤ O(τ). In

fact, when defining such a procedure we must be very careful, since the presence of recursive types in

our system may cause it to loop indefinitely, just as when trying to decide the subtyping relation itself.

In formulating our unification algorithm, we will take the same approach as in the previous section.

We will first define an inference system whose derivable judgements entail the unification of two pre-

types modulo subtyping by some operationO. Then, we will again argue that the size of any derivation

of the inference system is bounded by some well-defined (decidable) limit. As with our subtyping deci-

sion procedure, the inference system that we define can be straightforwardly converted into an algorithm

whose recursion is bounded by an input parameter.

One of the key aspects to the unification procedure is the generation of recursive types. Whenever we

try to unify a type variable with another type containing that variable, instead of failing, as Robinson’s

unification procedure does, we instead produce a substitution which replaces the type variable with a

recursive type such that the application of the substitution to the original type we were trying to unify

against is theunfoldingof the recursive type that we substitute.

Take, for example, the two (pre)typesϕ andϕ→ ϕ′. Robinson’s approach to unification would treat

these two types as non-unifiable since the second type contains the variable that we are trying to unify

against. However, we can unify these types using arecursivetypeσ that satisfies the following equation:

σ = σ → ϕ′

This equation can be seen as giving adefinition (or specification) of the typeσ, thus such a recursive

type can be systematically constructed for anyσ and any definition by simply replacing the type in the
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definition with a recursive type variable, and then forming arecursive type using theµ type constructor:

σ = µX.(X → ϕ′)

Or, using de Bruijn indices:

σ = µ.(0 → ϕ′)

The subtlety of doing this in the Nakano setting is that, in order to construct a valid type, we must make

sure that there are bullets in appropriate places, i.e. whenwe introduce a recursive type variable, it must

fall within the scope of a• operator, thus satisfying theadequacyproperty of types (see Definition 9.6).

Notice that this procedure bears a strong resemblance to that of constructing recursively defined func-

tions in theλ-calculus, where we abstract over the function identifier (i.e. the name we give to the

function), and then apply a fixed point combinator. This is not a coincidence and, in fact, it is directly

analogous since in our case we are constructing a recursively definedtype: we abstract over the identifier

of the type in its definition using a recursive type variable (instead of a term variable), and the recursive

type constructorµ plays the same role as a fixed point combinator term.

To facilitate the constructing of recursive types in this way, we define a further substitution operation

that replaces type variables with recursive type variables(i.e. de Bruijn indices).

Definition 9.45 (Variable Promotion). A variable promotionP is an operation on pretypes that pro-

motes type variables to recursive type variables (de Bruijnindices). Ifϕ is a type variable andn is a

de Bruijn index, then the variable promotion[n/ϕ] is defined inductively on the structure of pretypes

simultaneously for eachn ∈ N as follows:

[n/ϕ](ϕ′) =


n if ϕ = ϕ′

ϕ′ otherwise

[n/ϕ](n′) = n′

[n/ϕ](•π) = •([n/ϕ](π))

[n/ϕ](ιπ) = ι ([n/ϕ](π))

[n/ϕ](π1→ π2) = ([n/ϕ](π1))→ ([n/ϕ](π2))

[n/ϕ](µ.φ) = µ.([n+1/ϕ](φ))

We must show that the composition of aµ-substitution and a variable promotion acts as kind of

(canonicalising) type substitution (modulo the equivalence relation≃). The corollary to this result is that

if we construct a recursive type out of some function type by promoting one its type variables, then the

type we obtain by substituting the newly created recursive type for the type variable instead of promoting

it, is equivalent to the recursive type itself - in fact, thisis because it is equivalent to theunfoldingof the

recursive type. This result will be needed to show the soundness of our unification procedure.

Proposition 9.46. Letµ.φ be a type andπ be a pretype such thatn < fv(π), then

[n 7→ µ.φ]([n/ϕ](π)) ≃ [ϕ 7→ µ.φ](π)

Proof technique.By induction on the structure of pretypes.
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Corollary 9.47. Letφ be a type, thenµ.([0/ϕ](φ)) ≃ [ϕ 7→ µ.([0/ϕ](φ))](φ).

Proof. By Definition 9.11 and Proposition 9.46. �

We mentioned above that when we construct a recursive type, we must make sure that all the oc-

currences of the bound recursive variable that we introduce(via variable promotion) must be under the

scope of a bullet (•) type constructor. If the type variable that we are promoting is not in the set of raw

type variables, then we can make sure that this is the case. Ifthe type variable occurs in the type, but is

not raw, then by definition (see Def. 9.5) every occurrence ofthe type variable will be within the scope

of either a• or some insertion variable. We will now define a function thatwill return the (smallest) set

of insertion variables that capture the occurrences of a given type variable within their scope that do not

also fall within the scope of the• type constructor. We will call this set thecoverset of the type variable.

If we then insert a bullet under each of these insertion variables (which can be done by composing all

insertions of the form [ιi 7→ ιi •] whereιi is in the cover set), we ensure that each occurrence of the type

variable now falls within the scope of a bullet. Thus, when the type variable is promoted, each occur-

rence of the newly introduced recursive type variable will also fall within the scope of a bullet, and the

recursive type can be safely closed (i.e. the recursively closing the type produces an adequate pretype).

Definition 9.48 (Cover Set). Thecover setCov[ϕ](π) of the pretypeπ with respect to the type variable

ϕ is the (minimal) set of insertion variables under whose scope the type variableϕ occurs raw. For each

type variableϕ it is defined inductively on the structure of pretypes as follows:

Cov[ϕ](ϕ′) = ∅

Cov[ϕ](n) = ∅

Cov[ϕ](•π) = ∅

Cov[ϕ](ι π) =


{ ι} if ϕ ∈ rawϕ(π)

Cov[ϕ](π) otherwise

Cov[ϕ](π1→ π2) = Cov[ϕ](π1)∪Cov[ϕ](π2)

Cov[ϕ](µ.φ) = Cov[ϕ](φ)

The following results will be needed to show that we construct recursivetypes(i.e. adequate, closed

pretypes) during unification, and thence that the unification procedure returns an operation.

Lemma 9.49. 1. If ϕ ∈ tv(π), thenn ∈ fv([n/ϕ](π)).

2. If O = In◦ . . .◦ I1, thentv(π) = tv(O(π)).

3. rawϕ(bPush(π)) = ∅, andCov[ϕ](bPush(π)) = ∅.

4. Let π be a type andϕ be a type variable such thatϕ ∈ tv(π) with Cov[ϕ](π) = { ι1, . . . , ιn }; if

ϕ<rawϕ(π), thenϕ<rawϕ(O(π)) andCov[ϕ](O(π)) = ∅, whereO = [ιn 7→ ιn•] ◦ . . .◦ [ι1 7→ ι1•].

5. Letπ be a pretype such thatn<rawµ(π) and ϕ ∈ tv(π); if ϕ<rawϕ(π) and Cov[ϕ](π) = ∅, then

n<fv([n/ϕ](π)) \rawµ([n/ϕ](π)).

Proof. The proof of (2) is by induction onn, with the case forn = 1 being proved by induction onπ.

The other lemmas are proved by straightforward induction onthe structure ofπ. �

We now come to define the notion ofunification inference, similar to the notion of subtype inference

in Definition 9.30. The inference system will derive unification judgements, which assert the unifiability
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of two pretypes using some operationO. We define unification in this way so that we can reason about

the termination of our unification inference procedure. Theinference rules can be seen as a ‘bottom-up’

approach to the problem of unification, as opposed to the morecommon ‘top-down’ algorithmic view.

The two approaches, however, are dual and we will later convert the unification inference system into an

equivalent algorithm (Definition 9.61 below).

Definition 9.50 (Unification Inference). 1. A unification judgementis a statement of the formO ⊢

π1 ≤ π2 and asserts that the operationO unifies the pretypesπ1 and π2 modulo the subtyping

relation; that isO(π1) ≤ O(π2).

2. Valid unification judgements are derived using the following natural deduction inference system,

in which we classify rules as eitherstructuralor logical:

Unifying Type Variables (Structural Rules)

(ι< ι and r≤ s)
[ι 7→ ι•s−r ] ⊢ ι•r ϕ ≤ ι•sϕ

(ι< ι and s< r)
[ι 7→ ι•r−s] ⊢ ι•r ϕ ≤ ι•sϕ

(r ≤ s)
Id ⊢ •r ϕ ≤ •sϕ

(ϕ , ϕ′ and r≤ s)
[ϕ 7→ •s−r ϕ′] ⊢ •r ϕ ≤ •sϕ′

(ϕ , ϕ′ and s< r)
[ϕ′ 7→ •r−sϕ] ⊢ •r ϕ ≤ •sϕ′

Unifying Type Variables (Logical Rules)

O2 ⊢ O1(ιn•
r ϕ) ≤O1(ι′m•

sϕ′)
(ι , ι′ and n,m> 0)

O2 ◦O1 ⊢ ι · ιn•
r ϕ ≤ ι′ · ι′m•

sϕ′

whereO1 = [ι 7→ ι′]

O ⊢ •r ϕ ≤ •sϕ′

(ι< ι andϕ , ϕ′)
O◦ [ι 7→ ι] ⊢ ι•r ϕ ≤ ι•sϕ′

O2 ⊢ •
r ϕ ≤O1(ι•sϕ′)

(ι ∈ ι or (ϕ = ϕ′ and s< r))
O2 ◦O1 ⊢ ι•

r ϕ ≤ ι•sϕ′

whereO1 = [ι 7→ ǫ]

O ⊢ •r ϕ ≤ •sϕ′

(ι< ι andϕ , ϕ′)
O◦ [ι 7→ ι] ⊢ ι•r ϕ ≤ ι•sϕ′

O2 ⊢ O1(ι•r ϕ) ≤ •sϕ′

(ι ∈ ι or (ϕ = ϕ′ and r≤ s))
O2 ◦O1 ⊢ ι•

r ϕ ≤ ι•sϕ′
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whereO1 = [ι 7→ ǫ]

O2 ⊢ •
r ϕ ≤O1(ιm•

sϕ′)
(m> 0)

O2 ◦O1 ⊢ •
r ϕ ≤ ι · ιm•

sϕ′

whereO1 = [ι 7→ ǫ]

O2 ⊢O1(ιn•
r ϕ) ≤ •sϕ′

(n> 0)
O2 ◦O1 ⊢ ι · ιn•

r ϕ ≤ •sϕ′

whereO1 = [ι 7→ ǫ]

Unifying Type Variables and Function Types (Structural Rules)

[ϕ 7→ κ1→ κ2] ⊢ ϕ ≤ κ1→ κ2

(ϕ<tv(κ1→ κ2) andκ1→ κ2 a type)

[ϕ 7→ µ.([0/ϕ](O(κ1→ κ2)))] ◦O ⊢ ϕ ≤ κ1→ κ2

(ϕ ∈ tv(κ1→ κ2) \rawϕ(κ1→ κ2) andκ1→ κ2 a type)

whereCov[ϕ](κ1→ κ2) = { ι1, . . . , ιn }

O = [ιn 7→ ιn•] ◦ . . .◦ [ι1 7→ ι1•]

[ϕ 7→ κ1→ κ2] ⊢ κ1→ κ2 ≤ ι•
sϕ

(ϕ<tv(κ1→ κ2) andκ1→ κ2 a type)

[ϕ 7→ µ.([0/ϕ](O(κ1→ κ2)))] ◦O ⊢ κ1→ κ2 ≤ ι•
sϕ

(ϕ ∈ tv(κ1→ κ2) \rawϕ(κ1→ κ2) andκ1→ κ2 a type)

whereCov[ϕ](κ1→ κ2) = { ι1, . . . , ιn }

O = [ιn 7→ ιn•] ◦ . . .◦ [ι1 7→ ι1•]

Unifying Type Variables and Function Types (Logical Rules)

O2 ⊢ O1(ιn•
r ϕ) ≤O1(κ1→ κ2)

O2 ◦O1 ⊢ ι · ιn•
r ϕ ≤ κ1→ κ2

whereO1 = [ι 7→ ǫ]

Unifying Type Variables and Head-Recursive Types

(Structural Rules)

[ϕ 7→ •s−r µ.(κ1→ κ2)] ⊢ •r ϕ ≤ •sµ.(κ1→ κ2)
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(ϕ<tv(µ.(κ1→ κ2)), µ.(κ1→ κ2) a type and r≤ s)

O ⊢ ϕ ≤ bPush[s− r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2))

O ⊢ •r ϕ ≤ •sµ.(κ1→ κ2)

(ϕ ∈ tv(µ.(κ1→ κ2)) and r≤ s)

[ϕ 7→ •r−sµ.(κ1→ κ2)] ⊢ •r µ.(κ1→ κ2) ≤ •sϕ

(ϕ<tv(µ.(κ1→ κ2)), µ.(κ1→ κ2) a type and s≤ r)

[ϕ 7→ µ.(κ1→ κ2)] ⊢ •r µ.(κ1→ κ2) ≤ •sϕ

(ϕ<tv(µ.(κ1→ κ2)), µ.(κ1→ κ2) a type and r< s)

O ⊢ bPush[r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2)) ≤ •sϕ

O ⊢ •r µ.(κ1→ κ2) ≤ •sϕ

(ϕ ∈ tv(µ.(κ1→ κ2)))

Unifying Recursive Type Variables/Head-Recursive Types

(Structural Rules)

(r ≤ s)
Id ⊢ •r n ≤ •sn

O ⊢ κ1→ κ2 ≤ κ
′
1→ κ′2 (r ≤ s)

O ⊢ •r µ.(κ1→ κ2) ≤ •sµ.(κ′1→ κ′2)

Unifying Function Types (Structural Rule)

O1 ⊢ κ
′
1 ≤ κ1 O2 ⊢ O1(κ2) ≤O1(κ′2)

O2 ◦O1 ⊢ κ1→ κ2 ≤ κ
′
1→ κ′2

Unifying Function Types and Head-Recursive Types

(Structural Rules)

O ⊢ κ1→ κ2 ≤ iPush[ι](bPush[s]([0 7→ µ.(κ′1→ κ′2)](κ′1→ κ′2)))

O ⊢ κ1→ κ2 ≤ ι•
sµ.(κ′1→ κ′2)

O ⊢ iPush[ι](bPush[r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2))) ≤ κ′1→ κ′2

O ⊢ ι•r µ.(κ1→ κ2) ≤ κ′1→ κ′2

Generic Logical Rules

O ⊢ ιnα1 ≤ ι
′
mα2

( n,m> 0)
O ⊢ ι · ιnα1 ≤ ι · ι

′
mα2

O2 ⊢ O1(ιn•r ξ1) ≤O1(ι′m•sξ2)

O2 ◦O1 ⊢ ι · ιn•
r ξ1 ≤ ι

′ · ι′m•
sξ2
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(ι , ι′ and either(r ≤ s& n> 0) or (s< r & m> 0)

and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ι′]

O2 ⊢ O1(ξ1) ≤O1(ξ2)

O2 ◦O1 ⊢ ι•
r ξ1 ≤ ι•

sξ2

(ι< ι and r≤ s and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ι•s−r ]

O2 ⊢ O1(•r ξ1) ≤O1(ι•sξ2)

O2 ◦O1 ⊢ ι•
r ξ1 ≤ ι•

sξ2

(ι ∈ ι and r≤ s and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ǫ]

O2 ⊢ O1(ξ1) ≤O1(ξ2)

O2 ◦O1 ⊢ ι•
r ξ1 ≤ ι•

sξ2

(ι< ι and s< r and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ι•r−s]

O2 ⊢ O1(ι•r ξ1) ≤O1(•sξ2)

O2 ◦O1 ⊢ ι•
r ξ1 ≤ ι•

sξ2

(ι ∈ ι and s< r and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ǫ]

O2 ⊢ O1(ιn•
r ξ1) ≤ O2(•sξ2)

O2 ◦O1 ⊢ ι · ιn•
r ξ1 ≤ •

sξ2

(n> 0 or s< r and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ǫ]

O2 ⊢ O1(•r ξ1) ≤O1(ιm•
sξ2)

O2 ◦O1 ⊢ •
r ξ1 ≤ ι · ιm•

sξ2

(m> 0 or r ≤ s and eitherξ1 or ξ2 not a type variable)

whereO1 = [ι 7→ ǫ]

We claim that the inference system defined above is sound withrespect to the subtyping relation;

in other words, valid unification judgementscorrectly assert that there is a unifying operation for two

pretypes.

Proposition 9.51 (Soundness of Unification Inference). If O ⊢ π1 ≤ π2, then O is an operation and

O(π1) ≤ O(π2).

Proof technique.By induction on the structure of the unification inference derivations using Definition

9.11 and the soundness of operations with respect to subtyping (Proposition 9.26). In the base cases

where a substitution of type variable for a new recursive type is generated, we use Corollary 9.47.
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However, like subtype inference, unification isincomplete- that is, there are pairs of pretypes which

are unifiable but notinferrably so. For example, the unification judgementO ⊢ •ϕ ≤ •ϕ′→ •ϕ′ is not

derivable for any operationO, even though the canonicalising type substitution [ϕ 7→ (ϕ′→ ϕ′)] unifies

the two types.

As well as soundness, we also claim that the unification inference procedure isdeterministic. This

means that if a derivation exists that witnesses the validity of a unification judgement, then it isunique.

Property 9.52 (Determinism of Unification Inference). For any pair of (canonical) pretypes in a unifi-

cation judgement, there is at most one inference rule which applies.

We will now define a measure of theheightof a unification inference derivation. This concept will be

a key element in proving the decidability of unification inference.

Definition 9.53 (Unification Inference Derivation Height). Let D be a derivation in the unification

inference system; then theheightofD is defined inductively on the structure of derivations as follows:

1. If the last rule applied inD is a structural one and it has no immediate subderivations, then the

height ofD is 1.

2. If the last rule applied inD is a structural one, and h is the maximum of the heights of its immediate

subderivations, then the height ofD is h+1.

3. If the last rule applied inD is a logical one, and h is the maximum of the heights of its immediate

subderivations, then the height ofD is h.

In general, we can relate the height of a derivation to the heights of its subderivations in the following

way:

Lemma 9.54. LetD be a derivation in the unification inference system, andD′ be a (proper) subderiva-

tion ofD in which the last rule applied is a structural one. Then:

1. if the last rule applied inD is a logical one, then the height ofD is greater than or equal to the

height ofD′;

2. if the last rule applied inD is a structural one, then the height ofD is greater than the height of

D′.

Proof. By straightforward induction on the structure of unification inference derivations. �

Furthermore, for pairs of (inferrably) unifiable pretypes that have the same structural representatives,

the heights of their unification derivations are the same. This shows that, as for subtype inference, the

inference system isstructurallydriven, and this again will form a key part in the proof of its decidability.

Proposition 9.55. Let κ1 and κ′1, andκ2 and κ′2 be structurally equivalent pairs of canonical pretypes,

i.e.struct(κ1) = struct(κ′1) andstruct(κ2) = struct(κ′2), and letD andD′ be the derivations ofO ⊢ κ1 ≤ κ2

andO′ ⊢ κ′1 ≤ κ
′
2 respectively; then heights ofD andD′ are the same.

Proof technique.By induction on the structure of unification inference derivations.
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To demonstrate the decidability of the unification inference system, we will argue that the height of

any derivation has a well-defined (and computable) bound. Asfor subtype inference, and following

[35], our approach to calculating such a bound is to considerall the possible pairs of pretypes (or rather,

structurally representative pairs) that might be comparedwithin any given derivation. This is slightly

more complicated than the situation for subtyping, or type equality. Since the unification inference

procedure involves constructing and applyingoperationsto pretypes, we cannot generate all such pairs

simply by breaking apart the pretypes to be unified into theirsubcomponents, as we did for subtype

inference. We must also consider thesubstitutionsthat might take place on these subcomponents. For

example, when unifying two function typesκ1→ κ2 andκ′1→ κ′2 we first attempt to unify the left-hand

sidesκ′1 andκ1. If this succeeds, it produces an operationO (consisting of substitutions and insertions)

which we must apply to the right hand sidesbeforeunifying them, that is we must unifyO(κ2) with

O(κ′2), andnot κ2 with κ′2. Thus, the derivation may contain judgementsO ⊢ π1 ≤ π2 whereπ1 andπ2 are

not simply subcomponents of the two top-level pretypesκ1→ κ2 andκ′1→ κ′2.

Despite this increased complexity, it is still possible to calculate the set of pretypes that can be gen-

erated in this way because the unification procedure is ‘well-behaved’ in a particular sense. Again, as

for subtype inference, we can abstract away from the logicalcomponent of the types meaning that we

can ignore the insertion operations that are generated during unification, leaving us only to consider the

substitutions that may be generated. The key observation here is, firstly that these substitutions only

replace the type variables occurring within the types that we are trying to unify, and secondly the types

that they are replaced with donot contain the type variable itself. This means that when recursively uni-

fying subcomponents of a pretype after applying an operation (as happens when unifying two function

pretypes), there is a strictly smaller set of type variablesfrom which to build the unifying operation.

The result is that, for a given pair of (inferrably unifiable)pretypes, the unification procedure generates

a composition of substitutions [ϕ1 7→ σ1] ◦ . . .◦ [ϕn 7→ σn] (of course interspersed with insertions) where

eachϕi is distinct, and eachσi is a subcomponent of a type (or a recursive type generated from such a

type) resulting from applying a (smaller) composition of substitutions to the original pretypesπ andπ′

themselves. Since the number of type variables (and the number of structural subcomponents) occurring

in the pretypesπ andπ′ is finite, we can calculate all possible such compositions ofsubstitutions, and thus

build the set of all structural representatives of pretypesthat might occur in the derivation ofO ⊢ π ≤ π′.

Of course, when considering the types that might get substituted during unification, in addition to

subcomponents of the types being unified, we must take into account recursivetypes that might be

constructed when we unify a type variable with another type in which that variable occurs. To this end,

we define a a further closure set construction that accounts for types generated in this way.

Definition 9.56 (Recursion Complete Structural Closure). 1. Therecursion completestructural clo-

sure of a pretypeπ is defined as follows:

SC+µ(π) = SC(π) ∪
⋃

π1→π2∈SC(π)
fv(π1→π2)=∅


⋃

ϕ∈tv(π1→π2)

SC+µ(µ.([0/ϕ](π1→ π2)))



2. This notion is extended to sets of pretypes P as follows:

SC+µ(P) =
⋃

π∈P

SC+µ(π)
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Using this enhanced structural closure, we are now able to define a construction which can represent

all of the pretypes that might be compared during the unification procedure.

Definition 9.57 (Unification Closure). Let P be a set of pretypes. Theunification closureUC(P) of P is

defined by:

UC(P) = SC+µ(P) ∪
⋃

ϕ∈tv(P)



⋃

π∈SC+µ(P)
ϕ<tv(π)

UC([ϕ 7→ π](P))



Since the structural closure of a type is a finite set, it follows that the recursion complete structural

closure and the unification closure of a type are also finite sets. Thus, the definitions above give an

effective way to compute these sets.

Lemma 9.58(Finiteness of Closures). Let π be a pretype, and P be a finite set of pretypes; then the

following sets are finite: 1.SC+µ(π), 2.SC+µ(P), and 3.UC(P).

Proof. 1. By mathematical induction on number of distinct type variables inπ, using the fact that

SC(π) is finite (Lemma 9.36), and that ifϕ ∈ tv(π) then the number of type variables in [n/ϕ](π)

is one less than the number of type variables inπ.

2. By the first part of the lemma,SC+µ(π) is finite for allπ ∈ P. Thus, ifP is finite, thenSC+µ(P) is

simply a finite union of finite sets, and therefore is itself finite.

3. By mathematical induction on the number of distinct type variables inP, using the fact that

SC+µ(P) is finite (first part of the lemma), and that iftv(π) ⊆ tv(P) andϕ<tv(π) then the number

of type variables in [ϕ 7→ π](P) is one less than the number of type variables inP. �

As for deciding subtype inference, to show decidability of unification inference we are required to

show that the structural representative of each pretype in the statements of any unification inference

derivation belongs to a well-defined, finite and computable set – the unification closure.

Proposition 9.59. LetD be the derivation ofO ⊢ κ1 ≤ κ2, then all the statementsκ′1 ≤ κ
′
2 occurring in it

are such that bothstruct(κ′1) andstruct(κ′2) are in the setUC({κ1, κ2 }).

Proof technique.By induction on the structure of unification inference derivations.

This again means that the height of any unification inferencederivation is bounded by the size of the

unification closure.

Corollary 9.60. LetD be the derivation for⊢ κ ≤ κ′; then the height ofD is no greater than|UC({κ1, κ1 })|2.

Proof. Similar to the proof of Corollary 9.40, using Proposition 9.59 instead of Proposition 9.39. �

The unification inference system leads straightforwardly to an algorithm that decides whether any

given unification statement is valid. As for the algorithm todecide subtype inference, this algorithm has a

decreasing input parameter, which is decremented every time a recursive call is made that corresponds to

the application of a structural rule in the unification inference system. Thus, the algorithm is guaranteed

to terminate.
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Definition 9.61(Unification Algorithm). The unification algorithmUnifyµ≤ takes two canonical pretypes

and an integer as input, and either returns an operation or fails. It is defined as follows, where for any

input types that do not match the cases given below the algorithm terminates in a ‘fail’ state:

Unifying Type Variables (Structural Cases)

Unifyµ≤(d, ι•
r ϕ, ιm•

sϕ′) = [ι 7→ ιm•
s−r ]

if ι< ιm andϕ = ϕ′ with d> 0 and r≤ s

Unifyµ≤(d, ιn•
r ϕ, ι•sϕ′) = [ι 7→ ιn•

r−s]

if ι< ιn andϕ = ϕ′ with d> 0 and s≤ r

Unifyµ≤(d, •
r ϕ, •sϕ′) = Id

if ϕ = ϕ′ with d> 0 and r≤ s

Unifyµ≤(d, •
r ϕ, •sϕ′) = [ϕ 7→ •s−r ϕ′]

if ϕ , ϕ′ with d> 0 and r≤ s

Unifyµ≤(d, •
r ϕ, •sϕ′) = [ϕ 7→ •r−sϕ′]

if ϕ , ϕ′ with d> 0 and s< r

Unifying Type Variables (Logical Cases)

Unifyµ≤(d, ι · ιn•
r ϕ, ι′ · ι′m•

sϕ′) = O2◦O1

if ι , ι′ and d,n,m> 0

whereO1 = [ι 7→ ι′]

O2 = Unifyµ≤(d, O1(ιn•
r ϕ), O1(ι′m•

sϕ′))

Unifyµ≤(d, ι•
r ϕ, ι•sϕ′) = O◦ [ι 7→ ι]

if ι< ι andϕ , ϕ′ with d> 0

whereO = Unifyµ≤(d, •
r ϕ, •sϕ′)

Unifyµ≤(d, ι•
r ϕ, ι•sϕ′) = O2◦O1

if d > 0 and eitherι ∈ ι or (ϕ = ϕ′ and s< r)

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, •
r ϕ,O1(ι•sϕ′))

Unifyµ≤(d, ι•
r ϕ, ι•sϕ′) = O◦ [ι 7→ ι]
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if ι< ι andϕ , ϕ′ with d> 0

whereO = Unifyµ≤(d, •
r ϕ, •sϕ′)

Unifyµ≤(d, ι•
r ϕ, ι•sϕ′) = O2◦O1

if d > 0 and eitherι ∈ ι or (ϕ = ϕ′ and r≤ s)

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(ι•r ϕ), •sϕ′)

Unifyµ≤(d, •
r ϕ, ι · ιm•

sϕ′) = O2◦O1

if d,m> 0

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, •
r ϕ, O1(ιm•

sϕ′))

Unifyµ≤(d, ι · ιn•
r ϕ, •sϕ′) = O2◦O1

if d,n> 0

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(ιn•
r ϕ), •sϕ′)

Unifying Type Variables and Function Types (Structural Cases)

Unifyµ≤(d, ϕ, κ1→ κ2) = [ϕ 7→ (κ1→ κ2)]

if ϕ<tv(κ1→ κ2) and d> 0 with κ1→ κ2 a type

Unifyµ≤(d, ϕ, κ1→ κ2) = [ϕ 7→ µ.([0/ϕ](O(κ1→ κ2)))] ◦O

if ϕ ∈ tv(κ1→ κ2) \rawϕ(κ1→ κ2) and d> 0

with κ1→ κ2 a type

whereCov[ϕ](κ1→ κ2) = { ι1, . . . , ιn }

O = [ιn 7→ ιn•] ◦ [ι1 7→ ι1•]

Unifyµ≤(d, κ1→ κ2, ι•
sϕ) = [ϕ 7→ (κ1→ κ2)]

if ϕ<tv(κ1→ κ2) and d> 0 with κ1→ κ2 a type

Unifyµ≤(d, κ1→ κ2, ι•
sϕ) = [ϕ 7→ µ.([0/ϕ](O(κ1→ κ2)))] ◦O

if ϕ ∈ tv(κ1→ κ2) \rawϕ(κ1→ κ2) and d> 0

with κ1→ κ2 a type

whereCov[ϕ](κ1→ κ2) = { ι1, . . . , ιn }

O = [ιn 7→ ιn•] ◦ [ι1 7→ ι1•]
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Unifying Type Variables and Function Types (Logical Cases)

Unifyµ≤(d, ι · ι•
r ϕ, κ1→ κ2) = O2◦O1

if d > 0

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(ι•r ϕ), O1(κ1→ κ2))

Unifying Type Variables with Head-Recursive Types

(Structural Cases)

Unifyµ≤(d, •
r ϕ, •sµ.(κ1→ κ2)) = [ϕ 7→ •s−r µ.(κ1→ κ2)]

if ϕ<tv(µ.(κ1→ κ2)) and r≤ s

with d> 0 andµ.(κ1→ κ2) a type

Unifyµ≤(d, •
r ϕ, •sµ.(κ1→ κ2))

= Unifyµ≤(d−1, ϕ, bPush[s− r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2)))

if ϕ ∈ tv(µ.(κ1→ κ2)) and r≤ s with d> 0

Unifyµ≤(d, •
r µ.(κ1→ κ2), •sϕ) = [ϕ 7→ •r−sµ.(κ1→ κ2)]

if ϕ<tv(µ.(κ1→ κ2)) and s≤ r

with d> 0 andµ.(κ1→ κ2) a type

Unifyµ≤(d, •
r µ.(κ1→ κ2), •sϕ) = [ϕ 7→ µ.(κ1→ κ2)]

if ϕ<tv(µ.(κ1→ κ2)) and r< s

with d> 0 andµ.(κ1→ κ2) a type

Unifyµ≤(d, •
r µ.(κ1→ κ2), •sϕ)

= Unifyµ≤(d−1, bPush[r]([0 7→ µ.(κ1→ κ2)](κ1→ κ2)), •sϕ)

if ϕ ∈ tv(µ.(κ1→ κ2)) and d> 0

Unifying Recursive Type Variables/Head-Recursive Types

(Structural Cases)

Unifyµ≤(d, •
r n, •sn) = Id

if r ≤ s and d> 0

Unifyµ≤(d, •
r µ.(κ1→ κ2), •sµ.(κ′1→ κ′2))

= Unifyµ≤(d−1, κ1→ κ2, κ
′
1→ κ′2)
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if r ≤ s and d> 0

Unifying Function Types (Structural Cases)

Unifyµ≤(d, κ1→ κ2, κ
′
1→ κ′2) = O2◦O1

if d > 0

whereO1 = Unifyµ≤(d−1, κ′1, κ1)

O2 = Unifyµ≤(d−1, O1(κ2), O1(κ′2))

Unifying Function Types and Head-Recursive Types

(Structural Cases)

Unifyµ≤(κ1→ κ2, ι•
sµ.(κ′1→ κ′2))

= Unifyµ≤(κ1→ κ2, iPush[ι](bPush[s]([0 7→ µ.κ′1→ κ′2](κ′1→ κ′2))))

if d > 0

Unifyµ≤(ι•
r µ.(κ1→ κ2), κ′1→ κ′2)

= Unifyµ≤(iPush[ι](bPush[r]([0 7→ µ.κ1→ κ2](κ1→ κ2))), κ′1→ κ′2)

if d > 0

Generic Logical Cases

Unifyµ≤(d, ι · ιnα1, ι
′ · ι′mα2) = Unifyµ≤(d, ιnα1, ι

′
mα2)

if ι = ι′ and d,n,m> 0

Unifyµ≤(d, ι · ιn•
r ξ1, ι

′ · ι′m•
sξ2) = O2◦O1

if ι , ι′ and d> 0

with either(r ≤ s& n> 0) or (s< r & m> 0)

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ι′]

O2 = Unifyµ≤(d, O1(ιn•
r ξ1), O1(ι′m•

sξ2))

Unifyµ≤(d, ι•
r ξ1, ι•

sξ2) = O2◦O1
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if ι < ι and r≤ s with d> 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ι•s−r ]

O2 = Unifyµ≤(d, O1(ξ1), O1(ξ2))

Unifyµ≤(d, ι•
r ξ1, ι•

sξ2) = O2◦O1

if ι ∈ ι and r≤ s with d> 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(•r ξ1), O1(ι•sξ2))

Unifyµ≤(d, ι•
r ξ1, ι•

sξ2) = O2◦O1

if ι< ι and s< r with d > 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ι•r−s]

O2 = Unifyµ≤(d, O1(ξ1), O1(ξ2))

Unifyµ≤(d, ι•
r ξ1, ι•

sξ2) = O2◦O1

if ι ∈ ι and s< r with d > 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(ι•r ξ1, O1(•sξ2))

Unifyµ≤(d, ι · ιn•
r ξ1, •

sξ2) = O2◦O1

if n > 0 or s< r with d > 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(ιn•
r ξ1), O1(•sξ2))

Unifyµ≤(d, •
r ξ1, ι · ιm•

sξ2) = O2◦O1

if m> 0 or r ≤ s with d> 0

and eitherξ1 or ξ2 not a type variable

whereO1 = [ι 7→ ǫ]

O2 = Unifyµ≤(d, O1(•r ξ1), O1(ιm•
sξ2))
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It should be straightforward to show that this algorithm decides unification inference.

Proposition 9.62(Soundness and Completeness ofUnifyµ≤). 1. If Unifyµ≤(d, κ1, κ2)=O, thenO ⊢ κ1 ≤ κ2.

2. LetD be the derivation for the judgementO ⊢ κ1 ≤ κ2 and suppose it has height h; then for all

d ≥ h, Unifyµ≤(d, κ1, κ2) = O.

Proof technique. 1. By induction on the definition ofUnifyµ≤.

2. By induction on the structure of unification inference derivations.

As for subtype inference, this immediately implies a partial correctness result for the unification proce-

dure.

Conjecture 9.63(Partial Correctness ofUnifyµ≤). Letκ1, κ2 be canonical pretypes and d= |UC({κ1, κ2 })|2;

thenUnifyµ≤(d, κ1, κ2) = O if and only ifO ⊢ κ1 ≤ κ2.

Proof technique.Directly by Proposition 9.62

We must also show that unification algorithm terminates. To do so, we need to define a measure on

pretypes, called theinsertion rank, which is a measure of the maximum depth of nesting of insertion

variables in a pretype.

Definition 9.64. The insertion rankiRank(π) of the pretypeπ is defined inductively on the structure of

pretypes as follows:

iRank(ϕ) = 0

iRank(n) = 0

iRank(•π) = iRank(π)

iRank(ιπ) = 1+ iRank(π)

iRank(π1→ π2) =max(iRank(π1), iRank(π2))

iRank(µ.φ) = iRank(φ)

Certain types of insertions decrease the insertion rank of types.

Lemma 9.65. Let I = [ι 7→ ιn] be an insertion with n≤ 1, theniRank(π) ≥ iRank(I(π)) for all pretypesπ.

Proof. By straightforward induction on the structure of pretypes. �

This allows us to prove the termination ofUnifyµ≤.

Theorem 9.66.The procedureUnifyµ≤ terminates on all inputs.

Proof. We interpret the input (d, κ1, κ2) as the tuple (d, iRank(κ1) + iRank(κ2)), and prove by well-

founded induction using the lexicographic ordering on pairs of natural numbers. �

The final step before defining the type inference procedure itself is to extend the notion of unification

to type environments.

Definition 9.67 (Unification of Type Environments). The unification procedure is extended to type en-

vironments as follows:

Unifyµ≤(∅, Π) = Π

Unifyµ≤((Π, x:σ), (Π′, x:τ)) = O2◦O1 if Unifyµ≤(d,σ,τ) = O1
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andUnifyµ≤(O1(Π1), O1(Π2)) = O2

where|UC({σ,τ})|2 = d

Unifyµ≤((Π, x:σ), (Π′, x:τ)) = O2◦O1 if Unifyµ≤(d,σ,τ) fails

and Unifyµ≤(d, τ, σ) = O1

Unifyµ≤(O1(Π1), O1(Π2)) = O2

where|UC({σ,τ})|2 = d

Unifyµ≤((Π, x:σ), Π′) = Unifyµ≤(Π, Π
′) if x<Π′

Notice that since type environments are sets, we cannot assume thatUnifyµ≤ defines afunction from

type environment pairs to operations - it could be that unifying the statements in the two type environ-

ment in different orders produces different unifying operations, and so we may only state thatUnifyµ≤
induces arelation between pairs of type environments and operations. However, since our unification

procedure issound, we do know that any unifying operation it returns does indeed unify type environ-

ments modulo subtyping. Note that in practice, when implementing this system, we are at liberty to

impose anorderingon term variables, meaning that unifying type environmentshappens in a determin-

istic fashion.

We point out, though, that we have not yet been able to come up with an example demonstrating

that this is the case, and so we consider it at leastpossiblethatUnifyµ≤ does indeed compute a function.

Notice that this is the question of whether the unification procedure computesmost generalunifiers,

which is orthogonal to the question of its completeness. Even though there exist pairs of unifiable

pretypes for which our unification procedure fails to produce a unifier, it may still be the case that when

our unification procedure does infer a unifier for a pair or pretypes, that unifier is most general. Even

if this is not the case, note that it may still hold true for a subset of pretypes. Here we are thinking in

particular about inferring types forλ-terms and so the subset of types that we have in mind is that of

principal types forλ-terms in our type assignment system (if they exist). Answering these questions is

an objective for future research.

Proposition 9.68 (Soundness of Unification for Type Environments). If Unifyµ≤(Π1,Π2) = O then for

each pair of statements(x:σ, x:τ) such that x:σ ∈ Π1 and x:τ ∈ Π2 it is the case that eitherO(σ) ≤ O(τ)

or O(τ) ≤ O(σ).

Proof technique.By induction on the definition ofUnifyµ≤ for type environments, using the soundness

of unification (Proposition 9.51), and the soundness of operations with respect to subtyping (Proposition

9.26).

9.6. Type Inference

In this section, we will present our type inference algorithm for the type assignment system that was

defined in Section 9.2, and discuss its operation using some examples. Since the unification algorithm

that we defined in the previous section is not complete, neither is our type inference algorithm and so

to give the reader a better idea of where its limitations lie we will also present an example of a term for
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which a type cannot be inferred.

Before being able to define our type inference algorithm, we will first have to define an operation that

combines two type environments. This operation will be usedwhen inferring a type for an application

of two terms. To support the operation of combining type environments, we will also define a measure

of height for types so that if the type environments to be combined contain equivalent types for a given

term variable, then we can choose the ‘smaller’ type.

Definition 9.69 (Height of Pretypes). Theheightof a pretypeπ is defined inductively as follows:

h(ϕ)

h(n)


= 0

h(•π)

h(ιπ)


= h(π)

h(π1→ π2) = 1+max(h(π1), h(π2))

h(µ.φ) = h(φ)

Definition 9.70 (Combining Environments). We define acombinationoperation∪· on environments

which takes subtyping into account. The setΠ1∪· Π2 is defined as the smallest set satisfying the following

conditions:

x:σ ∈ Π1 & x<Π2⇒ x:σ ∈ Π1∪· Π2 (9.1)

x<Π1 & x:σ ∈ Π2⇒ x:σ ∈ Π1∪· Π2 (9.2)

x:σ ∈ Π1 & x:τ ∈ Π2 & ⊢ σ ≤ τ & 0 τ ≤ σ⇒ x:σ ∈ Π1∪· Π2 (9.3)

x:σ ∈Π1 & x:τ ∈ Π2 & ⊢ τ ≤ σ & 0 σ ≤ τ⇒ x:τ ∈ Π1∪· Π2 (9.4)

x:σ ∈ Π1 & x:τ ∈ Π2 & ⊢ σ ≃ τ & h(σ) ≤ h(τ)⇒ x:σ ∈ Π1∪· Π2 (9.5)

x:σ ∈Π1 & x:τ ∈ Π2 & ⊢ σ ≃ τ & h(τ) < h(σ)⇒ x:τ ∈ Π1∪· Π2 (9.6)

The environment-combining operation is sound.

Lemma 9.71(Soundness of Environment Combination). If Π1 andΠ2 are both type environments, then

so isΠ1∪· Π2.

Proof. Straightforward by Definition 9.70. �

The environment-combining operation also has the propertythat it creates asubtype environmentof

each of the two combined environments. This property will becrucial when showing the soundness of

the type inference procedure itself.

Lemma 9.72. LetΠ1 andΠ2 be type environments andO be an operation such that, for each pair of

types(σ,τ) with x:σ ∈ Π1 and x:τ ∈ Π2, either ⊢ O(σ) ≤ O(τ) or ⊢ O(τ) ≤ O(σ); then both(O(Π1)∪·

O(Π2)) ≤ O(Π1) and(O(Π1)∪· O(Π2)) ≤ O(Π2).

Proof. LetΠ′ =O(Π1)∪· O(Π2). Take an arbitrary statementx:O(σ) ∈O(Π1); there are two possibilities.

(x<O(Π2)) Then by condition (9.1),x:O(σ) ∈Π′. By reflexivity of subtyping,O(σ)≤O(σ) and so there

is a statementx:δ ∈ Π′ such thatδ ≤ O(σ).

(x ∈ O(Π2)) Then there is a statement of the formx:O(τ) in O(Π2). Consequently,x:σ ∈Π1 andx:τ ∈Π2

. By assumption, either⊢ O(σ) ≤ O(τ) or ⊢O(τ) ≤ O(σ). We consider the cases separately.
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• If ⊢O(σ) ≤ O(τ) then there are two subcases to consider:

1. 0O(τ) ≤ O(σ) - then by condition (9.3),x:O(σ) ∈Π′; by reflexivity of subtyping,O(σ)≤

O(σ) and so there is a statementx:δ ∈ Π′ such thatδ ≤ O(σ).

2. ⊢ O(τ) ≤ O(σ) and so⊢ O(σ) ≃ O(τ). If h(O(σ)) ≤ h(O(τ)) then by condition (9.5),

x:O(σ) ∈ Π′; by reflexivity of subtyping,O(σ) ≤ O(σ) and so there is a statementx:δ ∈

Π′ such thatδ ≤ O(σ). If h(O(τ)) < h(O(σ)) then by condition (9.6),x:O(τ) ∈ Π′; by

Lemma 9.31,O(τ) ≤ O(σ) and so there is a statementx:δ ∈ Π′ such thatδ ≤ O(σ).

• The reasoning for⊢ O(τ) ≤ O(σ) is symmetrical.

Thus, for allx:σ ∈O(Π1) there isx:δ ∈Π′ such thatδ≤σ, and soΠ′ ≤O(Π1). The proof thatΠ′ ≤O(Π2)

is symmetric. �

Notice that it may not be the case that the operation returnedby unifying two type environments

satisfies the properties required of it in the previous lemmain order to ensure that the environment

combination is a subtype environment. This is because, while the unification algorithm will return an

operation that is sound with respect to the subtype relation, it is not guaranteed to be sound with respect

to subtypeinference.

Example 9.73. Take the two type environmentsΠ1 = {x:ϕ,y:ϕ′→ ϕ′ } andΠ2 = {x:•ϕ,y:ϕ}. Unifying

the types for x results in the Identity; then, unifying the types for y gives the substitution[ϕ 7→ ϕ′→ ϕ′].

Applying these operationsO = [ϕ 7→ ϕ′ → ϕ′] ◦ Id to the environments, we obtainO(Π1) = {x:ϕ′ →

ϕ′,y:ϕ′ → ϕ′ } and O(Π2) = {x:•ϕ′ → •ϕ′,y:ϕ′ → ϕ′ }. Then, according to Definition 9.70, we get

O(Π1)∪· O(Π2) = {y:ϕ′ → ϕ′ } since we cannotinfer that ⊢ ϕ′→ ϕ′ ≤ •ϕ′→ •ϕ′ (remember this was

shown in Example 9.32).

Since subtype inference is our method ofdecidingwhen one type is a subtype of another, in order

to formulate a type inference algorithm which isdecidableas well as sound, we must therefore de-

fine a further property of operations with respect to type environments which guarantees that when the

environments are combined, the result is a subtype environment.

Definition 9.74(Inferrably Unifying Operations). We say that an operationO inferrablyunifies two type

environmentsΠ1 andΠ2 if it satisfies the property that for each pair of types(σ,τ) with x:σ ∈ Π1 and

x:τ ∈ Π2, either⊢ O(σ) ≤ O(τ) or ⊢ O(τ) ≤ O(σ).

Notice that it is decidable whether a given operation inferrably unifies two type environments, since

we can simply apply the operation to each type in the two environments and use the subtype inference

algorithm to check, for each pair of types associated with a given variable in both environments, that one

is (inferrably) a subtype of the other.

We can now define our type inference procedure.

Definition 9.75 (Type Inference). The type inference procedure,Type, is a partial function that takes

a lambda expression and returns a pair〈Π,σ〉 of a type environmentΠ and a canonical typeσ. It is

defined inductively on the structure of terms as follows:

Type(x) = 〈{x:ϕ},ϕ〉 whereϕ fresh
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Type(λx.M) =



〈Π,σ→ τ〉 if Type(M) = 〈(Π, x:σ), τ〉

〈Π,ϕ→ τ〉 if Type(M) = 〈Π, τ〉 and x<Π

whereϕ fresh

Type(M N) = 〈iPush[ι2](Π′1)∪Π′2, iPush[ι2](O(ϕ))〉

if Type(M) = 〈Π1,σ〉

Type(N) = 〈Π2, τ〉

Unifyµ≤(σ, iPush[ι1](τ)→ ϕ) = O1

Unifyµ≤(O1(Π1), O1(Π2)) = O2 and

O = O2◦O1 inferrably unifiesΠ1 andΠ2

whereϕ, ι1, ι2 fresh

Π′1 = { x:σ | x ∈Π1 & x:σ ∈ O(Π1)∪· O(Π2) }

Π′2 = {y:τ | y∈ Π2 & y<Π1 & y:τ ∈ O(Π1)∪· O(Π2) }

Notice that the case for term variables and for abstractionsis identical to the ordinary inference pro-

cedure for Curry typing. The difference lies only in the case for application. We conjecture that the type

inference procedure we have just defined issoundwith respect to the type assignment system, i.e. the

typing inferred for a term can indeed be assigned to that term.

Conjecture 9.76(Soundness of Type Inference). If Type(M) = 〈Π,σ〉 thenΠ ⊢ M:σ.

Proof technique.By induction on the definition ofType.

Definition 9.75 straightforwardly defines an algorithm. Since each recursive call is made on a subterm,

to show termination of the algorithm, we simply need to arguethat all the other procedures that it

calls (apart from itself) terminate. In the base case, that for a term variable, no other procedure are

called. The case for an abstraction simply makes a recursivecall. In the case for an application, besides

recursively calling itself, the algorithm makes two calls to the unification procedure which we have

shown is terminating (Theorem 9.66). It must also decide if the operation returned by the unification

procedure inferrably unifies the type environments resulting from the recursive calls, the decidability of

which we have remarked on above. Finally, if they are, it mustcombine the unified environments, which

is a terminating operation since type environments are finite sets, and the subtype inference procedure is

decidable (see Section 9.4).

In the next section, we will look at some examples of terms forwhich types can be inferred and also an

example of a typeable term for which type inference fails. These examples also provide some evidence

for the principality of our algorithm in the sense that the types inferred are most general, although we are

unable to formally show a principal types property for our system at this time. Through these examples,

we hope to give the reader a more intuitive understanding of how type assignment in the Nakano system

works, as well as the role of insertion variables, both in type inference and in inferring principal typings.
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9.6.1. Typing Curry’s Fixed Point Operator Y

The original motivation for us in introducing insertion variables into the type system was to be able

to infer a type for the fixed point operatorY = λ f .δ f δ f whereδ f = λx. f (x x). In this section we will

demonstrate how our type inference algorithm can successfully infer a type for this term, where one that

does not use insertion variables would falter.

The obstacle to inferring a type for this term without insertion variables is trying to infer a type for

the applicationδ f δ f . For the subtermδ f = λx. f (x x), an inference procedure without insertion variables

would have to infer the typing〈{ f :ϕ1→ ϕ2}, µ.(•0→ ϕ1)→ ϕ2〉. Then, when inferring a type for the

application of this subterm to itself, we first ‘peel off’ a fresh copy of this typing and attempt to unify the

first copy of the type with a function type constructed from the second copy and a fresh type variable, as

follows:

Unifyµ≤ µ.(•0→ ϕ1)→ ϕ2, (µ.(•0→ ϕ3)→ ϕ4)→ ϕ5

The unification procedure would first attempt to unify the left-hand sides of each arrow type contravari-

antly, as follows:

Unifyµ≤ µ.(•0→ ϕ3)→ ϕ4 µ.(•0→ ϕ1)

This would then require the unification procedure to unfold the head-recursive type on the right:

Unifyµ≤ µ.(•0→ ϕ3)→ ϕ4 •µ.(•0→ ϕ1)→ ϕ1

And again, we first try to contravariantly unify the left handsides of these arrow types:

Unifyµ≤ •µ.(•0→ ϕ1) µ.(•0→ ϕ3)

Here, of course, is where the unification fails due to a bulletprefixing the left-hand recursive type and

not the right-hand one.

The reason underlying the failure of type inference in this instance is that the typing〈{ f :ϕ1 →

ϕ2},µ.(•0→ ϕ1)→ ϕ2〉 is not theonly typing for the termλx. f (x x). The typing〈 f :•ϕ1→ ϕ2,•µ.(•0→

ϕ1)→ ϕ2〉, for example, is also valid as shown in the following derivationD1:

(var)
. . . ⊢ f :•ϕ1→ ϕ2

(var)
. . . ⊢ x:•µ.(•0→ ϕ1)

(≤)
. . . ⊢ x:••µ.(•0→ ϕ1)→ •ϕ1

(var)
. . . ⊢ x:•µ.(•0→ ϕ1)

(≤)
. . . ⊢ x:••µ.(•0→ ϕ1)

(→ E)
. . . ⊢ x x:•ϕ1

(→ E)
f :•ϕ1→ ϕ2, x:•µ.(•0→ ϕ1) ⊢ f (x x):ϕ2

(→ I)
f :•ϕ1→ ϕ2 ⊢ λx. f (x x):•µ.(•0→ ϕ1)→ ϕ2

The reason that this is a problem from the point of view of inferring a typing for the termδ f δ f , is

that we need to useboth typings: we must use the first typing for the left-hand occurrence ofδ f , and the

latter typing for the right-hand occurrence.
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Unfolding the type from the first typing we obtain the following:

µ.(•0→ ϕ1)→ ϕ2 ≤ (•µ.(•0→ ϕ1)→ ϕ1)→ ϕ2

Notice that the left-hand side of the unfolded type is of the same shape as type•µ.(•0→ ϕ1)→ ϕ2 from

the second typing. To make it exactly the same as the operand type of the unfolding above (and therefore

allow us to type the applicationδ f δ f ) we must unify the two type variablesϕ1 andϕ2. Having done so

we can then construct the following derivationD2 for the left-handδ f term:

(var)
. . . ⊢ f :ϕ→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)

(→ E)
. . . ⊢ x x:ϕ

(→ E)
f :ϕ→ ϕ, x:µ.(•0→ ϕ) ⊢ f (x x):ϕ

(→ I )
f :ϕ→ ϕ ⊢ λx. f (x x):µ.(•0→ ϕ)→ ϕ

(≤)
f :ϕ→ ϕ ⊢ λx. f (x x):(•µ.(•0→ ϕ)→ ϕ)→ ϕ

To type the application ofδ f to itself, we mustweakenthe derivation so that the term variablef has

the (more specific) type•ϕ→ ϕ, as this is the type forf in the other typing that we will use to type

the right-hand version ofδ f . Interestingly, we can do this in two ways. The first is by weakening the

subderivation typing the subtermf to giveD
′

2:

(var)
. . . ⊢ f :•ϕ→ ϕ

(≤)
. . . ⊢ f :ϕ→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)

(→ E)
. . . ⊢ x x:ϕ

(→ E)
f :•ϕ→ ϕ, x:µ.(•0→ ϕ) ⊢ f (x x):ϕ

(→ I )
f :•ϕ→ ϕ ⊢ λx. f (x x):µ.(•0→ ϕ)→ ϕ

(≤)
f :•ϕ→ ϕ ⊢ λx. f (x x):(•µ.(•0→ ϕ)→ ϕ)→ ϕ

The other is by weakening the subderivation typing the subterm x x, to giveD
′′

2:

(var)
. . . ⊢ f :•ϕ→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)→ ϕ

(var)
. . . ⊢ x:µ.(•0→ ϕ)

(≤)
. . . ⊢ x:•µ.(•0→ ϕ)

(→ E)
. . . ⊢ x x:ϕ

(≤)
. . . ⊢ x x:•ϕ

(→ E)
f :•ϕ→ ϕ, x:µ.(•0→ ϕ) ⊢ f (x x):ϕ

(→ I )
f :•ϕ→ ϕ ⊢ λx. f (x x):µ.(•0→ ϕ)→ ϕ

(≤)
f :•ϕ→ ϕ ⊢ λx. f (x x):(•µ.(•0→ ϕ)→ ϕ)→ ϕ

We can now type the applicationδ f δ f itself:

D
′

2 orD
′′

2
f :•ϕ→ ϕ ⊢ λx. f (x x):(•µ.(•0→ ϕ)→ ϕ)→ ϕ

D1
f :•ϕ→ ϕ ⊢ λx. f (x x):•µ.(•0→ ϕ)→ ϕ

(→ E)
f :•ϕ→ ϕ ⊢ δ f δ f :ϕ

A key observation motivating our approach to type inferenceis that there is nosubstitutionof variables

that can transform the first typing into the second one, not even modulo the subtyping relation. This is

part of the reason for the necessity of insertion variables and the insertion operation itself, which allow us

to place bullets at locations which would not be possible using the substitution operation alone. However,
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this is not the whole story: to type the termδ f δ f , we had to use twodifferent typings - one containing

bullets, and the other not. In the system with insertion variables, the typing that we infer for the termδ f

is

〈{ f : ι4ι3ι2ϕ1→ ι4ϕ2}, ι2µ.(ι1•0→ ϕ1)→ ι4ϕ2〉 (9.7)

The important point to note here is that the insertion variables in this typing, as well as allowing us

to prefix the recursive type that forms the left-hand side of the arrow type with a bullet by using the

insertion [ι2 7→ •], also allow for the possibility of obtaining the other typing via the empty insertion

which removes all insertion variables. Thus, using insertion variables enables us to defer, until the last

possible moment, the decision of whether to infer a type withor without bullets. More fundamentally,

though, what insertion variables serve to do is mark the places in a typing derivation where the subtyping

rule can be used (to introduce bullets into a type). Notice that theexpansionvariables of Kfoury and

Wells [75] perform exactly the same function, marking the points in a derivation where a subderivation

may be duplicated and used as the premises for an intersection introductionrule.

The typing above is also more general than just the two particular typings we have considered that

allow us to type the self applicationδ f δ f . In fact, for alln,m∈ N the termλx. f (x x) has the typing:

〈{ f :•nϕ1→ ϕ2 },•
nµ.(•m0→ ϕ1)→ ϕ2〉

None of these typings are related to any of the others via the subtyping relation≤, meaning that none

can be considered principal, but each of these typings can begenerated from 9.7 above. We conjecture

that it is this typing which is principal for the termλx. f (x x), i.e. any valid typing for the term can be

generated from it by applying some operation.

Now to finish off, let us examine in detail exactly how the type inference procedure generates the

typing for the termδ f δ f that we gave above, with all its insertion variables.

For completeness, we will proceed from the very beginning and so start with the inference of a typing

for x x. For each occurrence ofx, a fresh type variable is used to generate the typings〈{x:ϕ1},ϕ1〉 and

〈{x:ϕ2},ϕ2〉. To infer a typing for the termx xwe first unifyϕ1 (the type of the first occurrence ofx) with

the arrow typeι1ϕ2→ ϕ3, constructed from the type of the second occurrence ofx and fresh insertion

and type variables. This yields the type substitutionO1 = [ϕ1 7→ ι1ϕ2→ ϕ3], which is then applied to the

type environments in the typings for each occurrence ofx giving {x: ι1ϕ2→ ϕ3 } and{x:ϕ2}. Unifying

these requires unifying the two typesι1ϕ2→ ϕ3 andϕ2. Sinceϕ2 occurs in the typeι1ϕ2→ ϕ3, uni-

fying them involves generating a recursive type, which is done by first inserting a bullet atι1, and then

promoting the re-occuring type variableϕ2 and recursively closing the type. This yields the operation

O2= [ϕ2 7→ µ.(ι1•0→ ϕ3)]◦ [ι1 7→ ι1•], and soϕ2 gets replaced by a recursive type. The penultimate step

is to combine the environmentsO2◦O1({x:ϕ1}) = {x: ι1•µ.(ι1•0→ ϕ3)→ ϕ3} andO2◦O1({x:ϕ2}) =

{x:µ.(ι1•0→ ϕ3)}. It is easy to verify that the types in these two environmentsare inferrably equiva-

lent, that is⊢ ι1•µ.(ι1•0→ ϕ3)→ ϕ3 ≤ µ.(ι1•0→ ϕ3) and⊢ µ.(ι1•0→ ϕ3) ≤ ι1•µ.(ι1•0→ ϕ3)→ ϕ3.

Therefore, we take thesmallerof the two types for the combined environment

O2◦O1({x:ϕ1})∪· O2◦O1({x:ϕ2}) = {x:µ.(ι1•0→ ϕ3)}
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The final step is to push a fresh insertion variable onto the typing:

Type(x x) = 〈iPush[ι2]({x:µ.(ι1•0→ ϕ3)})∪∅, iPush[ι2](O2 ◦O1(ϕ3))〉

= 〈{x: ι2µ.(ι1•0→ ϕ3)}, ι2ϕ3〉

Using the typing that we have just inferred, the inference procedure for the termf (x x) follows similar

lines. A fresh type variable forms the typing〈{ f :ϕ4},ϕ4〉 for the subtermf . This is then unified with an

arrow type that allows the application withx x to be typed, yielding the type subtitution [ϕ4 7→ ι3ι2ϕ3→

ϕ5]. Unifying the type environments of the two subterms is unnecessary since they are disjoint in their

variable range. Thus, the typing for the whole term is again obtained by pushing a fresh insertion variable

onto the type in the environment associated withf and the result type:

Type( f (x x)) = 〈{ f : ι4ι3ι2ϕ3→ ι4ϕ5, x: ι2µ.(ι1•0→ ϕ3)}, ι4ϕ5〉

The typing for the termλx. f (x x) is obtained straightforwardly by abstracting over the type for x:

Type(λx. f (x x)) = 〈{ f : ι4ι3ι2ϕ3→ ι4ϕ5}, ι2µ.(ι1•0→ ϕ3)→ ι4ϕ5〉

At this point we arrive to where we ran into trouble previously - remember that type inference without

insertion variables failed because we could not unify the types inferred for the two occurrences of the

subtermλx. f (x x). Having inferred a typingwith insertion variables, however, the unification succeeds.

Taking a fresh instance of the above typing for the right-hand occurrence ofδ f gives us the two typings:

〈Π1,σ〉 = 〈{ f : ι4ι3ι2ϕ3→ ι4ϕ5}, ι2µ.(ι1•0→ ϕ3)→ ι4ϕ5〉

〈Π2, τ〉 = 〈{ f : ι8ι7ι6ϕ8→ ι8ϕ10}, ι6µ.(ι5•0→ ϕ8)→ ι8ϕ10〉

The unification then proceeds as follows. We have underlinedthe unification call which led to failure

in the approach without using insertion variables. This call is now easily handled because the insertion

variableι6 prefixing the right-hand recursive type is able to ‘consume’the bullet prefixing the left-hand

recursive type:

O = Unifyµ≤(σ, iPush[ι9](τ)→ ϕ11)

= Unifyµ≤(ι2µ.(ι1•0→ ϕ3)→ ι4ϕ5, (ι9ι6µ.(ι5•0→ ϕ8)→ ι9ι8ϕ10)→ ϕ11)

= O2◦O1 where

O1 = Unifyµ≤(ι9ι6µ.(ι5•0→ ϕ8)→ ι9ι8ϕ10, ι2µ.(ι1•0→ ϕ3))

= Unifyµ≤(ι9ι6µ.(ι5•0→ ϕ8)→ ι9ι8ϕ10, ι2ι1•µ.(ι1•0→ ϕ3)→ ι2ϕ3)

= O4 ◦O3 where

O3 = Unifyµ≤(ι2ι1•µ.(ι1•0→ ϕ3), ι9ι6µ.(ι5•0→ ϕ8))

= O6◦O5 where

O5 = [ι2 7→ ι9]

O6 = Unifyµ≤(O5(ι1•µ.(ι1•0→ ϕ3)), O5(ι6µ.(ι5•0→ ϕ8)))

= Unifyµ≤(ι1•µ.(ι1•0→ ϕ3), ι6µ.(ι5•0→ ϕ8))

= O8◦O7 where
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O7 = [ι6 7→ ι1•]

O8 = Unifyµ≤(O7(µ.(ι1•0→ ϕ3)), O7(µ.(ι5•0→ ϕ8)))

= Unifyµ≤(µ.(ι1•0→ ϕ3), µ.(ι5•0→ ϕ8))

= Unifyµ≤(ι1•0→ ϕ3, ι5•0→ ϕ8)

= O10◦O9 where

O9 = Unifyµ≤(ι5•0, ι1•0)

= O12◦O11 where

O11 = [ι5 7→ ι1]

O12 = Unifyµ≤(0, 0)

= Id

O10 = Unifyµ≤(O9(ϕ3), O9((ϕ8))

= Unifyµ≤(ϕ3, ϕ8)

= [ϕ3 7→ ϕ8]

O4 = Unifyµ≤(O3(ι9ι8ϕ10), O3(ι2ϕ3))

= Unifyµ≤(ι9ι8ϕ10, ι9ϕ8)

= O14◦O13 where

O13 = [ι9 7→ ǫ]

O14 = Unifyµ≤(O13(ι8ϕ10), ϕ8)

= Unifyµ≤(ι8ϕ10, ϕ8)

= O16◦O15 where

O15 = [ι8 7→ ǫ]

O16 = Unifyµ≤(O15(ϕ10), ϕ8)

= Unifyµ≤(ϕ10, ϕ8)

= [ϕ10 7→ ϕ8]

O2 = Unifyµ≤(O1(ι4ϕ5), O1(ϕ11))

= Unifyµ≤(ι4ϕ5, ϕ11)

= O18◦O17 where

O17 = [ι4 7→ ǫ]

O18 = Unifyµ≤(O17(ϕ5), ϕ11)

= Unifyµ≤(ϕ5, ϕ11)

= [ϕ5 7→ ϕ11]

= O18◦O17◦O16◦O15◦O13◦O10◦O12◦O11◦O7◦O5

= [ϕ5 7→ ϕ11] ◦ [ι4 7→ ǫ] ◦ [ϕ10 7→ ϕ8] ◦ [ι8 7→ ǫ] ◦ [ι9 7→ ǫ]

◦ [ϕ3 7→ ϕ8] ◦ Id◦ [ι5 7→ ι1] ◦ [ι6 7→ ι1•] ◦ [ι2 7→ ι9]

Having successfully carried out the unification above, we must apply the resulting operation to the two

type environmentsΠ1 andΠ2 and then unify them. This involves applying the operation tothe type

associated withf in each environment and unifying the resulting types, whichgives the following:

O′ = Unifyµ≤(O(ι4ι3ι2ϕ3→ ι4ϕ5), O(ι8ι7ι6ϕ8→ ι8ϕ10))

= Unifyµ≤(ι3ϕ3→ ϕ11, ι7ι1•ϕ3→ ϕ3)

= O′2◦O′1 where

O′1 = Unifyµ≤(ι7ι1•ϕ3, ι3ϕ3)
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= [ι3 7→ ι7ι1•]

O′2 = Unifyµ≤(O
′
1(ϕ11), O′1(ϕ3))

= Unifyµ≤(ϕ11, ϕ3)

= [ϕ11 7→ ϕ3]

= [ϕ11 7→ ϕ3] ◦ [ι3 7→ ι7ι1•]

Applying the combined operationO′ ◦O to the two type environments, in this case, results in identical

environments and thus the combined type environment is the same:

O′ ◦O(Π1)∪· O′ ◦O(Π2) = { f : ι7ι1•ϕ3→ ϕ3}∪· { f : ι7ι1•ϕ3→ ϕ3 }

= { f : ι7ι1•ϕ3→ ϕ3}

The typing that we will infer forδ f δ f is formed by pushing a fresh insertion variable onto the type

associated with every variable that is present inΠ1, and also onto the result type of the application:

Type((λx. f (x x)) (λx. f (x x))) = 〈iPush[ι10](Π
′
1)∪Π′2, iPush[ι10](O

′ ◦O(ϕ11))〉

= 〈iPush[ι10]({ f : ι7ι1•ϕ3→ ϕ3})∪∅, iPush[ι10](ϕ3)〉

= 〈{ f : ι10ι7ι1•ϕ3→ ι10ϕ3}, ι10ϕ3〉

whereΠ′1 = { x:σ | x ∈ Π1 & x:σ ∈ O′ ◦O(Π1)∪· O′ ◦O(Π2) }

Π′2 = {y:τ | y∈ Π2 & y<Π1 & y:τ ∈ O′ ◦O(Π1)∪· O′ ◦O(Π2) }

Lastly, the typing forY is obtained by abstracting over the type forf :

Type(Y) = Type(λ f .(λx. f (x x)) (λx. f (x x)))

= 〈∅, (ι10ι7ι1•ϕ3→ ι10ϕ3)→ ι10ϕ3〉

The typing forY that we demonstrated back in Section 8.2.3 can easily be obtained from this via the

operation [ι10 7→ ǫ] ◦ [ι7 7→ ǫ] ◦ [ι1 7→ ǫ] which removes all the insertion variables.

9.6.2. Incompleteness of the Algorithm

Due to the incompleteness of the unification procedure we defined in the previous section, our type

inference procedure also fails to be complete. In other words, there are typeable terms for which our

procedurecannotinfer a type. An example of such a term is theλ-termY′ = Y (λxy.y(xy)). Notice that

this term is also a fixed point combinator:

Y′M = Y (λxy.y(xy)) M

=β (λxy.y(xy)) (Y (λxy.y(xy))) M

→β (λy.y(Y (λxy.y(xy))y)) M

→β M (Y (λxy.y(xy)) M)

= M (Y′M)
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As such, it can be assigned the characteristic fixed-point operator typeσY = (•ϕ → ϕ) → ϕ. Take

the following derivationD, in whichΠ = {x:•σY , y:•ϕ→ ϕ} (notice that•σY = •((•ϕ→ ϕ)→ ϕ) ≃

(••ϕ→ •ϕ)→ •ϕ):

(var)
Π ⊢ y:•ϕ→ ϕ

(var)
Π ⊢ x:•σY

(≤)
Π ⊢ x:(••ϕ→ •ϕ)→•ϕ

(var)
Π ⊢ y:•ϕ→ ϕ

(≤)
Π ⊢ y:••ϕ→ •ϕ

(→ E)
Π ⊢ xy:•ϕ

(→ E)
Π ⊢ y(xy):ϕ

(→ I )
{ x:•σY } ⊢ λy.y(xy):σY

(→ I )
⊢ λxy.y(xy):•σY → σY

Notice that the type (•σY → σY)→ σY is a substitution instance of the typeσY itself, and so we can

easily assign it to the termY (one way to do this is to take the derivations given in the previous section

and replace all occurrences of the type variableϕ with the typeσY). Thus we can assign the typeσY to

the termY′:

⊢ Y:(•σY → σY)→ σY

D

⊢ λxy.y(xy):•σY → σY
(→ E)

⊢ Y′:σY

We will now show where type inference for the termY′ breaks down. As we have seen, we are able

to infer a type for the termY. We leave it as an exercise to the reader to verify that the ourtype inference

procedure returns the following typing for the termλxy.y(xy) (or anα-equivalent one, that is equivalent

up to the renaming of type and insertion variables):

Type(λxy.y(xy)) =

〈∅, ((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)→ (ι5ι4ι3ϕ1→ ι5ϕ2)→ ι5ϕ2〉

This means that type inference fails because the unificationprocedure fails when it attempts to make

their respective types compatible for application. The execution of the relevant call to the unification

procedure is given below:

O = Unifyµ≤((ι10ι7ι1•ϕ3→ ι10ϕ3)→ ι10ϕ3,

(((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)→ (ι5ι4ι3ϕ1→ ι5ϕ2)→ ι5ϕ2)→ ϕ4)

= O2◦O1 where

O1 = Unifyµ≤(((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)→ (ι5ι4ι3ϕ1→ ι5ϕ2)→ ι5ϕ2,

ι10ι7ι1•ϕ3→ ι10ϕ3)

= O4◦O3 where

O3 = Unifyµ≤(ι10ι7ι1•ϕ3, (ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)

= O6◦O5 where

O5 = [ι10 7→ ǫ]

O6 = Unifyµ≤(O5(ι7ι1•ϕ3), O5((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1))

= Unifyµ≤(ι7ι1•ϕ3, (ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)

= O8◦O7 where

O7 = [ι7 7→ ǫ]

O8 = Unifyµ≤(O7(ι1•ϕ3), O7((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1))

= Unifyµ≤(ι1•ϕ3, (ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)
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= O10◦O9 where

O9 = [ι1 7→ ǫ]

O10 = Unifyµ≤(•ϕ3, O9((ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1))

= Unifyµ≤(•ϕ3, (ι3ι2ι4ι3ϕ1→ ι3ι2ϕ2)→ ι3ϕ1)

= fail

As can easily be seen, the unification procedure fails at the point that it has to unify a bulleted type

variable with a function type, since there is no unification inference rule that matches this pattern of

input types. This is also exactly the case that we highlighted in the previous section when mentioning

the incompleteness of unification.

A possible solution to the problem of unifying a bulleted type variable•ϕwith a function typeκ1→ κ2

(in which the type variableϕ itself doesnot occur, of course) is to unify the latter type with afreshly

generatedfunction type•ϕ1→ •ϕ2. If this succeeds, it returns an operationO such thatO(•ϕ1→

•ϕ2) ≤ O(κ1 → κ2) (or O(κ1 → κ2) ≤ O(•ϕ1→ •ϕ2) depending on which way round we attempt the

unification). We can then build a unifying operation for the original type•ϕ, namelyO◦ [ϕ 7→ ϕ1→ ϕ2].

Notice that sinceϕ does not occur inκ1→ κ2, it is the case that [ϕ 7→ ϕ1→ ϕ2](κ1→ κ2) = κ1→ κ2 and

soO◦ [ϕ 7→ ϕ1→ ϕ2](κ1→ κ2) = O(κ1→ κ2). Thus:

O◦ [ϕ 7→ ϕ1→ ϕ2](•ϕ) = O(•ϕ1→ •ϕ2)

≤ O(κ1→ κ2) = O◦ [ϕ 7→ ϕ1→ ϕ2](κ1→ κ2)

The reason that we have not incorporated this approach into our unification algorithm is that we would

then have been unable to prove its decidability, or more accurately its termination. This is due to the

proof technique that we have used, which is based on the structural closure of a type. The approach we

have just outlined introducesfreshtype variables which are not present in either of the original types that

we were trying to unify. This means that, in a unification inference system incorporating this approach,

the subtype statements in subderivations are not guaranteed to be in the structural closure of the types in

the final conclusion. Thus, our technique for proving termination would no longer be valid.

9.6.3. On Principal Typings

Although we have not yet been able to show a formal principal typings property for our variant of

Nakano’s type assignment, we do believe that such a propertyholds, since there is evidence to believe

that our type inference procedure infers such principal typings (when it succeeds in inferring a typing at

all, of course).

We hinted at this above when we talked about the different typings that can be assigned to theλ-term

λx. f (x x), and their role in typing the fixed point combinatorY. There, we noted that many of the

(subtype-incompatible) typings assignable to this term can be generated by applying some composition

of insertion operations to the typing returned by our inference algorithm, and that furthermore, these

typing could not be obtained via substitution alone (from a typing without insertion variables).

Another example supporting our conjecture of principal typings is the typing that is inferred by our

algorithm for the termλxy.y(xy). The ‘vanilla’, principal Curry type for this term is

((ϕ1→ ϕ2)→ ϕ1)→ (ϕ1→ ϕ2)→ ϕ2
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Again, this is assignable to the term in our system too. Notice, though, that in the Nakano system it can

also be assigned the type

((••ϕ1→ •ϕ2)→ •ϕ1)→ (•ϕ1→ ϕ2)→ ϕ2

In fact, it was a variant ofthis type (in which the type variablesϕ1 andϕ2 were unified) that we used in

order to type the fixed point combinatorY′ = Y (λxy.y(xy)). The important point to note is that neither

one of these types is a subtype of the other, and furthermore we cannot generate the second one from the

first via substitution alone, since the latter type containsboth the type variablesϕ1 andϕ2 in both their

bulleted and unbulleted (or double-bulleted, in the case ofϕ1) form. Both of these types, however,can

be generated from the typing inferred by our algorithm. The former using the operation [ι5 7→ ǫ] ◦ [ι4 7→

ǫ] ◦ [ι3 7→ ǫ] ◦ [ι2 7→ ǫ], and the latter using the operation [ι5 7→ ǫ] ◦ [ι4 7→ ǫ] ◦ [ι3 7→ •] ◦ [ι2 7→ ǫ].

We will give one more example to bolster the case for the principal typings conjecture, that of the

familiar λ-termS= λxyz.xz(yz). In the simply typedλ-calculus, of course,S has the (principal) type

(ϕ1→ ϕ2→ ϕ3)→ (ϕ1→ ϕ2)→ ϕ1→ ϕ3

In Nakano’s sytem (and thus also our variant), it can also be assigned that type. However, as with the

previous example, it is possible to assign it another type which is not obtainable from the Curry type

either via the subtype relation or via substitution:

(var)
Π ⊢ x:ϕ1→ ϕ2→ ϕ3

(var)
Π ⊢ z:ϕ1

(→ E)
Π ⊢ xz:ϕ2→ ϕ3

(var)
Π ⊢ y:•ϕ1→ ϕ2

(var)
Π ⊢ z:ϕ1

(≤)
Π ⊢ z:•ϕ1

(→ E)
Π ⊢ yz:ϕ2

(→ E)
{ x:ϕ1→ ϕ2→ ϕ3, y:•ϕ1→ ϕ2, z:ϕ1 } ⊢ xz(yz):ϕ3

(→ I )
{ x:ϕ1→ ϕ2→ ϕ3, y:•ϕ1→ ϕ2 } ⊢ λz.xz(yz):→ ϕ1→ ϕ3

(→ I )
{ x:ϕ1→ ϕ2→ ϕ3 } ⊢ λyz.xz(yz):(•ϕ1→ ϕ2)→ ϕ1→ ϕ3

(→ I )
⊢ λxyz.xz(yz):(ϕ1→ ϕ2→ ϕ3)→ (•ϕ1→ ϕ2)→ ϕ1→ ϕ3

whereΠ = {x:ϕ1→ ϕ2→ ϕ3, y:•ϕ1→ ϕ2, z:ϕ1 }.

The typing inferred by our algorithm for the termS is:

Type(λxyz.xz(yz)) = 〈∅, (ι5ι1ϕ1→ ι5ι4ι3ϕ2→ ι5ϕ3)→ (ι3ι2ϕ1→ ι3ϕ2)→ ι5ϕ1→ ι5ϕ3〉

Notice that the type we assigned toS above can be generated from this type via the operation

[ι5 7→ ǫ] ◦ [ι4 7→ ǫ] ◦ [ι3 7→ ǫ] ◦ [ι2 7→ •] ◦ [ι1 7→ ǫ]

that removes all the insertion variables with the exceptionof ι2, which it replaces with a bullet. Another

type that can be assigned toS is

(ϕ1→•ϕ2→ ϕ3)→ (•ϕ1→ •ϕ2)→ ϕ1→ ϕ3

The interesting thing about this type is that, while it is notrelated to the previous two types we have

considered via subtyping, nor obtainable from the Curry type via substitution, it can be generated from
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the inferred typing in two different ways: the first, via the operation

[ι5 7→ ǫ] ◦ [ι4 7→ ǫ] ◦ [ι3 7→ •] ◦ [ι2 7→ ǫ] ◦ [ι1 7→ ǫ]

which removes all insertion variables exceptι3, which it replaces with a bullet; the second way is via the

operation

[ϕ2 7→ •ϕ2] ◦ [ι5 7→ ǫ] ◦ [ι4 7→ ǫ] ◦ [ι3 7→ ǫ] ◦ [ι2 7→ •] ◦ [ι1 7→ ǫ]

that removes all the insertion variables exceptι2 which it replaces with a bullet, and substitutes the type

variableϕ2 with a bulleted version of itself.

Lastly, notice that the following three types assignable toS can be generated either by replacing

insertion variablesι1, ι4 andι5 respectively by bullets, or via empty insertions and the subtype relation

since they are all supertypes of the Curry type that we gave above:

(•ϕ1→ ϕ2→ ϕ3)→ (ϕ1→ ϕ2)→ ϕ1→ ϕ3

(ϕ1→ •ϕ2→ ϕ3)→ (ϕ1→ ϕ2)→ ϕ1→ ϕ3

(•ϕ1→•ϕ2→ •ϕ3)→ (ϕ1→ ϕ2)→ •ϕ1→ •ϕ3

Thus, there is a certain degree of redundancy in the operations that we can use to obtain typings. The

main point however, is that all these typings are obtainablein someway, only obtainable because we

have incorporated insertion variables into the system.

We end this section by remarking that, while there is evidence to believe that our system has a principal

typings property, this property as it applies to our system can only partially hold, or hold modulo a

stronger equivalence relation on types than the one we have defined through the≤ subtyping relation.

The reason for this is that the subtyping relation we have defined only relates recursive types via a

finitary unfolding - that is, two recursive types are equivalent (≃) to one another if and only if they

can both be unfolded some finite number of times such that theybecome the same type. This isweak

µ-equality. A stronger notion of equality on recursive typescan be obtained if we consider theinfinite

unfolding - thus, two recursive types arestronglyµ-equivalent if and only if they have the same infinite

unfolding. For example, the two typesµ.(ϕ→•0) andµ.(ϕ→•ϕ→••0) are stronglyµ-equivalent, but

they arenot weaklyµ-equivalent - that is, there is no finitary unfolding of thesetypes such that they are

(syntactically) equal.

This has a bearing on the (conjectured) principle typings property of our system, since it may be that

a particular term can be assigned two (or more) typings whichare stronglyµ-equivalent but not weakly

µ-equivalent, and so there is no way to generalise one to the other via the≤ subtyping relation. Thus,

neither (or none) of the typings can be considered ‘principal’, in the strictest sense of the word.

Take, for example, the termK ′ = λxyz.x. Using the types that we gave above, notice that the following

(weak)µ-equalities hold:

•µ.(ϕ→ •0)→ µ.(ϕ→ •0) ≃ •µ.(ϕ→•0)→ ϕ→ •µ.(ϕ→ •0)

≃ •µ.(ϕ→•0)→ ϕ→ •ϕ→ ••µ.(ϕ→ •0)
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•µ.(ϕ→ •ϕ→ ••0)→ µ.(ϕ→ •ϕ→ ••0)

≃ •µ.(ϕ→ •ϕ→ ••0)→ ϕ→ •ϕ→••µ.(ϕ→•ϕ→••0)

Letσ1 = µ.(ϕ→ •0) andσ2 = µ.(ϕ→ •ϕ→ ••0). Then for eachi ∈ {1,2}:

(var)
{ x:•σi , y:ϕ, z:•ϕ } ⊢ x:•σi

(≤)
{ x:•σi , y:ϕ, z:•ϕ } ⊢ x:••σi

(→ I )
{ x:•σi , y:ϕ } ⊢ λz.x:•ϕ→ ••σi

(→ I )
{ x:•σi } ⊢ λyz.x:ϕ→•ϕ→ ••σi

(→ I )
⊢ λxyz.x:•σi → ϕ→•ϕ→ ••σi

(≤)
⊢ λxyz.x:•σi → σi

Thus, the termK ′ can be assigned both of the types•σ1→ σ1 and•σ2→ σ2. This, in itself, does not

constitute a problem for our conjectured principal typingsproperty, since the ‘principal’ typing forK ′

(i.e. the typing inferred by our algorithm) is

Type(K ′) = 〈∅,ϕ1→ ϕ2→ ϕ3→ ϕ1〉

and both of the types we have assigned are supertypes of typesthat can be generated from this principal

type via substitution:

O1(ϕ1→ ϕ2→ ϕ3→ ϕ1) = µ.(ϕ→ •0)→ ϕ→ ϕ→ µ.(ϕ→ •0)

≤ •µ.(ϕ→ •0)→ •ϕ→ •ϕ→ •µ.(ϕ→ •0)

≤ •µ.(ϕ→ •0)→ •ϕ→ ϕ→ •µ.(ϕ→ •0)

≤ •µ.(ϕ→ •0)→ •ϕ→ ϕ→ ••µ.(ϕ→ •0)

whereO1 = [ϕ3 7→ ϕ] ◦ [ϕ2 7→ ϕ] ◦ [ϕ1 7→ µ.(ϕ→ •0)].

O2(ϕ1→ ϕ2→ ϕ3→ ϕ1) = µ.(ϕ→ •ϕ→ ••0)→ ϕ→ ϕ→ µ.(ϕ→ •ϕ→ ••0)

≤ •µ.(ϕ→ •ϕ→ ••0)→ •ϕ→ •ϕ→ •µ.(ϕ→ •ϕ→ ••0)

≤ •µ.(ϕ→ •ϕ→ ••0)→ •ϕ→ ϕ→ •µ.(ϕ→ •ϕ→ ••0)

≤ •µ.(ϕ→ •ϕ→ ••0)→ •ϕ→ ϕ→ ••µ.(ϕ→ •ϕ→ ••0)

whereO2 = [ϕ3 7→ ϕ] ◦ [ϕ2 7→ ϕ] ◦ [ϕ1 7→ µ.(ϕ→ •ϕ→ ••0)].

On the other hand, let us consider the termYK ′. We have seen thatY can be assigned types of the

form (•σ→ σ)→ σ for any typeσ, and so this allows us to type the termYK ′ in two different ways,

since for eachi ∈ {1,2}:

⊢ Y:(•σi → σi)→ σi ⊢ K ′:•σi → σi
(→ E)

⊢ YK ′:σi

Thus, we can assign both the typings〈∅,σ1〉 and〈∅,σ2〉 to YK ′. The type inference algorithm returns
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the typing〈∅,µ.(ϕ1→ ϕ2→ •0)〉. Notice that

[ϕ2 7→ ϕ] ◦ [ϕ1 7→ ϕ](〈∅,µ.(ϕ1→ ϕ2→ •0)〉) = 〈∅,µ.(ϕ→ ϕ→ •0)〉

≤ 〈∅,µ.(ϕ→ •ϕ→ ••0)〉

However, the typeσ1, while stronglyµ-equivalent toσ2, is not itself directly obtainable from the ‘prin-

cipal’ typing returned by the type inference algorithm. This leads us to formulate the following principal

typings conjecture, stated modulo strongµ-equivalence.

Conjecture 9.77. If Π ⊢ M:σ and Type(M) = 〈Π′, τ〉, then there is an operationO, an environment

Π′′ and typeτ′ such thatO(〈Π′, τ〉) = 〈Π′′, τ′〉, with Π′′ stronglyµ-equivalent toΠ and τ′ stronglyµ-

equivalent toσ.
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10. Extending Nakano Types to Featherweight

Java

Having demonstrated in the previous chapter that some kind of type inference is possible for Nakano-

style type assignment in the context ofλ-calculus, we will continue by describing how we might now

apply the concepts and approach of this system in an object-oriented setting, and present a type assign-

ment system forfj¢ that assigns Nakano-style simple recursive structural types to programs. The aim of

doing this is to obtain a type assignment system forfj¢ which is both semantic and fully decidable for

all programs. By basing the system on the Nakano approach, weclaim that we obtain a system with a

semantic foundation; furthermore, since it is also a systemof recursive types, this allows us to ‘tame’

the recursion inherent in the class-based object-orientedparadigm, and facilitates an effective algorithm

approach to type inference.

Although we do not give a formal result showing the semantic nature of our system, we will work

through several illustrative examples showing how they canbe typed by our system. These will provide

what we believe to be strong evidence in support of the semantic nature of the system. We will also

discuss how type inference technique for Nakano’s system that we outlined in the previous chapter

might be merged with the type inference procedure forfj¢ that we gave in Section 7.3, and thus applied

to the new system. Finally, we consider how to introduce intersections into this system, with the aim of

gaining semantic completeness.

We see the work in this chapter as providing a starting point,upon which we can build both formal and

practical results. The definitions, descriptions and examples in this chapter should be detailed enough to

convince the reader that such results are feasible. As such,it can be considered to constitute a roadmap

for future research.

10.1. Classes As Functions

Our aim in studying the Nakano system of recursive types, andtechniques for the inference of its type

assignment, is to be able to apply it in an object-oriented setting in order to obtain a semantic type

assignment system for which typings can be inferred in a flexible and comprehensive manner. To see

just how a system of recursive types can lead to a generally terminating type inference procedure, we

will first examine the precise reason for thenon-termination of type inference in the intersection type

system. This, as we have remarked in Section 7.3, lies in the ability to define classesrecursively.

The type assignment system of ‘simple’ types (whether intersections are allowed or not) studied in

the first part of this thesis treats class definitions simply as lookup tables for fields and methods, and

operates by ‘unfolding’ these definitions as many times as required for a given analysis, or to be able to

type an object in a given context. Type analyses for objects are obtained via analyses of their method

bodies. So, if a method body (or more precisely, the execution of the method body - i.e. the invocation
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of the method) results in the creation of a new instance of itscontaining class, then the analysis of that

method body will necessarily entail an analysis of this new instance obtained by again ‘unfolding’ the

same class definition, resulting in a non-terminating loop.

Notice that this is not just a property or artefact of the typeinference algorithm, but a property of

the type assignment system itself, which allows instances of recursively defined classes to be assigned

types of arbitrary size and, in general, arbitrary irregularity. For a semantic analysis, this is exactly what

we want since it allows the system to capture the infinity of potential behaviours that such an object

will have. However, for practical type inference of any kindof real-world object-oriented program, this

expressive power is entirely prohibitive.

One possible approach to ensuring the termination of a type inference algorithm for this system would

be to simply place a limit on the number of times any particular class definition can be ‘unfolded’ during

type inference. In other words, we would be placing a limit onthe contexts in which the program can

(typeably) be placed in, this limit being defined as some maximum number of successive method calls.

However, as well as resulting in a woefully incomplete inference algorithm this is, of course, overly

restrictive from a practical programming point of view. Think of the list example of Section 6.3 - such

an approach would impose a maximum length for any typeable list. While programmers are used to

being limited on this front by hardware constraints, being limited in this way by the type system would

be more or less unacceptable.

So, the question we must answer becomes: is there a way to limit the unfolding of class definitions

during type analysis, while still allowing programs to be used in contexts consisting of arbitrary-length

sequences of method calls? The key to answering this question affirmatively lies in viewing classes

not just as lookup tables, but asfunctionsfrom objects to objects - in other words, objectconstructor

functions. We will make this interpretation more concrete,and explain how it leads to a new typing

approach, by first considering a possible interpretation ofclasses in theς-calculus. Abadi and Cardelli

also describe such a translation in [2], similar to approachadopted by Reddy in his semantic model

for Smalltalk [92]. We will discuss a slightly different translation, however, which more suits the way

we will eventually type new objects. We will not use, for instance, Abadi and Cardelli’s notion of

premethods.

The principal feature of Abadi and Cardelli’s encoding is that classes are themselves represented

as objects, containing a special method namednew. The class-based approach to creating objects by

instantiation is translated to an invocation of thenew method on the object that is the translation of

the instantiated class, i.e. the class-based expressionnew C( e) becomes the object calculus expression

classObjC.new( e) , whereclassObjC is the translation of the classC. The new method of the class

objectclassObjC is defined such that it returns a new object equivalent to an instance of the classC, so

it contains all the methods and fields declared inC.

Consider anfj¢ class:

class C {

C1 f1; . . . Cn fn;

D1 m1( E x) { return e1; } . . . Dm mm( E x) { return em; }

}
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The correspondingC class object,classObjC, in theς-calculus would be:

classObjC , [new= ς(C).λ(gn).[f = gn, m = ς(this ).λ(x).⌈⌈e⌋⌋m]]

We will discuss the translation of the method bodies⌈⌈ei⌋⌋ shortly, but first we point out an important

aspect of this translation. This is that the variablethis in the translation of each method has been

bound by theς self binder, and so references tothis within method bodies will correctly refer to the

receiving object. Also the class nameC has been self bound within the body of the specialnew method.

This means that any occurrences ofC in the bodies of the object’s methods will also refer back to the

translated class object, and so new instances of the classC itself can be created by its own methods. In

fact, this latter observation is the crucial element in the translation. Apart from this we can see that the

body of thenew method is a (lambda) function that takes some arguments( gn) which are then used as

the values of the object’s fields.

The translation⌈⌈ei⌋⌋ of the method bodies is slightly subtle. What the translation must do, quite

straightforwardly, is convertnew C(...) expressions into the formclassObjC.new , translating the

classC into a class object, and invoking itsnew method. There is an exception to this, however - when

convertingnew C(...) expressionswithin the translation of the classC itself, we must refer to the

self-bound variableC, and not translate the class into an object a second time.

How does this translation of classes to a calculus of pure objects and functions help us to see how we

might better type class-based programs? Well, notice that in our translation, class objects contain the

solemethodnew - its object nature plays no other role (in our translation) other than providing thenew

method for creating new instances. Since the body of thenew method is a function, we might as well

dispose of the notion of a class as an object, and treat it as a raw function. We must be careful, however,

because the body of this function may well contain invocations of thenew method on occurrences of the

previously recursively bound variableC. We must also now treat these method invocations as recursive

calls to the function itself. So, our view of classes has now moved from aς-calculus object with anew

method, to a recursively defined function namedC.new :

classC , FIX C.new .λ(gn).[f = gn, m = ς(this ).λ(x).⌈⌈e⌋⌋m]

To type such recursively defined functions, we use a (fix) rule as follows:

Γ, g:σ ⊢ M :σ
(fix)

Γ ⊢ FIX g.M :σ

So, we assume a type for the function identifier in the typing environment and try to assign the same type

to the function body. If this is possible, then we can type theentire recursive definition itself with this

type. This typing rule is based upon the recursive definitionFIX g.M being a shorthand forY(λg.M),

whereY is a fixed point operator with the type scheme (A→ A)→ A. As we have observed, in Nakano’s

system fixed point operators have the type scheme (•A→ A)→ A, and so we must reformulate our

typing rule for recursive definitions as follows:

Γ, g:•σ ⊢ M :σ
(fix)

Γ ⊢ FIX g.M :σ

That is, we must assume abulletedversion of the type we are trying to derive.
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In the following section, we will define a type system for Featherweight that assigns Nakano types to

programs. It will very much follow in the footsteps of the intersection type assignment system from the

first part of this thesis. The key difference, however, will lie in our approach to assigning method types,

which we will now do based on the above idea of treating thenew keyword as denoting a recursively

defined function that returns an object.

10.2. Nakano Types for Featherweight Java

In this section, we will define a type system forfj¢ that incorporates Nakano recursive types and insertion

variables, which we will callFJ•µ. The types of this new system will essentially be the (Curry)types

that we defined in Chapter 7 (i.e. field and method types), but augmented with recursive types, the bullet

type constructor and insertion variables.

We will not give this notion of type assignment as full a treatment as we gave to the type assignment

systems of Part I. Rather, we focus on formulating the details of Nakano-style type assignment for

fj
¢, motivating this formulation through typed examples and demonstrating that our approach points

in the ‘right direction’. We conjecture that the semantic properties (i.e. subject reduction and head-

normalisation) enjoyed by Nakano’s systems for theλ-calculus will hold for this system as well. We

also believe that when intersection types are added as well,the full complement of semantic results

(i.e. subject expansion and approximation) will follow.

We make a final remark before proceeding to the definition of Nakano type assignment forfj¢: for

convenience of notation, we will reuse the meta-variables that range over pretypes from the previous

chapter, and redefine the various lookup functions and operations that we defined there so that they

apply to the new set ofFJ•µ pretypes. This is intentional, and the reader is asked to treat this chapter in

(formal) isolation from the previous one, so that no confusion can arise.

Definition 10.1 (FJ•µ Object Pretypes). 1. The set ofFJ•µ object pretypes(ranged over byπ), and

its (strict) subset offunctional object pretypes (ranged over byφ) are defined by the following

grammar, where de Bruijn indicesn range over the set of natural numbers,ϕ ranges over a

denumerable set of type variables, andι ranges over a denumerable set of insertion variables:

π ::= ϕ | n | C | •π |

ιπ | 〈f :π〉 | φ

φ ::= 〈m : (π)→ π〉 | •φ | ιφ | µ.φ

2. We use the shorthand notation•nπ (where n≥ 0) to denote the pretypeπ prefixed by n occurrences

of the• operator, i.e.• . . .•︸︷︷︸
n times

π.

3. We use the shorthand notationιnπ (where n≥ 0) to denote the pretypeπ prefixed by eachιk in

turn, i.e.ι1 . . . ιnπ.

The following lookup functions take an object pretype as input, and return a set of de Bruijn indices.

In the first case, this is the set of free indices (those that donot correspond to aµ type constructor), and

in the second case it is the set of such free indices that do notoccur within the scope of a bullet type

constructor. In the following definitions, the decrement (postfix) operator is taken from Definition 9.3.
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Definition 10.2 (Free Variable Set). The functionfv takes an object pretypeπ and returns the set of de

Bruijn indices representing the free recursive ‘variables’ of π. It is defined inductively on the structure

of pretypes as follows:

fv(ϕ)

fv(C)


= ∅

fv(n) = {n}

fv(µ.φ) = fv(φ) ↓

fv(•π)

fv(ιπ)

fv(〈f :π〉)


= fv(π)

fv(〈m : (πn)→ π〉) =


⋃

i∈n

fv(πi)

∪ fv(π)

Definition 10.3 (Raw Variable Set). The functionrawµ takes an object pretypeπ and returns the set of

its raw recursive variables - the free recursive variables (i.e. deBruijn indices) occurring inπ which do

not occur within the scope of a•. It is defined inductively on the structure of pretypes as follows:

rawµ(n) = {n}

rawµ(ϕ)

rawµ(C)

rawµ(•π)


= ∅

rawµ(ιπ)

rawµ(〈f :π〉)


= rawµ(π)

rawµ(µ.φ) = rawµ(φ) ↓

rawµ(〈m : (πn)→ π〉) =


⋃

i∈n

rawµ(πi)

∪rawµ(π)

As before, these allows us to define a notion ofadequacyfor object pretypes.

Definition 10.4 (Adequacy). The set ofadequateobjects pretypes are those pretypes for which every

µ binder binds at least one occurrence of its associated recursive variable, and everyboundrecursive

variable occurs within the scope of a bullet. It is defined as the smallest set of pretypes satisfying the

following conditions:

1. ϕ, n andC are adequate, for allϕ, n andC;

2. if π is adequate, then so are•π, ιπ and〈f :π〉;

3. if bothπ and eachπi (where i∈ n) are adequate, then so is〈m : (πn)→ π〉;

4. if φ is adequate and0∈ fv(φ) \rawµ(φ), thenµ.φ is adequate.

This notion, in turn, allows us to define the set of properFJ•µ types.

Definition 10.5 (FJ•µ Types). 1. We say that an object pretypeπ is closedwhen it contains no free

recursive variables, i.e.fv(π) = ∅.

2. We call an object pretypeπ a (proper) type whenever it isbothadequateandclosed. The meta-

variablesσ, τ, γ, α andβ will be used to range over proper object types.

Using these object types, we can now define a set of types whichwe will use when deriving types

for instances of recursively defined classes. To match our intuition that classes definefunctionsfrom

objects to objects, which we call using thenew syntax, the types that we will assign to classes will be

(first order) function types constructed using object types.
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Definition 10.6 (FJ•µ Class Types). FJ•µ classtypes are defined by the following grammar (whereσ

andτ range over objecttypes):

δ ::= (σ)→ τ | •δ | ιδ

We will now define a subtyping relation on object and class types. This is defined in a similar way to

the subtyping relation in Definition 9.11 - we merely add the obvious cases for field and methods types.

First, though, we must define how to fold and unfold recursivetypes, as we did in the previous chapter.

Definition 10.7 (FJ•µ µ-substitution). A µ-substitution is a function from object pretypes to object pre-

types. Letφ be a functional object pretype, then theµ-substitution[n 7→ µ.φ] is defined by induction on

the structure of pretypes simultaneously for everyn ∈ N as follows:

[n 7→ µ.φ](ϕ) = ϕ

[n 7→ µ.φ](C) = C

[n 7→ µ.φ](n′) =


µ.φ if n = n′

n′ otherwise

[n 7→ µ.φ](•π) = •([n 7→ µ.φ](π))

[n 7→ µ.φ](ιπ) = ι ([n 7→ µ.φ](π))

[n 7→ µ.φ](〈f :π〉) = 〈f : ([n 7→ µ.φ](π))〉

[n 7→ µ.φ](〈m : (πn)→ π〉) = 〈m:([n 7→ µ.φ](π1), . . . , [n 7→ µ.φ](πn))

→ [n 7→ µ.φ](π)〉

[n 7→ µ.φ](µ.φ′) = µ.([n+1 7→ µ.φ](φ′))

This allows us to define a subtyping relation on both object pretypes and then class types.

Definition 10.8 (FJ•µ Subtyping). 1. The relation≤ on object pretypes is defined as the smallest

preorder on pretypes satisfying the following conditions:

π ≤ •π

π ≤ ιπ

• ιπ ≤ ι•π

ι•π ≤ • ιπ

•〈f :π〉 ≤ 〈f : •π〉

•〈m : (π)→ π〉 ≤ 〈m : (•π)→ •π〉

ι 〈m : (π)→ π〉 ≤ 〈m : (ιπ)→ ιπ〉

µ.φ ≤ [0 7→ µ.φ](φ)

π1 ≤ π2⇒


•π1 ≤ •π2

ιπ1 ≤ ιπ2

ι1 ι2π ≤ ι2 ι1π

〈f : •π〉 ≤ •〈f :π〉

〈m : (•π)→ •π〉 ≤ •〈m : (π)→ π〉

〈m : (ιπ)→ ιπ〉 ≤ ι 〈m : (π)→ π〉

[0 7→ µ.φ](φ) ≤ µ.φ
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φ1 ≤ φ2⇒ µ.φ1 ≤ µ.φ2

π ≤ π′ & π′i ≤ πi (∀ i ∈ n) ⇒ 〈m : (πn)→ π〉 ≤ 〈m : (π′n)→ π′〉

2. The relation≤ on class types is defined as the smallest preorder on class types satisfying the

following conditions:

δ ≤ •δ

δ ≤ ιδ

• ιδ ≤ ι•δ

ι•δ ≤ • ιδ

•((σ)→ τ) ≤ (•σ)→ •τ

ι ((σ)→ τ) ≤ (ισ)→ ιτ

δ1 ≤ δ2⇒


•δ1 ≤ •δ2

ιδ1 ≤ ιδ2

ι1 ι2δ ≤ ι2 ι1δ

(•σ)→ •τ ≤ •((σ)→ τ)

(ισ)→ ιτ ≤ ι ((σ)→ τ)

τ ≤ τ′ & σ′i ≤ σi (∀ i ∈ n) ⇒ (σn)→ τ ≤ (σ′n)→ τ′

We now come to define the rules of our type assignment system. At this juncture, we are presented

with a problem, or rather, we have a design decision to make. We explained in the previous section that

we will view the expressionnew C(e) as anapplicationof the functionnew C to the field valuese.

To type such an application, the obvious thing to do is to split the expression apart into function and

operands and type them separately. So far, so good; but this brings us to the crucial question - how do

we now type thefunctionnew C?

We can take one of two approaches here. The first follows in thetradition of theς-calculus: we

express our understanding of the object-oriented concept of classes in terms of the behaviour of another,

perhaps better understood, computational medium via some translation. Our approach to typing the

higher-level concepts, then, is to type the lower-level translation. We could decide to abandon the use of

the Featherweight Java model, and develop a Nakano-style type system for theς-calculus. In a sense,

we have already taken this approach by discussing the further translation offj¢ into a kind ofλ-calculus,

albeit one with records. We could ‘go all the way’, translating records into pureλ-calculus and then, in

a sense, our job is done since Nakano’s system is already defined for theλ-calculus. We can typefj¢

programs by translating them and typing the translation using Nakano’s original system. The focus of

our study would perhaps shift, then, to the question of the comparative reduction behaviour of program

in the original model and their ‘compiled’ versions, and we would need to show that any properties we

consider ‘transfer back’ tofj¢.

We will not take this approach. Indeed, theoretical study of the object-oriented programming model

began in this way, and it was a frustration with having to dealwith the technicalities of translation itself

rather than being able to focus on the key issues that led to the development of theς-calculus in the

first place [28, Introduction]. While we believe it is right that an understanding and a consideration of

the concepts of class-based programming in terms of more fine-grained components shouldinform our

type analysis, it is our view that the actual analysis itselfshould be done at thesamelevel of abstraction

as that found in the object of study. For us, that level of abstraction is the Featherweight Java model.
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(var) :
Σ;Γ, x:σ ⊢ x:σ (sub) :

Σ;Γ ⊢ e:σ
(σ ≤ τ)

Σ;Γ ⊢ e:τ

(fld) :
Σ;Γ ⊢ e:〈f :σ〉

Σ;Γ ⊢ e.f:σ
(invk) :

Σ;Γ ⊢ e:〈m : (σn)→ τ〉 Σ;Γ ⊢ ei :σi (∀ i ∈ n)

Σ;Γ ⊢ e.m(en):τ

(•) :
•Σ;•Γ ⊢ e:•σ

Σ;Γ ⊢ e:σ
(ι) :

ιΣ; ιΓ ⊢ e: ισ

Σ;Γ ⊢ e:σ
(inst-obj) :

Σ;Γ ⊢ ei :σi (∀ i ∈ n)
(F (C) = fn)

Σ;Γ ⊢ new C( en) :C

(self-fld) :

(f ∈ F (C))
Σ;Γ, this :C,f:σ ⊢ this :〈f :σ〉

(inst-fld) :
Σ;Γ ⊢ ei :σi (∀ i ∈ n)

(F (C) = fn, j ∈ n)
Σ;Γ ⊢ new C( en) :〈fj :σ j〉

(self-meth) :

Σ,C:(τ)→ σ;Γ, this :C ⊢ this :σ

(rec-meth) :
Σ,C:δ;Γ ⊢ ei :τi (∀ i ∈ n)

(δ ≤ (τn)→ σ)
Σ,C:δ;Γ ⊢ new C( en) :σ

(inst-meth) :
Σ, C:δ; { this :C,x1:σ1, . . . ,xn′ :σn′ ,f1:τ1, . . . ,fn:τn } ⊢ eb:γ Σ;Γ ⊢ ei :τi (∀ i ∈ n)

Σ;Γ ⊢ new C( en) :〈m : (σn′ )→ γ〉

(Mb(C,m) = (xn′ ,eb),F (C) = fn and•((τn)→ 〈m : (σn′)→ γ〉) ≤ δ)

Figure 10.1.: Predicate Assignment forFJ•µ

Therefore, we will develop our type system purely in terms ofthe syntactic components offj itself. We

feel that such an approach leads to a more intuitive understanding of the relationship between programs

and their types.

We will now proceed to define our Nakano type system forfj¢.

Definition 10.9 (Self Environments). 1. A self type statementis of the formC:δ, whereC is a class

name andδ is anFJ•µ class type; the class nameC is called thesubjectof the statement.

2. Aself environmentΣ is a set of self type statements where the subject of each statement isunique.

3. The notationΣ,C:δ stands for the self environmentΣ∪ {C:δ} whereΣ does not contain any state-

ment with the subjectC.

Definition 10.10(Type Environments). 1. A variable type statementis of the formx:σ, wherex is

an expression variable andσ is anFJ•µ type; the variablex is called thesubjectof the statement.

2. A field type statementis of the formf:σ, wheref is a field identifier andσ is anFJ•µ type; the

field identifierf is called thesubjectof the statement.

3. AnFJ•µ typeenvironmentΓ is a set of variable type and field type statements where the subject of

each statement isunique.

4. The notationΓ,x:σ stands for the type environmentΓ∪{x:σ} whereΓ does not contain any state-

ment with the subjectx; similarly, Γ,f:σ stands for the type environmentΓ∪{f:σ} whereΓ does

not contain any statement with the subjectf.

Definition 10.11 (Type Assignment forFJ•µ). FJ•µ type assignmentΣ;Γ ⊢ e:σ is a relation between

self environments, type environments, expressions andFJ•µ types. It is defined by the natural deduction

188



system whose rules are given in Figure 10.1. When either the self or type environment is empty, we may

write the judgement simply asΣ ⊢ e:σ or Γ ⊢ e:σ.

The type rules of Figure 10.1 are not as big a leap from our intersection type assignment of Part I

(or rather, its Curry counterpart, discussed in Chapter 7) as they might seem. We inherit the (fld) and

(invk) rules as is, and the (var) rule with the slight modification that it cannot apply to theself variable.

This minor addition is to ensure that typing the self is now carried out consistent with the new recursive

typing approach. We include a separate subtyping rule (instead of allowing subtyping only for variables)

because we want to allow (recursive) method types to be unfolded or folded as necessary. The (•) and

(ι) rules are straightforward extensions of their cousins in the type system of the previous section for the

λ-calculus.

The (inst-meth) rule replaces the (newM) of the original intersection type system, and assigns a

method type to an object value. As we mentioned in the previous section, our approach to assign-

ing a method type〈m : (σ)→ τ〉 to an objectnew C( . . .) involves viewing the syntactic subcomponent

new C as a function defined by the body of the methodm in the classC, which is then applied to its

field value ‘arguments’. In general, this ‘function’ can be defined recursively, and so we type it with a

form of (fix) rule. Bringing all of this together, the (inst-meth) rule acts as an arrow introduction, (fix)

and arrow elimination rulecombined. A type for thenew C ‘function’ is derived by typing the method

body using an environment with type assumptions for its ‘arguments’, the fields. Since the range of this

type should be a function type itself (i.e. a method type), a second function type is implicitly inferred by

also including in the environment type assumptions for the parameters of the method body being typed.

This implicit function type is then matched against an explicit type included in the self environment,

and which is used to type recursive occurrences of thenew C ‘function’, constituting the (fix) part of

the rule. As mentioned in the previous section, since we are building a Nakano-style system, the (fix)

rule must ensure that the explicit class type used in the selfenvironment is abulletedversion of the

implicitly derived one. Finally, after having inferred a function type for the recursively defined class, it

is then applied to concrete field values, constituting the final arrow elimination step. Thus, one way of

understanding, or visualising, the (inst-meth) rule could be in terms of the following derivation scheme:

Σ, C:•δ; {f:τn, this :C,x:σn′ } ⊢ eb:γ
(→ I )

Σ, C:•δ; {f:τn, this :C } ⊢ [m = λxn′ .eb]:〈m : (σn′ )→ γ〉
(→ I )

Σ, C:•δ; { this :C } ⊢ λfn.[m = λxn′ .eb]:(τn)→ 〈m : (σn′ )→ γ〉
(≤)

Σ, C:•δ; { this :C } ⊢ λfn.[m = λxn′ .eb]:δ
(fix)

Σ ⊢ new C:(τn)→ 〈m : (τn′ )→ γ〉 Σ;Γ ⊢ ei :τi (∀ i ∈ n)
(→ E)

Σ;Γ ⊢ new C( en) :〈m : (τn′ )→ γ〉

whereF (C) = fn andMb(C,m) = (xn′ ,eb)

We hasten to point out that the above figure is not intended to be taken as a true derivation; it is merely

intended to illustrate to the reader the parallel that we have drawn between the operational behaviour of

fj
¢ objects on the one hand, and that of recursively defined (labelled) functions on the other, and how
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this has directed the formulation of our (inst-meth) typing rule. Notice that judgements at the top and

bottom of the above figure are exactly those judgements that appear in the (inst-meth) rule itself.

Since we now intend to type method bodies as if they are the bodies of recursively defined functions

(i.e. in an environment containing a type assumption for thefunction name itself) we have to make

sure that, when we encounter a recursive occurrence of the ‘function’ we are typing, then we type it

appropriately. This is the reason for including the (rec-meth) rule in the system. It assigns a type to

a new C( . . .) object value, but appliesonly when there is a type statement for the classC in the self

environment, indicating that we are typing a method body obtained from an ‘unfolding’ of the definition

for the classC.

Having just established, then, that the presence of a classC in the self environment indicates that we

are typing the recursive definition of the functionnew C, our (inst-obj) and (inst-fld) rules would thus

seem to violate our stated approach to typing recursive definitions, since they do not care whether there is

a type assumption in the self environment for instances of the class that they type. In the case that there

is such a statement in the self environment, they may assign typesother than the one assumed. This

apparent error is resolved by observing that these aforementioned rules type recursive occurrences of

new C( . . .) expressions not in contexts where the function definition needs to be recursively ‘unfolded’

(i.e. a method call), but in contexts where a field is accessedor when we simply want to express the

identity of the object (i.e. know that we have an instance ofC). In these contexts, the syntaxnew C

merely acts as adatatype constructor, rather than (a recursive call to) an object constructorfunction. As

such, it is not necessary (and not unsafe) to assign field types or class name constants in these cases.

Thus, the view here is that thenew syntax isoverloaded- it denotes both a datatype constructorandan

object constructor function.

Finally, we comment on the rules (self-fld) and (self-meth). They are the counterparts to the (inst-fld)

and (rec-meth) rules respectively. The intuition behind them is that, operationally (in thefunctional

context offj¢), the self-referencethis is equivalent (in the body of a method in the classC) to using the

expressionnew C(this. f1, . . ., this. fn) (wheref1, . . . ,fn are the fields of classC). They should

also, therefore, be indistinguishable from the point of view of type assignment.

The main result that we conjecture for this system is that, just for Nakano’s original type systems for

lc, our type system gives a guarantee of head normalisation.

Conjecture 10.12. If Γ ⊢ e:σ in FJ•µ, thene has a head normal form.

Proving this conjecture, and thus that our object-orientedvariant of Nakano type assignment islogical,

is a main objective for future research. We imagine that a similar approach to the one we used for the

intersection type system can be employed (i.e. via an approximation result based on a head-normalisation

result for derivation reduction). Nakano’s technique using realizability interpretations should also apply.

In addition, the question ofcompleteness(i.e. whether types are preserved under conversion) for Nakano-

style type assignment is still open.

10.3. Typed Examples

We will now give some examples of how programs can be typed in this new system. We consider some

of the same examples that we used to demonstrate typeabilityfor the simple intersection type assignment

system. In this way, we can directly compare the two. We have mentioned that the aim of formulating
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a Nakano-style type system forfj¢ has been motivated by a desire to obtain a semantic type system for

fj
¢ for which usefultype assignment is decidable. In this section, we will give (as we did for the simple

intersection type system, and for Nakano’s original systemfor lc) a non-terminating, or more precisely,

unsolvable program and show that it cannot be typed in our system. This provides evidence for the

semantic nature of the type system. We will also reconsider the examples that were problematic for our

Curry type inference algorithm of Chapter 7, and show how they are naturally handled by the Nakano

system. This provides evidence for the flexibility, or usefulness of the system. In the following section,

we will discuss type inference for the system.

10.3.1. A Self-Returning Object

Consider the classSR(short forSelfReturning ) which we gave back in Section 6.1, whose instances

have methods that return the receiver and new instances ofSR respectively. For reference, we list the

class declaration again below:

class SR extends Object {

SR self() { return this; }

SR newInst() { return new SR(); }

}

Instances of this class can now be typed in a finitary way usingNakano-style type assignment. Recall

that we said the type of such objects should be eitherµX . 〈self : ()→ X〉 or µX . 〈newInst : ()→ X〉. Of

course, we must modify these types slightly to be proper types in our variant of the Nakano system, but

these are essentially the types that are now assignable tonew SR() objects using our new type system,

as shown in the derivations below.

(self-meth)
SR:()→•µ.〈self : ()→•0〉; this :SR⊢ this :•µ.〈self : ()→ •0〉

(inst-meth)
⊢ new SR() :〈self : ()→ •µ.〈self : ()→ •0〉〉

(≤)
⊢ new SR() :µ.〈self : ()→•0〉

(rec-meth)
SR:()→•µ.〈newInst : ()→ •0〉; this :SR⊢ new SR() :•µ.〈newInst : ()→ •0〉

(inst-meth)
⊢ new SR() :〈newInst : ()→ •µ.〈newInst : ()→•0〉〉

(≤)
⊢ new SR() :µ.〈newInst : ()→ •0〉

The application of theinst-meth rule in each case is valid because the class type we use forSR (in

the self environment) when typing the method body is a supertype of theimplicit (bulleted) class type

that we construct from the remaining type information in typing. To be more explicit, let us take the

first derivation above, which is an analysis of them1 method. The class type we have used in the

self environment forSR is δ = () → •〈self : () → •0〉. The type we derive for the method body is

•µ.〈self : ()→ •0〉; the method that this body belongs to isself , and has no formal parameters (and

thus no corresponding variable statements in the type environment); lastly, the classSR has no fields

(and thus there are no field statements in the type environment). Thus we construct the implicit class

typeδImp= ()→ 〈self : ()→•〈self : ()→•0〉〉. Now, the class type that is associated withC in the self

environment is a supertype of thebulletedversion of this implicit class type:

•δImp = •(()→ 〈self : ()→ •〈self : ()→ •0〉〉)
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≤ ()→ •〈self : ()→ •〈self : ()→ •0〉〉

≤ ()→ •〈self : ()→ •0〉

= δ

An interesting and important point to note is that the infinite family of method types which were

assignable tonew SR() objects in the simple intersection type system are nowno longerassignable in

the Nakano-style system, with the exception of the most basic one〈self : ()→ SR〉 whose derivation is

given below (a similar derivation exists fornewInst as well, of course):

(var)
{SR:()→ •〈self : ()→ SR〉 }; this :SR⊢ this :SR

(inst-meth)
⊢ new SR() :〈self : ()→ SR〉

In this case, the class type we assume forSR is exactly the bulleted implicit class type. However, if

we try to derive any of the ‘nested’ (and, crucially, non-recursive) method types,〈self : ()→ σ〉 where

the typeσ is itself non-recursive and of the form〈self : ()→ τ〉, then we cannot make the self type

equivalent to the implicit class type. This is because whatever class type we assume forSR, the implicit

class type that it must match will always be a strictly largertype.

As a concrete example, suppose we want to assign〈self : ()→〈self : ()→ SR〉〉 to the object expres-

sionnew SR() . The (inst-meth) rule tells us that in order to do this, two conditions must hold. Firstly,

we must be able to assign the type〈self : ()→ SR〉 to the body of theself method (i.e. the expression

this ) in a self environment containingSR. Since this is itself a method type, the only typing rule that

we could use to do this is (self-meth) (we could also subsequently apply the (≤) rule), which tells us

that the type associated withSR in the self environment must be a subtype of ()→ 〈self : ()→ SR〉.

A quick examination of the subtyping relation reveals that the only such type is ()→ 〈self : ()→ SR〉

itself. Thus, theself method body is typed using the self environment{SR:()→ 〈self : ()→ SR〉} and

the empty type environment, since theself method has no formal parameters. TheSRclass also has

no fields, and thus the implicit self type for theself method of theSRclass that we construct from this

typing is ()→ 〈self : ()→ 〈self : ()→ SR〉〉.

Secondly, the (inst-meth) rule says that this implicit self type must be a proper subtype of the self type

we used when typing the method body. That is, the following must hold:

•(()→ 〈self : ()→ 〈self : ()→ SR〉〉) ≤ ()→ 〈self : ()→ SR〉

Or, equivalently:

()→ 〈self : ()→ •〈self : ()→ SR〉〉 ≤ ()→ 〈self : ()→ SR〉

However we can see that this is impossible: the result type ofthe (bulleted) implicit class type (on the

left of the above inequality) cannot be a subtype of the result type of the self type used in the derivation

(on the right-hand side of the inequality above), for the simple reason that it contains as a substructure

the very type which it must be a subtype of! Such a thing is onlypossible forrecursivetypes, and thus

theonly types of this form which can be assigned to the expressionnew SR() arerecursiveones.
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10.3.2. A Nonterminating Program

Just as we demonstrated the non-typeability of a non-terminating program in the intersection type as-

signment system (Section 6.2), we can show that our Nakano-style type assignment system also rejects

this as ill-typed. Recall that the program in question uses the following class:

class NT extends Object {

NT loop() { return this.loop(); }

}

What happens if we try to find a typeσ which we can assign to the non-terminating expression

new NT().loop() ? Let’s begin by assuming that such a type exists, and we will quickly run into a con-

tradiction. Any derivation assigningσ to this expression must have (invk) as its final rule, meaning that

the type〈loop : ()→ σ〉 must be assignable tonew NT() . Assigning such a type must have been done

using the (inst-meth) rule, which means that we can derive the judgement{NT:δ} ⊢ this.loop() :σ

for some class typeδ. Let us now examine the structure of the derivation of this judgement, in or-

der to discover whatδ must be. The expressionthis.loop() is a method invocation and there-

fore the only rule that could have been applied to derive thisis the (invk) rule. This tells us that

{NT:δ} ⊢ this :〈loop : ()→ σ〉 is derivable. This judgement can only be derived by an application of

the (self-meth) rule followed by some number of applications of (≤). Thus, the class typeδ must be a

subtype of ()→ 〈loop : ()→ σ〉.

We also know that another subtyping inequality holds for this class typeδ, since we have assumed

that there was a valid application of the (inst-meth) rule that derives⊢ new NT() :〈loop : () → σ〉.

Specifically, we know thatδ is a supertypeof the implicit class type•(( )→ 〈loop : ( )→ σ〉). Thus,

combining the subtyping inequalities we have inferred forδ, we obtain the following:

•(( )→ 〈loop : ( )→ σ〉) ≤ δ ≤ ( )→ 〈loop : ( )→ σ〉

Hence, we know that no such class typeδ can exist since if it did, then via transitivity of the subtyping

relation we would have that:

•(( )→ 〈loop : ( )→ σ〉) ≤ ( )→ 〈loop : ( )→ σ〉

which is impossible. Therefore, we can conclude that no derivation exists for⊢ new NT() :〈loop : ()→

σ〉, and thus that we cannot assign a type to the (non-terminating) expressionnew NT().loop() .

A similar analysis holds for the following variant that invokes theloop method on anew instanceof

the class, rather than the receiverthis :

class NTVariant extends Object {

NTVariant loop() { return new NTVariant().loop(); }

}

10.3.3. Mutually Recursive Class Definitions

We will now look at an example containing two classes which are mutually recursive in that they each

contain a method which returns an instance of the other. Thuseach class depends upon the other (and
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via transitivity itself, closing the recursive loop):

class C extends Object {

D newInst() { return new D(); }

}

class D extends Object {

C newInst() { return new C(); }

}

This is actually a variation on the first example we considered, the self returning object. In each case, by

invoking the methodnewInst we obtain an object on which we can again invoke the methodnewInst ,

and so on. Just as in the self returning object example, each of these two classes is defined recursively,

but this time via a loop of length two. As a consequence, recursive types can be used to type instances

of these classes as well.

The interesting thing about this example is that it demonstrates how, as we recurse through class defi-

nitions to analyse nested method calls, self types for different classes can accrue in the self environment

until they are needed. For example, in typing instances of each of the classes above, the self type forC

(respectivelyD) is needed not for typing the body of thenewInst method contained in the classC itself

(respectivelyD), but in typing the body of thenewInst method contained in itssisterclass. This means

that for a sufficiently complex analysis of any recursively defined class (in the sense of Definition 7.26),

no matter how indirect the recursion we will eventually reach the recursive reference which wemust

type using a type assumption from the environment. Thus, at some point, we stop ‘looking inside’ the

class definition (i.e. recursively analysing method bodies) which, in turn, implies that a type inference

algorithm for this system will only have to recurse to a finitelevel, and thus terminate.

Sufficiently simple non-recursive typescanof course be assigned tonew C() andnew D() objects.

Apart from the trivial typesC andD, the following non-recursive method types can also be assigned.

(inst-obj)
{C:()→ 〈newInst : ()→ •D〉 }; { this :C} ⊢ new D() :D

(inst-meth)
⊢ new C() :〈newInst : ()→D〉

(inst-obj)
{D:()→ 〈newInst : ()→•C〉 }; { this :D} ⊢ new C() :C

(inst-meth)
⊢ new D() :〈newInst : ()→C〉

We can even go slightly further:

(inst-obj)
{C:( )→ •σ1,D:( )→ •〈newInst : ( )→C〉 }; { this :D} ⊢ new C() :C

(inst-meth)
{C:( )→•σ1 }; { this :C} ⊢ new D() :〈newInst : ( )→C〉

(inst-meth)
⊢ new C() :〈newInst : ( )→ 〈newInst : ( )→C〉〉

(inst-obj)
{D:( )→ •σ2,C:( )→ •〈newInst : ( )→D〉 }; { this :C} ⊢ new D() :D

(inst-meth)
{D:( )→•σ2 }; { this :D} ⊢ new C() :〈newInst : ( )→D〉

(inst-meth)
⊢ new D() :〈newInst : ( )→ 〈newInst : ( )→D〉〉
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whereσ1 = 〈newInst : ( )→ 〈newInst : ( )→ C〉〉

σ2 = 〈newInst : ( )→ 〈newInst : ( )→ D〉〉

Such non-recursive types can be assigned because they do notreach down ‘far enough’ - the analysis

they provide of the functional behaviour of the method that they type does not reach the point where an

instance of the original class reappears in a context where it must again be typed with a method type,

such as the following:

new C().newInst().newInst().newInst() → new D().newInst().newInst()

→ new C().newInst()

Since we only allow asingle(i.e. non-intersection) type for each class in the self environment, in the case

that a nested occurrence ofnew C() or new D() must be assigned a method type, it must be assigned

samemethod type we are trying to derive for the outer occurrence.Then, because this type must also

form a sub-part of the type we are trying to derive, it must form a sub-part ofitself. Only recursive

types are capable of doing this and thus, to assign method types of further complexity than those already

considered, recursive types are required. In the specific case of the example we are looking at, the

recursive type that expresses this behaviour isσ = µ.〈newInst : ( )→•〈newInst : ( )→•0〉〉, which can

be assigned tonew C() as follows:

(rec-meth)
{C:( )→ •σ,D:( )→ •〈newInst : ( )→•σ〉 }; { this :D} ⊢ new C() :•σ

(inst-meth)
{C:( )→ •σ }; { this :C} ⊢ new D() :〈newInst : ( )→•σ〉

(≤)
{C:( )→ •σ }; { this :C} ⊢ new D() :•〈newInst : ( )→ •σ〉

(inst-meth)
⊢ new C() :〈newInst : ( )→ •〈newInst : ( )→•σ〉〉

(≤)
⊢ new C() :µ.〈newInst : ( )→ •〈newInst : ( )→ •0〉〉

By simply switching the class names (fromC to D, and vice-versa), we can obtain a derivation assigning

this type tonew D() as well.

Moving on to a separate theme illustrated by this example, the typing derivation above assigns a

(recursive) type to the objectnew C() using anemptytyping environment, and more importantly an

empty self environment. We can view this derivation as performing an analysis on the object in which

no assumptions have been made - that is, itfully examines the behaviour of bothnew C() andnew D()

objects and returns the result. However, the type system also allows for apartial analysis. The following

derivation assigns a recursive type to anew C() object but using a self environment containing a typing

assumption about the classD, or more precisely an assumption about the type of the objectconstructor

function that the classD encodes. LetΣ = {D:( )→ •〈newInst : ( )→ •σ〉}, then:

(rec-meth)
Σ, C:( )→ •σ; { this :C} ⊢ new D() :•〈newInst : ( )→ •σ〉

(inst-meth)
Σ ⊢ new C() :〈newInst : ( )→ •〈newInst : ( )→•σ〉〉

(≤)
Σ ⊢ new C() :µ.〈newInst : ( )→ •〈newInst : ( )→•0〉〉

This suggests an alternative technique for type inference,where class types could be inferred iniso-

lation for each class in a program by typing its method bodies in a self environment containing type

assumptions forevery otherclass in the program. Then, when all possible class types have been inferred
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in this way, their consistency with one another could be checked. This would be more akin to the stan-

dard approach of nominal type checking (as outlined forfj¢ in Section 6.6), and we will expand upon

this in the next section.

10.3.4. A Fixed-Point Operator Construction

Recall the object-oriented fixed-point combinator that wasdiscussed at the end of Section 6.5:

class T extends Combinator {

Combinator app(Combinator x) {

return x.app(this.app(x));

}

}

Since ‘applying’ the objectnew T() to an expression results in the same reduction behaviour as ap-

plying theoocl encoding of anycl fixed point operatorY1 (i.e. the expressionsnew T().app( e) and

⌈⌈Y⌋⌋.app( e) have thesameset of approximants), it is not surprising that we can assignto it the fj¢

translation of the characteristic Nakano type for fixed point operators:

(var)
Σ;Γ ⊢ x :〈app : (•ϕ)→ ϕ〉 .

.

.

(self-meth)
Σ;Γ ⊢ this :•〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

(≤)
Σ;Γ ⊢ this :〈app : (•〈app : (•ϕ)→ ϕ〉)→•ϕ〉

(var)
Σ;Γ ⊢ x :〈app : (•ϕ)→ ϕ〉

(≤)
Σ;Γ ⊢ x :•〈app : (•ϕ)→ ϕ〉

(invk)
Σ;Γ ⊢ this.app(x) :•ϕ

(invk)
Σ;Γ ⊢ x.app(this.app(x)) :ϕ

(inst-meth)
⊢ new T() :〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

whereΣ = {T:( )→ •〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉} and

Γ = { this :T, x :〈app : (•ϕ)→ ϕ〉}

It is interesting to note that in Nakano’s systems forlc, derivations of this type for fixed-point combi-

natorsrequire the use of recursive types, while the derivation above for the oo fixed-point combinator

objectnew T() does not use recursive types at all. This notable difference between the two systems

lies in the fact that recursion in the Lambda Calculus isexplicit, while the recursive nature of classes

is highly implicit. This can be illustrated with surprising clarity by considering an interpretation of the

objectnew T() as a direct translation of the body of itsapp method intolc. We can do this almost triv-

ially by taking the method body, translating invocations oftheapp method into standardlc application,

and abstracting over its formal parameter as follows:

new T() , λx . x ( new T() x )

We are not quite done, as this interpretation of the objectnew T() is still defined in terms of itself. We

can quite easily ‘solve’ this equation by using the standardtechnique of abstracting over the recursive

1We could, for example, consider the encoding of Curry’s fixedpoint operator in Combinatory Logic – the term
S(K (S(SKK )(SKK )))(S(S(KS)K )(K (S(SKK )(SKK )))).
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occurrences in the definition of the term itself, and then applying a fixed point operator (for the sake of

argument let’s choose Curry’s fixed point operatorY):

new T() , Y (λtx .x (t x ))

Theλ-term above should be familiar, as we discussed it at length in Section 9.6.2 (or rather, its meta-

level representative, the termY (λxy.y(xy))), in the context of type inference for our variant of Nakano’s

system for theλ-calculus. There, we noted that the term was a fixed point combinator itself (just like

our fj¢ object new T() ) and that it could therefore be assigned the type (•ϕ→ ϕ)→ ϕ (just as the

expressionnew T() can be assigned theFJ•µ version of this type). Furthermore and most importantly,

while we had to use recursive types in the subderivation typing Y, in the subderivation typingλxy.y(xy)

(our interpretationof the expressionnew T() ) no recursive types were needed at all.

10.3.5. Lists

Let us now turn our attention to thefj¢ programs that we introduced in Section 6.3 and 6.4, which encode

lists, and certain arithmetic operations on natural numbers. Like the previous examples in Section 10.3.1

and 10.3.3 of the individually and mutually recursive classes that give rise to self returning objects,

the instances of the classes in these programs have methods which return objects of the same kind as

themselves. However, in addition, these are programs whichvery naturally illustrate the concept of

binary methods – the argument(s) to these methods must also be objects of the same kind as the receiver.

In this section, we will demonstrate how these objects can betyped in our system with the obvious

recursive types that express this requirement.

Let’s start with the program that encodes lists, reproducedbelow:

class List extends Object {

List append(List l) { return this; }

List cons(Object o) { return new NEL(o, this); }

}

class EL extends List {

List append(List l) { return l; }

}

class NEL extends List {

Object head;

List tail;

List append(List l) {

return new NEL(this.head, this.tail.append(l));

}

}

Here,List s (i.e. eitherEL objects orNELobjects) have a binary methodappend , which takes another

List object as an argument and returns anotherList . This behaviour is expressed by the recursive type

σ = µ.〈append : (•0)→ •0〉. Showing that allList objects have this type involves two parts. Every
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(well-formed)List object is an expression generated by the following grammar:

l ::= new EL() | new NEL(e, l)

We must therefore show thatnew EL() objects have this type, and that whenever some list objectl

has this type, so doesnew NEL(e, l) . The first of these two conditions is witnessed by the following

derivation:

(var)
{EL:( )→ •σ }; { this :EL, l :•σ } ⊢ l :•σ

(inst-meth)
⊢ new EL() :〈append : (•σ)→•σ〉

(≤)
⊢ new EL() :µ.〈append : (•0)→ •0〉

The following derivation schema demonstrates how to assignthis type to a non-emptynew NEL(e, l)

list object when the taill already has this type and the heade is typeable with some typeτ:

.

.

.

.

.

.

(self-fld)
Σ;Γ ⊢ this :〈head :τ〉

(fld)
Σ;Γ ⊢ this.head :τ .

.

.

.

.

.

(self-fld)
Σ;Γ ⊢ this :〈tail :σ〉

(fld)
Σ;Γ ⊢ this.tail :σ

(≤)
Σ;Γ ⊢ this.tail :〈append : (•σ)→ •σ〉

(var)
Σ;Γ ⊢ l :•σ

(invk)
Σ;Γ ⊢ this.tail.append(l) :•σ

(rec-meth)
Σ;Γ ⊢ new NEL(this.head, this.tail.append(l)) :•σ

⊢ e:τ ⊢ l:µ.〈append : (•0)→•0〉
(inst-meth)

⊢ new NEL(e, l) :〈append : (•σ)→ •σ〉
(≤)

⊢ new NEL(e, l) :µ.〈append : (•0)→•0〉

whereΣ = {NEL:(•τ, •σ)→ •σ} and

Γ = { this :NEL,head :τ, tail :σ, l :•σ}

Notice, however, that the type system does not constrain lists to be ‘well-formed’. Obviously, the

intention in writing the above program is that any list objects that we might want to create and use

should adhere to the aforementioned structure. Notwithstanding, there are ways of using theNEL class

to create objects which, although incorrect with respect tothe intended and standard semantics of lists,

are nonetheless ‘safe’ to use.

We have mentioned previously that the intention in declaring thefj¢ superclassList was to create

a program that was also type correct in Featherweight Java, and that one should view this construction

as representing an interface, or abstract class, as in full Java. However, sincefj¢ allows us to create

instances of this class we can use it to illustrate the point (in any case, one could imagine defining a

concrete subclass – or implementation – of this ‘interface’in full Java which overrides theappend

method with some incorrect behaviour). ThisList class acts as an empty list, but one which simply
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throws the argument to itsappend method away. Thus, the actual behaviour of invoking the append

method on this incorrect empty list is that the empty list itself is again returned. This is expressed by the

fact that we can assign anew List() object the typeσ = µ.〈append : (α)→ •0〉 for any typeα, as in

the following derivation:

(self-meth)
{EL:()→•σ }; { this :EL, l :α } ⊢ this :•σ

(inst-meth)
⊢ new EL() :〈append : (α)→•σ〉

(≤)
⊢ new EL() :µ.〈append : (α)→•0〉

By extension then, it also follows that anynon-empty list we create starting from an instance of this

incorrect class will also simply return itself, throwing away the argument to itsappend method since

non-empty lists simply delegate to their tails. This behaviour is perfectly consistent with the actual object

that we have created (in the sense that a programmer can be assumed to have intended the behaviour of

the program that they have actually written), and more importantly it is safe: invoking theappend

method does not result in any runtime error - indeed, an object (i.e. a value) is returned and moreover

it is safe to invoke theappend method on this too. The type system confirms this alternativefor our

program:

.

.

.

.

.

.

(self-fld)
Σ;Γ ⊢ this :〈head :τ〉

(fld)
Σ;Γ ⊢ this.head :τ .

.

.

.

.

.

(self-fld)
Σ;Γ ⊢ this :〈tail :σ〉

(fld)
Σ;Γ ⊢ this.tail :σ

(≤)
Σ;Γ ⊢ this.tail :〈append : (α)→•σ〉

(var)
Σ;Γ ⊢ l :α

(invk)
Σ;Γ ⊢ this.tail.append(l) :•σ

(rec-meth)
Σ;Γ ⊢ new NEL(this.head, this.tail.append(l)) :•σ

⊢ e:τ ⊢ l:µ.〈append : (α)→•0〉
(inst-meth)

⊢ new NEL(e, l) :〈append : (α)→ •σ〉
(≤)

⊢ new NEL(e, l) :µ.〈append : (α)→ •0〉

whereΣ = {NEL:(•τ, •σ)→ •σ} and

Γ = { this :NEL,head :τ, tail :σ, l :α}

The type analysis performed by the system for thecons method is actually very similar to this ‘incor-

rect’ append method, since thecons method accepts any arbitrary object (of some typeα) and returns

a new list object (with the object at the head and the originallist, which was the receiver of the method

invocation, at the tail) onto which, of course, we cancons another object. This is exactly the behaviour

expressed in the typeσ = µ.〈cons : (τ)→ •0〉 when assigned to a list object.

The EL and NEL classes share the same body for thecons method, since they both inherit their

definition of this method from theList class. Since this method body creates a newNEL object, it
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is the analysis of the method when invoked on an instance of the NEL class itself which is the more

fundamental:

.

.

.

.

(var)
Σ2;Γ2 ⊢ o:τ

(self-meth)
Σ2;Γ2 ⊢ this :•σ

(rec-meth)
Σ2;Γ2 ⊢ new NEL(o, this) :•σ

Σ1;Γ1 ⊢ e:τ Σ1;Γ1 ⊢ l:µ.〈cons : (τ)→ •0〉
(inst-meth)

Σ1;Γ1 ⊢ new NEL(e, l) :〈cons : (τ)→•σ〉
(≤)

Σ1;Γ1 ⊢ new NEL(e, l) :µ.〈cons : (τ)→•0〉

whereΣ2 = {NEL:(•τ, •σ)→ •σ} and

Γ2 = { this :NEL,head :τ, tail :σ, o:α}

Thecons method when invoked on instances of theEL (or indeedList ) class does not refer to the

class of its receiver, and uses an instantiation of the derivation scheme given above:

.

.

.

.

(var)
Σ′2;Γ′2 ⊢ o:•τ

(self-meth)
Σ′2;Γ′2 ⊢ this :••σ

(rec-meth)
Σ′2;Γ′2 ⊢ new NEL(o, this) :••σ

(var)
Σ1;Γ1 ⊢ o:τ

(self-meth)
Σ1;Γ1 ⊢ this :•σ

(inst-meth)
Σ1;Γ1 ⊢ new NEL(o, this) :〈cons : (•τ)→ ••σ〉

(≤)
Σ1;Γ1 ⊢ new NEL(o, this) :•σ

(inst-meth)
⊢ new EL() :〈cons : (τ)→ •σ〉

(≤)
⊢ new EL() :µ.〈cons : (τ)→ •0〉

whereΣ1 = {EL:( )→ •σ},Γ1 = { this :EL,o:τ}

Σ′2 = •Σ2 = {NEL:(••τ, ••σ)→ ••σ} and

Γ′2 ≤ •Γ2 = { this :NEL,head :•τ, tail :•σ, o:•α}

Notice that if we want to assign a recursive method type forcons , as above, the list is forced to be

homogeneous. That is, the elements that wecons onto the original list must have the same type as the

elements already in the list.

So far, we have only considered typing expressions thataddelements to a list; we have not considered

how we might (typeably) retrieve them. If we have a (typeable) list value

new NEL(e1, . . . new NEL(en, new EL()) . . . )

(so all theei are typeable), then this is trivial. For any elementei in the list we can assign a type to the

list value which refers to that element specifically:
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Σ;Γ ⊢ e1:σ1

..

.

Σ;Γ ⊢ ei :σi Σ;Γ ⊢ l:τ
(fld)

Σ;Γ ⊢ new NEL(ei , l) :〈head :σi〉

Σ;Γ ⊢ . . . new NEL(ei , l) . . . : . . . 〈head :σi〉 . . .
(fld)

Σ;Γ ⊢ new NEL(e1, . . . new NEL(ei , . . .) . . . ) :〈tail : . . . 〈head :σi〉 . . .〉

On the other hand, if we would like to first build a list by invoking a sequence ofcons andappend

methods on some (possibly empty) list value, and then subsequently access its elements, our options are

considerably more limited. It is possible to assign the typeσ = 〈cons : (α)→ 〈head :α〉〉 to a list object,

which then allows the newly consed object to be retrieved:

.

.

.

.

(var)
Σ′;Γ′ ⊢ o:α

(var)
Σ′;Γ′ ⊢ this :EL

(inst-fld)
Σ′;Γ′ ⊢ new NEL(o, this) :〈head :α〉

(inst-meth)
Σ;Γ ⊢ new EL() :〈cons : (α)→ 〈head :α〉〉

Σ;Γ ⊢ e:α
(invk)

Σ;Γ ⊢ new EL().cons( e) :〈head :α〉
(fld)

Σ;Γ ⊢ new EL().cons( e).head :α

whereΣ′ = {EL:( )→ •σ} and

Γ′ = { this :EL,o:α}

And for non-empty lists:

.

.

.

.

(var)
Σ′;Γ′ ⊢ o:α

(var)
Σ′;Γ′ ⊢ this :NEL

(inst-fld)
Σ′;Γ′ ⊢ new NEL(o, this) :〈head :α〉 Σ;Γ ⊢ e:τ Σ;Γ ⊢ l:β

(inst-meth)
Σ;Γ ⊢ new EL( e, l) :〈cons : (α)→ 〈head :α〉〉

Σ;Γ ⊢ e’:α
(invk)

Σ;Γ ⊢ new EL( e, l).cons( e’) :〈head :α〉
(fld)

Σ;Γ ⊢ new NEL(e, l).cons( e’).head :α

whereΣ′ = {NEL:(•τ, •β)→ •σ} and

Γ′ = { this :NEL,head :τ, tail :β, o:α}

Notice that in the both the case of typing a list value and the case of typing a single invocation of the

cons method, there is no requirement for the list to be homogeneous. Furthermore, when assigning the

type for the single-invocablecons method, we are able to type the tail of the list however we like- since
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it plays no active part in the reduction of the final typed expression, it is essentially allowed to be any

arbitrary (typeable) expression.

Unfortunately, as with the mutually recursively defined self-returning objects, more informative types

allowing multipleheterogeneouscalls to thecons method (e.g. types such as〈cons : (α)→〈cons : (β)→

〈head :β〉〉〉 or 〈cons : (α)→〈cons : (β)→〈tail : 〈head :α〉〉〉〉) cannot be assigned, since we only allow

a single type for each class in the self environment. This certainly is a major disadvantage to the type

system that we have presented, however we can overcome this rather pronounced lack of expressivity

by allowing intersections back into the type language. We will discuss this possibility later (in Section

10.5), and point out that the type system we have presented isonly intended as a proof-of-concept first

attempt at a Nakano-style type assignment foroo.

10.3.6. Object-Oriented Arithmetic

The object-oriented arithmetic example bears a strong similarity to the list example we have just con-

sidered. Theadd method that performs the addition operation on the receiverand method argument

behaves in almost exactly the same way as theappend method on lists. Both methods (when invoked

on ‘well-formed’ objects) require as input an object of the same ‘kind’ as the receiver, and return the

same. The only difference lies in the name of the method being invoked, and the classes of the objects

involved (which are actually abstracted away into recursively bound type variables).

class Nat extends Object {

Nat add(Nat x) { return this; }

Nat mult(Nat x) { return this; }

}

class Zero extends Nat {

Nat add(Nat x) { return x; }

Nat mult(Nat x) { return this; }

}

class Suc extends Nat {

Nat pred;

Nat add(Nat x) { return new Suc(this.pred.add(x)); }

Nat mult(Nat x) { return x.add(this.pred.mult(x)); }

}

Notice that the following derivations assigning the typeσ = µ.〈add : (•0)→ •0〉 to object-oriented nat-

ural numbers are only slight variations on the derivations assigning types for theappend method to list

objects.

(var)
{Zero :( )→ •σ }; { this :Zero ,x :•σ } ⊢ x :•σ

(inst-meth)
⊢ new Zero() :〈add : (•σ)→•σ〉

(≤)
⊢ new Zero() :µ.〈add : (•0)→ •0〉
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.

.

.

(self-fld)
Σ;Γ ⊢ this :〈pred :σ〉

(fld)
Σ;Γ ⊢ this.pred :σ

(≤)
Σ;Γ ⊢ this.pred :〈add : (•σ)→ •σ〉

(var)
Σ;Γ ⊢ x :•σ

(invk)
Σ;Γ ⊢ this.pred.add(x) :•σ

(rec-meth)
Σ;Γ ⊢ new Suc(this.pred.add(x)) :•σ

⊢ n:µ.〈add : (•0)→•0〉
(inst-meth)

⊢ new Suc( n) :〈add : (•σ)→ •σ〉
(≤)

⊢ new Suc( n) :µ.〈add : (•0)→•0〉

whereΣ = {Suc:(•σ)→ •σ} and

Γ = { this :Suc,pred :σ, x :•σ}

We can also assign a similarly recursive type for themult method,τ= µ.〈mult : (〈add : (•0)→•0〉)→

•0〉.:

(self-meth)
{Zero :( )→ •τ }; { this :Zero ,x :〈add : (•τ)→ •τ〉 } ⊢ this :•τ

(inst-meth)
⊢ new Zero() :〈mult : (〈add : (•τ)→ •τ〉)→ •τ〉

(≤)
⊢ new Zero() :µ.〈mult : (〈add : (•0)→ •0〉)→ •0〉

(var)
Σ;Γ ⊢ x :〈add : (•τ)→•τ〉 .

.

.

(self-fld)
Σ;Γ ⊢ this :〈pred :τ〉

(fld)
Σ;Γ ⊢ this.pred :τ

(≤)
Σ;Γ ⊢ this.pred :〈mult : (〈add : (•τ)→ •τ〉)→ •τ〉

(var)
Σ;Γ ⊢ x :〈add : (•τ)→•τ〉

(invk)
Σ;Γ ⊢ this.pred.mult(x) :•τ

(invk)
Σ;Γ ⊢ x.add(this.pred.mult(x)) :•τ ⊢ n:τ

(inst-meth)
⊢ new Suc( n) :〈mult : (〈add : (•τ)→•τ〉)→•τ〉

(≤)
⊢ new Suc( n) :µ.〈mult : (〈add : (•0)→ •0〉)→ •0〉

whereΣ = {Suc:(•τ)→ •τ} and

Γ = { this :Suc,pred :τ, x :〈add : (•τ)→ •τ〉}

It is interesting to note that the type we have derived for themult method requires its argument

to have adifferent type for theadd method than the one we derived above. We can assign the type

〈add : (•τ)→ •τ〉 for new Zero() :

(var)
{Zero :( )→ •〈add : (•τ)→ •τ〉 }; { this :Zero ,x :•τ } ⊢ x :•τ

(inst-meth)
⊢ new Zero() :〈add : (•τ)→•τ〉

However, in the type system as we have presented it, we are unable to assign this type to any positive

number. This is because we are only allowed to associate a single class type to each class in the self
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environment. In this particular case, since we would like toderive the type〈add : (•τ)→•τ〉, this is also

the type that we must assume forSuc in the self environment (or rather a bulleted version) when typing

the body of theadd method. The problem is that then, by the (rec-meth) rule, we are only allowed to

derive the statementΣ;Γ ⊢ new Suc(this.pred.add(x)) :•〈add : (•τ)→ •τ〉, when what we need

to derive in order to apply the (inst-meth) is Σ;Γ ⊢ new Suc(this.pred.add(x)) :•τ.

10.4. Extending The Type Inference Algorithm

We will now discuss how we might adapt the type inference and unification procedures from the previous

chapter to infer typings forfj¢ programs in the new Nakano-style type assignment system.

The procedure that we will outline is one that we hinted at in Section 7.3, when we were discussing

the type inference algorithm for the system of simple types.There, we commented on how we could

make the type inference procedure terminating by keep trackof all the classes that had already been

‘looked inside of’. This is exactly the approach that we willoutline here for the Nakano style system.

The difference is that instead of simply keeping a list of all these classes, we will now also use this

list to determine whether we should infer a class type for anew C( . . .) expression from the self envi-

ronment, or look inside its definitions and derive method types based on further analysis of its method

bodies. Essentially, we will use the list of already examined classes to determine if we should apply

the (rec-meth) or the (inst-meth) rule; in other words, to determine if we should treatnew C( . . .) as a

function definition, or an occurrence of a recursive function identifier.

Unification

In the same way that we have adapted Robinson’s standard unification algorithm for Curry types into a

unification procedure for recursive (Nakano) types, it should be relatively straightforward to adapt the

unification procedure of Section 7.2 to unify the recursive types of Definition 10.1.

The procedure given in Definition 7.14 already deals with theunification of field and method types

- the field identifiers or method names in the two types are checked, and if they match, unification

proceeds on the corresponding argument and result types. The extension consists in dealing with bullets

and insertion variables, and inferring recursive types. These questions can all be answered in the same

way as described in the previous chapter. Namely, we can a) define a notion of canonical pretypes and

canonicalising substitution forFJ•µ, which will allow us to deal with bullets and insertion variables

separately from the structural elements of types; and b) we can infer recursive types in the same way

by, instead of failing on an occurs check, promoting the variable and forming a recursive type. Since

recursion is guarded by method types, such creation of recursive types should only happen when unifying

a type variable with amethodtype in which it occurs.

Decidability results for this procedure should follow in the same way as outlined in the previous chap-

ter. We can define notions of structural and unification closure for the object types ofFJ•µ by a simple

extension of these notions for Curry types. The proof shouldfollow the same structure, and demonstrate

that only a finite number of statements (or recursive calls) need to be made during unification.

Unification for class types follows straightforwardly fromthe unification of object types, since class

types cannot be nested, and consist only of object types. Theargument and result types of the two

class types to be unified are themselves pairwise unified contravariantly, as standard for function types.
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Unification can also then be easily extended to type and self environments. As before, unification would

return an operation, consisting of a sequence of substitutions and insertions.

Type Inference

A type inference algorithm forFJ•µ could be obtained by a fairly straightforward extension of the al-

gorithm given in Definition 7.23. As for that algorithm, it would be defined by cases over the structure

of expressions. Also, in this system as in the intersection type assignment system, the principal typing

of a term is in fact a set of typings, and a typing is now a tripleof a self-environment, a type environ-

ment and a type. For each kind of expression, we generate principal typings according the different type

assignment rules that are applicable to that kind of expression.

As we mentioned above, the algorithm should keep track of which classes have already had their

method bodies analysed. To do this, we define the type inference algorithm in two stages. First of all,

we define an auxiliary algorithm which takes as an argument both an expression and a list of classes.

The main type inference algorithm is then simply a wrapper for this auxiliary procedure, which takes

an expression as an argument and calls the auxiliary procedure on this expression and an empty set of

classes.

We will now give an informal description of the steps that thealgorithm should perform for each kind

of expression.

(x) : Firstly we generate a typing according the to (var) rule: we take a fresh type variableϕ, and add

the typing [∅, {x:ϕ},ϕ] to the principal typing set. Ifx, this , then we are done. Otherwise we

generate additional typings according to the (self-fld) and (self-meth) rules. For each classC in

the program, with fieldsF (C) = fn, we:

1. take fresh type variablesϕ0, . . ., ϕn and add the typing [{C:(ϕn)→ ϕ0}, { this :C},ϕ0] to the

principal typing set;

2. and for each fieldf ∈ fn, we take a fresh type variable and add the typing [∅, { this :C,f:ϕ},

〈f :ϕ〉] to the principal typing set.

(e.f) : This case actually remains unchanged from the simple typeinference procedure: we recursively

generate the principal typing set for the expressione and then for each typing [Σ,Γ,σ] in the set,

we generate a fresh type variableϕ and try to unify the typeσ with 〈f :ϕ〉. If unification succeeds,

returning the OperationO, then we add the typing [O(Σ),O(Γ),O(ϕ)] to the principal typing set of

e.f.

(e0. m( en) ) : This case is a straightforward extension of its counterpart in Definition 7.23 to introduce

insertion variables, in the same way as for the case for application in theλ-calculus setting (Def-

inition 9.75). First, we recursively call the procedure to generate the principal typing set of each

expressionei . Then, for each possible combination for selecting a typing[Σi ,Γi ,σi] from each of

the sets we do the following. We take a fresh type variableϕ and a fresh insertion variableι. Then

we try to unifyσ0 with the type〈m : (ισn)→ ϕ〉, to make sure that the method invocation can be

well typed. If this succeeds, then we apply the resulting operation O1 to each type environment,

and then try to unify them all. If this succeeds, returning operationO2, then we applyO2 ◦O1 to

each self environment, and try to unify all of these. If this succeeds with operationO3, then apply
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the operationO3◦O2◦O1 to each self and type environment, and combine them to generate a sin-

gle self environmentΣ, and a single type environmentΓ. We then take a fresh insertion variable

ι′, and prepend it on to the class type inΣ of each classC that was present inΣ0, and the type

in Γ of each variablex and fieldf that was present inΓ0. At this point, we form a typing from

the resulting environments, and the result typeO3 ◦O2 ◦O1(ϕ), and add it to the set of principal

typings that we return fore0. m( en) .

(new C( en) ) : For each expression of the formnew C( en) we infer three different kinds of typing,

corresponding to the (inst-obj) and (inst-fld) rules, and either the (rec-meth) or (inst-meth) rule

depending on whether then classC is in the list of already encountered classes. Firstly, we lookup

the fieldsF (C) = f. If the number of fields does not match the number of expressions en, then

we return the empty set. Otherwise, we recursively call the procedure to generate the principal

typing sets of each expressionei. Then for each combination of selecting a typing [Σi ,Γi,σi ] from

each set, we unify the type environments and the self environments. If this succeeds, returning

operationO1, we form the combined self environmentΣ and type environmentΓ by applyingO

to each self (respectively type) environment and then taking the union. Then, we do the following

three things:

1. We add the typing [Σ,Γ,C] to the set of principal typings.

2. For each fieldfi ∈ f, we add the typing [Σ,Γ,O1(σi)] to the set of principal typings.

3. We check to see whetherC is in the list of classes (passed as a parameter to the procedure)

that have already had their methods analysed.

a) If it is, then we do one of two things. IfC occurs in the combined self environmentΣ,

then we take the class typeO1((σn)→ ϕ), whereϕ is a fresh type variable, and unify it

with the class type forC in Σ. If this succeeds, resulting in operationO2, then we add

the typing [O2(Σ),O2(Γ),O2(ϕ)] to the set of principal typings. IfC does not occur in

the combine self environmentΣ, then we take a fresh type variableϕ, and add the typing

[Σ∪{C:(σn)→ ϕ},Γ,ϕ] to the set of principal typings.

b) If C has not already been ‘unfolded’, then we perform this unfolding now, and analyse

the method bodies ofC. For each methodm in C, we lookup its method bodyeb and

formal parametersxn′ . Then we recursively call the algorithm on this expressioneb but,

crucially, when we do so we add the classC to the list of classes already encountered.

This will ensure the termination of the algorithm, even for recursively defined programs.

Now, for each typing [Σb,Γb,γ] in the principal typing set ofeb, we unify the types

we have for each expressionei with the type for the corresponding field inΓb, and

unify the type for the classC in Σb with the bulleted implicit self type constructed

from the types inΓb and the typeγ we have derived for the method body itself. If

Γb does not contain a statement for any fieldf ∈ fn or variablex ∈ xn′ , then we can

extend it using freshly generated type variables. Similarly, if Σb does not contain a

class type forC, then we can extend it with one generated entirely out of fresh type

variables. If this unification process succeeds returning operationO2, then we add the

typing [O2(Σ),O2(Γ),O2(〈m : (τn′)→ γ〉)] to the set of principal typing, whereτn′ are the

types for the formal parametersxn′ of m in the type environmentΓb.
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Class Compositionality

By modifying the above type inference procedure slightly, we can obtain an approach to type inference

which is more akin to that of nominal type checking, described in Section 6.6. The philosophy behind

that approach is that each class should be typed in isolation, separately from the others. This is achieved

using nominal typeannotations- each field is annotated with a nominal class type, as are the parameters

and bodies of each method. These annotations serve, essentially, as typeassumptions, and each class

implicitly imports these type assumption for every other class in the program. The method bodies of

each class are then checked, in the presence of these assumptions, to verify that the class satisfies its

own type annotations. If all the classes pass this type checking phase, then it is guaranteed that each

class satisfies the assumptions that were made of it by the others.

This procedure can be emulated using the type inference algorithm we have given above by applying

it, for each classC, to an expression of the formnew C( x) and passing it a list of ‘already analysed’

classes consisting of thefull set of classes in the program exceptC itself. The algorithm will then look

inside all of the methods ofC, analysing the method bodies, however it will not look inside any other

classes during this process, since it will believe them to already have been analysed. If any of the method

bodies use instances of other classes, the algorithm will actually infer the types required for these other

classes, returning them in the self environments of the typings that it generates. The typings returned by

such a use of the above algorithm would correspond to the oneswe gave at the end of Section 10.3.3.

The typings would also consist of type environments containing type assumptions for the variablesxn,

which would actually correspond to the types required of theobject’s field values in order to assign those

types to the object itself. Thus, these typings also constitute a form ifimplicit class type: if we have that

[Σ, {x1:σ1, . . . , xn:σn }, τ] is a typing for the expressionnew C( x) , then this expresses that (σn)→ τ is a

valid class type forC.

Once such an analysis has been done for each class, we can check that the classes satisfy their mutual

type requirements through unification. The basic principleis this: if we have typings for instances ofC

andD as follows

Σ,D:(τn′)→ γ; {x1:σ1, . . . , xn:σn } ⊢ new C( xn) : δ

Σ,C:(σn)→ δ; {y1:τ1, . . . ,yn′ :τn′ } ⊢ new D( yn′ ) : γ

then we know thatC andD satisfy their mutual type requirements. Using the notion ofvalid class types

we described above, an alternative way of seeing this mutualsatisfaction of type constraints is as the

following ‘cut’ rules:

Σ,D : B ⊢ C : A Σ,C : A ⊢ D : B

Σ ⊢ C : A

Σ,D : B ⊢ C : A Σ ⊢ D : B

Σ ⊢ C : A

Thus, if we can unify the type assumed forD in (the self environment of) a typing inferred fornew C( x)

with the class type implicit in a typing inferred fornew D( y) , then we have satisfied one of the typing

requirements in these typings. If we can repeat this processuntil we have eliminated all the class type

assumptions in the self environment, then the resulting implicit class type is valid.

Having collected all the valid class types for the classes ofa program, we can now use them ‘as-is’.

That is, they can be used to infer typings for executable expressions without having to look inside method
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bodies any further. Thus, we have acompositionalmethod for typing classes ‘once and for all’.

10.5. Nakano Intersection Types

During the worked examples of Section 10.3, we commented several times about the inability of the

system to type methods which invokeother methods of the receiver, such as themult method in the

object-oriented program, or to give an analysis for methodswhich incorporates slightly different views

on their containing classes, such a heterogeneous types forlists. We will now describe an approach to

extending the system to include intersections, which will allows us to type these problematic examples.

It is fairly straightforward to incorporate intersectionsinto the type language:

Definition 10.13(FJ•µ Intersection types). 1. The set ofFJ•µ object intersection pretypes (ranged

over byψ), and its subset of strict object and functional pretypes (ranged over byπ andφ respec-

tively) are defined by the following grammar:

π ::= ϕ | n | C | •π |

ιπ | 〈f :π〉 | φ

φ ::= 〈m : (ψ)→ π〉 | •φ | ιφ | µ.φ

ψ ::= π1 ∩ . . . ∩πn (n≥ 1) | ιψ | •ψ

2. The definitions of free recursive variables and adequacy of pretypes are extended in the obvious

way; FJ•µ types are defined as pretypes which are both adequate and closed; we will use meta-

variablesσ, τ, α, β, γ, andρ to range over strictFJ•µ types. We will use the meta-variableθ to

range over intersection types (and sometimes also the meta-variableψ when it is clear from the

context that it should be a proper type).

3. The set ofFJ•µ class intersection types (ranged over byζ) is defined by the following grammar:

δ ::= (σ)→ τ | •δ | ιδ

ζ ::= δ1 ∩ . . . ∩ δn (n≥ 1) | ι ζ | •ζ

Notice that in the definition above we have not included the universal typeω. This type should be

added when considering a full formal treatment of this system, however for the purposes of the present

discussion it is not required.

The subtyping relation can also easily be extended with the obvious cases for intersections:

Definition 10.14(Subtyping forFJ•µ Intersection Types). 1. The operation ofµ-substitution from Def-

inition 10.7 is extended to operate over intersections as follows:

[n 7→ µ.φ](•ψ) = •([n 7→ µ.φ](ψ))

[n 7→ µ.φ](ιψ) = ι ([n 7→ µ.φ](ψ))

[n 7→ µ.φ](π1 ∩ . . . ∩πn) = ([n 7→ µ.φ](π1)) ∩ . . . ∩ ([n 7→ µ.φ](πn))
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2. The subtyping relation on intersection pretypes is defined as in Definition 10.8, extended by the

following:

π1 ∩ . . . ∩πn ≤ πi (for all i ∈ n)

ψ ≤ πi for each i∈ n, n≥ 1⇒ ψ ≤ π1 ∩ . . . ∩πn

•(π1 ∩ . . . ∩πn) ≤ •π1 ∩ . . . ∩ •πn

•π1 ∩ . . . ∩ •πn ≤ •(π1 ∩ . . . ∩πn)

ι (π1 ∩ . . . ∩πn) ≤ ιπ1 ∩ . . . ∩ ιπn

ιπ1 ∩ . . . ∩ ιπn ≤ ι (π1 ∩ . . . ∩πn)

3. The subtyping relation on class intersection types is defined as in Definition 10.8, extended by the

following:

δ1 ∩ . . . ∩δn ≤ δi (for all i ∈ n)

ζ ≤ δi for each i∈ n, n≥ 1⇒ ζ ≤ δ1 ∩ . . . ∩δn

•(δ1 ∩ . . . ∩δn) ≤ •δ1 ∩ . . . ∩ •δn

•δ1 ∩ . . . ∩ •δn ≤ •(δ1 ∩ . . . ∩δn)

ι (δ1 ∩ . . . ∩δn) ≤ ιδ1 ∩ . . . ∩ ιδn

ιδ1 ∩ . . . ∩ ιδn ≤ ι (δ1 ∩ . . . ∩δn)

To extend the type system, we obviously need to allow variables and fields to have intersection types

in the typing environment, and we modify the (var) and (self-fld) rules to assign a variable or field any

of its strict types:

(var) : (ψ ≤ σ)
Σ;Γ,x:ψ ⊢ x:σ (self-fld) : (ψ ≤ σ)

Σ;Γ,f:φ ⊢ this :〈f :σ〉

Furthermore, we will need to allowclassesto have intersections of class types in the self environment.

This leads to the following obvious modification to the (self-meth) rule:

(self-meth) : (ζ ≤ (ψn)→ σ)
Σ,C:ζ;Γ, this :C ⊢ this :σ

We also need to add the (join) rule to allow intersections to be derived for arbitrary expressions:

(join) :
Σ;Γ ⊢ e:σi (∀ i ∈ n)

(n≥ 2)
Σ;Γ ⊢ e:σ1 ∩ . . . ∩σn

Lastly, we will need to modify the (inst-meth) rule. This modification, however, is slightly more

subtle. Remember that the (inst-meth) rule is our version of the (Nakano) (fix) rule:

(fix) :
Γ,g : •σ ⊢ M : σ

Γ ⊢ FIX g.M : σ

In the context of intersection types, the above rule is extended as follows:

(fix ∩ ) :
Γ,g : •σ1 ∩ . . . ∩ •σn ⊢ M : σi (∀ i ∈ n)

(n≥ 2, j ∈ n)
Γ ⊢ FIX g.M : σ j

Thus, assuming an intersection typeψ for the recursive identifier, we must type the body of the definition

with eachtypeσi in the intersection. Then we are permitted to assign any of these types for the whole

recursive definition (and thus also, via the (join) rule, the full intersection type itself). Recall that the

analogue to the recursive identifierg in the above inference rule is a class nameC, and that the definition

body M corresponds to the body of the methodm for which we would like to assign a type〈m : (σ→

τ)〉. Thus, the generalisation of our (inst-meth) rule should type a number of method bodies (possibly
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analysing the same method body in multiple different ways):

(inst-meth2) :
Σ,C:δ1 ∩ . . . ∩ δn;Γi ⊢ ei :σi (∀ i ∈ n) Σ;Γ ⊢ e’j :θ j (∀ j ∈ r)

Σ;Γ ⊢ new C(e’r ) :τ j

( j ∈ n & F (C) = fr & ∀ i ∈ n . ∃ ψr ,ψ
′
s,xs,m .

Mb(C,m) = (xs,ei), Γi = { this :C, f:ψr , x:ψ′s},

τi = 〈m : (ψ′s)→ σi〉, •((ψr)→ τi) ≤ δi

& if i = j thenψk = θk (∀ k ∈ r))

This rule looks rather forbidding, but it is more straightforward than it appears at first glance. It simply

ensures that for each class typeδi in the intersectionδ1 ∩ . . . ∩ δn that is assumed forC, the appropriate

method bodyei can be typed according to an implicit class type consistent with δi . Then, for one of

the class typesδ j in particular, the rule checks that the field valuese’1, . . . ,e’r can be assigned the types

assumed for the fields when typing its associated method body. The expressivity of this extended rule

derives from the fact that recursively creatednew C( . . .) objects in any of the methods analysed can be

typed according toany of the class typesδi assumed forC, and not just the one corresponding to the

current method.

Using this extended system with intersections, we are now able to assign more expressive types which

allow sequences of calls to the same method to be made, with each call having a heterogeneous type.

We will illustrate this using theoo list program.

We can assign the type〈cons : (β)→ 〈cons : (α)→ 〈head :α〉〉〉 to lists which allows us to add two

elements to the list and then retrieve the latter element:

.

.

.

(var)
Σ2;Γ2 ⊢ o:α

(var)
Σ2;Γ2 ⊢ this :NEL

(inst-fld)
Σ2;Γ2 ⊢ new NEL(o, this) :〈head :α〉

(var)
Σ1;Γ1 ⊢ o:β

(var)
Σ1;Γ1 ⊢ this :EL

(inst-meth2)
Σ1;Γ1 ⊢ new NEL(o, this) :〈cons : (α)→ 〈head :α〉〉

(inst-meth2)
⊢ new EL() :〈cons : (β)→ 〈cons : (α)→ 〈head :α〉〉〉

whereΣ1 = {EL:( )→ •〈cons : (β)→ 〈cons : (α)→ 〈head :α〉〉〉}

Γ1 = { this :EL,o:β}

Σ2 = Σ1, {NEL:(•β,•EL)→ •〈cons : (α)→ 〈head :α〉〉}

Γ2 = { this :NEL,head :β, tail :EL,o:α}
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.

.

.

.

.

.

.

.

.

.

(var)
Σ3;Γ3 ⊢ o:•β

(var)
Σ3;Γ3 ⊢ this :NEL

(≤)
Σ3;Γ3 ⊢ this :•NEL

(rec-meth)
Σ3;Γ3 ⊢ new NEL(o, this) :•〈cons : (α)→ 〈head :α〉〉

.

.

.

.

(var)
Σ3;Γ4 ⊢ o:α

(var)
Σ3;Γ4 ⊢ this :NEL

(inst-fld)
Σ3;Γ4 ⊢ new NEL(o, this) :〈head :α〉

⊢ e:ρ ⊢ l:γ
(inst-meth2)

⊢ new NEL(e, l) :〈cons : (•β)→•〈cons : (α)→ 〈head :α〉〉〉
(≤)

⊢ new NEL(e, l) :•〈cons : (β)→ 〈cons : (α)→ 〈head :α〉〉〉
(•)

⊢ new NEL(e, l) :〈cons : (β)→ 〈cons : (α)→ 〈head :α〉〉〉

whereΣ3 = {NEL:(•ρ,•γ)→•〈cons : (•β)→•〈cons : (α)→ 〈head :α〉〉〉

∩ (•β,•NEL)→ •〈cons : (α)→ 〈head :α〉〉}

Γ3 = { this :NEL,head :ρ, tail :γ,o:•β}

Γ4 = { this :NEL,head :β.tail :NEL,o:α}

We can also assign the type〈cons : (β)→ 〈cons : (α)→ 〈tail : 〈head :β〉〉〉〉 which allows access to

the first of the two elements added to the list:

.

.

.

(var)
Σ2;Γ2 ⊢ o:α

(self-fld)
Σ2;Γ2 ⊢ this :〈head :β〉

(inst-fld)
Σ2;Γ2 ⊢ new NEL(o, this) :〈tail : 〈head :β〉〉

(var)
Σ1;Γ1 ⊢ o:β

(var)
Σ1;Γ1 ⊢ this :EL

(inst-meth2)
Σ1;Γ1 ⊢ new NEL(o, this) :〈cons : (α)→ 〈tail : 〈head :β〉〉〉

(inst-meth2)
⊢ new EL() :〈cons : (β)→ 〈cons : (α)→ 〈tail : 〈head :β〉〉〉〉

whereΣ1 = {EL:( )→ •〈cons : (β)→ 〈cons : (α)→ 〈tail :〈head :β〉〉〉〉}

Γ1 = { this :EL,o:β}

Σ2 = Σ1, {NEL:(•β,•EL)→ •〈cons : (α)→ 〈tail :〈head :β〉〉〉}

Γ2 = { this :NEL,head :β, tail :EL,o:α}
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.

.

.

.

.

.

.

.

.

.

(var)
Σ3;Γ3 ⊢ o:•β

(var)
Σ3;Γ3 ⊢ this :NEL

(≤)
Σ3;Γ3 ⊢ this :•NEL

(rec-meth)
Σ3;Γ3 ⊢ new NEL(o, this) :•〈cons : (α)→ 〈tail : 〈head :β〉〉〉

.

.

.

.

(var)
Σ3;Γ4 ⊢ o:α

(self-fld)
Σ3;Γ4 ⊢ this :〈head :β〉

(inst-fld)
Σ3;Γ4 ⊢ new NEL(o, this) :〈tail : 〈head :β〉〉

⊢ e:ρ ⊢ l:γ
(inst-meth2)

⊢ new NEL(e, l) :〈cons : (•β)→ •〈cons : (α)→ 〈tail : 〈head :β〉〉〉〉
(≤)

⊢ new NEL(e, l) :•〈cons : (β)→ 〈cons : (α)→ 〈tail : 〈head :β〉〉〉〉
(•)

⊢ new NEL(e, l) :〈cons : (β)→ 〈cons : (α)→ 〈tail : 〈head :β〉〉〉〉

whereΣ3 = {NEL:(•ρ,•γ)→•〈cons : (•β)→•〈cons : (α)→ 〈tail :〈head :β〉〉〉〉

∩ (•β,•NEL)→ •〈cons : (α)→ 〈tail :〈head :β〉〉〉}

Γ3 = { this :NEL,head :ρ, tail :γ,o:•β}

Γ4 = { this :NEL,head :β.tail :NEL,o:α}

Regarding the object-oriented arithmetic program of Section 10.3.6, recall that we could not assign the

argument type〈add : (•τ)→ •τ〉 of the type for themult methodτ = µ.〈mult : (〈add : (•0)→ •0〉)→

•0〉 to positive object-oriented natural numbers, i.e. expressions of the formnew Suc( n) . Using the

system extended with intersections however this is now possible, allowing us to type invocations of

the formn.mult( m) (wheren andm are object-oriented natural numbers). LetD be the following

derivation, which we reproduce from Section 10.3.6:

(var)
Σ;Γ1 ⊢ x :〈add : (•τ)→ •τ〉 .

.

.

(self-fld)
Σ;Γ1 ⊢ this :〈pred :τ〉

(fld)
Σ;Γ1 ⊢ this.pred :τ

(≤)
Σ;Γ1 ⊢ this.pred :〈mult : (〈add : (•τ)→ •τ〉)→ •τ〉

(var)
Σ;Γ1 ⊢ x :〈add : (•τ)→•τ〉

(invk)
Σ;Γ1 ⊢ this.pred.mult(x) :•τ

(invk)
Σ;Γ1 ⊢ x.add(this.pred.mult(x)) :•τ

where Σ = {Suc:(•τ)→ •τ ∩(•〈add : (•τ)→ •τ〉)→ •〈add : (•τ)→ •τ〉} and

Γ1 = { this :Suc,pred :τ, x :〈add : (•τ)→ •τ〉}

Then, given that we can assign the type〈add : (•τ)→•τ〉 to a numbern, we can construct the following
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derivation which assigns that type to its successor:

D

Σ;Γ1 ⊢ x.add(this.pred.mult(x)) :•τ .
.
.
.
.
.

(self-fld)
Σ;Γ2 ⊢ this :〈pred : 〈add : (•τ)→•τ〉〉

(fld)
Σ;Γ2 ⊢ this.pred :〈add : (•τ)→•τ〉

(var)
Σ;Γ2 ⊢ x :•τ

(invk)
Σ;Γ2 ⊢ this.pred.add(x) :•τ

(rec-meth)
Σ;Γ2 ⊢ new Suc(this.pred.add(x)) :•τ

⊢ n:〈add : (•τ)→ •τ〉
(inst-meth)

⊢ new Suc( n) :〈add : (•τ)→ •τ〉

whereΓ2 = { this :Suc,pred :〈add : (•τ)→ •τ〉, x :•τ}

Using intersection class types, we can also give numbers an alternative type for themult method, namely

〈mult : (σ)→ •σ〉, whereσ = µ.〈add : (•0)→ •0〉.

(self-meth)
Σ;Γ1 ⊢ this :•σ

(var)
Σ;Γ2 ⊢ x :•σ

(inst-meth)
⊢ new Zero() :〈mult : (σ)→•σ〉

whereΣ = {Zero :( )→ •〈mult : (σ)→ •σ〉 ∩ ( )→ •σ},

Γ1 = { this :Zero ,x:σ} andΓ2 = { this :Zero ,x :•σ}

.

.

.

.

(var)
Σ;Γ ⊢ x :σ

(≤)
Σ;Γ ⊢ x :〈add : (•σ)→ •σ〉 .

.

.

.

(self-fld)
Σ;Γ ⊢ this :〈pred : 〈mult : (σ)→ •σ〉〉

(fld)
Σ;Γ ⊢ this.pred :〈mult : (σ)→ •σ〉

(var)
Σ;Γ ⊢ x :σ

(invk)
Σ;Γ ⊢ this.pred.mult(x) :•σ

(invk)
Σ;Γ ⊢ x.add(this.pred.mult(x)) :•σ

⊢ n:〈mult : (σ)→ •σ〉
(inst-meth)

⊢ new Suc( n) :〈mult : (σ)→•σ〉

whereΣ = {Suc:(•〈mult : (σ)→ •σ〉)→•〈mult : (σ)→ •σ〉}

Γ = { this :Zero ,pred :σ,x:σ}

The intersection class types that we have used in the above derivations could be said to be simply

recordsrather than true intersections, since the result type of each class type refers to a different method.

However we make the final observation that, as for the intersection type system of Part I, the intersections

that we have introduced toFJ•µ allow more than just records. This can be illustrated using the fixed

point combinator that we considered in Section 10.3.4. Using the extended system, we can assign to it

a whole family of intersection types which are exactly analogous to the family of intersection types that
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(var)
Σ;Γ2 ⊢ x :〈app : (•ϕ)→ ϕ′〉

.

.

.

.

.

.

(self-meth)
Σ;Γ2 ⊢ this :•〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

(≤)
Σ;Γ2 ⊢ this :〈app : (•〈app : (•ϕ)→ ϕ〉)→ •ϕ〉

(var)
Σ;Γ2 ⊢ x :〈app : (•ϕ)→ ϕ〉

(≤)
Σ;Γ2 ⊢ x :•〈app : (•ϕ)→ ϕ〉

(invk)
Σ;Γ2 ⊢ this.app(x) :•ϕ

(invk)
Σ;Γ2 ⊢ x.app(this.app(x)) :ϕ′

(var)
Σ;Γ1 ⊢ x :〈app : (•ϕ)→ ϕ〉

.

.

.

.

.

.

(self-meth)
Σ;Γ1 ⊢ this :•〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

(≤)
Σ;Γ1 ⊢ this :〈app : (•〈app : (•ϕ)→ ϕ〉)→ •ϕ〉

(var)
Σ;Γ1 ⊢ x :〈app : (•ϕ)→ ϕ〉

(≤)
Σ;Γ1 ⊢ x :•〈app : (•ϕ)→ ϕ〉

(invk)
Σ;Γ1 ⊢ this.app(x) :•ϕ

(invk)
Σ;Γ1 ⊢ x.app(this.app(x)) :ϕ

(inst-meth)
⊢ new T() :〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉)→ ϕ′〉

where Σ = {T:( )→ •〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉)→ ϕ′〉

∩ ( )→ •〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉},

Γ1 = { this :T,x :〈app : (•ϕ)→ ϕ〉} and
Γ2 = { this :T,x :〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉}

Figure 10.2.: Type Derivation forFJ•µ Intersection Type Assignment for a Fixed Point Combinator (1)

are assignable to fixed point combinators inλ-calculus. That is, we can assign tonew T() the following

family of intersection Nakano types:

〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉)→ ϕ′〉

〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉 ∩〈app : (•ϕ′)→ ϕ′′〉)→ ϕ′′〉

...

The first of these is the familiar Nakano type for fixed point operators, and we gave a derivation assigning

this type back in Section 10.3.4. In the Figures below, we give derivations for the next two types in this

family. The interesting thing to note here is that the derivation for each of these types requires thatT have

an intersectionclass type in the self environment, which is formed from all the types in the sequence up

to and including the one that is being derived. None of these types is related to any other via subtyping

and thus this is a true class intersection type.
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Σ;Γ2 ⊢ this :〈app : (•(〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉))→ •ϕ′〉

(var)
Σ;Γ3 ⊢ x :〈app : (•ϕ)→ ϕ〉

(var)
Σ;Γ3 ⊢ x :〈app : (•ϕ)→ ϕ′〉

(join)
Σ;Γ3 ⊢ x :〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉

(≤)
Σ;Γ3 ⊢ x :•(〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉)

(invk)
Σ;Γ3 ⊢ this.app(x) :•ϕ′

(invk)
Σ;Γ3 ⊢ x.app(this.app(x)) :ϕ′′
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(self-meth)
Σ;Γ2 ⊢ this :•〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

(≤)
Σ;Γ2 ⊢ this :〈app : (•〈app : (•ϕ)→ ϕ〉)→ •ϕ〉

(var)
Σ;Γ2 ⊢ x :〈app : (•ϕ)→ ϕ〉

(≤)
Σ;Γ2 ⊢ x :•〈app : (•ϕ)→ ϕ〉

(invk)
Σ;Γ2 ⊢ this.app(x) :•ϕ

(invk)
Σ;Γ2 ⊢ x.app(this.app(x)) :ϕ′

(var)
Σ;Γ1 ⊢ x :〈app : (•ϕ)→ ϕ〉

.

.

.

.

.

.

(self-meth)
Σ;Γ1 ⊢ this :•〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉

(≤)
Σ;Γ1 ⊢ this :〈app : (•〈app : (•ϕ)→ ϕ〉)→ •ϕ〉

(var)
Σ;Γ1 ⊢ x :〈app : (•ϕ)→ ϕ〉

(≤)
Σ;Γ1 ⊢ x :•〈app : (•ϕ)→ ϕ〉

(invk)
Σ;Γ1 ⊢ this.app(x) :•ϕ

(invk)
Σ;Γ1 ⊢ x.app(this.app(x)) :ϕ

(inst-meth)
⊢ new T() :〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉 ∩〈app : (•ϕ′)→ ϕ′′〉)→ ϕ′′〉

where
Σ = {T:( )→ •〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉 ∩〈app : (•ϕ′)→ ϕ′′〉)→ ϕ′′〉

∩ ( )→ •〈app : (〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉)→ ϕ′〉

∩ ( )→ •〈app : (〈app : (•ϕ)→ ϕ〉)→ ϕ〉},

Γ1 = { this :T,x:〈app : (•ϕ)→ ϕ〉}

Γ2 = { this :T,x:〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉} and
Γ3 = { this :T,x:〈app : (•ϕ)→ ϕ〉 ∩〈app : (•ϕ)→ ϕ′〉 ∩〈app : (•ϕ′)→ ϕ′′〉}

Figure 10.3.: Type Derivation forFJ•µ Intersection Type Assignment for a Fixed Point Combinator (2)
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11. Summary of Contributions& Future Work

In this thesis, we have aimed to develop a notion of type assignment for the class-based approach to

object-oriented programming that expresses detailed properties of the behaviour of programs, including

their termination. It has also been our aim to firmly base our type assignment systems in the denotational

semantics of programs. Our initial approach to this task wasto use the intersection type discipline,

the type systems belonging to which have been shown to demonstrate this ability in many different

computational settings fromλ-calculus to process and sequent calculi.

Our work is not the first to apply intersection types to the study of object-orientation. De’Liguoro and

van Bakel have undertaken a comprehensive programme of research in which they develop an intersec-

tion type system for Abadi and Cardelli’sς-calculus, and use it to analyse many aspects of that model

of computation. While theς-calculus provides a fundamental basis for the object-oriented paradigm in

its extensive variety, it is still fairly far removed from the styles ofoo programming used in practice, at

least as far as class-based programming is concerned. Thus,even though one can consider ‘compiling’

class-based programs down to theς object-based level, our research has been an attempt at bringing

the success of de’Liguoro and van Bakel’s analysis a little closer to the ‘source language’ level that a

large number ofoo developers are used to in their every-day lives. Thus we havebuilt our type analysis

around the Featherweight Java formal model.

Our work has been influenced and inspired by the intersectiontype system for theς-calculus, but there

are important differences and we have extended that work in a number of ways. Since we are still inter-

ested in analysing objects, it was natural to inherit the structural types of theς-calculus and its subsequent

intersection type system. An important decision that was made early on in our research, however, was

to divorce our intersection type analysis from the existingnominal type system of Featherweight Java.

The motivation for this lay in our desire to obtain a system that fully characterised normalisation. As

we have discussed in Section 6.6, the rigid constraints imposed by the nominal typing approach exclude

a number of terminating programs, and thus restricting our system to only typing programs that ‘pass’

nominal type assignment defeats this aim.

The other major difference between our system and that of van Bakel and de’Liguoro is in our semantic

treatment. A principal result of our research is that of the approximation semantics for Featherweight

Java and the approximation theorem linking these semanticswith our notion of type assignment. Our

approximation semantics is the first such model of object-oriented programming, as far as we are aware.

Furthermore, our approximation result, as discussed in Section 2.1, demonstrates that our intersection

types precisely predict the output of computation. We have also made the comment that our types give

a characterisation of the observable properties and observational equivalence of programs, although we

do not have a formal result to this effect.

A more subtle difference between our treatment and that of van Bakel and de’Liguoro is that, because

we do not have to deal with method override (in the sense of modifying an individual object’s method

bodies), we can move from alateself-typing approach to an early one. This manifests itselfin our system
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in the fact that our (newM) rule requires, as a premise, that the type assumed for the variablethis when

typing the method body can be assigned to the object itself for which we are deriving the method type,

i.e the eventual receiver of the method invocation. This is in contrast to de’Liguoro and van Bakel’s

system, where the requirements on the self are coded into themethod type and these requirements are

then checked atinvocation time by the (Val Select) rule. An early version of this work [16] did have

a (functional, i.e. stateless)field update construction, and that system employed late self-typing. As

we have observed however (cf. Section 3.2), this feature maybe encoded and so we felt that, at this

stage, our research would benefit from a simpler presentation. The early self-typing approach seems

to lead to a leaner system, since it roots out as early as possible those ‘counter-factual’ types which

are predicated on the receiver satisfying impossible typing constraints. For example, in a system with

late self-typing we could derive types for theloop method of the non-terminating program of Section

6.2, byassumingthat the receivernew NT() can be assigned the very type that we are deriving. The

relationship between late and early self-typing is an interesting one though, and one which we feel

deserves further investigation. At the very least, the factthat field update can be encoded suggests an

alternative mechanism to de’Liguoro and van Bakel’s for typing such a construction.

The technique that we have used in this thesis to show the approximation result, derivation reduction,

also constitutes an extension over its previous application. We were motivated to use this technique

through observing the similarity between term rewriting systems and the (class-based)oo programming

model. Specifically, our encoding of Combinatory Logic bears a strong resemblance to a ‘curryfied’

term rewriting version of that system. Fernández and van Bakel successfully used the technique of

derivation reduction to show an approximation result for combinator systems [15]. The key difference

between that work and ours, is that the type assignment system considered for combinator system was

partial - the types for combinators were derived from an environment, essentially a look-up table, and

so are in a senseexternalto the system. In this respect, our type system can be considered afull type

assignment system - the types assigned to our ‘combinators’(i.e. objects) are derivedwithin the type

assignment system itself, via an analysis of the method body(i.e. the right-hand side of the combinator’s

reduction rule). Because of this subtle, but important difference, our proof for the strong normalisation

of derivation reduction can be done by a straightforward induction on the structure of derivations, rather

than appealing to more abstract relationships between terms as done in [15]. The aforementioned simi-

larity between theoo reduction model andtrs also suggests that our research can be used to define ‘full’

systems of type assignment for a generalised notion of term rewriting.

Having established the type-theoretical expressivity andsemantic soundness of our system, we turned

our attention to the problem of type inference. A chief motivating factor throughout this research has

been to determine to what extent our type analysis can be usedfor automatic program verification.

We noted that there is a well-defined hierarchy of restrictions that makes intersection type assignment

decidable in the setting of theλ-calculus. We considered the most restrictive variant in this hierarchy,

essentially equivalent to Curry’s type system. While we were able to show a principal typings property

for this restriction, we also observed that the inherent ability present in the class-based paradigm to

define classesrecursivelyraises serious barriers to the inference of useful types in our system.

This failure in the satisfactory application of our type system motivated us to look for extensions which

would allow us to infer more meaningful types, while still allowing us to capture the functional behaviour

and convergence of object-oriented programs. We identifiedNakano’s systems of logical recursive types
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as a suitable candidate, since it gives a guarantee of head normalisation. Before extending our system

to include Nakano-style recursive types, we first showed that type inference for Nakano’s notion of type

assignment is feasible by giving an algorithm for inferringtypings which we conjectured to be sound. We

showed that the problem of when to infer bullets in the typings for terms is not a trivial one. In order to

give a systematic solution to this problem, we proposed extending the type language with ‘placeholder’

elements (insertion variables) to mark the points in typingderivations where bullets may be used. In

this, we were inspired by the work of Kfoury and Wells on expansion variables for intersection type

inference.

We then considered how Nakano-style recursive types could be applied to the object-oriented model

by defining a system (FJ•µ) for assigning them to Featherweight Java programs. We did present formal

results for this type system regarding its semantic properties (i.e. normalisation, approximation, sound-

ness and completeness) - this is an important task for futureresearch. We did, however, demonstrate

through the use of case studies and worked examples, the ability of this extended type system to assign

useful and informative types to programs which were problematic for our intersection type inference

algorithm. We then discussed how our type inference procedures for our intersection type system and

Nakano’s originalλ-calculus-based system might be merged and extended to provide type inference for

FJ•µ. We also discussed how intersections might be added to this system.

Future Work

The wide scope of our work provides many directions for the future continuation of this research. The

immediate priority is to derive formal results for our Nakano-style type assignment systems. Specifically,

for our unification and type inference algorithms we must formally prove its soundness. For the Nakano-

style type system forfj¢, we must prove at least soundness (i.e. that typeability is preserved by reduction).

An interesting question is thecompletenessof type assignment, or in other words whether typeability is

preserved under expansion. This is an open question for Nakano’s original system too. This property

does not hold for non-logical systems of recursive types [34, Remark 2.6(i)], and so it may be that

such a result requires the use of intersections. In addition, we would like to show an approximation

result for this system. We also believe that extension of themodal approach of Nakano might lead

to a system which gives stronger normalisation guarantees,and this is something we would like to

investigate further. On the type inference side, we must extend the algorithm of Chapter 9 in order to

make it complete. Formally, this could involve showing a principal typings property for our extension

of Nakano’s system. Furthermore, as we have remarked, our approach type inference is fundamentally

unification-based, but it would be interesting to consider what advantages or difficulties would arise out

of a constraint-based approach. On a practical note, we would like to produce a working prototype of

our system for Featherweight Java and analyse its effectiveness in an operational setting.

Beyond that discussed above, there is a need to extend our treatment beyond the limited set of features

modelled by Featherweight Java. An important extension to the calculus involves adding imperative, or

state-based features. Such an extension is already considered by Abadi and Cardelli for theς-calculus,

and there are also state-based extensions of FeatherweightJava (e.g. Middleweight Java[22]). We would

like to apply the intersection type discipline to this important feature, which would move our systems one

step closer to practical application, as well providing an alternative theoretical treatment to state-based
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issues. There are other computational features. One example is the use of exceptions, and other similar

mechanisms forcontrol flow. There is a wide body of research connecting such control mechanisms, via

a Curry-Howard correspondence, with the notion ofclassicallogic. Van Bakel’s work on the application

of itd to such issues suggests that a similar approach could work inthe context of Featherweight Java

andoo.

There are interesting directions for future research outside of the sphere of the object-oriented world.

As we have suggested above, our approach to type assignment could afford improvements or alternatives

in the field of more general term rewriting systems. There is also the question of applying Nakano’s sys-

tems not only to the object-oriented paradigm, but to the functional one too. Since Nakano’s formulation

applies to theλ-calculus, it should be even more straightforward to apply it to functional languages such

as ML or Haskell, than tooo. Type-based termination guarantees, even partial ones, would provide

immediate productivity benefits in the practical programming community.
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A. Type-Based Analysis of Ackermann’s Function

In this appendix, we will consider an implementation of the Ackermann function infj¢, and its typeabil-

ity using the intersection type system considered in the first part of this thesis. We will show that the

implementation is strongly normalising, and conjecture that each level of the parameterized hierarchy is

typeable using some finitely bounded level of nested intersection types. The aim of this presentation is

to demonstrate the analytical expressiveness of the type systems that we have been considering.

Definition A.1 (Ackermann Function). The Ackermann functionAck : N×N→ N is defined as follows:

Ack(m,n) =



n+1 (if m= 0)

Ack(m−1,1) (if m> 0,n= 0)

Ack(m−1,Ack(m,n−1)) (if m,n> 0)

We can also define aparameterizedversion of the Ackermann function, by fixing the first argument:

Definition A.2 (Parameterized Ackermann Function). For every m, the functionAck[m] is defined by

Ack[m](n) = Ack(m,n)

A.1. The Ackermann Function in Featherweight Java

The Ackermann function can be implemented quite straightforwardly in an object-oriented style. We

use the same approach as in Section 6.4 of defining a class for zero and a class for successor, with each

class containing methods that implement the Ackermann function:

Definition A.3 (Ackermann Program). Thefj programAckfj is defined by the following class table:

class Nat extends Object {

Nat ackM(Nat n) { return this; }

Nat ackN(Nat m) { return this; }

}

class Zero extends Nat {

Nat ackM(Nat n) { return new Suc(n); }

Nat ackN(Nat m) { return m.ackM(new Suc(new Zero())); }

}

class Suc extends Nat {

Nat pred;

Nat ackM(Nat n) { return n.ackN(this.pred) }

Nat ackN(Nat m) { return m.ackM(new Suc(m).ackM(this.pred )); }

}
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Natural numbers, as discussed in Section 6.4, have a straightforward encoding using the abovefj¢

program.

Definition A.4 (Translation of Naturals). The translation function⌈⌈·⌋⌋N maps natural numbers to expres-

sions ofAckfj, and is defined inductively as follows:

⌈⌈0⌋⌋N = new Zero()

⌈⌈i +1⌋⌋N = new Suc( ⌈⌈i⌋⌋N)

Notice that for everyn, ⌈⌈n⌋⌋N is anormal form(this is easily proved by induction onn). The following

result shows that the Ackermann program computes the Ackermann function.

Theorem A.5. ∀m,n . ∃k . ⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈k⌋⌋N and k= Ack(m,n).

Proof. By well-founded induction on the pair (m,n) using the lexicographic ordering<lex on natural

numbers. Take arbitrary (m,n); then we have the following cases.

(m= 0): ThenAck(0,n) = n+1, and we have the following reduction sequence:

⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N)

= new Zero().ackM( ⌈⌈n⌋⌋N)

→ new Suc( ⌈⌈n⌋⌋N)

= ⌈⌈n+1⌋⌋N

(m> 0,n= 0): Thenm= i +1 for somei and⌈⌈m⌋⌋N = new Suc( ⌈⌈i⌋⌋N) . Notice thati =m−1, soi < m

and therefore (i,1)<lex (m,n). Thus it follows by the inductive hypothesis that there is somek such

that⌈⌈i⌋⌋N.ackM( ⌈⌈1⌋⌋N) →∗ ⌈⌈k⌋⌋N andk = Ack(i,1). Notice also that⌈⌈n⌋⌋N = ⌈⌈0⌋⌋N = new Zero()

and⌈⌈1⌋⌋N = new Suc(new Zero()) . Then we have the following reduction sequence:

⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N)

= new Suc( ⌈⌈i⌋⌋N).ackM(new Zero())

→ new Zero().ackN(new Suc( ⌈⌈i⌋⌋N).pred)

→ new Zero().ackN( ⌈⌈i⌋⌋N)

→ ⌈⌈i⌋⌋N.ackM(new Suc(new Zero()))

→ ⌈⌈i⌋⌋N.ackM( ⌈⌈1⌋⌋N)

→∗ ⌈⌈k⌋⌋N

= ⌈⌈Ack(i,1)⌋⌋N

= ⌈⌈Ack(m−1,1)⌋⌋N

(m> 0,n> 0): Thenm= i+1 andn= j+1 for somei and j. So j = n−1< n, therefore (m, j)<lex (m,n)

and thus by the inductive hypothesis there is somek1 such that⌈⌈m⌋⌋N.ackM( ⌈⌈ j⌋⌋N) →∗ ⌈⌈k1⌋⌋N and

Ack(m, j) = k1. Also i =m−1< m, therefore (i,k1)<lex (m,n) and so by the inductive hypothesis

there is somek2 such thatk2 = Ack(i,k1) and⌈⌈i⌋⌋N.ackM( ⌈⌈k1⌋⌋N) →∗ ⌈⌈k2⌋⌋N. Notice that⌈⌈m⌋⌋N =
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⌈⌈i +1⌋⌋N = new Suc( ⌈⌈i⌋⌋N) and⌈⌈n⌋⌋N = ⌈⌈ j +1⌋⌋N = new Suc( ⌈⌈ j⌋⌋N) . Then we have the following

reduction sequence:

⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N)

= new Suc( ⌈⌈i⌋⌋N).ackM(new Suc( ⌈⌈ j⌋⌋N))

→ new Suc( ⌈⌈ j⌋⌋N).ackN(new Suc( ⌈⌈i⌋⌋N).pred)

→ new Suc( ⌈⌈ j⌋⌋N).ackN( ⌈⌈i⌋⌋N)

→ ⌈⌈i⌋⌋N.ackM(new Suc( ⌈⌈i⌋⌋N).ackM(new Suc( ⌈⌈ j⌋⌋N).pred))

→ ⌈⌈i⌋⌋N.ackM(new Suc( ⌈⌈i⌋⌋N).ackM( ⌈⌈ j⌋⌋N))

= ⌈⌈i⌋⌋N.ackM( ⌈⌈m⌋⌋N.ackM( ⌈⌈ j⌋⌋N))

→∗ ⌈⌈i⌋⌋N.ackM( ⌈⌈k1⌋⌋N)

→∗ ⌈⌈k2⌋⌋N

= ⌈⌈Ack(i,k1)⌋⌋N

= ⌈⌈Ack(i,Ack(m, j))⌋⌋
N

= ⌈⌈Ack(m−1,Ack(m,n−1))⌋⌋N

�

Notice that this implies that every instance of the Ackermann program isnormalisable. In the follow-

ing section we will show the stronger result that every instance of the Ackermann program isstrongly

normalisable.

A.2. Strong Normalisation ofAckfj

Recall that one of the main properties of our intersection type system is that programs typeable with

strongderivations (Definition 4.8) – i.e. without using the top typeω – arestronglynormalising (Theo-

rem 5.20). In this section we will show that every instance oftheAckfj program is strongly normalising

by using this result and showing that every instance is typeable with a strong derivation. This follows

from two main lemmas: firstly, that strong derivations are preserved by expansion forAckfj - that is

if ⌈⌈k⌋⌋N is typeable using a strong derivation and⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈k⌋⌋N for somem andn, then

⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) is also typeable with a strong derivation; secondly we show that every number⌈⌈k⌋⌋N
has at least one strong derivation. Then, using the result from the previous section that every instance of

the Ackermann function inAckfj reduces to a number⌈⌈k⌋⌋N, it immediately follows that every instance

is typeable with a strong derivation and is thus strongly normalisable.

We will first need the following lemma, which is an extension to derivations oftype extraction-

Lemma 3.10(2).

Lemma A.6. Let S = {x1 7→ e1, . . . ,xn 7→ en } be a term substitution ande be an expression such that

vars(e) = {x1, . . . ,xn }; if there is a (strong) derivationD such thatD :: Π ⊢ eS : φ, then there exists

another (strong) derivationD′ such thatD′ :: Π′ ⊢ e : φ with Π′ = {x1:φ1, . . . ,xn:φn }, and a (strong)

derivation substitutionS = {x1 7→ D1 :: Π ⊢ e1 : φ1, . . . ,xn 7→ Dn :: Π ⊢ en : φn } such that(D′)S =D.

Proof. By induction on derivations, similar to Lemma 3.10(2). �
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We can now show that strong derivations are preserved by expansion for theAckfj program.

Lemma A.7 (Expansion for Strong Derivations). For all m and n:

∀D,σ . ⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈k⌋⌋N andD :: ⊢ ⌈⌈k⌋⌋N : σ withD strong

⇒∃D′ . ⊢ ⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) : σ withD′ strong

Proof. By well-founded induction on (m,n) using the lexicographic ordering<lex on natural numbers.

It is sufficient to consider the following cases:

(m= 0): ThenAck(m,n) = Ack(0,n) = n+1 and so by Theorem A.5 it follows that

new Zero().ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈n+1⌋⌋N

Notice⌈⌈n+1⌋⌋N = new Suc( ⌈⌈n⌋⌋N) . AssumeD :: ⊢ new Suc( ⌈⌈n⌋⌋N) : σ withD strong. Notice

that new Suc( ⌈⌈n⌋⌋N) = new Suc(n) S whereS = {n 7→ ⌈⌈n⌋⌋N }. Thus, by Lemma A.6, we have

that there is a strong derivationD′ such thatD′ ::Π′ ⊢ new Suc(n) : σ with Π′ = {n:φ} and there

is a strong derivation substitutionS = {n 7→ D′′ } withD′′ :: ⊢ ⌈⌈n⌋⌋N : φ. SinceS is strong, so too

isD′′. Now we can build the following strong derivation:

D′′[ΠP Π′]
Π ⊢ new Suc(n) : σ

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackM :φ→ σ〉

D′′

⊢ ⌈⌈n⌋⌋N : φ
(invk)

⊢ new Zero().ackM( ⌈⌈n⌋⌋N) : σ

whereΠ = { this :Zero ,n:φ}.

(m= i +1, n= 0): ThenAck(m,n) =Ack(i+1,0)=Ack(i,1) and by Theorem A.5⌈⌈i⌋⌋N.ackM( ⌈⌈1⌋⌋N) →∗

⌈⌈k⌋⌋N with Ack(i,1) = k. Thus, also by Theorem A.5 it follows that⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗

⌈⌈k⌋⌋N. Assume there is a strong derivationD such thatD :: ⊢ ⌈⌈k⌋⌋N : σ. Sincei = m− 1 < m,

(i,1)<lex (m,n) and so by the inductive hypothesis there is a strong derivationD′ such thatD′ :: ⊢

⌈⌈i⌋⌋N.ackM( ⌈⌈1⌋⌋N) : σ. Then by rule (invk) there are strong derivationsD′′ andD′′′ such that

D′′ :: ⊢ ⌈⌈i⌋⌋N : 〈ackM :φ→ σ〉 andD′′′ :: ⊢ ⌈⌈1⌋⌋N : φ. Notice⌈⌈1⌋⌋N = new Suc(new Zero()) ,

⌈⌈m⌋⌋N = ⌈⌈i +1⌋⌋N = new Suc( ⌈⌈i⌋⌋N) and⌈⌈n⌋⌋N = ⌈⌈0⌋⌋N = new Zero() , so we can build the follow-

ing strong derivation:

.

.

.

.

.

.

.

(var)
Π1 ⊢ n : 〈ackN : 〈ackM :φ→ σ〉 → σ〉

(var)
Π1 ⊢ this : 〈pred : 〈ackM :φ→ σ〉〉

(fld)
Π1 ⊢ this.pred : 〈ackM :φ→ σ〉

(invk)
Π1 ⊢ n.ackN(this.pred) : σ

D′′

⊢ ⌈⌈i⌋⌋N : 〈ackM :φ→ σ〉
(newF)

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred : 〈ackM :φ→ σ〉〉
(newM)

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈ackM : 〈ackN : 〈ackM :φ→ σ〉 → σ〉 → σ〉 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

(var)
Π2 ⊢m: 〈ackM :φ→ σ〉

D′′′[Π2 P ∅]
Π2 ⊢ new Suc(new Zero()) : φ

(invk)
Π2 ⊢m.ackM(new Suc(new Zero())) : σ

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackN : 〈ackM :φ→ σ〉 → σ〉

(invk)
⊢ new Suc( ⌈⌈i⌋⌋N).ackM(new Zero()) : σ
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(m= i +1, n= j +1): ThenAck(m,n) = Ack(i,Ack(m, j)). By Theorem A.5,⌈⌈m⌋⌋N.ackM( ⌈⌈ j⌋⌋N) →∗

⌈⌈k⌋⌋N with Ack(m, j)= k. Also by Theorem A.5 we have⌈⌈i⌋⌋N.ackM( ⌈⌈k⌋⌋N) →∗ r with Ack(i,k)= r.

Thus it follows that⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈r⌋⌋N. Assume there is a strong derivationD such that

D :: ⊢ ⌈⌈r⌋⌋N : σ. Sincei =m−1< m, (i,k)<lex (m,n) and so by the inductive hypothesis there is

a strong derivationD′ such thatD′ :: ⊢ ⌈⌈i⌋⌋N.ackM( ⌈⌈k⌋⌋N) : σ. Then, by rule (invk) it must

be that there are strong derivationsD′′ andD′′′ such thatD′′ :: ⊢ ⌈⌈i⌋⌋N : 〈ackM :φ→ σ〉 and

D′′′ :: ⊢ ⌈⌈k⌋⌋N : φ. We can assume without loss of generality thatφ = τ1 ∩ . . . ∩τt (for some

t > 0 sinceD′′′ is strong), then by rule (join) there are strong derivationsD1, . . . ,Dt such that

Ds :: ⊢ ⌈⌈k⌋⌋N : τs for eachs∈ t.

Now, since j = n−1 < n, therefore (m, j)<lex (m,n) and by the inductive hypothesis there are

strong derivationsD′1, . . . ,D′t such that for eachs∈ t,D′s :: ⊢ ⌈⌈m⌋⌋N.ackM( ⌈⌈ j⌋⌋N) : τs. So by rule

(invk) there are strong derivationsD′′1, . . . , D′′t such thatD′′s :: ⊢ ⌈⌈m⌋⌋N : 〈ackM :φ′s→ τs〉 and

derivationsD′′′1, . . . ,D′′′r such thatD′′′s :: ⊢ ⌈⌈ j⌋⌋N : φ′s for eachs∈ t.

We can assume without loss of generality that, for eachs∈ t, φ′s = δ
s
1 ∩ . . . ∩δ

s
vs

(with vs > 0

sinceD′′′s is strong, and eachδ strict). Thus by rule (join) there are strong derivationsD(6,1)
1 , . . . ,

D
(6,1)
v1

, . . . , D
(6,t)
1 , . . . , D

(6,t)
vt

such thatD(6,s)
u :: ⊢ ⌈⌈ j⌋⌋N : δs

u for eachs∈ t, u ∈ vs. LetD7 be the

following strong derivation:

D
(6,1)
1

⊢ ⌈⌈ j⌋⌋N : δ1
1 (newF)

⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈pred :δ1
1〉 . . .

D
(6,t)
vt

⊢ ⌈⌈ j⌋⌋N : δt
vt (newF)

⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈pred :δt
vt
〉

(join)
⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈pred :δ1

1〉 ∩ . . . ∩〈pred :δt
vt
〉

Let Π′ = { this :〈pred :δ1
1〉 ∩ . . . ∩〈pred :δt

vt
〉} and for eachs ∈ t D8

s be the following strong

derivation:

(var)
Π′ ⊢ this : 〈pred :δs

1〉 (fld)
Π′ ⊢ this.pred : δs

1 . . .

(var)
Π′ ⊢ this : 〈pred :δs

vs
〉

(fld)
Π′ ⊢ this.pred : δs

vs (join)
Π′ ⊢ this.pred : φ′s

Notice that⌈⌈m⌋⌋N = ⌈⌈i +1⌋⌋N = new Suc( ⌈⌈i⌋⌋N) = new Suc(m) S whereS = {m 7→ ⌈⌈i⌋⌋N }. Thus

by Lemma A.6 there are strong derivationsD4
1, . . . ,D

4
t andD5

1, . . . ,D
5
r such thatD4

s :: {m:φ′′s } ⊢

new Suc(m) : 〈ackM :φ′s→ τs〉 andD5
s :: ⊢ ⌈⌈i⌋⌋N : φ′′s for eachs∈ t.

We can assume without loss of generality thatφ′′s = π
s
1 ∩ . . . ∩π

s
ws

for eachs∈ t (with ws > 0

sinceD5
s is strong, and eachπ strict). Thus by rule (join) there are strong derivationsD(9,1)

1 , . . . ,

D
(9,1)
w1 , . . . , D

(9,t)
1 , . . . , D

(9,t)
wt such thatD(9,s)

u :: ⊢ ⌈⌈i⌋⌋N : πs
u for eachs∈ r , u ∈ ws. LetD10 be the

following strong derivation:

D
(9,1)
1

⊢ ⌈⌈i⌋⌋N : π1
1 (newF)

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred :π1
1〉 . . .

D
(9,t)
wt

⊢ ⌈⌈i⌋⌋N : δt
wt (newF)

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred :δt
wt
〉 .

.

.

.

.

.

D′′

⊢ ⌈⌈i⌋⌋N : 〈ackM :φ→ σ〉
(newF)

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred : 〈ackM :φ→ σ〉〉

(join)
⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred :δ1

1〉 ∩ . . . ∩〈pred :δt
wt
〉 ∩〈pred : 〈ackM :φ→ σ〉〉

LetΠ′′ = { this :〈pred :π1
1〉 ∩ . . . ∩〈pred :πt

wt
〉 ∩〈pred : 〈ackM :φ→ σ〉〉} andD11 be the follow-
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ing strong derivation:

(var)
Π′′ ⊢ this : 〈pred :π1

1〉
(fld)

Π′′ ⊢ this.pred : π1
1 . . .

(var)
Π′′ ⊢ this : 〈pred :πt

wt
〉

(fld)
Π′′ ⊢ this.pred : πt

wt
.
.
.
.
.

(var)
Π′′ ⊢ this : 〈pred : 〈ackM :φ→ σ〉〉

(fld)
Π′′ ⊢ this.pred : 〈ackM :φ→ σ〉

(join)
Π′′ ⊢ this.pred : φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→ σ〉

We can now build the following strong derivation:

.

.

.

.

D12

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈ackM : 〈ackN :φ′′1 ∩ . . . ∩φ
′′
t ∩〈ackM :φ→ σ〉 → σ〉 → σ〉

D13

⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈ackN :φ′′1 ∩ . . . ∩φ
′′
t ∩〈ackM :φ→ σ〉 → σ〉

(invk)
⊢ new Suc( ⌈⌈i⌋⌋N).ackM(new Suc( ⌈⌈ j⌋⌋N)) : σ

whereD12 is the following (strong) derivation:

(var)
Π1 ⊢ n : 〈ackN :φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→ σ〉 → σ〉 .

.

.

.

.

D11[Π1 P Π′′]
Π1 ⊢ this.pred : φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→ σ〉

(invk)
Π1 ⊢ n.ackN(this.pred) : σ .

.

.

.

.

.

.

.

.

.

.

.

.

.

D10

⊢ new Suc( ⌈⌈i⌋⌋N) : 〈pred :δ1
1〉 ∩ . . . ∩〈pred :δt

wt
〉 ∩〈pred : 〈ackM :φ→ σ〉〉

(newM)
⊢ new Suc( ⌈⌈i⌋⌋N) : 〈ackM : 〈ackN :φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→ σ〉 → σ〉 → σ〉

with Π1 =Π
′′∪{n:〈ackN :φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→σ〉→ σ〉}, andD13 is the following (strong)

derivation:

.

.

.

.

.

.

(var)
Π2 ⊢m: 〈ackM :φ→ σ〉 .

.

.

.

.

D14
1

Π2 ⊢ new Suc(m).ackM(this.pred) : τ1 . . .

D14
t

Π2 ⊢ new Suc(m).ackM(this.pred) : τt
(join)

Π2 ⊢ new Suc(m).ackM(this.pred) : φ

(invk)
Π2 ⊢m.ackM(new Suc(m).ackM(this.pred)) : σ

D7

⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈pred :δ1
1〉 ∩ . . . ∩〈pred :δt

vt
〉

(newM)
⊢ new Suc( ⌈⌈ j⌋⌋N) : 〈ackN :φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→ σ〉 → σ〉

with Π2 =Π
′∪{m:φ′′1 ∩ . . . ∩φ

′′
t ∩〈ackM :φ→σ〉}, and where eachD14

i (i ∈ t) is a derivation of the

following form:

D4
i [Π2 P {m:φ′′i }]

Π2 ⊢ new Suc(m) : 〈ackM :φ′i → τi〉

D8
i 1[Π2 P Π′]

Π2 ⊢ this.pred : φ′i
(invk)

Π2 ⊢ new Suc(m).ackM(this.pred) : τi

�

The final lemma that we need is that all numbers⌈⌈k⌋⌋N are strongly typeable.

Lemma A.8 (Strong Typeability of Numbers). For all k there exists a strong derivationD such that

D :: ⊢ ⌈⌈k⌋⌋N : σ for someσ.
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Proof. By induction onk.

(n= 0): Then⌈⌈n⌋⌋N = ⌈⌈0⌋⌋N = new Zero() Notice that the following derivation is strong:

(newO)
⊢ new Zero() : Zero

(n= k+1): Then⌈⌈n⌋⌋N = ⌈⌈k+1⌋⌋N = new Suc( ⌈⌈k⌋⌋N) . By the inductive hypothesis there is a strong

derivationD such thatD :: ⊢ ⌈⌈k⌋⌋N : σ for someσ. Then we can build the following strong

derivation:
D

⊢ ⌈⌈k⌋⌋N : σ
(newO)

⊢ new Suc( ⌈⌈k⌋⌋N) : Suc

�

Theorem A.9 (Strong Normalisation forAckfj). For all m and n,⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) is strongly nor-

malising.

Proof. Take arbitrarymandn. By Theorem A.5 there is somek such that⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) →∗ ⌈⌈k⌋⌋N.

By Lemma A.8 there is a strong derivationD such thatD :: ⊢ ⌈⌈k⌋⌋N : σ, and then by lemma A.7 it

follows that there is also a strong derivationD′ such thatD′ :: ⊢ ⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) : σ. Thus, by

Theorem 5.20,⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) is strongly normalising. Sincemandn were arbitrary, this holds for

all mandn. �

A.3. Typing the Parameterized Ackermann Function

In this section, we consider the typeability of theparameterizedAckermann function in varioussubsys-

temsof the intersection type system forfj. These subsystems are defined by restricting where intersec-

tions can occur in the argument position of method predicates (i.e. to the left of the→ type constructor).

Definition A.10 (Rank-based Predicate Hierarchy). We stratify the set of predicates into an inductively

defined hierarchical family based onrank. For each n, the setTn of rank n predicates is defined as

follows:

T0 = ϕ | C | 〈f :T0〉 | 〈m : (T0, . . . ,T0)→T0〉

Ti+1 =


Ti ∩ . . . ∩Ti (i > 0, i even)

Ti−1 | 〈f :Ti+1〉 | 〈m : (Ti , . . . ,Ti)→Ti+1〉 (i > 0, i odd)

whereϕ ranges of predicate variables,C ranges over class names,f ranges over field identifiers, andm

ranges over method names.

Definition A.11 (Rankn Typing Derivations). A derivationD is called rank n if each instance of the

typing rules used to inD containsonly predicates of rank n.

The results of this section are that every instance of theAck[0] andAck[1] parameterized Ackermann

functions is typeable in the rank 0 system (essentially corresponding to the simply typed lambda calcu-

lus), while every instance ofAck[2] is typeable in the rank 4 system. This leads us to conjecturethat

every level of the parameterized Ackermann hierarchy is typeable in some rank-bounded subsystem:
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Conjecture A.12(Rank-Stratified Type Classification ofAck). For each m, there exists some k such that

each instance ofAck[m] is typeable using only predicates of rank k, i.e.

∀m . ∃k . ∀n . ∃D,σ .D :: ⊢ ⌈⌈m⌋⌋N.ackM( ⌈⌈n⌋⌋N) : σ withD rank k

The following family of (rank 0) predicates constitutes theset of predicates that we will be able to

assign to instances of the Ackermann function. Since the result of (each instance of) the Ackermann

function is a natural number, we call themν-predicates.

Definition A.13 (ν-predicates). The family ofν-predicates is defined inductively as follows:

ν0 = Suc

νi+1 = 〈ackN : 〈ackM :νi → νi〉 → νi〉

The ν-predicates will also act as the building blocks forargumenttypes: we will later show that to

type instances of theAck function we will have to derive predicates of the form〈ackM :φ→ ν j〉 where

the predicateφ is constructed in terms ofν-predicates. The ability of theν-predicates to perform this

function hinges on the fact that we can assigneachν-predicate toeverynatural number (with the obvious

exception that we cannot assign the predicateν0 = Suc to ⌈⌈0⌋⌋N), a result which we now prove.

We start by showing that if we can assign aν-predicate to a number, then we can assign that same

ν-predicate to its successor. This result is the crucial element to showing that the whole family ofν-

predicates are assignable toeachnumber.

Lemma A.14. If D ::Π ⊢ e : νi withD a rank0 derivation, then there exists a rank0 derivationD′ such

thatD′ :: Π ⊢ new Suc( e) : νi.

Proof. AssumingD :: Π ⊢ e : νi withD rank 0, then there are two cases to consider:

(i = 0): Thenνi = Suc. The derivationD′ is given below. Notice that sinceD is rank 0, so too then is

D′.
D

Π ⊢ e : Suc
(newO)

Π ⊢ new Suc( e) : Suc

(i > 0): Thenνi = 〈ackN :〈ackM :νi−1→ νi−1〉 → νi−1〉. SinceD is rank 0, it follows thatνi is also rank

0, and thus so too are〈ackM :νi−1→ νi−1〉 andνi−1. Therefore, the following derivationD′ is rank

0:
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.

.

.

.

.

.

(var)
Π1 ⊢m: 〈ackM :νi−1→ νi−1〉

.

.

.

.

.

.

.

.

.

.

(var)
Π2 ⊢ n : 〈ackN : 〈ackM :νi−1→ νi−1〉 → νi−1〉 .

.

.

(var)
Π2 ⊢ this : 〈pred : 〈ackM :νi−1→ νi−1〉〉

(fld)
Π2 ⊢ this.pred : 〈ackM :νi−1→ νi−1〉

(invk)
Π2 ⊢ n.ackN(this.pred) : νi−1

(var)
Π1 ⊢m: 〈ackM :νi−1→ νi−1〉

(newF)
Π1 ⊢ new Suc(m) : 〈pred : 〈ackM :νi−1→ νi−1〉〉

(newM)
Π1 ⊢ new Suc(m) : 〈ackM :νi → νi−1〉

(var)
Π1 ⊢ this : 〈pred :νi〉

(fld)
Π1 ⊢ this.pred : νi

(invk)
Π1 ⊢ new Suc(m).ackM(this.pred) : νi−1

(invk)
Π1 ⊢m.ackM(new Suc(m).ackM(this.pred)) : νi−1

D

Π ⊢ e : νi
(newF)

Π ⊢ new Suc( e) : 〈pred :νi〉
(newM)

Π ⊢ new Suc( e) : 〈ackN : 〈ackM :νi−1→ νi−1〉 → νi−1〉

where

Π1 = { this :〈pred :νi〉,m:〈ackM :νi−1→ νi−1〉}

Π2 = { this :〈pred : 〈ackM :νi−1→ νi−1〉〉,n:νi }

�

The predicateν0 is the onlyν-predicate not assignable to every natural number (it is notassignable

to zero). Because of this special case, our result showing the assignability ofν-predicates to natural

numbers is formlated as two separate lemmas.

The first states that allν-predicatesexceptν0 are assignable to zero. The second states that allν-

predicates are assignable to every positive natural number.

Lemma A.15. ∀i > 0 . ∃D .D :: ⊢ ⌈⌈0⌋⌋N : νi withD rank 0.

Proof. By induction oni.

(i = 1): Thenνi = 〈ackN :〈ackM :Suc → Suc〉 → Suc〉. Notice that the following derivation is rank 0:

.

.

.

.

(var)
Π ⊢m: 〈ackM :Suc → Suc〉

(newO)
Π ⊢ new Zero() : Suc

(newO)
Π ⊢ new Suc(new Zero()) : Suc

(invk)
Π ⊢m.ackM(new Suc(new Zero())) : Suc

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackN : 〈ackM :Suc → Suc〉 → Suc〉

whereΠ = { this :Zero ,m:〈ackM :Suc → Suc〉}.

(i = j +1, j > 0): Thenνi = ν j+1 = 〈ackN :〈ackM :ν j → ν j〉 → ν j〉. Notice that⌈⌈0⌋⌋N = new Zero() and

since j > 0, by the inductive hypothesis, there exists a rank 0 derivationD such that

D :: ⊢ new Zero() : ν j
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Then by Lemma A.14 there is a rank 0 derivationD′ such that

D′ ⊢ new Suc(new Zero()) : ν j

Then we can build the following rank 0 derivation:

.

.

.

.

(var)
Π ⊢m: 〈ackM :ν j → ν j〉

D′[ΠP ∅]
Π ⊢ new Suc(new Zero()) : ν j

(invk)
Π ⊢m.ackM(new Suc(new Zero())) : ν j

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackN : 〈ackM :ν j → ν j〉 → ν j〉

whereΠ = { this :Zero ,m:〈ackM :ν j → ν j〉}. �

Lemma A.16. ∀n> 0 . ∀i . ∃D .D :: ⊢ ⌈⌈n⌋⌋N : νi withD rank 0.

Proof. By induction onn.

(n= 1): Then⌈⌈n⌋⌋N = ⌈⌈1⌋⌋N = new Suc( ⌈⌈0⌋⌋N) = new Suc(new Zero()) . Take arbitraryi; there are

two cases to consider:

(i = 0): Thenνi = ν0 = S uc. Notice that the following derivation is rank 0:

(newO)
⊢ new Zero() : Zero

(newO)
⊢ new Suc(new Zero()) : Suc

(i > 0): Then sincei > 0, by Lemma A.15 there is a rank 0 derivationD such thatD :: ⊢

new Zero() : νi and then by Lemma A.14 there is another rank 0 derivationD′ such that

D′ :: ⊢ new Suc(new Zero()) : νi .

(n= k+1, k> 0): Take arbitraryi; then sincek> 0, by the inductive hypothesis there is a rank 0 deriva-

tionD such thatD :: ⊢ ⌈⌈k⌋⌋N : νi , and by Lemma A.14 there is another rank 0 derivationD′ such

thatD′ :: ⊢ new Suc( ⌈⌈k⌋⌋N) : νi , that isD′ :: ⊢ ⌈⌈n⌋⌋N : νi. �

A.3.1. Rank 0 Typeability of Ack[0]

We can now begin to consider the typeability of some of the different levels of the parameterized Acker-

mann function. We will start by showing that every instance of the Ack[0] function can be typed using

rank 0 derivations.

Lemma A.17. 1. ∃D .D :: ⊢ ⌈⌈0⌋⌋N : 〈ackM :Zero → Suc〉 withD rank 0.

2. ∀i . ∃D .D :: ⊢ ⌈⌈0⌋⌋N : 〈ackM :νi → νi〉 withD rank 0.

Proof. 1. Notice that the following derivation is rank 0:

(var)
{ this :Zero ,n:Zero } ⊢ n : Zero

(newO)
{ this :Zero ,n:Zero } ⊢ new Suc(n) : Suc

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackM :Zero → Suc〉
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2. Take arbitraryi. Notice that by rule (var), we can build the following rank 0 derivationD:

(var)
{ this :Zero ,n:νi } ⊢ n : νi

Thus, by Lemma A.14 there is a rank 0 derivationD′ such that

D′ :: { this :Zero ,n:νi } ⊢ new Suc(n) : νi

Then we can build the following rank 0 derivation:

D′

{ this :Zero ,n:νi } ⊢ new Suc(n) : νi ⊢ new Zero() : Zero
(newM)

⊢ new Zero() : 〈ackM :νi → νi〉

�

Theorem A.18(Rank 0 Typeability ofAck[0]). Everyν-predicate may be assigned toeachinstance of

theAck[0] function using a rank 0 derivation, i.e.

∀n . ∀i . ∃D .D :: ⊢ ⌈⌈0⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi withD rank 0

Proof. Take arbitraryn andi. Then it is sufficient to consider the following cases:

(n= 0, i = 0): Then⌈⌈n⌋⌋N = new Zero() andνi = Suc. By Lemma A.17(1) there is a rank 0 derivation

D such thatD :: ⊢ new Zero() : 〈ackM :Zero → Suc〉. Then we can build the following rank 0

derivation:

D

⊢ new Zero() : 〈ackM :Zero →Suc〉
(newO)

⊢ new Zero() : Zero
(invk)

⊢ new Zero().ackM(new Zero()) : Suc

(n= 0, i > 0): By Lemma A.17(2) there is a rank 0 derivationD1 such thatD1 :: ⊢ ⌈⌈0⌋⌋N : 〈ackM :νi →

νi〉. Sincei > 0, by Lemma A.15 there is a rank 0 derivationD2 such thatD2 :: ⊢ ⌈⌈0⌋⌋N : νi . Then

we can build the following rank 0 derivation:

D1

⊢ ⌈⌈0⌋⌋N : 〈ackM :νi → νi〉

D2

⊢ ⌈⌈0⌋⌋N : νi
(invk)

⊢ ⌈⌈0⌋⌋N.ackM( ⌈⌈0⌋⌋N) : νi

(n> 0): By Lemma A.17(2) there is a rank 0 derivationD1 such thatD1 :: ⊢ ⌈⌈0⌋⌋N : 〈ackM :νi → νi〉.

Sincen> 0, by Lemma A.16 there is a rank 0 derivationD2 such thatD2 :: ⊢ ⌈⌈n⌋⌋N : νi. Then we

can build the following rank 0 derivation:

D1

⊢ ⌈⌈0⌋⌋N : 〈ackM :νi → νi〉

D2

⊢ ⌈⌈n⌋⌋N : νi
(invk)

⊢ ⌈⌈0⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi

�

A.3.2. Rank 0 Typeability of Ack[1]

Showing the rank 0 typeability of theAck[1] function is similar, with the difference that we must derive

a slightly different predicate for invoking theackM method.

Lemma A.19. ∀i . ∃D .D :: ⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉 withD rank 0.
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Proof. Take arbitraryi. Notice that by Lemma A.17(2) there is a rank 0 derivationD such thatD :: ⊢

new Zero() : 〈ackM :νi → νi〉. Then we can build the following rank 0 derivation:

.

.

.

.

.

.

(var)
Π ⊢ n : 〈ackN : 〈ackM :νi → νi〉 → νi〉 .

.

.

(var)
Π ⊢ this : 〈pred : 〈ackM :νi → νi〉〉

(fld)
Π ⊢ this.pred : 〈ackM :νi → νi〉

(invk)
Π ⊢ n.ackN(this.pred) : νi

D

⊢ new Zero() : 〈ackM :νi → νi〉
(newF)

⊢ new Suc(new Zero()) : 〈pred : 〈ackM :νi → νi〉〉
(newM)

⊢ new Suc(new Zero()) : 〈ackM :νi+1→ νi〉

whereΠ = { this :〈pred :〈ackM :νi → νi〉〉,n:νi+1 }. �

Theorem A.20(Rank 0 Typeability ofAck[1]). Everyν-predicate may be assigned toeachinstance of

theAck[1] function using a rank 0 derivation, i.e.

∀n . ∀i . ∃D .D :: ⊢ ⌈⌈1⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi withD rank 0

Proof. Take arbitraryn andi. It is sufficient to consider the following two cases:

(n= 0): By Lemma A.19 there is a rank 0 derivationD1 such thatD1 :: ⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉.

Notice thati + 1 > 0 and so by Lemma A.15, there is a rank 0 derivationD2 such thatD2 :: ⊢

⌈⌈0⌋⌋N : νi+1. Then we can build the following rank 0 derivation:

D1

⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉

D2

⊢ ⌈⌈0⌋⌋N : νi+1 (invk)
⊢ ⌈⌈1⌋⌋N.ackM( ⌈⌈0⌋⌋N) : νi

(n> 0): By Lemma A.19 there is a rank 0 derivationD1 such thatD1 :: ⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉. By

Lemma A.16, there is a rank 0 derivationD2 such thatD2 :: ⊢ ⌈⌈n⌋⌋N : νi+1. Then we can build the

following rank 0 derivation:

D1

⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉

D2

⊢ ⌈⌈n⌋⌋N : νi+1 (invk)
⊢ ⌈⌈1⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi

�

A.3.3. Rank 4 Typeability of Ack[2]

In giving a bound on the rank of derivations typing theAck[0] and Ack[1] functions, the argument

predicates were simple theν-predicates themselves. To give a bound on the rank of derivations assigning

ν-predicates to instances of theAck[2] function, we must design more complex argument predicates. We

must also expand the proof technique a little compared to theprevious cases ofAck[0] andAck[1]: for

eachνi we now cannot show that there is asingle predicate〈ackM :σ→ νi〉 assignable to⌈⌈2⌋⌋N such

that each possible argument⌈⌈n⌋⌋N has the typeσ. Instead, for eachi we must now build afamily of n

predicates〈ackM :τ(n,i) → νi〉, each of which can be assigned to⌈⌈2⌋⌋N, and show additionally that each

number⌈⌈n⌋⌋N can be assigned the argument predicateτ(n,i) for every i. Thus, the proof technique is a sort
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of ‘2-D’ analogue of the ‘1-D’ technique used previously. Additionally, the predicates that we must now

define containintersections.

Definition A.21 (µ-Predicates). The set of rank 1µ-predicatesis defined inductively as follows:

µ(0, j) = 〈ackM :ν j+1→ ν j〉 for all j ≥ 0

µ(i+1, j) = 〈ackM :νi+ j+2→ νi+ j+1〉 ∩µ(i, j)

Lemma A.22. µ(i, j+1) ∩〈ackM :ν j+1→ ν j〉 = µ(i+1, j).

Proof. By induction oni.

(i = 0): µ(0, j+1) ∩〈ackM :ν j+1→ ν j〉 = 〈ackM :ν j+2→ ν j+1〉 ∩〈ackM :ν j+1→ ν j〉 (Def. A.21)

= 〈ackM :ν j+2→ ν j+1〉 ∩µ(0, j) (Def. A.21)

= µ(i+1, j) (Def. A.21)

(i = k+1): µ(i, j+1) ∩〈ackM :ν j+1→ ν j〉

= µ(k+1, j+1) ∩〈ackM :ν j+1→ ν j〉 (i = k+1)

= 〈ackM :νk+( j+1)+2→ νk+( j+1)+1〉 ∩µ(k, j+1) ∩〈ackM :ν j+1→ ν j〉 (Def. A.21)

= 〈ackM :νk+( j+1)+2→ νk+( j+1)+1〉 ∩µ(k+1, j) (Ind. Hyp.)

= 〈ackM :ν(k+1)+ j+2→ ν(k+1)+ j+1〉 ∩µ(k+1, j) (arith.)

= 〈ackM :νi+ j+2→ νi+ j+1〉 ∩µ(i, j) (i = k+1)

= µ(i+1, j) (Def. A.21) �

Lemma A.23. Let µ(i, j) = σ1 ∩ . . . ∩σn for some n> 0; if there are rank 0 derivationsD1, . . . ,Dn such

thatDk :: Π ⊢ e : σk for each k∈ n, then there is a rank 4 derivationD such thatD ::Π ⊢ new Suc( e) :

〈ackM : 〈ackN :µ(i, j)→ νm〉 → νm〉 for any m.

Proof.

(var)
Π′ ⊢ n : 〈ackN :µ(i, j)→ νm〉 .

.

.

(var)
Π′ ⊢ this : 〈pred :σ1〉

(fld)
Π′ ⊢ this.pred : σ1 . . .

(var)
Π′ ⊢ this : 〈pred :σn〉

(fld)
Π′ ⊢ this.pred : σn

(join)
Π′ ⊢ this.pred : σ1 ∩ . . . ∩σn

(invk)
Π′ ⊢ n.ackN(this.pred) : νm .

.

.

.

.

.

.

.

.

.

.

.

.

(var)
Π ⊢ e : σ1

(newF)
Π ⊢ new Suc( e) : 〈pred :σ1〉 . . .

(var)
Π ⊢ e : σn

(newF)
Π ⊢ new Suc( e) : 〈pred :σn〉

(join)
Π ⊢ new Suc( e) : 〈pred :σ1〉 ∩ . . . ∩〈pred :σn〉

(newM)
Π ⊢ new Suc( e) : 〈ackM : 〈ackN :µ(i, j)→ νm〉 → νm〉

whereΠ′ = { this :〈pred :σ1〉 ∩ . . . ∩〈pred :σn〉,n:〈ackN :µ(i, j)→ νm〉}. �

Lemma A.24. ∀n . ∀i . ∃D .D :: ⊢ ⌈⌈1⌋⌋N : µ(n,i) withD rank 1.

Proof. By induction onn.
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(n= 0): Take arbitraryi; then µ(n,i) = µ(0,i) = 〈ackM :νi+1 → νi〉. By Lemma A.19 there is a rank 0

derivationD such thatD :: ⊢ ⌈⌈1⌋⌋N : 〈ackM :νi+1→ νi〉. SinceD is rank 0, it is also rank 1, and

sincei was arbitrary, this holds for alli.

(n= k+1): Take arbitraryi; thenµ(n,i) = µ(k+1,i) = 〈ackM:νk+i+2→ νk+i+1〉 ∩µ(k,1). By Lemma A.19 there

is a rank 0 derivationD such thatD :: ⊢ ⌈⌈1⌋⌋N : 〈ackM :νk+i+2→ νk+i+1〉. Also, by the inductive

hypothesis there is a rank 1 derivationD′ such thatD′ :: ⊢ ⌈⌈1⌋⌋N : µ(k,i). Without loss of generality

we can assume thatµ(k,i) = σ1 ∩ . . . ∩σm for somem> 0 (sinceD′ is strong). Then by rule (join)

it follows that there are rank 0 derivationsD1, . . . ,Dm such thatDj :: ⊢ ⌈⌈1⌋⌋N : σ j for each j ∈m.

Then, we can build the following rank 1 derivation:

D

⊢ ⌈⌈1⌋⌋N : 〈ackM :νk+i+2→ νk+i+1〉

D1

⊢ ⌈⌈1⌋⌋N : σ1 . . .

Dm

⊢ ⌈⌈1⌋⌋N : σm
(join)

⊢ ⌈⌈1⌋⌋N : 〈ackM :νk+i+2→ νk+i+1〉 ∩σ1 ∩ . . . ∩σm

Sincei was arbitrary, this holds for alli. �

Lemma A.25. ∀n . ∀i . ∃D .D :: ⊢ ⌈⌈2⌋⌋N : 〈ackM :〈ackN :µ(n,i)→ νi〉 → νi〉 withD rank 4.

Proof. Take arbitrarynandi. By Lemma A.24 there is a rank 1 derivationD such thatD :: ⊢ ⌈⌈1⌋⌋N : µ(n,i).

Without loss of generality we can assume thatµ(n,i) = σ1 ∩ . . . ∩σm for somem> 0 (sinceD is strong)

with eachσ j strict. Thus by rule (join) there are rank 0 derivationsD1, . . . ,Dm such thatDj :: ⊢ ⌈⌈1⌋⌋N :σ j

for each j ∈m. Then by Lemma A.23 there is a rank 4 derivationD′ such that

D′ :: ⊢ new Suc( ⌈⌈1⌋⌋N) : 〈ackM :〈ackN :µ(n,i)→ νi〉 → νi〉

Sincen andi were arbitrary, such a derivation exists for alln andi. �

Lemma A.26. ∀n . ∀i . ∃D .D :: ⊢ ⌈⌈n⌋⌋N : 〈ackN :µ(n,i)→ νi〉 withD rank 4.

Proof. By induction onn.

(n= 0): Take arbitraryi; then µ(n,i) = µ(0,i) = 〈ackM :νi+1 → νi〉. By Lemma A.16 there is a rank 0

derivationD such thatD :: ⊢ ⌈⌈1⌋⌋N : νi+1. Notice that⌈⌈1⌋⌋N = new Suc(new Zero()) . Notice

also thatµ(0,i) is a rank 1 predicate, and so the following derivation is rank2 (and therefore also

rank 4):

.

.

.

(var)
Π ⊢m: 〈ackM :νi+1→ νi〉

D[ΠP ∅]
Π ⊢ new Suc(new Zero()) : νi+1

(invk)
Π ⊢m.ackM(new Suc(new Zero())) : νi

(newO)
⊢ new Zero() : Zero

(newM)
⊢ new Zero() : 〈ackN : 〈ackM :νi+1→ νi〉 → νi〉

whereΠ= { this :Zero ,m:〈ackM :νi+1→ νi〉}. Sincei was arbitrary, we can build such a derivation

for all i.

(n= k+1): Take arbitraryi; then by the inductive hypothesis there is a rank 2 derivation D such that

D :: ⊢ ⌈⌈k⌋⌋N : 〈ackN :µ(k,i+1)→ νi+1〉. By Lemma A.22,

µ(n,i) = µ(k+1,i) = µ(k,i+1) ∩〈ackM :νi+1→ νi〉
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Notice that⌈⌈n⌋⌋N = ⌈⌈k+1⌋⌋N = new Suc( ⌈⌈k⌋⌋N) . We can also assume without loss of generality

thatµ(k,i+1) = σ1 ∩ . . . ∩σm for somem, with eachσ j strict. Let

Π = { this :〈pred : 〈ackN :µ(k,i+1)→ νi+1〉〉,m:µ(k,i+1) ∩〈ackM :νi+1→ νi〉}

Then notice that by rule (var) we can deriveΠ ⊢m:σ j for eachj ∈m. Thus, by Lemma A.23 there

is a rank 4 derivationD′ such that

D′ :: Π ⊢ new Suc(m) : 〈ackM :〈ackN :µ(k,i+1)→ νi+1〉 → νi+1〉

Then we can then build the following rank 4 derivation:

.

.

.

.

.

.

.

(var)
Π ⊢m: 〈ackM :νi+1→ νi〉

.

.

.

.

.

D′

Π ⊢ new Suc(m) : 〈ackM : 〈ackN :µ(k,i+1)→ νi+1〉 → νi+1〉

(var)
Π ⊢ this : 〈pred : 〈ackN :µ(k,i+1)→ νi+1〉〉

(fld)
Π ⊢ this.pred : 〈ackN :µ(k,i+1)→ νi+1〉

(invk)
Π ⊢ new Suc(m).ackM(this.pred) : νi+1

(invk)
Π ⊢m.ackM(new Suc(m).ackM(this.pred)) : νi

D

⊢ ⌈⌈k⌋⌋N : 〈ackN :µ(k,i+1)→ νi+1〉
(newF)

⊢ new Suc( ⌈⌈k⌋⌋N) : 〈pred : 〈ackN :µ(k,i+1)→ νi+1〉〉
(newM)

⊢ new Suc( ⌈⌈k⌋⌋N) : 〈ackN :µ(k,i+1) ∩〈ackM :νi+1→ νi〉 → νi〉

Sincei was arbitrary, such a derivation exists for alli. �

Theorem A.27(Rank 4 Typeability ofAck[2]). Everyν-predicate may be assigned toeachinstance of

theAck[2] function using a rank 4 derivation, i.e.

∀n . ∀i . ∃D .D :: ⊢ ⌈⌈2⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi withD rank 4.

Proof. Take arbitraryn and i. By Lemma A.25 there is a rank 4 derivationD1 such thatD1 :: ⊢

⌈⌈2⌋⌋N : 〈ackM : 〈ackN :µ(n,i) → νi〉 → νi〉. By Lemma A.26 there exists a rank 4 derivationD2 such that

D2 :: ⊢ ⌈⌈n⌋⌋N : 〈ackN :µ(n,i)→ νi〉. Then we can build the following rank 4 derivation:

D1

⊢ ⌈⌈2⌋⌋N : 〈ackM : 〈ackN :µ(n,i)→ νi〉 → νi〉

D2

⊢ ⌈⌈n⌋⌋N : 〈ackN :µ(n,i)→ νi〉
(invk)

⊢ ⌈⌈2⌋⌋N.ackM( ⌈⌈n⌋⌋N) : νi

Sincen andi were arbitrary, this holds for alln andi. �
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