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Abstract

We investigate semantics-based type assignment for lokesesd object-oriented programming. Our mo-
tivation is developing a theoretical basis for practicapressive, type-based analysis of the functional
behaviour of object-oriented programs. We focus our reseasing Featherweight Java, studying two
notions of type assignment:- one usimgersectiontypes, the other a ‘logical’ restriction of recursive
types.

We extend to the object-oriented setting some existinglteefar intersection type systems. In do-
ing so, we contribute to the study of denotational semaffiticebject-oriented languages. We define a
model for Featherweight Java basedamproximation which we relate to our intersection type system
via an Approximation Result, proved using a notion of reducbon typing derivations that we show
to be strongly normalising. We consider restrictions of system for which type assignment is decid-
able, observing that the implicit recursion present in thssmechanism is a limiting factor in making
practical use of the expressive power of intersection types

To overcome this, we consider type assignment based onsieguypes. Such types traditionally
sufer from the inability to characterise convergence, a keyneld of our approach. To obtain a se-
mantic system of recursive types for Featherweight Javaudy Nakano's systems, whose key feature
is an approximation modality which leads to a ‘logical’ ®mst expressing both functional behaviour
and convergence. For Nakano’s system, we consider the apblem of type inference. We introduce
insertionvariables (similar to the expansion variables of Kfoury avells), which allow to infer when
the approximation modality is required. We define a typereriee procedure, and conjecture its sound-
ness based on a technique of Cardone and Coppo. Finally,ve@eo how Nakano’s approach may be
applied to Featherweight Java and discuss how interseatidriogical recursive types may be brought
together into a single system.
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1. Introduction

Type theory constitutes a form of abstract reasoning, erfmetation of programs. It provides a way of
classifying programs according to the kinds of values tt@aypmute [88]. More generally, type systems
specify schemes for associating syntactic entities (jypith programs, in such a way that they reflect
abstract properties about the behaviour of those programss, typeability &ectivelyguaranteesvell-
behavedness, as famously stated by Milner when he said Welt-typed programs can’t go wrong”
[79], where ‘wrong’ is a semantic concept defined in that pape

In type theory, systems in thiatersection type disciplinéirp) stand out as being able to express
both the functional behaviour of programs and their tertmmaproperties. Intersection types were
first introduced in [40] as an extension to Curry’s basic fiomality theory for the Lambda Calculus
(2-calculus onc) [45]. Since then, the intersection type approach has beemeed to many dierent
models of computation including Term Rewriting Systemss) [14, 15], sequent calculi [101, 102],
object calculi [18, 13], and concurrent calculi [37, 87] yirm its versatility as an analytical technique
for program verification. Furthermore, intersection typese been put to use in analysing not just
termination properties but in dead code analysis [47]¢tsteiss analysis [70], and control-flow analysis
[17]. Itis obvious, then, that intersection types have agpetential as a basis for expressive, type-based
analysis of programs.

The expressive power of intersection types stems from the®p connection with the mathematical,
or denotational, semantics of programming languages [B6,/Owas first demonstrated in [20] that the
set of intersection types assignable to any given term farffilter, and that the set of such filters forms
a domain, which can be used to give a denotational model ta-taculus. Denotational models for
A-calculus were connected with a more ‘operational’ view @fputation in [105] via the concept of
approximantwhich is a term approximating the final result of a compotatiApproximants essentially
correspond to Bohm trees [19], andlanodel can be given by considering the interpretation ofiate
to be the set of all such approximations of its (possibly itéinnormal form. Intersection types have
been related to thesgproximationsemantics (see e.g. [95, 9, 15]) through approximatisults These
results consider the typeability of approximants and edla¢ typeability of a term with the typeability of
its approximants, showing that every intersection typédha be assigned to a term can also be assigned
to one of its approximants and vice-versa. This generaltresdates intersection types to the operational
behaviour of terms, and shows that intersection types cetelglcharacterise the behavioural properties
of programs.

The object-oriented paradigmd) is one of the principal styles of programming in use todalyje0t-
oriented concepts were first introduced in the 1960s by thguage Simula [46], and since then have
been incorporated and extended by many programming laegdegm Smalltalk [60], €+ [98], Java
[61] and ECMAscript (or Javascript) [68], through to C# [6B}ython [103], Ruby [1] and Scala [56],
amongst many others. The basic premise is centred on thegibofanobject which is an entity that
binds together state (in the form of data fields) along withfimctions or operations that act upon it,
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such operations being calledethods Computation is mediated and carried out by objects thrabgh
act of sending messages to one another wimiebkethe execution of their methods.

Initial versions of object-oriented concepts wetassbased, a style in which programmers write
classes that act as fixed templates, whichimstantiatedby individual objects. This style facilitates a
notion of specialisation and sharing of behaviour (methtdt®ugh the concept ahheritancebetween
classes. Later, a pure object, or prototype-based appmastieveloped in which methods and fields
can be added to (and even removed from) individual obje@sytime during execution. Specialisation
and behaviour-sharing is achieved in this approachdelegationbetween objects. Both class-based
and object-based approaches have persisted in populdtisecond dichotomy exists in the object-
oriented world, which is that between (strongly) typed antyped (ordynamicallytyped) languages.
Strongly typedoo languages provide the benefit that guarantees can be given tie behaviour of
the programs written in them. From the outset, class-basdghguages have been of the typed variety;
since objects must adhere to a pre-defined template orantertlasses naturally act as types that specify
the (potential) behaviour of programs, as well as being @bldassify the values resulting from their
execution, i.e. objects. As object-oriented programmegah to demand a more flexible style, object-
based languages were developed which did not impose thengmomising rigidity of a type system.

From the 1980s onwards, researchers began to look for wagssofibing the object-oriented style
of computation from a theoretical point of view. This toolage from both an operational perspective,
as well as a (denotational) semantic one. For example, Kér@ihconsidered a denotational model
for Smalltalk, while Reddy worked on a more language-agoasnotational approach to understand-
ing objects [92]. They subsequently unified their approadi@]. On the other hand, a humber of
operational models were developed, based on extendingrthéulus with records and interpreting or
encoding objects and object-oriented features in theseetso@hese notably include work by Cardelli
[31, 33, 32], Mitchell [81], Cook and Palsberg [39], Fishemé [58, 59], Pierce et al. [89, 63], and
Abadi, Cardelli and Viswanathan [3, 104]. As well as to giveaperational account afo, the aim of
this work was also to understand the object-oriented panadin a more fundamentalype-theoretic
level. Many of these operational models have been accomgbdnyi a denotational approach in which
the semantics of both terms and types are closely linkedrelated to System F-typetdmodels.

While this was a largely successful programme, and led to eéhrdeeper theoretical understanding
of object-oriented concepts, the encoding-based apprpemled a complex one requiring, at times,
attention to ‘low-level’ details. This motivated Abadi adxrdelli to develop the-calculus, in which
objects and object-oriented mechanisms were ‘first-classties [2]. Abadi and Cardelli also defined a
denotational PER model for this calculus, which they useshimwv that well-typed expressions do not
correspond to th&rror value in the semantic domain, i.e. do not go “wrong”. Simitathis, Bruce [27]
and Castagna [36] have also defined typed calculi with olgjgented primitives.

While these calculi represent comprehensive attempts ftuathe plethora of features found in
object-oriented languages, they are firmly rooted in theeddpased approach tw. They contain
many features (e.g. method override) which are not exprldssiie class-based variant. An alternative
model specifically tailored to the class-based approachdsesloped in Featherweight Jawa) (66].
This has been used as the basis for investigating the tiearaspects of many proposed extensions
to class-based mechanisms (e.g. [65, 54, 21, 76])s a purely operational model, however, and it
must be remarked that there has been relatively little wotkeiating class-base from a denotational
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position. Studer [99] defined a semantics for Featherwelghia using a model based on Feferman’s
Explicit Mathematics formalism [57], but remarks on the wmess of the model. Alves-Foss [4] has
done work on giving a denotational semantics to the full Jamguage. His system is impressively
comprehensive but, as far as we can see, it is not used foriathypkanalysis - at least not in [4]. Burt,
in his PhD thesis [30], builds a denotational model for aedtdt featherweight model of Java based on
game semantics, via a translation to a PCF-like language.

Despite the great wealth of semantic and type-theoretieared into the foundations of object-
oriented programming, the intersection type approach lbad@en brought to bear on this problem
until more recently. De’Liguoro and van Bakel have defined daveloped an intersection type system
for theg¢-calculus, and show that it gives rise to a denotational i{ddé The key aspect of their system
is that it assigns intersection typestypedg-calculus terms. As such, their intersection types actuall
constitute logical predicates for typed terms. They algutwsa the notion of contextual equivalence,
and characterise the convergence of terms which is showmnidering a realizability interpretation
of intersection types.

In this thesis, we continue that program of research by apple intersection type discipline to the
class-basediariant of oo, as expressed in the operational modelOur approach will be to build an
approximation-based denotational model, and show an gippation result for an intersection type as-
signment system. Thus, we aim to develop a type-based ¢hesation of the computational behaviour
of class-based object-oriented programs. Our techniqushimving such an approximation result will
be based upon defining a notion of reduction for intersedijpe assignmerderivationsand showing
it to be strongly normalising, a technique which has beenleyepl for example in [15, 10]. This notion
of reduction can be seen as an analogue of cut-eliminatiéorinal logics. Using this result, we show
that our intersection type system characterises the cgemee of terms, as well as providing an analysis
of functional behaviour.

One of our motivations for undertaking this programme oéagsh is to develop a strong theoretical
basis for the development of practical and expressive ti@iscan both help programmers to reason
about the code that they write, and verify its correct befiaviTo that end, a significant part of this re-
search pertains to typeference which is the primary mechanism for implementing type-bgs®gram
analysis. The strong expressive capabilities of the iatdien type discipline are, in a senseg pow-
erful: since intersection types completely characterisengly normalising terms, full type assignment
is undecidable. The intersection type discipline has thewatédige, however, that decidable restrictions
exist which preserve the strong semantic nature of typgmasent. We investigate such a restriction for
our system and show it to be decidable by giving a principaintys result. We observe, however, that it
is not entirely adequate for theractical analysis of class-basew programs: the implicit recursive na-
ture of the class mechanism means that we cannot infer iafibrentypes for ‘typically’ object-oriented
programs.

To enhance the practicality of our type analysis we look fogical’ variant of recursive types, due to
Nakano [83, 84], which is able to express the convergengeepties of terms through the use of a modal
type operatore, or ‘bullet’, that constrains the folding of certain reduestypes during assignment.
This allows their incorporation into the semantic framekvgiven by our intersection type treatment.
Nakano’s system is presented for thealculus and leaves unanswered the question of the ddiigab
of its type assignment relation. Furthermore, although desdliscuss its potential applicability to the
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analysis ofoo programs, details of how this may be achieved are elided.

We address each of these two issues in turn. First, we considaification-based type inference
procedure. We are inspired by thgpansion variablesf Kfoury and Wells [75], used to facilitate type
inference for intersection types, and introdurcgertionvariables which we use to infer when the modal
bullet operator is required to unify two types. In an extensif a technique due to Cardone and Coppo
[35], we define our unification procedure through a deriihitlation on unification judgements which
we argue is decidable, thus leading to a terminating unificadlgorithm. Secondly, we give a type
system which assigns logical recursive typesistprograms. We do not present formal results for that
system in this thesis, leaving the proof of properties suchamvergence and approximation for future
work. We discuss the typeability of various illustrativeaexples using this system, as well as how we
might extend the type inference algorithm from thealculus setting to the object-oriented one. Finally,
we consider how to incorporate both intersection types agitél recursive types within a single type
system.

Outline of the Thesis

This thesis naturally splits into two parts - chapters 2 tigioto 7 are concerned with intersection type
assignment, while chapters 8 to 10 deal with Nakano's légeeursive types and how they can be
applied to the object-oriented paradigm.

In Chapter 2, we give a short introduction to the intersectige discipline, as it applies to Lambda
Calculus and the objegtcalculus, reviewing the main results admitted by the sgetion type systems
for these computational models. Chapter 3 presents the-bked model of object-orientation that we
focus on - Featherweight Java - and defines a system for asgigmersection types to Featherweight
Java Programs. The main result of this chapter is that assligrnypes are preserved under conversion.
We continue, in Chapter 4, by considering a notion of reductin intersection type derivations and
proving it to be strongly normalising. This lays the groumdkvfor our Approximation Result which
links our notion of type assignment with the denotationatastics of programs, and forms the subject of
Chapter 5. In Chapter 6 we consider some example prograntsantd type them using our intersection
type system, including an encoding of Combinatory Logic.alé® make a detailed comparison between
the intersection type system and the nominally-based apprto typing class-basew. We finish the
first part of the thesis by considering, in Chapter 7, a tyferénce procedure.

The inadequacies of intersection type inference sugges#ieaeht approach to typing object-oriented
programs using recursive types, which we investigate inséeond half of the thesis. We begin by
giving an explanation of the ‘illogical’ nature of convemrial systems of recursive types, and reviewing
Nakano’s modal logic-inspired systems of recursive type€hapter 8. In Chapter 9 we describe a
procedure for inferring types in a variant of Nakano’s syst&Ve sketch a proof of its decidability and
consider examples suggesting the generality of our apprdasstly, in Chapter 10, we describe how this
can be applied too by defining a type system assigning Nakano-style recurgpestto Featherweight
Java. We revisit the example programs of Chapter 6 and de¢ratsmfiow the system of recursive types
handles them. We also consider how Nakano types might bgraitel with intersection types. We
conclude the thesis in Chapter 11, giving a summary of thériboions of our work, and discussing
how it may be extended in the future.
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Notational Preliminaries

Throughout the thesis we will make heavy use of the followingational conventions for dealing with
sequences of syntactic entities.

1. Asequencesof nelementsy,...,a, is denoted by,; the subscript can be omitted when the exact
number of elements in the sequence is not relevant.

2. We writea € @, whenever there exists some {1,...,n} such thata = a;. Similarly, we write
a ¢ a, whenever there doemtexist ani € {1,...,n} such thak = g.

3. We useén (wheren is natural number) to represent the sequence ,h.

4. For a constant term c, represents the sequencenadccurrences of.

5. The empty sequence is denotedebgnd concatenation on sequencespys.
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Part I.

Simple Intersection Types
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2. The Intersection Type Discipline

In this chapter, we will give a brief overview of the main distand relevant results of the intersection
type discipline by presenting an intersection type systemtlie A-calculus. We will also present a
(restricted version) of the intersection type system of] ftB the ¢-calculus, with the aim of better
placing our research in context, and to be able to make casmparlater on.

Intersection types were first developed for thealculus in the late '70s and early '80s by Coppo
and Dezani [41] and extended in, among others, [42, 20]. Tokvation was to extend Curry’s basic
functional type theory [45] in order to be able to type a largass of ‘meaningful’ terms; that is, all
terms with a head normal form.

The basic idea is surprisingly simple: allowing term valéatto be assigned more than one type. This
ostensibly modest extension belies a greater generatite $he diferent types that we are now allowed
to assign to term variables need not be unifiable - that iy, dhe allowed to be fundamentallyftéirent.
For example, we may allow to assign to a variable both a typmble ¢ (or a ground typeland a
function type whose domain is that very type variable (e.g: o). This is interpreted in the functional
theory as meaning that the variable denotes both a functidma argument that can be provided to that
function. In other words, it allows to type tlself-application x x This leads to great expressive power:
using intersection types, all and only strongly normafisierms can be given a type. By adding a type
constantw, assignable to all terms, the resulting system is able toackerise strongly normalising,
weakly normalising, and head normalising terms.

2.1. Lambda Calculus

The A-calculus, first introduced by Church in the 1930s [38], is@del of computation at the core of
which lies the notion of function. It has two basic notiorfsingtion) abstraction and (function) applica-
tion, and from these two elements arises a model which falptures the notion of computability (it is
able to express all computable functions). Thealculus forms the basis on the functional programming
paradigm, and languages such as ML [80] are based direathy iip

Definition 2.1 (1-terms) Terms M, N, etc., in tha-calculus are built from a set of termariables
(ranged over by x, vy, z, etc.), a term construciiowhich abstractsover a named variable, and the
applicationof one term to another.

M,N == x | @AxM) | (MN)

Repeated abstractions can be abbreviated (i>edy.1z M is written asiAxyzM) and left-most, outer-
most brackets in function applications can be omitted.

In the termAx.M, the variablex is said to beébound If a variable does not appear within the scope of
a A that names it, then the variable is said tofte The notationM[N/X] denotes thel-term obtained
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by replacing all the (free) occurrences»oin M by N. During this substitution, the free variablesNf
should not inadvertently become bound, and if necessaryabevariables oN and the bound variables
of M can be (consistently) renamed so that they are separaggp(tiiess is called-conversion).

Computation is then expressed as a formealuctionrelation, calleds-reduction, over terms. The
basic operation of computation is to reduce terms of the forriM) N, called redexegor reducible
expressions), by substituting the teMNrfor all occurrences of the bound variabdén M.

Definition 2.2 (8-reduction) The reduction relation-g, calleds-reduction, is the smallest preorder on
A-terms satisfying the following conditions:

(AX-M)N —5 M[N/X]
PM—gPN

M—-gN={ MP—-gNP
AXM —g AX.N

This reduction relation induces an equivalencelaierms, calleg3-equivalence op-convertibility,
and this equivalence captures a certain notion of equaditywéen functions. In one sense, the study of
the A-calculus can be seen as the study of this equivalence.

Definition 2.3 (8-equivalence) The equivalence relatiorg is the smallest equivalence relation an
terms satisfying the condition:
M—szN=M=;N

The reduction behaviour of-terms can be characterised using variations on the cowdemrmal
form, expressing when the result of computation has been achieve

Definition 2.4 (Normal Forms and Normalisability) 1. A term is inhead-normal fornif it is in the
formAxy--- Xp.yMz--- My (0,1 > 0). Aterm is inweakhead normal form if it is of the formx. M.

2. Aterm is innormal formif it does not contain a redex. Terms in normal form can be defioy
the grammar:
N == x | AxXN | xNg---Np (n>0)

By definition, a term in normal form is also in head-normalnfor

3. A term is (weaklyhead normalisablevhenever it has a (weak) head normal form, i.e. if there
exists a term N in (weak) head normal form such thatWN.

4. Aterm isnormalisablevhenever it has a normal form. A termsgonglynormalisable whenever
it does not have any infinite reduction sequence

M—>ﬁ M’ —>ﬂ M” —>ﬁ...

Notice that by definition, all strongly normalisable ternre aormalisable, and all normalisable
terms are head-normalisable.

Intersection types are formed using the type constructorThe intersection type system that we
will present here is actually thstrict intersection type system of van Bakel [7], which only allows
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intersections to occur on the left-hand sides of functigresy This represents a restricted type language
with respect to e.qg. [20], but is still fully expressive.

Definition 2.5 (Intersection Types [7, Def. 2.1])The set of intersection types (ranged ovebhy) and
its (strict) subset obtrictintersection types (ranged over by r) are defined by the following grammar:

oT = ¢ | ¢—oo0

¢.¥

o1n...non (N>0)

whereyp ranges over a denumerable set of ty@eiables we will use the notatiom as a shorthand for
o1n...nop where n= 0, i.e. theemptyintersection.

Intersection types are assigneditberms as follows:

Definition 2.6 (Intersection Type Assignment [7, Def. 2.2]) 1. Atype statemeris of the form M ¢
where M is ad-term and¢ is an intersection type. The term M is called thabjectof the
statement.

2. AbasisB is a finite set of type statements such that the subject bfstatement is aniqueterm
variable. We write Bx: ¢ for the basis BJ{X: ¢} where x does not appear as the subject of any
statement in B.

3. Type assignmentis a relation between bases and type statements, and is diéfyrthe following
natural deduction system.

(ﬂE) (n>0,1<i<n) (_>|)M
" BXioiNn...NopkX:oj "BrAXM ¢ oo
BFrM:o1 BrM:op BrM:¢—>0 BFrN:
(nl): (n>0) (- E): ?
BFrM:o1Nn...Nop BrMN: o

We point out that, alternatively, could be defined to be a typ®nstant Defining it to be the empty
intersection, however, simplifies the presentation of ype tassignment rules, in that we can combine
the rule that assigne to any arbitrary term with the intersection introductiotergnl), of which it is
now just a special case. Another justification for definintpibe the empty intersection is semantic:
when considering an interpretatidnl of types as the set of-terms to which they are assignable, we
have the property that for all strict types, ..., o

Toin...ondcloin...onc1l...cloqd

It is natural to extend this sequence wittr; | C [ |, and therefore to define that the semantics of the
empty intersection is the entire setbferms; this is justified, since via the rule ) we haveB+ M : w
for all termsM.

In the intersection type discipline, types are preservatkunonversion, an important semantic prop-
erty.

Theorem 2.7([7, Corollary 2.11]) Let M=z N; then B- M : o ifand only if B- N : o-.
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As well as expressing a basic functionality theory (i.e.eotly of 1-terms as functions), intersection
type systems foRr-calculus also capture the termination, or convergencpesties of terms.

Theorem 2.8(Characterisation of Convergence, [7, Corollary 2.17 ahdorem 3.29])
1. B+ M: o with o # w if and only if M has a head-normal form.
2. B M : o with o # w and B not containingo if and only if M has a normal form.
3. B+ M : o withoutw begin used at all during type assignment if and only if M isrsgty normal-
isable.

As mentioned in the introduction, the intersection typeigiine gives more than just a termination
analysis and a theory of functional equality. By considgi@an approximation semantics fiterms, we
see a deep connection between intersection types and thutational behaviour of terms.

The notion of approximant was first introduced by Wadswontli05]. Essentially, approximants
are partially evaluated expressions in which the locatafiiscomplete evaluation (i.e. where reduction
maystill take place) are explicitly marked by the elemantthus, theyapproximatethe result of com-
putations; intuitively, an approximant can be seen as gsimat’ of a computation, where we focus on
that part of the resulting program which will no longer chargge. the observableutpu).

Definition 2.9 (Approximated-Terms [10, Def. 4.1]) 1. The set ofipproximatel-terms is the con-
ventional set oft-terms extended with an extra constant, It can be defined by the following
grammar:

M,N == 1L | x | (AxM) | (MN)

Notice that the set of-terms is a subset of the set of approximaterms.

2. The reduction relation-4 is extended to approximate terms by the following rules

3. The set ohormal formswith respect to the extended reduction relatier ; is characterised by
the following grammar:

A = L | XA A#l) | xA...Ay (n=0)

Approximants are approximate normal forms which match thegire of al-term up to occurrences
of L. Since, for approximate normal forms, no further reductsopossible, their structure is fixed. This
means that they (partially) represent the normal form.bterm and thus, they ‘approximate’ the output
of the computation being carried out by the term.

Definition 2.10 (Approximants [10, Def. 4.2]) 1. The relationc is defined as the smallest relation
on approximatel-terms satisfying the following:

1cM (for all M)
MCN= AxMcCAX.N
MCN& MCN =>=MMLCNN

22



2. The set ofapproximantsof a A-term M is denoted byA(M), and is defined byA(M) = {A |
IN.M =5 N & Ac N}

Notice that if two terms are equivalemi] =3 N, then they have the same set of approximafi¢) =
A(N). Thus, we can give a semanticsp€alculus by interpreting a term by its set of approximants.

We can define a notion of intersection type assignment forceqipate A-terms (and thus approxi-
mants themselves), with little fliculty: exactly the same rules can be applied, we simply a#ipprox-
imate terms to appear in the type statements. Since we daddat apecific type assignment rule for
the new term., this means that the only type that can be assigned i®w, the empty intersection.
Equipped with a notion of type assignment for approximatits, intersection type system admits an
Approximation Resulwhich links intersection types with approximants:

Theorem 2.11(Approximation Result, [7, Theorem 2.22(ii)]B+ M : o if and only if there exists some
Ae A(M) such that B- A: o

This result states that every type which can be assignedeoradan also be assigned to one of its
approximants. This is a powerful result because it showtstieaintersection types assignable to a term
actuallypredictthe outcome of the computation, the normal form of the termsde how they achieve
this, recall that we said the intersection type assignmgstem is syntax-directed. This means that for
each diferent form that a type may take (e.g. function type, intéisecetc.) there is exactly one rule
which assigns that form of type toAterm. Thus, the structure of a type exactly dictates thecsire
of the approximate normal form that it can be assigned to.

2.2. Object Calculus

The ¢-calculus [2] was developed by Abadi and Cardelli in the ¥9@th the objective of providing

a minimal, fundamental calculus capable of modelling asynfaatures found in object-oriented lan-
guages as possible. It is fundamentallyodject-basedalculus, and incorporates the ability to directly
update objects by adding and overriding methods as a prarafberation, however it is capable of mod-
elling the class mechanism showing that, in essence, sljeetmore fundamental than classes. Starting
from an untyped calculus, Abadi and Cardelli define a typéesysof several tiers, ranging from sim-
ple, first order system of object types through to a soplaiit second order system with subtyping,
as well as developing an equational theory for objects. dJgieir calculus, they successfully gave a
comprehensive theoretical treatment to complex issuebjectoriented programming.

The full type system of Abadi and Cardelli is extensive, anptehwve only present a subset which is
suficient to demonstrate its basic character and how intecsetitpes have been applied to it.

Definition 2.12(g-calculus Syntax)Let | range over a set of (method) labels. Also, let X, y, z eamger
a set of term variables and X, Y, Z range over a set of type bkasa Types and terms in tigecalculus
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are defined as follows:

Types
AB = X | [l1Byn...InBy] (n>0) | A-B | uX.A
Terms
abc = x | AxAb | ab
| [0, -, InisO6")bon]
| al | al=g(x"b
| fold(A,a) | unfold(a)
Values

Vo= [lis(dbr,. . lnis(Mbn] | Axa

We usdl;:B;' € 1" to abbreviate the typH1:Bu... ., In:Bq], and[li:c(x*)bi' € " to abbreviate the term
[Il:g(x'l“l)bl, e In:g(xﬁ”)bn], where we assume that each lakesldistinct.

Thus, we have objectd ic(x*)b; e 1"n] which are collections of methods of the fogfx”)b. Methods
can be invoked by the synta, or overridden with a new method using the syradx= ¢(x*)b. Like A,
g is abinder, so the term variablg is bound in the methog(x*)b. Theg binder plays a slightly dierent
role, however, which is to refer to the object that contahes method (the self, or receiver) within the
body of the method itself. The intended semantics of thistrantion is that when a method is invoked,
using the syntaxli[:g(x“)bii © 1"n].li, the result is given by returning the method body and reptaeil
occurrences of the self-bound variable by the object on lwtiie method was invoked. We will see this
more clearly when we define the notion of reduction below.

In this presentation, the syntax of thecalculus is embedded into tlgecalculus, and so we more pre-
cisely be said to be presenting e calculus. Embedding thecalculus does not confer any additional
expressive power, however, since it can be encoded witkipdhes-calculus. For convenience, though,
we will use the embedded, rather than the encodechlculus. Thenj-abstractions can be used to
model methods which take arguments. Fields can be modelledethods which do not take arguments.
For simplicity, we have not included any term constants is finesentation, although these are incorpo-
rated in the full treatment, and may contain elements suctuatbers, boolean values, etc. Recursive
typesuX.A can be used to type objects containing methods which reeifnas; important feature in
the object-oriented setting. Notice that folding and udifad of recursive types is syntax-directed, using
the termdold(A,a) andunfold(a).

Theg-calculus is a typed calculus in which types are embeddedtiiat syntax of terms. Aantyped
version of the calculus can be obtained simply by erasirgtifie information. As with tha-calculus,
in the ¢-calculus we have notion of free and bound variables, andile$tgution which again drives
reduction. For uniformity of notation, we will denote suhsion in theg-calculus in the same way as we
did for A-calculus in the previous section. Specifically, the nota#i{b/x] will denote the term obtained
by replacing all the free occurrence of the term variabile the terma by the termb. Similarly, the type
constructomn is a binder of type variableX, and we assume the same notation to denote substitution of

types.

Definition 2.13 (Reduction) 1. Anevaluation context a term with a holg ], and is defined by the
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following grammar:

L1 == _ | &1l | &Lll=c(xMb
&[a] denotes filling the hole i& with a.

2. The one-step reduction relation on terms is the smallest binary relation defined by the fatigw
rules:

(AxPa)b — a[b/X
s 1ML - bylllisOM)b /] (L<j<n)
[i:gOM)b' <M = oMb —
[11:60¢Nby, .. i (XD, lnig(Xp™)bn] (1< j<n)
a—b = & — &b

3. The relation—* is the reflexive and transitive closure-ef.
4. If a—* v then we say that eonvergego the value v, and write § v.
Types are now assigned to terms as follows.

Definition 2.14 (¢-calculus Type Assignment) 1. A type statement is of the form A where ais a
term and A is a type. The term a is called gubjectof the statement.

2. An environment E is a finite set of type statements in whietstibject of each statement is a
uniqueterm variable. The notation K : A stands for the environmentU x : A} where x does
not appear as the subject of any statement in E.

3. Types assignment is relatienbetween environments and type statements, and is definée by t
following natural deduction system:

(Val ¥ : (Val Objec) : (where A= [I;:B;' € M)
E,x:Arb:B (Y1<i<n)
E,xArX: A El—[li:g(XA)biIEl”n]:A
(Val Select: (Val Overrida : (where A=[1;:B;' € "))
Era:[li:B €1 Era:A Ex:Arb:B; .
—(1<j<n) 1<j<n)
Eralj:B; Eralj=¢(xMb: A
(Val Fun) : (Val App :
E,xBrb:C Era:B—>C Erb:B
ErxBb:B-C Erab:C
(Val Fold) : (Val Unfold) :
Era:AluX.A/X] Era:uX.A
E+ folduX.A, a): uX.A E + unfold(a) : AluX.A/X]

Abadi and Cardelli show that this type assignment systemtlmassubjectreduction property, so
assignable types are preserved by reduction. Thus, typésiohs do not ‘get stuck’.
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Theorem 2.15([13, Theorem 1.17]))If E+ a: Aand a— b, then E- b: A.

It does not, however, preserve typeability undepansion

Over several papers [48, 49, 11, 12, 13], van Bakel and dedrigydemonstrated how the intersection
type discipline could be applied to tlkecalculus. Like the previous systems of intersection tyfjoes
A-calculus andrs, their system for the object calculus gives rise to semantidels and a characterisa-
tion of convergence. They also use their intersection typemline to give a treatment of observational
equivalence for objects. A key aspect of that work was thairkersection type system was defined as
anadditionallayer on top the existing object type system of Abadi and €liird his is in contrast to the
approach taken fat-calculus ancrrs, in which the intersection types are utilised as a standatgpe
system to replace (or rather, extend) the previous Cupte-$gpe systems. For this reason, de’Liguoro
and van Bakel dubbed their intersection types ‘predicasiste they constituted an extra layer of logical
information about terms, over and above the existing ‘types

Definition 2.16 (g-calculus Predicates) 1. The set of predicates (ranged overdyy, etc.) and its
subset ofstrict predicates (ranged over hy, 7, etc.) are defined by the following grammar:

ot = w | (p—o0) | Loy | ulo)
(N1}

oin...non (n>1)

2. The subtyping relatior is defined as the least preorder on predicates satisfyingdhewing
conditions:

a) o < w, forall o;

b) o1n...non<ojforall 1<i<n;

c) p<ojforeachl<i<n=¢<o1n...nop;
d) (0 - w) < (w— w) for all o;
e)o<tandy<¢=(p—0)< (Y —1);

f) o<1t = (l.o) < (l:7) for any label I.

Notice that this predicate languagéfdis from that of the intersection type system we presented fo
theA-calculus above. Here, is a separate type constant, and is treated as a strict tygpals&/have that
types of the formo- — w arenot equivalent to the type itself, which difers from the usual equivalence
and subtyping relations defined for intersection types éntitalculus. Predicates and subtyping are
defined this way for the-calculus because the reduction relatiofasy - i.e. no reduction occurs under
¢ (or A) binders. Thus objects (and abstractions) are considerée tvalues, and even if invoking a
method (or applying a term to an abstraction) does not retuasult.

The predicate assignment system, then, assigns predtoatgseable terms. Part of van Bakel and
de’Liguoro’s work was to consider the relationship betwdwegir logical predicates and the types of the
¢-calculus, and so they also study a notion of predicate misggt for types, which defines a family
of predicates for each type. We will not present this aspettear work here, as it does not relate to
our research which is not currently concerned with the igdahip between intersection types and the
existing (nominal class) types for object-oriented progga

Definition 2.17 (Predicate Assignment) 1. Apredicatedype statement is of the form A: ¢, where
ais aterm, Ais atype anglis a predicate. The term a is called tbabjectof the statement.
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2. A predicatedenvironmentI’, is a sequence of predicated type statements in which thjecsub
of each statement is aniqueterm variable. The notatiol, x : A : ¢ stands for the predicated
environmenT"U{x: A: ¢} where x does not appear as the subject of any stateméht in

3. T denotes the environment obtained by discarding the préglicdormation from each statement
inT,ieT={x:A|3Jp.X:A:¢pel}.

4. Predicate assignmentis a relation between predicated environments and preditgbe state-
ments, and is defined by the following natural deductioresysin which we take A[l;:B;' € *1:

(Val ¥ :

(n=11<i<n)

ILX:B:o1N...Nopt+X:B:oj

(w):
'-a:B
l'a:B:w
(Val Fun) :
ILx:B:¢+rb:C:0o
E+tAxBb:BoCipoo

(Val App :
l'ra:B-»C:¢—>c T'+rb:B:¢

I'tab:C:o

(Val Fold) :
IF'ra: AluX.A/X]: o
T+ fold(uX. A, a): uX.A: u(o)

(Val Unfold) :
F'ra:uX.A:u(o)
I+ unfold(a) : AluX.A/X]: o

(nl):

l'ra:B:oj (Yl<i<n)
(n

>1)
'ra:B:o1N...Nop

(Val Objec) :
ILx:A:¢irbi:Bi:oj (Y1<i<n) >
<J<n
Fr—[li:g(XA)biIEl"n]:A:(Ij:q)j—>0'j)( J=n
(Val Select:
F'ra:A:(lj¢g—0o) Tra:A:¢ ]
A<j<n
I'ralj:Bj:o
(Val Update) :
F'ra:A:c T,x:A:¢rb:Bj:7 )
1<j<n)
EI—&.|]‘;§(XA)bZAZ<|jZ¢—>T>
(Val Update) :
I'ra:A: (o) F,XZAI—bZBj o
(A<i#j<n)

Eralj =¢(xMb: A: (o)

The predicate system displays the usual type preservatiguits for intersection type systems, al-
though since the system only assigns predicatggeableterms, the subject expansion result only holds
modulo typeability.

Theorem 2.18([13, Theorems 4.3and 4.6]) 1. IfT'+a:A:cocanda— b,thenl'+b:A:o.
2. fT+b:A:ocanda—bwithT+a: A, then[+a:A:o.

To show that the predicate system characterises the camaf (typeable) terms, raalizability
interpretation of types as sets of closed (typeable) tesrg#/en.

Definition 2.19 (Realizability Interpretation) Therealizability interpretatiorof the predicater is a set
Tol of closed terms defined by induction over the structure afipates as follows:
1. fwl={a| 0+a:Afor some A
2.Tp—sol={a|0ra:A-B&(alAxAb=Vcelpldrc: A= bc/x] elol))
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3. [lip—oyl={a| Q)I-aZA&(aU[h:g(XA)bii Mo ai<j<nl= l; & Vcelglorc: A=
bj[c/x] € Tol)}, where A= [1;:B;' € 21
4. Tu()l=(a| 0ra: uX. A& (a—*folduX.A b)=belol)}

5. Toin...nonl=Todn...nlonl

This interpretation admits a realizability theorem: thateg a typeable term, if we substitute vari-
ables by terms in the interpretation of their assumed tywesybtain a (necessarily closed) term in the
interpretation of the original term'’s type.

Theorem 2.20(Realizability Theorem, [13, Theorem 6.5])et ¢ be a substitution of term variables
for terms andg(a) denote the result of applying to the term a; ifC - b: A: o and¥(x) € [¢] for all
x:B:¢eTl, thend(b) e ol.

A characterisation of convergent (typeable and closed)sdhen follows as a corollary since, on the
one hand all values can be assigned a non-trivial predicaten6tw) which is preserved by expansion,
and on the other hand a straightforward induction on thecstra of predicates that d € [ thena
converges.

Corollary 2.21 (Characterisation of Convergence, [13, Corollary 6.6t a be any closed term such
thatr a: A for some type A; thenav for some v if and only if a: A: o for some non-trivial predicate

og.
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3. Intersection Types for Featherweight Java

3.1. Featherweight Java

Featherweight Java [66], er, is a calculus specifying the operational semantics of amahsubset of
Java. It was defined with the purpose of succinctly captuttiegcore features of a class-based object-
oriented programming languages, and with the aim of progidi setting in which the formal study of
class-based object-oriented features could be more easiiyd out.

Featherweight Java incorporates a native notion of clagselass represents an abstraction encapsu-
lating both data (stored ifieldg and the operations to be performed on that data (encodectéeods
Sharing of behaviour is accomplished throughitiferitanceof fields and methods from parent classes.
Computation is mediated vizbjects which areinstance®f these classes, and interact with one another
by calling (also callednvoking methods on each other and accessing each other’s (or thejrfields.
Featherweight Java also includes the conceptasts which allow the programmer to insert runtime
type checks into the code, and are used in [66] to engederic[25].

In this section, we will define a variant of Featherweighta)avhich we simplify by removing casts.
For this reason we call our calcules. Also, since the notion of constructors in the original fotation
of rr was not associated with any operational behaviour (i.estcaoctors were purely syntactic), we
leave them as implicit in our formulation. We use familiartezgariables in our formulation to range
over class name<C(and D), field names or identifiers |, method namesnj and variablesx). We
distinguish the class nan@bject (which denotes the root of the class inheritance hierarohalli
programs) and the variableis , used to refer to the receiver object in method bodies.

Definition 3.1 (r® Syntax) r“ programs P consist of dass tabl€’7", comprising thelass declarations
and anexpressiore to be run (corresponding to the body of timain method in a real Java program).
They are defined by the grammar:

e = x|new C(®8) |e.f |e.m(€)
fd = Cf;
md = DmM Cy X1,...,Cy xp) { return e; }
cd = class Cextends C { fd md } (C+# Object )
CI == cd
P == (CT,e)

The remaining concepts that we will define below are depandemnmore precisely parametric on a
given class table. For example, the reduction relation Wiedefine uses the class table to look up fields
and method bodies in order to direct reduction. Our typegassént system will do similar. Thus, there
is a reduction relation and type assignment systeimeach program However, since the class table
is a fixed entity (i.e. it is not changed during reduction, aring type assignment), it will be left as
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an implicit parameter in the definitions that follow. Thisdgne in the interests of readability, and is a
standard simplification in the literature (e.g. [66]).

Here, we also point out that we only consider programs whimhfarm to some sensible well-
formedness criteria: that there are no cycles in the irdneré hierarchy, and that fields and methods
in any given branch of the inheritance hierarchy are unign@med. An exception is made to allow
the redeclaration of methods, providing that only lthoely of the method dters from the previous dec-
laration. This is the class-based version of metbwdrride which is to be distinguished from the
object-based version that allows method bodies to be rextkéin a per-object basis. Lastly, the method
bodies of well-formed programs only use the variables whiehdeclared as formal parameters in the
method declaration, apart from the distinguished selfadei this .

We define the following functions to look up elements of thérdgons given in the class table.

Definition 3.2 (Lookup Functions) The following lookup functions are defined to extract the esuof
fields and bodies of methods belonging to (and inherited lnjass.

1. The following functions retrieve the name of a class, okt field from its definition:
CN(class Cextends D{ fd nd } ) C

FN(CT) = f
MN(Dn(Cq X1,...,Cq xp) { return e;}) = m

2. In an abuse of notation, we will treat tldass tableC7, as a partial map from class names to
class definitions:

Cr(C) = cd ifandonlyifcdeCr andCN(cd)=C

3. The list of fields belonging to a clags(including those it inherits) is given by the functign
which is defined as follows:

a) ¥ (Object )=e.
b) F(O)=F(C)-T, ifCT(C)=class C extends C { fd, md } andFN(fd;)=f; for
allien.
4. The functionMb, given a class name and method name returns a tuplgx, e), consisting of a
sequence of the method'’s formal parameters and its body:
a) if C7(C) is undefined then so $1b(C,m), for all mandC.

b) Mb(C,m) = (xn,e), if CT(C)=class C extends C { fd md } and there is a method
Co M(C1 X1,...,Cq Xp) { return e; } end for someCy andG,.

c) Mb(C,m) = Mb(C ,m), if CT(C) =class C extends C { fd nd } and MN(md) # m
for all md € md.

5. The functiorvars returns the set of variables used in an expression.

Substitutionis the basic mechanism for reduction also in our calculussda method is invoked on
an object (thaeceive) the invocation is replaced by the body of the method thaalied, and each of
the variables is replaced by a corresponding argument.
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Definition 3.3 (Reduction) 1. Aterm substitutiorS = {x1+>e1,...,xn—>en} is defined in the stan-
dard way as a total function on expressions that systembticaplaces all occurrences of the
variablesx; by their corresponding expressien We writeeS for S(e).

2. The reduction relation- is the smallest relation on expressions satisfying:

new C(gp). fi — e ifF(C)=Fpandien
new (g). m(&, — e° if Mb(Cm = (Xne)

whereS = { this +—new C(8), X1+ €1,..., Xn>€p }

3. We add the usual congruence rules for allowing reductiosubexpressions.
4. Ife — € , thene is theredexande thecontractum
5. The reflexive and transitive closure-efis denoted by-*.

This notion of reduction isonfluent which is easily shown by a ‘colouring’ argument (as donel®j [
for 1c).

3.2. Intersection Type Assignment

In this section we will defined a type assignment systemvigiig in theintersection type disciplinet
is influenced by the predicate system for the object caldll8f and is ultimately based upon the strict
intersection type system foc (see [9] for a survey). Our types can be seen as describirmpabilities
of an expression (or rather, the object to which that exprassvaluates) in terms of (e operations
that may be performed on it (i.e. accessing a field or invokingethod), and (2) theutcomeof perform-
ing those operationswhere dependencies between the inputs and outputs of nsedinedracked using
(type) variables. In this way they express detailed prigerbout the contexts in which expressions
can be safely used. More intuitively, they capture a centaition of observational equivalencawo
expressions with the same (non-empty) set of assignabés typl be observationally indistinguishable.
Our types thus constituemantic predicatedescribing the functional behaviour of expressions.

We call our types ‘simple’ because they are essentiallytfandypes, of a similar order to the types
used in the simply typed Lambda Calculus.

Definition 3.4 (Simple Intersection Types)The set ofs¢ simple intersection type@anged over byp,
) and its subset oftrict simple intersection types (ranged over &y are defined by the following
grammar (wherep ranges over a denumerable set of ty@eiables and C ranges over the set of class
names):

o | CI(f o) [{mi(1,...,¢n) > o) (N=0)
N wloldny
We may abbreviate method typ@s (¢1,...,¢n) — o) by writing (m: (¢n) — o).

The key feature of our types is that they may group infornmagibout many operations together into
intersectiondrom which any specific one can be selected for an expressidemanded by the context
in which it appears. In particular, an intersection may ciomakwo or more dierent analyses (in the
sense that they are not unifiable) of amefield or method. Types are therefore not records: records
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can be characterised as intersection types of the ghape ) n ... n{l: o) where alloj are intersection
free, and all label§ are distinct; in other words, records are intersectiongypat not vice-versa.

In the language of intersection type systems, our typesstiet (in the sense of [7]), since they
must describe the outcome of performing an operation indefranotheisingle operation rather than
an intersection. We include a type constant for each clab&hwwe can use to type objects when
a more detailed analysis of the object’s fields and methodstigpossible. This may be because the
object does not contain any fields or methods (as is the casabfect ) or more generally because no
fields or methods can be safely invoked. The type constdatatop (maximal) type, assignable to all
expressions.

We also define a subtype relation that facilitates the deledf individual behaviours from intersec-
tions.

Definition 3.5 (Subtyping) The subtype relatiord is the smallest preorder satisfying the following

conditions:
¢ < w forall ¢ Ny

¢y &y = oJyny el
We write~ for the equivalence relation generated Ky extended by
1. oy~ o), ifo~0;
2. {m:(p1,....¢n) = o) ~(Mi(P],....¢p) = o), if o~ 0" and¢] ~ ¢/ for all i e .
Notice thatp nw ~ wng ~ ¢.

S
d v

We will consider types module; in particular, all types in an intersection ardfdient andv does
not appear in an intersection. It is easy to show that associative and commutative with respecto
so we will abuse notation slightly and write n ... no, (wheren > 2) to denote a general intersection,
where eaclw; is distinct and the order is unimportant. In a further abuseotation,¢1 N ... ngn will
denote the type; whenn =1, andw whenn = 0.

Definition 3.6 (Type Environments) 1. Atype statemenis of the forme : ¢, wheree is called the
subjectof the statement.

2. An environmentl is a set of type statements with (distinct) variables asenibjI1, x:¢ stands
for the environmenEl U {x:¢} wherex does not appear as the subject of any statemeht in

3. We extend the subtyping relation to environments Iy IT if and only if for all statements
x:¢ € I there is a statement.¢’ € IT" such thatp’ < ¢.

4. IfTl, is a sequence of environments, tifefl, is the environment defined as follows#1 N ... Ngme
NI, if and only if{x:¢1,...,X:¢m} is the non-empty set of all statements in the union of the envi
ronments that have as the subject.

Notice that, as for types themselves, the intersection wf@mments is a subenvironment of each
individual environment in the intersection.

Lemma 3.7. LetII, be type environments; thenIl, < IT; for each i € .

Proof. Directly by Definitions 3.6(4) and 3.5. O

We will now define our notion of intersection type assignnfents®.
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IIre:oq...11r€ 0

S . .
(VAR) : H,XI(]}I-XIO'(¢ o) () : Ire o (yoN) : Tre o non (n>2)
(1p) - Inre:(f :0) ( )_Hre:(m(@n)—)o-) M+e1:¢1...11F€n:dn
. _— INVK) .
Nre.f :o IIre. M8y o
[re1:¢1 ... IIr€pign
; F(O=F
(om2) M+ new CEp) :C FQ=Tn
ITreq: ... IIrep:
(ewF) : oL "o N (O =Frich o=z 1)

M+new CE :(fj :0)

{thisy,X1:¢1, ..., Xnidn}F€p: 0 Tl+new C@®) 1y
(NEWM) ; L T - (MBC.M) = (Xn,€D))
IT + new C(8) : (M (¢n) — o)

Figure 3.1.: Predicate Assignment fot

Definition 3.8 (Intersection Type Assignment)ntersection type assignment fax is defined by the
natural deduction system given in Figure 3.1.

The rules of our type assignment system are fairly stradgitird generalisations t of the rules
of the strict intersection type assignment systemctore.g. ¢Lp) and {nvk) are analogous to+E);
(~ewF) and (ewM) are a form of (1); and pBy) can be seen as a universal){ike rule for objects
only. Notice that objectaew C() without fields can be dealt with by both theevM) and (oss) rules,
and then the environment can be anything, as is also the gdsthe () rule.

The only non-standard rule from the point of view of similaon for term rewriting and traditional
nominal oo type systems isngwM), which derives a type for an object that presents an aisabfsa
method. It makes sense however when viewed as an abstrattioduction rule. Like the correspond-
ing Lc typing rule (1), the analysis involves typing the body of the abstractian the method body),
and the assumptions (i.e. requirements) on the formal peteamare encoded in the derived type (to be
checked on invocation). However, a method body may also mekgrements on theeceiver through
the use of the variablehis . In our system we check that these haldthe same timas typing the
method body, so-calledarly self typingwhereas witHate self typing (as used in [13]) we would check
the type of the receiver at the point of invocation. This dieg of requirements on the object itself is
where the expressive power of our system resides. If a methitglitself recursively, this recursive call
must be checked, but — crucially — carriedigierenttype if a valid derivation is to be found. Thus only
recursive calls which terminate at a certain point (i.e.clitéan be assigned, and thus ignored) will
be permitted by the system.

We discuss several extended examples of type assignmentthis system in Chapter 6.

3.3. Subject Reduction& Expansion

As is standard for intersection type assignment systemssyatiem exhibits both subject reductiand
subject expansion. We first showaakeningemma, which allows to increase the typing environment
where necessary, and will be used in the proof of subjectresipa.

Lemma 3.9(Weakening) LetIl’ <IT; thenll+e:¢p =1+ e: ¢

Proof. By easy induction on the structure of derivations. The base of {) follows immediately, and
for (var) it follows by transitivity of the subtype relation. The ethcases follow easily by induction.o
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We also need to show replacement and expansion lemmas. plaeament lemma states that, for
a typeable expression, if we replace all its variables by@pately typed expressions (i.e. typeable
using the same type assumed for the variable being repléced)he result can be assigned the same
type as the original expression. The extraction lemmasthie opposite: if the result of substituting
expressions for variables is typeable, then we can alsothgsubstituting and original expressions.

Lemma 3.10. 1. (Replacement) If {x1:¢1,...,Xn:¢n} F € : ¢ and there exist$l ande, such thafll -
e; : ¢; for each ic i, thenIT - eS : ¢ whereS = {x1 — eq,...,xn — ep}.

2. (Extraction) LetS = {x1 — e1,...,Xn > ep} be a term substitution anel be an expression with
vars(€) C {X1,...,Xn}, if ITF €S : ¢, then there is somé, such thatll - e; : ¢; for each ic i and

{X1:01,...,Xn:Pn} - € .

Proof. 1. By induction on the structure of derivations.
(w): Immediate.

(var): Thene = x; for somei e Mande® = e;. Also, ¢ = o with ¢; < o, thusg; =o1n... non and
o =ojfor somej e . Sincell - e; : ¢; it follows from rule (o) thatIl + e; : o for each
ken. So, in particular[T+ e; : j.

(FLp), (o), (INvK), (oB)), (NewF), (\ewM): These cases follow straightforwardly by induction.

2. Also by induction on the structure of derivations.
(w): By the W) rule,I1+ g : w for eachi e nand{xi:w,...,Xn:w}+ e : w.

(var): Theng is a strict type (hereafter called), andx:y € IT with ¢ < 0. Also, it must be that
e = x; for somei e nande; = x. We then takey; = o and¢; = w for eachj e N such thatj #i.
By assumptiod1+ x : o (that isIT+ e; : ¢;). Also, by the {) rule, we can derivél + e : w
for eachj e nsuch thatj #i. Lastly, by §ar) we have(xi:w,...,Xj:0,...,Xp:w} F X : 0.

(NewF): TheneS = new C(€7y) and¢ = (f :0) with F(C) =y andf =f; for somejen.
Also, there isp,y such thafll + €y : ¢ for eachk’ e n, ando < ¢j. There are two cases to
consider fore:

a) e =x; forsomei en. Thenej =new C(€ ). Takeg; = (f :0) andgy = w for eachken
such thak # i. By assumption we havl + new C(€ ) : (f :o) (that iSTI + e; : ¢;).
Also, by rule @) IT+ ek : w for eachk € n such thatk # i, and lastly by rule ¥ar)
IT' + xj : {f o) wherell’ = {x1:w,...,X;{f :0),....,Xn:w}.

b) e =new C(€ ) with €} S = € for eachk’ € . Notice thatvars(e) C vars(e) C
{X1,...,xn} for eachk’ € v. So, by induction, for eack’ € v there is¢y, such that
ITF ej: ¢, for eachi e nandIly + €l : g Wherelly = {X1:dw 1,...,Xn:PKk n}. Let
the environmentl’ = NIy, that iSII’ = X1:0110... NPy 1,.. . Xn'P1n N... NP.n}.
Notice thatll’ < ITi for eachk’ € 17, so by Lemma 3.91’ + €} : ¢y for eachk e 1.
Then by the §ewF) rule, I - new C(€ ) : (f ;o) and so by foiN) we can derive
IM+ej:¢rin... ngy; for eachi e n.

(rLD), (JoN), (INVK), (0BJ), (NewM): These cases are similar teevF).
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We can now prove subject reduction, or soundness, as wallgecs expansion, or completeness.
Theorem 3.11(Subject reduction and expansior)ete — € ; thenII+ € : ¢ if and only if[T+ e : ¢.

Proof. By double induction - the outer induction on the definition-efand the inner on the structure
of types. For the outer induction, we show the cases for tloefdnms of redex and one inductive case
(the others are similar). For the inner induction, we sholy tine case thap is strict; whenp = w the
result follows immediately since we can always type m#nde using the ) rule, and wher is an
intersection the result follows trivially from the induadi hypothesis and theofx) rule.

(F(O)=Frn=new C(&y). f; »ej, jen):

(if): We begin by assumin - new C(&y). fj : . The last rule applied in this derivation must
be FLp) soll+new C(&y) :(fj :0). Thisis turn must have been derived using thewF)
rule and so there aig, ..., ¢, such thafll - e; : ¢; for eachi e n. Furthermorer < ¢ and so
it must be thatp; = 0. ThusII+ej:o.

(only if): We begin by assuming +- e : o. Notice that usingd)) we can derivel + e; : w for each
i e N such thati # j. Then, using thengwF) rule, we can derivél - new C(&y) : (fj :0)
and by ¢p) alsoll+new C(&p). fj 0.

(Mb(C.m) = (Xn,€,) = new C(&). n(&n) — &,°):

whereS = {this +— new C(€),X1 - €1,...,Xn > en}.

(if): We begin by assumindl - new C(€"). n(&) : 0. The last rule applied in the derivation
must be (vvk), So there i, such that we can deriié - new (&) :{(m:(¢n) — o) andIl -

e : ¢; for eachi € n. Furthermore, the last rule applied in the derivatiolof new C(€") :
(m: (én) — o) must be gewM) and so there is some tygesuch thafll - new C(&") :y and
IT + e, : o Wherell’ = {this ,X1:¢i,...,Xn:¢n}. Then from Lemma 3.10(1) it follows that
MMreS:o.

(only if): We begin by assuming th&@t + e, : o. Then by Lemma 3.10(2) it follows that there
is ¢, én such thatll’ + e, : o where the environmenl’ = {this ¥,X1:¢i,...,Xn:¢n} With
ITrnew C(€) : ¢ andIl+ g;: ¢ for eachi e n. By the fewM) rule we can then derive
ITFnew C(€) :{(m:(én) — o), and by theifvk) rule thatll - new C(&). n( &) : 0.

(e—€e =se.foe.f)
(if): We begin by assuming that+ e. f : o. The last rule applied in the derivation must bbep]
and so we have that+ e : (f ;o). By the inductive hypothesis it follows thatr € : (f :0),

and so by¥p) thatIl+ €. f : 0.

(only if): We begin by assuming th&t + €. f : 0. The last rule applied in the derivation must
be o) and so we have thdll + € : (f ;o). By the inductive hypothesis it follows that
II+e:(f :0), and so byiip) thatIl+e. f : 0.
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4. Strong Normalisation of Derivation Reduction

In this chapter we will lay the foundations for our main reédinking type assignment with semantics:
the approximation result, presented in the next chaptes relsult shows the deep relationship between
the intersection types assignable to an expression aneldtgtion behaviour, and this link is rooted in
the notion we define in this chapter - that akauctionrelation onderivations Through this relation, the
coupling between typeability, as witnessed by derivatiansl the computational behaviour of programs,
which is modelled via reduction, is made absolutely explici

The approximation result, and the various characterisgtid the reduction behaviour of expressions,
follows from the fact that the reduction relation on intetsen type derivations istrongly normalising
i.e. terminating. We will show that this is the case usingtFaiomputabilitytechnique [100]. The
general technique of showing approximation using dewvateduction has also been used in the context
of thetrs [15] andA-calculus [10].

Our notion ofderivation reductionis essentially a form of cut-elimination on type derivasd®1].
The two ‘cut’ rules in our type system aree{vF) and (ewM), and they are eliminated from derivations
using the following transformations:

M+-e1:¢1 ... IHren:en \_ D 7/

Mrnew C(&,) :(fi:0y 0 Ilreilo
I+new C(&). fi:o

\ Do [\ Dself /
{this w.X1:¢1,....Xni¢n}F€p:0c TIrnew C(€) :y

I+ new C(€) :(m(¢n) = o)
o] D

Irei ¢y ... IIren:én @
—p 11

Im-new C(&). mMep) :o Fep™ .o

where D5 is the derivation obtained frorD, by replacing all sub-derivations of the forfear) ::
ILxi:¢i + Xj : o by appropriately typed sub-derivations ©f, and sub-derivations of the forgvar) ::
I,this : +this : o by appropriately typed sub-derivations Bkqr. Similarly, ep® is the expres-
sion obtained froney by replacing each variable; by the expressior;, and the variablehis by
new C(€).

This reduction creates exactly the derivation for a comtdiracas suggested by the proof of the subject
reduction, but is explicit in all its details, which givestkexpressive power to show the approximation
result. An important feature of derivation reduction istthab-derivations of the fornw) :: 1+ e : w
do not reduce, althougk might; that is, they are already in normal form. This is caliéor the strong
normalisability of derivation reduction, since it decoapthe reduction of a derivation from the possibly
infinite reduction sequence of the expression which it types
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To formalise this notion of derivation reduction, it will l®nvenient to introduce a notation for
describing and specifying the structure of derivations.

Definition 4.1 (Notation for Derivations) The meta-variableD ranges over derivations. We will use the
notation(Dx,...,Dn,r) : I1 + e : ¢ to represent the derivation concluding with the judgeniémte : ¢
where the last rule applied is r ar®, ..., D, are the (sub) derivations for each of that rule’s premises.
In an abuse of notation, we may sometimes WEte I1+ e : ¢ for D =(D,...,Dn,r) i 11+ e : ¢ when
the structure ofD is not relevant or is implied by the context, and also w(if®, ..., Dy, r) when the
conclusion of the derivation is similarly irrelevant or iga.

We also introduce some further notational concepts to aid e first of these is the notion of
positionwithin an expression or derivation. We then extend expoessand derivations with a notion of
placeholder, so that we can refer to and reason about spadiféxpressions and subderivations.

Definition 4.2 (Position) Theposition p of one (sub) expression — similarly of one (sub) derivation
within another is a non-empty sequence of integers:

1. Positions within expressions are defined inductivelyolsvs:

i) The position of an expressianwithin itself is 0.
i) If the position ofeé within e is p, then the position af withine. f isO-p.
i) If the position ofe within e is p, then the position af withine. n(€) is0-p.
iv) For a sequence of expressioeg, if the position ofe within somee; is p, then the position
of e withine. n(®) is j-p.
v) For a sequence of expressioms if the position ofe within somee; is p, then the position
of & withinnew C(®&) is j-p.

2. Positions within derivations are defined inductively @ofvs:

i) The position of a derivatiotD within itself is 0.
i) For D =(D,, D" ,xewM), if the position of)’ within " is p then so is the position @’

within D.

iif) For D = (Dy,s0mv), if the position ofD’ within D; is p for some g 7 then so is position of
O’ within D.

iv) For D = (D”,rLp), if the position ofD” within D" is p then the position afY’ within D is
0-p.

v) For D = (D", Dy, Invk), if the position ofD” within O is p the the position af)’ within O
isO-p.

vi) For O = (D", Dy, Nvk), if the position of)’ within D;j is p for some g n then the position
of O’ within Diis j- p.

vii) For D = (D, 0.y), if the position ofD’ within Dj is p for some E N then the position ab’
within D is j- p.

viii) For D = (Dy,NewF), if the position ofD” within Dj is p for some g n then the position of
D' withinDis j- p.

Notice that due to th@om) rule, positions in derivations are not necessarily unique.

3. We define the following terminology:
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o If the position ofe (9’) within e (D) is p, then we say that (9D’) appears at positiop
within e (D).

o Ifthere exists some (9’) that appears in position p withia (D), then we say that position
p exists withine (D).

Definition 4.3 (Expression Contexts) 1. Anexpression contextis an expression containing a ‘hole’
(denoted by]) defined by the following grammar:

€ == [ | €f | €&me) |

e.n...,ei-1,¢ ei;1,...) | new (...,eji_1,¢ ei11,...)

2. §[e] denotes the expression obtained by replacing the hateviith e.
3. We write€, to indicate that the hole i appears at position p.

4. Contextst, where p= 0, are calledneutraj by extensionexpression®f the form¢[x] where¢
is neutral are also neutral.

Definition 4.4 (Derivation Contexts) 1. Aderivation contex®p,) is a derivation concluding with
a statement assigning a strict type to a neutral context, hiichwthe hole appears at position p
and has typer. We abuse the notation for derivations in order to more gdsiimalise the notion
of derivation context:

a) Do) =([]) I+ []: o is a derivation context.

b) If Dpo) 1 ITF €1 (f :07) is a derivation context, the®(, , ., = (D,rp) [Tk C.f 107 is
also a derivation context.

c) if D(pe) I+ € : (m:(¢n) — o) is a derivation context and, is a sequence of derivations

such that :: TT + e : ¢ for each ie 0, then®y , .\ = (D, Dp,INnvK) 2 TTFC. m(&y) 1o is
also a derivation context.

2. For a derivationD :: I+ e : o and derivation contexD(, ) :: I+ € : 0’, we write D(p )[D] ::
IT+ ¢[e] : o’ to denote the derivation obtained by replacing the hol®ihy D.

We now define an expliciveakeningoperation on derivations, which is also extended to dedmat
contexts. This will be crucial in defining our notion cdmputabilitywhich we will use to show that
derivation reduction is strongly normalising.

Definition 4.5 (Weakening) A weakeningwritten[IT” <II] wherell’ <11, is an operation that replaces
environments by sub-environments. It is defined on deoatand derivation contexts as follows:

1. For derivationsD :: T+ e : ¢, D[IT" <T11] is defined as the derivatiah’ of exactly the same shape
asPD suchthatD’ :: 11" + e : ¢.

2. For derivation context® ) I+ €y : ¢, Dpn[I1" <] is defined as the derivation context

D Of exactly the same shape @, such thatdy, , 1 11"+ € 1 ¢.

The following two basic properties of the weakening operatbn derivations will be needed later
when showing that it preserves computability.
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Lemma 4.6. LetIIy, Iy, I13 andIl,4 be type environments such that
e I1, < Iy, andIlz < Iy;
o I, < Iy, andIl, < I3;
and D be a derivation such thaD :: T1; e : ¢. Then
1. D[z <I1][I14 < ] = D[ < I14].
2. DI <T1][T14 <TIo] = D[z < ][ T4 < T3]

Proof. Directly by Definition 4.5. O

We also show the following two properties of weakening foriddion contexts and substitutions,
which will be used in the proof of Lemma 4.28 to show that cotapility is preserved by derivation
expansion.

Lemma4.7. Let D) :: 11+ € : ¢ be a derivation context and :: I1+ e : o be a derivation. Also, let
[IT" < T1] be a weakening. Then

Dp) [ DI <TI] = D,y [11" S H][ DT < ]]

Proof. By easy induction on the structure of derivation contexts. O

We now define two important sets of derivations, the strord) @ssafe derivations. The idea be-
hind these kinds of derivation is to restrict the use of thgr(le in order to preclude non-termination
(i.e. guarantee normalisation). In strong derivationsgdevaot allow the @) rule to be used at all. This
restriction is relaxed slightly fow-safe derivations in thab may be used to type the arguments to a
method call. The idea behind this is that when those argusriisappear during reduction it is ‘safe’ to
type them withw since non-termination at these locations can be ignoredwilVshow later that our
definitions do indeed entail the desired properties, sirpeessions typeable using strong derivations
are strongly normalising, and expressions which can bedtyyith w-safe derivations using an-safe
environment, while not necessarily being strongly norgiiagj, have a normal form.

Definition 4.8 (Strong Derivations) 1. Strong derivations are defined inductively as follows:

e Derivations of the forngvar) are strong.

e Derivations of the forr{®Dh, joN), (Dp, 081y and (D, NewF) are strong, if each derivation
D is strong.

e Derivations of the for{D, rLp) are strong, ifD is strong.

e Derivations of the form{D, Dy, nvk) are strong, ifD is strong and also each derivatiah
is strong.

e Derivations of the for{D, D’,NewM) are strong, if bothD and 9’ are strong.

2. We call a typep strong if it does not contaiw; we call a type environmerid strong if for all
x:¢ €11, ¢ is strong.

Notice that a strong derivation need not derive a strong.tyflgs is due to that fact that a strong
derivation is not required to use a strong type environmeéot. example, if the type of a variablex
in the type environmeriil containsw, then a non-strong type may be derived fausing the {ar) rule.
Similarly, if a formal parametex does not appear in the body of some methpthen that method body
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may be typed using an environment that associategth x; then, using theNgwM) rule, a method type
containingw may be derived for aew C(®) expression, for a clagscontaining methoeh The crucial
feature of strong derivations is that they cannot dedivas a type for an expression. Furthermore, while
a strong (sub)derivation may derive a method type contginims an argument type, thigvocationof

that method cannot then be typed with a strong derivatiortesno expression passed as that argument
can be assigned in a subderivation. This restriction is relaxed foisafe derivations, which are defined
as follows.

Definition 4.9 (w-safe Derivations) 1. w-safe derivations are defined inductively as follows:

e Derivations of the forrdvar) are w-safe.

e Derivations of the form(Dp, 017, (Dp, 0B1) and (D, NewF) are w-safe, if each derivation
D is w-safe.

e Derivations of the forr{D, rLb) are w-safe, ifD is w-safe.

e Derivations of the forrdD, D,, INnvk) are w-safe, ifD is w-safe and for eaclD either D, is
w-safe ord is of the formiw) :: T+ e : w.

e Derivations of the fordD, D’,NewM) are w-safe, if bothD and D’ are w-safe.

2. We call an environmenl w-safe if, for allx:¢ € I1, ¢ = w or ¢ is strong.

Continuing with the definition of derivation reduction weiioout that, just as substitution is the
main engine for reduction on expressions, a notion of switisth for derivations will form the basis of
derivation reduction. The notion of derivation substitatiessentially replaces (sub)derivations of the
form (var) :: TI + x : o by derivationsD :: TT' + e : o. This is illustrated in the following example.

Example 4.10(Derivation Reduction) Consider the derivations below for two expressiengnde;:

\ Dy 7 \ D, / \ D ]
Hl‘911<m1(0'1r10'2)—>7-> I[Irepx:io1 IlkF€2:07

D Ilrer:o1No2

and also the following derivatiotD of the method invocatior. n(y) , where the environmeri’ =

{x:{m:(o1no?) - 1),y:i01n02, 1}

Mry:o1 Mry:op

Ik X (M (o1 No2) = 1) [I+Yy:o1Noz

DI X mMy) i1

LetS denote the derivation substitutidr — D4,y - D»}; then the result of substituting), for x and
I fory in D is the following derivation, where instances of {leer) rule in D have been replaced by
the appropriate (sub) derivations i, and D»:

\\ D [/ \ D [

[Ires:o [I-res:o
\ Dy ] 2:01 2:02
[Mre;:{m(ociNoy) - 1) I[rey:01No>2

D¥lrer. n(ey) it

Formally, derivation substitution is defined as follows.

Definition 4.11 (Derivation Substitution) 1. Aderivation substitutioiis a partial function from deriva-
tions to derivations.
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2. LetD 1l +ey:¢1,.... D0 I + en : ¢ be derivations, andy, ..., xn, be distinct variables; then
S ={x1 D,...,xn > Dy} is a derivation substitutiobased odl’. When eacl is strong then
we say thatS is also strong.S is w-safe when eact, is eitherw-safe or an instance of thig)
rule.

3. IfD:: 11+ e: ¢is aderivation such thall C {x1:41,...,Xn:¢n}, then we say thaF is applicable
to O, and the result of applying to O (written D) is defined inductively as follows (WheSeis
the term substitution induced I8 i.e.S = {x1 > e1,...,Xn > €n}):

(D =(var) ::TI+x : o): Then there are two cases to consider.
a) Eitherx:o e II and sox = x; for some e AwithD, :: IT’ + e; : o, thenD® = D;
b) orx:pellwithg =o1n... noy ando = o for some je . Also in this casex = x;
for some i fi, so themD, = (D, ..., D/, 0m) 11’ + g : ¢ and D5 =Dl +eaj.
(D =(D,, D', NewM) :: TT - new C(&) : (M (@) — o)):
ThenD® = (D, D’S NewM) T+ new (&) S : (m:(4) — o)

(D=(D1,...,Dn,1r) T Fe : ¢, r{(var), (NEwM)}):
ThenD® = (D°,..., D5, r) = 11 FeS: ¢.

Notice that the last case includes as a special case the kseaf derivations of the forga) ::
II+e:w.

4. We extend the weakening operation to derivation sulistitsl as follows: for a derivation sub-
stitution S ={xy > Dy il eg: d1,....xn = Dy i I+ ep : ¢n), S[IT < 1] is the derivation
substitution{x > D[IT" <I1],...,xn — Du[IT <II]}.

Lemma 4.12(Soundness of Derivation Substitutio)et D :: I+ e : ¢ be a derivation andS be a
derivation substitution based dii’ and applicable taD; then D° :: IT' + eS : ¢ whereS is the term
substitution induced b, is well-defined.

Proof. By easy induction on the structure of derivations. Notic thhen a substitution is applicable to
a derivation then it is also applicable to its subderivagjand so when applying the inductive hypothesis
we leave this to be noted implicitly.

(w): ThenD :: 11+ e : w. Notice thate® is always well-defined and so and by the) fule, so is the
derivation(w) :: I’ + eS : w. By the definition of derivation substitutia®® = (w) :: TI' F €5 : w S0
it follows that D is well-defined and>® :: I’ F €5 : w.

(vAR): ThenD = (var) ::TI+x : 0. LetS ={x1— Dn,...,xn — Dy}; notice, by definition, that each, is
well-defined (and therefore so are its subderivations). @ydefinition of derivation substitution
DSis (a subderivation of) som®j, and so therefore is a well-defined derivation. Also, sifds
applicable taD, it follows thatx = x, for somek € i, thusxS = x,S = ey, and by the definition of
derivation substitutioD® :: IT' - ey : o-.

(D,rpY. ThenD = (2, mpy M re. f :oandD’ :Tre: (f ;o). ByinductionD’s :: 11’ reS : (f :o)
and is well-defined. Then by ther) rule (DS rp) - II' - eS. f : o is also a well-defined
derivation. SinceS. f =e. f S it follows from the definition of derivation substitutionah?® ::
Il +e. fS: o and is well-defined.
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(~vk), (oB1), (NewF), (NewM), (JoiN): These cases are similar tef) and follow straightforwardly by
induction. O

Derivation substitution preserves strong andafe derivations.

Lemma 4.13. If D is strong (v-safe) then, for any strongufsafe) derivation substitutioS applicable
to D, D° is also strong ¢-safe).

Proof. By straightforward induction on the structure Of

(w): Vacuously true sincéw) derivations are neither strong norsafe.

(VAR): LetS={x1— Di,....Xn— Dn};thenD = (var) 1 I1,xj:¢ +x : o for somej enwith O; :: 11" e : ¢
and¢ < o. By Definition 4.11,D° is either O; itself (if ¢ is strict), or one of its immediate
subderivations (ifp is an intersection).

If Sis strong, it follows by Definition 4.11 that ead is strong. In particular, this means
that O; is strong and, in the case thatis an intersection, by Definition 4.8 it follows that the
immediate subderivations @; are also strong. Thug)® is strong.

If Sis w-safe, then eackD is eitherw-safe or an instance of the) rule. We know that
D; cannot be an instance of the)(rule because if it were then, sin&is applicable taD, it
would then follow thaip = w which cannot be the case singed o, which is strict. ThusD;
is w-safe and, in the case thatis an intersection, by Definition 4.9 so are all of its immeglia
subderivations. Thu®)S is w-safe.

(9Y,rpY: Then D = (9, rp) and by Definition 4.110°5 = (DS rpy. By induction DS is strong
(w-safe), and so by Definition 4.8 (Definition 4.9) it followsattD® is also strongd-safe).

(~vk), (oB1), (NewF), (NewM), (soiv): These cases are similar tef) and follow straightforwardly by
induction. m|

We also show that the operations of weakening and derivatibstitution are commutative.

Lemma 4.14. Let D :: TI” + e : ¢ be a derivation andS be a derivation substitution based dhand
applicable toD. Also let[IT’ < II] be a weakening, the®S[IT’ < 1] = SIS

Proof. By induction on the structure @.

(w): ThenD = (w) = 1" + e : w. By Definition 4.11D° = (w) :: 1 + eS : w whereS is the term
substitution induced bys. Then by Definition 4.5D5[IT < I1] = (w) :: 1" €5 : w. Notice
that by Definition 4.11S[TT" < IT] is a derivation substitution still applicable 0 but now based
onII’. Furthermore notice tha is also the term substitution induced BYIT" < I1]. Thus by
Definition 4.11 againDS'<M = () = T1' + €5 : w = DS[IT < I].

(vAR): Then®D = (var) ::I1"” + x : 0. S is based oriland applicable t@® so letS = {x1 > Dy :: 1+ eq:
G1,...,x1 0 Dn Tk ep: dn} With IT” C {X1:d1,...,Xn:¢n}. Then by Definition 4.11,
S[IT' <] ={xy > DT <] ' Fey:dq, ... ,xp DRI Q] I Fep: dn}
Now, there are two cases to consider:
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1. x:o €I1”, then sincdl” C {x1:¢1,...,Xn:¢n} it follows thatx = x; for somei e nandg¢; = o
By Definition 4.11D°5 = D :: 1 + e; : o and then by Definition 4.D5[IT" < 11] = O[T’ <
II]:: I + ¢; : o. Furthermore, by Definition 41D = [T <] :: I’ - ¢; : 0. Thus
D[ <11 = ST,

2. x:pellwith ¢ =01n...noy ando = oj for somej € . Sincell” C {x1:¢1,...,Xn:dn}
it follows thatx = x; for somei € N and¢; = ¢. So thenD, = (D, ..., Dy, ,101N) with D, ::

II+ e : o for eachk e iv. By Definition 4.11D° = Z)] 11+ ej:oj and by Definition 4.5
O[T <] = Z)}[l‘[’ <] :: I + e : . Furthermore, by Definition 4.5

DT <] = (D4 [IT" <IJ,..., D'y [T < IT], 501N)

So by Definition 4.1105'<M = D11 < IT]. Thus D[’ < 1] = HSIT<,

(D, D). D =(D,FLD) = (Def. 4.11)
DS = (D'S Fp) = (Def. 4.5)
DSV <] =(D'S[IT" <M],;p) = (Inductive Hypothesis)
DSV < 1] = (DSIE gy p)y = (Def. 4.11)

d
D[ QT1] = pSIT'<

(~vk), (oB1), (NewF), (NewM), (soiv): These cases are similar tef) and follow straightforwardly by
induction. O

Definition 4.15 (Identity Substitutions) Each environmeniI induces a derivation substitutiofdy
which is called thédentity substitutiorfor IT. LetIT = {x1:¢1,..., Xn:¢n}; thenldy £ {x1 > Dy, ..., xp >
Dn} where for each € n:

o If ¢ =wthendD = (w) : 1T+ X : w;

o If ¢; is a strict typeo then?} = (var) ;: 11+ X : 0

e If¢i=01n...nop for some = 2thend = (D, 300N) S TIFX 01N ... nop, With D'j = (VAR) i

IT+ x; : oj for each jen.

Notice that for every environmeit, the identity substitutioidy; is based oril.

It is easy to show thald; is indeed the identity for the substitution operation oriv@ions usindl.
Lemma 4.16. LetD :: 1+ e : ¢ and Idy; be the identity substitution fdll; then D/ = D,

Proof. By straightforward induction on the structure Of O

Before defining the notion of derivation reduction itselfe first define the auxiliary notion ad-
vancinga derivation. This is an operation which contracts redekesrae given position in expressions
covered byw in derivations. This operation will be used to reduce deidves which introduce intersec-
tions.

Definition 4.17 (Advancing) 1. Theadvanceoperation~ on expressions contracts the redex at a
given position p ire if it exists, and is undefined otherwise. It is defined as thallest relation
on tuples(p,e) and expressions satisfying the following properties (whee writee b € to
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mean((p,e),€ ) € ~):

F(O)=Fn& e=Cplnew C(&y). fi] (ien) = e B Cylej]

MB(C,m) = (Xn,ep) & € ZGp[neW C€). mep] = eb p[eb ]
whereS = {this + new C(€),X1> €1,...,Xp > €p}

2. We extend-» to derivations via the following inductive definition (whewe writeD & 9 to
mean((p, D), D’) € ~):

a) Ife & e, ,thenD:Mre:w B (w)"Hl—é L.
b) If (D,pp) i [lre. f :oandD & D, then(Z) FLp) P (D', Fip).
C) If (D, Dp,nvk) T Fe. (&) ;o andD L D', then(D, Dp,invk) LP (D, Dy, INVK).
d) If (D, Dn,nvvk) = [+ e. m(&y) o and D; B D), for some je T, then(D, Dy, NvK) LP
(D,D'n,nvk) WhereD; = O, for each ie 1 such that i j.
€) If(Dy, 08y Tk new C(&,) :CandD; & D) for some e A, then(D, oss) KP (D', 0BY)
whereD; = D, for each ie 1 such that i j.
f) If (Dn,NewF) :: T+ new C( &) :(f :0) andD; & D) for some e A, then(Dp, NewF) KP
(D'n,NewF) whereD; = D for each ie i such that i |.
9) If (Dy, D,NewM) ;s TT+ new C(€) : (m:(¢) — o) and D & 2, then(Dy, D,NewM) &,
(Dy, D' ,NEWM).
h) If (Dp,50N) e :¢andD 5 b D for eachien, then(Dp, 1oy B (D' p, 10IN).
Notice that the advance operation does not changesthetureof derivations. Exactly the same rules
are applied and the same types derived; only expressionshveiné typed withw are altered.

Lemma 4.18(Soundness of Advancing)etD :: T+ e : ¢; thenD & 2’ for some?’ if and only if a
redex appears at position p inand no derivation redex appears at pib, withe & € for somee
and®’ T+ € : ¢.

Proof. By straightforward well-founded induction op,®). m]
The advance operation preserves strong (aszfe) typeability.

Lemma 4.19.1f D & 9’ is defined, and is strong (v-safe), ther?)’ is also strong -safe).

Proof. Straightforward, by induction on the definition of the adv@mperation for derivations. O

The notion of derivation reduction is defined in two stagasstRthe more specific notion of reduction
at a certain position (i.e. within a given subderivation)iigoduced. The full notion of derivation
reduction is then a straightforward generalisation of fuisition-specific reduction over all positions.

Definition 4.20 (Derivation Reduction)1. The reduction of a derivatio® at position p to?’ is de-
noted byD B 7Y, and is defined inductively dip, D) as follows:
a) Let((Dn,NewF),FLp) ;i [T+ new C(€). i : o then((Dp,NewF),rp) % D, for each ie .

b) Let({(Dy, D' ,NEWM), Dy, INvK) :: IT+new C(&). m( &) : o with Mb(C,m) = (Xn, ep);
then((Dy, D', NEwM), D, INnvk) & DS, whereS = {this D', x1- Dy, ..., xn— Dl

c) If(D,rp):Tre.f :ocandD B 2, then(D,rp) LP (D', Fp).
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d) If (D, Dn,nvk) TTFe. (&) (o andD B 2, then(D, Dy, INnvk) L8 (D', Dy, INVK).

e) If(D,Dn,nvk) :TI+e. (&) o andDj B D for some je 7,
then(D, Dy, nvk) 1P (D, D, vvk) whereD! = D, for each ie ii such that i |.

f) If (Dp,081) 1+ new C(&p) : CandD; R D for some je A,
then(Dp, 081) 1P (D', 087) whereD; = D, for each ie 1 such that i .

) If (Dn,NewF) i T+ new C(&p) :(f :o) andD; B D) for some e,
then(Dp, NewF) LP (D', xewF) whereD; = D for each ie i such that i j.

h) If (Dp, D,NewM)  TT+new C(&) : (m:(f) — o) andD B 2V,
then{Dy, D,NewM) B (D, D' ,NEWM).

i) If (Dn,jomy::Mre:g, D B 9 for some e nand for each £ such that i j, eitherDy & O]
orD B D, then(Dp,108) P (D'}, J0IN).

2. The full reduction relation on derivations y is defined by:
D—-pD =2 Ap[D B D]
The reflexive and transitive closure efy is denoted by-7.

3. We write SID) whenever the derivatiofd is strongly normalising with respect te.
Similarly to reduction for expressions, 99 —¢ D’ then we callD a derivation redexand O’ its
derivation contractum

The following properties hold of derivation reduction. Vhere used in the proofs of Theorem 4.27
and Lemma 4.30.

Lemma4.21. 1. SN(D,rp)::Tlre.f :0)© SND :Tl+e : (f (o))
2. SNKD, Dn,...,DnmNvk) T Fe. n(8y) 10) = SND) & Yien [SND)]

3. For neutral context§,
SN T+ G[x]: (m: () = o)) & VieN [SND 11+ ej: ¢)] =
SN(D, Dn,...,Dn k) I+ E[X]. m(&p) : o)

4. SN(Dn,o81) i TTF-new C(&,) :C) oA, [Vien [SND :11rei: ¢)]]
5. SN(Dn,....DhioWy iIlre:oin...nop) ©Vien [SND i 11+ e: 0j)]
6. SND[IT’ <II]) & SND)

7. LetCbe a class such tha&ft (C) =T, then for all jen:
SN(Dn,NewF) :: TI - new C(&y) :(fj o)) © Agn [0 L) & VieN[SND 11k ei: ¢i)]]

8. LetCbe a class such tha&t (C) =T, then for all jen:
SNDpo[Dj]l T Cplej]:o) & Vien[i# =3¢ [SND ::1l+e;: ¢)]]
= Sl\(b(p,o—/)[«@n,NEWF},FLD}] I Cglnew C(&p). fj]:0)
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9. LetCbe a class such thavib(C,m) = (Xn,ep) and Dy, :: {this ¥, X1:d1,...,Xn:dn} F €p : o, then
for all derivation contextsd, -y and expression contexts
SN (po)[ D] i T+ Cplep’] 1 0) & SNDp :: TFnew C(€) 1) &
VieN [SND 11k ej: ¢i)] = SNDpo (D, Dn,invk)] = TTFEplnew C(€). m(&n)]: o)
where D = (Dy, Do, NEwM) T+ new (&) :(m:(¢n) — o),
S ={this —»Dg,x1—=>D1,....xn—Dnl,

S ={this +—new C(€),X1€1,...,Xpn—>€n}
Proof. By Definition 4.20 O

Our notion of derivation reduction is not ondpund(i.e. produces valid derivations) but, most impor-
tantly, we have that it corresponds to reduction on expoessi

Lemma 4.22. © B 2 if and only if there is a derivation redex at position p4n

Proof. (if): By easy induction on the structure pf
(only if): By easy induction on definition of derivation rection. O

Theorem 4.23(Soundness of Derivation Reductiorj D B 9, then®’ is a well-defined derivation,
i.e. there exists some such that?)’ :: 11+ € : ¢; moreover, there 5 € .

Proof. By induction on the definition of derivation reduction. Thdresting cases are the two redex
cases, and also the case fanx), since in general there may be more than one redex to cofitecor-
responding reductions and advances must be madadhsubderivation simultaneously). The other
cases follow straightforwardly by induction: we demonigrihe case for field access.

(((Dn,NewWF),FLD) :: I+ new C(€). f; 10 % D,ien):
By Definition 4.20((Dn,NewF),Fip) = ITF new C(®). f; : o is a well-defined derivation, and so:
e by (rLp), (Dn,NewF) :: TTF new C(®) : (fi ;o) is a well-defined derivation;
e by (NewF), D i 11+ e : ¢ is a well-defined derivation for eaghe 0, with ¢ = 0.
In particular®d, :: T+ g : ¢; is a well-defined derivation. Furthermore notice that by Biééin

3.3,new C(®€). f; — ej. Also notice that by Definition 4.31ew C(€). f; = Cg[new C(&). fi]
ande; = €g[e;] where( is the empty context []. Thus by Definition 4.1%w C(€). f; 9, e;.

(({( Dy, D' ,NEWM), Dy, INvK) :: I F new C(€). m(&p) o % DS):
with Mb(C,m) = (Xn,ep), WhereS = {this D’ ,x1 D,...,xn— Dl
By Definition 4.20,((Dy, D', NEWM), Dy, INvK) :: [T+ new C(€). m(&p) : o is a well-defined
derivation, and so:

by mnvk): 1. D 11+ egj: ¢ is a well-defined derivation for eaéle n; and

2. (Do, D' ,NEWM) :: TT+new C(&) : (m:(¢n) — o) is a well-defined derivation.
by wewM): 1. O 11+ new C(€) :y is a well-defined derivation; and

2. by (NewM), Dy {this W, X1:¢1,...,Xn:dn} + €p : o IS a well-defined derivation.

Then by Definition 4.11S is a well-defined derivation substitution basedIbnand applicable
to Dy. By Lemma 4.12, it follows thaty® :: 11+ ep® : o is a well-defined derivation, where
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S ={this +— new C(€),x1 e1,...,Xn — en} iS the term substitution induced I8 Further-
more, notice that by Definition 3.8ew C(&). m(en) — epS. Also notice that by Definition 4.3,
new C(€). m(e,) =Co[new C(€). n(&,) ] andep® = Cylep°], whereC is the empty context
[]. Thus by Definition 4.17new C(&). m(en) -~ epS.

((Dp,10IN) B (D', JOIN)):
with O & 2 for somej e 0, and for eachi € N such thati # j, eitherDy & D) or O b D
as well as(Dp,5om) ::IIFe:o1n... non. SinceD; b Z)’j for somej € 1, it follows by the
inductive hypothesis tth] = II+€ :ojis awell-defined derivation anel % € for somee .
Notice that by Definition 4.3, there is then an expressiortedi®, such thae = €p[e,] for some
redexe, with e, — ec ande = €y[ec]. Now, we examine eacld; for i € n such that # j. For
each such, there are two possibilities:

1. D B Df; then by the inductive hypothesis it follows that there imisaexpressioe’ such
thatD; :: 11+ €’ : oy is a well-defined derivation anel b, €’ . Then, by Definition 4.3,
there is then an expression conté:fﬁtsuch that = %[e?r] for some redex, with €, — €
ande’ = C€p[e]. Itfollows thatC[e,] = e€p[er], and sof, = €y ande, = e;. Thusec=ec
ande’ = Ep[ec] =Cplec] =€ .

2. O B D, in which case it follows by Lemma 4.18 that-8, €’ for some expressiod’
with O :: I+ €’ : oj. By the same reasoning as in the alternative case abovéoivéthat
e =€.

Thuse -5 € and, for eachen, we haveD; ::I1+ € : 0. So by o), it follows that(?, JoIN) ::
II+€ :o1n...noxis awell-defined derivation.

(D,rpy :Tlre.f :0& D B D = (D,rp) LP (9, FD)):
Since(D,rp) ;: 11+ e. f : o it follows by rule ELp) thatD :: I1+e : (f o). Also, sinceD B D’
it follows from the inductive hypothesis thdY is a well-defined derivation and th&' :: T+ € :
(f :0) forsomee withe & € . Then, by rule§Lp), we have that?’,rp) :: 11+ €. f : o is also
a well-defined derivation. Furthermore, since® € , by Definition 4.3 it follows that there is
some expression conte&p, such thae = €p[e,] for some redex, with e, — ec ande = Cp[ec].
Take the expression contet | = €. f; thene. f = Cpler]. f = [e]ande. f =Cplec]. f =
o plec]. Then, by Definition 4.17¢. f 2P e f. o

We can also show that strong atesafe derivations are preserved by derivation reduction.
Lemma 4.24. If D is strong (v-safe) andD —5 9, then®)’ is strong (v-safe).
Proof. By induction on the definition of derivation reduction.

(((Dn,NewF), D) =TT+ new C(&). fi 10 % Dy, jen):

If ((Dn, NewF),FLD) iS a strong ¢-safe) derivation, then it follows from Definition 4.8 (Défipn
4.9) that(D,,NewF) is also strongd-safe), and then also that eaghis strong {u-safe). So, in
particular®; is strong (-safe).

(({ Dy, D', NEWM), Dy, INvK) ;- I F new C(€). m(&p) o & DS):
with Mb(C,m) = (Xn,ep), WhereS = {this D', x1 D,...,xn— Dl
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By rule (nvk) we have thatDy, D',NewM) i T1 - new C(&) : (m:(¢n) — o) and also tha ::
I1+ e : ¢; for eachi e n. Then also, by ruleNgwM) we have thatDy, :: {this W/, X1:¢1,....Xn:dn}F
ep:oand?’ ::II+new C(€) :y. Notice that this means th&tis applicable taD,.

If ((Dp, D’ ,NewM), Dy, INvVK) is @ strong derivation then it follows from Definition 4.8 theach
D (i en) is strong, and also th&n,, D', NewM) is strong. Then it also follows that bot, and
7Y are strong. Notice then th& is a strong derivation substitution, and so by Lemma 4.13 it
follows that?D,’ is also a strong derivation.

If ((Dyp,D’,NewM), Dy, INvK) iS anw-safe derivation then it follows from Definition 4.9 that
each?) (i € n) is eitherw-safe or an instance of the) rule, and also thatD,, D’,NewM) is
w-safe. Then it also follows that both, and 9’ are w-safe. Notice then thaF§ is an w-safe
derivation substitution, and so by Lemma 4.13 it followst tg° is also arw-safe derivation.

((Dp,jomNy = TIFe:o1n...non & D & D’j,j en= (Dp,j0N) R (ﬁn,JOIN»:
where for each € n such that # |, eitherDy B O/ or O B .

If (Dn,...,Dn,J0IN) is a strong @-safe) derivation, then it follows from Definition 4.8 (Ddfinn
4.9) that eaclD, is also strongd¢-safe). Then, by induction it follows thai)’j is strong (v-safe).
Now, for eachi e i such that # j, eitherDy B D! in which case it again follows by induction that
D is a strong -safe) derivation, o 2 Di in which case it follows by Lemma 4.19 thak

is strong {v-safe). Thus, for eache n we have thatD; is strong {v-safe) and thus by Definition
4.8 (Definition 4.9) it follows that?®',,, joiN) is a strong §-safe) derivation.

(D,rpy :Tlre.f :0& D B D = (D,rp) LP (D, FD)):
If (D,rLp) is a strong ¢-safe) derivation then it follows from Definition 4.8 (Detfiioin 4.9) that
D is also strong¢-safe). Then, sinc® B 2 it follows by induction thatD’ is strong {v-safe),
and thus by Definition 4.8 (Definition 4.9) so to(i®’, FLb). m|

Our aim is to prove that this notion of derivation reductisrstrongly normalisingi.e. terminating.
In other words, all derivations havenarmal formwith respect to—5. Our proof uses the well-known
technique ottomputability[100]. As is standard, our notion is defined inductively other structure of
types, and is defined in such a way as to guarantee that cophgpderivations are strongly normalising.

Definition 4.25(Computability) 1. The set otomputablalerivations is defined as the smallest set
satisfying the following conditions (where Cof#l)) denotes thatD is a member of the set of
computable derivations):

a) Com{w) :: 11+ e : w).

b) ComgD ::Ti+e:p) © SND Tl e : @).

c) ComgD:Tlre:C) o SND ::Il+e:C).

d) ComgD ::Tlre: (f :0)) © Com{D,rp)::TTre.f o).

e) ComgD ::Il+e:(m(pn) — o)) &
VOn[Vien [ComdD 1T Fei:¢)] =
Com(D',D},....DhNvKk) 11 Fe. (&) :0)]

whereD’ = D[I" <] and O] = B[IT" < I1] for each ie A with IT" = N1 - T,
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f) Com{Dn,...,Dnj0oN) i Ilre:o1n...nop) © Yien [ComdD)].

2. A derivation substitutiorS = {x1—Dy,...,xn+— Dy} is computable in an environmeit if and
only if for all x:¢ € I1 there exists somesin such thak = x; and ComgD,).

The weakening operation preserves computability:
Lemma 4.26. ComfD :: 11+ e : ¢) © ComD[Il' <II] . IT' e : ¢).
Proof. By straightforward induction on the structure of types.

(w): Immediate since theD = (w) 1+ e : w and D[IT" < II] = {w) :: II' + e : w, Which are both
computable by Definition 4.25.

(¢): ComD::Tl+e: ) < (Def. 4.25)
SN@D::Tl+e:g) & (Lem. 4.21(6))
SN[ IIT] :TT' Fe ) < (Def. 4.25)
ComD[Il" <] = 1T e : )

(©): ComfD:Il+e:C < (Def. 4.25)
SN@®D::Ti+e: Q) & (Lem. 4.21(6))
SN@[IT <T1] : TI' +e : C) < (Def. 4.25)
ComD[I" <] :: '+ e : C)

(f:0)): ComD:Tlre:(f: o)) < (Def. 4.25)
Com(D,rp) :Tl+e. f 1 0) < (Inductive Hypothesis)
Com(D,rp)[IT" QM) : II'+e.f 10) = (Def. 4.5)

Comg(D[I" <I],rp) il +re. f 1) < (Def. 4.25)
ComD[IT KI1] :: ' + e : (f :07))

((m: (¢n) — 0)):
ComgD :: 11+ e : {m:(¢p) — 7)) & (Def. 4.25)
VOn[Vien [ComD 11 ke :¢)] =
Comi{D[I1, <], Dy[I1, <I14],..., D11, <IIp],iNvK) T, Fe. n(€,) o) ]
wherell, = OII-TI,
< (Inductive Hypothesis)

VDn[Vien[ComD :Tjire:¢)] =
Com(D[I1, <II], Du[I1, < y],..., o[l < ], nvk)[Tlg < TL,] = Tlg e, m(&y) o) ]
wherellg = NIT' - T,
= (Def. 4.5)

VD[ Vien [ComD 11 Fei:¢)] =
Com(D[I, <TI[Ip < I, ], D[l < Ma][Tlg ST, ..., Du[My < IIn][1l < I, ], NvK)
Ilgre.n(en) 10)] = (Lem. 4.6)
VD[ Vieh [ComD 1l Fei:¢)] =
Comp(D[IT" < T[ITg < 1], Dy[ITg < My, .., DulTls < Ml nvk) = Tg ke, (&) <o) ]
o (Def. 4.25)

ComgD[Il’ <] 11’ Fe : (m:(¢n) — o))
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(1n...nom): Com(Dp,jo) = IlFe:oin...Nop) < (Def. 4.25)

Yien[ComgD ::1l+e:oj)] & (Inductive Hypothesis)
Yien [ComdD[Il <II] = 1T Fe @ oj)] < (Def. 4.25)
Comp{D[IT" <I],...,Dy[IT <II],50N) I e :o1n... NoTy)

= (Def. 4.5)

Com(Dn,1om)[IT" <I] I Fe:o1n...Non)

O

The key property of computable derivations, however, is tifigy are strongly normalising as shown
in the first part of the following theorem.

Theorem 4.27. 1. ComgD ::Tlre:¢)=SND: 11+ e: ).
2. For neutral context§, SND :: T+ €[x] : ¢) = ComD :: 11+ €[x] : ¢).
Proof. By simultaneous induction on the structure of types.

(w): The result follows immediately, by Definition 4.20 in thase of (1), and by Definition 4.25 in the
case of (2).

(), (O): Immediate, by Definition 4.25.

(f:o)): 1. ComgD:Tlre:{f 0)) = (Def. 4.25)
Comg(D,rp) ::Mre. f :0) = (Inductive Hypothesis (1))
SN(D,rp) :TI+e. f :0) = (Lem. 4.21)
SN@D:1lre:(f:0))

2. Assuming SND :: IT+ €[x] : (f :0)) with € a neutral context, it follows by Lemma 4.21 that
SN(D,rip) :: T+ €[x]. f : o). Now, take the expression contekt = €. f ; notice that by
Definitions 4.2 and 4.3¢’ is a neutral context and[x]. f = €'[x]. Thus SN(D,rLp) :: T+
¢’'[x] : o) and by induction it follows thaComp(D,rp) :: I+ €'[x] : o). Then from the
definition of €’ we haveComp(D, rip) :: I+ €[x]. f : o°) and by Definition 4.25 thafomgD ::
[T+ C[x]: (f 10)).

(m:(dn) = o)) 1. AssumeComgD : 11+ e : (m:(¢n) — o). For each € n, we take a fresh variable
xj and construct a derivatiap, as follows:

o If ¢j = wthend, ={(w) :: II; + X; : w, With IT; = 0;

o If ¢; is a strict typer thenD, = (var) :: IT; + xj : o, With ITj = {xj:0};

o If pi=01n...nop withn; > 2thenD = (Dl Dlimy,1oN) I FX 101N ... Ny

with IT; = {xj:¢;} and D j) = (var) :: I1; - X : o7} for eachj e Iy

Notice that eacl is in normal form, so SNp,) for eachi € i. Notice also thatD, :: II; +
€[xi]: ¢; for eachi e nwhereC is the neutral context []. So, by the second inductive hypoth
esisComf{?) for eachi € fi. Then by Definition 4.25 it follows thaEom{(D’, D, INvK) :
I +e. m Xy : o), whereD’ = D[IT" < I1] and D = DB[IT < I1;] for eachi € n with
I’ = NII-T,. So, by the first inductive hypothesis it then follows that(&N, 9, INvk) :
I +e. mXy) : o). Lastly by Lemma 4.21(2) we have SN(), and from Lemma 4.21(6)
that SN).
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2. Assume SNO :: IT+ €[x] : (m:(én) — o)) with € a neutral context. Also assume that there
exist derivation®y, ..., Dy, such thalComf D, :: I + e; : ¢;) for eachi € 0. Then it follows
from the first inductive hypothesis that SN(:: TI; - e; : ¢;) for eachi e . LetIl’ = NI1-Tp;
notice that by Definition 3.6[1" < II andIl’ < II; for eachi e n. Then by Lemma 4.21(6),
it follows that SN[IT" < I1]) and SN{\[IT" < IT;]) for eachi e n. By Lemma 4.21(3),
we then have SNO', D, ..., Dy, invk) 1T F €[x]. n( &) : o) whereD’ = D[IT" < I1] and
D = D11 <T1;] for eachi € n. Now, take the expression contét= €. n{ €,) ; notice that,
sinceC is neutral, by Definitions 4.2 and 4.® is a neutral context ané[x]. m(g,) = ¢'[x].
Thus by the second inductive hypothesis it follows Bam(D’, D7, ..., Dy, Nnvk) = IT +
€[x]. m(&n) : o). Since the derivation$y, ..., D, were arbitrary, the following implication
holds

VDn[Vien [ComD :Tikei:¢)] =
Com(D',D,....Dpmvk) I Fe. n( &) o) ]

where D’ = D[IT" < I1] and O] = D[IT" < I1j] for eachi € i with I = NI1-TI,. So by
Definition 4.25 we hav€om@D :: 1 + e : (m: (¢n) — o).
(oc1n...non,Nn=2): 1. ThenCom(Dx,...,Dn,10IN) i TI+Fe :o1n... nop) and so by Definition

4.25 we haveComfd®D, :: I1+ e : o) for eachi e 0. From this it follows by induction that
SN(D,) for eachi e nand so by Lemma 4.21 that S48, ..., Dy, JoIN)).

2. ThenSN(Du,...,Dn, 50Ny i ITFE[X]: o1 n... nop) and so by Lemma 4.21 we have SDi(:
IT+ €[x] : o) for eachi € n. From this it follows by induction thaComg?) for eachi e n
and so by Definition 4.25 th&om(Dx, ..., Dn, J0IN)). O

From this, we can show that computability is closed for dgidn expansion - that is, if a deriva-
tion contractum is computable then so is its redex. This gntypwill be important when showing the
replacementemma below.

Lemma4.28. 1. LetCbe a class such th&t (C) =, then for all je n:
ComiDpo[Dj] = TTFEplej]: o) & Vieni#j[T¢ [ComdD i 11Fe;: ¢)]]
= CoMED(p.o)[((Dn,NeWF),FLD)] :: TT + €p[new C(&n). fj]: o)

2. LetCbe a class such thavib(C,m) = (Xn,ep) and Dy, :: {this W, X1:d1,...,Xn: dn}Fep o, then
for derivation context® ) and expression contexts

CompD(poy[D°] = T - Cplep®] : o)
& ComfDy::Il+new C(€) :¢) & Yien [ComiD 11+ e;: ¢i)]
= COMID(p,o)[{D, Dn,INvK)] 2 TT+ Cglnew C(&). m(en)]: o)

where D = (Dy, Do, NEWM) :: TT+ new (&) : (m:(¢pn) — o),
S={this Dy, x1—=>D,....xn—Dh},

S ={this +—new C(€),X1—€1,...,Xp—>€n}

Proof. 1. By induction on the structure of strict types.
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(o =¢): AssumeComlDp)[D;] :: TT+ Eylej] : ¢) andI ¢ [ComiD i T+ e; : ¢)] for each
I eNsuch thati # . By Theorem 4.27 it follows that SN{(p)[D;] :: TT+ €p[ej] : ¢) and
¢ [SN(D :: T+ e : ¢)] for eachi e nsuch thai # j. Then by Lemma 4.21(8) we have that

SN® (p.o) [({Dn, NeWF),FLD)] :: TT + Cp[new C(&p). fi]: ¢)

And the result follows by Definition 4.25
(o= C): Similar to the case for type variables.

(o =«f :0)): AssumeComD(po[Dj] - T1+Cplej] : (f :o)) andT ¢ [ComfD 11+ e : ¢)]
for eachi € i such that # j. By Definition 4.25,Com(Dp,o)[D;j],Fp) ;1 ITF Eglej]. f :
o). Now, take the expression conte} , = €. f and the derivation contex®, , ) =
(D(poy,FLp) I H Cp. f 2 0. Notice that

(Dpo[Djl.rp) I Cplej]. f 1o = bzo-p,a-')[Dj] STk (ié,p[ej] ox

Thus we have(:omp(bzo.pﬂ,)[@j] s Ik (Sé,p[ej] : o). Then by the inductive hypothesis it
follows that

ComED(g oy [((Dn, NewF), FLD)] 12 T+ €5 [new C(&n). f]: o)
So by the definition oo’ we have
Comi{(D(p.o)[{({Dn,NewF), FLD)], FLD) s TT + €p[new C(&n). fj]. f o)
Then by Definition 4.25 we have

ComE{Dp.o)[{({Dn, NEWF),FLDY] i T+ €p[new C(&n). fj]:(f :0))

(o =(m:(¢w) — 0)): AssumeComiDp[Dj] :: T+ Eplej] : (m:(Fr) — o)) and, for each €
n such thati # j, there is some such thatComg? :: I1+ e; : ¢). Now, take arbitrary
derivations?D?, ..., D’y such thatComp D% :: Tk + €y : ¢x) for eachk e . By Definition
4.25, it then follows thaCom(D’, D"y, nvk)) = I + Cplej]. M &) : o wherell’ =
NII-TIy and also that)’ = Dpon [ D[ < 1], with D'k = Di[IT" < Tli] for eachk e n.
By Lemma 4.7, we have

D' = Vo[ DT T = Dy [IT" < T[D[IT < 1]

Now, take the eLpression contekf , = €p. (&) and the derivation contex®, , .y =
(Dpo[Il" <, D"y, Nnvk) ;1 11" - €p. M€ ) 0. Notice that

(D', D"y, INVK) = Do porn DI <] I+ Cg el o

So we have

Comi(Dg [ DI <] :: T + E[ej] : o)
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Now, by Lemma 4.26, it follows thall ¢ [ComgD[IT" <I1] :: I’ + e; : ¢)] for eachi e n
such thai # j. Then by the inductive hypothesis it follows that

Comr(bEO-p’o-’)[<<Z)l[H, <),..., DG[IT < 0], NewF), FLD)]
STk (Sé.p[new Clep). fj]: o)

So by the definition ofo’, this give us that

ComE(Dpo [T ST[D[IT < ],..., Dyl < 1], NewF), Fip)], D71y, INVK)
I F Cplnew Cep). fi]. mM(€w) 10)

And then by Definition 4.5

CoME(Dp.o [T < T[{((Dn, NewF), FLo)[ 1T < )], D7 v, INVK)
I F Cplnew Cep). fj]. mM€w) 10)

And by Lemma 4.7

COmF«D(p,O—/)[((@n,NEWF),FLD)][H’ <], D7 v, INVK)
I F Cplnew Cep). fj]. mM€w) 10)
Since the derivation®", ..., Dy were arbitrary, the following implication holds:
VD v [Vien [ComD) 1+ € ¢)] =
Comp(D, D"y, invk) = IT' + Cplnew O(&p). fj]. M &) :0)]

whereD = D(p’o—)[«@n,NEWF},FLD}][H’ < II]. Thus the result follows by Definition 4.25

ComMED (o) [((Dn, NEWF), FLDY] :: T+ €p[new C(&n). fj]: (M (dn) = o))

2. By induction on the structure of strict types.

(o =9¢): AssumeComp(D(p,(,)[Z)oS] s IOk Gp[ebs] s p)andComgDy i I+ new C(€) :y) with
CompD :: T+ e; : ¢) for eachi e n, whereS = {this +— Dy,x1+ Dy,...,xn = Dy}, andS
is the term substitution induced ¥y Then by Theorem 4.27 it follows that SN@,(,)[Z)OS] »
I+ Cplep®] 1 ¢), SN@p i [T+ new C(€) :¢) and SN, :: 1+ e : ¢;) for eachi e . By
Lemma 4.21(9) we have that

SN(®(p.o)[{D, D, INvK)] : TTF Ep[new C(€). n(&n)]: ¢)

whereD = (Dy, Do, NewM) i I+ new C(&) : {(m:(¢n) — o), and the result follows by Def-
inition 4.25

(o= C): Similar to the case for type variables.



(0=

(o

(f :0)): AssumeComDp ) [Dp°]:: T Ep[epS]: (f (o)) andComgDy :: TT+new C(€) :
) with CompD, :: I1+ i : ¢;) for all i e 0, whereS = {this — Dy, x1 > D1,...,xXn > Dy},
ands is the term substitution induced I By Definition 4.25 it follows that

Comp(D(po)[ D], Fp) = TTF CplepS]. f : o)

Take the expression contel , = €p. f and the derivation conteq, , .y = (D(p,o), FLD) ::
[T+ €p. f - o. Notice that

(D(p.o) [ D], F0) 1 T F Cplen®]. f 1o = D oy [D6°] 1 TTF € €] : o

So we have
COMKDig 1 [D6°] 2 TTF € [e4°] : )

Then by the inductive hypothesis it follows that
Comp(Dg , ) [(D, D, nvi)] 2 TTE € [new C(&). n(e&n)]: o)

whereD = (Dy, Do,NewM) =TT - new C(€) : (m:(¢n) — o). So by the definition of®’
this gives us

Comi{(D(po)[{D, Dn,NvK)], FLp) = TTF Ep[new C(€). n(&n)]. f 1 o)
and by Definition 4.25 it follows that

ComMI{D(p.o)[{(D, D, nvk)] 12 TTF Ep[new C(€). n(&n)]: (f 10))

(M :(#'w) = o)): Assume thatComgD(p,[Dp°] 2 IT + Cplep’] @ (i (¢'w) — o)) with

Com Dy ::TT+-new C(€) :y)andComyD i 11+ e; : ¢;) for all i e n, whereS = {this

Do, X1 = Du,....xn > Dy}, andS is the term substitution induced ky. Now, take ar-
bitrary derivationsD?,..., Dy such thatComgDj :: Ik + € : ¢;) for eachk e ". By

Definition 4.25 it follows thatComf(®’, D"y, nvk) :: I + Gp[ebs]. mM(€ ) : o) where
I = NIy, D = Dpe)[ DS][ < 1] and D'k = DT < 1] for eachk e ', By

Lemma 4.7

D' = D(p.o)[ DT <] = Dyp oy [TV LT[ D> [IT < TT]]

Now, take the exi)ression conteyf , = €p. nf(€7y) and the derivation conte(y, ., =
<®(p’a-)[nl é H],D,,n',INVK> H, F Gp m'( é—r‘n’) Lo, NOtlce tha.t

(D', D7y ,INVK) = Dig oy [ D> [TV ST 12 T € [4°] 2 0

So we have(:omp(bzo,p’o,)[DDS[H’ QI I v %p[ebs] : o), and then by Lemma 4.14,

Comp(b(ohpﬂ,)[@os[“'@“]] T F € [eb®]: o). Now, by Lemma 4.26Comp{Do[ 11" < 1] ::

ITFnew C(€) :y)andComdD [IT" <II] :: [T+ e; : ¢;) for all i e n. Thus, by the inductive
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hypothesis

ComF(DEO.p’U,)[(Z)",Dl[H’ <UI),..., D011 < I0],INnvK)]
DI F Gy p[new C(€). m(en)]: o)

whereD”’ = (Dy, Do[IT" <II],NewM) 1 IT" - new C(€) : (m:(dn) — o). So, by the defini-
tion of @', this gives us

ComE(Dpon [ ST(D”, DI <M],..., Do[I1 < T, 8vvK)], D7y, INVK)
DI F Cplnew C(€). m(ep) ]. m(€7y) 1 0)

Then by Definition 4.5 it follows that

ComE(Dp.o [T < T[(D, Dy, nwvi)[IT" <], D7y, INVK)
I F Cplnew C(€). m(ep) ]. m(€7y) 1 0)

whereD = (Dy, Do,NewM) ;1 TT+ new C(€) : (m:(én) — o), and by Lemma 4.7 we have

Comi(Dp.o)[{D, D, nv)][TT < ], D", INVK)
I F Cplnew C(€). m(ep) ]. m(€7y) 1 0)

Since the choice of the derivatior®4,..., D was arbitrary, the following implication
holds:

VO [ Vien [ComdD) T +e}:¢)] =
Com(D"”,D,.... 0y, nvk) 1" He. m(&y) o) ]

whereD””’ = D(p,(,,)[<D,@n,1NVK>][H’ < I and D' = D4[II < IIi] for eachk e . Then,
by Definition 4.25 we have

COMED .o [{D, Dn,nvk)] 2 TT+ Cplnew O(&). n(en)]: (nf:(@'w) — o))

O

Another corollary of Theorem 4.27 is that identity (deriga) substitutions are computable in their
own environments.

Lemma 4.29. LetII be a type environment; thddp is computable irdl.

Proof. Let IT = {X1:¢1,...,Xn:¢n}. SOldg ={x1t> Dy T+ X1 d1,....,Xp > Dp - Xq @1}, by
Definition 4.15. Notice that for eadhe n the derivation?, contains no derivation redexes, i.e. it is in
normal form and thus SM§). Notice also that, since; = €[x;] where € is the empty context [] (see
Definition 4.3), SN, :: 1+ €[x] : ¢;) for eachi e i. Then, by Theorem 4.27(2) it follows th@bomgD).
Thus, for eackx:¢ € I1 there is somé e ni such thak = x; andComfd$;) and so by Definition 4.29dy

is computable ifl. O
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The final piece of the strong normalisation proof is the ddidn replacement lemma, which shows
that when we perform derivation substitution using combletalerivations we obtain a derivation that is
overall computable. In [10], where a proof of the strong nalisation of derivation reduction is given for
A-calculus, this part of the proof is achieved by a routineigtzbn on the structure of derivations. In [15]
however, where this result is shown for combinator systehesreplacement lemma was proved using
anencompassmemelation on terms. For that system, this was the only way t@@the lemma since
the intersection type derivations in that system do notaiargll the reduction information for the terms
they type - some of the reduction behaviour is hidden bectypss for the combinators themselves are
taken from an environment. Given the similarities betwdenreduction model of class-based programs
and combinator systems, ats in general, one might think that a similar approach would éeessary
for v, This is not the case however, since our type system incarp®a novel feature: method bodies
are typed foreachindividual invocation, and are part of the overall derigati Thus, there will be sub-
derivations for the constituents of each redex that willegygluring reduction. The consequence of this
is that, like for thea-calculus, we are able to prove the replacement lemma higlstfarward induction
on derivations.

Lemma 4.30.If D :: 11+ e : ¢ andS is a derivation substitution computablelihand applicable taD,
then ComfDS).

Proof. By induction on the structure ab. The qewF) and (ewM) cases are particularly tricky, and
use Lemma 4.28. Ldll = {x1:¢7,....xn:¢;} andS = {xX 1 > D1 I F €11 ¢),.... X > Dy T+

W D@, With {x1,....xp} € {X'1,...,X n}. Also letS be the term substitution induced 8 As for
Lemma 4.12, when applying the inductive hypothesis we mof#icitly that if S is applicable taD then
it is also applicable to subderivations Of

(w): Immediately by Definition 4.25 sinc®® = (w) :: I’ - e5 : w.

(var): ThenD : I1+ x : o. We examine the dlierent possibilities foD®:

e x:o€ll, sox =x; for somei en” and D, : I’ + €} : 0. ThenDS = D). SinceS is
computable if1 it follows that ComgD’), and scComgD?).

e x:¢p €Il for somep <o, SO =01n... noy With o = o for somei e ii. Also, x = x j for
somejen”’ andD’j 1"+ €' : ¢, S0D"| = (D7, 50IN) With D4 T1 + €’ . oy for eachk e .
Now, by Definition 411D° =D I+ €’ . oj. SinceS is computable i1 it follows that
Comp®’j), and then, by Definition 4.25, th@omgD’k) for eachk e n. Thus, in particular
ComgD’}), and sacComgD®).

(FLp): ThenD = (D' k) M re.f :ocand?’ 11+ e: (f ;o). By inductionComgD’S :: 11" + eS :
(f :0)). Then by Definition 4.25Com(D’S,kp) :: I’ + €S. f : o). Notice thaD’S,rLp) = D°
and socComgD").

(nvk): ThenD = (Do, Dy, INvK) : TT F eg. (&) o With Dy TTFeg : (m:(fn) — o) andD, 11+ e : ¢
for eachi € ii. By induction we have thaComgDy® :: I’ + €S : (m: (¢n) — o)) and also that
ComgD;S :: 11 - e;S : ¢;) for eachi € fi. Then, by Definition 4.25, it follows that

Com( D [IT” < IT'], D[ < IT),..., D[ < IT'], INvK)
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T FegS. megS, ... end) (o)

wherell” = NII’ - TI,, andIT; = IT for eachi € i. Notice thafil” =TI’ and that for allD :: TTr e : ¢,
DT LTII] = D, so it follows that

Com{D>, Di5,.... D3, Invk) = IT F egS. m(eg’, ..., end) @ o)

Notice that(Dg%, D15, ..., D5, mvk) = D° and socComgDd).

(JoiN): ThenD = (Dp,10oW) il Fe:o1n...nop andD I e : o for eachi e i. By induction,

ComfD° :: IT' + eS : o) for eachi € i and so by Definition 4.25Comg(D:S, ..., DS, 10IN) ::
I’ FeS:o1n... noy). Notice thak Dy, ..., DS, 50y = D and socComg D).

(oB1): ThenD = (Dy,o81) ::I1F new C(&,) :Cand for each e N, :: [T+ e; : ¢; for someg;. By induc-

tion it follows thatComgD° - I’ + e;S : ¢;) for eachi € M and then by Theorem 4.27 we have that
SN@OS :: 1T’ + e;S : ¢;) for eachi e . So by Lemma 4.21(4) we have that $XX°, ..., D, 08) ::

I - new C(esS, ..., e%) : C) and thus by Definition 4.25 th&@@om(D:>,..., D>, 081) = 1T F
new C(e1°, ..., ex°) : C). Notice that Dy, ..., D, 01) = O° and soComg D).

(NewF): ThenD = (Dn,NewF) T+ new C(&p) : (fj :o) with F(C) =T and j € 71, and there is some

én such thatD ;1 I + e : ¢; for eachi e A with ¢; < o andg¢; # w. By induction ComD* ::
I+ e : ¢) for eachi e . Now, takeD,) = ([]) and € = []. Notice thatD»[D;5] :: TT +
ClejS]: o =D;% T+ ¢S : ¢j and sOCCOMED (o, [D;°] :: T+ €[e;5] : ;). Then by Lemma 4.28
it follows that Comg{D o) [((D, ..., D5 ,NewF),Fp)] : TT + C[new C(es5, ..., en°5). fj]: o),
that isComg((DS, ..., D%, NewF),FLp) :: TT - new C(e1%, ..., ex°). f : o). Then by Definition
4.25 we have thaEom(D5, ..., D5, NewF) : T - new C(e15, ..., e,°) :(fj :0)). Notice that
(DS,.... D NewF) = D° and soComgDS).

(NewM): Then D = (Dy, Dy, NewM) =2 T+ new C(€) : (m: (¢p) — o) with Mb(C,m) = (X", ep) such
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thatDy, i 11" Fep o andDy i 11+ new C(€) : ¢ wherell” = {this W/,X'1:¢1,...,X n:dn}. By
induction we haveComiDg® :: I’ + new C(€) S : ). Now, assume there exist derivatiofs :
i+ €1:¢1,....D01 I+ €, ¢n Such thalComy D) for eachi € Ai. LetIT”” = NIT’ - TI,,; notice,
by Lemma 3.7, thall”” < II; for eachi € n so from Lemma 4.6 it follows thaComg D [T <
IL]:: I + €; : ¢;) for each. Also by Lemma 3.1]"”” < IT” and so then too by Lemma 4.6 we
have ComgDS[IT” < I1] :: TI"” + new C(€) S : ¢). Now consider the derivation substitution
S’ ={this - DS[I” <IT'], X1 Di[IT” QIL4], ..., X 'n = Do[IT” < I1,]}. Notice thatS’ is
computable i1 and applicable t@y,. So by induction it follows tha€omgD,S :: 117 + e, :
o) whereS' is the term substitution induced k¥/. Taking the derivation conte® ) = ([]) and
the expression conteft= [], notice thatD [P ] 1" + C[epS]: o= D% 11" rep’ : o,
and so)ComiDon[ D% ] :: T + €[epS'] : o). From Lemma 4.28 we then have

ComDo.n[(D’, D[IT"” <1y], ..., DI < Ip],INvK)]
ST - Glnew C(€)S. m(E)]: o)



whereD’ = (Dy, DS[IT” < I1'],NewM), that is
Com(D', Du[IT"” <4],..., D011 < Tp],nvk) T Fnew C(€) S. (&) @ 0)

Notice that®’ = DS[IT" < I1"”’]. Since the existence of the derivatiofis, ..., D, was assumed,
the following implication holds:

VDn [ComD 1T € : ¢)] =
Com(D”,D5,...,Dn,wvk) I +new C(€). m(€p) :0)

whereD” = D[ < II'] and D/ = DT < T1;] for eachi € T, with TI”” = NIT' - T,. So, by
Definition 4.25 it follows thaComd®D® :: I’  new (&) S : (m: (én) — o).

Using this, we can show that all valid derivations are corabiat
Lemma4.31.D:Il+re:¢p=ComgD:Il+e: @)

Proof. Supposél = {x1:¢1,...,Xn:¢n}, then we take the identity substitutiddi; which, by Lemma 4.29,
is computable ifdl. Notice also that, by Definition 4.11d; is applicable taD. Then from Lemma 4.30
we haveComg©'") and since, by Lemma 4.18Y% = 9 it follows thatComgD). O

Then the main result of this chapter follows directly.
Theorem 4.32(Strong Normalisation for Derivations)f D :: T+ e : ¢ then SND).

Proof. By Lemma 4.31 and Theorem 4.27(1) O
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5. The Approximation Result: Linking Types with
Semantics

5.1. Approximation Semantics

In this section we will define aapproximation semantid®er r1¢ by generalising the notion of approx-
imant for thed-calculus that was discussed in Section 3.2. The concegimbaimants in the context
of m® can be illustrated using the class table given on the foligwpage in Figure 5.1. This program
codes lists of integers and uses them to implement the Prieve Slgorithm of Eratosthenes. It is not
quite a propers® program, since it uses some extensions to the language ynpore integer values
and arithmetic operations on them, andifathen-else construct. Note that these features can be
encoded in pures® (see Section 6.4), and so these extensions serve merelyyatate convenience
for the purposes of illustration.

Lists of integers are coded in this program as expressiotieedbllowing form:

new NonEmpty(n 1, new NonEmpty(n 2, ...

new NonEmpty(n x, new IntList()) ...))

To denote such lists, we will use the shorthand notatign »:....n  ¢:[] . To illustrate the concept of
approximants we will first consider calling tisguare method on a list of integers, which returns a list
containing the squares of all the numbers in the original Tike reduction behaviour of such a program
is given below, where we also give the corresponding (dirggproximant for each stage of execution:

The expression: has the approximant:
(2:2:3:[]).square() L

—*  1:(2:3:]]).square() 1: L

—*  1:4:(3:]).square() 1:4: 1

—*  1:4:9:([]).square() 1:4:9: L

—* 1:4:9]] 1:4:9:]

In this case, the output is finite, and the final approximattiésend-result of the computation itself. Not
all computations are terminating, however, but might ptitiduce output. An example of such a program
is the prime sieve algorithm, which is initiated in the pragr of Figure 5.1 by calling therimes
method (note that in the following we have abbreviated théhot nameremoveMultiplesOf to
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class IntList extends Object {
IntList square() { return new IntList(); }
IntList removeMultiplesOf(int n) { return new IntList(); }
IntList sieve() { return new IntList(); }
IntList listFrom(int n) { return new NonEmpty(n, this.list From(n+1)); }
IntList primes() { return this.listFrom(2).sieve(); }

}

class NonEmpty extends IntList {
int val;
IntList tail;
IntList square() {
return new NonEmpty(this.val * this.val, this.tail.squar e(); }

IntList removeMultiplesOf(int n) {

if (this.val % n == 0) return this.tail.removeMultiplesOf( n;

else return new NonEmpty(this.val, this.tail.removeMult iplesOf(n));
}
IntList sieve() {

return new NonEmpty(this.val,

this.tail.removeMultiplesOf(this.val).sieve());

}
}
Figure 5.1.: The class table for the Sieve of Eratosthenes in
rMO):

The expression: has the approximant:

new IntList().primes() L
—* (2:3:4:5:6:7:8:9:10:11:...).sieve() L
—*  2:(3:(4:5:6:7:8:9:10:11:...).rMO(2)).sieve() 2: L
—* 2:3:(((5:6:7:8:9:10:11:...)

.IMO(2)).rMO(3)).sieve() 2:3: 1
—*  2:3:5:((((7:8:9:10:11:...)
.rMO(2)).rM0O(3)).rMO(5)).sieve() 2:3:5: 1

The output keeps on ‘growing’ as the computation progressed thus it is infinite - there is no final
approximant since the ‘result’ is never reached. Thus in every approximant since, at every stage of
the computation, reduction may still take place.

The approximation semantics is constructed by interpgedim expression as the set of all such ap-
proximations of its reduction sequence. We formalise tlisom below and, as we will show shortly,
such a semantics has a very direct and strong correspondéthcthe types that can be assigned to an
expression.

Definition 5.1 (Approximate Expressions) 1. The set ofapproximateri expressions is defined by
the following grammar:

a = x | 4L | af | ama) | new C(a, (n=0)

2. The set ofnormal approximate expressiong,, ranged over by, is a strict subset of the set of
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approximate expressions and is defined by the following gram

A = x | L | new C(A) (F(C=Tp)
|  Af | A n(A) (A% L, A#new C(Ay))

The reason for namingormal approximate expressions becomes apparent when we cottisaler
expressions that they approximate - namely expressiotead] normal form. In addition, if we extend
the notion of reduction so that field accesses and methcelaall are themselves reducedtothen we
find that the normal approximate expressions are normaldavith respect to this extended reduction
relation. Note that we enforce for normal approximate esgians of the forrmew C(A) that the
expression comprise the correct number of field values foddtlared class. We elaborate on this in
Section 5.3 below.

Remark. It is easy to show that all (normal approximate) expressioh®ormA. f and A. m( A) must
necessarily be neutral (i.e. must have a variable in headtipo3.

The notion of approximation is formalised as follows.

Definition 5.2 (Approximation Relation) The approximation relatiort is defined as the contextual
closure of the smallest preorder on approximate expresssatisfyingL C a, for all a.

The relationship between the approximation relation amtlicton is characterised by the following
result.

Lemmab.3.If Aceande —* € ,thenACc e .

Proof. By induction on the definition of>*.

(e »* e): AC e by assumption.

(e »* € &€’ —*¢ ). Double application of the inductive hypothesis.

(e — € ): By induction on the structure of normal approximate expiens.
(L): Immediate, since.C € by definition.
(x): Trivial, sincex does not reduce.

(A.f): Thene =€’ .f with AC€’. Also, sinceA# new C(A,) it follows from Definition 5.2
thate’ #new C(&p). Thuse is not a redex and the reduction must take plac jrthat is
€ =€’ .f withe’ — €’ . Then, by inductionAc e andsoA. f ce’ . f.

(A. (A, ): Thene =€g. (&, with AC €g andA; C e; for eachi e 0. SinceA # new C(A) it
follows thatey # new C(€") . Sincee is not a redex, there are only two possibilities for the
reduction step:

1. ep > €gande =¢€gp. n( &) . By inductionAc €y and so als@\. n(A,) C €g. (&) .

2. ej — € for somej e Nande =eq. n{€y) with €, = ey for eachk € i such thak # |.
Then, clearlyA, C € for eachk € n such thak # j. Also, by inductionA C €. Thus
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(new C(A,)): Thene =new C(&,) with A; Ce; for eachi en. Alsoe; — € for somej e and
€ =new C(€ ) where€y = e, for eachk € n such thatk # j. Then, clearlyA, C € for
eachk e n such thak # j and by inductiony c €. Thus, by Definition 5.2pnew C(A,) C
new C(€p). |

Notice that this property expresses that the observablavimir of a program can only increase (in
terms of) through reduction.
We also define fin operation on approximate expressions.

Definition 5.4 (Join Operation) 1. Thejoin operation on approximate expressions is a partial
mapping defined as the smallest reflexive and contextualrelas:

lila = aullL = a

2. We extend the join operation to sequences of approximxaressions as follows:

Le=1

I_Ia-HnZaI_I(LJa:n)

The following lemma shows that acts as an upper bound on approximate expressions, andithat i
closed over the set aformalapproximate expressions.

Lemma 5.5. Letas, a, anda be approximate expressions such that a anda, C a; thena; Liay C a,
with botha; C a; La; anday C a; Llap. Moreover, ifa; anda, are normalapproximate expressions,

then so isa; Liay.
Proof. By induction on the structure af.

(a=1): Then by Definition 5.2a; = a» = L (so they are normal approximate expressions) and by
Definition 5.4,a; Llap = L (which is also normal). By Definition 5.2, c 1, and so the result
follows immediately.

(a =x): Then we consider the fierent possibilities foa; anda, (notice in all cases botly anda, are
normal):
(a1 = L,ap = 1): By Definition 5.4,a; Llap = L L L = L (which is normal). By Definition 5.2,
Ll Caandsoa; Liap Ca, and alsaL £ L so thusa; C a; Lay anday C ap Uay.

(a1 = L,ap =x): By Definition 5.4,a; Liaz = L Lix = x (which is normal). By Definition 5.2,
X Cx and soa; Liap C a anday C a; Liay. Also by Definition 5.2,1. C x and saa; C a3 Liay.

(a1 =x,ap = 1): Symmetric to the case{ = L,a, = x) above.
(a1 = x,a2 =x): By Definition 5.4,a; Liay = x Lix =x (which is normal). The result follows from
the fact that, by Definition 5.% C x.
(a=a .f): Then again we consider thefldirent possibilities foa; anda,.
(a1 = L,ap = 1): By Definition 5.4,a; Llap = L 1L = L (which is normal). By Definition 5.2,

L Caandsoa; Liap Ca, and alsaL £ L so thusa; C a; Lay anday C ap Uay.
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(a1 = 1,ap # 1): Notice L is normal. By Definition 5.4a; Lia; = L Llay = ap, and soa; Ll ap
is trivially normal if a, is normal. By Definition 5.2,L C a, and soa; C a3 Liay. Also by
Definition 5.2,a, C a» and soap C a; Liay. Finally, sincea, C a by assumption, it follows
thata; Lay C a.

(a1 # L,ap = 1): Symmetric to the case above.

Im

(ap=aj;.f,ap=ady. f,@1Ca ,apCa ). Byinduction it follows thata, Lia, ca with a;
aiUay anday C ajy uay. Then by Definition 5.2 it immediately follows that Lia. f
a.fwitha,. f caguas. f anda,. f caquas. f. The result follows from the fact that,

Im

by Definition 5.4,a; Liap = a1 Lias. f.

Moreover, ifa; anday are normal, then by definition so aslg anda,, with botha'y
anda, being neitherL, nor of the formnew C(a@ ). Then by inductiore’; Lia» is also
normal, and by Definition 5.4 the join is neither equalitanor of the formnew C(a ) .
Thus, by Definition 5.2a1 L1a». f = a3 Liaz is a normal approximate expression.

(a=a.ma@ay) ). (a=new C(ay)): By straightforward induction similar to the case-a . f . O

Definition 5.6 (Approximants) The function returns the set ohpproximantf an expressioe and
is defined by:
Al)={A]| de [e—>"€ & ACE ]}

Thus, an approximant is a normal approximate expressionajaroximates some (intermediate)
stage of execution. This notion of approximant allows usefind an approximation model fer*.

Definition 5.7 (Approximation Semantics)Theapproximation modefor an k¢ program is a structure
(p(A),T-1y, where the interpretation functiohl, mapping expressions to elements of the dom&if),
is defined by el = A(e).

As for models ofic, our approximation semantics equates pairs of exprestianare in the reduction
relation, as shown by the following theorem.

Theorem 5.8.e1 —»* e, = A(e1) = Aley).

Proof. (2): e1 —>"ex & Ae Aler) = (Def. 5.6)
e;1 > ey & dez[e) »*e3 & Acez] = (trans.—%)
dez[e; »* e3 & AC e3] = (Def. 5.6)
Ae Aer)
(Q): e1—*ex& Ac A(er) = (Def. 5.6)
e;1 > ey & dez[e; > ez & AC es] = (Church-Rosser)
des,e4sfe1 > er & er—o"es& e > ez& ez—"es & Acez] = (Lem. 5.3)
deyg[er >* e4 & AC e4] = (Def. 5.6)

Ae ﬂ(ez)

65



5.2. The Approximation Result

We will now describe the relationship that our intersectigpe system from Chapter 3 has with the
semantics that we defined in the previous section. This tdleeform of anApproximation Theorem
which states that for every typeable approximant of an esgioe, the same type can be assigned to the
expression itself:

[re:poAAcAe) [TT+-A: ¢]

As in other systems [15, 10], this result is a direct consege®f the strong normalisability of derivation
reduction, which was demonstrated in Chapter 4. In this@gcive will show that the structure of the
normal form of a given derivation exactly corresponds todtnacture of the approximant which can be
typed. This is a very strong property since, as we will dertrates, it means that typeability provides a
suficient condition for the (head) normalisationexpressionsi.e. it leads to derminationanalysis for

FI¢.

Definition 5.9 (Type Assignment for Approximate Expressian3ype assignment for approximate ex-
pressions is defined exactly as for expressions, using tee given in Figure 3.1.

Since we have not modified the type assignment rules in anyottey than allowing them to operate
over the (larger) set adipproximateexpressions, note that all the results from Chapters 3 arudd4dt
this extended type assignment. Furthermore, since there éxtra explicit rule for typingL, the only
type which may be assigned 10is w. Indeed, this is the case for any expression of the 1&fm] where
¢ is a neutral context.

To use the result of Theorem. 4.32 to show the ApproximatiesuR, we first need to show some
intermediate properties. Firstly, we show thasafe derivations in normal form do not type expressions
containing.L; it is from this property that we can show thesafe typeability guarantees normalisation.

Lemmab5.10.If D:: T1+ A: ¢ with w-safeD andIl, thenA does not contain.; moreover, ifAis neutral,
theng does not contaim.

Proof. By induction on the structure @.
(w): Vacuously true sincéw) derivations are nab-safe.

(vaR): ThenA = x and so does not contain. Sincex is neutral, we must also show thatdoes not
containw. Notice ¢ is strict and there is somg < ¢ such thatx:y € I1. Since¢ is strict, ¢ # w
and sincdl is w-safe it follows thaty does not contaiw; therefore, neither does

(D, Dn,nvk): ThenA=A. n(A,) andg¢ is strict, hereafter called. Also D’ :: TT+ A : (m: (én) — o)
with 9 w-safe, andD, :: I1+ A : ¢; for eachi e n. By induction A’ must not containL. Also,
notice thatA must be neutral, and therefore so mast Then it also follows by induction that
(m: (¢n) — o) does not contaiw. This means that ng; = w, and so it must be that eadh, is
w-safe; thus by induction it follows that g contains_L either. Consequenthy’. m(A,) does
not containL ando- does not contaiw.

(Dp, D' ,NewM): ThenDy, . II' + ey : o with this e IT’ andD’ i T1+ A y. SinceD is w-safe so also
is ©" and by induction it then follows that does not contairL.
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(rLp), (oB1), (NewF), (loiN): These cases follow straightforwardly by induction. O

The next lemma simply states the soundness of type assignmithnrespect to the approximation
relation.

Lemmab5.11.If D :: 11+ a: ¢ (with D w-safe) anda C a then there exists a derivatiap’ :: TI+a : ¢
(where?' is w-safe).

Proof. By induction on the structure @.

(w): Immediate, takingD’ =(w) ::T1+ @ : w. In thew-safe version of the result, this case is vacuously
true sinceD :: I+ a : w is not anw-safe derivation.

(var): Thena =x and®D = (var) :: [T+ x : o. By Definition 5.2, it must be that = x, and so we take
D’ = D. Notice thatD is anw-safe derivation.

(rp): Thena=a;. f andD =(D’',rp) I+ ay. f 1o with O 1 11+ a; : (f o) (notice that ifD is
w-safe then by definition so ®’). Sincea;. f ca , by Definition 5.2 it follows thatl = ay. f
with a; C ap. By the inductive hypothesis there then exists a derivatidhsuch thatD” :: TT+
ay : (f 1oy (with D" w-safe) and by ruler(p) it follows that(D"”,rp) :: T+ ay. f : o (which by
definition isw-safe if D is).

(yon), (nvk), (Oe1), (NewF), (\ewM): These cases follow straightforwardly by induction, Bémto the
case for fLp) above. O

We can show that we can type the join of normal approximateessons with the intersection of all
the types which they can be individually assigned.

Lemma5.12. LetAq,...,A, be normal approximate expressions with @ ande be an expression such
thatA; C e for each ic i; if there are (v-safe) derivation®D,, such thatD, :: TT+ A : ¢; for each ie 7,
thenUA, C e and there areq-safe) derivation®’,, such that?’; :: [T+ UA, : ¢; for each ic i. Moreover,
LA, is also a normal approximate expression.

Proof. By induction onn.

(n=2): Then there arg; andA, such thaty; C e andA; C e. By Lemma 5.5 it follows thaty LAy C e
with A; LIA> a normal approximate expression, and also that A; LIA» andA; C Ay LI A,.
Therefore, given thaDy ;i T1+ A; : ¢ and Dy TITF Ay : ¢ (With w-safeDy and D), it follows
from Lemma 5.11 that there exist derivatiafg and D’ such thatD’; :: T+ A; LIA : ¢1 (with

"1 w-safe) andD5 1T+ AL LA, : ¢ (With D% w-safe). The result then follows from the fact
that, by Definition 5.4
LA = Aiu(UAz-€)
= AtU(A2u(ue)
= AU (A2 L J_)
= AMMUA

(n>2): By assumptiomyy ce andD, I+ A : ¢ (with D, w-safe) for each € n. Notice thatA, =
As A"y wheren=n’'+1 andA | = A 41 foreachi e . ThusA' jce andD,q TTFA i : ¢l for
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eachi e i'. Therefore by the inductive hypothesis it follows thak™, C e with LA™ a normal
approximate expression, am :: T+ LAy : ¢i1 (With D w-safe) for eache . Then we have
by Lemma 5.5 that; LI (LA ) C e with A; LI(LWA ) a normal approximate expression, and also
thatA; C Ay LU (LA ) with LA™y C AL U(UA ). So by Lemma 5.11 there is a derivatif”
(with D" w-safe) such thaD” :: T+ Ay LI (LA ) : ¢1, and (u-safe) derivationsD”,, such
that D’/ I+ Ay LU (LA ) : ¢t fOr eachi e . The result then follows from the fact that, by
Definition 5.4, LA, = A U (LA ). O

The next property is the most important, since it is this #agiresses the relationship between the
structure of a derivation and the typed approximant.

Lemma5.13.If D :: 11+ e : ¢ (with D w-safe) andD is in normal form with respect tes, then there
existsA and w-safe)?’ such thatAc e and D’ 1 TI+ A: ¢.

Proof. By induction on the structure db.

(w): TakeA = L. Notice thatL c e by Definition 5.2, and by«) we can takeD’ = (w) :: 1+ L : w. In
the w-safe version of the result, this case is vacuously trueedime derivatiorD = (w) :: I+ e : w
is notw-safe.

(var): Thene =x and D = (var) :: TT + x : o (notice that this is a derivation in normal form). By
Definition 5.1,x is already an approximate normal form and x by Definition 5.2. So we take
A=x and?’ = D. Moreover, notice that by Definition 4.9) is anw-safe derivation.

(JoiN): ThenD = (Dp,10N) - e:o1n... nopy With n> 2 andD, :: 1+ e : o for eachi e Ai. Since
P is in normal form it follows that eact, (i € n) is in normal form too (and also, i is w-safe
then by Definition 4.9 eacl is w-safe too). By induction there then exist normal approxenat
expressiond, and (-safe) derivation®’,, such that, for eache N, A ce andD} :: I+ e :
oi. Now, by Lemma 5.12 it follows thatiA, C e with LA, normal and that there are){safe)
derivationsD”, such thatD’{ :: TT + LA, : o for eachi € Ai. Finally, by the (oix) rule we can take
(w-safe)? = (D" 108y 1+ LA, o1N... No.

(rLp): Thene=¢€ .f andD =(9',rp) ::II+€ . f o with D' :1I+ € :(f o). SinceD is in normal
form, so too is?’. Furthermore, ifD is w-safe then by Definition 4.9 so too ®'. By the
inductive hypothesis it follows that there is somand -safe) derivationD” such thatAc €
andD” 1+ A: (f :o). Then by rule ), (D”,rp) :: 11+ A f : o and by Definition 5.2,
A f Cce . f.Moreover, by Definition 4.9, whe®” is w-safe so too i$D", FLp).

(~vk), (oB1), (NewF), (NewM): These cases follow straightforwardly by induction damto o). O

The above result shows that the derivation that types the approximant is constructed from the
normal form®D by replacing sub-derivations of the form) :: TI+ e : w by (w) :: TT+ L : w (thus covering
any redexes appearing &). Since® is in normal form, there are also rgpedredexes, ensuring that
the expression typed in the conclusion®f is a normal approximate expression. The ‘only if’ part
of the approximation result itself then follows easily frahe fact that—> corresponds to reduction of
expressions, sgis also anapproximantof e. The ‘if’ part follows from the first property above and
subject expansion.
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Theorem 5.14(Approximation) IT+ e : ¢ if and only if there existé € A(e) such thalll+ A: ¢.

Proof. (if): By assumption, there is an approximaxof e such thafll+ A: ¢, soe —»* € with AC € .
Then, by Lemma55.11] + € : ¢ and by subject expansion (Theorem 3.11) dlsoe : ¢.

(only if): Let D :: 11+ e : ¢, then by Theorem 4.32D is strongly normalising. Take the normal form
7; by the soundness of derivation reduction (Theorem 4.28), I1+ € :¢ ande —»* € . By
Lemma 5.13, there is some normal approximate expregsguch thall+ A: ¢ andAC € . Thus
by Definition 5.6,A € A(e). O

5.3. Characterisation of Normalisation

As in other intersection type systems [15, 10], the apprasiom theorem underpins characterisation
results for various forms of termination. Our intersectigpe system gives full characterisations of head
normalising and strongly normalising expressions. As még#&o normalisation however, our system
only gives a guarantee rather than a full characterisatimtew-safe derivations are not preserved by
derivation expansion.

We will begin by defining (head) normal forms faf.

Definition 5.15(r® Normal Forms) 1. The set of (well-formedijead-normal form&anged over by
H) is defined by:
H = x | new C(&,) (F(CO=T%p)
| Hf | Hme (H#new C(®))

2. The set of (well-formedjormalforms (ranged over bi) is defined by:

N = x | new (N) (F(O=Fp)
| Nf | NmMN (N#new C(N))

Notice that the dference between normal and head-normal forms sits in the@deew fourth alterna-
tives, where head-normal forms allow arbitrary expresstorbe used. Also note that we stipulate that a
(head) normal expression of the forrew C(&) must have the correct number of field values as defined
in the declaration of clags This ties in with our notion of normal approximate expressi(see Defini-
tion 5.6), and thus approximants, which also must have theconumber of field values. Expressions
of this form with either less or more field values maghnicallyconstitute (head) normal forms in that
they cannot be (head) reduced further, but we discount tleemadformed since they do not ‘morally’
constitute valid objects according to the class table. @aigsion is motivated from a technical point of
view, too. According to the typing rules (in particular, tfwrs) and §ewF) rules), object expressions
can only be assigned non-trivial types if they have the comember of field values. So in order to
ensure that all head normal forms are non-trivially typealhhd thus obtain a full characterisation of
head normalising expressions, we restrict (head) normpmkssgions to be ‘well-formed’.

The following lemma shows that normal approximate expogssivhich are not are (head) normal
forms.

Lemmab5.16. 1. IfA# L andAcC e, thene is a head-normal form.
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2. If Ac e andA does not contain_, thene is a normal form.
Proof. By straightforward induction on the structureAdtising Definition 5.2. O

Thus any type, or more accurately any type derivation ottan those of the fornw) (correspond-
ing to the approximant.), specifies the structure of a (head) normal form via the mbfiorm of its
derivation.

An important part of the characterisation of normalisati®ithat every (head) normal form is non-
trivially typeable.

Lemma 5.17(Typeability of (head) normal forms) 1. If e is a head-normal form then there exists
a strict typeo and type environmeriil such thatll + e : o; moreover, ife is not of the form
new C(&p) then for any arbitrary strict type there is an environment such tHat-e : o-.

2. If e is a normal form then there exist strong strict typetype environmenil and derivation?D
such thatD :: T1 + e : o; moreover, ife is not of the forrmew C(&p) then for any arbitrary strong
strict type there exist strongp andTI such thatD :: T+ e : 0.

Proof. 1. By induction on the structure of head normal forms.
(x): By the (ar) rule,{x:c} + x : o for any arbitrary strict type.

(new C(&p)): Notice thatF (C) = f,, by definition of the head normal form. Let us take the
empty type environmenf). Notice that by rule ¢)) we can derived + e; : w for eachi € n.
Then, by rule ¢sr) we can derivéd - new C( &) : Cfor any type environment.

(Hf): Notice that, by definitionH is a head normal expressioit of the formnew C(&,), thus
by induction for any arbitrary strict type there is an environmeri such thatll+ H: o
Let us pick some (other) arbitrary strict typé, then there is an environmehit such that
IT+ H: {f :0’). Thus, by rule fLp) we can derivdl + H.f : o’ for any arbitrary strict type-'.

(H. m(&p) ): This case is very similar to the previous one. Notice thgitdefinition,His a head
normal expressionot of the formnew C(&)) , thus by induction for any arbitrary strict type
o there is an environmeiit such thall+ H: o. Let us pick some (other) arbitrary strict type
o”, then there is an environmehtsuch thafll - H: {m: (&n) — o). Notice that by rule )
we can derivdI + e; : w for eachi e 0. Thus, by rule iwvk) we can derivdl + H.n( &) : o’
for any arbitrary strict type~’.

2. By induction on the structure of normal forms.

(x): By the (ar) rule, {x:o"} + x : o for any arbitrary strict type, and in particular this holds f
any arbitrarystrongstrict type. Also, notice that derivations of the fofmr) are strong by
Definition 4.8.

(new C(N,)): Notice thatF (C) =T, by the definition of normal forms. Since eaghis a normal
form fori e A, it follows by induction that there are strong strict tygas environmentdl,
and derivation®j, such thatD :: II; - N, : o for eachi € i, Let the environmenkl’ = N TIy;
notice that, by Definition 3.1’ < II; for eachi € 0, and also that since eath is strong so
isTI’. Thus, [T" <TIIj] is a weakening for eache nand D[IT" < IT;] :: IT' + N; : o for each
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i € N. Notice that, by Definition 4.5, weakening does not changesthucture of derivations,
therefore for eache n, H[IT" < II;] is a strong derivation. Now, by rule¥s) we can derive

(O[T QIM4],...,Dn[IT" <II,),085) i I Fnew C(Ny) : C

Notice thatCis a strong strict type, and that since each derivafiill’ < IT;] is strong then,
by Definition 4.8, so iSDy[IT" QI14],..., Dy[IT" < I1,], oB1).

(N.f): Notice that, by definitionN is a normal expressionot of the formnew C(N,), thus by
induction for any arbitrary strong strict typethere is a strong environmeHtand derivation
D such thafl+ N: o. Let us pick some (other) arbitrary strong strict tyge then there are
strongIl and D such thatD :: T1 + N: (f :¢0”). Thus, by rule §.p) we can derivg D, Fip) ::
IT+ Nf : o’ for any arbitrary strict typer’. Furthermore, notice that sin@® is strong it
follows from Definition 4.8 thatD, rLp) is also strong.

(N. m(Np) ): Since eachN for i e nis a normal form it follows by induction that there are strong
strict typeso,, environmentgI, and derivation®,, such thatD, :: I1; - N : o for eachi e .
Also notice that, by definitionN is a normal expressionot of the formnew C(N,), thus
by induction for any arbitrary strict type there is a strong environmeRtand derivatiorD
such thatll + N: . Let us pick some (other) arbitrary strict typg, then there arél and
D such thatD :: T+ N: (m: (cn) — o). Let the environmenil’ = NII-TI, notice that, by
Definition 3.6,IT" < IT andIl” < IJ; for eachi € i, and also that sincH is strong and each
IT; is strong then so iBl’. Thus, [T <I1] is a weakening and” < IT;] is a weakening for
eachi en. ThenD[II' <II] :: I + N: {m: (o)) — o) and D [IT" <IT;] :: IT' + N; : o for each
i € N. Notice that, by Definition 4.5, weakening does not changesthucture of derivations,
thereforeD[IT" < I1] is strong and for eache n, H[TT" < I1;] is also strong. Now, by rule

(1NVK)
(D[IT" <], D11 <I4],..., Dy[IT" <], iNnvk) S I FNM(Ny) o
for any arbitrary strong strict type’. Furthermore, by Definition 4.8, we have that
(O[T O], Du[IT” <My, ..., Du[IT < ], INvK)

is a strong derivation. O

Now, using the approximation result and the above progrties following characterisation of head-
normalisation follows easily.

Theorem 5.18(Head-normalisation)IT+ e : ¢ if and only ife has a head-normal form.

Proof. (if): Let € be a head-normal af. By Lemma 5.17(1) there exists a strict typeand a type
environmentlI such thafll + € : o. Then by subject expansion (Theorem 3.11) it follows that
I[Ire:o.

(only if): By the approximation theorem, there is an appnoait A of e such thatll+ A: o. Thus
e —»* € with AC € . Sinceo is strict, it follows thatA = 1, so by Lemma 5.16 is a head-normal
form. O
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As we saw in Chapter 2 (Section 2.1), normalisability for itleenbda Calculus can be characterised
in 1rp as follows:
B+ M : o with B ando stronge M has a normal form

This result does not hold fan® (a counter-example can be found in one of the worked exangfles
the following chapter, namely the third expression in Exkr@l11). In our system, in order to reason
about the normalisation of expressions we must refer togstigs of derivations ashole and not just
the environment and type used in the final judgement. In faethave already defined the conditions
that derivations must satisfy in order to guarantee nosimgjisince ine® expressions - namely, the
conditions forw-safe derivability.

In general, our type system only allows for a semi-char&aton result:

Theorem 5.19(Normalisation) If D :: T+ e : o with D andIl w-safe there has a normal form.

Proof. By the approximation theorem, there is an approxin#aaf e and derivationD’ such thaty’ ::
II+A: 0 andD —% P’. Thuse —»* € with Ac € . Also, since derivation reduction preservesafe
derivations (Lemma 4.24), it follows th&d’ is w-safe and thus by Lemma 5.10 thatioes not contain
1. Then by Lemma 5.16 we have theitis a normal form. O

The reverse implication does not hold in general since otionof w-safe typeability is too fragile:
it is not preserved by (derivation) expansion. Considet thgle anw-safe derivation may exist for
IT+ ej : o, nO w-safe derivation may exist fdi + new C(gp). fi : o (due to non-termination in the
other expressions;) even though this expression too has a normal form, namelgame normal form
asej. Such a completeness resa#tn hold for certain particular programs, though. We will rettio
this in the following chapter, where we will give a class tahhd specify a set of expressions for which
normalisation can be fully characterised by tifeintersection type system (see Section 6.5).

While we do not have a general characterisation of norntaisavecanshow that the set of strongly
normalising expressions are exactly those typeable usinggsderivations. This follows from the fact
that in such derivations, all redexes in the typed exprassiorespond to redexes in the derivation, and
then any reduction step that can be made by the expressmr{Mis then matched by a corresponding
reduction of the derivation (vievp).

Theorem 5.20(Strong Normalisation for Expressionsy is strongly normalisable if and only i ::
IT+ e : o with D strong.

Proof. (if): Since D is strong, all redexes in are typed and therefore each possible reductioa of
is matched by a corresponding derivation reductior®of By Lemma 4.24 it follows that no
reduction ofD introduces subderivations of the fora), and so sincéD is strongly normalising
(Theorem 4.32) so too is.

(only if): By induction on the maximum lengths of left-mositter-most reduction sequences for strongly
normalising expressions, using the fact that all normahfoare typeable with strong derivations
and that strong typeability is preserved under left-mogtmmost redex expansion. O
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6. Worked Examples

In this chapter, we will give several example programs arsdudis how they are typed in the simple
intersection type system. We will begin with some relatngmple examples, and then deal with some
more complex programs. We will end the chapter by compatiegntersection type system with the

nominal, class-based type system of Featherweight Java.

6.1. A Self-Returning Object

Perhaps the simplest example program that captures thecessi(the class-based approach to) object-
orientation is that of an object that returns itself. Thie ba achieved using the following class:

class SR extends Object {
SR self() { return this; }

}

Then, the expressiomew SR().self() reduces in a single step tew SR() . In fact, any arbitrary
length sequence of calls to tkelf method on amew SR() object results, eventually, in an instance of
the SRclass:

new SR().self() ....self() —"new SR()

This potentiality of behaviour is captured by the type asialgiven to the expressiorew SR() by the
intersection type system. We can assign it any of the inffaitgly of types:

{SR(self :() —» SR),(self :() — (self :() —> SR,
(self :() > (self :()— (self :() > SR)),...}

Derivations assigning these typesttew SR() are given below.

. . (var) (oB1)
(oB1) this :SRrthis :SR rnew SR() :SR
rnew SR() :SR (NewM)
rnew SR() :(self :()—» SR

- . (var) (oBy)
this :SRrthis :SR rnew SR() :SR
(NewM)

rnew SR() :(self :()— SR

(VAR)

{this «self :()— SR}rthis :(self :()— SR
rnew SR() :(self :(self :()— SR)

(NewM)
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- - (var) (oBy)
this :SRrthis :SR rnew SR() :SR
(NewM)

rnew SR() :(self :()— SR

(VAR)

{this «self :()— SR}rthis :(self :()—»SR
rnew SR() :(self :(self :() - SR)

(VAR)

(NewM)

{this :o}rthis o .
rnew SR() :(self :(self :(self :()— SRy)

(NewM)

whereo = (self :(self :() —» SR)
A variation on this is possible in the class-based paradigmvhich the object has a method that
returns a nevinstanceof the class of which itself is an instance:

class SR extends Object {
SR newlnst() { return new SR(); }

}

This program has the same behaviour as the previous ondirnigvihenewinst method on @ew SR()
object results in aew SR() object, and we can continue calling thewvinst method as many times as
we like. Thus, as expected, we can assign the typaginst :() — SR), (newlInst :() — (newlnst :()—
SR)), etc. For example:

. (oB1) - (oBJ)
{this :SR}+new SR() :SR {this :SR}+new SR() :SR
(NewM)

{this :SR}+new SR() :(newlnst :()— SR

- (oBy)
{this :SR}+new SR() : SR

{this :SR}+new SR() :(newinst :()— (newlinst :() - SR)

(NewM)

(oBy)

rnew SR() : SR
(xewM)

rnew SR() :(newlinst :()— (newlinst :() —(newlnst :() - SR))

Notice that there is a symmetry between this derivation Hiermewlinst method, and the equivalent
derivation for theself method. This is certainly to be expected since, operatipfiala pure functional
setting at least), the use within method bodies of the selbbethis and the new instanaew SR()

are interchangeable. In terms of the type analysis, the adetypes(newinst :() — o) are derived
within the analysis for the method body whereas, on the dihed, eacKself :() — o) is assumed
for the selfthis when analysing the method body, and its derivation is defetmtil the self types
are checked for the receiver. Either way, however, therdniays a subderivation assigning each type
(self :() — o) to aninstance ofiew SR() .

6.2. An Unsolvable Program

Let us now examine how the predicate system deals with pmgyithat do not have a head-normal
form. The approximation theorem states that any predicaiehwve can assign to an expression is also
assignable to an approximant of that expression. As we orediin the previous chapter, approximants
are snapshots of evaluation: they represent the informatonputed during evaluation. But by their
very nature, programs which do not have a head-normal fornrotloompute any information. Formally,
then, the characteristic property of unsolvable expressfpe. those without a head normal form) is that
they donot have non-trivial approximants: their only approximantLisFrom the approximation result
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. . (vaR)
this :ww+this :(oop :()— ¢) 7
_ : (INvK) N
this .y r this.loop() Lp Ornew NT() :y

(NewM)
0rnew NT() :¢loop :()— ¢)

DOES NOT EXIST

Ornew NT() :_<Ioop NI
(vAR)
(INVK)

this :(loop :() — ¢yrthis :(loop :() — ¢)

this (loop :() — ¢) + this.loop()

(NewM)
0rnew NT() :<loop :()— ¢)

(var)

(INVK)

this :(loop :() - ¢y rthis :(loop :() — ¢)

this :(loop :() — ¢) + this.loop() )
0rnew NT() :¢loop :() - ¢)

(NewM)

Figure 6.1.: Predicate Non-Derivations for a Non-TermigProgram

it therefore follows that we cannot build any derivation these expressions that assigns a predicate
other tharnw (since that is the only predicate assignable jo

To illustrate this, consider the following program whichhstitutes perhaps the simplest example of
unsolvability inoo:

class NT extends Object {
NT loop() { return this.loop(); }

}

The clasaNT contains a methotbop which, when invoked (recursively) invokes itself on theeiger.
Thus the expressiomew NT().loop() , executed using the above class table, will simply run tlfits
resulting in a non-terminating (and non-output produciogp.

Figure 6.1 shows two candidate derivations assigning atmdat type to the non-terminating ex-
pressiomew NT().loop() , the first of which we can more accurately call a derivaiehemasince
it specifies the form that any such derivation must take. Whgng to assign a non-trivial type to the
invocation of the methotbop onnew NT() we can proceed, without loss of generality, by building
a derivation assigning a predicate variablesince we may then simply substitute any suitable (strict)
predicate forp in the derivation.

The derivation we need to build assigns the predigdtea method invocation so we must first build a
derivationd that assigns the method predicét®p :() — ¢) tothe receivenew NT() . Thisderivation
is constructed by examining the method bodyis.loop() - and finding a derivation which assigns
¢ to it. This analysis reveals that the varialiiis must be assigned a predicate for the metlogd
which will be of the form(loop :() — ¢); new NT() (the receiver) must also satisfy the predicate
used forthis . Finally, in order for the Yar) leaf of the derivation to be valid the predicatemust
satisfy the constraint that < {loop :() — ).

The second derivation of Figure 6.1 is an attempt at ingtdngj the schema that we have just con-
structed. In order to make the instantiation, we must picloacrete predicate fop satisfying the
aforementioned constraint. Perhaps the simplest thing teaiild be to picks = (loop :() — ¢). Next,
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we must instantiate the derivatid®y’ assigning this predicate to the receivew NT() . Here we run
into trouble because, in order to achieve this, we must aygaim the body of method i.e. solve the
same problem that we started with - we see that our instamtiaf the derivationD” must be of exactly
the same shape as our instantiation of the derivaflpof course, this is impossible sing® is a proper
subderivation ofD and so no such derivation exists. Notice however, that tbeivernew NT() itself
is not unsolvable - indeed, it is a normal form - and so we can assighna non-trivial type. Namely,
using the ¢ss) rule we can derive new NT() :NT.

6.3. Lists

Recall that at the beginning of Chapter 5 we illustrated thiecept of approximants using a program
that manipulated lists of integers. In this section, we vatlrn to the example of programming lists in
r1® and briefly discuss two important features of the type amalyfthe list construction.

The basic list construction in® consists of two classes - one to represent an emptyHist @nd
the second to represent a non-empty IMEL), i.e. a list with a head and a tail. In oaf program, we
will also define aList class, which will specify the basic interface for lists. $heclasses will also
contain any methods that implement the operations that wddalike to carry out on lists. We may
write specialise lists in any way that we like, perhaps bytingi subclasses that declare more methods
implementing behaviour specific toffiirent types of list (as in the program of Figure 5.1), but fown
let us consider a basic list with one method to insert an ei¢@itehe head of the list¢ns ) and another
method to append one list onto the end of another:

class List extends Object {
List cons(Object o) { return this; }
List append(List 1) { return this; }

class EL extends List {
List cons(Object o) { return new NEL(o, this); }
List append(List 1) { return I; }

}

class NEL extends List {
Object head;
List tail;

List cons(Object o) { return new NEL(o, this); }
List append(List 1) {
return new NEL(this.head,
this.tail.append(l)); }

If we have some objects,,...,on, then the listos:...: 0n[] (where[] denotes the empty list) is
represented using the above program by the expression:

new NEL(o1, new NEL( 02, ... new NEL(o, new EL() ...))
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The first key feature of the analysis of such a program pravieour intersection type system is that
it is generig in the sense that the type analysis reflects the capabitifithe actual objects in the list,
no matter what kind of objects they are. For example, suppesieave some class€icle , Square ,
Triangle , etc. representing flerent kinds of shapes, and each class contairava method. If we
have a list containing instances of these classes then wassagn types to it that allow us to access
these elements and invoke thdiaw method:

- (newQ)
m+new NEL(new Circle( ..), new EL()) :NEL

I+new Square( ...) :(draw : (&) - 1)

- (NnewF)
I+new Square():new Circle():[] :(head :(draw : (o) - 1))
(xewO)
Irnew EL() :EL
m+new Circle( ... :(draw : (&) - 1)
- (NewF)
m+new Circle( ..):[] :<head:(draw :(o) - 1))
(NewO)
Im-new Square() :Square . c
Im+new Square():new Circle():[] «tail  :(head :(draw :(¢) — 1)) (NewF)

If we had a diferent list containing objects implementing &eient interface with some methémb ,
then the type system would provide an appropriate analggisiar to the one described above, but
assigning method types féso instead. This is in contrast to the capabilities of Java @hdIf the
above list construction were to be written and typeerjwhile we would be allowed, via subsumption,
to add any kind of object we chose to the list (since all classe subtypes @bject ), when retrieving
elements from the list we would only be allowed to treat thennatances obbject , and thus not be
able to invoke any of their methods. If we wanted to creats b§Shape objects and be able to invoke
thedraw method on those objects that we retrieve from it, we wouldegineed to write new classes
that code for lists ofShape objectsspecifically or we would need to extend the type system with a
mechanism fogenerics

The second feature of the intersection type analysis fty iksthat it allows foheterogeneityor the
ability to store objects of dlierent kinds. There is nothing about the derivations aboaeftirces the
types derived for each element of the list to be the same. ergé for any typer; that can be derived
for a list element;, the type

(tail :(tail :...(head :oj)...))
i—1times
can be given to the lisi;: ...: o;: ...;[] asillustrated by the diagram below:
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(var) - (var)
Miro:t II; - this :(head :o)

- - (NewF)
I, - new NEL(o, this) (tail  :(head :o))
mroo ™ vt NEL™™
- (NewF)
. II; - new NEL(o, this) :¢head : o) (e M)
M, - new NEL(o, this) :{cons :(7) — (tail  :(head :07))) Y
— (xewO)
-1 (NEL
(NewM)

IT+1:(cons : (o) = (cons :(r) — (tail :(head :o))))

wherell; = {this :(N)EL,0:0°}
[T, = {this :(head :0),0:7}

Figure 6.2.: Derivation for a heterogeneaass method.

I+ O;:0;j me-...:7
(NewF)
m+new NEL(o;,, ... :¢head :oy)
E - (NewF)
Hro,:01 Mr...00: 2] «(tall .. .<(head :0y)...)
- - NEWF)
Mo, .... 0 .. 0[] :¢tail  (tail  :...<head :0y)...))

More important, perhaps, is that we can give types to the odsttons andappend which allows us

to create heterogeneous lists by invoking them. For exanipleany typeso- andr, we can assign to

a listl the type(cons : (o) — (cons :(r) — (tail :(head :o)))), as shown in the derivation in Figure
6.2. Types allowing the creation, vans , of heterogeneous lists of any length can be derived however
obviously, the type derivations soon become monstrouss fitie-grained level of analysis is something
which is not available via generics, which only allow fusmogeneouksts.

6.4. Object-Oriented Arithmetic

We will now consider an encoding of natural numbers and sampls arithmetical operations on them.
We remark that Abadi and Cardelli defined an object-oriestecbding of natural numbers in tipecal-
culus. In their encoding, the successor of a number is oddaly calling a method on the encoding
of that number, and due to the ability to override (i.e. repJamethod bodies, only the encoding of
zero need be defined explicitly. Since the class-based iganadbes not allow such an operation, our
encoding must be slightly fierent.

The motivation for this example is twofold. Firstly, it sesvas a simple, butfective illustration of
the expressive power of intersection types. Secondly, aacigely because it is a program that admits
of such expressive type analysis, it is a perfect progranmi@pping out the limits of type inference for
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the intersection type system. Indeed, when we define a typreimce procedure in the next chapter, we
will consider the types that we may then infer for this pragras an illustration of its limitations.

Our encoding is straightforward, and uses two classes -mreptesent the number zero, and one to
represent the successor of a(n encoded) number. As witlisttexample above, we will defineNat
class which simply serves to specify the interface of natuenbers. The full program is given below.

class Nat extends Object {
Nat add(Nat x) { return this; }
Nat mult(Nat x) { return this; }

class Zero extends Nat {
Nat add(Nat x) { return x; }
Nat mult(Nat x) { return this; }

class Suc extends Nat {
Nat pred;
Nat add(Nat x) { return new Suc(this.pred.add(x)); }
Nat mult(Nat x) { return x.add(this.pred.mult(x)); }

}

The Suc class, representing the successor of a number uses a fieldréoits predecessor. The
methods that implement addition and multiplication do sdrapslating the usual arithmetic identities
for these operations into Featherweight Java syntax. Blatuwmbers are then encoded in the obvious
fashion, as follows:

[0l = new Zero()
i+ 1y = new Suc(Tily)

Notice that each number, then, has &haracteristictype v, which can be assigned to that number and
that number alone:

vo = Zero

vig1 = (pred [vj)

This is already a powerful property for a type system, howéwveour intersection type system this
has some very potent consequences. Because our systene Isabjict expansion property (Theorem
3.11), we can assign to any expression the characterigticfty its result. Thus, it is possible to prove
statements like the following:

vnmeN . kInly.mult( Tmly) : vam

For the simple operations of addition and multiplicatiofs tts more than straightforward. Notwith-
standing, consider adding methods that implement more exnmdeed arbitrarily complex, arith-
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metic functions. As a further example, we have included eAlppendix a type-based analysis of an
implementation of Ackermann’s function using our intetgst type system.

The corollary to this is that we may also derive arbitrariymplex types describing the behaviour
of the methods oZero andSuc objects. The derivability of the typing statements that \sreegabove
implies that we can also prove statements such as the folgpwi

YnmeN.do. rImly:oc & rInly:{mult () = vnm)

Notice that we have not given the statem&ntme N . + [nly : (mult :(vm) — vmen) SiNce it is not
necessarily the case thaj, is the type satisfying the requirements of thelt method on its argument.
Indeed, it isnot that simple - consider that theult method (for positive numbers) needs to be able to
call theadd method on its argument.

To present another scenario, suppose for example that we tevasombine our arithmetic program
above with the list program of the previous section, andenimethodactors  that produces a list of
the factors of a number (say, excluding one and itself) - &p#y algorithmic process. The encodings
of prime numbers then, would have the characteristic &fpetors :() — EL), expressing that the
result of calling this method on them is the empty list, it@ttthey have no factors. It then becomes
clear what the implications of a type inference proceduretis system are. If such a thing were to
exist, we would need only to write a program implementing recfion of interest, pass it to the type
inference procedure, and ruff a list of its number-theoretic properties.

As we have remarked previously, type assignment for a ftérgection type system is undecidable,
meaning there is no complete type inference algorithm. THadlenge then becomes to restrict the
intersection type system in such a way that type assignnesrbes decidable (or simply to define an
incomplete type inference algorithm) while still beingelb assign useful types for programs. It is this
last element of the problem which is the harder to achievéhdmext chapter, we will consider restricted
notions of type assignment for our intersection type systemobserve that the conventional method of
restricting intersection type assignment (based on rao&}s ahot interact well with the object-oriented
style of programming.

6.5. A Type-Preserving Encoding of Combinatory Logic

In this section, we show how Combinatory Logic can be encadighin r®. We also show that our
encoding preserves Curry types, a result which could ebsilgeneralised to intersection types. This
is a very powerful result, since it proves that the intelisactype system fori® facilitates a functional
analysis of all computable functions. Furthermore, usimg tesults from the previous chapter, we
can show that the type system also givesilacharacterisation of the normalisation properties of the
encoding.

Combinatory Logic ¢L) is a Turing complete model of computation defined by H.B.rZ{#4] in-
dependently ofc. It can be seen as a higher-order term rewriting systentonsisting of the function
symbolsS, K where terms are defined over the grammar

t o= x | S | K | tity
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class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}
class K extends Combinator {

Combinator app(Combinator x) { return new K 1(X); }
}

class K ; extends K {
Combinator X;
Combinator app(Combinator y) { return this.x; }

}
class S extends Combinator {

Combinator app(Combinator x) { return new S 1X); }
}

class S ; extends S {
Combinator X;
Combinator app(Combinator y) { return new S o(this.x, y); }

}

class S , extends S ;| {
Combinator vy;
Combinator app(Combinator z) {
return this.x.app(z).app(this.y.app(z)); }

Figure 6.3.: The class table for Object-Oriented Combityat@gic (oocL) programs

and the reduction is defined via following rewrite rules:

Kxy — X
Sxyz —» xz(y2

Through our encoding, and the results we have shown in thdgoe chapter, we can achieve a
type-based characterisation of all (terminating) comipletéunctions inoo (see Theorem 6.10).

Our encoding ot in rs¢ is based on a Curryfied first-order version of the system afsee[14] for
details), where the rules f@ andK are expanded so that each new rewrite rule hsisgle operand,
allowing for the partial application of function symbols.p@lication, the basic engine of reduction in
TRS, IS modelled via the invocation of a method nanapg. The reduction rules of Curryfied. each
apply to (or are ‘triggered’ by) dlierent ‘versions’ of thés andK combinators; in our encoding these
rules are implemented by the bodies of fivealient versions of thapp method which are each attached
to different classes representing thffatient versions of th& andK combinators. In order to make our
encoding a valid (typeable) program in full Java, we havengefiaCombinator class containing an
app method from which all the others inherit, essentially agtas aninterfaceto which all encoded
versions ofSandK must adhere.

Definition 6.1. The encoding of Combinatory Logic into thé programoocL (Object-Oriented Com-
binatory Logic) is defined using the class table given in Fégit3 and the functiof- ] which translates
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terms ofcw into ¢ expressions, and is defined as follows:

Ixl = x

ltit2] = Ttilapp( [t2])
[K] = new K(

[SI = new S(

The reduction behaviour @focL mirrors that ofcr.
Theorem 6.2. If t1, to are terms ofcL andt; —* to, then[t;] —=* t>] in oocL.

Proof. By induction on the definition of reduction in.; we only show the case f&:

[Stitatsl]
£ new S(.app( Tt)).app( Tt2)).app( Ttsl)
- new Si(Iti]).app( [tz21).app( Ttsl)
- new Sp(this.x,y).app( 1Y)
[this —new Si(Ttl),y—Tt21]
= new Sy(new Si(ltil).x, Ttzl).app( [tsl)
- new Sy(Tti], Ttol).app( Ttsl)
this.x.app(z).app(this.y.app(z))
[this > new Sy(Tt1], Tt2]) .z Tt3]]
= new Sp(Ityl, Ttol).x.app(  [t3l)
app(new S (Tt1l. Tt21).y.app(  Ttzl))
—* Mt11.app( Ttz1).app( [t2].app( [t3l))
4 Mtit3(tats) ]
The case foK is similar, and the rest is straightforward. m]

Given the Turing completeness @f, this result shows that¢ is also Turing complete. Although we
are sure this does not come as a surprise, itis a nice formpépy for our calculus to have. In addition,
our type system can perform the same ‘functional’ analysisradoesct, as well as.c since there are
also type preserving translations framto cL [50]. We illustrate this by way of &/pe preservation
result. Firstly, we describe Curry’s type system forand then show we can give equivalent types to
00CL programs.

Definition 6.3 (Curry Type Assignment fat). 1. The set ofsimple types(also known as Curry
types) is defined by the following grammar:

A B = ¢ | A-B

2. AbasisI’ is a mapping from variables to Curry types, written as a seitafements of the form
x:A in which each of the variablesis distinct.
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3. Simple types are assignedcioterms using the following natural deduction system:

(X:AeT) (—E): Ik t1:A> B Tk t2A

(AX) : [ XIA I, t1t2:B

(K): TokaseBoa O TisAsBo0o(AoBSASC

The elegance of this approach is that we can now link typegreesto combinators to types assignable
to object-oriented programs. To show this type presematie need to define what the equivalent of
Curry’s types are in terms of ouwr® types. To this end, we define the following translation of i@ur

types.

Definition 6.4 (Type Translation) The functionl-], which transforms Curry typésis defined as fol-
lows:
Tel = ¢
TA— Bl (app : (TAl) — TBl)

It is extended to contexts as followld: ] = {x:TAl | xAeT}.

We can now show the type preservation result.
Theorem 6.5(Preservation of Types)f I' i, tA then[T]+[t]: TAL.

Proof. By induction on the derivation df &, t.A. The cases forvir) and (-E) are trivial. For the rules
(K) and ), Figure 6.4 gives derivation schemas for assigning thestation of the respective Curry
type schemes to thecw translations oK andS. O

Furthermore, since Curry’s well-known translation of timay typedic into cL preserves typeability
(see [50, 15]), we can also construct a type-preservingdingf Lc into r¢; it is straightforward to
extend this preservation result to full-blown strict irgection types. We stress that this result really
demonstrates the validity of our approach. Indeed, our $yséem actually has more power than inter-
section type systems for. as presented in [15], since there not all normal forms areaje using strict
types, whereas in our system they are. This is because aisygbem, in addition to givingfanctional
analysis, also givesstructuralanalysis through the class hame type constants.

Example 6.6. Lets be theci-term S (S K K) (S K K). Notice thats § —* 6 §, i.e. it is unsolvable, and
thus can only be given the type(this is also true fof§ 61). Now, consider the termn= S (K 6) (K 6).
Notice that it is a normal form[¢] has a normal form also), but that for any tetnS (K 6) (K 6) t' —*

6 6. In a strict system, no functional analysis is possibletfsince¢ — w is not a type and so the only
way we can type this term is with?.

In our type system however we may assign sevefiareint types tdt]. Most simply we can derive
+It] : Sp, but even though a ‘functional’ analysis via thpp method is impossible, it is still safe to
access the fields of the value resulting frbnh— both+ [t] : (x:Ky) and+ [t] : (y :Ky) are also easily
derivable statements. In fact, we can derive even morerdtve types: the expressidiK 61 can
be assigned types of the forys = (app : (01) — (app : (c2N{app :(o2) — o3)) — o3)), and so we

INote we haveoverloadedthe notatior] - ], which we also use for the translationafterms tors¢ expressions.
2|n other intersection type systems (e.g. [20]}> w is a permissible type, but is equivalentao(that isw < (¢ — w) < w)
and so semantics based on these type systems identify tétype@ — w with unsolvable terms.
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can also assigrix : ok sy and(y :oks) to [t]. Notice that the equivaleni-term tot is Ay.(AX. XX)(AX.XX),
which is aweakhead-normal form without a head-normal form. The ‘funcéibriew is that such terms
are observationally indistinguishable from unsolvablerts. When encoded ‘¢ however, our type
system shows that these terms become meaningful (headisainie). This is of course as expected,
given that the notion of reduction in‘ is weak.

Our termination results from the previous chapter can lbstilated by applying them in the context

of oocL.

Definition 6.7 (oocL normal forms) Let the set ofooct. normal forms be the set of expressiansuch
thatn is the normal form of the imade] of somec. termt. Notice that it can be defined by the following
grammar:
n = X | new K() | new Ki(n) |
new S() | new Si(n) | new Sp(ng, ny) |
n.app( n') (n#new C(&y))
EachoocL normal form corresponds toa normal form, the translation of which can also be typed

with anw-safe derivation for each type assignable to the normal form

Lemma 6.8. If e is an oocL normal form, then there exists @ normal formt such that[t] —* e
and for all w-safeD andII such thatD :: I1+ e : o, there exists amu-safe derivation?’ such that
D e ltl:o.

Proof. By induction on the structure afoct. normal forms. O

We can also show that-safe typeability is preserved under expansion for the @naifcL-terms in

OOCL.

Lemma 6.9. Lett; andt, becL-terms such that; — t5; if there is anw-safe derivationD and environ-
mentIl, and a strict typer such thatD :: 11+ [t, ] : o, then there exists another-safe derivationd’
such that?)’ :: T1+[t1]: o

Proof. By induction on the definition of reduction for. O

This property of course also extends to multi-step redactio

Together with the lemma preceding it (and the fact that alimad forms can by typed with an-safe
derivation), this leads to both a sound ammipletecharacterisation of normalisability for the images of
cL-terms inooctL.

Theorem 6.10. Let t be acL-term: thent is nhormalisable if and only if there are-safe® andIl, and
strict typeo such thatD :: 11+ [t] : o

Proof. (if): Directly by Theorem 5.19.

(only if): Let t' be the normal form of; then, by Theorem 6.4t] —* [t']. Since reduction irv is
confluent,[t'] is normalisable as well; let be the normal form oft’]. Then by Lemma 5.17(2)
there are strong strict type, environmentll and derivationD such thafll + e : o. SinceD and
IT are strong, they are als@-safe. Then, by Lemma 6.8 and 6.9, there existsafe?’ such that
D It o O
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(var (VaR)

{this (X:0q),y:o2}rthis :(X:07) (this K X:o1}+-X:01
- - (FLD - (NewF)
{this (X:01),y:o2}rthisX :og {this K X:o1}rnew Ky(x) :(X:o1) (ewM)
NEW
{this K X:o1}rnew Ky(x) :(@pp:or—o1)
—— (oB))
. rnew K() :K
(NewM)
rnew K() :(@pp:o1—<@pp:o2— o))
- (VAR)
MM+this :(y:(@pp:o1—o2))
- (fp) ——  (VaR)
M+thisy :(@pp:o1—-o02) Hr—Z:o-l( )
I+ this.y.app(z) ) e
: - VAR) :
I+ this :(X:(@app:o1—{@pp:o2— o3)))
- FLD) (vaR)
IIrthisx :(app:oi1—(@pp:o2— o3) Irz:0q
- (NewM) .
IT + this.x.app(z) 2{app o2 —o3) )
INVK
M1 + this.x.app(z).app(this.y.app(z)) 103
- (var)
I - this  :(X:7q1)
IT + this.x (o) mry:7 (vae)
. F . T :
D2 - ! (NnewF) - yim (NnewF)
Il - new Sy(this.x, y) X:iT1): Il - new Sy(this.x, v) Y :i12): (rom)
I’ - new Sy(this.x, y) SXiT) Y i) o
- D /
1T+ this.x.app(z).app(this.y.app(z)) Lo
: D, /

\
I’ - new Sy(this.x, y) X)) Ny 112) :
- (NewM)
I - new Sy(this.x, y) (@pp:oy—o3):

: (VAR)
{this :S,X:T1}FX:7y ———— (o))
(ewF) g new S() :S

{this :Sx:ri}rnew S;(x) :(X:t1)
- (NewM)
{this :Sx:ti}rnew Si(X) :(@app:72—(@pp: o1 — o3) " (xewM)
NEW
Ornew S() :(@pp:t1—{@pp:m2—@pp:o1— o3)))

where 71 = (app 101 — (app :02 — 0°3)),72 ={app :01 — 02),
IT = {this ({x:T1)n{y:72),z:01}, and
IT = {this ({X:71),y:72}
Figure 6.4.: Derivation schemes for the translationS ahdK
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- - (vAR) - (vAR)
{this (X:¢1),YV:p2} Fthis  :(X:p1) {this K X:p1}FX g1

(NewF)

{this (X:¢1),Vipo}rthisx ¢ e {this K X:p1}rnew Ky(x) :{X:¢1)
(NewM)

{this K X:p1}+rnew Ki(x) :(@pp:(e2) — ¢1)
) (oBy)

{(X:p1,Yip2) rnew K() :K

(NewM) (var)
{Xip1,Y 02} - new K() :<app :(e1) — @pp :(2) = ¢1)) {Xipr.Y2} FX 11

(INVK)
(Xip1yip2) -new K(.app(x) — :<@pp:(¢2) = ¢1)

(vAR)
{X:p1,Yi02} FY 12

{X:p1,Y:p2} - new K().app(x).app(y) o1

(NvK)

- - (vaR) - (vaR)
{this (X:¢),Y:w}rthis :(X:p) {this K X:p}rX:¢

(NewF)

{this (X:p),Y:w}rthis X ¢ o {this K Xx:p}rnew Ki(X) :(X:¢)
(NewM)

{this K X:p}rnew Ki(X) :<app:(w)— ¢)

(oBy)
{X:p}rnew K() :K

(NewM) SR (vaR)

{X:ptrnew K() :(@pp:(p) = (@pp :(w) = ¢) {X:p} kX
(Xip}rnew K().app(x)  :(@pp:(w)—¢)

: (INVK)

{Xigo}krééjliw(w)

{X:p}rnew K().app(x).app( [ss]) : ¢

(INVK)

()

this Ky, X:wrX:w
- (oBy) (oBy)
this Kx:wrnew Ki(x) :K; 0rnew K() :K M
0rnew K() :(@pp:(w)— Ki) (xew) 0rTss]:w
ornew K(Q.app( Tssl) : Ky

(w)

(INVK)

Figure 6.5.: Derivations for Example 6.11



The oocL program very nicely illustrates the various characteiesat of terminating behaviour that
the intersection type assignment system gives.

Example 6.11.Leté be theci-termS (S K K) (S K K) —i.e.é6 is an unsolvable term. Figure 6.5 shows,
respectively,
e a strong derivation typing a strongly normalising expressof ooct;
e an w-safe derivation of a normalising (but not strongly normsalg) expression ofocL; and
e aderivation fotw-safe) assigning a non-trivial type for a head-normalis(bgt not normalising)
00CL expression,

The last of these examples was referred to in Section 5.3 dsisimation of the diference between
the characterisation of normalising expressiomirfor L.c and the corresponding characterisationsfn
It shows that we cannot look just at the derived type (and gméronment) in order to know if some
expression has a normal form - we must look at the whole tydemiyation, as in the second example
above.

The examples that we have discussed so far have not diréaiirated the Approximation Theorem
(5.14). To finish this section, we will now look at an exampleieth shows how the types we can assign
in the intersection type system predict the approximant@noéxpression, and therefore provide infor-
mation about runtime behaviour. The example that we wilklabis that of daixed-point combinator
Theooct program only contains classes to encode the combin&tarslK and, while it is possible to
construct terms using onlg andK which are fixed-point operators, there is no reason that wwaata
extend our program and define new combinators directly.

A fixed-pointof a functionF is a valueM such thatvl = F(M); a fixed-pointcombinator(or operatol)
is a (higher-order) function that returns a fixed-point efatgument (another function). Thus, a fixed-
point combinatoiG has the property th& F = F (G F) for any functionF. Turing’s well-known fixed-
point combinator in tha-calculus is the following term:

Tur = @0 = (AXY.Y(XXY)(AXY.y(XXy))
ThatTur provides a fixed-point constructor is easy to check:

Tur f = (Axyy(xxy)Of —>2; f(@Of) = f(Turf)

The termTur itself has the reduction behaviour

Tur = (AXY.Y(Xxy))® —z y.y(OBY)
—p  AY.Y(12Z(©02))y)
—p Y. y(Y(©06yY))

which implies it has the following set of approximants:

{L, Ay.yL, ay.y(yL), ...}
Thus, ifzis a term variable, the approximants Tfr zare L,z1,2(zL), etc. As well as satisfying the
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(vAR) - (w)
o - X :(@pp : (w) — ¢2) I, + this.app(x) ‘w

- (INVK)
I, + X.app(this.app(x)) e
: M - new T() -w(w)
Dy : ! : (NewM)
My +new T() :(@pp:(@pp:(w)— @) - ¢)
(var)
. My +Z:(@pp :(w) - ¢ (v
My -new T().app(z) e
- Iy rz:(@app :(w)— ¢) (r) I +-new T().app(z) fw (@)
Dy (INVK)

M + z.app(new T().app(2))

(vAR)
Dy M1 +2z:@pp :(w) - ¢) Mri:w
Mi+-z.app( 1) :¢

wherell; = {z:(app : (w) — ¢)}, Iz ={this :w,x:(app :(w) — ¢)}

Figure 6.6.: Type Derivations for the Fixed-Point Condliart Example

characteristic property of fixed-point combinators memgi above, the terfiur satisfies the stronger
property thafTur M —>; M(Tur M) for any termM.

It is straightforward to define a nemy* class that can be added to &L program which mirrors this
behaviour:

class T extends Combinator {
combinator app(Combinator x) {
return x.app(this.app(x));

}
}

The body of theapp method in the clas$ encodes the reduction behaviour we sawTor above. For
anyrs® expressiore:

new T().app( e) — e.app(new T().app( e))
So, takingM = new T().app( €),we have
M — e.app( M)

Thus, by Theorem 5.8, the fixed poim of e (as returned by the fixed point combinator clagds
semantically equivalent te.app( M), and sonew T().app( -) does indeed represent a fixed-point
constructor.

The (executable) expressien= new T().app(z) has the reduction behaviour

new T().app(z) —  z.app(new T.app(z))
— z.app(z.app(new T.app(z)))
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so has the following (infinite) set of approximants:

{L, zapp( 1), z.app(z.app( 1)), ...}

Notice that these exactly correspond to the set of the appeoxs for thet-term Tur zthat we consid-
ered above. The derivatiafy in Figure 6.6 shows a possible derivation assigning the gypee. In
fact, the normal form of this derivation corresponds to thpraximantz.app( 1), which we will now
demonstrate.

The derivation?, comprises dyped redexin this case a derivation of the for{t, -, NewM), *,INVK ),
thus it will reduce. The derivatiof» shows the result of performing the reduction step. In thaexe,
the typew is assigned to the receiveew T() , since that is the type associated witiis in the
environmenf, used when typing the method body. It would have been postihise a more specific
type forthis in I, (consequently requiring a more structured subderivatboritfe receiver), but even
had we done so the information contained in this subdedmatiould have been ‘thrown away’ by the
derivation substitution operation during the reductiapssince the occurrence of the variatbis in
the method body is still covered hy (i.e. any information abouhis in the environmentI, is not
used).

The derivation?, is now innormal formsince although the expression that it types still contains a
redex, that redex is covered lay and so no further (derivation) reduction can take placeeth@the
structure of this derivation therefore dictates the stmecof an approximant ad: the approximant is
formed by replacing all sub-expressions typed withy the element.. When we do this, we obtain the
derivation?s as given in the figure.

Although this example is relatively simple (we chose théwddion corresponding to the simplest non-
trivial approximant), it does demonstrate the central epteinvolved in the approximation theorem.

6.6. Comparison with Nominal Typing

To give a more intuitive understanding of both th&aliences and advantages of our approach over the
conventional nominal approach to object-oriented statadyesis (as exemplified in Featherweight Java),
we will first define the nominal type system fof, and then discuss some examples which illustrate the
main issues.

Our nominal type system is almost exactly the same as themystesented in [66], except that it will
exclude casts. It is defined as follows.

Definition 6.12 (Member type lookup) The lookup functiong7 and M7 return the class type decla-
ration for a given field or methods of a given class. They afendd by:

D if CT(C)=class C extends C {fdnd}

& Df efd
FT(Cf) =
F7(C.,f) ifCI(C)=class C extends C {fdnd}

& Df ¢fd
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¢c,—»D if CT(C)=class C extends C {fdnd}

& DN(CX) (e} e md
MI(Cm =
M7 (C.,m ifCIr(C)=class C extends C {fdnd}
& D(CTXxp) {e} ¢ md

Nominal type assignment ¢ is a relatively easyféair, and more or less guided by the class hierar-
chy.

Definition 6.13 (Nominal Subtyping) The sub-typing relatior: on class types is generated by the
extends construct in the language?, and is defined as the smallest pre-order satisfying:

class Cextends D {fd md } eCIT =C< D

Notice that this relation depends on the class table, soytidal < should be indexed bg7; how-
ever, in keeping with the convention mentioned previousIZhapter 3, we leave this implicit.

Definition 6.14 (Nominal type assignment for®).

1. Thenominaltype assignment relatiog is defined by the following natural deduction system:

re:D
(var): L.X:Ch X :C (fid ): EEE;?TE(?vaf%:q
ye:D ] Nre:E e :G (Yien)
(sub): (D< O (invk ):
Iy e:C nre.nM 8y :D

MI(Em=Cy— D)
e :G (Yien)

(new) : T new D(20) :D(frf(D):Fn&TT(D,fi):Q (Vi €T))

2. A declaration of methoohin the classCis well typed when the type returned b7 (m C) deter-
mines a type assignment for the method body.
x:Cthis :Drep:G
G M(T X) { return ep; } OKIN D

(MI(mMD)=C— G§

3. Classes are well typed when so are all their methods, anedgram is well typed when all the
classes are themselves well typed, and the executablessiqrds typeable.

md; OK IN C (Vi) cd OK rye:C
class C extends D { fd; nd, } OK (cd,e) OK

Notice that in the nominal system, classes are typed onckthés typecheckingallows for a con-
sistency check on the class type annotations that the progea has given for each class declaration.
Once the program has been verified consistent in this wayjebkared types can then be used to type
executable expressions. This is in contrast to the approfatr intersection type system which, rather
than typing classes, has the two ruleswF) and (ewM) that create a field or method type for an object
on demand. In this approach, method bodies are chemkeny timewve need that an object has a specific
method type, and the various types for a method used thraighprogram need not be the same, as is
essentially the case for the nominal system.
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There are immediate filerences between the nominal type system and our intersdgpe system
since the former allows for the typing of non-terminatingigalvable) programs. Consider the unsolv-
able expressiomew NT().loop() from Section 6.2, for which;, new NT().loop() : NT can be
derived.

Restricting our attention to (head) normalising termsntlree can see that the intersection type system
permits the typing of more programs. Consider the followting classes:

class A extends Object {
A self() { return this; }
A foo() { return this.self(); }

}

class B extends A {

A f;

A foo() { return this.self().f; }
}

The classB is not well typed according to the nominal type system, siteé&o method is not well
typed: it attempts to access the fi¢ldn the expressiothis.self() which, according to the decla-
ration of theself method, has typa and the clas# has nof field.

The intersection type system, on the other hand, can typexjiessiomew B(new A()).foo()
as shown by the following derivation:

(oBy)

rnew A() :A
(NnewF)
rnew B(new A() :(:A
. - (VaRr)
(this «f :A)}rthis (f:A .
(NewM)
rnew B(new A() :¢self :()— < Ay
. . (var) -
(this «(self () -« :Ay}rthis :(self :()— :A})( ):
(this (self () (f :Ay] + this.self( A
(this _«(self ()= <f :A) ] r this.self().f A )
(NewM)
rnew B(new A()) :(foo :()—>A)
rnew B(new A()).foo() tA wve)

The example above might seem rather contrived, but the sasemal situation occurs in the ubig-
uitousColourPoint  example which is used as a standard benchmark for objemted type systems.
Assuming integers and strings, and boolean values andtopefarri®, this example can be expressed
as follows:

class Point extends Object {
int x;
int vy;
bool equals(Point p) {
return (this.x == p.x) && (this.y == p.y);
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class ColourPoint extends Point {
string colour;
bool equals(Point p) {
return (this.x == p.x) && (this.y == p.y) &&
(this.colour == p.colour);

}

In this example we have a claBsint which encodes a cartesian co-ordinate, with integer vdlres
thex andy positions. ThePoint class also contains a metheguals , which compares tw@oint in-
stances and indicates if they represent the same co-aediflaeéColourPoint  class is an extension of
thePoint class which adds an extra dimensiorfPtint objects - a colour. Now, to determine the equal-
ity of ColourPoint  objects, we must check that their colours match in additiathéir co-ordinate po-
sitions. The nominal system is unable to handle this sincervtheequals method is overridden in the
ColourPoint  class, it must maintain the same type signature as iRd¢ire class, i.e. itis constrained
to only accepPoint objects (which do not containalour field), and notColourPoint  objects, as
is required for the corredtinctionalbehaviour. Thus, th€olourPoint  class is not well typed.

A solution to this problem comes in the form of casts. In otdemake theColourPoint  class well
typed (in the nominal type system), wastthe argumenp of theequals method to be &olourPoint
object as follows:

class ColourPoint extends Point {
string colour;
bool equals(Point p) {
return (this.x == p.x) && (this.y == p.y) &&
(this.colour == ((ColourPoint) p).colour);

The cast in the expressig(ColourPoint) p) tells the type system that it should be considered to
be of typeColourPoint , and so the access of thelour field can be considered well typed. Using
a cast, therefore, is comparable to a promise by the progeartimat the casted expression will at run
time evaluate to an object having the specified class (or elassthereof). This is expressed in the type
system by the following additional rule:

0 nre:C D<
(cas ).71_“—,,([)) e:D( + O

For soundness reasons, this now requires doing a run-tieekckvhich is expressed by the following
extension to the reduction relation:

(C) new D(...) — new D(...) (ifD< ©

Once this check has been carried out the cast disappearhie®slburPoint  example shows, in a
nominal type system, (down) casts are essential for fuljnmming convenience, and to be able to
obtain the correct behaviour in overloaded methods.
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This newcast rule now allows for theColourPoint  class above to be well typed, thus giving us
that the following executable expressions are typeable:

new Point(1,2).equals(new Point(3,4))
new Point(1,2).equals(new ColourPoint(3,4,"red"))
new ColourPoint(1,2,"red")

.equals(new ColourPoint(3,4,"blue"))

The disadvantage to casts, however, is that they may resaltcertain (albeit well-defined) form of
‘stuck execution’ - &ClassCastException - as happens when executing the following expression:

new ColourPoint(1,2,"red").equals(new Point(3,4))

Here, execution results in the c&SblourPoint) new Point(3,4) which obviously fails, afoint
is not a subclass ofolourPoint  (rather, the other way around).

Our intersection type system could, with the appropriateresions for booleans, integers and strings,
perform a precise type analysis on t@elourPoint  programwithout the need for casts, correctly
typing the first three expressions above, and rejecting dhettf as ill-typed. Rather than add such
extensions to support this claim we will now present anothe&mple which is, in a sense, equivalent
to theColourPoint ~ example in that it sfiers from the same typing issues, however it is formulated
completely withings®.

Our example models a situation involving cars and driverg dah imagine that the scenario may
be arbitrarily complex and that our classes implement &lftmctionality we need, however for our
example we will focus on a single aspect: the action of a dst&rting a car. For our purposes, we will
assume that a car is started when its driver turns the ignk&y and so the class&€ar and Driver
contain the following code:

class Car {
Driver driver;

Car start() { return this.driver.turnignition(this); }

class Driver {

Car turnignition(Car c) { return c; }

Since we are working with a featherweight model of the lagguave have had to abstract away some
detail and are subject to certain restrictions. For ingatite operation of turning the ignition of the car
may actually be modelled in a more detailed way, but for dusitation it is stficient to assume that
the act of calling the method itself models the action. AfSoce in Featherweight Java we do not have
avoid return type, we return théar object itself from thestart andturnignition methods.

Now suppose that we are required to extend our model to inctudpecial type of car - police
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car. In our model a police car naturally does all the thingd #in ordinary car does. In addition it
may chase other cars, however in order to do so the poffa@eodriving the car must first report to the
headquarters. Thus, only polic&ioers may initiate car chases.

Since we need police cars to behave as ordinary cars in actspther than being able to chase
other cars, it makes sense to writéPaliceCar class thatextendsthe Car class, and thus inherits
all its methods and behaviour. Similarly, we will have to mdkePoliceOfficer class extend the
Driver class so that policefficers are capable of driving cars (including police cars)reHee run
into a problem, however, since the nominal approach to tlgjgentation imposes some restrictions:
namely that when we override method definitions we must usadime type signature (i.e. we are not
allowed to specialise the argument or return types), nowarallowed to specialise the types of fields
that are inherited. Thus, we must define our new classeslas/flagain as above modelling the extra
functionality via methods that simply return the (policay object involved:

class PoliceCar extends Car {
PoliceCar chaseCar(Car c) {

return this.driver.reportChase(this);

class PoliceOfficer extends Driver {

PoliceCar reportChase(PoliceCar c) { return c; }

Before considering typing our extra classes, let us exathigie behaviour from a purely operational
point of view. As desired, a police car driven by a poli¢Bazr is able to chase another car (the method
invocation results in &alue i.e. an object):

new PoliceCar(new PoliceOfficer())
.chaseCar(new Car(new Driver()))
— new PoliceCar(new PoliceOfficer()).driver
.reportChase(new PoliceCar(new PoliceOfficer()))
— new PoliceOfficer()
.reportChase(new PoliceCar(new PoliceOfficer()))

— new PoliceCar(new PoliceOfficer())

However, if a police car driven by asrdinary driver attempts to chase a car we run into trouble:

new PoliceCar(new Driver())

3The full Java language allows fields to be declared in a sabaléth the same name as fields that exists in the superglasses
however the semantics of this construction is thaew/field is created whiclhidesthe previously declared field; while
this serves to mitigate the specific problem we are discgdsne, it does introduce its own new problems.
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.chaseCar(new Car(new Driver()))
— new PoliceCar(hew Driver()).driver
.reportChase(new PoliceCar(new Driver()))
— new Driver()

.reportChase(new PoliceCar(new Driver()))

Here, we gestucktrying to invoke thereportChase  method on &river object since thériver
class does not contain such a method. This is the infanmassage not understdoetror.

The nominal approach to static type analysis is twofold:tlfirdéo ensurethat the values assigned
to the fields of an object match their declared type; and tieeorglly, enforce within the bodies of the
methods that the fields are used in a way consistent withdleelared type. Thus, while it is type safe to
allow thedriver field of aPoliceCar object to contain #oliceOfficer (sincePoliceOfficer
is a subtype obriver ), trying to invoke thereportChase method on thelriver field in the body
of thechaseCar method isnot type safe since such an action is not consistent with theacktlitype
(Driver ) of thedriver field. In such a situation, where a method body uses a fielchsistently,
the nominal approach is to brand the entire class unsaferawdmi any instances being created. Thus,
in Featherweight Java (as in full Java), thabexpressiomew PoliceCar(new Driver()) is not
well-typed, consequently entailing that the full expreasi

new PoliceCar(new Driver()).chaseCar(new Car(new Driver 0)

is not well-typed.

This leaves us in an uncomfortable position, since we hase tmtsomeanstances of theoliceCar
class (hamely, those that haReliceOfficer drivers) are perfectly safe, and thus preventing us from
creating any instances at all seems a little heavy-handbdreTare two solutions to this problem. The
first is to rewrite thePoliceCar  andPoliceOfficer classes so that they dwt extend the classes
Car andDriver . That way, we are free to declare ttéver field of thePolieCar class to be of type
PoliceOfficer . However, this would mean having teimplementall the functionality ofCar and
Driver . The other solution is to usgasts in the body of thechaseCar method we cast theriver
telling the type system that it is safe to considerdhieer field to be of typePoliceOfficer

class PoliceCar extends Car {
PoliceCar chaseCar(Car c) {
return ((PoliceOfficer) this.driver)

.reportChase(this);

Now, the PoliceCar class is type safe: we can create instances of itRoldeCar objects with
PoliceOfficer drivers can chase cars:

new PoliceCar(new PoliceOfficer())
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.chaseCar(new Car(new Driver()))
—  ((PoliceOfficer)
new PoliceCar(new PoliceOfficer()).driver)

.reportChase(new PoliceCar(new PoliceOfficer()))
—  ((PoliceOfficer) new PoliceOfficer())

.reportChase(new PoliceCar(new PoliceOfficer()))
— new PoliceOfficer()

.reportChase(new PoliceCar(new PoliceOfficer()))

— new PoliceCar(new PoliceOfficer())

However we are not entirely home and dry, since to regain sgpmdness in the presence of casts we
now have to check at runtime that the cast is valid:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver 0)
—  ((PoliceOfficer) new PoliceCar(new Driver()).driver)
.reportChase(new PoliceCar(new Driver()))
—  ((PoliceOfficer) new Driver())

.reportChase(new PoliceCar(new Driver()))

As the above reduction sequence shows, the ‘message naistoatk error from before has merely
beentransformednto a runtime ‘cast exception’ which occurs when we try tet¢henew Driver()
object to aPoliceOfficer object. Using the nominal approach to static typing, we aredd to
choose the ‘lesser of many evils’, as it were: being unablertte typeable programs that implement
what we desire; being unable to share implementations leetelasses; or having to allow some runtime
exceptions (albeit only with the explicit permission of firgrammer). We should point out here that
some other solutions to this particular problem have beepgsed in the literature (see, for example,
the work on family polymorphism [55, 67]), but these soln8ersist in the nominal typing approach
and can thus only be achieved by extending the languagg itsel

Thers® intersection type system has two main characteristicsdiséihguish it from the traditional
(nominal) type systems for object-orientation. Firstlyr dypes are structural and so provide a fully
functional analysis of the behaviour of objects. We alsqkifse analysis of methods and fielidsle-
pendentirom one another, allowing for a fine-grain analysis. Thisamgethat not all methodseedbe
typeable - we do not reject instances of a class as ill-typeglg because they cannot satisff of the
interface specified by the class (in terms of being ablsatiely- in a semantic sense - invoke all the
methods). In other words, if we cannot assign a type to arnycpéar method body from a given class,
then this does not prevent us from creating instances ofléiss @ other methods may be safely invoked
and typed. In Figure 6.7 we can see a typing derivation inrtersection type system that assign a type
for thechaseCar method to &PoliceCar object withPoliceOfficer driver (for space reasons, we
have used some abbreviatiof®Ofor PoliceOfficer , PCfor PoliceCar andrC for reportChase ).

Now consider replacing thieoliceOfficer object in this derivation with ®river object, as we
would have to do if we wanted to try and assign this type ®oliceCar  object with an ‘ordinary’

96



—— (vAR) (xewO)
M+c:PC rnew PO() : PO
(newM)

rnew PO() :(rC:PC— PC
rnew PC(new PO()) :(driver :(rC:PC—- PQG)

(NewF)

(NewO)
(NewO)

(yom)

rnew PO() : PO
. rnew PC(new PO()) :PC
rnew PC(new PO()) :(driver :(rC:PC— PC})mP_C

- - (VAR)
1y r this :(driver :(rC:PC— PC)
— (fLD) ——————— (vaR)
14 + this.driver {(rC :PC—- PC II; +this :PC
I, + this.driver.rC(this) 'PC (i)

(NewM)
rnew PC(new PO()) :(chaseCar :Car —» PG

wherell; = {this :{driver :{(rC:PC— PC)nPCc :Car}
II, = {this :PQc:PC}

Figure 6.7.: Typing derivation for thechaseCar method of a PoliceCar  object with a
PoliceOfficer driver.

Driver driver. In doing so, we would run into problems since we wouliimately have to assign

a type for thereportChase  method to the driver (as has been done in the topmost subtenvin
Figure 6.7) - obviously impossible seeing as no such metRistisein theDriver class. This does not
mean however that we should not be able to create BalideCar objects. After allPoliceCar s are
supposed to behave in all other respects as ordinary cgvsrisaps we might want ordinabriver s to

be able to use them as such. In Figure 6.8 we can see a typingtasr assigning a type for thetart
method to &PoliceCar  object with aDriver  driver, showing that this is indeed possible. Notice that
this is also sound from an operational point of view too:

new PoliceCar(new Driver()).start()
— new PoliceCar(hew Driver()).driver
.turnignition(new PoliceCar(new Driver()))
— new Driver()
.turnignition(new PoliceCar(new Driver()))

— new PoliceCar(new Driver())

The second characteristic is that our type system is a tpueitferencesystem. That is, no type
annotations are required in the program itself in order fiertype system to verify its correctnéssn
the typecheckingapproach, the programmer specifies the type that their anognust satisfy. As our
example shows, this can sometimes lead to inflexibility:dme cases, multiple types may exist for a
given program (as in a system without finitely representabiecipal types) and then the programmer
is forced to choose just one of them; in the worst case, aldeitgpe may not even be expressible in

41t is true thatm® retains class type annotations, however this is a syntigcy due to the fact that we would like our
calculus to be considered a true sibling of Featherweiglat,Jnd nominal class type no longer constitute true typesitin
system.
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—— (vAR) - - (newQ)
M+c:PC +new Driver() :Driver
- (NewM)
rnew Driver() (sl :PC- PO (vewF)
+new PC(new Driver()) :(driver :(sl :PC— PC) e
: - - (NewO)
+new Driver()  :Driver
(NewO)

. +new PC(new Driver()) :PC
+rnew PC(new Driver()) :(driver (sl :PC—PC)nPC

(yomv)

- - (VAR)
1y r this :(driver :(sl :PC— PC)
— (fLD) ——————— (vaR)
14 + this.driver (sl :PC—-PC II; +this :PC
I + this.driver.sl(this) 'PC (i)

- (NewM)
rnew PC(new Driver()) ((start () > PO

where
I1; = {this :{driver :(sl :PC— PC)nPC}
Il = {this : Driver ,c:PC}

Figure 6.8.: Typing derivation for th&tart method of @PoliceCar  object with aDriver  driver.

the language. This is the case for our nominally typed caasngke: the sameoliceCar class may
give rise to objects which behavefidirently depending on the particular values assigned to fiedds;

this should be expressed through multipl&eatient typings, however in the nominal system there is no
way to express them. Our system does not force the programansboose a type for the program, thus
retaining flexibility. Moreover, since our system is senizaily complete, all safe behaviour is typeable
and so it provides thmaximuniflexibility possible. Lastly, we have achieved this resduitthout having

to extend the programming language in any way.

The combination of the characteristics that we have destrdbove constitutes a subtle shift in the
philosophy of static analysis for class-based In the traditional approach, the programmer specifies
the class types that each input to the program (i.e. fieldegahnd method arguments) should have,
on the understanding that the typleeckingsystem will guarantee that the inputs do indeed have these
types. Since a class type represents the entire interfditeedeén the class declaration, the programmer
acts on the assumption that they may safely call any methtidnathis interface. Consequently, to keep
up their end of the ‘bargain’, the programmer is under angalibn to ensure that the value returned
by their program safely provides tlholeinterface of its declared type. In the approach suggested by
our type system, by firstly removing the requirement to gaif@plement a full collection of methods
regardless of the input values, the programmeffirded a certain expressive freedom. Secondly, while
they can no longer rely on the fact that all objects of a giviess provide a particular interface, this
apparent problem is obviated by tyjderence which presents the programmer with an ‘if-then’ input-
output analysis of class constructors and method calls.ptbgrammer wishes to create instances of
some particular class (perhaps from a third party) and talniethods in order to utilise some given
functionality, then it is up to them to ensure that they pggsr@priate inputs (either field values or
method arguments) that guarantee the behaviour they esquir
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7. Type Inference

In this chapter, we will consider a type inference procedaré¢he system that we defined in Chapter 3,
or rather we will define a type inference algorithm for a riettd version of that system. Since the full
intersection type system can characterise strongly n@simglexpressions it is, naturally, undecidable.
Thus, to obtain a terminating type inference algorithm wesihrastrict the system in some way, ac-
cepting that not all (strongly) normalising expressionH kg typeable. The key property that any such
restriction should exhibit, however, ssundnessvith respect to the full system. In other words, if we
assign some typing to an expression in the restricted systemn we can also assign that typing to the
expression in the full system. Such a soundness propertyaliailv the restricted system to inherit all
the semantic results of the full system. Namely, typeabilitil still guarantee (strong) normalisation,
and imply the existence of similarly typeable approximanganing that restricted type assignment still
describes the functional properties of expressions.

In the context of the-calculus type inference algorithms for intersection tgpsignment have mainly
focused on restricting the full system using on a notioraok, essentially placing a limit on how deeply
intersections can be nested within any given type. Two netkceptions are [94], which gives a semi-
algorithm for type inference in the full system, and [43] wlhidefines a restriction based on relevance
rather than rank. VVan Bakel gave a type inference algorithma fank-2 restriction [8], and later Kfoury
and Wells showed that arinite rank restriction is decidable [74].

We can define a similar notion of rank for our intersectiones/p However, unlike for-calculus,
every finite-rank restriction of our system is ordgmidecidable. We will begin by defining the most
restricted type assignment system in this family, the r@rggsstem which essentially corresponds to
Curry’s type assignment system. We will then explain whytthpe inference algorithm for this system
only terminates fosomeprograms. Since all such systems wilffan from the same semi-decidability
problem, we opt not to define further, more expressive,iotisins, but instead we decide to modify our
system in a dferent way — by addingecursivetypes. This work forms the second part of this thesis,
and we will motivate it further at the end of this chapter.

7.1. A Restricted Type Assignment System

Our first task will be to define a restricted version of our fatiersection type assignment system. As
mentioned in the introduction to this chapter, we will be digiy) a system that is essentially equivalent
to Curry’s system of simple types for thecalculus. Thus, while we retain the structural nature péty
(i.e. we have class names, field and method types), we wilahotv any intersections. As we will
show later, even this very severe restriction of the systeamly semi-decidable. More specifically, the
algorithm that we will derive for this system only terminat&hen running omon-recursiveprograms,

a property of programs that we will formally define later, tdtich intuitively expresses that no method
creates a new instance of the class to which it belongs.
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Definition 7.1 (Simple Types) Simpletypes aress“ types without intersections as. They are defined
by the following grammar:

ot = C | ¢ | (fi0) | (m(oh) 1)

Note that previously, we have used the metavariatieferred tostrict predicates (possibly containing
intersections and), however in this chapter, we will use it to refer to simpledg only. Notice that
the set of simple types is a subset of the set of strict typédds fact will be used when showing the
soundness of the restricted type assignment with respéue tiull type assignment system.

Definition 7.2 (Simple Type Environments) 1. Asimple type statemens of the form¢:o- where?
is either a field namé or a variablex (and called thesubjectof the statement), and is a simple

type.

2. A simple type environmefitis a finite set of simple type statements in which the subgetsll
unigue We may refer to simple type environments as just type emaiats.

3. If there is a statemerto € I then, in an abuse of notation, we wrife I". In a further abuse of
notation, we may writ&(¢) = o.

4. We relate simple type environments to intersection tygganments by extending the subtyping
relation < (Definition 3.5) as follows:

Nl eVxioel [T¢<o [xipell]]& Vioel [T¢ Qo [this ¢ eTl]]
& this :cel' =3¢ Qo [this :¢ell]

The following defines a function that returns the set of typgables used in a simple type or type
environment.

Definition 7.3 (Type Variable Extraction) 1. The functionTV returns the set of type variables oc-
curring in a simple type. It is defined as follows:

™€) = 0
™v(p) = {¢}
v({f o)) = 1v(0)

tv({m: (o°n) — o)) tv(o)Utv(o) U...Utv(op)

2. TV is extended to simple type environments as follows:

™V{I) = (Ux:eer™v(@)U(Uf :gertv(0))

Definition 7.4 (Simple Type Assignment)Simple type assignmentis a relation on simple type en-
vironments and simple type statements. It is defined by theataleduction system given in Figure
7.1

As we mentioned in the introduction to this chapter, a ciuymiaperty of our restricted type assign-
ment system is that it is sound with respect to the full irgetion type assignment system.
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(var) 1 "o o (X#this) (SELF-0BIJ) :

[LX:okX: 0o I,this :Cithis :C
7). fer . Lo
(SELFFD) | Tinis Cf o nthis f oy (P (o) e fo
I'se:(m(@p) 2 o) I'ke€1:01 ... I'k€nion
(INVK) :
rl:c,e]_:()']_ rl—sen:a'n
OsI) : F(C)=F
(NewOn1) T'snew C(&,) :C FO=Tn
F): F(©O=Tnien
(NewF) I'knew C(&p) (Fi:op) (F(©=Tn )

{f1:0y, ... .f o, this :C X101, ....Xnionts€pi0 Twejio] (Yiemn)

(NewM) :
T'snew C(8y) (m (@) — o)
(FIO= Fo, Mb(C,m) = (Xn,€p))

Figure 7.1.: Simple Type Assignment fiof

Theorem 7.5(Soundness of Simple Predicate Assignmelit) e : o, then there exists a strong deriva-
tion D such thatD :: T+ e : o, wherell is the smallest intersection type environment satisfying T’

Proof. By induction on the structure of simple type assignmentvdéions. The only interesting case is
for the (xewM) rule. Thenl' k new D(&y) :{(m: (7'w) — 1) andrl k e;: 7; for eachi e Mmwith (D) =",
Mb(D,m) = (X nv,eo) and, moreoverithis :D,f[:7y,....f it X 177, ..., X w7}, } k€0 7. Thus, by in-
duction we haveD, :: T1+ g : 7j with O strong for each e m, and we also have thdly :: IT' + eg : T with
Dy strong wherdl’ = {this :Dn (f:71)n...n (f 5 imm), X 1:7],..., X v i7, }. Notice that then, by the
(oBy) rule of the full intersection type assignment system, libfes that(Dp, os) :: IT - new D(&,) : D

is a strong derivation, and also by the&§F) rule of the full intersection type system we have that
(Dm, NEWF) :: TTFnew D( &) : (f {:7j) is a strong derivation for ea¢ke M. Thus, by theiov) rule it fol-
lows that there is a strong derivatighsuch thatD :: TT+ new D(€y) :Dn(f | :71)n... n{f [i7m). Then
finally, by (v\ewM) of the full intersection type system it follows th@y, O,NewM) :: T+ new D(&p) :
(m: (' y) = 1) is a strong derivation. O

Because simple type assignment is sound with respect talthietérsection type assignment system,
we obtain a strong normalisation guarantee ‘for free’.

Corollary 7.6. If T'  e:o thene is strongly normalising.

Proof. By Theorems 7.5 and 5.20. O

We can also prove a weakening lemma for this system, whichiweered in order to show soundness
of principal typings. Notice that we do not need a notion ditgping for simple types, and so weakening
in this context is simply widening.

Lemma 7.7(Widening) LetI’,I” be simple type environments such thal”;ifI'ce:o,thenl’ ke:o.
Proof. By easy induction on the structure of simple type derivation O
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- - (SELF-FLD)
{this :Ky,X:o1,Y:02} kthis :(X:0q)

. . (FLD) . (var)
{this Ky, X:o1,Y:02} kthisx oy {this K X:o1}kX:01 M
{this K X:o1}snew Ky(x) :(app:o2— o) (newM)
(NewM)
knew K() :@app:o1—<{@app:o2— o))
- (SELF-FLD)
I sthis (y:@pp:o1— o2))
- (FLD) (VAR)
I’ kthis.y :(app:o1—o2) I'kZ:01
I i this.y.app(z) oy (nev)
- (SELF-FLD) :
I sthis (X:@pp:o1—{@pp:o2 — o3)))
- FLD) (VAR)
I kthis.x :(app:o1—{(@pp:o2—o3)) I"'wZ:0q (i)
I s this.x.app(z) {app o2 — o3) e " (o)
I s this.x.app(z).app(this.y.app(z)) o3 B
: ———— (SELF-FLD)
I'sthis :(X:11)
- (FLD) (vaR)
I'kthis.x :71q I'ky:7
- (NewM)
I'knew Sy(this.x,y) {app o1 — o3)
. (vaR)
. {this S X:t1}kX:T1
: (NewM)
{this :SX:t1}knNew S;(X) :(app:m2 —@pp:o1— o3)
(NewM)

kNew S() :(app 71— (@pp 72— (@pp :o1 — 3)))
wheret; =(app 01— (app:02 — 03)), T2 =(app :01 — 02),

I' = {this :Si,x:T1,y:72}andl” = {this :Sp,X:T1,Y:T2,Z:01}.

Figure 7.2.: Simple Type Assignment Derivation Schemeghfeooct. Translations o5 andK

The simple type assignment system is expressive enouglpeodyr, the encoding of Combinatory
Logic intors® that we gave in Section 6.5. Figure 7.2 gives simple typeyassent derivation schemes
assigning the principal Curry types 8fandK to theirooct translations.

7.2. Substitution and Unification

In this section we will define a notion of substitution on slepypes, which is sound with respect to
the type assignment system. We will also define an extengiBoloinson’s unification algorithm which
we will use to unify simple types. These two operations wdlldentral to showing the principal typings
property for the system.

Definition 7.8 (Simple Type Substitutions) 1. A simple type substitutiors is a particular kind of
operation on simple types, which replaces type variablesitople types. Formally, substitutions
are mappings (total functions) from simple types to simygbes satisfying the following criteria:

a) thevariable domair{or simply thedomair), dom(s) £ {¢ | S(p) # ¢}, is finite;
b) C) =Cfor all C;
c) (f:o7)) =«f :9(c”)); and
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d) (m:(n) = 0”)) =(m:((o1),..., (o)) = S()).

. The operation of substitution is extended to type enmiemts by @1) = {£:5(0) | L:0- € I1}.
. The notatiorf¢ — o] stands for the substitution s wittom(s) = {¢} such that &) = o
. Id denotes the identity substitution, idam(ld) = 0.

. If sy and $ are simple type substitutions such thiain(s;) = dom(sy) and s(¢) = Sx(¢) for each

¢ in their shared domain, then we write s s,.

. Whendom(s) N tv(o) = dom(s) ntv(I') = 0, then we say thadom(s) is distinct from o andT.

Notice that, in this case(s) = o and I') =T.

It is straightforward to show that the composition of two pletype substitutions is itself a simple
type substitution.

Lemma 7.9(Substitution Composition)if s; and $ are substitutions, then so is the compositien § .

Proof. Using Definition 7.8 for each of; ands;.

1.

The domain of; 0 53 is finite, sincedom(s; o s1) € dom(s) Udom(s;): take any type variable
¢ and suppose € dom(s, o &), then eitherp € dom(s;) or ¢ € dom(s,) otherwises, o $(p) =
S2(s1(9)) = s2() = ¢ and thenp¢gdom(s; 0 51).

. $08(C) = $(s1(0) = (0 =C.

- o5((f 1)) = (s1((f 10))) = S((f 1 s1(0))) = (f 1 sp(s1(0)) = (F 120 S1(0)).

s20 s1({m: (o) = 7)) = S(s1(mi (o) — 7)) =
= s((m:(s(01)s -, S1(0n)) — s1(07)))
= (m:(s2(s1(01))s - - -» S2(S1(0n))) — Se(s1(0))
=(m(s2081(01), ..., S0 81(0)) = S2081(07))

A key result in the principal typings result is that subgi@in is a sound operation with respect to
simple type assignment.

Theorem 7.10(Soundness of Substitutianfor all substitutions s, if' k e :o then gI') k e : S(0).

Proof. By straightforward induction on the structure of derivago O

Using the nation of simple type substitution defined abowewil now define a procedure which will
unify two simple types. This will be a central element of thedinition of principal typings.

Definition 7.11 (Unification Problems) 1. Aunification problenu is a (possibly emptydequence

2.

of pairs of simple type&r, o).

Substitutions are extended to unification problems adsvist

S(e) =€
(o, 0”)-u) = (8(0), S(o')) - S(u)
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Definition 7.12 (Unifiers) 1. If s is a substitution such tha{es) = s(¢”'), then we say that s is a
unifier of (o, o).

2. If sis a unifier of each paifo,o”’) € u, then we say that s is a unifier of u.

3. Aunifier s of u isnost generaif and only if for every unifier ‘sof u, there exists a substitutiorf s
such that §=s"os.

Compoasition of substitutions preserves unifiers:

Property 7.13. 1. If sis a unifier ofr; ando,, then $o s is a unifier ofr, ando, for all s'.
2. If sis a unifier of u, then’s s is a unifier of u, for all u,’s

Proof. 1. sis a unifier ofo; ando, so s(o1) = S(o2). Thens o §(o1) = S (01)) = S(S(o2)) =
S o 9(0p).
2. Take any paird1,02) € u. Sincesis a unifier ofu it follows by Definition 7.12 thasis a unifier
of o1 ando,. Then, by the first property, so 8o s. Since ¢1,02) was arbitrary, we have that
s o sis a unifier of all pairs iru, and thus is a unifier af. m]

We will now define our unification procedure for simple typasich is a straightforward extension
of Robinson’s algorithm [93] to our system.

Definition 7.14 (Unification Procedure) 1. The proceduraJnify takes a pair of simple predicates
(o,0”) and returns a (unifying) substitution (when it exists, andundefined otherwise). It is
defined as follows:

Unify(p,¢") = [e—¢]
Unify(p, o) . . .
= [¢+— o] if onotatype variable ang does not occur imr
Unify(o, ¢)
Unify(C,C) = Id

Unify((f o), (F "1 07))
Unify((m: (%) — o), (2 (07) — o))
= Sos0...08 ifm=nmand
§ = Unify(s-10...0s1(0i),
S-10...05(07)) for each ien
s = Unify(sy0...05(0),
So...o8(0"))

Unify(o,0’) iff =f’

2. TheuUnify function is generalised to unification problems as follows:

Unify(e) Id
Unify((o,0’)-u) = so0s if s;=Unify(o,0’) and
sz = Unify(s1(u))

3. whenUnify is undefined, we say that unificatiails.
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Notice that the generalisation of unification to unificatipoblemsis merely a convenience, since for
any unification problenu = (o1,07),...,(on,07), we can obtain the same resultlasify(u) by calling
the unification procedure for paitnify((m: (@n-1) = o), (M: (07 n-1) — o)), for any method name

In addition to showing that unification is a termianting prdare, Robinson showed that it produces
most general unifiers, and that if a unification problem hasifieu, then it has a most general unifier.

Property 7.15 (Robinson [93]) Unify is a terminating procedure; furthermore, ifnify(u) = s then s
is a most general unifier of u, and if s is a unifier of u, then ¢hexists a substitution’ such that
Unify(u) = S.

Notice that Robinson’s results trivially apply to our exdied notion of unification given in Definition
7.14 since our simple types are merely function tygesoratedwith labels. Removing these labels
yields ordinary function types (augmented, of course, Wifie constants for each class). Thus, for any
unification problem involving our simple types, an equivélproblem can be formulated for Robinson’s
algorithm as given in [93] by simply erasing the field and neetAnnotations.

The following definition allows type environments to be ugfi

Definition 7.16 (Type Environment Unification Problems)etT’, be a sequence of simple type environ-
ments and let u be a unification problem satisfying the falgw

bjen&i#j&
((x:opeTjandx:op€lj) or (f :oy €T andf :o2 €T)

=>(O'1,0'2)EU

Then u is callectharacteristidor T',. If there is no smaller characteristic unification probletvan u,
then u is calledminimal.

Notice that minimal characteristic unification problems &my given environment are unique up to
reordering of their constituent pairs.

Lemma 7.17(Unification of Type Environments) 1. If u is characteristic fol and uc u’, then u
is also characteristic fof .

2. Let u be a characteristic unification problem o, and let s be a unifier of u; thefi = s(I'y) U
...Ug(I'y) is a simple type environment.

3. LetI’ andT}, be a simple type environments and s a simple type substitutis(I;) C I for each
i €M, then s is a unifier of any minimal characteristic unificatioroblem forT,.

Proof. 1. Take statementso; andx:o such thak:o; € I andx:oq € I'j for somei, j € i such that
i # j, Then, sincau is characteristic fof it follows that (o1,02) € uand then sincei C U’ it also
follows that ¢-1,02) € U'. The case for statements with field name subjects is similar.

2. T is clearly finite since eachj is. We must also show that the subject of each statemdnisn
unigue. Suppose that this is not the case, and thus thene@stdtementg:o; and¢:o, in T with
o1 # o2. Then it must be that there ailg e nwith i # |, and(:o”] € I'; and(:o”, € I'j for someo
ando?, with s(c}) = o1 ands(o,) = o2. Thuss(oy) # S(05). However, it must be that{;, o) € u
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sinceu is characteristic foF,,, and sinces unifiesu it follows that s(c}) = (). Since we have
derived a contradiction, it must be that the subject of esatement il is unique.

3. Letu be a minimal characteristic unification problem 6y and take anyd,t) € u. Sinceu is
minimal it must be thaf:o- € I'; and¢:7 € T'j for somef andi, j € i such that # j. By assumption,
both §(I'i)) c I and S(I';) € I, and so both:s(o) e I" and £:5(r) e I. Then, sincel” is a type
environment the subject of each statemerit is unique, and therefore it must be tisét) = (7).
Thus, s unifies all pairs iru. m]

7.3. Principal Typings

We will now define a notion of principal typings for the simpge assignment system defined earlier.
A typing is a pair consisting of a simple type environment argimple type. As we will see, a principal
typing for our system is actually setof typings. We have chosen to formulate our principal typiimg
this way not because an object (or expression) may potntiahtain many fields and methods (notice
that traditional record types can handle this), but becausa though the simple types assignable in this
system do not contain intersections, a method may in geadmit more than one analysis. This is due
to the presence of class hame constants in the type langlakgooct. for example, our object-oriented
encoding of Combinatory Logic, defined in Section 6.5. &hp method of the objectew K() has
both of following (principal) type schemes:

knew K() :{app:(¢) — Kp)
knew K() :{app :(¢1) — (@app:(p2) = ¢1))

In general then, although we do not admit intersection intyipe language, the principal type of an
expression is in fact an intersection, even in the simple ggsignment system. Thus, in the general
case, no single record type isfBcient to capture all of the type information inferrable for @bject in
our system. Given this situation, the mofli@ent and straightforward way to deal with the ‘principal’
typing of an expression is simply to use the set of all thecf$ttypes in this intersection.

Definition 7.18 (Typings) 1. Atypingis a pair [T, o] of a simple type environment and a simple

type.
2. The functionilV is extended to operate on typings hy{([I’, o]) £ tv(I) Utv(0).

As we mentioned above, the principal type of an expressi@nsist of such typings. We will model
this situation by defining eelation between expressions and typings. In this way, an express&rbe
related to any number of typings, and we will formulate ouirdtion so that the typings that any given
expression is related to apeincipal for it, in the sense that any other typing assignable to tipeession
having the same overall structure as the principal one cageberated from it using substitution and
widening. After defining the principal typing relation, wéhghow that it does indeed capture the notion
of ‘principality’ by proving it sound and complete.

Definition 7.19 (Principal Typings) £78 is a relation between expressions and typings. In an abuse
of notation, we will write[T', o] € PTS(e) whenever(e, [T, o]) € PTS, and thusP7S(e) denotes the
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set{[T[, o] | [T, o] € PTS(e)}. Itis defined inductively as the smallest relation satigfythe following
conditions:

1. [{x:¢}, ¢] € PTS(x) for all x # this , .
2. [{this :C}, C] € PTS(this ) for all C.
3. [{this :C},(f :¢)] € PTS(this ) for all ¢, Candf € F(C).

4. If[T", o] € PTS(e) and s= Unify(cr (f ) with g 1v((T. o]), then
[S(D), S(p)] € PTS(e. f).

5. If [T, o] € PTS(e;) for all 0 <i < n, and s= Unify((o, (m: (@) — ¢)) - U), where u is a mini-
mal characteristic unification problem fdr,...,I'y and ¢ ¢1v([T}, o]) for eachO <i < n, then
[S(D), ()] € PTS(ep. m(&p) ), wherel' =ToU...UT,.

6. If [T, o] € PTS(e;) for all i e i and s= Unify(u), where u is a minimal characteristic unification
problem forT',, then

a) [9(I), C] e PTS(new C(&y)) for all Csuch thatF (C) =f,; and
b) [s(I), s({fi :0i))] € PTS(new C(&,)) for all Csuch thatF (C)=f,andien

wherel'=T1U...UTl}.

7. Forall C, m fy, eq, andx,y such thatMb(C,m = (X ,eq) andF (C) =, if [[, o] € PTS(e;) for
eachO <i < nand s= Unify(u - u) then:

[S(D), SUM: (') — 00))] € PTS(new C(€y))

where

a) uis a minimal characteristic unification problem fbg;
b) U =(Co) (r1,01)-...-(tn,o) if this 0 €Ty,
v =(r1,01)"...-(tn,on) otherwise; and
c) I'=T1U...uT,
with
a) ¢ a sequence of an’ distinct type variables such that ng; occurs in anyrv([I7, oi])
O0<i<nO0<j<n+n);
b) 7, a sequence of simple types satisfying:
i f ZO’i’EFo:>Ti =O'i’ andii.fj ¢lg= 1i = ¢
for each ien; and
c) 7w a sequence of simple types satisfying:
I xj:o{ €To= 1/ =0 and ii.xj €[o = 7] = ny;i
for eachier.

The following lemma states that the environment of a priakipping is ‘minimal’, that is it does not
contain any more statements than is necessary to type thessign for which it is principal.

Lemma 7.20(Minimality of Principal Environments)Let [T, o] € PTS(e); thenx €T if and only if
x € vArs(e), and ifthis :CeT, thenf € ¥(C)forall f T.
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Proof. By straightforward induction on the definition of princiggpings. O

In order to show that our definition of principal typings abds adequate, we must show soundness
and completeness. In other words, that any principal typihgn expression can be assigned to that
expression (soundness), and that whenEwvege : o, e has gorincipal typing [, o] such that there is a
substitutions with s(c”’) = o-ands(I”) C T..

Theorem 7.21(Soundness of Principal Typingsif [T, o] € P7S(e), thenl' ke :o.
Proof. By induction on the definition of principal typings.

[{x:¢}, 9] € PTS(x): wherex #this . Then{x:¢} k x ¢ by rule (ar).

[{this :C}, C] e PTS(this ): for someC. Then{this :C}kthis :Cby rule (ELr-oBr).

[{this :Cf ¢}, (f :¢)] € PTS(this ): for someCandf € ¥(C). Then by rule {eLr-Fip), {this :Cf ¢}k
this (f 1p).

[S(T), S(¢)] € PTS(e. f): where [, o] € PTS(e) and s = Unify(o, {f :¢)). By inductionT k e:o. Then
by Theorem 7.10¢(I') k e : {f : S(¢)) and by rule €p), it follows thats(I') k e. f : S(¢).

[S(T), S(p)] € PTS(ep. m(&p) ): where [, oi] € PTS(e;) for each 0<i < n, s= Unify((oo,(m:(c%) —
¢)) - u) with u a minimal characteristic unification problem f4,...,I'y, andl’ =T U...UT . By
inductionT; k e : o for each O<i <n. Then by Theorem 7.1&(T;) k e; : S(oj) for each O< i < n.
Sinceuis characteristic foly,...,Iy, it follows from Lemma 7.17 that so is6, (m: (T5h) — ¢))-u
and thus thas(I'g) U... U S(I'y) = §(IN) is a type environment. Notice thafl’;) € S(I') for each
O<i<nandthus by Lemma 7. 8I) e : (o) for each O< i < n. Furthermore, foeg this gives

) k eg:{m:(S(c1),...,S(on)) — S¢)). Then by rule fvk) we have thas(I') k eq. n{ &) : S(p).

[S(), C] e PTS(new C(&y)): whereF (C) =T, [T}, oi] € PTS(ej) for eachien, I'=T1U...Uly, and
s = Unify(u) with u a minimal characteristic unification problem 5. By induction we have
I  ej: o for eachi e nand by Theorem 7.10, tha(l) k e; : S(o). Sinceu is characteristic for
I, it follows from Lemma 7.17 thas('1) U... U S(I'y) = () is a type environment. Notice that
S(I) € 9(I') for eachi e N and so by Lemma 7.74(I') i e;: S(o7) for eachi e n. Then by rule
(NewOpgy), S(I') L new C( &) :C.

[S(D), s((fj :0j))] € PTS(new C(&)): whereF (C) =T, [, oi] € PTS(e;) for eachien, jen, I' =
I'1U...UTy,, ands = Unify(u) with u a minimal characteristic unification problem fby. By
induction we havd i ej: o for eachi € n and by Theorem 7.10, thaT;) K ej: (o). Since
u is characteristic foly, it follows from Lemma 7.17 thas(I')) U...U S(I'y) = S(I') is a type
environment. Notice thad(I';) C §(I') for eachi e nand so by Lemma 7. 4T) k e; : S(o) for each
i en. Then by rule xewF), S(I') k new C(&y) :({fj :S(oj)).

[S(D), s((m: (/) = 00))] € PTS(new C(&p)): with F(C) = F, and Mb(C,m) = (Xv,e0), and where
[T, o] € PTS(ej) for each 0<i <n, I'=T1U...UT, and s = Unify(u - u), with u a minimal
characteristic unification problem fdk,; see Definition 7.19(7) for the conditions holding of the
unification problemu’ and the types’.

By inductionI' k eg: 0. Notice thatvars(eg) C Xy Since we assume all programs to be well
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formed. By Lemma 7.20 it follows thdlp C {x1:77,...,xn 7], }. Then sincesis a unifier ofu’ it
follows that ifthis € I'g thenT'g(this ) = Cand thus that € #(C) for all f €I'p. Then, it must
be that

() €I = {this :Cf1:501),...,f 118(0'1),X1:S(T/1),...,X]_ZS(T’l)}

So, by Theorem 7.10 and Lemma 77 eq: S(op).

By inductionT; k e; : o for eachi e ¢, and by Theorem 7.10 tha(T;) k e : S(o). Sinceu is
characteristic foly, it follows from Lemma 7.17 that so too i - u and thus thas(';1)) U...U
s(I'y) = §(I') is a type environment. Notice tha{l;) € S(I') for eachi € n and thus by Lemma
7.7,901) & ej: (o) for eachi e . Then the result follows by rulevéwM), that is we have(I') k
new C(€p) :(m(s(r7),...,S(1},)) = S(00)). O

We now consider the completeness of our definition of prialdiypings.

Theorem 7.22(Completeness of Principal Typingdf I s e : o then there is a typin§l”, o”'] € PTS(e)
and a simple type substitution s such thd@t'sC I" and g0’) = .

Proof. By induction on the definition of simple type assignment.

(var): Thenr',x:o k x 1o with x # this . By Definition 7.19, [x:¢}, ¢] € PTS(x) for all ¢, so take any
such typing and les = [¢ — o]. Thens(p) = o ands({x:¢}) = {x:c} CT,x:0.

(seLr-oBr): ThenI,this :Ckthis :C. [{this :C}, C] € £TS(this ) by Definition 7.19, and(C) = Cfor
anys, and sos({this :C}) = {this :C}CT,this :C.

(seLr-FLp): ThenT,this :Cf o kthis :(f :0) with f € F(C). By Definition 7.19 it follows that, for
all , [{this :Cf:¢}, (f :¢)] € PTS(this ), so take any such typing and et [¢ — o]. Then
S({(f 1)) = (f 1oy and({this :Cf:p})={this :Cf:o}CT,this :Cf:o.

(rLp): ThenT'ke. f :o with T ke (f ;o). by induction there is a typindT, c’] € $7S(e) and a sub-
stitution s such thats(c’) = (f :0) and S(I”) C I'. Let ¢ be a type variable not occurring in
o, T or dom(s). Then fp+— o]oI’) = S(I'"). Notice, also, thatg — o] o s(o”’) = (f :07) and
[ o] o S((f 19)) =(f :0). Thus, |p — o] o sunifies ¢, {f :¢)). By Property 7.15, then, there
are substitutions’ and s” such thats' = Unify(c”,(f :¢)) and p — 0] os=S"0 5. Now, by
Definition 7.19, E(I"), S(¢)] € #7S(e. f). Then,

S'(S(p)=8"oS(p)=[pr alosp) =0

and also
S (S(I)=s"os (") =[¢p olodl")=[") T

(~wvk): ThenT k eq. n(&p) ;o With T k eq:(m: (c°n) — o) andT k e;: o for eachi € 0. By induction,
there are typingsl]y, 7o), ...,['n, 7n] and substitutions, ..., s, such thatI, 7] € P7S(ej) with
9(I) €T ands(tj) = oj for each O< i <n.
Without loss of generality, we can assume thatm: (¢:n) — o)] and eachT[j, 7j] (0 <i <n)do
not have any type variables in common with each other; th#hésr sets of type variables are all
pairwise distinct. We can also assume that, for eagh @ n, dom(s) C tv([Ti, oi]), Since we are
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always able to construct substitutiogisuch thatlom(s) = dom(s) Ntv([I, 7i]) and () = si(¢)
for all ¢ € dom(s), and thuss ([T, 7i]) = s([I5, 7i]).
Now, take some type variabjenot occurring in anyT;, 7i] (0 <i < n), orin [, {m: (c5,) — o), ];
then lets=[p — o] o Sy0...0 . Notice that:
1. gI}) cT foreach O<i<n.
Take anyi; remember that (I;) € I'. Then sincep does not occur i, it follows that
[¢ = o](s(I)) = S(I'). Furthermore, sincdom(s;) is distinct fromI" forall0< j <n,
it follows thats,o... o s:1(s(I')) = s(I'). Thirdly, sincedom(s;) is distinct fromI’ for
each < j<nsuchthai # j, S_10...05([j) =Tj. Thus:

[ ol(s() =[¢+ gl(sno...os11(s(TH)))
=[p ol(sho...os51(S(S—10...050(I1)))
=gl cr

2. sunifies (o, (M: (7n) — ¢)):
a) Sincedom(s) is distinct from(m:(c5,) — o) forall 0 <i < n, s,0...05((m:(o%) —
o)) = (m: (o5,) — o). Also, sincey does not occur ikm: (o5,) — o), it follows that

[ = al((m: (@) = 0)) =[p = o](sho...o s (M (Th) = o))

= (m (@) = o)

Thus: S(rg) = [¢ = o] o syo...0 (7o)
=[p olosyo...os(m(oh) — o))
=(m:(on) — o)
b) i. Sincep does not occur in any, 7i], s(¢) = ¢ forall0<i<nandthuss,o...o () =
¢; thens(p) = [p = ol(sho...0%0(p)) = [¢ = ol(p) = 0

ii. We show thats(rj) = o for all 0 <i <n. Take anyi; sincedom(s;) is distinct
from 7; for each 0O< j < n such thati # |, it follows thats_j0...0 (1) = 7j. Also,

since for all 0< j < n dom(s;) is distinct from(m:(cn) — o), it is therefore distinct
from o; thus sy0...05.1(0) = 0. Lastly, sincep does not occur in anyj (j €N,

[ o)(oi) =[¢ o]l(sho...0S:1(04)) = oi. Then, sinces (i) = o, we have:

[e - ol(so...08:1(01) = [¢ ol(so...0541(s (1))
=[p ol(smo...0S5:1(S(S-10...0%(Ti))))
= (1)

Thus s((m: (1) — ¢)) = (M. (S(11),...,(tn)) = ¢))

= (m (@) = o)

Letu be a minimal characteristic unification problem ft...,I'h. By point 1 above and Lemma



7.17(3),sis a unifier ofu. We therefore have thatunifies (o, (m: (7n) — ¢)) - U) and thus by
Property 7.15 there arg ands” such thats' = Unify((rg, (m: (7)) — ¢))-U) ands=S"oS. By
Definition 7.19, E(I"), S(¢)] € PTS(ep. m &) ) Wherel” =ToU...UT,. By point (1) above, it
follows thats(T'p) U... U S(I'y) C T'. Notice then thas’(S(I'")) =S’ oS (") = (I’") = STg) U... U
s(I'n) € I" and also by point 2(b)i above thgt(s'(¢)) = S’ o S(¢) = S(p) = 0.

(NewOei): ThenT ik new C(&p) :C for someC such thatF (C) = ', with T  ej: oj for eachi e 0. By
induction, there are typing¥1{, r1],...,[I'n, Tn] @nd simple type substitutiorss such thatT;, 7i] €
P7S(ei) with 5(I')) €T ands(t;) = o for eachi € n. Without loss of generality, we can assume
that [I', C] and eachT;, 7;] (i € ) do not have any type variables in common with one another, an
thatdom(s) € ([T, 7i]).

Lets=s,0...05;. Now, take any’j. Remember thad (I) C I'. Sincedom(s;) is distinct from
I" for eachj e N, we haves,o...os.1(s(I)) = s(I'). Also, sincedom(s;) is distinct fromI’; for
eachj e nsuch thai # |, it follows thats_j o...0 (I'}) =TI. Therefore

S(I) = sho...os41(s(T))
=$0...0541(S(S-10...051([7)))
=g[i) cr

And thusg(I';) € T for eachi e A. Let u be a minimal characteristic unification problem foy.
By Lemma 7.17(3) it follows thas is a unifier ofu and so by Property 7.15 there a'eand s”
such thats’ = Unify(u) ands= s’ o §'. By Definition 7.19, F(I""), C] € #TS(new C( &) ) where
I"=T1U...UT'y. Sinceg(l;) T for eachi €, it follows that (') U...u s(I'y) €T, and so
S'(SI7")=5"o08(I")=9I")=9'1)U...usIy) CT. Also we have thas’(C) = C by definition.

(NewF): ThenI g new C(&,) :(f :oj) for someC such thatF (C) =, with T k ej: o for eachi e,
and wherg € 0. By induction, there are typing¥{, r1],...,[I'n, Tn] and simple type substitutions
%, such thatTi, 7i] € P7S(e;i) with s(T;) € T ands(r;) = o for eachi € n. Without loss of gen-
erality, we can assume that eadh, [r;] (i € n) do not have any type variables in common with
one another, and that eadh,[r;] does not share any type variables witlando*,. We can also
assume thadom(s) € ([T, 7i]).

Let s=s,0...05. Sincedom(s) is distinct fromr; for eachi € i such thati # j, it fol-

lows thatsj_jo...0s(7j) = 7j. Also, sincedom(s) is distinct fromo; for eachi € 0, we have
Sho...oSj41(0j) = oj. Then, sincesj(tj) = o, it follows that:

Sj(Tj) =S,0...0 Sj+1(Sj(Tj))
= $0...08j;1(Sj(Sj-10... 0 51(7})))
= 8(1j)
=0

Next, take any’j. Remember thag () € I'. Sincedom(s;) is distinct fromI” for eachj € i, we
haves,o...os,1(s(I)) = s(I%). Also, sincedom(s;) is distinct fromI’; for eachj € i such that
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i # j, it follows thats_jo...0 (Ij) =Tj. Therefore

S([) = sho...ospa(s(Ih))
=o...05:1(S(S-10...05(T7)))
=9I} cT

And thuss(T'j) C T for eachi € ii. Letu be a minimal characteristic unification problem for By
Lemma 7.17(3) it follows thas is a unifier ofu and so by Property 7.15 there adeands” such
that s’ = Unify(u) ands= s’ os’. By Definition 7.19, F(I"), S({fj :7j))] € TS(new C(&y))
wherel” =T'1 U...UT,. Sinceg(Ij) €T for eachi € 1, it follows thats(I';)) U...us(I')) €T, and
s0s’(S(I") =8"os(I") =I") = (I'))U...uI'y) cI'. We also have thas’(s'({fj :7j))) =
S os((fj irp)) =s((fj i) =(fj o).

(xNewM): ThenT & new C(€p) :{(m: (07) — o) With I” k eg: 0o andI k ej: o for eachi € i, where

112

F(C) =T, MB(C,M) = (Xv,e0) @andI” = {this :C, f1:01,....f nion,X1:07,. ... X0, ).

By induction there are typingd'{, 7/],...,[['n, 7] and simple type substitutiors, such that
[T, 7’] € PTS(ei) with s(I) € T ands(7{") = o for eachi e 0, and there is a typind'b, 7] €
PTS(eo) and a substitutiors such thatsy(I'o) € I'” and so(7() = 00). Without loss of generality,
we can assume that eadh,[r{"] (0 <i < n) do not have any type variables in common with one
another, and that eachi[ 7] (0 <i < n) does not share any type variables viitm: (0'w) = oo
anda,. We can also assume thadm(s) € tv([T7, 7;]) for each O<i <n.

Let ¢, and ¢’y be distinct type variables not occurring in any,[r’] 0 <i<n), orrl,
(m: (0’ ) = o) andor,, and lets’ be the type substitution such thatddm(s') = {¢x, ..., ¢n, ©7s
@ 1 i) S() = o foralli en; and i) S'(¢) = o for alli en’. Thenlets=S o0s,0...0%.

Take anyI; (i € n); remember tha(I;) CI'. Sincedom(s;) is distinct fromT; for each
0 < j < nsuch thati # |, it follows that 5_j0...5(I) = IG. Also, sincedom(s;) is distinct
from I for each 0< j < n, and noyy (k € ) or | (k € ') occurs inT, it then follows that
Sog0...05;1(s(I)) = s(I}). Thus:

S([i) = S oso...05:1(s(TH))
= s’oSnO...OS+1(S(S—1°~--SO(Fi)))
=9Ij)cr

And sos(Ij) c T for all i € fi. Letu be a minimal characteristic unification problem oy then by
Lemma 7.17(3)s unifiesu.
Let7, be a sequence of simple types satisfying

i) fi ZO'i" elg= T =O'i”; andi)f; ¢l'o= 7i = ¢
for eachi € i, and7’,y be a sequence of types satisfying

) xj:o{" €elo= 1 =07 ;and ii)x;¢lo = 7] = ¢
for eachi e . If this € Ig then letu’ = (C,To(this ))- (r1,77)-...- (tn,77), Otherwise let =
(t1,77) ... (mn, 7). If this € I'g then, sinceso(I'o) S I, So(I'o(this )) = Cand so by Definition
7.8,Tp(this ) = C. Thuss(C) = y(I'g(this )) = C. Now, take any%, ;") (i € n); we will show that
s(ri) = (7).



a) There are two cases far.

(fi €T'g): thent =To(f;); notice that sincey(I'g) CT"andI”’(f ; ) = o7, it must be thasy(r;) =
oi. Then sincedom(s;) is distinct fromo for all 0 < j <n, and nogy (k€ N) or ¢, (ke
') occurs ingj, we haves o s,0...0 (o) = 0. Thuss(tj) = S o§,0...08 0 (1) =
Sos0...08(0) = .

(fi ¢T): thent; = ¢; and sincep; does not occur in any typingy, 7{’] for (0 <i < n), we have
thaty; ¢dom(s;) for any 0< j <nand sos,o...o S(¢i) = ¢i. Notice thats'(¢;) = o and
thuss(7i) = S(¢i) = S o sh0...0 (i) = S(gi) = 7.

So, 9(1j) = 0.

b) Sincedom(s;) is distinct fromr;” for all 0 < j < nsuch that # |, it follows thats _1 o... 0 s(7{")
=1{’. Also, sincedom(s;) is distinct fromc; for all j €, and nopk (ke N) or ¢y (ke ') occurs
in o, we have that o sy0...05,1(0j) = 0. Thus, sinces(r{’) = o, it follows that

s(r) =S osmo...08.1(s(r]"))
= s’oSno...OS+1(S(S—1O---OSO(Ti”)))
= 9(1{") = o

Thus, we can concludgunifiesu’. We will now show thas((m: (/) — 74)) = (m: (07 w) = o).

a) Take anyr{ (i € n’; there are two cases:

(xj € o). thent{ =Tg(x); notice that sincey(I'o) CI' andI”(x;) = o7, it must be thaky(r{) =
o. Then sincalom(s;) is distinct fromg” for all 0 < j < n, and napy (k€ A) or ¢} (ke 1)
occurs ino7, it follows thats' o sy0...0 §(07) = 0. Thuss(7r{) =S osho...08 0 5(7]) =
Sos0...08(0]) =0].

(xi¢T0): thent] = ¢ and sincep; does not occur in any typind, 7;’] for (0 <i < n), we have
thatyf ¢dom(s;) for any 0< j <nand sos,0...0 s(¢]) = ¢/. Notice thats'(¢) = o and
thus (1) = s(¢f) = S o yo...05(¢]) = S(¢]) = 0.

So,9(r{) = o forallien’.

b) We have thaky(7j) = oo. Also, sincedom(s) is distinct fromoy for all 0 <i < nand no
¢k (ke M) or ¢ (ke n) occurs ingy, it follows that s o sy0...081(00) = 0. S0 1y =

Soso...0805(rg) =S os0...08(00) = 00.

Thus we can conclude that

UM (T w) = 5)) = (M (ST, .., S(Tly))) = S(T5))

= (m: (¢’ ) = oo)

Now, sinces unifies bothu andu/, it follows thats unifiesu’ - u and so by Property 7.15 there are
s ands” such thas” = Unify(u - u) ands= s’ o §”. By Definition 7.19, B’ (I"’), s’ ((m: (*'v) —
5] € PTS(new C(€y) ) wherel” =T'1U...Ul. Sinceg(I'j) €T for eachi €1, it follows that
SM)U...us(ly) €T, and sos”’(s'(I")) =" o s'(I"") = (I") = (I'1) U...u['y) CT. Finally,
$(S" (M (T'y) = 7g))) = 8 0 8" (M (i) = 7¢)) = S(m: (i) = 7)) = (M (¢"w) = 70). O

To address the question of the decidability of simple tysigasnent, we turn the above definition of
principal typings into the followingilgorithm We can then reason about its termination properties.
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Definition 7.23 (Principal Typings Algorithm) The semi-algorithnPTS computes the set of principal
typings for an expression. It is defined, in the context ofog@m P, by cases as follows:

PTS(x) = if (x =this ) then
letT=0
for each clas<Cin the program
add[{this :C},C]JtoT
for each fieldf in ¥(C)
let ¢ be fresh
add[{this :C f:p},{(f:@)]t0T
return T
else
let ¢ be fresh

return {[{x:¢}, ¢]}

PTS(e.f)=letT=0
T =PTS(e)
foreach[I',o] € T’
let ¢ be fresh
s= Unify(o,(f :¢))
if unification did not fail, then ad@is(I'), s(¢)] to T
return T

PTS(eo. m(&n) ) =
letT=0
Ti = PTS(ej) foreachO<i <n
for each combination dflg, og],...,[nh, on] such that
[[,0i] €T forO<i<n
let u be a minimal characteristic unification problem 1gy,...,I',
I'=TqU...UI'y
¢ be fresh
s = Unify((oo,{m: (o) — ¢)) - U)
if unification did not fail, add s(I'), s(¢)] to T
return T

PTS(hew C(&p)) =
letfm=F(C
if (n=m) then
letT=0
Ti = PTS(e;) for each ie n
for each combination dfi"y, o1],...,[I'n, on] such that
[[j,0q] €T foralli en
letI' =T U...UT,
u be a minimal characteristic unification problem fog
s = Unify(u)
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if unification did not fail, then
add[s(I'),C]to T
foreachien
add[s(I), s(fi o) to T
for each methodhin C
let MIX(C,m) = (Xiv, €0)
To=PTS(eo)
for each combination dfi"y, og],...,[I'n, on] Such that
[[j,0i] €T for0O<i<n
letI' =T U...UT,
u be a minimal characteristic unification problem G
U =(r1,01) ... - (tn,0on)
where for each &€n
Ti=To(f;)iff;j € ogand
7{ = ¢ otherwise, withp fresh
s= Unify(U’ - u)
if unification did not fail, add s(I'), s((m: (*rv) = oo))] to T
where for each E v
7 =To(x) if xj € o0 @nd
7/ = ¢ otherwise, withp fresh

|
return T

PTSis indeed a semi-algorithm because for certain programélikoep forever, never returning any
output. Consider the self-returning objects that we carsid in Section 6.1, which are instances of the
following class:

class SR extends Object {
SR self() { return this; }
SR newlnst() { return new SR(); }

If we run the algorithm on the expressioaw SR() , it will successfully add the typind)| (self :() —
SR)] to its setT of principal typings. However, when it comes to analysertb@inst method, it will
recursively call itself on the body of the method, which isiaghe expressionew SR() , thus entering
a non-terminating loop.

The program we have just considered is an exampleairsiveprogram - it contains a class that
has a method which, when invoked, results in the creationnavainstance of the class itself. For any
such program, the algorithiATS will not terminate. However, fononrecursive programs, it correctly
computes principal typing sets.

We formalise the notion of recursive (and non-recursivegpams by defining dependencyelation
on the classes in a program. This notion of dependency flissren a notion of subexpression:

Definition 7.24 (Subexpression Relation) hesubexpressiorelation < is defined as the smallest tran-
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sitive relation on expressions satisfying the following:

e.f

e.me)

e<

e. m(&p)
new C(€p)

(forallien) ej<

Notice that the subexpression relation we have just defmedtrict order, i.e. it is irreflexive. This
fact will be an important component in the proof of Theore287.
When the body of a method in claSsefers to a clasb, then we say that dependonD.

Definition 7.25(Class Dependency Relatiorhe class dependency relatieris defined as the smallest
transitive relation on classes satisfying the following:

MB(C,m = (X,new D(€))=>D<C
MB(C,m = (X,e) & new D(€) <e=>D<C

Definition 7.26 (Recursive Programs) 1. We say that a clasSis recursiveif C< C.
2. We say that a program is recursive if it contains at least mtursive class.
3. We say that a program ison-recursivdf it is not recursive.

To show that the algorithRTSterminates for non-recursive programs, we will define aroengass-
ment relation on expressions. For non-recursive progrémsencompassment relation turns out to be
well-founded.

Definition 7.27 (Encompassment)Theencompassmemelation < on expressions (for a program P), is
the smallest relation on expressions satisfying the faligwwo conditions:

e<€ >ex€

MBC,m = (X,e) > e <new C(g) (forallg)

Theorem 7.28(Well-foundedness of Encompassmenif)P is a non-recusive program, then its encom-
passment relation is well-founded.

Proof. We prove the contrapositive: i.e. if the encompassmentioel@f P is not well-founded, then
P is recursive. Take any prografmand assume its encompassment relation is not well-fountieein
there exists some infinite descending chain

eijb>ex>es...

By Definition 7.27, for eacle; andej, 1 in the chain, eitheei,; < e;j or e; is of the formnew C(®) and
there is somensuch thatMb(C,m) = (X,ej;1). Notice that these two possibilities are mutually exalasi
Since the chain is infinite and for evesy,; < e, ej,1 is strictly smaller thar;, there must therefore be
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an infinite number of pairs of expressiaosg e .1 in the chain such that; is of the formnew C(€) and
Mb(C,m) = (X,ej,1). Thus, the chain is as follows:

e}> >erl]l >new Ci(#®) l>e§> ...>eﬁ2 >new Cy(#®) l>e§>
where, for each > 1, either
1. niy1 =0, soMb(G ,m = (X,new G ,1(®)) for somem and thus by Definition 7.25 we have
G >G4 0r
2. niy1 >0, soMb(C ,m = (x,eifl) for soment then since< is a transitive relation, it follows that
el"t > new G ;1(®) and thus by Definition 7.25 we ha@ > G 1.
Therefore, there is an infinite chaih > G, > C3 > ... and by transitivity of the class dependency relation,
G > G foralli, j> 1 suchthat < j. Now, since the program must be finite (i.e. contain a finitelber
of classes), there must bg > 1 such that < jandG =G , and so there is a class that depends on itself.
Thus, the program is recursive. O

Now, using the fact that the encompassment relation forreouarsive programs is well-founded, we
can show a termination result feTS.

Theorem 7.29(Termination ofPTS). For non-recursive program$TS(e) terminates on all expres-
sions.

Proof. By Noetherian induction ori, which is well-founded for non-recursive programs. We dasec
analysis ore:

(x): If x #this  then we simply have to construct a single typing and returfiit=this , then we have
to do this for each class in the program and each of their fi@dwe there are a finite number of
these, this will terminate.

(e. f): First of all, we recursively call the algorithm @ sincee < e. f, by induction we know this
will terminate, and if it does not fail it must necessarilyum a finite set of typings. For each of
these typings we must unify a pair of types and apply the tiegusubstitution, all of which are
terminating procedures.

(eo- m(&n) ): Firstly, we recursively call the algorithm on each exgies e;. Since for each, e; «
eo. M €n) , by induction each of these calls will terminate. If none leérh fail, they must each
necessarily return a finite set of typings. Thus, the numball possible combinations for choos-
ing a typing from each set is finite. For each of these comigingt we must build a unification
problem, call theunify procedure on it, generate a typing and apply a substitutigin Since the
type environment of each typing is finite, we can compute tidmal characteristic unification
problem. The procedurgnify always terminates (Property 7.15). As remarked in the previ
case, generating typings and applying substitutions ametarminating procedures.

(new C(®,)): The number of fields in a class is finite and (for well-formmagrams), the lookup
procedure for fields is terminating. If the number of expi@ss in e, matches the number of
fields, we recursively call the type inference algorithm anleone. Since; < new C(&p) each
of these calls will terminate. If none of them fail, they masth necessarily return a finite set of
typings. In this case, the algorithm has two main tasks:
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1. For each combination of choosing a typing from eachP3&¥(e;), the algorithm must con-
struct a (minimal) unification problem for the type enviraemis which, as remarked above,
is a terminating procedure. The algorithm then applieduhiéy procedure, which is termi-
nating (Property 7.15), and adds a typing for the class §/@end one for each field d, of
which there are a finite number.

2. For each methordhin C, we lookup the method’s formal parameters and badis(C,m =
(%,e0). As for field lookup, this is a terminating procedure for isfekrmed programs, and
there are a finite number of methods. The algorithm then samly calls itself on the
method bodyeg. Sinceeg < new C(&,), by the inductive hypothesis this is terminating,
and necessarily returns a finite set of typings. Since eadhk finite, the number of combi-
nations of typings chosen from the principal typing set afes, ..., e is finite. For each
combination, the algorithm builds a (minimal) charactésianification problem for the type
environments, and also constructs a second unificationgrobf sizen. These both take
finite time. It then combines the two and applies thafy procedure, which is terminat-
ing. If unification succeeds, it builds a typing and appliesibstitution, as remarked, both
terminating procedures.

Notice that since a program is a finite entity, and the numlfedlasses it contains is finite, it is
decidable whether any given program is recursive or not.sTtue can always insert a pre-processing
step prior to type inference which checks if the input pragia non-recursive.

This restricted form of type assignment and its type infeeealgorithm could straightforwardly be
extended to incorporate intersections of finite rank. Thisat much help, though, in a typical object-
oriented setting, since the ‘natural’ way to program in sacwontext is with recursive classes. Consider
the oo arithmetic program of Section 6.4 - there thec class depends (in the sense of Def. 7.25) upon
itself. If this example seems too ‘esoteric’, consideréaast the program of Section 6.3 defining lists, an
integral component of any serious programmer’s colleatibiools.

A slightly different approach to type inference that we could take is to keef, as we recurse
through the program, of all the classes that we have alrdadked inside’ - i.e. all those classes for
which we have already looked up method bodies. Then, whemevencounter aew C( &) expression,
if the classCis in the list of previously examined classes, we only allbesalgorithm to infer typings of
the form [, C] or [T, {f :0)]. That is, we do not allow it to look inside the method defimils a second
time.

We could also modify the definition of simple type assignmtenteflect this, by defining the type
assignment judgement to refer to a second environrBerantaining class names. This second envi-
ronment would allow the system to keep track of which clagmifions it has already ‘unfolded’. The
only type assignment rule that would need modifying is thevM) rule, which would be redefined as
follows:

TU{CK(f 1:0%, ... T niogy, this :C X101, ... . Xnionlk€pio ZTk€io]
= T'snew C(€y) :(m(ch) — o)

(F(Q) =T, Mb(C,m) = (Xn, ep), C¢X)

(Vien)
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The modified type inference algorithm would then be complétie respect to this modified type assign-
ment system. It would also be terminating for all programentra practical point of view, however, this
does not constitute a great improvement in the object-taiesetting - the types inferred for recursive
programs are quite limiting. Take, for example, thearithmetic program: the set of principal typings
for new Suc( Inly) objects in our decidable type inference system (for anyefirahk of intersection)
only contains typings of the following general forms:

[T, Suc] [T, {pred :o)]
[T, (add : (¢) — Suc)] [T, (add : () — {pred :o))]

The set of principal typings farew Zero() consists of the following two typings:
[0, Zero ] [0, (add : (¢) — ¢)]

Thus, while we can infer the ‘characteristic’ type for eatlject-oriented natural number (as discussed
in Section 6.4), the types we can infer for the methaxts andmult are the limiting factor. For example,
these types do allow us to add an arbitrary sequence of nsnbgether by writing an expression of
the form[nyly.add( Tnply.add( ....add( Tnply))) . However, ‘equivalent’ expressions of the form
Tnily.add( Tnply). ....add( Tnmly) are rejected as ill-typed (unless eath.., ny 1 is zero) since
the only type we can derive for the expressionly.add( Tnyly) is Suc, preventing us from invoking
the remainingadd methods.

The situation is even worse if we consider thelt method. Fonew Zero() , we can derive types of
the form({mult :(¢) — Zero ), leaving us in pretty much the same situation as withetfte method. For
new Suc(new Zero()) ,the encoding of one, we are slightly more restricted: weassign types of
the form{mult :(add :Zero — ¢) — ¢). Since, as we have segadd : Zero — ¢) is not a type we can
infer for any number, we must substitute the type variabfer something in order to make this into a
type we can use for an invocation of timalt method. There are two candidatésadd : Zero — Zero ),
which we can infer fomew Zero() , or (add:Zero — Suc) which we can infer for encodings of
positive numbers. Thus, we may only type the multiplicatiérl by a single number. For the encoding
of any number greater than one, we can only infer the singbe {nult :(add :Zero — Zero ) —
Zero ), meaning that fon > 2 we may only type the expressiohsly.mult(new Zero()) . From this
discussion, it should be obvious that the utility of our typference procedure is limited - it types too
few programs.

To consider a final example, we turn our attention to the lisgpm of Section 6.3. This is quite
similar to the case for thadd method in the arithmetic program. Indeed, #ppend method functions
in an almost identical manner. This means that our typeénfeg algorithm can only infer types of the

form (append :(¢) — ¢) for empty lists, and the type@ppend :(¢) — (tail :...{tail :p)...)) for
N— —
ntimes

lists of sizen. As for thecons method, we obtain the type schemesns :(¢) — NEL), (cons :(¢) —
(head : ¢)), and{cons :(¢) — (tail :NEL)) for non-empty lists, and for empty lists the additional type
schemgcons :(¢’) — o), whereo is one the three type schemes for non-empty lists.

At this point, it is natural to ask the question whether the@ny way to modify the system so that we
can infer more useful types for recursively defined prograf&rs answer to this question can be found
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if we go back a step and consider, not the types that we canthlgdcally infer for say, the arithmetic
program, but the (infinite) set of principal types it has adaw to Definition 7.19. Let us not be too
ambitious, and restrict ourselves to considering justehgpes which pertain to theld method. What
we find is that, even though this set of types is infinite, ieigular. Namely, for each encoded number,
we can assign the following sequence of types:

(add : (¢) — Suc)
(add : ({(add : (¢) — Suc)) — (add : (¢) — Suc))
(add : ({add : ({add : (¢) — Suc)) — (add : (¢) — Suc)))
— (add : ({add : (¢) — Suc)) — (add : (¢) — Suc)))

As can be seen, each successive type foatlilemethod forms both the argument and the result type of
the subsequent type. In the limit, if we were to allow typebdmf infinite size, we would obtain a type
o which is characterised by the following equation:

o=(add:oc — o)

In a certain sense, this type is t@st specificor principal one because it contains the most information.
The type in the above equation is defined, or expressed irstefiitself, and as such can be described
by recursivetypeuX.(add : X — X) which denotes the type which is the solution to the abovetarua
This type also nicely illustrates the object-oriented agriof abinary methodwhich is a method that
takes as an argument an object of #aenekind as the receiver. This is expressed in the nominal typing
system (see Section 6.6) by specifying in the type annotdtiothe formal parameter the same class
as the method is declared in. For the arithmetic programs, dhn be seen in the specification of the
add method in theNat class (interface), which specifies that the argument shoeilof classNat . The
recursive type that we have given above expresses thigoredatp via the use of theecursively bound
type variableX.

We do not have to look at a program as relatively complex asthiemetic program to make this
observation regarding recursive types. We remarked iri@3e6tl that the self-returning object program
defines a class whose instances can be given the infiniteegutar family of typegself :() — SR),
(self :() — (self :() — SR),..., etc. As for theadd method, the (infinite) type which is the limit of
this sequence can be denoted by the recursiveiiypéself :() — X).

The use of recursive types to describe object-orientedranag is not new. We have already seen
in Chapter 2, for example, that Abadi and Cardelli consigursive types for the-calculus. The
problem with such recursive types is that, traditionalhgyt do not capture the termination properties
of programs, which is one of the key advantages of the intdmsetype discipline. In the second part
of this thesis, we will consider a particular variation oe theme of recursive types that we claim will
allow us to do just that, and so obtain a system with similgressive power terp, but which also
admits the inference of useful types for recursively deficladses.
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Part Il.

Logical Recursive Types
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8. Logical vs. Non-Logical Recursive Types

At the end of the first part of this thesis, we remarked thatingee types very naturally andfectively
capture the behaviour of object-oriented programs, sineg are finite representations of (regular) infi-
nite types. As we also mentioned, this is well known. In tleisand part of the thesis, we will investigate
the potential for semantically-based, decidable typerémfee foroo provided by a particular flavour of
so-called ‘logical’ recursive types.

In this chapter, we will review the relevant background andent research in this area. We start by
presenting a basic extension of the simple type theory ntbalculus which incorporates recursive
types. This very simple extension of the type theory showas shnaive treatment of recursive types
leads to logical inconsistency, and therefore does notigeeca soundsemantidbasis for type analysis.
At heart, this is a very old result, the essence of which wasflirmulated mathematically by Bertrand
Russell, but analogous logical paradoxes involving sefifnrence have been known to philosophers since
antiquity.

The situation is not a hopeless one, however. The logicahisistency we describe stems from using
unrestrictedself-reference, the operative term here begin ‘unresttictBy placing restrictions on the
form that self-reference may take, logical consistencylmregained. A well-known result of Mendler
[78] in the theory of recursive types is that by disallowinegativeself-reference (i.e. occurrences of
recursively bound type variables on the left-hand sidesrofaa or function, types), typeable terms once
again become strongly normalising as for Simply Tygechlculus. In the setting afo however, this is
not an altogether viable solution, since there are quiataisly object-oriented features such as binary
methods (discussed in the previous chapter) which regegative self-reference.

An alternative approach to restricting self-reference theen described by Nakano, who has devel-
oped a family of type systems with recursive types which dosoiber from the aforementioned logical
paradox, and which also do not forbid negative occurrentesanrsively bound variables. As such,
these type systems allow a form of characterisation of niisateon. They are not as powerful as sys-
tems in the intersection type discipline, since they do haracterise normalising or strong normalising
terms, however they do give head normalisation and weak ai@ation guarantees.

We believe that Nakano’s variant of recursive type assigririgetherefore a good starting point for
building semantic, decidable type systems which are waled to the object-oriented programming
paradigm. This observation is made by Nakano himself, hewhe does not describe explicitly how
his type systems might be applied in the contexb@fnor does he discuss a type inference procedure.
This is where we take up the baton: the answering of thesdiqngss that which shall concern us in
the remainder of this thesis, and wherein the contributfoouo work lies.
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8.1. Non-Logical Recursive Types

While recursive types very naturally capture the behavidwecursively defined constructions, if we are
not careful we can introduce logical inconsistency intotyfee analysis of such entities. As we will later
point out, this kind of logical inconsistency is not predkasto the functional analysis of programs, but
limits the analysis to an expression gdrtial correctness only. That is, it does capture the termination
properties of programs, and therefore cannot be called $elnantic.

This can be illustrated by using a straightforward extemsiithe simply typedi-calculus to recursive
types. In [34] Cardone and Coppo present a comprehensiigteen of recursive type systems for
A-calculus, and in [35] they review the results on the dedlitalof equality of recursive types. Here we
present one of the type systems described in [34], in whieHdbical inconsistency can be illustrated.
We shall call the system that we describe belpwa name given by Nakano, which we borrow since it
is unnamed in [34]).

Definition 8.1 (Types) The types ofi, are defined by the following grammar, where X, Y., Zrange
over a denumerable set of type variables:

ABC == X | A-B | uX.A

We say that the type variable X limundin the typeuX.A, and defined the usual notion of free and
bound type variables. The notatiofiBY X] denotes the type formed by replacing all free occurrences of
X in A by the type B.

The typeuX.Ais a recursive type, which can be ‘unfolded’AfuX.A/X]. This process of unfolding
and folding of recursive types induces a notion of equivaden

Definition 8.2 (Equivalence of Types)The equivalence relatior is defined as the smallest such rela-
tion on 4, types satisfying the following conditions:

XA~ AuX.A/X]
A~B = uX.A~uX.B
A~C&B~D = A—-B~C-D

This notion of equivalence is the weaker of the two equivederelations described by Cardone and
Coppo in [34]. The stronger notion is derived by allowingeygxpressions to be infinite, and considering
two (recursive) types to be equivalent when their infinitéoldings are equal to one another.

This equivalence relation plays a crucial role in type assignt, since we allow types to be replaced
‘like-for-like’ during assignment. This means that, besaa recursive type is equivalent to its unfolding,
types can be folded and unfolded as desired during typeramsigf. It is this capability that will lead to
logical inconsistency, as we will explain shortly.

Definition 8.3 (Type Assignment) 1. A typestatemenis of the form M: A where M is al-term,
and A is al, type; the term M is called theubjectof the statement.

2. Atypeenvironmentl is a finite set of type statements in which the subject of e@atbrsent is a
uniqueterm variable. The notatioilr, x : A stands for the type environmdnt {x: A} where X
does not appear as the subject of any statemeht in
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3. Typeassignmentl + M : A is a relation between type environments and type statemdnis
defined by the following natural deduction system:

- . TEMIA
(Van): [,x:Arx: A ) FFM;B(ANB)
(= 1): I[Lx:ArM:B (> E) T'FM:A-B THN:A
T - .

I'rAxM:A-> B 'rMN:B

The system enjoys the usual property that is desired in agygiem, namely subject reduction [34,
Lemma 2.5]. It does not have a principal typings property, [Rémark 2.13], although its sibling
system based on the stronger notion of equivalence that vimianed above does have this property
[34, Theorem 2.9].

The logical inconsistency permitted by this type assignnsgatem is manifested in the fact that to
some terms, we can assign any and all types. An example ofesterm is x.xX) (Ax.xX). Let A be
any type of1,, and letB = uX.X — A. Then we can derive- (1X.XX) (AX.XX) : A as witnessed by the
following derivation schema:

—(Var)
(var) x:Brx:B “) (var)
ar ~ ar
X:Brx:B X:Brx:B—> A B :B

_—(~) —— (Var) — E)

X:BrFx:B—> A X:Brx:B X:BrXxX:A
— E) — (>
X:BrXX: A FAXXX:B— A
—— (=) —— )

FAXXX:B— A ' AX.Xx: B

(= E)
T (AXXX)(AXXX) A

The reason for calling this a logical inconsistency becomyggarent when considering a Curry-
Howard correspondence [64] between the type system andnafféwgic. In this correspondence, types
are seen as logical formulae, and the type assignment mdedeaved as inference rules for a formal
logical system, obtained by erasing the &tierms in the type statements. Then, derivations of the type
assignment system become derivations of formulas in thedbgystem, i.e. proofs. A formal logical
system is said to inconsistent if every formula is derivgbk has a proof). Thus, the derivation above
constitutes a proof for every formula, and the correspantbgic is therefore inconsistent. The connec-
tion with self-reference comes from noticing that recusgiypes, when viewed as logical formulae, are
logical statements that refer to themselves.

The significance of this result in the context of our reseascthat for such logically inconsistent
type systems, type assignment is no longer semanticaliynglexd. That is, it no longer expresses the
termination properties of typeable terms. This can be seéerive from the fact that we can no longer
show an approximation result for such systems - types nceloogrrespond to approximants. Consider,
again, the term that we have just typed above: it is an uns@v@on-terminating) term and so has only
the approximantL. The only type assignable tois the top typev, however we are able to assigny
type to the original term.

Even though these non-logical systems no longer captuttetimenation properties of programs, they
do still constitute a functional analysis. Since for typdeaterms it must be that all the subterms are
typeable, and since the system has the subject reductipenypwe are guaranteed that all applications
that appear during reduction are well-typed, and thus weillgo awry. A semantic basis for this result
is also given in [77]. Therefore, we can describe these ngitdl systems as providinggartial cor-
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rectness analysis, as opposed to the fully correct analj&s by intersection type assignment which
guarantees termination as well as functional correctness.

While we have formulated and demonstrated the illogicakattar of the (unrestricted) recursive
type assignment within the context dfcalculus, this result is by no means limited to that systéie
inconsistency is inherent to the recursive types themselke an example, we will consider a typeable
term in theg-calculus of objects of Abadi and Cardelli that displays ghme logical inconsistency. We
refer the reader back to Section 2.2 for the details of theuba and the type system.

Consider the (untyped) object:

0=[m=¢(2).Ax.zm(X)]

We will give a derivation schema that assigns any arbitrgpe A to the termo.m(0) - i.e. theself-
applicationof the objecto. We will use the recursive object tygg= uX.[m: X — A]. Notice that we
can assign the typar]: O — A] to the objecto itself, using the following derivatiomD:

(Val x)
{z:[M:O0O— A],x:0}rz:[Mm:0— A]
(Val Select) (Val x)

{z:[m: 0> A],x:0}rzm:0—- A {z:[m:O0— A],x:0O}rx:0
(Val App)
{z:[m:O0O—- A],x:0O}rzm(X): A
{z:Im:O—- A} FAxzm(X): 0O - A
FIm=¢(z:[m: 0 — A).Axzm(xX)]: [m: 0 — A]

(Val Fun)
(Val Object)

Then, we can fold this type up into the recursive tgpand type the self application:

Fo:[m: 0O — A] FO:[M:O— A
— (Val Selecty —— (ValFold)
Fom:0— A + fold(O,0) : O
(Val App)

+ o.m(fold(O,0)) : A

In fact since the; binder represents amplicit form of recursion (similar to that represented by the
class mechanism itself, which we shall discuss later ini@ed0.3.4), we do not even need recursive
types to derive this logical inconsistency in thealculus.

(Val x)
{z:[m:A]}Fz:[m:A]
(Val Select)
{z:[m:Al}rzm: A
(Val Object)

Flm=g(z:[m: A]).zm]: [m: A]

(val Select)
Flm=g(z:[m: A]).zm].m: A

As a last example, we can also do the same thing in (hominglgd)rs (andrs®) and Java. Recall the
non-terminating program from Section 6.2. There, the diBdeclared doop method which called
itself recursively on the receiver. Remember also that tethod was declared to return a value of (class)
type NT. In fact, we can declare this method to retamy class type (as long as the class is declared in
the class table), and the method will be well-typed.

8.2. Nakano’s Logical Systems

Nakano defines a family of four related systems of recursigeg for thel-calculus [84], and introduces
anapproximatiormodality which essentially controls the folding of theseusive types. In this section,
we will give a presentation of Nakano’s family of type systeand discuss their main properties. The
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family of systems can collectively be calld@du, and is characterised by a core set of type assignment
rules. The four variants are namedi&u, S-leu*, F-1eu and F-Aeu™, and are defined by fierent
subtyping relations.

8.2.1. The Type Systems

The type language of Nakano’s systems is essentially thainoply Typed Lambda Calculus, extended
with recursive types and theapproximation modality (called “bullet”), which is a undagpe construc-
tor. Intuitively, this operator ensures that recursiverefices are ‘well-behaved’, and its ability to do so
derives from the requirement that every recursive referenast occur within the scope of the approx-
imation modality. Since this syntactic property is nonabave must first define a set pfetypes(or
pseudo type expressions, as Nakano calls them).

Definition 8.4 (1eu Pretypes) 1. The set ofteu pretypesare defined by the following grammar:
PQT = X | eP | P-Q | wuX.(P-Q)
where X, Y, Z range over a denumerable set of tygr@bles

2. The notation" P denotes the pretype...e P, where re 0.

ntimes

The type constructqgs is abinderand we can define the usual notion of free and bound occusearice
type variables. Also, for a pretypeX. P we will call all bound occurrences ofin P recursivevariables.

Certain types inley are equivalent to the type of the intersection type discipline, and can be assigned
to all terms. These types are calleevariants.

Definition 8.5 (T-Variants) 1. A pretype P is an Fr-variant if and only if P is of the form
M0 X1 @M Xy, . uXy. o™ X;
forsomen-O0andl<i<nwithm+...+my>0.

2. Let(:)* be the following transformation on pretyges

X* = X (P Q) = Q'
(eX)" =o(X") (WX.P)"=uX.P*

Then a pretype P is an $-variant if and only if P is an F-T-variant.

3. We will use the constart to denote any Fr-variant or S-variant.

The well-behavedness property on recursive referencesthaentioned above is expressed formally
through the notion of properness:

INakano uses the notatidhto denote this transformation, however since we use thiatioot for another purpose, we have
defined an alternative.
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Definition 8.6 (Properness)A pretype P is called--proper(respectivelyS-prope) in a type variable
X whenever X occurs freely in P only (a) within the scope ofethge constructor; or (b) in a subex-
pression Q— T where T is an Fr-variant (resp. St-variant). We may simply write that a pretype is
properin X when it is clear from the context whether we mean F-prape3-proper.

The types ofleu are those pretypes which are proper in all their recursige txariables.

Definition 8.7 (1eu Types) The set of F- (respectively Sypesconsists of those pretypes P such that
P is F-proper (resp. S-proper) in X for all of its subexpress of the formuX. Q. The metavariables A,
B, C, D will be used to range over typesly.

Types are considered moduteequivalence (renaming of type variables respedtifmndings), and the
notation A[B/X], as usual, stands for the tygein which all the (free) occurrences &f have been
replaced by the typB.

An equivalence relation is given for each setief: types.

Definition 8.8 (1eu Type Equivalence)The equivalence relation on F-types (respectively, S-types) is
defined as the smallest such equivalence relation (i.exrefietransitive and symmetric) satisfying the
following conditions:

(=-o) If A= Bthene A~ eB.

(=-—) IfFA~Band C~ D then A~ C=~B— D.

(=-fix) uX.A=AluX.A/X].

(=-uniq) If A~ B[A/X] and B is (/S-)proper in X, then A uX.B.

where the equivalence relation on F-types satisfies thetiaddi condition:
(=-T) A—> T ~B— T (for all F-2eu types A and B).

and the equivalence relation on S-types satisfies the additicondition:
(=-T) A— T =T (for all S-1eu types A).

Nakano remarks that two types are equivalent accordinggadhation whenever their possibly infinite
unfolding (according to thex(-fix) rule above) is the same. He does not explicitly defineesyfn be
infinite expressions which is what would be required for l@mark to hold true. However, it seems
obvious from his remark that this is the implicit intentiam the definition. As we mentioned in the
previous section when considering the systgpof [34], we may define types to be either finite or
infinite expressions. If one only allows type expressionsadinite, then the notion of equality given by
~ is calledweakand, conversely, if one allows type expressions to be iefithien= is calledstrong In
the following chapter, when we define a type inference proaetbr Nakano’s systems, we use a notion
of weak equivalence.

The approximation modality induces a subtyping relatiorior each of the four systems, which
Nakano defines in the style of Amadio and Cardelli [5] usingavability relation on subtypingudge-
ments

Definition 8.9 (Subtyping Relation) 1. a subtypingstatements of the form A< B.
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2. A subtypingassumptiory is a set of subtyping statement¥ (that is the types in the statement
are variables and for each such statementjinX and Y do not appear in any other statemen.in
We writey; Uy, only wheny; andy, are subtyping assumptions and their union is also a (valid)
subtyping assumption.

3. A subtypingudgementis of the formy + A < B. Valid subtyping judgements are derived by the
following derivation rules:

(=-assump: "o Viix=y (ST A<

(x-approy : JFA<eA (z-reflex) T A<B (A=B)

y1irA<B vy+B=<C

(x-trang) :
yiUy2-A<C
yrA<B y1+FC=<A y+rB=<D
(x-0): ————— (2--):
vyreA<eB y1Uy2rA->B=<C—D

yU{X<Y}rA<B(X,Y donotoccurfree in A, Bres)p.

(=) .
yruX.A<uY.B A and B properin X, Y resp.

where, for the systems Feu and F-leu™ (respectively Steu and SAeu™), T ranges over F¥
variants (respectively S-variants) and= is the equivalence relation on F-types (respectively
S-types); and additionally:

a) the subtyping relation for the systemsib and F-leu™ satisfies the rule:

(=-=0) A S B<eAeB

b) the subtyping relation for the systemsa&: and SAeu* satisfies the rule:

(5'_>.) : y+e(A— B)<eA— eB

c) the subtyping relation for the systemsibu* and SAeu™ satisfies the rule:

(5'_>.) : yreA— eB=<e(A— B)

4. We write A< B wheneven A < B is a valid subtyping judgement.
F- and S-types are assigneditberms as follows.

Definition 8.10 (1eu Type Assignment) 1. An F-type (respectively S-type) statement is of the form
M : A where M is at-term and A is an F-type (resp. S-type). Thterm M is called thesubject
of the statement.

2. An F-type (respectively S-type) environmieig a set of F-type (resp, S-type) statements in which
the subject of each statement is a term variable, and iswatsgue We writel’, x : A for the F-type
(resp. S-type) environmehtu {x : A} where x does not appear as the subject of any statement in
I.IfT={x1:Aq....% : An}, theneI" denotes the type environment : e Aq,..., X, : e An}.

3. Type assignmentin the systems Reu and F-leu* (respectively Step and SAeu*) is a relation
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between F-type (resp. S-type) environments and F-typp. (es¢ype) statements. It is defined by
the following natural deduction rules:

(Var):l“,x:Akx:A (T):FP—MZT

'rM:A I'r M:A
(nec) e (5)1 (A< B)

o['FM:eA I'M:B

Ix:ArM:B F'rM:e"(A—B) THN:e"A
() —————"" (> E):

Fr'FAXM:A—-B I'+MN:e"B

where T ranges over Ff-variants (resp. Sr-variants) and the subtyping relation in th{gub
rule is appropriate to the system being defined. Furthermihe system Reu* (resp. SAeu*)
has the following additional rule:
o[-M:eoA

rrM:A

(o)
Notice that in the system $ey and its extension Seu*, since the subtyping relation givese(®\ — B) <
¢ A — @B, the rule for application can be simplified to its standanuirfo
I'rM:A-B T'rN:A

'-rMN:B

Also, in the systems Reu™ and SAeu* we can show that thenég rule is redundant.

Nakano motivates theseffiirent systems by giving a realizability interpretationygfes over various
classes of Kripke frames, into models of the untypedalculus. The reason for calling the systems
F-1eu and SAeu then becomes clear, since the semantics of these systemspmrds, respectively,
to the F-semantics and the Simple semantics of types (cf). [fRe precise details of these semantics
are not immediately relevant to the research in this thesid,so we will not discuss them here. The
interested reader is referred to [82, 84]. The importantufeaof the semantics, however, is that they
allow to show a number of convergence results for typealtesewhich we describe next.

8.2.2. Convergence Properties

Definition 8.11 (Tail Finite Types) A type A idail finite if and only if
A=~e™(B; — ¢™(By — ...¢"" B, — X))
for some nmy,...,m, > 0and types B..., B, and type variable X.

Using this notion of tail finiteness, we can state some c@arese properties of typeable terms in
Nakano’s systems.

Theorem 8.12(Convergence [84, Theorem 2])etI"+ M : A be derivable in any of the systemslb,
F-leu*, S-1eu or S-1eu*, and letl' + N : B be derivable in either Fteu or F-deu*; then

1. if Ais tail finite, then M is head normalisable.
2. if B# T then N is weakly head normalisable (i.e. reduces feabstraction).
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To provide some intuition as to why typeability in Nakangystems entails these convergence prop-
erties, let us consider how we might try and modify the déidveof the unsolvable termi.x X)(Ax.x X)
given in Section 8.1 to be a valid derivation in Nakano’s tggsignment systems. The crucial element
is that the type:X. (X — A) is now no longer well-formed since the recursive variakbldoes not occur
under the scope of thetype constructor. Let us modify it, then, as follows, andBet uX.(e X — A).
Now notice that we may only assign the type— Ato the termix.x x

—(va —(va
x:B’rx:B’( f x:B’rx:B'( f
; —— ) ; > (2)
X:B'rx:eB - A X:B'+-x:eB
(- B
X: B Fxx:A

FAXXX: B = A

The unfolding of the typ®’ is e B’ — A; notice that we haveB’ — A < B’ — A butnotthe converse.
Therefore, we cannot ‘fold’ the typ® — A back up into the typ®’ in order to type the application of
Ax.xxto itself. We could try adding a bullet to the type assumpfimmx, but this does not get us very
far, as then we will have to derive the type statembokx: e B’ — o A:

x:oB’rx:oB’(Var) x:oB’rx:oB’(Var)
(=) (=)

<
X:B'Fx:e(eB — A) X:eB' FX:00B
(=B

X:eB FXX:0A

- 1)
FAXXX: B — oA

and again, the subtyping relation givesst® — A < e B’ — ¢ A, but not the converse. Notice also that
eB’ - e A< ¢(B’ — A), thus we may only deriveupertype®f e B’ — A, and so we will never be able to
fold up the type we derive into the tyf itself. It is for this reason that we describe the approxiomat
modality e as controlling thdolding of recursive types.

This also shows why we call Nakano’s systems ‘logical’. 8im@ cannot assign types (other than
to terms such astk.x X) (1x.xX), there are now no longer terms for which any typean be derived. In
other words, viewing the type system as a logic, it is not jpdes$o derive all formulas. In [84], Nakano
explores the notion of his type systems as modal logics anesthe observation that, viewed as such,
they are extensions of the intuitionistic logic of provaiilGL [23].
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8.2.3. A Type for Fixed-Point Operators

After its logical character and convergence properties,niost important feature of thiu type sys-
tems for our work is that terms which afiéed-point combinator¢cf. Section 6.5) have the charac-
teristic type schemes@ — A) — A. This can be illustrated using Curry’s fixed-point operatoe
Af.(Ax.f (xX) (ax. f (xX)) and the following derivation, which is valid in each of tfaur systems we
have described above, L€l be the following derivation:

(var) (var)

(f:eA>AX:eB'}-x:eB {(f.eA>AX:eB }-x:0B

< <

{f:eA>AX:eB' }FX:e(eB — A) =) (f:eA> AX:eB'}-X:0eB =)
(- B)

(f:eA> AX:eB }-XX:0A

(van
(f:eA> AX:eB'}-f:eA=A

{(f:eAo AX:eB }Ff(XX:A
{fe Ao AlrAXT(XX):eB > A

(=B

- 1)

whereB’ = uX.(e X — A) is the type that we considered above. Then we can derive:

D
D 7 {f:(eAo A)}rAXf(XX):eB —>A($)
{f:(eAD A} FAXT(XX):eB - A {(f:(eA—> A)}rAXf(XX) :eB

(=B
{f:(0A> A} - AXTF(XX)(AXTf(xX): A

FAT.(AXTF(XX))AXF(XX): (e A—> A) > A -

D)

The powerful corollary to this result is that this allows agyive a logical, type-based treatment to re-
cursion, and more specifically, to recursively defictsses However, before describing how Nakano'’s
approach can be applied in the object-oriented settindyarfdllowing chapter we will consider a type
inference procedure for Nakano'’s systems.

One final remark that we will make first, though, concerns Maksa definition of T-variants in
the diferent systems. We point out that Nakano’s definition distisiges each of the type schemes
uX.(A— eX), A— T and T in the F-eu systems bunhotin the SAeu systems. It is for this reason,
essentially, that the F-systems can give weak head noatialisguarantees whereas the S-systems can-
not, as the first two of these types can be assigned to weakly i@rmalisable terms that do not have
head normal forms:

(var)
=N

\ 7 FAXY.X: ouX. (A— eX) > A— euX.(A— eX) =D
<

FY :(euX.(A— eX) = uX.(A— eX)) - uX.(A— eX) FAXY.X: ouX.(A— o X) - uX.(A— oX)
FY(AXY.X) : uX.(A— ¢ X)

{x:euX.(A—> eX),y: A}lrX:euX.(A— eX)
{X:ouX.(A—> eX)}FAy.X: A euX.(A— eX)

(=B

(T

{y: A (AXXX)(AXXX) : T N

FAY.(AXXX)(AXXX) A>T
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We do not see the necessity of making this distinction forttie systems, from a semantic point of
view. We believe that by adopting a uniform definition fofvariants across all the systems, tha &«
systems could also enjoy weak head normalisation. In thewaig chapter, we will use such a system
when formulating a type inference procedure, since we wikedo distinguish the typaX. (A — e X)
from T, while being able to rely on the equivalene@ — B) ~ ¢ A — ¢ B.

Indeed, the first term we have typed above is a crucial examplemonstrating the application of
this approach teo, since it corresponds to the self-returning object that amsilered in Section 6.1.
Notice that we may assign to this term the more particulag p. (T — e X), and this in turn allows us
to type, with thatsametype, any application of the forv (Axy.x) M1... My, for arbitrarily large values
of n. This type analysis reflects the fact that the term has thectesh behaviouly (Axy.X) M;... M, —»*

Y (Axy.x) for anyn. Compare this with the behaviour of the self-returning obyehich has the reduction
behavioumew SR().self() ... .self)  —*new SR() forany number of consecutive invocations
of theself method. That we can draw this parallel between a (conveaitignmeaningless’ term in
A-calculus and a meaningful term in an object-oriented mskeuld not come as a great surprise since,
as we remarked in Section 6.5, when we intergretlculus in systems with weak reduction, such terms
become meaningful.
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9. Type Inference for Nakano’s System

In this chapter, we will present an algorithm which we claiatides if a term is typeable in Nakano’s
type system (or rather, the type system &u* strengthened by assuming the definition for Raariants
rather than Sr-variants). Our algorithm is actually based owaaiation of Nakano’s system, the main
feature of which is the introduction of a new set of (type)ables, which we namimsertionvariables.
These variables actually act us unary type constructoid,aa designed to allow extra bullets to be
inserted into types during unification. To support this muted functionality for insertion variables, we
define an operation calleédsertion Insertions can be viewed as an analogue, or parallel, togbeation

of substitutiorwhich replaces ordinary type variables. Similarities ciao e drawn with thexpansion
variables of Kfoury and Wells [74, 75]. Itis this operatiofimsertion (mediated via insertion variables)
which makes the type inference possible, thus inserticiabis really play a key role. This is discussed
more fully with examples towards the end of the chapter.

We also make some other minor maodifications to Nakano’s systde most obvious one is that we
define recursive types using de Bruijn indices instead ofi@dp naming the (recursive) type variables
which are bound by the type constructor; we do this in order to avoid having to de#hw-conversion
during unification. Lastly, to simplify the formalism at shearly stage of development, we do not
consider a ‘top’ type. Reincorporating the top type is areotiye for future research.

An important remark to make regarding our type inferencegdare is that it isinificationbased:
typings are first inferred for subterms and the algorithrtbearches for operations on the types they
contain such that applying the operations to the typingsamdkem equal. This leads to type inference
since the operations are sound with respect to the typerassig system - in other words, the operations
on the types actually correspond to operations on the tygaryations themselves. This approach
contrasts with theonstraintbased approach to type inference in which sets of typingtcaints are
constructed for each subterm and then combined. Thus toeithly infers constraint sets rather than
typings, the solution of which implies and provides a (pipat) typing for the term. It is this latter
approach that is employed by Kfoury and Wells [75], for extenps well as Boudol [24], in their type
inference algorithms forrp, by Palsberg and others [86, 71] in their system of (nonelayirecursive
types fora-calculus, and also for many type inference algorithms fiject-oriented type systems [90,
51, 52, 85, 106, 29, 6].

The two approaches to type inference are fiaa, equivalent in the sense that two types are unifiable
if and only if an appropriate set of constraints is solvaklee can view the unification-based approach as
solving the constraints ‘on the fly’, as they are generatdilevthe constraint-based approach collects all
the constraints together first and then solves them all atrilde One might have a better understanding
of one over the other, or find one or the other more intuitites largely a matter of personal taste. We
find the unification-based approach the more intuitive, Wigahe primary (or perhaps the sole) reason
for this research taking that direction.

The aim in defining the following type system, and associatéetence procedures, is to show that
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type inference for Nakano's system is decidable. Our wodt Bn early stage and, as such, we do not
give proofs for many propositions in this chapter. Therefove do not claim a formal result, but instead
present our work in this chapter as a pre&étchof the intended results.

9.1. Types

We define a set of pretypes, constructed from two set of V@sgbrdinary type variables, and insertion
variables) and Nakano’s approximation type operator, dkagethe familiar arrow, or function, type
constructor. We also have recursive types, which we fortautaana-independent fashion using de
Bruijn indices.

Definition 9.1 (Pretypes) 1. The set ofpretypegranged over byr), and its (strict) subset ofunc-
tional pretypes (ranged over lg) are defined by the following grammar, where de Bruijn indice
n range over the set of natural numbegstanges over a denumerable set of type variables,and
ranges over a denumerable set of insertion variables:

¢ | n I on | L | ¢
Ty = 72 | e¢ | 6 | po

T

¢

2. We use the shorthand notatiefvr (where n> 0) to denote the pretypeprefixed by n occurrences
of thee operator, i.c.e...07.
N——

n times

3. We use the shorthand notatigyir (where n> 0) to denote the pretype prefixed by each in
turn, i.e.tq... ip7.

We also define the following functions which return variou§atent sets of variables that occur in a

pretype.

Definition 9.2 (Type Variable Set) The functionry takes a pretype and returns the set of type variables
occurring in it. It is defined inductively on the structurepsétypes as follows:

™v(p) = {¢} Tv(tmr) = 1v(7)
™v(n) =0 V(1 — m2) = Tv(mr) U Tv(mp)
V(e ) = Tv(7) v(i.¢) = Tv(9)
Definition 9.3 (Decrement Operation)if X is a set of de Bruijn indices (i.e. natural numbers) thiee t

set X| is defined by X={n|n+1e X}. Thatis, all the de Bruijn indices have been decrementetl by

Definition 9.4 (Free Variable Set)The functionrv takes a pretyper and returns the set of de Bruijn
indices representing the free recursive ‘variables’nof It is defined inductively on the structure of
pretypes as follows:

Fv(p) =0 Fv(Lr) = pv(r)
rv(n) ={n} Fv(my — m2) = V(1) Urv(rm)

rv(en) = Fv(r) Fv(u.¢) = rv(e) |
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We say that a pretypeis closedwhen it contains no free recursive variables, #€(r) = 0.

Definition 9.5 (Raw Variable Set) 1. The functiorraw, takes a pretype and returns the set of its
raw recursive variables - those recursive variables (i.e. deifarindices) occurring int which do
not occur within the scope ofe It is defined inductively on the structure of pretypes dev:

RAW, (@) =0 RAW,, (¢ 71) = RAW,, (1)
rRAW,(N) = {N} RAW, (1 — 72) = RAW, (1) URAW,,(712)

RAW, (e71) =0 RAW,, (u.¢) = Raw,(¢) |

2. The functiorraw,, takes a pretyper and returns the set of its ratype variables - the set of type
variables occurring int which do not occur within the scope efthera bullet or an insertion
variable. It is defined inductively on the structure of ppety as follows:

RAW, () = {¢} RAW, (L) =0
RAW,,(N) =0 RAW, (1 — 712) = RAW,(711) U RAW o (712)
RAW (o 7) =0 RAW,,(1.0) = RAW,(¢h)

We will now use this concept of ‘raw’ (recursive) variablesimpose an extra property, called-
equacy on pretypes which will be a necessary condition for congidea pretype to be a true type.
We have also extended the concept of rawness to ordinarwtysbles, although we have relaxed the
notion slightly - a type variable is only considered raw witestoes not fall under the scope eithera
bulletor an insertion variable. This is because later, when we cordeftne a unification procedure for
types, we will want to ensure that certain type variablesagbifall under the scope of a bullet. Because
we will also define an operation that converts insertionaladés into bullets, it will be diicient for
those given type variables to fall under the scope of eithmrlet or an insertion variable.

Our notion of adequacy is equivalent to Nakano’s notion opprness (see previous chapter).

Definition 9.6 (Adequacy) The set ofadequatepretypes are those pretypes for which everyinder
binds at least one occurrence of its associated recursiviable, and evenjpoundrecursive variable
occurs within the scope of e It is defined as the smallest set of pretypes satisfying ath@nfing
conditions:

1. ¢ is adequate, for alp;
n is adequate, for alh;
if 7 is adequate, then so aser and¢r;
if 71 andn, are both adequate, then sorsig — 75;
if ¢ is adequate an@ € rv(¢) \ Raw,(¢), thenu.¢ is adequate.

a s wnN

Definition 9.7 (Types) We call a pretyper a typewhenever it idoth adequateandclosed. The set of
types is thus a (strict) subset of the set of pretypes.

The following substitution operation allows us to formatlgscribe how recursive types are folded
and unfolded, and thus also plays a role in the definition efsilibtyping relation.

Definition 9.8 (u-substitution) A u-substitution is a function from pretypes to pretypes. ddte a
functional pretype, then the-substitution[n — u.¢] is defined by induction on the structure of pretypes
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simultaneously for eveny € N as follows:

[N wpolle) =¢
w¢ ifn=n’

’

[N puel(n’) = { .
otherwise
[N p.gl(en) = o([n > p.¢](7))
[N p.pl(err) = ([N - p.¢](7))
[N pgl(ry - 72) = ([N - p.gl(71)) = ([N - p.p](72))

[N wdl(u.¢’) =p(n+1e w.gl(4))

Notice thatu-substitution has noffect ontypessince they arelosed

Lemma 9.9. Let [n — u.¢] be au-substitution andr be a pretype such that ¢ rv(c), then[n —
p-gl(m) = 7.

Proof. By straightforward induction on the structure of pretypes. O

Corollary 9.10. Let[n — u.¢] be anyu-substitution and- be any type, then the following equation
holds: [n — u.¢](o) = 0.

Proof. Sinceo is a type, it follows from Definition 9.7 thatw (o) = 0, thus triviallyn ¢ rv(o). Then the
result follows immediately by Lemma 9.9. O

We now define aubtypingrelation on pretypes. As we mentioned at the end of the pusvihapter
and in the introduction to the current one, our subtypingtieh is based on the subtyping relation for
the system Ste u*, so we have the equivaleneér — 1) ~ e o — e 7. The rules defining our subtyping
relation are thus a simple extension of Nakano’s to appinsertion variables as well as te@perator.

Definition 9.11 (Subtyping) The subtype relatiog on pretypes is defined as the smallest preorder on
pretypes satisfying the following conditions:

T<erw oy < O
T <M=
T Ly < Lo
eLT<LOTT
Litom <111
LerT < eoLTT
o(my > ) < ey — oMy o) — o7y < o(1 — )
t(ry > mp) <imy —>imp Ly > trp < L(my — o)
p-¢ < [0 u.¢](¢) [0 wugl(¢) <p.¢

$1< 2= p.¢1 < p.d2
M E<m&m<n,=>n > <] >,
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We writerr; ~ 2 whenever bothr, < o andry < mq.
The following properties hold of the subtype relation.
Lemma9.12. 1. Ifx<n’thenr <in’ andin <in’ for all sequences.
2. If/ is a permutation of, thenir ~ i for all pretypesr.
Proof. By Defintion 9.11. O

We now define a subset of pretypes by specifyirgaaonicalform. This canonical form will play a
central role in our type inference algorithm by allowing aosseparate thetrucutral content of a type
from its logical content, as encoded in the bullets and insertion varialfigsetypes are seen as trees,
then canonical pretypes are the trees in which all the Isudlatl insertion variables have been collected
at the leaves (the type variables and de Bruijn indices)t thheahead ofi-recursive types. As we will
see in sections 9.4 and 9.5, this allows for a clean separatithhe two orthogonal subproblems involved
in unification and type inference.

Definition 9.13 (Canonical Types) 1. The set ofcanonicalpretypes (ranged over by), and its
(strict) subsets okexactcanonical pretypes (ranged over By, approximativecanonical pretypes
(ranged over byr) and partially approximative canonical pretypes (ranged oveppypre defined
by the following grammar:

K = B | x-ok

B = a | p

@ = & | e

& = ¢ | n | k= k)

2. Canonical types are canonical pretypes which are botlgyadee and closed.
The following lemma shows that our grammatical definitiorcafonicity defined above is adequate.
Lemma 9.14. For every pretyper there exists a canonical pretypesuch thatr ~ .

Proof. By straightforward induction on the structure of pretypes. O

9.2. Type Assignment

We will now define our variant of Nakano’s type assignment.e Type assignment rules are almost
identical to those of Nakano's original system - thffetience lies almaost entirely in the type language
and the subtyping relation. Nakano’s original typing rulesmselves are almost identical to the familiar
type assignment rules for thiecalculus: there is just one additional rule that deals Withapproxima-
tion e type constructor. Similarly, our system, having addedriiw®e variables, includes one extra rule
which is simply the analogue of Nakano's rule, but for ineertvariables.

Definition 9.15(Type Environments) 1. A typestatements of the form Mo, where M is al-term
ando is a type. We call M theubjectof the statement.
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2. Atypeenvironmentl is a finite set of type statements such that the subject ofstatdment ifdl
is avariable and is alsaunique

3. We write x IT if and only if there is a statementaxe I1. Similarly, we write % I1 if and only if
there isno statement xr € I1.

4. The notatiofdl, x.o- denotes the type environmdht { x.o-} where x does not appear as the subject
of any statement ifl.

5. The notatiore IT denotes the type environmédnt e o | X:o- € I1} and similarly the environmenfI
denotes the type environmént o | X:o € IT}.

6. The subtyping relation is extended to type environmenfslows:
I, <II; ifand only if¥xo ell; . Ar <o . Xt €1y

Definition 9.16 (Type Assignment) Typeassignmenil + M:o is a relation between type environments
and type statements. It is defined by the following naturdudgon system:

) _Hl— M:o
(vaR) : I, X0 F X0 (sus) : or M- (o=7)
o[l M:eor tITF Mo
@O:— O
[T+ Mo I+ Mo
II, X0+ Mt II-M:ioco—- 1 IIrNio
(=) —— (-=b):
[+ AXM.oc—> 1 I+ MN:T

If IT+ M:o holds, then we say that the term M candssignedhe types using the type environmehit
Lemma 9.17(Weakening) LetIl, <Ily; if TI; + M:o thenIl, + M:o.
Proof. By straightforward induction on the structure of typingidetions. ]

The following holds of type assignment in our system (notfe the result as stated for theype
constructor is shown in Nakano’s paper, and its extensioimgertion variables for our system also
holds).

Lemma 9.18. LetII; andTl, bedisjointtype environments (i.e. the set of subjects used in thenstaiis
of IT; is disjoint from the set of subjects used in the statemenipfif 1T, UTI, - M:o is derivable,
then so aree [T, UIl> - M:eo ande Iy UIl - M:to.

Proof. By induction on the structure of typing derivations. O

We claim the completeness of our system with respect to Nekamiginal system Ste u*. We do
not give a rigorous proof, which would include defining a siation from our types based on de Bruijn
indices to Nakano’s types usipgbound type variables and also showing that subtyping isgoved via
this translation. However, we appeal to the reader’s iituito see that this result holds: one can imagine
defining a one-to-one mapping between de Bruijn indices ymel Yariables, and using this mapping to
define a translation of types. It should be easy to see tharueth a translation, subtyping in the one
system mirrors subtyping in the other. Nakano types do Hatporse, include insertion variables, and
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thus neither would their translation, however any type aiithinsertion variables is also a type in our
system. The result then follows since all the rules of Nalsaatype system are contained in our system.

Proposition 9.19 (Completeness of Type Assignmentj a term M is typeable in Nakano’s system
S-1e ™ without usingT-variants, then it is also typeable in our type assignmestesy of Definition
9.16.

We will also claim thesoundnessf our system with respect to Nakano’s, however in order tthi
we will need to define some operations on types, which we wiihathe following section.

9.3. Operations on Types

We are almost ready to define our unification and type infergmocedures. However, in order to do
so we will need to define a set operationsthat transform (pre)types. We do so in this section. The
operations include the familiar one sfibstitution although we define a slight variant of the traditional
notion which ensures (and, more importantly for our aldponit preserves) the canonical structure of
pretypes. We also define the new operatioringertion which allows us to place bullets (and other
insertion variables) in types by replacing insertion Jalea.

We begin by defining operations which push bullets innerrandtinsertion variables to the outermost
occurrence along each path of a bullet or insertion variable

Definition 9.20(Push) 1. The bullet pushing operatidoPush is defined inductively on the struc-
ture of pretypes as follows:

bPush(y) = e¢
bPush(n) =en
bPush(e ) = e(bPush(r))
bPush(tr) = ¢ (bPush(r))
bPush(ry — m2) = (bPush(r1)) — (bPush(ry))
bPush(u.¢) = eu.¢

We use the shorthand notati®®ush[n] to denote the composition bPush n times: formally,
we define inductively over n:

bPush[1] = bPush
bPush[n+ 1] = bPush o bPush[n]

with bPush[0] denoting the identity function.

2. For each insertion variable, the insertion variable pushing operatidush[:] is defined induc-
tively over the structure of pretypes as follows:

iPush[c](¢) = te
iPush[¢](n) =¢n
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iPush[d](en) =ten
iPush[c](d ) =u'm

iPush[¢](r1 — m2) = (iPush[(](71)) — (iPush[¢](72))
iPush[d(u.¢) = tu.¢

We use the notatioiiPush[i;] (where r> 0) to denote the composition of eaittush[y], that is
iPush[i1] o...oiPush[i]. The notationPush[e] denotes the identity function on pretypes.

We use this operation to define atanonicalisingsubstitution operation.

Definition 9.21 (Canonicalising Type SubstitutionA canonicalising type substitutids an operation
on pretypes that replaces type variables by (canonicallypes, while at the same time converting the
resulting type to a canonical form. Letbe a type variable an@ be a canonical pretype; then the
canonicalising type substitutidip — «] is defined inductively on the structure of pretypes as falow

, Kk ifp=¢
[o = «l(¢") = { ) _
¢’ otherwise

[¢—«](n)=n
[¢ = «](ex) = bPush([¢ - «](7))
[¢ = ](e7r) = iPush[c]([¢ = «](7))
[ = K](m1 — m2) = ([¢ = «](71)) = ([¢ > K](72))
[ = K](.9) = p.([e - «](4))

It is straightforward to show that the result of apply a cadoalising substitution is a canonical type.

Lemma 9.22. 1. Letk be a canonical type; thebPush(x) andiPush(x) are both canonical types.
2. Letr be atype andy — «] be a canonicalising substitution; th¢a — «](x) is a canonical type.

Proof. 1. By straightforward induction on the structure of canahjretypes.
2. By straightforward induction on the structure of pretypasing the first part for the cases where

m=ex andx =t1'. O

As we have already mentioned, the insertion operation ceplinsertion variables by sequences of
insertion variables and bullets. Insertions are neededyfm inference and in Section 9.6.1 we will
discuss in detail why this is.

Definition 9.23(Insertion) Aninsertionl is a function from pretypes to pretypes which inserts a numbe
of insertion variables andr bullets in to a pretype at specific locations by replacingdrtion variables,
and then canonicalises the resulting typei i§ a sequence of insertion variables, then the insertion
[¢ — o] (where r> 0) is defined inductively over the structure of pretypes devid:

[tie](p) =¢
[t—ie"](n)=n

[t > Te'](em) = o([c > 10](n))
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i(bPush[r]([t = ie"](n))) ife={

([t ie"](n)) otherwise

[t 2e'](Vm) = {
[t 70'](m1 = m2) = ([t = Te](7r2)) — ([ - T0'](2))
[c - 70")(.¢) = ([t > 10"](9))
We may writd¢ - i] for [« — ie"] where r=0.
We now abstract each of the specific operations into a sirayieapt.
Definition 9.24 (Operations) We defineperationgO as follows:
1. The identity functiomd on pretypes is an operation;
2. Canonicalising type substitutions are operations;
3. Insertions are operations;

4. if 01 and O, are operations, then so is their compositi®a o O1, whereO; o O1(r) = O2(01 (7))
for all pretypesr.

The operations we have defined above should exhibit a nunfilseuadness properties of these oper-
ations with respect to subtyping and type assignment. Teasedness properties will be necessary in
order to show the soundness of our unification and type inéer@rocedures.

Proposition 9.25. Let O be an operation; itr is a type, then so i®(c).

Proof technique.The proof is by induction on the structure of pretypes. Wetrfitst show this holds
for the operation®Push andiPush, and then we use this to show that it holds for eadfedint kind of
operation.

Proposition 9.26. Let O be an operation, and1, 7, be pretypes such that < np; thenO(r1) < O(r,)
also holds.

Proof technique.By induction on the definition of subtyping. Again, we musbye for the operations
bPush andiPush first, and then for each kind of operation.

Most importantly, using these previous results, we wouldble to show that operations are sound
with respect to type assignment.

Proposition 9.27. If IT+ M:o thenO(IT) - M:O(o) for all operationsO.

Proof technique.By induction on the structure of typing derivations. As biefave must show the result
for bPush, iPush and each kind of operation in turn. The case for the subtypihg (sus) would the
soundness result we formulated previously, Propositi@f.9.

We claim as a corollary of this, that our system is sound vwadpect to Nakano'’s system.

Proposition 9.28(Soundness of Type Assignmentj the term M is typeable in system of Definition
9.16, then it is typeable in Nakano’s system &:+*.
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Proof technique.For any typing derivation, we can construct an operatiorctvinemoves all the inser-
tion variables from the types it contains {if, ..., } is the set of all insertion variables mentioned in the
derivation, we simply construct the operation= [¢; — €] o...o[tn — €]. Applying this operation to any
type in the derivation would result in a type not containimy ansertion variables, i.e. a straightforward
Nakano type (modulo the translation between de Bruijn iesl@ndu-bound type variables discussed in
the previous section). It is then unproblematic to show loyiation on the structure of derivations in our
type system that a typing derivation for the term exists ikaep's system, as the structure of the rules
in our variant of type assignment are identical to the rufeNakano’s system, apart from thg (ule,
which is in any case obviated by the operat@mince it removes all insertion variables.

9.4. A Decision Procedure for Subtyping

In this section we will give a procedure for deciding whetbee type is a subtype of another. It will be
defined oncanonicaltypes, which implies a decision procedure for all typessesiigs straightforward
to find, for any given type, the canonical type to which it isieglent. The procedure we will define is
sound, buincomplete so it returns either the answer “yes”, or “unknown”.

Our approach to deciding subtyping is to split the questito iwo orthogonal sub-questions: a
structuralone, and dogical one. The logical information of a type is encoded by the bamstructor,
while the structural information is captured using the tiort (—) and recursivey) type constructors.
The use ofcanonicaltypes (in which bullets — and insertion variables — are pdshaermost) allows
us to collect all the logical constraints into one place whbiey can be checked independently of the
structural constraints. The structural part of the probthan turns out to be the same as that of for
non-logical recursive types, which is shown to be decidab[85]. The logical constraints boil down,
in the end, to simple (in)equalities on natural numbers aggisnces of insertion variables.

As in [35], we will define an inference system whose judgemeastert that one pretype is a subtype
of another which we will then show to be decidable. Howevefple we do this we will need to define
a notion that allows us to check the logical constraints esged by the insertion variables in a type.

Definition 9.29 (Permutation Sfix). Leti and:’ be two sequences of insertion variablesifand "
are permutations of and ¢’ respectively, such that” is a sufix of /7 (i.e..” =" -//” for some/””)
then we say thaf is apermutation sfiix of i and writei C ¢/.

Notice that the permutation §ix property is decidable since it can be computed by the fatigw
procedure. First, count the number of occurrences of eashrtion variable in the sequenceand?’.
Secondly, check that each insertion variable occurs atésasften irni as it does in’. If this is the case,
theni =/, otherwise not.

We can now define our subtyping inference system.

Definition 9.30 (Subtype Inference) 1. A subtyping judgement asserts that one (canonical) peety
is a subtype of another, and is of the formy < «».

2. Valid subtyping judgements are derived using the foligwiatural deduction inference system:

~—~
=
IN
[
Ro
~
In
Nai2
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- - o~
(SMRECVAR) 1 T or TS s (r<s&d/ci)

/ ’
FKy <Kl FKk2ZKy

(ST-FUN) : —
K1 = K2 S Ky 2Ky

FKL— k2 SK] > K N
(r<s&/Ci)

(ST-RECFUN) : —— <
Fie p.(ky — k) <V o7 (K] — K5)

FiPush[Z](bPush[r]([0 = pu.(k1 — k2)](k1 = k2))) < K] = K5

(sT-unroLpl) : — —
Fie (k1 — k2) K] — K5

F k1 — k2 < iPush[](bPush[s]([0 - p.(k] — k5)](k] = &5)))

(sT-unroLDR) :

FKk1— ko < ios,u.(K’l — Kp)

3. We will write+ ; ~ o whenever both 7, < 7, andr 7, < 7y are valid subtyping judgements; we
will also write ¥ m; < o whenever the judgementr; < 5 is notderivable.

Derivability in this inference system implies subtyping.
Lemma 9.31. If + 11 < o is derivable themr; < 75.

Proof. By straightforward induction on the structure of derivago Each rule corresponds to a case in
Definition 9.11. O

We have remarked that our decision procedure is not compigherespect to the subtyping relation.
Thus, there exist types andr such thatr < v butt+ o < 7 is notderivable. This stems from the fact that
the subtyping relation is defined through iaterplay of structural and logical rules, but the inference
system deals first with the structure of a pretype, and ordgredly with the logical aspect.

Example 9.32(Counter-example to completenes3he pair of canonical pretypes — ¢, e — o)
is in the subtype relation, but the corresponding subtyferémce judgementy — ¢ < e — e is not
derivable.

lLogogp<e(pop)<ep—eyp

2. Suppose a derivation exists for the judgemeapt— ¢ < e — e . The last rule applied must be
(st-Fun), and thus both the judgement® ¢ < ¢ and+ ¢ < e must also be derivable. The latter
of these follows immediately from tf@a-var) rule, but the former (which could only be derived
using the(st-var) rule again) is not valid since the side condition does nodhdhe left hand
type in the judgement has one more bullet than the right hgpe. tThus, the original judgement
o — ¢ < ep— egpis not derivable.

We now aim to show that derivability in the subtyping infezersystem is decidable. To this end we
define a mapping which identifiess&ructural representativéor each pretype. These structural repre-
sentatives are themselves pretypes, but ones that do rtaircany bullets or insertion variables (indeed,
they are ordinary, ‘non-logical’ recursive types); thusgyt contain only thetructural information of a
pretype. We will use these structural representativesgoeathat the amount of structural information
in a pretype is a calculable, finite quantity. We will also tisem to argue that the structure of any
derivation depends only on the structure of the types in tkdggment, and thus that the structure of
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derivations in the subtyping inference system have a waflhdd bound - implying the decidability of
derivability.

Definition 9.33 (Structural Representatives}hestructural representativef a pretyper is defined in-
ductively in the structure of pretypes as follows:

struct(y) = ¢
struct(n) = n
struct(e )
struct(e )

} = struct(r)

struct(mry — m2) = (struct(mr1)) — (struct(rr2))

struct(u.¢) = w.(struct(e))

We now define a notion, called tiséructural closurethat allows us to calculate how much structural
information a pretype contains. It is inspired by thabterm closureonstruction given in [26, 35],
however we have chosen to give our definition a slightlfedent name since it does not includk
syntactic subterms of a type, instead abstracting awagtsudind insertion variables.

Definition 9.34 (Structural Closure) 1. Thestructural closuref a pretyper is defined by cases as
follows:

SC(p) = {¢}
SC(n) ={n}
SC(en) = SC(n)
SC(tm) = SC(r)
SC(my — mp) = {struct(ry — m2) } USC(m1) USC(2)
SC(u.¢) = {struct(u.¢) } U SC(¢) U SC([0 - 11.4](4))

2. We extend the notion of structural closure to sets of pestyP as follows:

ScP) =|_Jsc)
neP
The following result was stated in [35], and proven in [26jdamplies that we can easily compute
the structural closure.

Proposition 9.35. For any pretyper, the setSC(r) is finite.

We admit that the system presented here is slightligdint from the systems in those papers, in that
our treatment uses de Bruijn indices insteag-tfound variables, and so the proof given by Brandt and
Henglein does not automatically justify the result as fdated for our system. However, we point to
recent work by Endrulli®t al[53] which presents a much fuller treatment of the questithe decid-
ability of weaku-equality and the subterm closure construction, includisigdependent representations
of u-terms (i.e. de Bruijn indices). For now, given that our eystis clearly a variant in this family, we
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conjecture that the result holds for our formulation. Pngvihis result holds for our system specifically
is left for future work.
This result immediately implies the following corollary.

Lemma 9.36. Let P be a set of pretypes; if P is finite, then sG&(P).

Proof. Immediate, by Proposition 9.35 sinS€(P) is simply the union of the structural closures of each
7 € P, which given thaP is finite, is thus a finite union of finite sets. O

The following properties hold of the structural closure stoaction. They are needed to show Lemma
9.39 below.

Lemma 9.37(Properties of Structural Closures) 1. struct(r) € SC(n).
2. SC(bPush[n](x)) = SC(n).
3. SC(iPush[i](x)) = SC(n).

Proof. By straightforward induction on the structure of pretypgsing Definition 9.34. O

Returning to the question at hand, we note that the inferepstem possesses two properties which
result in the decidability of derivability. The first is thiats entirely structure directedeach rule matches
a structural feature of types (with the logical constrachecked as side conditions). In addition, it is
entirely deterministic for each structural combination there is exactly one rualeé so the structure of a
pair of pretypes in the subtype relationiquelydetermines the derivation that witnesses the validity of
subtyping.

Proposition 9.38. Let Dy and D, be the derivations for k1 < k2 andr k] < «;, respectively; ibtruct(xy) =
struct(x;) and struct(kz) = struct(«}), then?y and D, have the same structure (i.e. the same rules are
applied in the same order).

Proof technique.By induction on the structure of subtype inference derrai

Secondly, for any derivation the structural represergatiof the types in the statements it contains
are all themselves members of a well-defined and, most ipibytfinite set - the union of the subterm
closures of the structural representatives of the pretypt® derived judgement.

Proposition 9.39. Let D be a derivation of «; < «2, then all the statemenig < «;, occurring in it are
such that botfstruct(«]) andstruct(«?) are in the setSC({ k1,«2}).

Proof technique.By induction on the structure of subtype inference derorati

This means that the height of any derivation in the subtyjiiigrence system is finitely bounded.
Consequently, to decide if any given subtyping judgemedeidv/able, we need only check the validity
(i.e. derivability) of a finite number of statements.

Corollary 9.40. LetD be a derivation for « < «’; then the height of is no greater thanSC({«, x’ })I2.

Proof. By contradiction.
Let D be the setSC(struct(x)) U SC(struct(x’)) and letD be the derivation for x <«’. Assume
D has a height > |DJ?, then there are derivation®y, ..., D, such thatD = D, and for each e h
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the derivationsD 1, ..., Dy are (proper) subderivations @%. Thus there is a set of pairs of pretypes
{(k1,K7), ..., (kn,&7) } which are the pretypes in the final judgements of each of thead®ns Dy, ..., D.
By Proposition 9.39 we know that for each pair, &), bothstruct(x;) andstruct(«{) are inD.

Since the number of unique pairs, ') such that bothr andz’ are inD is |DJ? < h, it must be that
there are two distinc}, k < h such thastruct(x;) = struct(x) andstruct(K’j) = struct(k, ). Then we know
by Proposition 9.38 thaD; and 2 have the same structure and must therefore have the sant. heig
However, sincg andk are distinct, it must be that eith¢< k or k < j, and so either one @D; or D is
a proper subderivation of the other. This is impossible h@resince the two derivations must have the
same structure. Therefore, the heighbtannot excee(D|?. O

The subtyping inference system defined above can thus vraiglstforwardly be turned into &rmi-
nating algorithmwhich decides if any given subtyping judgement is derivable

Definition 9.41 (Subtyping Decision Algorithm)The algorithminf< takes in two (canonical) pretypes
and an integer parameter as input and returns eittree or false. It is defined as follows (where in case
the input does not match any of the clauses, the algorithornefal se):

Inf(d,ie" ¢, ®°¢) = true (if d > Owith r < s and/’ C 7)
Inf(d,ie" N,/ e°n) = true (ifd > Owith r < s andi’ C7)
Inf<(d, k1 — K2,k = K5) = (ifd >0)

Infs(d - 1, K;L’Kl) A |nf5(d - 1, K2,K’2)

Inf<(d,ie" p.(k1 — Kz),?oslu.(Ki - Kp)) = (ifd > Owith r < s and/’ C 7)

Info(d—1,k1 — K2,K] = K’Z)

Inf<(d,ie" .(k1 — k2),k] > k5) = (ifd > 0)

Inf<(d— 1,iPush[Z](bPush[r]([0 + u.(k1 — k2)l(k1 — k2))), K] — K5)

Inf<(d, k1 — k2, 00%1.(k] > k5)) = (ifd > 0)

Inf<(d— 1,1 — &2,iPush[f](bPush[S]([0  p.(k] = &5)]1(«] = 5))))
Proposition 9.42(Soundness and Completenessifée). 1. 3d [Inf.(d, 71, 72) =true] = + 1y < mo.
2. If Dis the derivation for 1 < 7, and D has height h, then for all & h, Inf<(d,71,72) = true.
Proof technique. 1. By induction on the definition dhf..

2. By induction on the structure of subtype inference deiove.

This immediately gives us a partial correctness resultifersubtyping decision algorithm.

148



Conjecture 9.43(Partial Correctness fanf.). Let d=|SC({r1,72})|%, thenr 71 < 7 © Info(d, 71, 72) =
true

Proof technique.By Proposition 9.42.
Lastly, we must show that the algorithimf. terminates.
Theorem 9.44(Termination ofinf.). The algorithminf. terminates on all inputd, 71, 72).

Proof. By easy induction om. In the base casal 0), Definition 9.41 gives that the algorithm ter-
minates returning false, since no cases apply. For the fivducase, we do a case analysismgnand

. If they are both either type or recursive variables (prefilgg some number of bullets and insertion
variables), then the algorithm terminates returning eithee or false depending on the relative number
of bullets prefixing each type and whether the insertionaldeis prefixing the one type are a permuta-
tion sufix of those prefixing the other. In the other defined cases etfmination of the recursive calls,
and thus the outer call, follows by the inductive hypothekisall other undefined cases, Definition 9.41
gives that the algorithm returns false. m]

9.5. Unification

In this section we will define a procedure to unify two canahtgpes modulo the subtype relation. That
is, our procedure, when given two typesandr, will return an operatiorD such thatO(o) < O(7). In
fact, when defining such a procedure we must be very carefide she presence of recursive types in
our system may cause it to loop indefinitely, just as whemgryo decide the subtyping relation itself.

In formulating our unification algorithm, we will take thersa approach as in the previous section.
We will first define an inference system whose derivable jotggs entail the unification of two pre-
types modulo subtyping by some operat@nThen, we will again argue that the size of any derivation
of the inference system is bounded by some well-definedddbtz) limit. As with our subtyping deci-
sion procedure, the inference system that we define candigtgforwardly converted into an algorithm
whose recursion is bounded by an input parameter.

One of the key aspects to the unification procedure is thergéoe of recursive types. Whenever we
try to unify a type variable with another type containingtthiariable, instead of failing, as Robinson’s
unification procedure does, we instead produce a substituthich replaces the type variable with a
recursive type such that the application of the substitutathe original type we were trying to unify
against is thainfoldingof the recursive type that we substitute.

Take, for example, the two (pre)typesandg — ¢’. Robinson’s approach to unification would treat
these two types as non-unifiable since the second type osrita variable that we are trying to unify
against. However, we can unify these types usingcarsivetypeo that satisfies the following equation:

o = - ¢

This equation can be seen as givingedfinition (or specification) of the typer, thus such a recursive
type can be systematically constructed for angnd any definition by simply replacing the type in the
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definition with a recursive type variable, and then formingeursive type using thetype constructor:
o = uX(X - ¢)

Or, using de Bruijn indices:
o = w0 - ¢)

The subtlety of doing this in the Nakano setting is that, ihenrto construct a valid type, we must make
sure that there are bullets in appropriate places, i.e. wigeimtroduce a recursive type variable, it must
fall within the scope of @ operator, thus satisfying thedequacyproperty of types (see Definition 9.6).

Notice that this procedure bears a strong resemblancettoftbanstructing recursively defined func-
tions in theA-calculus, where we abstract over the function identifier. ((he name we give to the
function), and then apply a fixed point combinator. This is a@oincidence and, in fact, it is directly
analogous since in our case we are constructing a reciyrsigéhedtype we abstract over the identifier
of the type in its definition using a recursive type varialitestead of a term variable), and the recursive
type constructop: plays the same role as a fixed point combinator term.

To facilitate the constructing of recursive types in thispwae define a further substitution operation
that replaces type variables with recursive type variafilesde Bruijn indices).

Definition 9.45 (Variable Promotion) A variable promotiorP is an operation on pretypes that pro-
motes type variables to recursive type variables (de Brimigtices). Ify is a type variable anah is a

de Bruijn index, then the variable promoti¢n/¢] is defined inductively on the structure of pretypes
simultaneously for each € N as follows:

, n ifp=¢
[n/¢](90)={ ) _
¢ otherwise

[n/¢l(n") =n’
[n/¢](ex) = o([n/¢](n))
[n/¢](emr) = c([n/¢](x))
[n/¢l(m1 — 72) = ([n/¢)(71)) — ([n/¢](72))
[n/e](u-¢) = p.(In+ 1/¢](¢))

We must show that the composition ofuasubstitution and a variable promotion acts as kind of
(canonicalising) type substitution (modulo the equivakerelation~). The corollary to this result is that
if we construct a recursive type out of some function type tmmmting one its type variables, then the
type we obtain by substituting the newly created recursige for the type variable instead of promoting
it, is equivalent to the recursive type itself - in fact, tlidecause it is equivalent to thefoldingof the
recursive type. This result will be needed to show the soessliof our unification procedure.

Proposition 9.46. Letu.¢ be a type andr be a pretype such that¢ rv(r), then
[N wol([n/¢l(n)) = [¢ - p.¢](x)
Proof technique.By induction on the structure of pretypes.
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Corollary 9.47. Let¢ be a type, them.([0/¢](¢)) =~ [¢ — w.([0/¢](¢)](#).

Proof. By Definition 9.11 and Proposition 9.46. O

We mentioned above that when we construct a recursive typenust make sure that all the oc-
currences of the bound recursive variable that we introguieevariable promotion) must be under the
scope of a bulletd) type constructor. If the type variable that we are prongptginot in the set of raw
type variables, then we can make sure that this is the catiee tfpe variable occurs in the type, but is
not raw, then by definition (see Def. 9.5) every occurrenciheftype variable will be within the scope
of either ae or some insertion variable. We will now define a function thit return the (smallest) set
of insertion variables that capture the occurrences of @ngiype variable within their scope that do not
also fall within the scope of thetype constructor. We will call this set tleverset of the type variable.

If we then insert a bullet under each of these insertion e (which can be done by composing all
insertions of the form[ > ¢ ] wherey; is in the cover set), we ensure that each occurrence of tiee typ
variable now falls within the scope of a bullet. Thus, whee type variable is promoted, each occur-
rence of the newly introduced recursive type variable wilb&all within the scope of a bullet, and the
recursive type can be safely closed (i.e. the recursivelsing the type produces an adequate pretype).

Definition 9.48 (Cover Set) Thecover seiCov[¢](x) of the pretyper with respect to the type variable
¢ is the (minimal) set of insertion variables under whose sdbje type variable occurs raw. For each
type variabley it is defined inductively on the structure of pretypes ao¥d:

Covlgl(¢')=0  Cov[g](tn)
Cov[g](n) =0
Cov[g](en) =0

{c} if ¢ € RaW, (1)
Cov[¢](r) otherwise

Cov[g](m1 — 72)
Covg](u-¢)

Covlg](m1) U Cov[g](r2)
Covg](¢)

The following results will be needed to show that we congtracursivetypes(i.e. adequate, closed
pretypes) during unification, and thence that the unificaimcedure returns an operation.

Lemma9.49. 1. If ¢ € tv(n), thenn € rv([n/¢](n)).
2. fO=lqo...0lq, thentv(n) = Tv(O(x)).
3. raw,(bPush(r)) = 0, andCov|[¢](bPush(r)) = 0.

4. Letn be a type andp be a type variable such that € Tv(r) with Cov[¢](7) = {11, ..., tn}; if
@ ERAW, (), thenp ¢raw,(O()) and Cov[¢](O(r)) = 0, whereO = [tn > tne]o...o[ty > g e].

5. Letn be a pretype such that¢raw,(r) and ¢ € Tv(n); if p¢raw, () and Cov[g](r) = 0, then
neev([n/g](m)) \ Raw,([n/¢](7)).

Proof. The proof of (2) is by induction on, with the case fon = 1 being proved by induction om.
The other lemmas are proved by straightforward inductiotherstructure of:. O

We now come to define the notion ahification inferencesimilar to the notion of subtype inference
in Definition 9.30. The inference system will derive unificatjudgementswhich assert the unifiability
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of two pretypes using some operation We define unification in this way so that we can reason about
the termination of our unification inference procedure. iftierence rules can be seen as a ‘bottom-up’
approach to the problem of unification, as opposed to the mammemon ‘top-down’ algorithmic view.
The two approaches, however, are dual and we will later cbtive unification inference system into an
equivalent algorithm (Definition 9.61 below).

Definition 9.50 (Unification Inference) 1. Aunification judgements a statement of the fori@
1 < mp and asserts that the operatidd unifiesthe pretypesr; and 7, modulo the subtyping
relation; that isO(rr1) < O(r2).

2. Valid unification judgements are derived using the foltganatural deduction inference system,
in which we classify rules as eithstructuralor logical:

Unifying Type Variables (Structural Rules)

o7 p s (t¢tandr<ys)
[cie™ Fie p<io®p

(t¢iand s<r)
[t z.r—s] Fie' p< L.S(p

—————(r<9)
ldre p<e ¢

#¢ andr<s
[(pH.&r(p;] l—.rQDS .S(ﬂ, (QD (ﬂ )

#¢ and s<r
[¢ > oS¢l ol p < 0% bore :

Unifying Type Variables (Logical Rules)

02+ Oy(ine' ¢) < O1((me°¢’)
. i ~(t#/ andnm>0)

02001I-L~in0r<p§L’~7moS(p
whereO1 = [t - ]

OI—OrQDS'St,D/

ool — - (¢tandp £ ¢)
Lt Fte p<ie®p

O+ o' @< Oy(ie°¢’)

— ~(tetor(p=¢" and s<r))
0200110 p<ie gy

whereO; = [t - €]

OI—OrQDS'St,D/

(tgtande #¢)
Oofiilrie p<iesy

Oz FOy(ie" @) <%’

— S ~(teior(p=¢ andr<s)
0200110 p<Le™p
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whereO; = [t - €]

Oz ko' o <O1(ime®y’)

(m>0)
02001 +e o<t imey

whereO1 = [t €]

Oz F O1(ine" ¢) <e°¢’

(n>0)
02001 ki ine’ p< oSy

whereO1 = [t €]

Unifying Type Variables and Function Types (Structural Rules)

[pr k1 > k2] Fo <Kk1— K2

(pg1v(k1 — k2) andky — ko a type

[ = 1.([0/¢](O(k1 — k2)))] o Ok p < k1 = k2
(¢ € TV(k1 = Kk2) \ RAW, (k1 — k2) andky — k2 a typg

where Cov[p](k1 — «2) = {11, ... ,in}

O=[tn>tne]o...oft1 > 110]

o k1 — ko] Fk1 > k2 STe%9

(pg1v(k1 — ko) andky — ko a type)

[~ w.([0/¢](O(k1 — k2)))] 0O F k1 — k2 < Te%¢
(¢ € TV(Kk1 = Kk2) \ RAW, (k1 — k2) @andky — k2 a typg

where Cov[p](k1 — «2) = {11, ... ,in}

O=[tn>tne]o...oft1 > 11 0]

Unifying Type Variables and Function Types (Logical Rules)

Oz + Oy(ine" ¢) < O1(k1 — k2)

02001 Fi-ine ¢ <k1 — ko
whereO; = [t - €]

Unifying Type Variables and Head-Recursive Types
(Structural Rules)

[o> o5 (k1 > k2)] F o' 0 < 0% 11.(k1 — k2)
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(peTv(u.(k1 — k2)), u.(k1 — k) atype and 1< s)

O+ ¢ < bPush[s—r]([0 p.(k1 — «2)](k1 = k2))

Or e p<e®u (kg — k)
(peTv(u.(k1 = k2)) and r< s)

o o Splk — k)] + o' (k1 — k2) < 0%

(peTv(u.(k1 — k2)), u.(k1 — k2) a type and s r)

[ - p(kr = k)] F o (kg — k2) < 0%¢

(peTv(u.(k1 — k2)), u.(k1 — k2) atype and 1< S)

Ok bPush[r]([0 - p.(k1 — k2)](k1 — K2)) < @5

OF o (k1 — ko) < 0°¢

(¢ e Tv(u.(k1 — K2)))

Unifying Recursive Type VariablegHead-Recursive Types
(Structural Rules)

(r<o

Id+-e n<esn

4 4
Okrky — K2 <Ky DKy

r S ’ ’ (r < S)
OF o' f1.(ky — ko) < @°p.(k] = K5)

Unifying Function Types (Structural Rule)

O1+ Ka_ <k1 O2F O1(kp) < Ol(Klz)

02001 F k1 — k2 SK] > K

Unifying Function Types and Head-Recursive Types
(Structural Rules)

Ok k1 — k2 < iPush[Z](bPush[S]([0 - p.(xk; = «5)1(k] = 5)))

=S ’ ’
Otrky— ko <Te°u(k] = k)

Ok iPush[i](bPush[r]([0 > p.(k1 = x2)l(k1 = £2))) < k] = &5

Orie p(k1— k2) <K — K
Generic Logical Rules

(6] f‘ina’]_ < L/ma’z
= (n,m>0)
Otrt-inag <t-tUmaz

Oz + O1(ine' £1) < 01U meS&2)

02001 ki ine &<t - Ime’s




(t# and either(r < s&n>0)or (s<r&m>0)
and eitheré; or & not a type variable
whereO; = [t - (']

02+ O1(¢1) < 01(£2)
0001 Fre' ¢ <ie5¢
(c¢i and r< s and eithek; or & not a type variablg
whereOq = [t 0]

Oz + O1(e'é1) < O1(i0°¢2)
02001 ke ¢y <ie%é
(ceiand r< s and eithe; or & not a type variablg
whereOq = [t — €]

Oz + O1(¢1) < 01(£2)
0007 Hie' ¢ <1058
(¢t and s<r and eitheré; or & not a type variablg
whereO; = [t ie 9

Oz + Oy(ie £1) < O1(e%¢2)
02007 Fie' &1 <105¢
(t i and s<r and eitheré; or & not a type variablg
whereO; = [t - €]

Oz + Ox(ine' £1) < O2(e°¢2)
020011 ipe' é1< 0%
(n>0or s<rand eitheré; or & not a type variablg
whereO1 = [t €]

Oz + O1(e"¢1) < O1(ime°£2)
02001+ o &1 <1 ime®2
(m>0orr < s and eithe; or & not a type variablg
whereO1 = [t — €]

We claim that the inference system defined above is sound redibect to the subtyping relation;
in other words, valid unification judgementsrrectly assert that there is a unifying operation for two

Proposition 9.51 (Soundness of Unification Inferencelf O + m1 < 7, then O is an operation and

O(rr1) < O(r2).

Proof technique.By induction on the structure of the unification inference\ddions using Definition

9.11 and the soundness of operations with respect to suigtypiroposition 9.26). In the base cases

where a substitution of type variable for a new recursive tigoggenerated, we use Corollary 9.47.
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However, like subtype inference, unificationimcomplete- that is, there are pairs of pretypes which
are unifiable but notinferrably so. For example, the unification judgemént ey < ey’ — e’ is not
derivable for any operatio®, even though the canonicalising type substitutipr{ (¢’ — ¢’)] unifies
the two types.

As well as soundness, we also claim that the unification émiee procedure ideterministic This
means that if a derivation exists that withesses the vglafitn unification judgement, then it imique

Property 9.52 (Determinism of Unification Inference)For any pair of (canonical) pretypes in a unifi-
cation judgement, there is at most one inference rule whigiies.

We will now define a measure of tieightof a unification inference derivation. This concept will be
a key element in proving the decidability of unification irdace.

Definition 9.53 (Unification Inference Derivation Height)Let © be a derivation in the unification
inference system; then theightof D is defined inductively on the structure of derivations ames:

1. If the last rule applied D is a structural one and it has no immediate subderivatiohentthe
height ofD is 1.

2. Ifthe last rule applied irD is a structural one, and h is the maximum of the heights ofriteédiate
subderivations, then the height 6fis h+ 1.

3. If the last rule applied iD is a logical one, and h is the maximum of the heights of its idate
subderivations, then the height 6fis h.

In general, we can relate the height of a derivation to thghtsiof its subderivations in the following
way:

Lemma 9.54. LetD be a derivation in the unification inference system, @ide a (proper) subderiva-
tion of O in which the last rule applied is a structural one. Then:

1. if the last rule applied irD is a logical one, then the height @ is greater than or equal to the
height ofD’;

2. if the last rule applied iD is a structural one, then the height 86f is greater than the height of
D

Proof. By straightforward induction on the structure of unificatioference derivations. O

Furthermore, for pairs of (inferrably) unifiable pretyplatthave the same structural representatives,
the heights of their unification derivations are the samds $hows that, as for subtype inference, the
inference system istructurally driven, and this again will form a key part in the proof of iescitlability.

Proposition 9.55. Letk; and«}, and«z and«’, be structurally equivalent pairs of canonical pretypes,
I.e. struct(x1) = struct(«]) andstruct(xz) = struct(x;), and letD and 9’ be the derivations dd + «1 < «2
andO’ + ] < «;, respectively; then heights @) and 2’ are the same.

Proof technique.By induction on the structure of unification inference dations.
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To demonstrate the decidability of the unification infereisgstem, we will argue that the height of
any derivation has a well-defined (and computable) bound.foAsubtype inference, and following
[35], our approach to calculating such a bound is to consiti¢he possible pairs of pretypes (or rather,
structurally representative pairs) that might be compavithin any given derivation. This is slightly
more complicated than the situation for subtyping, or typeadity. Since the unification inference
procedure involves constructing and applyimgerationsto pretypes, we cannot generate all such pairs
simply by breaking apart the pretypes to be unified into tealscomponents, as we did for subtype
inference. We must also consider thebstitutionghat might take place on these subcomponents. For
example, when unifying two function types — «2 and«] — «;, we first attempt to unify the left-hand
sidesx] andx;. If this succeeds, it produces an operatidifconsisting of substitutions and insertions)
which we must apply to the right hand sidesfore unifying them, that is we must unif@(x») with
O(k5), andnot «2 with «;. Thus, the derivation may contain judgemeats r; < 7, wherer; andrn; are
not simply subcomponents of the two top-level pretypes> k> andx«] — 5.

Despite this increased complexity, it is still possible &dcalate the set of pretypes that can be gen-
erated in this way because the unification procedure is -lagllaved’ in a particular sense. Again, as
for subtype inference, we can abstract away from the logicaiponent of the types meaning that we
can ignore the insertion operations that are generatedgluriification, leaving us only to consider the
substitutions that may be generated. The key observatiomibgfirstly that these substitutions only
replace the type variables occurring within the types thatwe trying to unify, and secondly the types
that they are replaced with dwt contain the type variable itself. This means that when seely uni-
fying subcomponents of a pretype after applying an opardtiss happens when unifying two function
pretypes), there is a strictly smaller set of type variabies which to build the unifying operation.

The result is that, for a given pair of (inferrably unifiabegtypes, the unification procedure generates
a composition of substitutiong{ — 1] o...o[pn = o] (of course interspersed with insertions) where
eachy; is distinct, and eachr; is a subcomponent of a type (or a recursive type generated dteh a
type) resulting from applying a (smaller) composition obstitutions to the original pretypesandn’
themselves. Since the number of type variables (and the auafilstructural subcomponents) occurring
in the pretypeg andx’ is finite, we can calculate all possible such compositiorsibstitutions, and thus
build the set of all structural representatives of pretythas might occur in the derivation @ + 7 < n’.

Of course, when considering the types that might get sultstitduring unification, in addition to
subcomponents of the types being unified, we must take intoust recursivetypes that might be
constructed when we unify a type variable with another typehich that variable occurs. To this end,
we define a a further closure set construction that accoontyges generated in this way.

Definition 9.56 (Recursion Complete Structural Closure) 1. Therecursion completstructural clo-
sure of a pretyper is defined as follows:

SCum=scmu | | SCh(0/¢lm - m2))

m1—-m2eSC(n) \peTv(r1—>72)
Fv(m1—m2)=0

2. This notion is extended to sets of pretypes P as follows:

SCu(P) = | ) SC.u(m)

neP
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Using this enhanced structural closure, we are now ablefioeda construction which can represent
all of the pretypes that might be compared during the uniiogbrocedure.

Definition 9.57 (Unification Closure) Let P be a set of pretypes. Thaification closurel/C(P) of P is
defined by:

UucP) = sc,Pvu || [ uclerP)
perv(P) | neSC.,(P)
pETv(r)

Since the structural closure of a type is a finite set, it fefidhat the recursion complete structural
closure and the unification closure of a type are also finite. s€hus, the definitions above give an
effective way to compute these sets.

Lemma 9.58(Finiteness of Closures) et = be a pretype, and P be a finite set of pretypes; then the
following sets are finite: 1SC.,,(r), 2. SC.,(P), and 3.UC(P).

Proof. 1. By mathematical induction on number of distinct type ablés innz, using the fact that
SC(n) is finite (Lemma 9.36), and that ¢f € Tv(r) then the number of type variables in/[p](r)
is one less than the number of type variables.in

2. By the first part of the lemma&C, ,(n) is finite for allz € P. Thus, ifP is finite, thenSC.,,(P) is
simply a finite union of finite sets, and therefore is itselftén

3. By mathematical induction on the number of distinct tymeiables inP, using the fact that
SC.,(P) is finite (first part of the lemma), and thatri¥(7) C Tv(P) and¢ ¢ Tv(7) then the number
of type variables ing — 7](P) is one less than the number of type variableR.n O

As for deciding subtype inference, to show decidability offigation inference we are required to
show that the structural representative of each pretypbdrstatements of any unification inference
derivation belongs to a well-defined, finite and computabte-ghe unification closure.

Proposition 9.59. Let D be the derivation 0D  «; < k2, then all the statementg < «/, occurring in it
are such that botlstruct(x;) andstruct(;) are in the se@{C({«1,«2}).

Proof technique.By induction on the structure of unification inference dations.

This again means that the height of any unification inferaterévation is bounded by the size of the
unification closure.

Corollary 9.60. LetD be the derivation for « < «’; then the height af is no greater thatt/C({ k1, k1 })|%.
Proof. Similar to the proof of Corollary 9.40, using Propositio®®instead of Proposition 9.39. o

The unification inference system leads straightforwardham algorithm that decides whether any
given unification statement is valid. As for the algorithnaide subtype inference, this algorithm has a
decreasing input parameter, which is decremented eveeydiracursive call is made that corresponds to
the application of a structural rule in the unification iriece system. Thus, the algorithm is guaranteed
to terminate.
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Definition 9.61 (Unification Algorithm) The unification algorithnunify? takes two canonical pretypes
and an integer as input, and either returns an operation dsfdt is defined as follows, where for any
input types that do not match the cases given below the #tgorierminates in a ‘fail’ state:

Unifying Type Variables (Structural Cases)

Unify’;(d, te' ¢, ime°¢’)

Unify(d, ine" ¢, t#%¢")

Unify(d, o' ¢, %¢")

Unify’(d, o' ¢, #%¢")

Unify’(d, o' ¢, #%¢")

Unifying Type Variables (Logical Cases)

Unlfyi(da L in of @, L/ : ?m'S‘P/)

Unify(d, ce’ ¢, 10%¢")

Unify(d, e’ ¢, 10%¢")

Unify’;(d, io' ¢, 10%¢p")

=[t> ime®]

ifti¢gimandp=¢’ withd>0andr<s

=[t>ine 7

if t¢inandp =¢’ withd>0and s<r

=Id

ifop=¢" withd>0andr<s
=[]

if p#¢ withd>0andr<s
=[pr o3¢

if p#¢" withd>0and s<r
202001

ift#/anddn,m>0
whereO; = [t (']

02 = Unify“(d, O1(ine" ¢), O1(’me¢))
= O o [L i i]

if .¢7 andg £ ¢’ with d> 0
whereO = Unify2(d, o' ¢, #¢")

=0200,

ifd > 0and eitherreior (¢ =¢ and s<r)
whereO; = [t €]
O2 = Unify’(d, o' ¢, O1(i°¢"))

:Oo[L|—>i]
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Unifyi(d, io' @, 10%p")

Unify(d, o' ¢, 1 -ime®¢")

Unify(d, c-ine' ¢, #°¢’)

if .¢i andg # ¢’ with d> 0
whereO = UnifyZ(d, o' ¢, #%¢")

=0200,

if d >0and eithereior (p=¢" andr<s)
whereO; = [t €]

0, = Unify“;(d, O1(ie" @), @3¢")

=0200,

ifd,m>0
whereO; = [ - €]
O, = Unify’(d, " ¢, O1(im®°¢"))

202001

ifd,n>0
whereO; =t €]
Oz = Unify(d, O1(ine" ¢), #°¢’)

Unifying Type Variables and Function Types (Structural Cases)

Unify’(d, ¢, k1 — )

UnifyZ(d, ¢, k1 — )

Unifyi(d, K1 — Ko, (@)

Unify(d, k1 — k2, 10°%¢)

160

= [ (k1 — «2)]

if o¢Tv(k1 — k) and d> 0 with k; — ko a type

= [¢ = 1.([0/¢)(O(k1 — 2)))] 0 O

if ¢ € Tv(k1 — k2) \Raw, (k1 — k2) and d> 0
with k1 — k2 a type
where Cov[p](k1 — «2) = {t1,...,tn}

O=[tn tne]oftg > 1y0]

= [ (k1 — «2)]

if o¢Tv(k1 — k) and d> 0 with k; — ko a type

= [¢ = 1.([0/¢)(O(k1 — 2)))] 0 O

if ¢ € Tv(k1 — k2) \ Raw, (k1 — «2) and d> 0
with k1 — k2 a type
where Cov[p](k1 — «2) = {t1,...,tn}

O=[tntne]ofty > tq0]



Unifying Type Variables and Function Types (Logical Cases)

Unifyi(d, L-ie" @, k1 — K2) =000,

ifd>0
whereO1 = [t €]
02 = Unify(d, O1(ie" ¢), O1(k1 — k2))

Unifying Type Variables with Head-Recursive Types
(Structural Cases)

Unify2(d, o ¢, #°.(k1 — k2)) =[p > % (k1 — K2)]

if pgTv(u.(k1 > k2))andr< s
with d > 0 andu.(k1 — «2) a type

Unify2(d, o' ¢, @%u.(k1 — k2))
= Unify"(d -1, ¢, bPush[s—r]([0 = p.(k1 — k2)](k1 = &2)))

if o € Tv(u.(k1 — k2)) and r< s with d> 0

Unify2(d, o' p1.(k1 — «2), #%¢) =[p > o °p.(k1 — k2)]

if p¢Tv(u.(k1 — k2)) and s<r
with d> 0 andu.(x; — «2) a type

Unify(d, o' u.(k1 — k2), #%¢) =[p - p.(k — «2)]

if pgTv(u.(k1 > k2))andr< s
with d > 0 andu.(k1 — «2) a type

Unify’ (d, o' u1.(k1 — k2), @)
= Unify’ (d— 1, bPush[r]([0 — w.(k1 — k2)](k1 = &2)), #5¢)

if ¢ € Tv(u.(k1 — k2)) and d> 0

Unifying Recursive Type VariablegHead-Recursive Types
(Structural Cases)

Unify(d, ¢"n, e°n) =Id

ifr<sandd>0

Unify?(d, o' uu.(k1 — &2), ®°u.(ky — K5))

= Unify’;(d —1, k1 — K2, K] = K5)
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ifr<sandd>0

Unifying Function Types (Structural Cases)

Unify’;(d, K1 = K2, Ky = Kb) =000

ifd>0
whereO; = Unify.(d— 1, ¥, x1)
Oz = Unify%(d - 1, O1(«2), O1(«5))

Unifying Function Types and Head-Recursive Types
(Structural Cases)

Unify’;(/q — K2, iosﬂ‘(/(i - K’Z))
= UnifyZ (k1 — k2, iPush[i](bPush[s]([0 - u.] — &5](ky = «5))))
ifd>0

Unify? (o' u.(k1 — k2), Ky — K5)
= Unify (iPush[Z](bPush[r]([0 — p.k1 — k2](k1 — k2))), K} — K5)
ifd>0

Generic Logical Cases

Unify(d, t-inay, ¢/ - mas) = Unify2 (d, ina, maz)

ifc=/anddn,m>0

Unifys(d, c-ine" 1, ¢ - 'me°&2) = 02001
ift#Jand d>0
with either(r <s& n>0)or(s<r & m>0)
and either&; or & not a type variable
whereO1 = [t (]
Oy = Unify’(d, O1(ine" é1), O1(('m°£2))

Unify’(d, te" &1, 105&)) =0200;



Unify”(d, 8" &1, 7°¢2)

Unify”(d, i &1, 1#%¢)

Unify”(d, i &1, 1#%¢)

Unify(d, c-ine' &1, 05£2)

Unify’s(d, o' £1, ¢ im°£2)

ifcgiand r< swithd>0
and either&; or & not a type variable
whereO; = [t~ ie% "]

Oz = UnifyZ(d, O1(£1), O1(£2))

202001

if teiand r< swith d>0
and eitheré; or & not a type variable
whereO; = [t €]
O2 = Unify2(d, O1(e" £1), O1(i#°£2))

202001

if tc¢tand s<rwithd>0
and eitheré; or & not a type variable
whereOp = [t ie 9
02 = Unify%(d, O1(£1), 01(£2))

202001

ifcetand s<rwithd>0
and eitheré; or & not a type variable
whereO; = [t €]
Oy = Unify(d, O1(i®' £1, O1(0°£2))

202001

ifn>0o0rs<rwithd>0
and eitheré; or & not a type variable
whereO; = [t €]
Oy = Unify(d, O1(in " £1), O1(°£2))

202001

ifm>0orr<swithd>0
and eitheré; or & not a type variable
whereO1 = [t €]
Oz = Unify(d, O1(e' £1), O1(ime°£2))
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It should be straightforward to show that this algorithmides unification inference.
Proposition 9.62(Soundness and Completenes&Joffy). 1. IfUnify(d, k1, k2) = O, thenO+ k1 < «o.

2. LetD be the derivation for the judgeme@tt 1 < k» and suppose it has height h; then for all
d>h, Unify/;(d,Kl,Kz) =0.

Proof technique. 1. By induction on the definition dﬂnify‘;.
2. By induction on the structure of unification inferenceiehgions.

As for subtype inference, this immediately implies a pad@rectness result for the unification proce-
dure.

Conjecture 9.63(Partial Correctness dn‘nify‘;). Letky, k> be canonical pretypes andslUC({ k1, «2})[%:
thenUnify”(d, 1, 2) = O if and only ifO k1 < k.

Proof technique.Directly by Proposition 9.62

We must also show that unification algorithm terminates. dsal we need to define a measure on
pretypes, called thasertion rank which is a measure of the maximum depth of nesting of ireerti
variables in a pretype.

Definition 9.64. Theinsertion rankiRank(r) of the pretyper is defined inductively on the structure of
pretypes as follows:

iRank(¢) =0 iRank(t) = 1+ iRank(r)
iRank(n) =0 iRank(rr1 — ) = max(iRank(rr1), iRank(mr,))
iRank(e ) = iRank(r) iRank(u.¢) = iRank(¢)

Certain types of insertions decrease the insertion ramjoefst
Lemma 9.65. Let| = [ — ] be an insertion with & 1, theniRank(r) > iRank(l(rr)) for all pretypesr.
Proof. By straightforward induction on the structure of pretypes. O
This allows us to prove the termination Bhify’ .
Theorem 9.66. The procedurdJnify’. terminates on all inputs.

Proof. We interpret the inputd,«1,«2) as the tuple d,iRank(k1) + iRank(x»)), and prove by well-
founded induction using the lexicographic ordering ongafrnatural numbers. O

The final step before defining the type inference procedaedfiis to extend the notion of unification
to type environments.

Definition 9.67 (Unification of Type Environments)The unification procedure is extended to type en-
vironments as follows:

Unify“ (0, IT) = I1
Unify’ (I, x:o), (I, 7)) = 02001 if Unify’(d,o,7) = 01
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and UnifyZ (01 (IT1), O1(I1p)) = Oz
wherelUC({o,7})|? =d

Unify((IT, x.o), (I, 7)) = 02001 if Unify”(d, o, 7) fails

and Unifyi(d,r, 0)=0,
Unify2(01(I11), O1(IT2)) = O2
where|lUC({o, )7 =d

Unify (T, x:), TT’) = Unify"“(I1, IT') if xg 1T

Notice that since type environments are sets, we cannotresthatUnify. defines gunctionfrom
type environment pairs to operations - it could be that ungfjthe statements in the two type environ-
ment in diferent orders producesftérent unifying operations, and so we may only state thafy’.
induces aelation between pairs of type environments and operations. Howseirere our unification
procedure isound we do know that any unifying operation it returns does idesify type environ-
ments modulo subtyping. Note that in practice, when impleing this system, we are at liberty to
impose arorderingon term variables, meaning that unifying type environméigpens in a determin-
istic fashion.

We point out, though, that we have not yet been able to comeithpam example demonstrating
that this is the case, and so we consider it at Ipas‘siblethatUnify‘; does indeed compute a function.
Notice that this is the question of whether the unificatioacpdure computesiost generalnifiers,
which is orthogonal to the question of its completeness. nBbheugh there exist pairs of unifiable
pretypes for which our unification procedure fails to praglaaunifier, it may still be the case that when
our unification procedure does infer a unifier for a pair otypes, that unifier is most general. Even
if this is not the case, note that it may still hold true for &set of pretypes. Here we are thinking in
particular about inferring types fot-terms and so the subset of types that we have in mind is that of
principal types fora-terms in our type assignment system (if they exist). Angwgethese questions is
an objective for future research.

Proposition 9.68 (Soundness of Unification for Type Environmentsf) Unify’ (IT1,I1) = O then for
each pair of statement{x.o, x:7) such that xr € I1; and Xt € I1, it is the case that eitheD (o) < O(7)
or O(t) < O(0).

Proof technique.By induction on the definition oUnify’; for type environments, using the soundness
of unification (Proposition 9.51), and the soundness ofatp@rs with respect to subtyping (Proposition
9.26).

9.6. Type Inference

In this section, we will present our type inference algaritfor the type assignment system that was
defined in Section 9.2, and discuss its operation using seam@@es. Since the unification algorithm

that we defined in the previous section is not complete, eeithour type inference algorithm and so
to give the reader a better idea of where its limitations leews| also present an example of a term for
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which a type cannot be inferred.

Before being able to define our type inference algorithm, Wiefiwst have to define an operation that
combines two type environments. This operation will be usbdn inferring a type for an application
of two terms. To support the operation of combining type emunents, we will also define a measure
of height for types so that if the type environments to be doetdbcontain equivalent types for a given
term variable, then we can choose the ‘smaller’ type.

Definition 9.69 (Height of Pretypes) Theheightof a pretyper is defined inductively as follows:

h(c )

h(@)]| _ 0 h(er)| ) h(m1 — 72) = 1+ max((r), h(r2))
h(n) h(u.¢) = h(¢)

Definition 9.70 (Combining Environments)We define ecombinationoperationw on environments
which takes subtyping into account. TheBeWII, is defined as the smallest set satisfying the following
conditions:

X.oell] & x¢Il, = Xo eIl Ul (9.2)

X¢Il1 & Xoellp = Xo ell1 Ul (9.2)

Xoell1 & xtelly & +o<7& ¥1<o= Xoelli VIl (9.3)
Xoell1 & Xtellp & tT<0 & Fo<T= XTIl UIlL (9.4)
Xoell1 & xtelly & ro~71& h(or) <h(r) = xo el UIl, (9.5)
Xoell1 & xtell; & Fo=~71& h(t)<h(o) = Xt eIl VIl (9.6)

The environment-combining operation is sound.

Lemma 9.71(Soundness of Environment Combinatioff) IT; andIl, are both type environments, then
so isIl; UIIs.

Proof. Straightforward by Definition 9.70. O

The environment-combining operation also has the progheyit creates aubtype environmeruf
each of the two combined environments. This property wiltheial when showing the soundness of
the type inference procedure itself.

Lemma 9.72. LetII; andII, be type environments ar@ be an operation such that, for each pair of
types(o, 1) with xo € IT; and Xt € Iy, either+ O(c) < O(t) or + O(7) < O(0); then both(O(IT;) W
O(I12)) < O(ITy) and (O(I1y) W O(I12)) < O(IT2).

Proof. LetIl’ = O(II;) wO(II,). Take an arbitrary statemexitO(o) € O(I1;); there are two possibilities.

(x¢ O(IT2)) Then by condition (9.1)x:0(c") € IT". By reflexivity of subtypingO(c) < O(o) and so there
is a statement:s € IT" such that < O(o).

(xe O(IIy)) Then there is a statement of the for®(7) in O(I1). Consequentlyx.o- € IT; andx:t € I,
. By assumption, either O(c) < O(7) or + O(7) < O(c). We consider the cases separately.
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e If - O(0) < O(7) then there are two subcases to consider:

1. ¥ O(7) < O(0) - then by condition (9.3):0(c") € IT’; by reflexivity of subtypingO(c) <
O(o) and so there is a statemené € I1" such that < O(0).

2. + O(1) £O(0) and sor O(c) =~ O(7). If h(O(0)) < h(O(r)) then by condition (9.5),
x:0(o) € IT’; by reflexivity of subtypingO(c) < O(c) and so there is a statemens
IT" such thats < O(o). If h(O(r)) < h(O(0)) then by condition (9.6)x:0(r) € IT; by
Lemma 9.310(7) < O(0) and so there is a statemené € IT" such that < O(o).

e The reasoning for O(r) < O(c) is symmetrical.

Thus, for allx:o- € O(I1;) there isx:6 € I1” such thab < o, and sd1’ < O(I11). The proof thall’ < O(I1y)
is symmetric. O

Notice that it may not be the case that the operation retubyednifying two type environments
satisfies the properties required of it in the previous lenimarder to ensure that the environment
combination is a subtype environment. This is becauseewhé unification algorithm will return an
operation that is sound with respect to the subtype relaititmnot guaranteed to be sound with respect
to subtypenference

Example 9.73. Take the two type environmerls = { X:¢,y:¢" — ¢’} and Il = {X e, Y. }. Unifying
the types for x results in the Identity; then, unifying theety for y gives the substitutige - ¢ — ¢’].
Applying these operation® = [¢ — ¢’ — ¢’] old to the environments, we obta@(I1;) = {X:¢’ —
oY — ¢} and O(Tlp) = {x ey’ — ey’ y:i¢' — ¢’}. Then, according to Definition 9.70, we get
O(IT1) W O(I1p) = {y:¢’ — ¢’} since we cannoinfer that - ¢’ — ¢’ < ey’ — ey’ (remember this was
shown in Example 9.32).

Since subtype inference is our methoddefcidingwhen one type is a subtype of another, in order
to formulate a type inference algorithm whichdecidableas well as sound, we must therefore de-
fine a further property of operations with respect to typerervnents which guarantees that when the
environments are combined, the result is a subtype envieahm

Definition 9.74 (Inferrably Unifying Operations)We say that an operatiod inferrably unifies two type
environmentdI; and Il if it satisfies the property that for each pair of types ) with xo € I1; and
x:t € Iy, either O(o) < O(7) or + O(7) < O(0).

Notice that it is decidable whether a given operation ifely unifies two type environments, since
we can simply apply the operation to each type in the two enwirents and use the subtype inference
algorithm to check, for each pair of types associated witlv@rgvariable in both environments, that one
is (inferrably) a subtype of the other.

We can now define our type inference procedure.

Definition 9.75 (Type Inference) The type inference proceduréype, is a partial function that takes
a lambda expression and returns a pélil, o) of a type environmeril and a canonical typer. It is
defined inductively on the structure of terms as follows:

Type(X) = ({X¢},¢) wherey fresh
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Lo - 1)y if Type(M) = ((I1, X.0), 1)
TyPe(XM) =1 11 &, 2y if Type(M) = (IT, 7) and x¢II

whereyp fresh

Type(M N) = (iPush[c2](IT}) UTL,iPush[:2](O(¢)))

if Type(M) = (I1y,0)
Type(N) = (Il2,7)
Unify’;(O', iPush[t1](7) = ¢) = 01
Unify% (O1(I11), O1(I12)) = Oz and
O = 0,004 inferrably unifiesIT; andIl,

whereg, 1,1, fresh
IT] = {xo | xell; & xo € O(I11) W O(II) }
I, ={yr | yeIlp & y¢Il; & y:r € O(I11) W O(I13) }

Notice that the case for term variables and for abstracii®identical to the ordinary inference pro-
cedure for Curry typing. The fierence lies only in the case for application. We conjectoat the type
inference procedure we have just definedasindwith respect to the type assignment system, i.e. the
typing inferred for a term can indeed be assigned to that.term

Conjecture 9.76(Soundness of Type Inferencdf Type(M) = (I1,0) thenIl + M:o-.

Proof technique.By induction on the definition ofype.

Definition 9.75 straightforwardly defines an algorithm. @&mach recursive call is made on a subterm,
to show termination of the algorithm, we simply need to arthet all the other procedures that it
calls (apart from itself) terminate. In the base case, thatfterm variable, no other procedure are
called. The case for an abstraction simply makes a recucaiVeln the case for an application, besides
recursively calling itself, the algorithm makes two calisthe unification procedure which we have
shown is terminating (Theorem 9.66). It must also decid@ef @aperation returned by the unification
procedure inferrably unifies the type environments rasgiffom the recursive calls, the decidability of
which we have remarked on above. Finally, if they are, it ncostbine the unified environments, which
is a terminating operation since type environments areefgéts, and the subtype inference procedure is
decidable (see Section 9.4).

In the next section, we will look at some examples of termsyioich types can be inferred and also an
example of a typeable term for which type inference failseSehexamples also provide some evidence
for the principality of our algorithm in the sense that thpdy inferred are most general, although we are
unable to formally show a principal types property for ousteyn at this time. Through these examples,
we hope to give the reader a more intuitive understandingwaftigpe assignment in the Nakano system
works, as well as the role of insertion variables, both iretygerence and in inferring principal typings.
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9.6.1. Typing Curry’s Fixed Point Operator Y

The original motivation for us in introducing insertion iales into the type system was to be able
to infer a type for the fixed point operatdtr = Af.6¢ 6+ whereds = Ax. f (xX). In this section we will
demonstrate how our type inference algorithm can sucdéssiter a type for this term, where one that
does not use insertion variables would falter.

The obstacle to inferring a type for this term without ingertvariables is trying to infer a type for
the applicatiors; 5. For the subtermd; = Ax.f (xX), an inference procedure without insertion variables
would have to infer the typingf f:p1 — 2}, u.(¢0 — ¢1) — ¢,). Then, when inferring a type for the
application of this subterm to itself, we first ‘pedi'aa fresh copy of this typing and attempt to unify the
first copy of the type with a function type constructed frora econd copy and a fresh type variable, as
follows:

Unify% w0 — p1) — o, (u.(00 — @3) = ¢1) — ¢s5

The unification procedure would first attempt to unify the-kednd sides of each arrow type contravari-
antly, as follows:

Unify’; (00— @3) > @4 1.(00 = ¢1)
This would then require the unification procedure to unfblel head-recursive type on the right:
Unify’ (20— @3) = ¢4 ou.(00— 1) = ¢1

And again, we first try to contravariantly unify the left hasides of these arrow types:

Unify” o1.(00— 1) #1(20 = ¢3)

Here, of course, is where the unification fails due to a buitefixing the left-hand recursive type and
not the right-hand one.

The reason underlying the failure of type inference in timistance is that the typing f:p1 —
w2}, 1.(00— 1) = o) is not theonly typing for the termix. f (xX). The typing(f:ep1 — ¢r,0u.(6¢0—
1) — p2), for example, is also valid as shown in the following deiivat?D;

(vaR) (var)
kX eu(e0— ) kX eu(e0— 1)
.k Xeeu(e0— —e B .k Xeoeu(e0— -
(aR) e ¢1) > ep1 w( 1) B
ok flepr > o L EXXepp

(—E)
frep1 > o, X eu.(00— @1+ f (XX):p2

=N
frepr = ok AXTF(XX):0u.(60— 1) = 2

The reason that this is a problem from the point of view ofinfg a typing for the ternd 6, is
that we need to udaothtypings: we must use the first typing for the left-hand ocence ofs;, and the
latter typing for the right-hand occurrence.
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Unfolding the type from the first typing we obtain the follow
(00— ¢1) > 2 < (op1.(00 — 1) = 1) = 2

Notice that the left-hand side of the unfolded type is of tame shape as typg:.(¢ 0 — ¢1) — ¢ from
the second typing. To make it exactly the same as the opeyprdf the unfolding above (and therefore
allow us to type the applicatiofy 61) we must unify the two type variables andy,. Having done so
we can then construct the following derivati@® for the left-hands; term:

—— (vaR) ——(vAR)
kX (e0—> @) ek Xu.(e0—> )
l—XZop(oO—)cp)—up(S) FXeou(e0— ) <)
: (aR) . . B
L ETip— .. FXX
(2l "D(—>E)

fip—> o, xu.(e0—- @) F f (XX):p

- |
fitp—H,DI—/IX.f(XX)Zy.(oO—Hp)—)tp( )

fio > pFAXT(XX):(eu.(00— ) > @) > ¢
To type the application of¢ to itself, we mustveakerthe derivation so that the term variablenas
the (more specific) typey — ¢, as this is the type fof in the other typing that we will use to type
the right-hand version afs. Interestingly, we can do this in two ways. The first is by wesgkg the
subderivation typing the subterimto giveZ)'Z:

———— (vAR) — (vAR)
o EXu(e0— @) ok Xu(e0 > )
: (ar) —— © : ©
.k flep—o0 b Xeu(e0— ) > ok Xeu(e0— @)
ok fio—oo <) . F XX B
(=B

frep— @, xu.(e0— @)+ f (XX):p
frep— o AXT(XX):u.(60— ¢) > ¢

=n
(=)

frep—o ok AXf(XX):(op.(060—> @) > @) > ¢
The other is by weakening the subderivation typing the saobtex, to giveZ);:

ok Xu(e0— @) (vax) ok X (00— ) (vag)
< (<)

o Xeu(e0o @) op .k Xeu(e0— B
FXxopu( ©) o R T so)(_)E)

. XX
7]: (vaR) — (2
Lok Tep— ...FXXe
[ ‘P(_) E)

frep— @, xu.(e0— @)+ f (XX):p
frep— o AXT(XX):u.(60— ¢) > ¢

=N

frep—orAxf(xX:(op(60—>9) > ¢) >

We can now type the applicatién 6; itself:

D, oD 7 3 Dy
frop—o ok AXf(XX):(ou.(60—> ) > ) > ¢ filep—oprAXf(XX):eu(e0—¢)— ¢

(= E)
frep—>prdsdsip

A key observation motivating our approach to type infereadbat there is ngubstitutionof variables
that can transform the first typing into the second one, neheuodulo the subtyping relation. This is
part of the reason for the necessity of insertion variabtekthe insertion operation itself, which allow us
to place bullets at locations which would not be possiblagitfie substitution operation alone. However,
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this is not the whole story: to type the tednds, we had to use twdifferenttypings - one containing
bullets, and the other not. In the system with insertionaldés, the typing that we infer for the teim
is

({ Freatziopr = 142}, t2u.(1100 = 1) = 14¢02) (9.7)

The important point to note here is that the insertion vdemlin this typing, as well as allowing us
to prefix the recursive type that forms the left-hand sidehef arrow type with a bullet by using the
insertion [, — e], also allow for the possibility of obtaining the other typi via the empty insertion
which removes all insertion variables. Thus, using ineartiariables enables us to defer, until the last
possible moment, the decision of whether to infer a type witlvithout bullets. More fundamentally,
though, what insertion variables serve to do is mark thegslaita typing derivation where the subtyping
rule can be used (to introduce bullets into a type). Notied theexpansionvariables of Kfoury and
Wells [75] perform exactly the same function, marking thépoin a derivation where a subderivation
may be duplicated and used as the premises for an intenséatioductionrule.

The typing above is also more general than just the two péatidypings we have considered that
allow us to type the self applicatiafi ¢. In fact, for alln,me N the termax. f (xx) has the typing:

({ o1 — @}, 0" u.(6M0 — 1) — ¢2)

None of these typings are related to any of the others viauhgy/ging relation<, meaning that none
can be considered principal, but each of these typings caeberated from 9.7 above. We conjecture
that it isthis typing which is principal for the termx.f (xX), i.e. any valid typing for the term can be
generated from it by applying some operation.

Now to finish df, let us examine in detail exactly how the type inference @doce generates the
typing for the terny; 6; that we gave above, with all its insertion variables.

For completeness, we will proceed from the very beginnirdysamstart with the inference of a typing
for xx. For each occurrence of a fresh type variable is used to generate the typ{fgs1},¢1) and
{ X2}, ¢2). To infer a typing for the ternx x we first unify¢; (the type of the first occurrence gf with
the arrow typa; ¢» — ¢3, constructed from the type of the second occurrenceard fresh insertion
and type variables. This yields the type substitution= [¢1 — 192 — @3], which is then applied to the
type environments in the typings for each occurrenca& giving { X:t1 2 — @3} and{Xx:¢»}. Unifying
these requires unifying the two typese, — ¢3 andgs. Sinceg, occurs in the type; g, — ¢3, uni-
fying them involves generating a recursive type, which isalby first inserting a bullet ai, and then
promoting the re-occuring type variab}e and recursively closing the type. This yields the operation
02 =[p2 - u.(t100— @3)] o[t1 > 11 @], and sap, gets replaced by a recursive type. The penultimate step
is to combine the environmenB; 0 O1({X¢1}) = { Xt eu.(t200 — ¢3) = @3} and 00 01({Xip2}) =
{xu.(ty00 — @3)}. Itis easy to verify that the types in these two environmemésinferrably equiva-
lent, that ist 1 eu.(t100 — p3) = @3 < u.(t1100 > ¢3) andr p.(1100 — p3) <ty eu.(t100 — @3) - @3.
Therefore, we take themallerof the two types for the combined environment

02001({X¢1}) WO2001({ Xip2}) = {Xu.(t200 — 3)}
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The final step is to push a fresh insertion variable onto thaty

Type(xX) = (iPush[eo]({ X:pt.(t1 00 — ¢3)}) U0,iPush[i2](O2 0 O1(¢3)))
=({X2u.(t100 = @3)},12¢3)

Using the typing that we have just inferred, the inferenaeedure for the ternfi (x X) follows similar
lines. A fresh type variable forms the typikgf:¢a4}, ¢4) for the subtermf. This is then unified with an
arrow type that allows the application wix to be typed, yielding the type subtitutiop— t3tr o3 —
@s). Unifying the type environments of the two subterms is wessary since they are disjoint in their
variable range. Thus, the typing for the whole term is agbiaioed by pushing a fresh insertion variable
onto the type in the environment associated witnd the result type:

Type(f (xX) = ({ f:tatato 3 = tags, X tau.(t100 — ¢3)},ta5)

The typing for the termix. f (xX) is obtained straightforwardly by abstracting over thestjqr x:

Type(Ax.f (xX)) = ({ f:ratat203 = taps},iop.(1100 — @3) = 14¢5)

At this point we arrive to where we ran into trouble previgustemember that type inference without
insertion variables failed because we could not unify theesyinferred for the two occurrences of the
subtermax. f (xx). Having inferred a typingvith insertion variables, however, the unification succeeds.
Taking a fresh instance of the above typing for the rightehaoccurrence ofs gives us the two typings:

(My,0) = ({ freatzta 03 — tapshop.(t100 — ¢3) = ta¢s)

(Mo, 7) = {{ fiigtrte s — ta 10}, te . (1500 — @g) — 18 10)

The unification then proceeds as follows. We have underlthedunification call which led to failure
in the approach without using insertion variables. Thi$isatow easily handled because the insertion
variableig prefixing the right-hand recursive type is able to ‘consuthe’bullet prefixing the left-hand
recursive type:

O

Unlfy’;(o: iPUSh[Lg](T) - (,011)
Unify’ (top.(t100 — ¢3) — tags, (totep-(t50 0 — @g) — tatgp10) — ¢11)
05001 where

O1 = Unify (tote 1. (1500 — @g) — totg @10, t2t.(t10 0 — 3))
Unify: (tote 1. (15 0 — @g) — tatg 1o, tot1 o . (t100 — @3) = 12¢3)
= 04003 where
Oz = Unify(tot1 @ p1.(1100 — ¢3), tote 1. (1500 — @)
= Ogo Os where
Os = [tz 1]
Og = Unify:(Os(t10p.(t100— ¢3)), Os(te (1500 — @s)))

UnifyZ (c1 0 (100 — @3), 1ot (t50 0 — @)

Ogo O7 where
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O7 = [ 110]
Unify! (Or(u. (110 93)), Or{t. (1590 - ¢5)))
Unify” (u.(c1 00 — ¢3), 11.(t50 0 — @g))
Unify’;(tl 00— 3,500 —> @g)
= 019009 Where

Og = Unify’;(L5oO, 1100)

@)
[ee]
Il

= 0120017 Where
O11 = 15 1]
012 = Unify%(0, 0)
= Id

O10 = Unify%(Og(¢3), Oo((¢s))
Unify% (¢s, ¢s)

[z gl

Unify’ (O3(tot8 10), O3(t23))

Unify” (totg 10, Lo ©8)

0140013 Where

O13 = [to+ €]

O14 = UnifyZ(O13(tg ¢10). vs)

Unify” (tg 10, ¢8)

0160 015 Wwhere

O4

O15 = [tg— €]
O16 = Unify2(O15(¢10). ¢s)
Unify” (10, ¢s)
= [p10+ 4]
Unify? (O1(ta ¢s), O1(¢11))

Unify% (tags, ¢11)
0150017 Wwhere

0]

017 = [ta €]
O1g = UnifyZ(O17(¢s), ¢11)
Unify” (¢s, ¢11)
[p5 — ¢11]
0180017001600150013001900120071007005
[¢s = g11] o[ta > €] o[p10 > @g] o[tg > €] o [1g - €]
o[z gg]loldo[is > 11] o[tg > 1y 8] o[t > o]

Having successfully carried out the unification above, watapply the resulting operation to the two
type environmentdl; andII, and then unify them. This involves applying the operationhi type
associated witlf in each environment and unifying the resulting types, wigigles the following:

O = Unify2(O(uatato 3 — tags), O(ttrie p8 — t810))
= Unify’;(tg 3 = P11, L7L1 @ P3 = P3)
= 0,007 where
O] = Unify4(7e1 003, t3¢3)
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= [z 1701 0]
0, = Unify"(0}(¢11), 0%(¢3))
= Unify(p11, ¢3)
= [e11+ @3]
= [e11 3]0tz 17y e]

Applying the combined operatidd’ o O to the two type environments, in this case, results in idahti
environments and thus the combined type environment isatime s

O' 0 O(II1) WO 0 O(I1p) = { fri7t1 03 — @3} W{ fitzt1 @3 — 3}
={fl71003 > @3}

The typing that we will infer forss 6+ is formed by pushing a fresh insertion variable onto the type
associated with every variable that is preseriinand also onto the result type of the application:

Type((AX. f (XX)) (Ax.f (XX)) = (iPush[Llo](l_['l) UTL, iPush[t10](O’ o O(p11)))
= (iPush[e10]({ f: 710 93 — @3}) U0, iPush[i10](¢3))

= ({ fruot7L1 @03 = L1093}, 110903)

wherell; = {x.o | xeIl1 & X0 € O 0 O(II1) WO’ 0 O(I13) }
I, ={yr | yell; & y¢Il1 & y:t € O’ 0 O(I1) WO 0 O(ILp) }

Lastly, the typing forY is obtained by abstracting over the type for

Type(Y) = Type(Af.(AX. f (X X)) (AX. f (XX)))

=0, (t10t7t1 9 93 = L1093) = L1093)

The typing forY that we demonstrated back in Section 8.2.3 can easily béneltérom this via the
operation {19+ €] o [t7 — €] o[t1 — €] which removes all the insertion variables.

9.6.2. Incompleteness of the Algorithm

Due to the incompleteness of the unification procedure weneldfin the previous section, our type
inference procedure also fails to be complete. In other sdittere are typeable terms for which our
procedurecannotinfer a type. An example of such a term is théermY’ =Y (Axy.y(xy)). Notice that
this term is also a fixed point combinator:

Y'M =Y (Axyy(xy) M
=5 (Axy.y (xy)) (Y (4xy.y (xy))) M
—p (Ay.y (Y (Axy.y(xy))y) M
—p M(Y (Axy.y(xy)) M)
=M(Y’'M)
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As such, it can be assigned the characteristic fixed-poietatpr typeoy = (e — ¢) — ¢. Take
the following derivation?D, in whichTl = {x: eoy,y:e¢ — ¢} (notice thateoy = e((ep — ¢) — ¢) =
(o0 —> 0p) > o).

— (vAR) —— (vaR)
[IFXxeoy [Mry.ep—¢p
) )
ITF X (e0p — 0p) > 0@ I[Fry.eep—ep
—— (vaR) (=B
IIryep—¢ IIF Xy ep
(=B
I+ y(xy):¢
- 1)
{xeoy}FAYyYy(Xy):oy
- 1)

FAXY.Y(XY): o0y = oy
Notice that the typeelcy — oy) — oy is a substitution instance of the typg itself, and so we can
easily assign it to the teri (one way to do this is to take the derivations given in the joiev section
and replace all occurrences of the type variablgith the typeoy). Thus we can assign the type to
the termY"’:

\ / \ D /

FY:(eoy s oy) > oy  FAXYY(XY):eoy — oy

(=B

FY'oy
We will now show where type inference for the teih breaks down. As we have seen, we are able
to infer a type for the ternY. We leave it as an exercise to the reader to verify that théypearinference
procedure returns the following typing for the teamy.y(xy) (or ana-equivalent one, that is equivalent
up to the renaming of type and insertion variables):

Type(Axy.y(xy)) =
(0, ((tatatatzp1r = 13t292) = 13¢1) = (15L4t3 1 = L5¢92) = L5¢2)

This means that type inference fails because the unificgiionedure fails when it attempts to make
their respective types compatible for application. Thecaken of the relevant call to the unification
procedure is given below:

O

Unify% ((cot7t1 @ 3 — L1093) = L1093,
(((cat2tatzp1 = 3t2902) = 13¢01) — (t5t4L391 = 1592) — 1502) — P4)
0,001 where
O1 = UnifyZ(((catatat3p1 — 13t202) = 13¢1) = (t5tat301 = t592) = 1592,
Lipt7t1 93 — L10903)

= 04003 where
O3z = UnifyZ (t10t7t1 @ @3, (tatatatz g1 — t3t292) = 1391)
= Og o Os Where
Os
Os

[t10+ €]

Unify” (Os(t7t1 @ 3), Os((t3t2t4t301 — 1312902) = 13¢01))
Unifys (t7t1 @ ¢3, (tatatatz o1 — tata@2) — t31)

Ogo O7 where

O7 = [t7 €]
Og = Unify(O7(t1 @ ¢3), O7((tatotatzpr — tatop2) — t3¢1))
Unifys (11 @ @3, (tatotatz o1 — L3tz p2) — 13¢1)
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= 04190 Og Where
Og = [ ¢€]
O10

Unify: (e @3, Og((tatatatzp1 — tat22) = 13¢1))
Unify% (e @3, (tatotatzp1 — 1312 92) = t13¢1)
= FAIL

As can easily be seen, the unification procedure fails at thet phat it has to unify a bulleted type
variable with a function type, since there is no unificatioference rule that matches this pattern of
input types. This is also exactly the case that we highlidltethe previous section when mentioning
the incompleteness of unification.

A possible solution to the problem of unifying a bulletedaymriablee ¢ with a function typec; — «»
(in which the type variable itself doesnot occur, of course) is to unify the latter type withfrashly
generatedfunction typeey; — e@,. If this succeeds, it returns an operationsuch thatO(e 7 —
e 7)) < O(k1 — ko) (0or O(k1 — k2) < O(e 1 — e¢y) depending on which way round we attempt the
unification). We can then build a unifying operation for thiggmal typee ¢, namelyO o [¢ - ¢1 — ¢2].
Notice that since does not occur ir; — ko, it is the case that{— ¢1 — ¢2](k1 — k2) = k1 — k2 and
S00o[p - @1 = @2](k1 — k2) = O(k1 — k2). Thus:

Oofp > @1 — @o](ep) = O(e 1 — @ ¢2)

< O(k1 = k2) = Oofp — @1 —= @2](k1 = k2)

The reason that we have not incorporated this approach umtordfication algorithm is that we would
then have been unable to prove its decidability, or morerately itstermination This is due to the
proof technique that we have used, which is based on thastaliclosure of a type. The approach we
have just outlined introducdegeshtype variables which are not present in either of the origiyyzes that
we were trying to unify. This means that, in a unification nefece system incorporating this approach,
the subtype statements in subderivations are not guadhttids in the structural closure of the types in
the final conclusion. Thus, our technique for proving temtiion would no longer be valid.

9.6.3. On Principal Typings

Although we have not yet been able to show a formal princigpings property for our variant of
Nakano’s type assignment, we do believe that such a propeftis, since there is evidence to believe
that our type inference procedure infers such principahtyp (when it succeeds in inferring a typing at
all, of course).

We hinted at this above when we talked about thfEedent typings that can be assigned toAherm
AX.f(xX), and their role in typing the fixed point combinatér There, we noted that many of the
(subtype-incompatible) typings assignable to this termlmagenerated by applying some composition
of insertion operations to the typing returned by our infieee algorithm, and that furthermore, these
typing could not be obtained via substitution alone (fromrtg without insertion variables).

Another example supporting our conjecture of principalngg is the typing that is inferred by our
algorithm for the termixy.y(xy). The ‘vanilla’, principal Curry type for this term is

((p1 = @2) = ¢1) = (1 = @2) = @2
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Again, this is assignable to the term in our system too. Notisough, that in the Nakano system it can
also be assigned the type

(o001 — @) — 01) = (001 — ¥2) = @2

In fact, it was a variant othis type (in which the type variables, andy, were unified) that we used in
order to type the fixed point combinat®r = Y (Axy.y(xy)). The important point to note is that neither
one of these types is a subtype of the other, and furthermermeawnot generate the second one from the
first via substitution alone, since the latter type contdiath the type variableg; andy, in both their
bulleted and unbulleted (or double-bulleted, in the casg;pform. Both of these types, howevean

be generated from the typing inferred by our algorithm. Toreter using the operatioms[— €] o [t4 —

€] o[tz €] o[t2 > €], and the latter using the operatia - €] o [t4 > €] o [t3 > @] o[ 1 €].

We will give one more example to bolster the case for the jpaidypings conjecture, that of the
familiar A-termS = Axyzxz(y 2. In the simply typedi-calculus, of courses has the (principal) type

(o1 = @2 = @3) = (1= @2) = 01— @3

In Nakano’s sytem (and thus also our variant), it can alsodsegaed that type. However, as with the
previous example, it is possible to assign it another typihvis not obtainable from the Curry type
either via the subtype relation or via substitution:

(VAR) (VAR) —(vAR)
[T Xp1 — @2 > @3 l_[I—ZZgol( M-y ep; — ¢ [IFrzZep
E

I+ XZyr — @3 ryzes

(=B
=n
=n
=N

{Xp1 = 02 = @3, Y001 = @2, Zp1} + XAYD):p3

{Xip1 = 92— @3, Y001 — 2} F AZXAYD): — 1 — ¢3
{ X1 — @2 — @3} F AYZXAYD:(e 01 — ¢2) = 91 — ¢3
F AXYZXZY2):(p1 — @2 — ¢3) = (891 — @2) = ¥1 — ¢3

wherell = {Xip1 = 2 = @3, Y: 001 = @2, Zp1 }.
The typing inferred by our algorithm for the ter&is:
Type(Axyzxz(y2) = (0, (tst1 91 — tstatz 2 — t593) — (13291 — 1392) = 541 — 1503)
Notice that the type we assignedS@bove can be generated from this type via the operation
[ts— €loftar e]ofiz €e]ofia o] o1 €]

that removes all the insertion variables with the exceptibf, which it replaces with a bullet. Another
type that can be assigned$as

(o1 — 02— @3) = (1 — 0 2) = 1 — 3

The interesting thing about this type is that, while it is neliated to the previous two types we have
considered via subtyping, nor obtainable from the Curngtyja substitution, it can be generated from
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the inferred typing in two dferent ways: the first, via the operation
[t5— €] o[ta > €] o[tz > @] o [12 > €] o 11 > €]

which removes all insertion variables exceptwhich it replaces with a bullet; the second way is via the
operation

[p2 = epo]ofis > €lofiats €] o[z €] o[tz o] o[y - €]

that removes all the insertion variables exagpthich it replaces with a bullet, and substitutes the type
variabley, with a bulleted version of itself.

Lastly, notice that the following three types assignablestocan be generated either by replacing
insertion variables;, ¢4 ands respectively by bullets, or via empty insertions and theyqdbrelation
since they are all supertypes of the Curry type that we gageeab

(01— @2 = @3) = (01— ¥2) = Y1 — @3
(p1— @92 = @3) = (1 — ¥2) = Y1 — @3

(o1 — 02 — 0 p3) — (1 — @2) > e 1 — 03

Thus, there is a certain degree of redundancy in the opesatitat we can use to obtain typings. The
main point however, is that all these typings are obtainablsomeway, only obtainable because we
have incorporated insertion variables into the system.

We end this section by remarking that, while there is eviddndelieve that our system has a principal
typings property, this property as it applies to our system only partially hold, or hold modulo a
stronger equivalence relation on types than the one we hafireed through the subtyping relation.
The reason for this is that the subtyping relation we havenddfionly relates recursive types via a
finitary unfolding - that is, two recursive types are equivalea}t {0 one another if and only if they
can both be unfolded some finite number of times such thatlikegme the same type. Thisvieak
u-equality. A stronger notion of equality on recursive types be obtained if we consider tirinite
unfolding - thus, two recursive types aswonglyu-equivalent if and only if they have the same infinite
unfolding. For example, the two typagy — ¢0) andu.(¢ — e — e () are stronglyu-equivalent, but
they arenot weakly u-equivalent - that is, there is no finitary unfolding of thégees such that they are
(syntactically) equal.

This has a bearing on the (conjectured) principle typingperty of our system, since it may be that
a particular term can be assigned two (or more) typings waielstronglyu-equivalent but not weakly
u-equivalent, and so there is no way to generalise one to tier ota the< subtyping relation. Thus,
neither (or none) of the typings can be considered ‘pridGipathe strictest sense of the word.

Take, for example, the terl’ = Axyzx. Using the types that we gave above, notice that the follgwin
(weak)u-equalities hold:

ou(p—00) > pu(p—e0)=eu(p—00)—¢p—eu(p—e0)
~ou(p—e0)op—oep—eeu(p— e0)
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ou(p—oep—e0e0) > u(p— ep— ee()
~ou(p—oep—eel)op—oep—eeu(p—ep—eel)

Letoy=u.(p —» e0)ando, = u.(¢ — e — ee0). Then for each e {1,2}:

(vAR)
(X o0, YVp,Zep}F X o0

(<)
{X o0, Vo, Zep}F X eer;

=N
{X oo, YplrldzX ep — oo

=1
(X o0} FAYZXp — 0 — o0

=N
FAXYZX. 00 = @ — e — e e

(=)
F AXYZX e 0 — O

Thus, the ternK’ can be assigned both of the typas; — o1 andeo, — 0. This, in itself, does not
constitute a problem for our conjectured principal typipgsperty, since the ‘principal’ typing fdk’
(i.e. the typing inferred by our algorithm) is

Type(K”) = (0,91 = @2 = ¢3 = ¢1)

and both of the types we have assigned are supertypes ofthatesan be generated from this principal
type via substitution:

Owpr 2 p2— 3> 1) =p(p > 00) 59— p—u(p— «0)
<ou(p—oe0)—>ep—ep— eu(p— e0)
<ou(p—e0)>ep—ogp—eu(p—e0)
<eou(p—oe0)—>ep—¢p—eeu(p— e0)

whereO; = [p3 = ¢] o[z @] o[p1 = p.(p — ¢ O)].

Oalpr» 2oz p1)=plp > ep—eel) 59— pu(p—ep—eel)
<eou(p—ep—eel)oep—oep—oeu(p—ep— eel)
<eu(p—ep—eel)oep—o>p—oeu(p—ep—eel)
<ou(p—oeop—eel) sep—>p—eeu(p—ep—ee)

whereO; = [p3 — @] o [p2 = ¢l o[p1 - p.(p —> e — e ()].
On the other hand, let us consider the tefid’. We have seen that can be assigned types of the

form (e o — o) — o for any typeo, and so this allows us to type the teMiK”’ in two different ways,
since for each e {1,2}:

\ / \ /
FYi(eoj—0i) > 0o; rK':egj— 0o
- (- B
FYK":oj

Thus, we can assign both the typin@so 1) and(0,0) to YK’. The type inference algorithm returns
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the typing(0, u.(¢1 — ¢2> — ¢0)). Notice that

[p2 = @] o [¢1 > @]({0, (1 — @2 — 0))) = (0, (¢ — ¢ — 0))
<{0,u.(¢p — o — @ 00))

However, the typery, while stronglyu-equivalent tar,, is not itself directly obtainable from the ‘prin-
cipal’ typing returned by the type inference algorithm. Slgads us to formulate the following principal
typings conjecture, stated modulo strgnrgquivalence.

Conjecture 9.77. If IT + M:o- and Type(M) = (IT’, 7), then there is an operatio®, an environment
IT” and typer’ such thatO((IT’, 7)) = (I1”,7’), with IT"”" strongly u-equivalent toll and " strongly u-
equivalent tar.
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10. Extending Nakano Types to Featherweight
Java

Having demonstrated in the previous chapter that some HKiygpe inference is possible for Nakano-
style type assignment in the context.ttalculus, we will continue by describing how we might now
apply the concepts and approach of this system in an objasited setting, and present a type assign-
ment system fors® that assigns Nakano-style simple recursive structurasyp programs. The aim of
doing this is to obtain a type assignment systemeforwhich is both semantic and fully decidable for
all programs. By basing the system on the Nakano approaclk)aive that we obtain a system with a
semantic foundation; furthermore, since it is also a systénecursive types, this allows us to ‘tame’
the recursion inherent in the class-based object-origpaealdigm, and facilitates arfifective algorithm
approach to type inference.

Although we do not give a formal result showing the semanditure of our system, we will work
through several illustrative examples showing how theylmtyped by our system. These will provide
what we believe to be strong evidence in support of the sémaature of the system. We will also
discuss how type inference technique for Nakano's systeanwre outlined in the previous chapter
might be merged with the type inference proceduresfothat we gave in Section 7.3, and thus applied
to the new system. Finally, we consider how to introducergetions into this system, with the aim of
gaining semantic completeness.

We see the work in this chapter as providing a starting papin which we can build both formal and
practical results. The definitions, descriptions and examip this chapter should be detailed enough to
convince the reader that such results are feasible. As &uz&dn be considered to constitute a roadmap
for future research.

10.1. Classes As Functions

Our aim in studying the Nakano system of recursive types,tetithiques for the inference of its type
assignment, is to be able to apply it in an object-orientatingein order to obtain a semantic type
assignment system for which typings can be inferred in alflexand comprehensive manner. To see
just how a system of recursive types can lead to a generaltyiniating type inference procedure, we
will first examine the precise reason for thentermination of type inference in the intersection type
system. This, as we have remarked in Section 7.3, lies intitiyao define classescursively

The type assignment system of ‘simple’ types (whether $stetions are allowed or not) studied in
the first part of this thesis treats class definitions simglyomkup tables for fields and methods, and
operates by ‘unfolding’ these definitions as many times ggired for a given analysis, or to be able to
type an object in a given context. Type analyses for objesthtained via analyses of their method
bodies. So, if a method body (or more precisely, the execuifadhe method body - i.e. the invocation
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of the method) results in the creation of a new instance afdtgaining class, then the analysis of that
method body will necessarily entail an analysis of this nestdnce obtained by again ‘unfolding’ the
same class definition, resulting in a non-terminating loop.

Notice that this is not just a property or artefact of the tyference algorithm, but a property of
the type assignment system itself, which allows instanéesaursively defined classes to be assigned
types of arbitrary size and, in general, arbitrary irregtyaFor a semantic analysis, this is exactly what
we want since it allows the system to capture the infinity aieptial behaviours that such an object
will have. However, for practical type inference of any kiofdreal-world object-oriented program, this
expressive power is entirely prohibitive.

One possible approach to ensuring the termination of a tyfgednce algorithm for this system would
be to simply place a limit on the number of times any particalass definition can be ‘unfolded’ during
type inference. In other words, we would be placing a limittlo@ contexts in which the program can
(typeably) be placed in, this limit being defined as some marh number of successive method calls.
However, as well as resulting in a woefully incomplete iefege algorithm this is, of course, overly
restrictive from a practical programming point of view. ikiof the list example of Section 6.3 - such
an approach would impose a maximum length for any typeable While programmers are used to
being limited on this front by hardware constraints, beingjted in this way by the type system would
be more or less unacceptable.

So, the question we must answer becomes: is there a way tatienunfolding of class definitions
during type analysis, while still allowing programs to be&dsn contexts consisting of arbitrary-length
sequences of method calls? The key to answering this qoeatiomatively lies in viewing classes
not just as lookup tables, but &mctionsfrom objects to objects - in other words, objetnstructor
functions. We will make this interpretation more concretad explain how it leads to a new typing
approach, by first considering a possible interpretatiooladses in the-calculus. Abadi and Cardelli
also describe such a translation in [2], similar to approagbpted by Reddy in his semantic model
for Smalltalk [92]. We will discuss a slightly fierent translation, however, which more suits the way
we will eventually type new objects. We will not use, for imste, Abadi and Cardelli’'s notion of
premethods

The principal feature of Abadi and Cardelli's encoding iattislasses are themselves represented
as objects, containing a special method named. The class-based approach to creating objects by
instantiation is translated to an invocation of tiev method on the object that is the translation of
the instantiated class, i.e. the class-based expressionC(g) becomes the object calculus expression
classObjc.new( €), whereclassObjc is the translation of the class The new method of the class
objectclassObjc is defined such that it returns a new object equivalent to stamte of the class, so
it contains all the methods and fields declareg.in

Consider am® class:

class C {

G f1; ... G fq

D1 m(E X) { return e1; } ... Dm my(EX) { return em; }
}
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The corresponding class objectclassObjc, in theg-calculus would be:

classObjc 2 [new = ¢(C).A(gn).[f = gn, m= g(this ).A(X).Telm]]

We will discuss the translation of the method bodiesl shortly, but first we point out an important
aspect of this translation. This is that the variafblis in the translation of each method has been
bound by thes self binder, and so referencesthis  within method bodies will correctly refer to the
receiving object. Also the class nar@éas been self bound within the body of the speetal method.
This means that any occurrences@in the bodies of the object’s methods will also refer backhi t
translated class object, and so new instances of the Classlf can be created by its own methods. In
fact, this latter observation is the crucial element in tla@slation. Apart from this we can see that the
body of thenew method is a (lambda) function that takes some argumenis which are then used as
the values of the object’s fields.

The translationle;] of the method bodies is slightly subtle. What the transtatioust do, quite
straightforwardly, is convemew C(...)  expressions into the forralassObjc.new , translating the
classCinto a class object, and invoking itew method. There is an exception to this, however - when
convertingnew C(...)  expressionsvithin the translation of the class itself, we must refer to the
self-bound variable&, and not translate the class into an object a second time.

How does this translation of classes to a calculus of pureatdbjand functions help us to see how we
might better type class-based programs? Well, notice thatr translation, class objects contain the
solemethodnew - its object nature plays no other role (in our translatiotieo than providing theew
method for creating new instances. Since the body oh#vemethod is a function, we might as well
dispose of the notion of a class as an object, and treat itas &unction. We must be careful, however,
because the body of this function may well contain invocetiof thenew method on occurrences of the
previously recursively bound variabte We must also now treat these method invocations as reeursiv
calls to the function itself. So, our view of classes has nawven from ag-calculus object with aew
method, to a recursively defined function nantekew :

classc = FIX C.new .A(@n).[f = gn, m= ¢(this ).A(X).lel]

To type such recursively defined functions, we usexg (ule as follows:

IgorM:o

——— (F1x)
I'rFIXgM:o

So, we assume a type for the function identifier in the typimgrenment and try to assign the same type
to the function body. If this is possible, then we can typedhtre recursive definition itself with this
type. This typing rule is based upon the recursive definikbd g.M being a shorthand for (1g.M),
whereY is a fixed point operator with the type schende-$ A) — A. As we have observed, in Nakano’s
system fixed point operators have the type schesife-{ A) — A, and so we must reformulate our
typing rule for recursive definitions as follows:

IgeorM:o

——— (Fx)
I'rFIX gM:o

That is, we must assumeballetedversion of the type we are trying to derive.
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In the following section, we will define a type system for Featveight that assigns Nakano types to
programs. It will very much follow in the footsteps of theemection type assignment system from the
first part of this thesis. The keyftierence, however, will lie in our approach to assigning me:tiypes,
which we will now do based on the above idea of treatingrttae keyword as denoting a recursively
defined function that returns an object.

10.2. Nakano Types for Featherweight Java

In this section, we will define a type system fdaft that incorporates Nakano recursive types and insertion
variables, which we will calFJeu. The types of this new system will essentially be the (Cutypes
that we defined in Chapter 7 (i.e. field and method types), lgireented with recursive types, the bullet
type constructor and insertion variables.

We will not give this notion of type assignment as full a treaht as we gave to the type assignment
systems of Part I. Rather, we focus on formulating the detafilNakano-style type assignment for
rm¢, motivating this formulation through typed examples andhdestrating that our approach points
in the ‘right direction’. We conjecture that the semantiogmrties (i.e. subject reduction and head-
normalisation) enjoyed by Nakano's systems for Ahealculus will hold for this system as well. We
also believe that when intersection types are added as thellfull complement of semantic results
(i.e. subject expansion and approximation) will follow.

We make a final remark before proceeding to the definition dfaxa type assignment fer®: for
convenience of notation, we will reuse the meta-variakihed tange over pretypes from the previous
chapter, and redefine the various lookup functions and tpasathat we defined there so that they
apply to the new set afleu pretypes. This is intentional, and the reader is asked &b thés chapter in
(formal) isolation from the previous one, so that no cordnstan arise.

Definition 10.1 (Fleu Object Pretypes) 1. The set oFJeu object pretypegranged over byr), and
its (strict) subset offunctional object pretypes (ranged over gy are defined by the following
grammar, where de Bruijn indices range over the set of natural numbeis,ranges over a
denumerable set of type variables, armdnges over a denumerable set of insertion variables:

g = ©® | n | C | o |
L | (f i) | 10}
¢ = (m:(7) — m) | ¢ | 14 | wd

2. We use the shorthand notatiefvr (where n> 0) to denote the pretypeprefixed by n occurrences
of thee Operator, i.e.e...0 7.
N——

n times
3. We use the shorthand notatigyir (where n> 0) to denote the pretype prefixed by eachy in
turn, i.e.cq... tpm.

The following lookup functions take an object pretype asiinpnd return a set of de Bruijn indices.
In the first case, this is the set of free indices (those thatad@orrespond to a type constructor), and
in the second case it is the set of such free indices that dogmitr within the scope of a bullet type
constructor. In the following definitions, the decremerug(ffix) operator is taken from Definition 9.3.
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Definition 10.2 (Free Variable Set)The functiorev takes an object pretypeand returns the set of de
Bruijn indices representing the free recursive ‘variabletr. It is defined inductively on the structure

of pretypes as follows:

Fv(e )
RO i
O = Fv(Lm) = Fv(r)

rv({f i7T))

Fv(n) ={n}
v(u.g) =rv(p) ] Fv((m(Tn) — )= [U Fv(m)} UFv(r)
ien
Definition 10.3 (Raw Variable Set) The functiorraw, takes an object pretypeand returns the set of
its raw recursive variables - the free recursive variables (i.eBdeijn indices) occurring int which do
not occur within the scope ofe It is defined inductively on the structure of pretypes ae¥a:

RAW,,(N) ={n} RAW(e7) = RAW,, ()
rRAW,, ((f 1))
RAW,(¢)
ww(Q | =0 SV =rRe@)L
u
RAW,, (o) RAW,, ((m: (1) — ) = [u RAWﬂ(JTi)} URAW,(7)

As before, these allows us to define a notiomdéquacyfor object pretypes.

Definition 10.4 (Adequacy) The set ofadequatebjects pretypes are those pretypes for which every
u binder binds at least one occurrence of its associated s#earvariable, and everigoundrecursive
variable occurs within the scope of a bullet. It is defined faes smallest set of pretypes satisfying the

following conditions:
1. ¢, n andCare adequate, for alp, n andC;
2. if m is adequate, then so aser, cr and(f :7);
3. if boths and eachr; (where i€ n) are adequate, then so s (77,) — 7);
4. if ¢ is adequate an@ € rv(¢) \ Raw,(¢), thenu.¢ is adequate.
This notion, in turn, allows us to define the set of prop®y: types

Definition 10.5(Fleu Types) 1. We say that an object pretypds closedwhen it contains no free
recursive variables, i.e&v(r) = 0.

2. We call an object pretype a (proper)type whenever it idooth adequateandclosed. The meta-
variableso, 1, y, @ andg will be used to range over proper object types.

Using these object types, we can now define a set of types wyacWill use when deriving types
for instances of recursively defined classes. To match duition that classes defineinctionsfrom
objects to objects, which we call using thew syntax, the types that we will assign to classes will be
(first order) function types constructed using object types
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Definition 10.6 (Fleu Class Types) Fleu classtypes are defined by the following grammar (where
andt range over objectypes:

6 = (@)>71t | e | 6

We will now define a subtyping relation on object and clases$yprhis is defined in a similar way to
the subtyping relation in Definition 9.11 - we merely add theious cases for field and methods types.
First, though, we must define how to fold and unfold recurgppes, as we did in the previous chapter.

Definition 10.7 (Fleu u-substitution) A u-substitution is a function from object pretypes to objeet p
types. Lep be a functional object pretype, then thesubstitution[n — wu.¢] is defined by induction on
the structure of pretypes simultaneously for evesyN as follows:

[N wel(e) =¢
[N ud)(Q) =

. ifn=n’
[n'—>u-¢](n’)={#¢ nnen

n”  otherwise
[N p.gl(ex) = o([n > p.¢](7))
[N p.gl(em) = ([ - p.¢](7))
[N wg]((f :m)) =<F ([N p.g](m))
[N pg]((m: (@) — 7)) = (m([n - p.g)(ra),..... [N p.p)(mn))
— [N wu.g](n))
[N wpl(pu¢’) = p(In+ 1 pn.gl(4))

This allows us to define a subtyping relation on both objeetypes and then class types.

Definition 10.8 (FJeu Subtyping) 1. The relation< on object pretypes is defined as the smallest
preorder on pretypes satisfying the following conditions:

n<erw {onl <em
T <My =
n<im Ly < Lo
eLT<LOTT
Litom <ipu1m
LeT < eoLTT
of imy<(f.em) (f:em)<eolf i)
o(m:(71) = 7) < (m:(e7) — o) (m: (e7) — em) < o(m:(7) — 7)
o{mi (7)) - )y < {m: (I7r) — o) (m: (t7) — ey < o{mi (%) - )
w9 < [0 p.gl(4) [0 wgl(4) <p.é
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$1< 2= pu.¢1 < .2

n<n’ & ni<m(Vien) = (m: () — 7y < (m:(7'n) - )

2. The relation< on class types is defined as the smallest preorder on class tyatisfying the
following conditions:

0<ef o)1 < 00>
01<02=>
o<t 101 <oy
el)<Le)
11120 <2110
Le5 < oLS 142 201
(@)= <ET) sor  (57) o er<e((@) - 1)
(@) > 1) < (o) ot (o) - v <1((@) - 7)

<7 & o{<oi(VieN) = (Gn)—1<(@n)—>7

We now come to define the rules of our type assignment systdrthiAjuncture, we are presented
with a problem, or rather, we have a design decision to malkeeXjglained in the previous section that
we will view the expressiomew C(g) as anapplication of the functionnew Cto the field values.

To type such an application, the obvious thing to do is tot $p& expression apart into function and
operands and type them separately. So far, so good; butrthigshus to the crucial question - how do
we now type thdunctionnew C?

We can take one of two approaches here. The first follows irtrdmdition of theg-calculus: we
express our understanding of the object-oriented condapasses in terms of the behaviour of another,
perhaps better understood, computational medium via scanelation. Our approach to typing the
higher-level concepts, then, is to type the lower-leveistation. We could decide to abandon the use of
the Featherweight Java model, and develop a Nakano-siytesystem for the-calculus. In a sense,
we have already taken this approach by discussing the furtireslation of¢ into a kind ofA-calculus,
albeit one with records. We could ‘go all the way’, transigtrecords into purd-calculus and then, in
a sense, our job is done since Nakano’s system is alreadyed€fin thea-calculus. We can type*
programs by translating them and typing the translationgudlakano’s original system. The focus of
our study would perhaps shift, then, to the question of thegarative reduction behaviour of program
in the original model and their ‘compiled’ versions, and weuld need to show that any properties we
consider ‘transfer back’ ter®.

We will not take this approach. Indeed, theoretical study of the olgjgehted programming model
began in this way, and it was a frustration with having to deitth the technicalities of translation itself
rather than being able to focus on the key issues that ledetalélelopment of the-calculus in the
first place [28, Introduction]. While we believe it is rightat an understanding and a consideration of
the concepts of class-based programming in terms of morgyfsiaed components shodildform our
type analysis, it is our view that the actual analysis itshiuld be done at treamelevel of abstraction
as that found in the object of study. For us, that level of raletibn is the Featherweight Java model.
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Figure 10.1.: Predicate Assignment famu

Therefore, we will develop our type system purely in termghef syntactic components afitself. We
feel that such an approach leads to a more intuitive undetisig of the relationship between programs
and their types.

We will now proceed to define our Nakano type systemefor

Definition 10.9 (Self Environments) 1. Aself type statemeris of the formC.5, whereC is a class
name and’ is anFJeu class type; the class nanads called thesubjectof the statement.

2. Aselfenvironment is a set of self type statements where the subject of eaanstat isunique
3. The notatiork, C:s stands for the self environmeBt {C.6} whereX does not contain any state-
ment with the subjed.
Definition 10.10(Type Environments) 1. Avariable type statemeiis of the formx:o, wherex is

an expression variable and is anFJeu type; the variablex is called thesubjectof the statement.

2. Afield type statemernis of the formf .o, wheref is a field identifier andr- is anFJeu type; the
field identifierf is called thesubjectof the statement.

3. AnFJeu typeenvironment is a set of variable type and field type statements where thjectof
each statement isnique

4. The notatior, x:o stands for the type environmdnt {x:o"} wherel’ does not contain any state-
ment with the subject; similarly, T',f :o- stands for the type environmdnt {f :o} wherel” does
not contain any statement with the subject

Definition 10.11 (Type Assignment foFJeu). Fleu type assignmerk;I + e:o is a relation between
self environments, type environments, expressiongandtypes. It is defined by the natural deduction
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system whose rules are given in Figure 10.1. When eitheretieistype environment is empty, we may
write the judgement simply &+ e:ocorT'+eio.

The type rules of Figure 10.1 are not as big a leap from ourdatgion type assignment of Part |
(or rather, its Curry counterpart, discussed in Chapteisithay might seem. We inherit the.$) and
(mvvk) rules as is, and thei{r) rule with the slight modification that it cannot apply to thelf variable.
This minor addition is to ensure that typing the self is nowied out consistent with the new recursive
typing approach. We include a separate subtyping rules@uasof allowing subtyping only for variables)
because we want to allow (recursive) method types to be dexdodr folded as necessary. Thé¢ &nd
(¢) rules are straightforward extensions of their cousingintype system of the previous section for the
A-calculus.

The (~stmeTH) rule replaces thengwM) of the original intersection type system, and assigns a
method type to an object value. As we mentioned in the previamction, our approach to assign-
ing a method typ&m: (c") — 7) to an objecihew C(...) involves viewing the syntactic subcomponent
new Cas a function defined by the body of the methoih the classC, which is then applied to its
field value ‘arguments’. In general, this ‘function’ can befided recursively, and so we type it with a
form of (rix) rule. Bringing all of this together, thexgt-meTH) rule acts as an arrow introductionx)
and arrow elimination ruleombined A type for thenew C ‘function’ is derived by typing the method
body using an environment with type assumptions for itsuargnts’, the fields. Since the range of this
type should be a function type itself (i.e. a method typeg@ad function type is implicitly inferred by
also including in the environment type assumptions for ti@meters of the method body being typed.
This implicit function type is then matched against an eipliype included in the self environment,
and which is used to type recursive occurrences ohtve C ‘function’, constituting the £ix) part of
the rule. As mentioned in the previous section, since we aildibg a Nakano-style system, thex)
rule must ensure that the explicit class type used in theessffonment is aulleted version of the
implicitly derived one. Finally, after having inferred anittion type for the recursively defined class, it
is then applied to concrete field values, constituting thal fmrow elimination step. Thus, one way of
understanding, or visualising, thex{r-meTH) rule could be in terms of the following derivation scheme:

%, Ce65;{f itn this :CXov ) Fepy
%, Ces;{T rn,this :C}+[m= AXpy.€pl:(M () — ) &
%, Ces;{this :C}r Af n.[M= AXyy.€p]:(Fn) = (M @) = 7)
T, Ce6;{this :C}r AF n.[M= Xy .€p]:6
Trnew C(#) — (M Fy) =) () Trepri (Vien)
T rnew C( &) (M (7y) — )

D)
=N
(=)

(=B

where# (C) =, and Mb(C,m) = (X,v,€ep)

We hasten to point out that the above figure is not intended talten as a true derivation; it is merely
intended to illustrate to the reader the parallel that wesldrawn between the operational behaviour of
r1® objects on the one hand, and that of recursively definedlgddunctions on the other, and how
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this has directed the formulation of our{r-meTH) typing rule. Notice that judgements at the top and
bottom of the above figure are exactly those judgements gyedaa in the iks-meTH) rule itself.

Since we now intend to type method bodies as if they are theebad recursively defined functions
(i.e. in an environment containing a type assumption forfthrection name itself) we have to make
sure that, when we encounter a recursive occurrence of tinetibn’ we are typing, then we type it
appropriately. This is the reason for including tiedfmeTH) rule in the system. It assigns a type to
anew C(...) object value, but appliesnly when there is a type statement for the class the self
environment, indicating that we are typing a method bodgioletd from an ‘unfolding’ of the definition
for the clas<C.

Having just established, then, that the presence of a Classhe self environment indicates that we
are typing the recursive definition of the functioeaw C, our @nst-oBs) and nst-rup) rules would thus
seem to violate our stated approach to typing recursiveitlefig, since they do not care whether there is
a type assumption in the self environment for instancesetthss that they type. In the case that there
is such a statement in the self environment, they may asgjmgsbther than the one assumed. This
apparent error is resolved by observing that these aforéomei rules type recursive occurrences of
new C(...) expressions notin contexts where the function definiticedseo be recursively ‘unfolded’
(i.e. a method call), but in contexts where a field is accessaghen we simply want to express the
identity of the object (i.e. know that we have an instanc&€)of In these contexts, the syntaew C
merely acts as datatype constructorather than (a recursive call to) an object construftioction As
such, it is not necessary (and not unsafe) to assign field tgpelass name constants in these cases.
Thus, the view here is that tmew syntax isoverloaded- it denotes both a datatype construcaod an
object constructor function.

Finally, we comment on the ruless(r-rLp) and §eLr-meTH). They are the counterparts to thes¢-rLp)
and Rec-meTH) rules respectively. The intuition behind them is that, ragienally (in thefunctional
context ofr®), the self-referencenis is equivalent (in the body of a method in the cl&$s$o using the
expressiomew C(this. fq, ..., this. fp) (wheref 4,...,f, are the fields of clas§). They should
also, therefore, be indistinguishable from the point ofwid type assignment.

The main result that we conjecture for this system is that, flor Nakano's original type systems for
Lc, our type system gives a guarantee of head normalisation.

Conjecture 10.12.If T'+ e:o in FJeyu, thene has a head normal form.

Proving this conjecture, and thus that our object-orientethnt of Nakano type assignmentagical,
is a main objective for future research. We imagine that alairapproach to the one we used for the
intersection type system can be employed (i.e. via an appedion result based on a head-normalisation
result for derivation reduction). Nakano’s technique gsializability interpretations should also apply.
In addition, the question @lompletenes§.e. whether types are preserved under conversion) foaak
style type assignment is still open.

10.3. Typed Examples

We will now give some examples of how programs can be typeHigntew system. We consider some
of the same examples that we used to demonstrate typedobilitye simple intersection type assignment
system. In this way, we can directly compare the two. We hagstimned that the aim of formulating
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a Nakano-style type system farf has been motivated by a desire to obtain a semantic typensyste
r1® for which usefultype assignment is decidable. In this section, we will gagwe did for the simple
intersection type system, and for Nakano’s original sydiamc) a non-terminating, or more precisely,
unsolvable program and show that it cannot be typed in ouesys This provides evidence for the
semantic nature of the type system. We will also reconsiieeekamples that were problematic for our
Curry type inference algorithm of Chapter 7, and show how #ire naturally handled by the Nakano
system. This provides evidence for the flexibility, or useéss of the system. In the following section,
we will discuss type inference for the system.

10.3.1. A Self-Returning Object

Consider the clasSR (short forSelfReturning ) which we gave back in Section 6.1, whose instances
have methods that return the receiver and new instancef odspectively. For reference, we list the
class declaration again below:

class SR extends Object {
SR self() { return this; }
SR newlnst() { return new SR(); }

}

Instances of this class can now be typed in a finitary way uliakano-style type assignment. Recall
that we said the type of such objects should be ejibxerself :() — X) or uX.{newlnst :() — X). Of
course, we must modify these types slightly to be properaypeur variant of the Nakano system, but
these are essentially the types that are now assignabevdSR() objects using our new type system,
as shown in the derivations below.

(SELF-METH)

SR() - eu(self :()— e0);this :SRrthis :eu(self :()— ¢0)
rnew SR() «self :()— eu(self :()— e0))
<
rnew SR() :u.(self :()— e0)

(INST-METH)

(REC-METH)

SR() - eu.(newlnst :() — ¢0);this :SRrnew SR() :eu.(newlinst :() — 0)
rnew SR() :(newlnst :() — eu.(newinst :() — ¢0))
<

(=)

(INST-METH)

rnew SR() :u.(newlnst :() — ¢0)

The application of thenst-metH rule in each case is valid because the class type we useR@in

the self environment) when typing the method body is a syperof theimplicit (bulleted) class type
that we construct from the remaining type information initgp To be more explicit, let us take the
first derivation above, which is an analysis of tim@ method. The class type we have used in the
self environment foiSRis 6 = () — e(self :() —» ¢0). The type we derive for the method body is
eu(self :() — ¢0); the method that this body belongs tosidf , and has no formal parameters (and
thus no corresponding variable statements in the type @mnvient); lastly, the clasSR has no fields
(and thus there are no field statements in the type envirobm&hus we construct the implicit class
typedimp= () — (self :() — o(self :() — ¢0)). Now, the class type that is associated v@tim the self
environment is a supertype of thalletedversion of this implicit class type:

odimp = () —(self :() > o(self :() —e0)))
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IA

() — o(self () — o(self :() — o0))
() > e(self :() — o0)
0

IA

An interesting and important point to note is that the inéifiamily of method types which were
assignable toew SR() objects in the simple intersection type system are nolongerassignable in
the Nakano-style system, with the exception of the mosthase(self :() —» SR whose derivation is
given below (a similar derivation exists foewinst as well, of course):

(vaR)

(INST-METH)

{SR() - e(self :() » SR};this :SRrthis :SR
rnew SR() «self :()— SR

In this case, the class type we assumedBris exactly the bulleted implicit class type. However, if
we try to derive any of the ‘nested’ (and, crucially, nontnesive) method typesself :() — o) where
the typeo is itself non-recursive and of the forkself :() — 1), then we cannot make the self type
equivalent to the implicit class type. This is because wieatelass type we assume 8R the implicit
class type that it must match will always be a strictly lanygpe.

As a concrete example, suppose we want to assiglfi :() — (self :() » SR))to the object expres-
sionnew SR() . The (nst-MeTH) rule tells us that in order to do this, two conditions mudtdhd-irstly,
we must be able to assign the tyself :() — SR) to the body of theself method (i.e. the expression
this ) in a self environment containingR Since this is itself a method type, the only typing rule that
we could use to do this isHLr-meTH) (We could also subsequently apply the) fule), which tells us
that the type associated wigRin the self environment must be a subtype of{)Xself :() — SR.
A quick examination of the subtyping relation reveals tlnat only such type is > (self :() - SR
itself. Thus, theself method body is typed using the self environmgdiR() — (self :() - SR} and
the empty type environment, since thelf method has no formal parameters. TBRclass also has
no fields, and thus the implicit self type for thelf method of theSRclass that we construct from this

typing is ()— (self :() — (self :() = SR).

Secondly, ther{st-meTH) rule says that this implicit self type must be a proper spbtyf the self type
we used when typing the method body. That is, the followingthold:

o() o (self :()—o(self :)—>SR)) < ()—(self :()—>SR
Or, equivalently:

O)—<(self :()—eself :)—>SR) < ()—(self :()—>SR

However we can see that this is impossible: the result tygheofbulleted) implicit class type (on the
left of the above inequality) cannot be a subtype of the tdégpé of the self type used in the derivation
(on the right-hand side of the inequality above), for theémreason that it contains as a substructure
the very type which it must be a subtype of! Such a thing is @algsible forrecursivetypes, and thus
theonly types of this form which can be assigned to the expressen SR() arerecursiveones.
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10.3.2. A Nonterminating Program

Just as we demonstrated the non-typeability of a non-texinigp program in the intersection type as-
signment system (Section 6.2), we can show that our Nakigteigpe assignment system also rejects
this as ill-typed. Recall that the program in question ubedallowing class:

class NT extends Object {
NT loop() { return this.loop(); }

}

What happens if we try to find a type which we can assign to the non-terminating expression
new NT().loop() ? Let's begin by assuming that such a type exists, and we widkty run into a con-
tradiction. Any derivation assigning to this expression must haver{k) as its final rule, meaning that
the typeloop :() — o) must be assignable tew NT() . Assigning such a type must have been done

using the (xst-meTH) rule, which means that we can derive the judgem{&its} + this.loop() o
for some class typé. Let us now examine the structure of the derivation of thidggment, in or-
der to discover whad must be. The expressiathis.loop() is a method invocation and there-

fore the only rule that could have been applied to derive ihithe (nvk) rule. This tells us that
{NT:6} + this :{loop :() — o) is derivable. This judgement can only be derived by an agfitin of

the (eLr-meTH) rule followed by some number of applications &f)( Thus, the class typ& must be a
subtype of (}- (loop :() — o).

We also know that another subtyping inequality holds fos ttiass typey, since we have assumed
that there was a valid application of theus-mern) rule that derives+ new NT() :{loop :() — o).
Specifically, we know thaé is a supertypeof the implicit class type(() — (loop :() — o)). Thus,
combining the subtyping inequalities we have inferredsorve obtain the following:

() > (loop :()—0)) = & < ()—(loop :() =>0)

Hence, we know that no such class tyjpean exist since if it did, then via transitivity of the subityp
relation we would have that:

o(() = (loop : ()=o) < ()—(loop :() = o)

which is impossible. Therefore, we can conclude that nosdgain exists forr new NT() {loop :() —
o), and thus that we cannot assign a type to the (non-termg)agixpressiomew NT().loop()

A similar analysis holds for the following variant that ilkes theloop method on aew instancef
the class, rather than the receivas

class NTVariant extends Object {
NTVariant loop() { return new NTVariant().loop(); }

10.3.3. Mutually Recursive Class Definitions

We will now look at an example containing two classes whiahrmutually recursive in that they each
contain a method which returns an instance of the other. €hak class depends upon the other (and
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via transitivity itself, closing the recursive loop):

class C extends Object {
D newinst() { return new D(); }

class D extends Object {
C newlnst() { return new C(); }

This is actually a variation on the first example we considetige self returning object. In each case, by
invoking the methodiewinst we obtain an object on which we can again invoke the metizednst |,

and so on. Just as in the self returning object example, dablese two classes is defined recursively,
but this time via a loop of length two. As a consequence, segitypes can be used to type instances
of these classes as well.

The interesting thing about this example is that it demassrhow, as we recurse through class defi-
nitions to analyse nested method calls, self types fideint classes can accrue in the self environment
until they are needed. For example, in typing instances df eathe classes above, the self type or
(respectivelyD) is needed not for typing the body of thewinst method contained in the classtself
(respectivelyD), but in typing the body of theewinst method contained in itsisterclass. This means
that for a stficiently complex analysis of any recursively defined clasghi{e sense of Definition 7.26),
no matter how indirect the recursion we will eventually tedlse recursive reference which weust
type using a type assumption from the environment. Thuspraespoint, we stop ‘looking inside’ the
class definition (i.e. recursively analysing method bodisich, in turn, implies that a type inference
algorithm for this system will only have to recurse to a finéeel, and thus terminate.

Suficiently simple non-recursive typesnof course be assigned tew C() andnew D() objects.
Apart from the trivial type<C andD, the following non-recursive method types can also be assig

(iNsT-0BJ)

{C:() — (newlinst :() —» eD)};{this :C}rnew D() :D
rnew C() (newlnst :()— D)

(INST-METH)

(iNsT-0BY)

{D:() —» (newlnst :() » ¢C)};{this :D}rnew C() :C
+rnew D() «newlinst :()— C

(INST-METH)

We can even go slightly further:

(iNsT-0BY)

{C() = e01,D:() = o(newlnst :() —» C};{this :Djrnew C() :C

- (INST-METH)
{C() > ooy };{this :C}+rnew D() (newlnst :()—C
(INST-METH)
rnew C() :(newlinst :() —» (newlnst :() - C)
(iNsT-0BY)

{D() — 002,C() — o(newlnst :() —» Dy};{this :C}rnew D() :D
{D() —» o0 };{this :Dj+rnew C() (newlnst :()— D)
+new D() :(newlinst :() —» (newlnst :() - Dy)

(INST-METH)

(INST-METH)
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whereo = (newlinst :() — (newlinst :() — C))

o2 = (newlinst :() — (newlinst :() — D))

Such non-recursive types can be assigned because they deasbtdown ‘far enough’ - the analysis

they provide of the functional behaviour of the method that/ttype does not reach the point where an
instance of the original class reappears in a context wheneist again be typed with a method type,
such as the following:

new C().newlinst().newlnst().newlnst() — new D().newlnst().newInst()

— new C().newlnst()

Since we only allow aingle(i.e. non-intersection) type for each class in the selfremment, in the case
that a nested occurrencermdw C() ornew D() must be assigned a method type, it must be assigned
samemethod type we are trying to derive for the outer occurrerideen, because this type must also
form a sub-part of the type we are trying to derive, it mustrfax sub-part oftself. Only recursive
types are capable of doing this and thus, to assign methed tyffurther complexity than those already
considered, recursive types are required. In the specifie oathe example we are looking at, the
recursive type that expresses this behaviourisu.(newinst :() — e(newlinst :() — e0)), which can

be assigned taew C() as follows:

(REC-METH)

{C() — o0, D() —» e(newlinst :() » ec)};{this :D}rnew C() :ec
{C() > oo };{this :C}rnew D() :(newlinst :() - eo) 9
<
{C:() > oo });{this :C}rnew D() :e(newlinst :() —eo)

(INST-METH)
rnew C() :(newlnst :() - e(newlnst :() — eo))
<

(=)

Fnew C() :u(newinst :() — e(newlinst :() — e0))

(INST-METH)

By simply switching the class hames (fra@rio D, and vice-versa), we can obtain a derivation assigning
this type tonew D() as well.

Moving on to a separate theme illustrated by this example,typing derivation above assigns a
(recursive) type to the objeciew C() using anemptytyping environment, and more importantly an
empty self environment. We can view this derivation as perfng an analysis on the object in which
no assumptions have been made - that fsijlif examines the behaviour of batew C() andnew D()
objects and returns the result. However, the type systemraditsvs for apartial analysis. The following
derivation assigns a recursive type toea&v C() object but using a self environment containing a typing
assumption about the claBsor more precisely an assumption about the type of the obgatdtructor
function that the clasB encodes. LeE = {D:() — e(newlinst :() — o)}, then:

- (REC-METH)
%, C() » eo;{this :C}+rnew D() :e(newlinst :() —eo)
(INST-METH)

Trnew C() inewlnst :() — e(newlnst :() — eo))
<

(=)

Trnew C() m(newlinst :() - e(newlinst :() — o0y

This suggests an alternative technique for type inferembere class types could be inferrediso-
lation for each class in a program by typing its method bodies in faeselironment containing type
assumptions foevery otherclass in the program. Then, when all possible class types ieen inferred
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in this way, their consistency with one another could be kbéc This would be more akin to the stan-
dard approach of nominal type checking (as outlinedrfbin Section 6.6), and we will expand upon
this in the next section.

10.3.4. A Fixed-Point Operator Construction

Recall the object-oriented fixed-point combinator that digsussed at the end of Section 6.5:

class T extends Combinator {
Combinator app(Combinator x) {
return x.app(this.app(x));

}

Since ‘applying’ the objechew T() to an expression results in the same reduction behavioup-as a
plying theoocL encoding of any. fixed point operatoly? (i.e. the expressionsew T().app( e) and
['Yl.app( e) have thesameset of approximants), it is not surprising that we can assigi the r¢
translation of the characteristic Nakano type for fixed poperators:

- (SELF-METH) (VAR)

LT Hthis :e(@app:((app:(e¢) = ¢) = ¢) . LT rxapp:(e¢) — ¢)

T rthis app:(e(@app:(eg) = @) = 0@y T HX:e(@app :(ep) — @) (_ )
INVK

;T +this.app(x) Y
(var)
T HX@app (o) — @) .
- (INVK)
=T+ X.app(this.app(x)) i)
(INST-METH)

Fnew T() «@app:(@app:(ep) — @) - @)

whereX = {T:() — o(app :((app : (¢ ¢) = ¢)) — ¢)} and
I' = {this :T,x:{(app:(ep) — @)}

It is interesting to note that in Nakano’s systemsiforderivations of this type for fixed-point combi-
natorsrequire the use of recursive types, while the derivation above ferthfixed-point combinator
objectnew T() does not use recursive types at all. This notabffedince between the two systems
lies in the fact that recursion in the Lambda Calculus»plicit, while the recursive nature of classes
is highly implicit. This can be illustrated with surprising clarity by considg an interpretation of the
objectnew T() as a direct translation of the body of ésp method into.c. We can do this almost triv-
ially by taking the method body, translating invocationghefapp method into standarct application,
and abstracting over its formal parameter as follows:

new T) = Ax.x(new T()x )

We are not quite done, as this interpretation of the objeat T() is still defined in terms of itself. We
can quite easily ‘solve’ this equation by using the standaotnique of abstracting over the recursive

Iwe could, for example, consider the encoding of Curry’s fixgmint operator in Combinatory Logic — the term

S(K (S(SKK)(SKK)(S(S(KS)K)(K (S(SKK)(SKK)))).
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occurrences in the definition of the term itself, and thenyapg a fixed point operator (for the sake of
argument let’s choose Curry’s fixed point operatgr

new T) = Y (Atx x(tx))

The A-term above should be familiar, as we discussed it at lemg®eiction 9.6.2 (or rather, its meta-
level representative, the tervh(Axy.y(xy))), in the context of type inference for our variant of Na&an
system for thet-calculus. There, we noted that the term was a fixed point goaidy itself (just like
our r1® objectnew T() ) and that it could therefore be assigned the tygpe © ¢) — ¢ (just as the
expressiomew T() can be assigned thrdey version of this type). Furthermore and most importantly,
while we had to use recursive types in the subderivatiomty}yi, in the subderivation typingxy.y(xy)
(ourinterpretationof the expressionew T() ) no recursive types were needed at all.

10.3.5. Lists

Let us now turn our attention to the programs that we introduced in Section 6.3 and 6.4, whicbdsc
lists, and certain arithmetic operations on natural nusbleke the previous examples in Section 10.3.1
and 10.3.3 of the individually and mutually recursive ckssshat give rise to self returning objects,
the instances of the classes in these programs have methncts rgturn objects of the same kind as
themselves. However, in addition, these are programs wiech naturally illustrate the concept of
binary methods — the argument(s) to these methods mustealsiojécts of the same kind as the receiver.
In this section, we will demonstrate how these objects catyped in our system with the obvious
recursive types that express this requirement.

Let’s start with the program that encodes lists, reprodumsdw:
class List extends Object {

List append(List 1) { return this; }
List cons(Object 0) { return new NEL(o, this); }

class EL extends List {
List append(List I) { return I; }

}

class NEL extends List {
Object head;
List tail;

List append(List 1) {
return new NEL(this.head, this.tail.append(l));

Here List s (i.e. eithelEL objects oNELobjects) have a binary methagdpend , which takes another
List object as an argument and returns anotlsr . This behaviour is expressed by the recursive type
o = u.{append :(e0) — ¢0). Showing that alList objects have this type involves two parts. Every
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(well-formed)List object is an expression generated by the following grammar:
| == new EL() | new NEL(e, |)

We must therefore show thaew EL() objects have this type, and that whenever some list object
has this type, so doeew NEL(e, 1). The first of these two conditions is withessed by the folluyvi
derivation:

(vaR)

(EL:() = oo };{this :EL,| :ec}rl 00
(INST-METH)
rnew EL() (append :(ec) — e0)
<

rnew EL() :u.(append :(s0) — ¢0) =)

The following derivation schema demonstrates how to aghigrtype to a non-emptyew NEL(e, )
list object when the tail already has this type and the hea typeable with some type

- - (SELF-FLD)
=T rthis «tail o)
— (FLD)
%, T + this.tall Hod
—— (=) (var)
>:.T + this.talil (append :(ec) — e0) STHl ceor ()
INVK
;T + this.tail.append(l) Yo
- (SELF-FLD)
>:T'+this :(head :7)
. (FLD)
;T'+this.head .
- - - (REC-METH)
;T +new NEL(this.head, this.tail.append(l)) X Yes
\/
Fer +l.u.(append :(e0) — o0)
(INST-METH)

rnew NEL(e, I):(append :(ec)— e0)
<
rnew NEL(e, 1) :u(append :(e0) —e0)

whereX = {NEL: (e 7, #0) — o} and
I' ={this :NELhead 7, tail :o,|:e0}

Notice, however, that the type system does not constra tiisbe ‘well-formed’. Obviously, the
intention in writing the above program is that any list oligethat we might want to create and use
should adhere to the aforementioned structure. Notwitliatg, there are ways of using thEL class
to create objects which, although incorrect with respethéocintended and standard semantics of lists,
are nonetheless ‘safe’ to use.

We have mentioned previously that the intention in dectpthe ri® superclassdist was to create
a program that was also type correct in Featherweight Jaebthat one should view this construction
as representing an interface, or abstract class, as indwll. JHowever, sincer® allows us to create
instances of this class we can use it to illustrate the pdinaijy case, one could imagine defining a
concrete subclass — or implementation — of this ‘interfanefull Java which overrides thappend
method with some incorrect behaviour). Thist class acts as an empty list, but one which simply
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throws the argument to itsppend method away. Thus, the actual behaviour of invoking the agpe
method on this incorrect empty list is that the empty listlitss again returned. This is expressed by the
fact that we can assignreew List()  object the typer = u.(append : (o) — ¢0) for any typea, as in
the following derivation:

(SELF-METH)

{EL:() = eo};{this :EL,l :a}rthis :eo

(INST-METH)

rnew EL() (append :(a) - e0)
<
rnew EL() :u.(append :(a) — «0) =

By extension then, it also follows that anpn-empty list we create starting from an instance of this
incorrect class will also simply return itself, throwing aythe argument to itappend method since
non-empty lists simply delegate to their tails. This bebavis perfectly consistent with the actual object
that we have created (in the sense that a programmer canuaes$o have intended the behaviour of
the program that they have actually written), and more ingmily it is safe invoking the append
method does not result in any runtime error - indeed, an bkijec a value) is returned and moreover
it is safe to invoke theappend method on this too. The type system confirms this alterndtiveur

program:

- - (SELF-FLD)
= Trthis (tail o)
— (FLD)
%;T + this.tail Hod
— (<) (var)
=T + this.tail «append :(a) - o0) THl (o)
INVK
;T + this.tail.append(l) Yo
- (SELF-FLD)
. T+this «head:7)
. (FLD)
%;T+this.head 7 .
- - - (REC-METH)
%;T'+new NEL(this.head, this.tail.append(l)) Yo
Ferr + lu.(append :(a) — ¢0)
(INST-METH)

+new NEL(e, 1) (append :(a)— e0)
<
rnew NEL(e, |):u.(append :(e) — ¢0)

whereX = {NEL(e7, o) —» eo} and
I' = {this :NELhead 7, tail :o,| :a}

The type analysis performed by the system fordives method is actually very similar to this ‘incor-
rect’ append method, since theons method accepts any arbitrary object (of some typand returns
a new list object (with the object at the head and the oridisglwhich was the receiver of the method
invocation, at the tail) onto which, of course, we @ans another object. This is exactly the behaviour
expressed in the type = u.(cons :(7) — ¢0) when assigned to a list object.

The EL and NEL classes share the same body for thes method, since they both inherit their
definition of this method from theist class. Since this method body creates a N&i object, it
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is the analysis of the method when invoked on an instanceeNHEL class itself which is the more
fundamental:

—— (VAR) —— (SELF-METH)
Yo:To+0:T S5 Torthis :eo
(REC-METH)

;T2 F new NEL(0, this) :ec

\ / \

TiTirerr 2Tk lu(cons (1) — «0)

(INST-METH)
*1;Ti+new NEL(e, 1):cons (1) —eo)

¥;;T -new NEL(e, I):u(cons :(r) —e0)

whereX, = {NEL(e7, e0) - o0} and
I'; = {this :NELhead:7, tail .o, 0:a}

Thecons method when invoked on instances of tie(or indeedList ) class does not refer to the
class of its receiver, and uses an instantiation of the aoiv scheme given above:

——— (WR) — - (SELF-METH)
2T 0 et 25 T5Hthis eeo

(REC-METH)

T rnew NEL(o, this) :eec

—— (vAR) ———— (SELF-METH)
IR ETNKs ;T rthis eo
(INST-METH)

;T -new NEL(o, this) :(cons :(0T)—>.00‘>( )
<
;T new NEL(o, this) :eco -

(INST-METH)
rnew EL() (cons :(r) — e0) ©
<

Fnew EL() :u.(cons :(r) — ¢0)

whereX, = {EL:() - o0 },I'1 = {this :EL,0:7}
Y, =eXy={NEL(ee7,000)— eec}and
[, < eIy ={this :NELhead:e7, tail :ec,0:ea}

Notice that if we want to assign a recursive method typecéors , as above, the list is forced to be
homogeneousThat is, the elements that wens onto the original list must have the same type as the

elements already in the list.
So far, we have only considered typing expressionsatidelements to a list; we have not considered

how we might (typeably) retrieve them. If we have a (typepli value
new NEL(e1, ... new NEL(en, new EL()) ...)

(so all thee; are typeable), then this is trivial. For any elemenin the list we can assign a type to the
list value which refers to that element specifically:
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|

T+ ejoi STkl

(FLD)
%;T+rnew NEL(ej, 1) «head :oy)
Zrrepoy ST- ... new NEL(e;, 1) ...:...<¢head o) ... (r10)
=;T'rnew NEL(e;, ... new NEL(ej, ...) ... )«tail :...<(head:o)...) e

On the other hand, if we would like to first build a list by ining a sequence afons andappend
methods on some (possibly empty) list value, and then sulesglyy access its elements, our options are
considerably more limited. It is possible to assign the type(cons :(a) — (head : @)) to a list object,
which then allows the newly consed object to be retrieved:

—— (vaR) ——— (vAR)
YT+ 0 ¥: T’ + this :EL

;" +new NEL(o, this) «head:a)
%,Trnew EL() {cons :(a) — (head :a))

(INST-FLD)

(INST-METH)

7/
. EI'rewa
(NVK)
% Trnew EL().cons( e):head:a) (r10)
=, T+new EL().cons( e).head :«a i
whereY’ = {EL:() - oo} and
I = {this :EL,0:a)
And for non-empty lists:
YT FO (vaz) .7’ + this :NEL(VAR)
- (INST-FLD)
;" +new NEL(o, this) :«head:a) Trerr XITHIB
(INST-METH)

=T+ new .EL(e, 1) cons :(a) — ¢(head :a))

. >T+E @
INVK)
=T+new EL(e, I).cons( € ):head:a) (r10)
% T'rnew NEL(e, I).cons( € ).head :a o

whereX’ = {NEL(e7, o8) — o0} and
[" = {this :NELhead:7, tail :3,0:a}

Notice that in the both the case of typing a list value and #ee ©f typing a single invocation of the
cons method, there is no requirement for the list to be homogemeBurthermore, when assigning the

type for the single-invocableons method, we are able to type the tail of the list however we-ig@ce
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it plays no active part in the reduction of the final typed esgsion, it is essentially allowed to be any
arbitrary (typeable) expression.

Unfortunately, as with the mutually recursively defined-seturning objects, more informative types
allowing multipleheterogeneouesalls to thecons method (e.g. types such @®ns : (@) — {(cons :(B) —
(head :B))) or(cons :(a) — (cons :(B) — (tail :{head :a))))) cannot be assigned, since we only allow
a singletype for each class in the self environment. This certaislg major disadvantage to the type
system that we have presented, however we can overcomethé& pronounced lack of expressivity
by allowing intersections back into the type language. Wediscuss this possibility later (in Section
10.5), and point out that the type system we have presentadyisntended as a proof-of-concept first
attempt at a Nakano-style type assignmenbfor

10.3.6. Object-Oriented Arithmetic

The object-oriented arithmetic example bears a strongasiityi to the list example we have just con-
sidered. Theadd method that performs the addition operation on the receiner method argument

behaves in almost exactly the same way asaigend method on lists. Both methods (when invoked
on ‘well-formed’ objects) require as input an object of tleene ‘kind’ as the receiver, and return the
same. The only dierence lies in the name of the method being invoked, and &sse$ of the objects

involved (which are actually abstracted away into recedgivbbound type variables).

class Nat extends Object {
Nat add(Nat x) { return this; }
Nat mult(Nat x) { return this; }

class Zero extends Nat {
Nat add(Nat x) { return x; }
Nat mult(Nat x) { return this; }

class Suc extends Nat {
Nat pred;
Nat add(Nat x) { return new Suc(this.pred.add(x)); }
Nat mult(Nat x) { return x.add(this.pred.mult(x)); }

Notice that the following derivations assigning the type u.(add : (e 0) — ¢ 0) to object-oriented nat-
ural numbers are only slight variations on the derivaticg&gning types for thappend method to list
objects.

. (vAR)
{Zero () - e };{this :Zero ,X:ec}rX:eo
(INST-METH)

rnew Zero() :add:(ec)— eo)
<
rnew Zero() :u.(add:(e0) - e0)
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- (SELF-FLD)
;T +this (pred :o)

;T+this.pred o

(FLD)

, (=) (vaRr)
. T'+this.pred :(add:(ec)— e0) E;FI—XZOO'( |
=T+ thispredadd(x)  eo e
- (REC-METH)
;T +new Suc(this.pred.add(x)) Yo

/
FN:u(add:(e0) — «0)
rnew Suc(n):(add:(ec)— eo)

(INST-METH)

<
rnew Suc(n) u.(add:(e0) —e0)

whereX = {Suc:(ec) —» eo} and

I' = {this :Suc,pred o, x:e0}

We can also assign a similarly recursive type fonthit method;r = u.(mult :({add :(e0) — ¢0)) —
e0).:

- - (SELF-METH)
{Zero :() - e7};{this :Zero ,x:(add:(e7) = e7)}rthis :er

rnew Zero() (mult :((@dd:(e7) — e7)) > e7)

(INST-METH)

rnew Zero() u.(mult :((add:(e0) — ¢0)) — ¢0) )
- (SELF-FLD)
>, T'+this «pred :7)
(FLD)

;T +this.pred 7

- (=) (vAR)
;T+this.pred (mult :((add :(e7) — e7)) — e7) TTrXx(add:(e1) — o7)
: (INVK)
%;T + this.pred.mult(x) o7
%:T+ x:add () '
, X:(al (o ° .
P ( T) bl (NVK) D
%;T + x.add(this.pred.mult(x)) et FniT

(INST-METH)
rnew Suc(n):(mult :((@add:(e7) > e7)) > e7)

Fnew Suc( n) ;u.(mult :((add :(e0) — ¢0)) — «0) 3

whereX = {Suc:(e7) — o7} and
I' = {this :Suc,pred :7,x:{add :(e7) — eT)}

It is interesting to note that the type we have derived forrthdét method requires its argument
to have adifferenttype for theadd method than the one we derived above. We can assign the type
(add : (e1) — e7) for new Zero()

. (vAR)
{Zero () —» o(add :(e7) — e7)};{thiS :Zero ,X:et}rX:e7

rnew Zero() add:(er)—er)

(INST-METH)

However, in the type system as we have presented it, we atdeuttaassign this type to any positive
number. This is because we are only allowed to associategke sitass type to each class in the self
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environment. In this particular case, since we would likdedve the typeadd : (e 7) — e 7), this is also
the type that we must assume fauc in the self environment (or rather a bulleted version) wiygintgy
the body of theadd method. The problem is that then, by tk@&d-meTH) rule, we are only allowed to
derive the statemer®;T" + new Suc(this.pred.add(x)) :e{add :(e7) — e7), Wwhen what we need
to derive in order to apply thexst-MeTH) is Z; T + new Suc(this.pred.add(x)) ‘e,

10.4. Extending The Type Inference Algorithm

We will now discuss how we might adapt the type inference anification procedures from the previous
chapter to infer typings fan® programs in the new Nakano-style type assignment system.

The procedure that we will outline is one that we hinted ateati®n 7.3, when we were discussing
the type inference algorithm for the system of simple typeElsere, we commented on how we could
make the type inference procedure terminating by keep toh@Hl the classes that had already been
‘looked inside of’. This is exactly the approach that we wilitline here for the Nakano style system.
The diference is that instead of simply keeping a list of all thesssg#s, we will now also use this
list to determine whether we should infer a class type foew C(...) expression from the self envi-
ronment, or look inside its definitions and derive methode/pased on further analysis of its method
bodies. Essentially, we will use the list of already exardictasses to determine if we should apply
the ®ec-MmeTH) Or the (NsT-MmETH) rule; in other words, to determine if we should treatv C(...) as a
function definition, or an occurrence of a recursive funtiidentifier.

Unification

In the same way that we have adapted Robinson’s standardaiiaifi algorithm for Curry types into a
unification procedure for recursive (Nakano) types, it $thdae relatively straightforward to adapt the
unification procedure of Section 7.2 to unify the recursiyeet of Definition 10.1.

The procedure given in Definition 7.14 already deals withuhiication of field and method types
- the field identifiers or method names in the two types are lkdwcand if they match, unification
proceeds on the corresponding argument and result typesexténsion consists in dealing with bullets
and insertion variables, and inferring recursive typesesehquestions can all be answered in the same
way as described in the previous chapter. Namely, we canfimede notion of canonical pretypes and
canonicalising substitution farJeu, which will allow us to deal with bullets and insertion véias
separately from the structural elements of types; and b)ameirfer recursive types in the same way
by, instead of failing on an occurs check, promoting thealde and forming a recursive type. Since
recursion is guarded by method types, such creation ofseeutypes should only happen when unifying
a type variable with anethodtype in which it occurs.

Decidability results for this procedure should follow iretbame way as outlined in the previous chap-
ter. We can define notions of structural and unification aledar the object types afieu by a simple
extension of these notions for Curry types. The proof shéalldw the same structure, and demonstrate
that only a finite number of statements (or recursive cakbg€dto be made during unification.

Unification for class types follows straightforwardly fraitme unification of object types, since class
types cannot be nested, and consist only of object types. afduement and result types of the two
class types to be unified are themselves pairwise unifieda@rtantly, as standard for function types.
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Unification can also then be easily extended to type and selfanments. As before, unification would
return an operation, consisting of a sequence of substitsitand insertions.

Type Inference

A type inference algorithm forJeyu could be obtained by a fairly straightforward extensionhs &al-
gorithm given in Definition 7.23. As for that algorithm, it wiol be defined by cases over the structure
of expressions. Also, in this system as in the intersecipe fissignment system, the principal typing
of aterm is in fact a set of typings, and a typing is now a trigl@ self-environment, a type environ-
ment and a type. For each kind of expression, we generateigalrtypings according the fierent type
assignment rules that are applicable to that kind of exjmess

As we mentioned above, the algorithm should keep track otlwllasses have already had their
method bodies analysed. To do this, we define the type irderatgorithm in two stages. First of all,
we define an auxiliary algorithm which takes as an argumetit &p expression and a list of classes.
The main type inference algorithm is then simply a wrappetttics auxiliary procedure, which takes
an expression as an argument and calls the auxiliary progemuthis expression and an empty set of
classes.

We will now give an informal description of the steps that éihgorithm should perform for each kind
of expression.

(X): Firstly we generate a typing according the tar() rule: we take a fresh type variable and add
the typing P, {X:¢},¢] to the principal typing set. Ik # this , then we are done. Otherwise we
generate additional typings according to tke.f-rLp) and §eLr-METH) rules. For each clasgin
the program, with field§ (C) =T, we:

1. take fresh type variables, ..., ¢n and add the typing{E:(@n) — ¢o}, {this :C},¢q] to the
principal typing set;

2. and for each fieldl € T',, we take a fresh type variable and add the typihgthis :C.f ¢},
(f : )] to the principal typing set.

(e. f): This case actually remains unchanged from the simpleityfipeence procedure: we recursively
generate the principal typing set for the expressi@nd then for each typin@[TI’, o] in the set,
we generate a fresh type variall@nd try to unify the typer with (f : ¢). If unification succeeds,
returning the Operatio®, then we add the typingd(X), O(I'), O(¢)] to the principal typing set of
e.f.

(eo. m(®p) ) : This case is a straightforward extension of its counteripaDefinition 7.23 to introduce
insertion variables, in the same way as for the case foregifwin in thed-calculus setting (Def-
inition 9.75). First, we recursively call the procedure tngrate the principal typing set of each
expressiore;. Then, for each possible combination for selecting a typ¥ad;, oi] from each of
the sets we do the following. We take a fresh type variatd@d a fresh insertion variableThen
we try to unify o with the type(m: (tc",) — ¢), to make sure that the method invocation can be
well typed. If this succeeds, then we apply the resultingatien O, to each type environment,
and then try to unify them all. If this succeeds, returningrmagionO,, then we applyO, o0 O1 to
each self environment, and try to unify all of these. If thiseeeds with operatioDs, then apply
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the operatiorD3 o O, 0 O; to each self and type environment, and combine them to genesan-
gle self environmenE, and a single type environmehit We then take a fresh insertion variable
¢/, and prepend it on to the class typelrof each clas< that was present iy, and the type
in I" of each variablex and fieldf that was present ifip. At this point, we form a typing from
the resulting environments, and the result t@pe O, 0 O1(¢), and add it to the set of principal
typings that we return fog,. n( gy) .

C(&n)): For each expression of the fornew C(&,) we infer three dierent kinds of typing,
corresponding to thaxst-oss) and (nst-rLp) rules, and either therfc-metH) Or (INsT-METH) rule
depending on whether then cladss in the list of already encountered classes. Firstly, vo&lp
the fields# (C) = . If the number of fields does not match the number of exprassg, then
we return the empty set. Otherwise, we recursively call tteegdure to generate the principal
typing sets of each expressien Then for each combination of selecting a typi&g I, o] from
each set, we unify the type environments and the self enviemts. If this succeeds, returning
operationO1, we form the combined self environmentand type environmert by applyingO

to each self (respectively type) environment and then taltie union. Then, we do the following
three things:

1. We add the typing3,T",C] to the set of principal typings.

2. For eachfield; €f, we add the typingY,T",O1(c)] to the set of principal typings.

3. We check to see whetheéris in the list of classes (passed as a parameter to the pr@jedu
that have already had their methods analysed.

a) Ifitis, then we do one of two things. @ occurs in the combined self environmeit
then we take the class ty@ ((c°n) — ¢), wherey is a fresh type variable, and unify it
with the class type fo€in X. If this succeeds, resulting in operati@s, then we add
the typing P2(X), 02(I'), O2(¢)] to the set of principal typings. I€ does not occur in
the combine self environmekt then we take a fresh type varialpdeand add the typing
[ZU{C(o) — ¢}.T,¢] to the set of principal typings.

b) If Chas not already been ‘unfolded’, then we perform this urifigichow, and analyse
the method bodies af. For each methodhin C, we lookup its method bodyg, and
formal parameter®, . Then we recursively call the algorithm on this expressighut,
crucially, when we do so we add the claz$o the list of classes already encountered.
This will ensure the termination of the algorithm, even fecursively defined programs.

Now, for each typing¥,,T,,7y] in the principal typing set oé,, we unify the types
we have for each expressi@y with the type for the corresponding field I, and
unify the type for the clas€ in X, with the bulleted implicit self type constructed
from the types inl, and the typey we have derived for the method body itself. If
I', does not contain a statement for any fiéld@ f, or variablex € X, then we can
extend it using freshly generated type variables. SimildaflZ, does not contain a
class type forC, then we can extend it with one generated entirely out ohfitgpe
variables. If this unification process succeeds returnpeyationO,, then we add the
typing [02(X), 02(I"), O2(m: (71v) — 7¥))] to the set of principal typing, wherg, are the
types for the formal parametexg of min the type environmerit,.



Class Compositionality

By madifying the above type inference procedure slightlg ean obtain an approach to type inference
which is more akin to that of nominal type checking, desatibeSection 6.6. The philosophy behind
that approach is that each class should be typed in isojatéparately from the others. This is achieved
using nominal typennotations each field is annotated with a nominal class type, as aredtaameters
and bodies of each method. These annotations serve, edlgeas typeassumptionsand each class
implicitly imports these type assumption for every otheasel in the program. The method bodies of
each class are then checked, in the presence of these agsanpi verify that the class satisfies its
own type annotations. If all the classes pass this type déhggdhase, then it is guaranteed that each
class satisfies the assumptions that were made of it by tleesoth

This procedure can be emulated using the type inferenceithigiowe have given above by applying
it, for each clas<, to an expression of the formew C(X) and passing it a list of ‘already analysed’
classes consisting of thall set of classes in the program excéqtself. The algorithm will then look
inside all of the methods df, analysing the method bodies, however it will not look iesahy other
classes during this process, since it will believe themreealy have been analysed. If any of the method
bodies use instances of other classes, the algorithm iy infer the types required for these other
classes, returning them in the self environments of thenggpthat it generates. The typings returned by
such a use of the above algorithm would correspond to the waagave at the end of Section 10.3.3.
The typings would also consist of type environments coimgitype assumptions for the variablrg
which would actually correspond to the types required ofothject’s field values in order to assign those
types to the object itself. Thus, these typings also cansti form ifimplicit class type: if we have that
[Z,{X1:01,...,Xni0m }, 7] IS @ typing for the expressiomew C( X) , then this expresses that{) — 7 is a
valid class type focC.

Once such an analysis has been done for each class, we cértiudigibe classes satisfy their mutual
type requirements through unification. The basic principlinis: if we have typings for instances of
andD as follows

Z,D(Ty) = vi{X1o1,..., Xnion Fnew C(X,) 6
L,C(0%n) = 0 {Y1iT, .- YT F Fnew (V) [y

then we know tha€ andD satisfy their mutual type requirements. Using the notioralid class types
we described above, an alternative way of seeing this mgatafaction of type constraints is as the
following ‘cut’ rules:

>.D:BrC:A X,C:A+D:B >,D:B-rC:A z+D:B
>rC:A >rC:A

Thus, if we can unify the type assumed fin (the self environment of) a typing inferred fogw C( X)
with the class type implicit in a typing inferred foew (y), then we have satisfied one of the typing
requirements in these typings. If we can repeat this proesetkwe have eliminated all the class type
assumptions in the self environment, then the resultindidaibplass type is valid.

Having collected all the valid class types for the classes pfogram, we can now use them ‘as-is’.
That is, they can be used to infer typings for executableesgions without having to look inside method
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bodies any further. Thus, we haveampositionaimethod for typing classes ‘once and for all’.

10.5. Nakano Intersection Types

During the worked examples of Section 10.3, we commentedraktimes about the inability of the

system to type methods which invokéher methods of the receiver, such as thelt method in the

object-oriented program, or to give an analysis for methehieh incorporates slightly fierent views

on their containing classes, such a heterogeneous typéistforWe will now describe an approach to

extending the system to include intersections, which Wiidives us to type these problematic examples.
It is fairly straightforward to incorporate intersectioimso the type language:

Definition 10.13(FJeu Intersection types) 1. The set oFJeu object intersection pretypes (ranged
over byy), and its subset of strict object and functional pretypesm@ed over byr and ¢ respec-
tively) are defined by the following grammar:

n i= @ | n | C | o

L | (f :m) | 0]
¢ u= (m: () — ) T 2 B
W e min...nm (n>1) | Ly | oy

2. The definitions of free recursive variables and adequdqyeatypes are extended in the obvious
way; FJeu types are defined as pretypes which are both adequate anedclas will use meta-
variableso, 7, «, B, v, andp to range over strickJeu types. We will use the meta-varialfldo
range over intersection types (and sometimes also the waiable y when it is clear from the
context that it should be a proper type).

3. The set ofFJeu class intersection types (ranged overd)yis defined by the following grammar:
0 = @) - | (X | Lo
{ = 01N...Ndn (n>1) | I¥e | Y4

Notice that in the definition above we have not included thigarsal typew. This type should be
added when considering a full formal treatment of this systeowever for the purposes of the present
discussion it is not required.

The subtyping relation can also easily be extended with ltv@as cases for intersections:

Definition 10.14(Subtyping forrJleu Intersection Types) 1. The operation gf-substitution from Def-
inition 10.7 is extended to operate over intersections He\s:

[N w.gl(ey) = o([n — 1.4](¥))
[N wgl(ey) = e([n - p.p)(¥))
[N wgl(rin... nm) = (N wgl(r1)) n...0 ([N u.g)(mn)
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2. The subtyping relation on intersection pretypes is ddfexein Definition 10.8, extended by the
following:

mn...namp<nm (forallien)
y<mforeachien,n>1=y <min...nmy

e(min...nmy) <emn...Nnemy t(men...nap) Stmn... Ny

emiNn...nexp < e(myn...NI) tmn...ntap<t(men... )

3. The subtyping relation on class intersection types isddfas in Definition 10.8, extended by the
following:

61n...noh <6 (forallien)
l<siforeachien,n>1=/7<61n...ndy

e(61n...Ndp)<e81Nn...Nedy t(61n...N0K) SLo1N... N LAy

ef1N...Nnef<e(61N...NAR) to1N...NL6n <t(d1n ... NGp)

To extend the type system, we obviously need to allow vaggbhd fields to have intersection types
in the typing environment, and we modify thex) and §eLr-£LD) rules to assign a variable or field any
of its strict types:

. — (< . <
(VAR) : =T, X Xio <o) (seLr-rip) : L, f g this «f o) W=o)

Furthermore, we will need to alloalassedo have intersections of class types in the self environment
This leads to the following obvious modification to tleLg-meTH) rule:

(SELF-METH) 5 G s Crthis o C 5 O )

We also need to add the(n) rule to allow intersections to be derived for arbitrary egsions:

Trewo (Yien)
(yoN) : (n>=2)
'reio1N...Non

Lastly, we will need to modify then{st-meTH) rule. This modification, however, is slightly more
subtle. Remember that thex{r-meTH) rule is our version of the (NakanogiX) rule:
Ig:ecrM:o
(Frx): ——————
I'rFIXgM:o

In the context of intersection types, the above rule is alddras follows:

Ig:eo1N...NeopnrM:oj (Yien) o
(Fxn): (n=2jen)
I'FFIXgM:0oj

Thus, assuming an intersection typéor the recursive identifier, we must type the body of the diédim
with eachtype o in the intersection. Then we are permitted to assign anyasfeghypes for the whole
recursive definition (and thus also, via then{) rule, the full intersection type itself). Recall that the
analogue to the recursive identifgm the above inference rule is a class namand that the definition
body M corresponds to the body of the methador which we would like to assign a typen: (¢ —

7)). Thus, the generalisation of ouxgr-mern) rule should type a humber of method bodies (possibly
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analysing the same method body in multipl&etient ways):

2,Co1n...népTireio; (Yien) ILT-€j:0; (YjeT)
T'+new C(€) it

(INST-METH2) :

(jeN& F(O) =F, & Vien. Ay, s Xsm.
Mb(C,m) = (Xs.ei), I = {this :C,Fgr, x:¢/s),
T =(m.(fs) > o), o((¥r) = Ti) < 6
&if i = j thenyy = 6 (¥ ke T))

This rule looks rather forbidding, but it is more straigtfard than it appears at first glance. It simply
ensures that for each class tyfen the intersectiord; n ... n 6, that is assumed fa€, the appropriate
method bodye; can be typed according to an implicit class type consistetit §&». Then, for one of
the class types; in particular, the rule checks that the field valegs. .., €, can be assigned the types
assumed for the fields when typing its associated method. bblaly expressivity of this extended rule
derives from the fact that recursively createsiv C(...) objects in any of the methods analysed can be
typed according t@ny of the class types; assumed folC, and not just the one corresponding to the
current method.

Using this extended system with intersections, we are ndevtalassign more expressive types which
allow sequences of calls to the same method to be made, withadl having a heterogeneous type.
We will illustrate this using theo list program.

We can assign the typgons :(8) — (cons :(a) — ¢(head :a))) to lists which allows us to add two
elements to the list and then retrieve the latter element:

—— (VAR) - (vAR)
PPN DY N 2o;To rthis :NEL

;T2 new NEL(o, this) :head :e)

(INST-FLD)

(vaR)

(vAR) -
;T -08 >1;T1+this :EL
*1;Ti+new NEL(o, this) :(cons :(e) — ¢head :a))

(INST-METHZ2)

(INST-METHZ2)
rnew EL() :(cons :(8) — (cons :(a) — ¢head :a)))
whereX; = {EL:() — e{cons :(8) — (cons :(a) — (head : a)))}
I'1 = {this :EL,0:8}
¥y =31, {NEL(eB,0EL) — e{cons :(a) — (head :a))}
I'> = {this :NELhead:B,tail :EL,0.a}
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. (VaR)
¥3; T3+ this :NEL

VAR - <
¥3;T3+0:ep ¥3;T3rthis :eNEL
¥3; T3+ new NEL(o, this) :e(cons :(e) — (head :a))

(REC-METH)

—— (vAR) - (VAR)
23; T4+ 0l ¥3; T4 +this :NEL

- (INST-FLD)
3;T4+new NEL(o, this) :head :e)
\/ \/
Fep Fly

: (INST-METH2)
rnew NEL(e, [):(cons :(eB) — e(CONS :(a) — ¢(head :a)))

rnew NEL(e, I):e{cons :(8) — (cons :(a) — (head :a))) =
rnew NEL(e, 1):(cons :(8) — (cons :(e) — ¢head :a))) *

whereXz = {NEL(ep,ey) — e(cons :(eB) — e(cons :(a) — (head :a)))
N (eB3,eNEL) — e(cons :(a) — (head :a))}
I'; = {this :NELhead:p,tail :y,0:ef}
I'4 = {this :NELhead:B.tail :NELo:a}

We can also assign the typeons :(8) — (cons :(a) — (tail :({head :8)))) which allows access to
the first of the two elements added to the list:

—— (vAR) - (SELF-FLD)
Yo:Tok 0 ;o +this :(head :8)

zo;T2-new NEL(o, this)  «(tail :(head :p))
. (vAR)

(INST-FLD)

(vaR) -
;T -08 >1;T1+this :EL
;T new NEL(o, this) :(cons :(e) — (tail :(head :g)))
rnew EL() (cons :(8) — (cons :(a) — (tail :(head :B))))

(INST-METHZ2)

(INST-METHZ2)

whereX; = {EL:() — e{cons :(B) — (cons :(a) — (tail :(head :B))))}
I'1 = {this :EL,0:8}
¥y =31, {NEL(e3,0EL) — e{cons :(a) — (tail :¢head:B)))}
I'> = {this :NELhead:B,tail :EL,0.a}
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. (VaR)
¥3;T3+this :NEL

—— (VAR <
23;T3r0:ef ¥3;T3+this :eNEL
T3,z new NEL(0, this) :e(cons :(e)— (tail :(head :B)))

(REC-METH)

(VAR) - (SELF-FLD)
¥3;T4+ 0 ¥3;T4+this (head :B)

- - (INST-FLD)
3;T4+new NEL(o, this) «tail :(head :g))
-/ \/
Fep Fly

(INST-METH2)

rnew NEL(e, 1):(cons :(eg8)— e(CONS :(a)— (tail :(head :8))))

<
rnew NEL(e, 1):e(cons :(8) —(cons :(a) — (tail :¢(head :B))))
rnew NEL(e, 1):(cons :(8)— (cons :(a)— (tail :(head :B)))) *

whereXz = {NEL:(ep, ey) — e{cons :(e8) — e(cons :(a) — (tail :(head :B))))
N (eB,eNEL) — e(cons :(a) — (tail :(head :B)))}
I'; = {this :NELhead:p,tail :y,0:ef}
I'4 = {this :NELhead:B.tail :NELo:a}

Regarding the object-oriented arithmetic program of $ect.3.6, recall that we could not assign the
argument typdadd : (e7) — e 1) Of the type for themult methodr = y.{mult :({add :(e0) — ¢0)) —
«0) to positive object-oriented natural numbers, i.e. expoassof the formnew Suc(n). Using the
system extended with intersections however this is nowiplessallowing us to type invocations of
the formn.mult( m) (wheren andm are object-oriented natural numbers). Z@tbe the following
derivation, which we reproduce from Section 10.3.6:

- (SELF-FLD)
%Iy +this (pred :7)

- (FLD)
%Iy +this.pred 7

Iy +this.pred  :(mult :((add :(e7) — e7)) > e7) ) T rx:(add :(e7) = o7)

(var)

(INVK)

%;T1 + this.pred.mult(x) ‘et

(vAR)
TTirx{add:(e7) — o7)

%;T1 + X.add(this.pred.mult(x)) eT

(NVK)

where X ={Suc:(e1) - e7n(e(add :(e7) — 7)) — e(add :(e7) — e7)} and
I'y = {this :Suc,pred 7, x:{add :(e7) — eT1)}

Then, given that we can assign the tyjpdd : (e 7) — ¢ 7) to a numben, we can construct the following
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derivation which assigns that type to its successor:
- (SELF-FLD)
% To+this (pred :(add :(e7) — o1))
- FLD) —— (vAR)
Ty +this.pred  (add:(e7) — e71) S:ToFX:eT
%;T, + this.pred.add(x) eT
;T +new Suc(this.pred.add(x)) eT

(NVK)

(REC-METH)

D .
;T r X.add(this.pred.mult(x)) et . rn{add:(er) - e7)

rnew Suc(n) add:(er) > e7)

(INST-METH)

wherel's = {this :Suc,pred :{(add :(e7) — eT),x:eT}

Using intersection class types, we can also give numberseanative type for thenult method, namely
(mult : (o) — ey, whereo = u.{add : (e 0) — e 0).

———— (SELF-METH) —— (VAR)

T Fthis :eo STorX:eo

(INST-METH)
rnew Zero() mult :(o)— eo)

whereX = {Zero () —» ¢(mult :(0) > e0)n() > o0},
I'1 = {this :Zero ,x:c} andI's = {this :Zero ,x.ec}

- (SELF-FLD)

;T rthis (pred :(mult : (o) — e0))
- (FLD) (vaR)
;T rthis.pred (mult : (o) - eo) =TFXo
- (INVK)
(VAR) %, T + this.pred.mult(x) Yo
LT FXo :
()
L T+x(add:(ec) — e0)
(INVK)

;T + X.add(this.pred.mult(x)) Yo

Fnmult (o) > eo)

: (INST-METH)
rhew Suc( n) imult :(c) - eo)

whereX = {Suc:(e(mult : (o) — e0)) — e(mult :(0) - e0)}
I' = {this :Zero ,pred :o,x:.0}

The intersection class types that we have used in the abowatiens could be said to be simply
recordsrather than true intersections, since the result type df elass type refers to aftierent method.
However we make the final observation that, as for the intéisetype system of Part |, the intersections
that we have introduced teleu allow more than just records. This can be illustrated ushefixed
point combinator that we considered in Section 10.3.4. dJ#ie extended system, we can assign to it
a whole family of intersection types which are exactly agalss to the family of intersection types that
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- (SELF-METH)
niTorthis :e@pp:(@pp:(ee) >N —>e)

o +this xapp:(e@pp:(e¢) > @) - e¢)

(VAR
L ZlarX(@pp:(ep) 9

. ZTarX:e@Pp:i(ep) —¢)
(var) - (NVK)
Tk X{app :(ep) = ¢') %;To + this.app(x) Y
;T + X.app(this.app(x)) @’

)

(INVK)

- (SELF-METH)
%;T1 rthis :e@app :((@pp :(e¢) — ¢)) — @) .

%Ik this  (app :(e@pp :(e¢) = ¢) = e¢) B

: (vAR)
 BTrX(@ppi(ep) > ¢)

S ZTiEX:e(@ppi(eg) > @)

(VAR) - (INVK)
=T FX@pp :(ep) = ¢) %;T1 + this.app(x) Zocp( |
INVK
%;T1 + X.app(this.app(x)) g7
(INST-METH)

Fnew T() (@pp:(app:(e¢) = ) N@pp :(e¢) = ¢")) = ¢")

where X = {T:() — o(app : ((app : (¢ ) = @) n(app : (e ) — ¢")) = ¢’)
n () — e{app :((app : (¢ @) — ©)) — V) },
'y = {this T,x:(app:(e¢) — ¢)}and
2 ={this :T,x:(app:(ep) — @) n(app:(e¢) — ¢’)}

Figure 10.2.: Type Derivation farleu Intersection Type Assignment for a Fixed Point Combinatdr (

are assignable to fixed point combinatorslinalculus. That is, we can assigntew T() the following
family of intersection Nakano types:

(app : ((app : (e ¢) — ¢)) = @)
(app :((app : (e @) = @) n{app (e ) = ¢")) = ¢’)
(app : ((app : (e p) — @) n{app :(ep) — ¢") n{app : (e ¢’) — ¢)) = ¢"’)

The first of these is the familiar Nakano type for fixed poin¢igtors, and we gave a derivation assigning
this type back in Section 10.3.4. In the Figures below, we gierivations for the next two types in this
family. The interesting thing to note here is that the deidrafor each of these types requires thdiave
anintersectionclass type in the self environment, which is formed fromladl types in the sequence up
to and including the one that is being derived. None of thgged is related to any other via subtyping
and thus this is a true class intersection type.
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- (SELF-METH)
T2 rthis te(app :((@pp:(s¢) — @) N(@PP :(e¢) = ¢") = ¢") ©
;T2 this (@pp :(s(@pp:(e¢) = @) N(@pP :(s¢) = ¢))) = o¢’)

. (vaR) (vaR)
F LT3k x@app:(e¢) - @) LTgrx:@app :(sp) = ¢

(yov)
I TsrX(app :(ep) = ¢y N@pp (o) = ¢)
() T3k X:e((@pp :(e¢) = @) N(@ppP (o) = ¢))
=Tz X{app:(e¢’) = ¢”) %; '3 + this.app(x) Y4
%; T3+ X.app(this.app(x)) @

(INVK)

(INVK)

- (SELF-METH)
ZTorthis :e@pp:(@pp:(e@) @) =9

T2 +this (@pp:(e(@pp:(e¢) > ) > o)

: (var)
L ZlarX(@pp:(ep) 9

. ZTarX:e@pp:i(ep) —¢)
(vAR) - (INVK)
T X{app :(ep) = ¢’) %;T + this.app(x) Y ()
;T F X.app(this.app(x)) @ e

- (SELF-METH)
%, T1 +this :e(app :(@pp :(e¢) — ¢)) — @) .

%Iy this  (app :(e@pp :(e¢) = ¢) = *¢) B

(VAR)
o LTiexxapp (o) - ¢) .

D ETiEXie@ppi(eg) 2 ¢)
(VAR) - (INVK)
=T FX@pp :(ep) = ¢) %;T1 + this.app(x) Y
. . %;T1 + X.app(this.app(x)) g7
Fnew T() xapp:(@app:(e¢) — ) N@PP :(e¢) > ¢’) N(@PP :(o¢") = ¢")) = ¢")

(INVK)

(INST-METH)

where
T ={T:() — o(app :({app : (¢ ) — @) n(app : (e p) — ¢’") n(app : (e¢’) — ")) = ¢’’)
n () — e(app :((app : (e ) = @) n(app : (o) = ¢")) = ¢’)
n () — e(app :((app : (e ¢) = ¢)) = ¥)},
I'1 = {this :T,x{app:(e¢) — ¢)}
[y = {this T,x:(app:(e¢) — @) n{app:(ep) — ¢’)} and
I3 ={this T,x:(app:(ep) = @) n(app:(e¢) = ¢')n(app:(e¢’) = ¢")}

Figure 10.3.: Type Derivation farleu Intersection Type Assignment for a Fixed Point Combina®)r (
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11. Summary of Contributions & Future Work

In this thesis, we have aimed to develop a notion of type assigt for the class-based approach to
object-oriented programming that expresses detailedgptiep of the behaviour of programs, including
their termination. It has also been our aim to firmly base gpe assignment systems in the denotational
semantics of programs. Our initial approach to this task twasse the intersection type discipline,
the type systems belonging to which have been shown to ddratanghis ability in many dferent
computational settings fromrcalculus to process and sequent calculi.

Our work is not the first to apply intersection types to thalgtaf object-orientation. De’Liguoro and
van Bakel have undertaken a comprehensive programme @frobsien which they develop an intersec-
tion type system for Abadi and Cardelléscalculus, and use it to analyse many aspects of that model
of computation. While the-calculus provides a fundamental basis for the objectte paradigm in
its extensive variety, it is still fairly far removed frometstyles ofoo programming used in practice, at
least as far as class-based programming is concerned. &larsthough one can consider ‘compiling’
class-based programs down to thebject-based level, our research has been an attempt gingin
the success of de’Liguoro and van Bakel's analysis a liftbsar to the ‘source language’ level that a
large number obo developers are used to in their every-day lives. Thus we baieour type analysis
around the Featherweight Java formal model.

Our work has been influenced and inspired by the intersettfmmsystem for the-calculus, but there
are important dferences and we have extended that work in a number of wayse @i@ are still inter-
ested in analysing objects, it was natural to inherit thecstiral types of the-calculus and its subsequent
intersection type system. An important decision that wadevearly on in our research, however, was
to divorce our intersection type analysis from the existiogninal type system of Featherweight Java.
The motivation for this lay in our desire to obtain a systemt tlully characterised normalisation. As
we have discussed in Section 6.6, the rigid constraints smgdy the nominal typing approach exclude
a number of terminating programs, and thus restricting gstesn to only typing programs that ‘pass’
nominal type assignment defeats this aim.

The other major dference between our system and that of van Bakel and de’lagsar our semantic
treatment. A principal result of our research is that of thpraximation semantics for Featherweight
Java and the approximation theorem linking these semanitbsour notion of type assignment. Our
approximation semantics is the first such model of objeietrved programming, as far as we are aware.
Furthermore, our approximation result, as discussed itide2.1, demonstrates that our intersection
types precisely predict the output of computation. We hdse made the comment that our types give
a characterisation of the observable properties and odtsemal equivalence of programs, although we
do not have a formal result to thigfect.

A more subtle dference between our treatment and that of van Bakel and destags that, because
we do not have to deal with method override (in the sense ofifyind an individual object's method
bodie3, we can move from kate self-typing approach to an early one. This manifests iteadfir system
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in the fact that ourNewM) rule requires, as a premise, that the type assumed foratfielethis when
typing the method body can be assigned to the object itselkfach we are deriving the method type,
i.e the eventual receiver of the method invocation. Thisiisdntrast to de’Liguoro and van Bakel's
system, where the requirements on the self are coded intmdéitieod type and these requirements are
then checked atvocationtime by the (Val Select) rule. An early version of this worl6]did have

a (functional, i.e. stateles$ield update construction, and that system employed late gSaitfdy As

we have observed however (cf. Section 3.2), this feature Ineagncoded and so we felt that, at this
stage, our research would benefit from a simpler presentafline early self-typing approach seems
to lead to a leaner system, since it roots out as early ashpegbiose ‘counter-factual’ types which
are predicated on the receiver satisfying impossible typgionstraints. For example, in a system with
late self-typing we could derive types for thop method of the non-terminating program of Section
6.2, byassuminghat the receivenew NT() can be assigned the very type that we are deriving. The
relationship between late and early self-typing is an @gtng one though, and one which we feel
deserves further investigation. At the very least, the flaat field update can be encoded suggests an
alternative mechanism to de’Liguoro and van Bakel's folirtigmsuch a construction.

The technique that we have used in this thesis to show th@®ppation result, derivation reduction,
also constitutes an extension over its previous applicatid/e were motivated to use this technique
through observing the similarity between term rewritingteyns and the (class-based)programming
model. Specifically, our encoding of Combinatory Logic lsearstrong resemblance to a ‘curryfied’
term rewriting version of that system. Fernandez and vareBsiiccessfully used the technique of
derivation reduction to show an approximation result fambmator systems [15]. The keyftérence
between that work and ours, is that the type assignmentmsystasidered for combinator system was
partial - the types for combinators were derived from an environmesgentially a look-up table, and
so are in a sensexternalto the system. In this respect, our type system can be coasdiddull type
assignment system - the types assigned to our ‘combingiices’objects) are derivedithin the type
assignment system itself, via an analysis of the method fiaelythe right-hand side of the combinator’s
reduction rule). Because of this subtle, but importaffedénce, our proof for the strong normalisation
of derivation reduction can be done by a straightforwardiaticn on the structure of derivations, rather
than appealing to more abstract relationships betweerstasndone in [15]. The aforementioned simi-
larity between th@o reduction model angks also suggests that our research can be used to define ‘full’
systems of type assignment for a generalised notion of tewriting.

Having established the type-theoretical expressivitysarmdantic soundness of our system, we turned
our attention to the problem of type inference. A chief maiiivg factor throughout this research has
been to determine to what extent our type analysis can be fosemlitomatic program verification.
We noted that there is a well-defined hierarchy of restmdtithat makes intersection type assignment
decidable in the setting of thecalculus. We considered the most restrictive variant is tierarchy,
essentially equivalent to Curry’s type system. While weenanle to show a principal typings property
for this restriction, we also observed that the inherenlitalppresent in the class-based paradigm to
define classerecursivelyraises serious barriers to the inference of useful typesiirsgstem.

This failure in the satisfactory application of our typetsys motivated us to look for extensions which
would allow us to infer more meaningful types, while stiloabing us to capture the functional behaviour
and convergence of object-oriented programs. We identfeddhno’s systems of logical recursive types
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as a suitable candidate, since it gives a guarantee of heathlgation. Before extending our system
to include Nakano-style recursive types, we first showetitiipee inference for Nakanao’s notion of type
assignment is feasible by giving an algorithm for inferripgings which we conjectured to be sound. We
showed that the problem of when to infer bullets in the typifay terms is not a trivial one. In order to
give a systematic solution to this problem, we proposednelig the type language with ‘placeholder’
elements (insertion variables) to mark the points in typiegivations where bullets may be used. In
this, we were inspired by the work of Kfoury and Wells on exgian variables for intersection type
inference.

We then considered how Nakano-style recursive types caulapplied to the object-oriented model
by defining a systenF(eu) for assigning them to Featherweight Java programs. Werdisept formal
results for this type system regarding its semantic pr@®e(t.e. normalisation, approximation, sound-
ness and completeness) - this is an important task for fuesearch. We did, however, demonstrate
through the use of case studies and worked examples, thiky albithis extended type system to assign
useful and informative types to programs which were problierfor our intersection type inference
algorithm. We then discussed how our type inference praesdior our intersection type system and
Nakano’s originall-calculus-based system might be merged and extended tmernype inference for
FJeu. We also discussed how intersections might be added toytbiers.

Future Work

The wide scope of our work provides many directions for therti continuation of this research. The
immediate priority is to derive formal results for our Nakastyle type assignment systems. Specifically,
for our unification and type inference algorithms we musitrfally prove its soundness. For the Nakano-
style type system fan®, we must prove at least soundness (i.e. that typeabilityersgoved by reduction).
An interesting question is theompletenessf type assignment, or in other words whether typeability is
preserved under expansion. This is an open question fornd&kariginal system too. This property
does not hold for non-logical systems of recursive types RBdmark 2.6(i)], and so it may be that
such a result requires the use of intersections. In additia@would like to show an approximation
result for this system. We also believe that extension ofrtloelal approach of Nakano might lead
to a system which gives stronger normalisation guarantees,this is something we would like to
investigate further. On the type inference side, we musrekthe algorithm of Chapter 9 in order to
make it complete. Formally, this could involve showing anpipal typings property for our extension
of Nakano’s system. Furthermore, as we have remarked, @uoagh type inference is fundamentally
unification-based, but it would be interesting to considaataadvantages orfiiiculties would arise out
of a constraint-based approach. On a practical note, wednike to produce a working prototype of
our system for Featherweight Java and analysdiiéstveness in an operational setting.

Beyond that discussed above, there is a need to extend atmést beyond the limited set of features
modelled by Featherweight Java. An important extensiohdaalculus involves adding imperative, or
state-based features. Such an extension is already coetbioe Abadi and Cardelli for the-calculus,
and there are also state-based extensions of Featherweaighfe.g. Middleweight Java[22]). We would
like to apply the intersection type discipline to this imtamt feature, which would move our systems one
step closer to practical application, as well providing Haraative theoretical treatment to state-based
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issues. There are other computational features. One egdsile use of exceptions, and other similar
mechanisms focontrol flow There is a wide body of research connecting such controharésms, via

a Curry-Howard correspondence, with the notioglagsicallogic. Van Bakel's work on the application
of 1mp to such issues suggests that a similar approach could wdHheinontext of Featherweight Java
andoo.

There are interesting directions for future research datsf the sphere of the object-oriented world.
As we have suggested above, our approach to type assignmgdiford improvements or alternatives
in the field of more general term rewriting systems. Therdsis the question of applying Nakano’s sys-
tems not only to the object-oriented paradigm, but to thetional one too. Since Nakano’s formulation
applies to thel-calculus, it should be even more straightforward to appy functional languages such
as ML or Haskell, than t@o. Type-based termination guarantees, even partial onesldwwovide
immediate productivity benefits in the practical programgncommunity.
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A. Type-Based Analysis of Ackermann’s Function

In this appendix, we will consider an implementation of thekrmann function ims¢, and its typeabil-

ity using the intersection type system considered in thé fiist of this thesis. We will show that the
implementation is strongly normalising, and conjectu #ach level of the parameterized hierarchy is
typeable using some finitely bounded level of nested int¢ise types. The aim of this presentation is
to demonstrate the analytical expressiveness of the tygierag that we have been considering.

Definition A.1 (Ackermann Function) The Ackermann functiofick : Nx N — N is defined as follows:

n+1 (ifm=0)
Ack(m,n) =< Ack(m-1,1) (ifm>0,n=0)
Ack(m—1, Ackkm,n—1)) (if m,n> 0)

We can also define parameterizedrersion of the Ackermann function, by fixing the first argumen

Definition A.2 (Parameterized Ackermann Functiofjor every m, the functioAck[m] is defined by

Ack[m](n) = Ack(m,n)

A.1. The Ackermann Function in Featherweight Java

The Ackermann function can be implemented quite straigivdiodly in an object-oriented style. We
use the same approach as in Section 6.4 of defining a classrfoand a class for successor, with each
class containing methods that implement the Ackermanrtitumc

Definition A.3 (Ackermann Program)Thers programAckg, is defined by the following class table:

class Nat extends Object {
Nat ackM(Nat n) { return this; }
Nat ackN(Nat m) { return this; }

}

class Zero extends Nat {
Nat ackM(Nat n) { return new Suc(n); }
Nat ackN(Nat m) { return m.ackM(new Suc(new Zero())); }

}
class Suc extends Nat {
Nat pred;
Nat ackM(Nat n) { return n.ackN(this.pred) }
Nat ackN(Nat m) { return m.ackM(new Suc(m).ackM(this.pred ); }
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Natural numbers, as discussed in Section 6.4, have a sfaaighrd encoding using the abov€
program.

Definition A.4 (Translation of Naturals)The translation functio- |,y maps natural numbers to expres-
sions ofAcky,, and is defined inductively as follows:

[O0ly = new Zero()
Ti+ 1l = new Suc( Tily)

Notice that for every, ['nly is anormal form(this is easily proved by induction a). The following
result shows that the Ackermann program computes the Ackamrfunction.

Theorem A.5. vm,n. 3k . Tmly.ackM( Tnly) —* Tkly and k= Ack(m, n).

Proof. By well-founded induction on the pain(n) using the lexicographic ordering,.;x on natural
numbers. Take arbitraryrn); then we have the following cases.

(m=0): ThenAck(0,n) =n+1, and we have the following reduction sequence:

Tmly.ackM( Tnly)
= new Zero().ackM(  Tnly)
- new Suc( Tnly)

= Tn+ 1l

(m>0,n=0): Thenm=i+1 for somei and[mly = new Suc( lily) . Notice thati = m-1, soi <m
and thereforei(1) << (m,n). Thus it follows by the inductive hypothesis that thereamgk such
that[[i lyr.ackM( T1ly) —* Tkly andk = Ack(i, 1). Notice also thafnly = [0l = new Zero()
andl1ly = new Suc(new Zero()) . Then we have the following reduction sequence:

l[mJ]N.ackM( IfnJIN)

new Suc( lily).ackM(new Zero())

- new Zero().ackN(new Suc(  [ily).pred)
- new Zero().ackN(  Tily)

- [ l.ackM(new Suc(new Zero()))

- lilyn.ackm( T1ly)

—* Tkl

erCk(i , l)JN
TAck(m—1,1)15

(m>0,n>0): Thenm=i+1andn=j+1forsome andj. Soj=n-1<n, therefore n, j) <. (M N)
and thus by the inductive hypothesis there is ségrmich thaf mly.ackM( [jly) —* lkyly and
Ack(m, j) = k;. Alsoi = m- 1< m, therefore i, ki) <.x (m,n) and so by the inductive hypothesis
there is somd, such thak, = Ack(i, k) and[ily.ackM( Tkyly) —* Tkoly. Notice thatfmly =
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i+ 1l =new Suc(Tily) andlnly =Tj+ 1l =new Suc(ljly). Then we have the following
reduction sequence:

Tmly.ackM( Tnly)
new Suc( lily).ackM(new Suc( Tjly))

new Suc([jly).ackN(new Suc( T[ily).pred)
new Suc( [jly).ackN( Tily)
lily.ackM(new Suc( Tily).ackM(new Suc( T jly).pred))
lily.ackM(new Suc( Tily).ackM( Tjly))
lily.ackM( Tmly.ackM( Tjly))
* lily.ackM( Tkyly)
- Tko iy
= TAck(i, ki)l
= TAck(i, Ack(m, j)) 1y
= TAck(m- 1, Ack(m,n—1))]

Ll

\

O

Notice that this implies that every instance of the Ackermprogram isnormalisable In the follow-
ing section we will show the stronger result that every insgaof the Ackermann program ssrongly
normalisable.

A.2. Strong Normalisation of Ackg,

Recall that one of the main properties of our intersectigretgystem is that programs typeable with
strongderivations (Definition 4.8) — i.e. without using the top éyp — arestronglynormalising (Theo-
rem 5.20). In this section we will show that every instancéhefAck,, program is strongly normalising
by using this result and showing that every instance is tyleeaith a strong derivation. This follows
from two main lemmas: firstly, that strong derivations aresgrved by expansion fack,, - that is
if Tkl is typeable using a strong derivation aidly.ackM( Tnly) —* Tkly for somem andn, then
Tmly.ackM( Tnly) is also typeable with a strong derivation; secondly we st évery numbefkly
has at least one strong derivation. Then, using the resuit fhe previous section that every instance of
the Ackermann function irck,, reduces to a numbdkly, it immediately follows that every instance
is typeable with a strong derivation and is thus stronglymadisable.

We will first need the following lemma, which is an extensianderivations oftype extraction-
Lemma 3.10(2).

Lemma A.6. LetS = {x1 > e1,...,Xn — en} be a term substitution anel be an expression such that
vars(e) = {x1,...,xp}; if there is a (strong) derivatior® such thatD :: I+ eS : ¢, then there exists
another (strong) derivatior®’ such thatD’ :: TI' + e : ¢ with T = {x1:¢1,...,Xn:¢n}, and a (strong)
derivation substitutiorS = {x1 — Dy i1k e1: ¢1,....Xn+— Dn 1T Fen: ¢n} such that(D')® = D.

Proof. By induction on derivations, similar to Lemma 3.10(2). O
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We can now show that strong derivations are preserved bynsigrafor theAck;, program.

Lemma A.7 (Expansion for Strong Derivationsyor all m and n:

VD, o . [Tmly.ackM( Tnly) —* Tkly and D :: [kl : o with D strong

= 39 . + Imly.ackM( Tnly) : o with D’ strong

Proof. By well-founded induction onn, n) using the lexicographic ordering x on natural numbers.
It is suficient to consider the following cases:

(m=0): ThenAck(m,n) = Ack(0,n) = n+1 and so by Theorem A.5 it follows that

new Zero().ackM( nly) =" Tn+ 1y

Notice[n+ 1l = new Suc( Tnly) . AssumeD :: +new Suc( Inly) : o with D strong. Notice
thatnew Suc( Tnly) =new Suc(n) S whereS = {n ~ Inly}. Thus, by Lemma A.6, we have
that there is a strong derivatid®’ such that’ :: I’ + new Suc(n) :o with I’ = {n:¢} and there
is a strong derivation substitutia®= {n > D"} with D" :: + [nly : ¢. SinceS is strong, so too
is ©”. Now we can build the following strong derivation:

\ DH[HSSI H/] / Z () Z (NEWO)
II+new Suc(n) : new Zero() :Zero -
i () o r (e
rnew Zero() :(ackM:¢ - o) Flinly:o

rnew Zero().ackM( nly) : o (k)

wherell = {this :Zero ,n:¢}.

(m=i+1,n=0): ThenAck(m,n) = Ack(i +1,0) = Ack(i,1) and by Theorem A.pi l;.ackM( T1lyn) —*
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Tkly with Ack(i,1) = k. Thus, also by Theorem A.5 it follows th&mly.ackM( Tnly) —*
Tkly. Assume there is a strong derivatigh such thatD :: + [kly : 0. Sincei=m-1<m,
(i,1)<.x (M, n) and so by the inductive hypothesis there is a strong deivad’ such thatD’ :: +
lily.ackM( T1ly) : o. Then by rule k) there are strong derivatio®” and 9’ such that
D" rlily: (ackM:¢p — oy andD’” 0 + 1l : ¢. Noticel 1l = new Suc(new Zero())
ITmly =Ti + 11y = new Suc(Tily) andlnly =T0ly =new Zero() , sowe can build the follow-
ing strong derivation:

(vAR) \ D"'[1 0]
I - m: (ackM: ¢ — o) I, +new Suc(new Zero()) :¢
(mvk) (NewO)
I - m.ackM(new Suc(new Zero())) Lo rnew Zero() :Zero (EwM)
rnew Zero() :(ackN:(ackM:¢— o) — o) e
(var)

Iy +this  :(pred :(ackM:¢ — o))

(var) - FLD
Iy n:{ackN:(ackM:¢ — o) — o) I, + this.pred :(ackM:¢ — o) (i)
INVK

113 + n.ackN(this.pred) ‘o

o
Flily: (ackM:¢ - o)
rnew Suc( lily) : (pred :(ackM:¢ — o))
rnew Suc( lily) : (ackM:(ackN :(ackM:¢ — o) — ) — o)
rnew Suc( lily).ackM(new Zero()) ‘o

(NewF)
(NewM)

(NVK)



(m=i+1n=j+1): ThenAck(mn) = Ack(i,Ack(m, j)). By Theorem A.5,Imly.ackM( Tjly) —*
Tkl with Ack(m, j) = k. Also by Theorem A.5 we have ly.ackM( Tkly) —* r with Ack(i,k) =r.
Thus it follows thaffmly.ackM( Tnly) —* I'rly. Assume there is a strong derivatiéhsuch that
D rlrly:o. Sincei=m-1<m, (i,K) <.z (M n) and so by the inductive hypothesis there is
a strong derivatiory)’ such that?)’ :: + [ily.ackM( Tkly) : . Then, by rule k) it must
be that there are strong derivatiofi¥’ and 9"’ such thatD” :: + [ily : (ackM:¢ — o) and
D rlkln: ¢. We can assume without loss of generality that 71 n ... n7; (for some
t > 0 since?’” is strong), then by rules¢iN) there are strong derivatior®,, ..., such that
Ds:: Fkly:7sfor eachset.

Now, sincej = n—1 < n, therefore i, j) <.:x (M N) and by the inductive hypothesis there are
strong derivationg)’, ..., D4 such that for eacbet, D’s:: + Imly.ackM( Tjly) : 7s. So by rule
(mvk) there are strong derivatior®';,..., 2t such thatD’s :: + Tmly : (ackM: ¢, — 75y and
derivations®D’”y,...,D"", such thatD”’s:: +[jl : ¢% for eachset.

We can assume without loss of generality that, for emeli, ¢5 = 67n... nd;_ (with vs > 0
sinceD’” g is strong, and eachistrict). Thus by rulespiv) there are strong derivatiodé(16’l),
DRV, ., DB DY such tha® i+ Tjly : 65 for eachse T, ueVs. Let D7 be the

following strong derivation:
Pl o o1 Pl o,
rnew Suc(ljly) :(pred :6})

rnew Suc(jly) :(pred :6})
rnew Suc( [jly) :(pred :6hyn... n(pred :s})

(NewF)
(yomv)

(NewF)

Let IT" = {this :(pred :6})0 ... n{pred :6E,t>} and for eachs e t Z)§ be the following strong

derivation:
- (vAR) - (VAR)
I v this  :(pred :63) I +this  :(pred :6y,)
- FLD - FLD)
II' +this.pred  :67 ... II'+this.pred :6;
= (JoIN)

I’ + this.pred ¢

Notice thatTmly = i + 11y = new Suc(Tily) =new Suc(m) S whereS = {m [ily}. Thus
by Lemma A.6 there are strong derivatiof, ..., D¢ and D3, ..., D7 such thatD? :: {m¢?} +
new Suc(m) :(ackM:¢%s— sy andD2:: + [ily : ¢ for eachset.

We can assume without loss of generality tht= 77 ... ny, for eachse t (with ws > 0
sinceD? is strong, and each strict). Thus by rulepm) there are strong derivationfé(lg’l),
DGY, ..., D8V, ., DRV such thatd$ i r [illy : x5 for eachse T, ue Ws. Let D be the
following strong derivation:

D// /
Flily :ackM:¢ — o)
rnew Suc( lily) : (pred :(ackM:¢ — o))

m
FAi N:‘S\t/vt

rnew Suc( lily) : (pred :st,)

(NnewF)

F- |
Flidy o ag

rnew Suc( lily) :(pred :z}

(NewF) (NnewF)

(yomv)

rnew Suc( lily) :(pred s n... n(pred :6},) n(pred :(ackM:¢ — o))

LetI1” = {this :(pred :71)n... n(pred :mh,) n(pred :(ackM:¢ — o))} andD* be the follow-
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ing strong derivation:

(VAR)

(FLD)

" +this :(pred :(ackM:¢ — o))

" + this.pred :(ackM:¢ — o)
- (vaR) - (vaR)
" +this :(pred :a}) I v this  :(pred :zl,)

T — (k) T (o)
" +this.pred  :my ... ”rthis.pred  :m,

- : (yov)
" + this.pred 297 Nn...ngy’ n@ckM:¢ - o)

We can now build the following strong derivation:

Do /
rnew Suc([ily) :(ackM:(ackN:¢y n... ng{’ n@ckM:¢ - o) > o) - o)

Di3 /
rnew Suc(Tjly) :@ckN:¢7 n...ngy’ n@ckM:¢ — o) - o)

rnew Suc( lily).ackM(new Suc( Tjly) :o

(NVK)

where®Dy, is the following (strong) derivation:

\ p10 /
+rnew Suc( [il) :(pred :61) n... n¢pred :6},) n(pred :(ackM:¢ — o))

1)11[1'[1 < H//]
I1; + this.pred 29y n...ng n(@ckM:¢ — o)

(VAR)
Iy Fn:qackN ¢ n... ngy n@ckM:¢ - o) - o)

113 + n.ackN(this.pred) ‘o :
rnew Suc( [ily) :(@ackM:(ackN :¢} n... ng{’ n@ckM:¢ — o) — o) — o)

(INVK)

(NewM)

with TI; = TI” U{n:(ackN : ¢} n ... ngy’ n{ackM: ¢ — o) — o)}, andDyz is the following (strong)

derivation:
Dy 7 \ g
I - new Suc(m).ackM(this.pred) i11...1x - new Suc(m).ackM(this.pred) t Tt (ron)
I, - new Suc(m).ackM(this.pred) 1P o
(var) :
I, - m:(ackM: ¢ — o) . (i)
I, - m.ackM(new Suc(m).ackM(this.pred)) Lo e
D’ /
rnew Suc(Tjly) :(pred :61yn... n(pred :4)
! EwM)

rnew Suc( [jly) :@ckN:¢y n... ngy n@ckM:¢ — o) — o)

with I, = TI" U{m¢; n... ng{’ n(ackM:¢ — o)}, and where eac®!* (i € f) is a derivation of the
following form:

DI, (Mgl / DT/
Il -new Suc(m) :(ackM:¢/ — 7j) Iz +this.pred A

- (iNvK)
I, - new Suc(m).ackM(this.pred) LT

The final lemma that we need is that all numblgcd; are strongly typeable.

Lemma A.8 (Strong Typeability of Numbers)For all k there exists a strong derivatio® such that
D:: [kl : o for someo.
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Proof. By induction onk.

(n=0): Thenlnly =0l =new Zero() Notice that the following derivation is strong:

(xewO)
rnew Zero() :Zero
(n=k+1): Thenlnly = lk+ 11y = new Suc(lkly). By the inductive hypothesis there is a strong
derivation D such thatD :: + [kly : o for someo. Then we can build the following strong
derivation:

Flkly o
rnew Suc( lkly) : Suc

(NewO)
O

Theorem A.9(Strong Normalisation foAck,,). For all m and n,ImJy.ackM( Tnly) is strongly nor-
malising.

Proof. Take arbitrarymandn. By Theorem A.5 there is sontesuch thaf mly.ackM( Tnly) —* Tkl.
By Lemma A.8 there is a strong derivatidd such thatD :: + [kly : o, and then by lemma A.7 it
follows that there is also a strong derivati@ such that?’ :: + [mly.ackM( Tnly) : o. Thus, by
Theorem 5.20[mly.ackM( Tnly) is strongly normalising. Sincea andn were arbitrary, this holds for
all mandn. O

A.3. Typing the Parameterized Ackermann Function

In this section, we consider the typeability of th@rameterized\ckermann function in variousubsys-
temsof the intersection type system far. These subsystems are defined by restricting where intersec
tions can occur in the argument position of method predic@te. to the left of the type constructor).

Definition A.10 (Rank-based Predicate Hierarchyye stratify the set of predicates into an inductively
defined hierarchical family based aank For each n, the sef,, of rank n predicates is defined as
follows:

To=¢|CI(f :To) [{M:(To,....T0) = To)

- Tin...nT; (i>0,ieven
i+1 = ) ]
Tia If 2T i) [Kmi(T5,..., T7) = Tiv1) (1> 0,iodd)

whereg ranges of predicate variable§, ranges over class namesfanges over field identifiers, and
ranges over method names.

Definition A.11 (Rankn Typing Derivations) A derivation® is calledrankn if each instance of the
typing rules used to itD containsonly predicates of rank n.

The results of this section are that every instance oAti¢0] and Ack[1] parameterized Ackermann
functions is typeable in the rank 0 system (essentiallyesponding to the simply typed lambda calcu-
lus), while every instance dick[2] is typeable in the rank 4 system. This leads us to conjechat
every level of the parameterized Ackermann hierarchy isdigte in some rank-bounded subsystem:
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Conjecture A.12(Rank-Stratified Type Classification Atk). For each m, there exists some k such that
each instance ofick[m] is typeable using only predicates of rank k, i.e.

vym.3k.Vn.AD,o . D +[mly.ackM( Tnly) : o with D rank k

The following family of (rank 0) predicates constitutes #at of predicates that we will be able to
assign to instances of the Ackermann function. Since thdtre§ (each instance of) the Ackermann
function is a natural number, we call theapredicates

Definition A.13 (v-predicates) The family ofy-predicates is defined inductively as follows:

vo = Suc

vis1 = (ackN :{ackM:v; — vj) > v;)

The v-predicates will also act as the building blocks fsgumenttypes: we will later show that to
type instances of thack function we will have to derive predicates of the fofatkM:¢ — v;) where
the predicatep is constructed in terms of-predicates. The ability of the-predicates to perform this
function hinges on the fact that we can asségehv-predicate t@verynatural number (with the obvious
exception that we cannot assign the predicgte Suc to [0ly), a result which we now prove.

We start by showing that if we can assignv-gredicate to a number, then we can assign that same
v-predicate to its successor. This result is the crucial eténo showing that the whole family of
predicates are assignablegachnumber.

LemmaA.14. If D:: 11+ e : v; with D a rankO derivation, then there exists a rafkderivation®’ such
that?’ :: T+ new Suc(e) :v;.

Proof. Assuming® :: I1+ e : v; with D rank 0, then there are two cases to consider:

(i=0): Theny; = Suc. The derivation?)’ is given below. Notice that sinc® is rank 0, so too then is
D
\ D 7/

II+e:Suc

(xewO)
IM+new Suc(e) :Suc

(i > 0): Theny; =(ackN :{ackM:vj_1 — vi_1) — vj_1). SinceD is rank 0, it follows that; is also rank
0, and thus so too akackM:v;_1 — vj_1) andv;_;. Therefore, the following derivatiof)’ is rank
0:
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- (vAR)
I, + this  :(pred :(ackM:vi_1 — vi_1))

; (FLD)
I, + this.pred s@ackM:vi_1 = vi_1)
(vaR) .
I, - n : {(ackN :(ackM:vi_1 = vj_1) = vi_1) ()
I, + n.ackN(this.pred) Vil v
: (vaR)
1 - m: (ackM:vi_1 — vi_1)
(NewF)
Iy - new Suc(m) :(pred :(ackM:vj_; — vj_1))
(NewM)
I - new Suc(m) :@ackM:v — vj_1)
: (vaR)

My +this  :(pred :v)

- (FLD)
. I +this.pred
(vAR) ; (mvk)
I - m: {ackM:vi_1 — vi_1) Iy - new Suc(m).ackM(this.pred) 1Vilg (i)
; + m.ackM(new Suc(m).ackM(this.pred)) Vil e
- \ D/
II+-e:vy

(NewF)

I S : d v
rnew Suc(e) :(pred :vj) (xewM)

I+ new Suc( e) :(ackN :(ackM:vi_1 — vi_1) - vi_1)

where

IT1 = {this :(pred :vj),m{ackM:vi_1 — vi_1)}
ITo = {this :(pred :{(ackM:vj_1 — vj_1)),n:v;}

O

The predicatey is the onlyv-predicate not assignable to every natural number (it isassignable
to zero). Because of this special case, our result showiags$kignability ofv-predicates to natural
numbers is formlated as two separate lemmas.

The first states that all-predicatesexceptyvg are assignable to zero. The second states that all
predicates are assignable to every positive natural number

LemmaA.15.Vi>0.3D.D: +[0ly:vi with D rank 0.

Proof. By induction oni.

(i=1): Thenv; = {(ackN :{(ackM:Suc — Suc) — Suc). Notice that the following derivation is rank 0O:

(newQ)
I+new Zero() :Suc

(VAR) (NewO)
I+ m: (ackM:Suc — Suc) II+rnew Suc(new Zero()) :Suc (o)
I+ m.ackM(new Suc(new Zero())) :Suc e
. (NewO)
. rnew Zero() :Zero
(NewM)
rnew Zero() :(ackN:(ackM:Suc — Suc)— Suc)

wherell = {this :Zero ,m{ackM:Suc — Suc)}.

(i=j+1,j>0): Theny = vj,1 = (ackN :(ackM:vj — vj) — vj). Notice thatfflOly = new Zero() and
sincej > 0, by the inductive hypothesis, there exists a rank 0 déoiwaD such that

D rnew Zero() :vj
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Then by Lemma A.14 there is a rank O derivati®hsuch that
D' Fnew Suc(new Zero())  :vj
Then we can build the following rank O derivation:

(vAR) \ DL
T+ m: (ackM:vj — vj) II+new Suc(new Zero()) :v;

(NvK)
T+ m.ackM(new Suc(new Zero())) Y
) (NewO)
rnew Zero() :Zero
(xewM)
Frnew Zero() :(ackN:(ackM:vj—vj)—vj)
wherell = {this :Zero ,m{ackM:vj — vj)}. O

LemmaA.16.Yn>0.Vi.3AD . D +[nly: v with D rank 0.
Proof. By induction onn.

(n=1): Thenlnly =M1ly = new Suc(0lx) =new Suc(new Zero()) . Take arbitranyi; there are
two cases to consider:

(i =0): Thenv; = vg= Suc Notice that the following derivation is rank O:

(xewO)

rnew Zero() :Zero
(NewO)
c

rnew Suc(new Zero()) :Su

(i>0): Then sincel > 0, by Lemma A.15 there is a rank O derivatidh such thatD :: +
new Zero() :v and then by Lemma A.14 there is another rank O derivatidrsuch that
P’ rnew Suc(new Zero()) :vj.

(n=k+1, k> 0): Take arbitrary; then sincek > 0, by the inductive hypothesis there is a rank O deriva-
tion O such thatD :: + [kly : vi, and by Lemma A.14 there is another rank 0 derivatidrsuch
that?’ :: rnew Suc(Tkly) :vi, thatisD’ :: +nly: vi. ]

A.3.1. Rank 0 Typeability of Ack[0]

We can now begin to consider the typeability of some of tikedint levels of the parameterized Acker-
mann function. We will start by showing that every instan€é¢he Ack[0] function can be typed using
rank O derivations.

LemmaA.17. 1.3D.9D: +[0ly:(ackM:Zero — Suc) with D rank 0.
2.¥i.3AD . D +10ly: (ackM:v; — vi) with D rank O.

Proof. 1. Notice that the following derivation is rank O:

(vAR)

{this :Zero ,n:Zero }rn:Zero

- (xewO) (xewO)
{this :Zero ,n:Zero }+new Suc(n) :Suc rnew Zero() :Zero

rnew Zero() :(ackM:Zero — Suc)
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2. Take arbitrary. Notice that by rulear), we can build the following rank 0 derivatiaf:

, (var)
{this :Zero .nwj}rn:v
Thus, by Lemma A.14 there is a rank 0 derivatidhsuch that

7Y {this :Zero ,n:vj}+new Suc(n) :v;

Then we can build the following rank O derivation:

D/
{this :Zero ,n:v}rnew Suc(n) :vi +new Zero() :Zero

(NewM)
rnew Zero() :(ackM:v; —v)

m|
Theorem A.18(Rank 0 Typeability ofAck[0]). Everyy-predicate may be assigned @achinstance of
the Ack[0] function using a rank O derivation, i.e.

vn.vi.3D . D:: r[0ly.ackM( Tnly) : v with D rank 0

Proof. Take arbitraryn andi. Then it is siificient to consider the following cases:

(n=0,i=0): Thenlnly =new Zero() andv; = Suc. By Lemma A.17(1) there is a rank O derivation
PDsuchthatD:: +new Zero() :{ackM:Zero — Suc). Then we can build the following rank 0

derivation:
D / (NewO)
rnew Zero() :(ackM:Zero — Suc) rnew Zero() :Zero (o)
+new Zero().ackM(new Zero()) : Suc B

(n=0,i>0): By Lemma A.17(2) there is a rank 0 derivati@h such thatD; :: + [0ly : (ackM:v; —
vi). Sincei > 0, by Lemma A.15 there is a rank 0 derivati6h such that?, :: + [0ly : vi. Then
we can build the following rank O derivation:

\ Dy / \_ D ]
Floly:@ckM:vi vy rl0ly:vi
r Toly.ackM( Toly) :v

(INVK)

(n>0): By Lemma A.17(2) there is a rank 0 derivatigh such thatDy :: + [0ly : (ackM:vj — vj).
Sincen > 0, by Lemma A.16 there is a rank 0 derivati@h such thatD, :: + [nly : vi. Then we
can build the following rank O derivation:

\ Dy / \_ D ]
Floly:@ckM:vi vy rlnly v
FToly.ackM( Tnly) : v

(INVK)

A.3.2. Rank 0 Typeability of Ack[1]

Showing the rank 0 typeability of thick[1] function is similar, with the dierence that we must derive
a slightly diferent predicate for invoking theckM method.

LemmaA.19.Vi.3D . D r[1ly: (ackM:vi 1 — vy with D rank 0.

243



Proof. Take arbitraryi. Notice that by Lemma A.17(2) there is a rank 0 derivatidrsuch thatD :: +
new Zero() :<{ackM:v; — vj). Then we can build the following rank 0 derivation:

(var)

I +this :(pred :(ackM:v — v;))

. (FLD)
+this.pred  :(@ckM:v — w)
(vaR) |
T+ n:{ackN :(ackM:vi — vj) - vj)
(iNvK)

IT+ n.ackN(this.pred) v

D
rnew Zero() :{ackM:vi —v))

(NewF)
+rnew Suc(new Zero()) :(pred :(ackM:y; —wi))( M)
+rnew Suc(new Zero()) :(ackM:vi;1 = v) e
wherell = {this (pred :{ackM:vj = vj)),n:vi;1}. O

Theorem A.20(Rank 0 Typeability ofAck[1]). Everyv-predicate may be assigned @achinstance of
the Ack[1] function using a rank O derivation, i.e.

vn.Vi.D . D:: rl1ly.ackM( Tnly) :vi with D rank 0
Proof. Take arbitraryn andi. It is suficient to consider the following two cases:

(n=0): By Lemma A.19 there is a rank 0 derivatidn such thatDy :: + [1ly : (ackM:vi 1 — vj).
Notice thati + 1 > 0 and so by Lemma A.15, there is a rank O derivationsuch that?, :: +
TOlx : vis1. Then we can build the following rank O derivation:
\ Dy /] \_ D ]
Flily:@ckMiviys —» vy FT0ly :vier
Fl1ly.ackM( Tol) : v

(INVK)

(n>0): By Lemma A.19 there is a rank 0 derivatigh such thatD; :: + 1]y : (ackM:vi;1 — vj). By
Lemma A.16, there is a rank 0 derivati@® such that, :: + [nly : viz1. Then we can build the
following rank O derivation:

\ Dy /] \_ D ]
Flaly:@ckMiviys - vy Flndy:vier
Fl1l.ackM( Tnly) v

(INVK)

A.3.3. Rank 4 Typeability of Ack[2]

In giving a bound on the rank of derivations typing thek[0] and Ack[1] functions, the argument
predicates were simple threpredicates themselves. To give a bound on the rank of diem&assigning
v-predicates to instances of thek[2] function, we must design more complex argument predicatés
must also expand the proof technique a little compared tptbdous cases afck[0] and Ack[1]: for
eachyv; we now cannot show that there issingle predicate(ackM: o — v;) assignable td 2]y such
that each possible argumetl;; has the typer. Instead, for eachwe must now build damily of n
predicategackM : 7y — vi), each of which can be assignedl®l, and show additionally that each
numberlnly can be assigned the argument predieatg for every i Thus, the proof technique is a sort
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of ‘2-D’ analogue of the ‘1-D’ technique used previously. diibnally, the predicates that we must now
define contairintersections

Definition A.21 (u-Predicates) The set of rank L-predicatess defined inductively as follows:

H(.j) = (ackM:vji1 — vj) forall j >0

H(i+1,j) = (@CKM Vit j12 = Vij1) NHGLj)
Lemma A.22. p j+1) n{ackM:vji1 — vj) = l(is1,j)-
Proof. By induction oni.

(I = 0): H(0,j+1) n{ackM: Vi+l — Vj) = (ackM:vj+2 - Vj+1> n{ackM Vil ™ Vj> (DEf. A.Zl)
= (ackM:vj+2 - Vj+1> NHO,)) (DEf. A.Zl)
= H(i+1,]) (Def. A.21)

(i=k+1): M(i,j+1) N{@CckM:vj1 — vj)

= U(k+1,j+1) N{@CKM Vi1 — vj) (i=k+1)

= (ackM 1 Vii(j+1)+2 = Vika(j+1)+1) NH(k j+1) N{ackM:vj1 — vj) (Def. A.21)

= (aCKM : Vit (j41)+2 = Vi (j+1)+1) NH(k+1, ) (Ind. Hyp.)

= (aCkM V(K 1)+ j+2 = V(er L)+ j+1) NH(k+1, ) (arith.)

= (aCkM:Viyj+2 = Vitj+1) NG )) (i=k+1)

= L)) (Def. A21) O

Lemma A.23. Letyugj) = o1n... nop for some n> O; if there are rank 0 derivationg, ..., D, such
that Dy :: T1+ e : ok for each ke N, then there is a rank 4 derivatia® such thatD :: TT + new Suc( e) :
(ackM: (ackN : g jy = vm) — vm) for any m.

Proof.
—— (vaR) —— (vaR)
I+re:oy IT+e:on
(NewF) (NnewF)
II+new Suc(e) :(pred :o1) ... Trnew Suc(e) :(pred :op) )
Im+new Suc(e) :(pred :o1)n... n{pred :on) o
, (var) , (vAR)
IT' - this  :(pred :o1) I +this  :(pred :oq) -
- LD - FLD)
I’ + this.pred to1 ... II'+this.pred ton
. (yory)
IT + this.pred to1N...Nom )
(var) .
I’ - n: (ackN MG = vYm)
- (NvK)
I + n.ackN(this.pred) S Vm
(NewM)
II+new Suc(e) :(@ckM:(@ckN g j) = vm) = vm)
wherell” = {this (pred :o1)n... n{pred :om),n:{ackN :uj) — vm)}. O

LemmaA.24.Yn.Vi.3AD . D r 1y : gy with D rank 1.
Proof. By induction onn.
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(n=0): Take arbitraryi; thenuni =y = (ackM:vi;1 — v;). By Lemma A.19 there is a rank 0
derivation® such thatD :: + [1ly : (ackM:viz1 — v;). SinceD is rank 0, it is also rank 1, and
sincei was arbitrary, this holds for ail

(n=k+1): Take arbitrary; thenu(njy = i) = (ACKM: visit2 = Viksir1) Nk 1)- By Lemma A.19 there
is a rank O derivatiorD such thatD :: + [1ly : (ackM:vk,is2 — vksiz1). Also, by the inductive
hypothesis there is a rank 1 derivati@r such thatD’ :: + [ Ll : uqiy. Without loss of generality
we can assume thatgj) = o1n... nom for somem> 0 (since?)’ is strong). Then by rulesgiy)
it follows that there are rank 0 derivatiotf3, ..., D such thatD; :: + [1ly : o for eachj e m.
Then, we can build the following rank 1 derivation:

D /D /] O\ Dm /
Flly: @ckM ivisive = visize)  Flw:oq - T2l om
FI 1l (@ckM i viyive = visiz1) No1 N ... Nom

(yoN)
Sincei was arbitrary, this holds for ail O
LemmaA.25.¥n.V¥i.3AD . D + 2]y : (ackM:{ackN : iy — viy = vi) with D rank 4.

Proof. Take arbitrarynandi. By Lemma A.24 there is arank 1 derivatighsuch thatD :: + 1l : gy

Without loss of generality we can assume th@aty = o1n... nom, for somem > 0 (sinceD is strong)
with eacho; strict. Thus by rulesoin) there are rank 0 derivatiorf3y, ..., Dy such thatD; :: + [ 1l : o

for eachj e m. Then by Lemma A.23 there is a rank 4 derivatidhsuch that

D' 0 rnew Suc(1ly) : (ackM:(ackN :pumjy — vi) = vi)
Sincen andi were arbitrary, such a derivation exists formbndi. m]
LemmaA.26.Yn.V¥i.3AD . D +Inly: (ackN :ynj — vi) with D rank 4.

Proof. By induction onn.

(n=0): Take arbitraryi; thenuni = ue, = (ackM:vi;1 — vj). By Lemma A.16 there is a rank 0
derivation® such thatD :: + [1ly : vis1. Notice thatl 11y = new Suc(new Zero()) . Notice
also thatu(gj is a rank 1 predicate, and so the following derivation is rar(and therefore also

rank 4):
(var) \ DL 0]
I+ m: (ackM:vi,1 — vj) I+rnew Suc(new Zero()) :viu (i)
1+ m.ackM(new Suc(new Zero())) Vi e
: (NewO)
rnew Zero() :Zero
(NewM)

rnew Zero() :(ackN:(ackM:vi,1 — v)—v)
wherell = {this :Zero ,m{ackM:vi,1 — vj)}. Sincei was arbitrary, we can build such a derivation
for all i.

(n=k+1): Take arbitraryi; then by the inductive hypothesis there is a rank 2 derigafiosuch that
D+ 'rkJIN : (ackN THKi+1) — viz1). By Lemma A.22,

H(nji) = M(k+Li) = M(ki+1) N{@CKM Vi1 — vj)
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Notice thatlnly = Tk+ 11y = new Suc( Tkly) . We can also assume without loss of generality
thatuis1) = oc1n ... nom for somem, with eacho; strict. Let

IT= {this :(pred :{(ackN :pki+1) = Vi+1)), Muki+1) N{ACKM 1 Vis1 — vi)}

Then notice that by rulev{r) we can derivél + m: oj for eachj e m. Thus, by Lemma A.23 there
is a rank 4 derivatior?)’ such that

D' I+ new Suc(m) :(ackM:{ackN :uki+1) = Vis1) = Vis1)

Then we can then build the following rank 4 derivation:

[} /
IIrnew Suc(m) :(@ckM:(@ckN :uqir1) = vie1) = Vis1)

- (var)
I+this :(pred :(ackN :uir1) — vis1)) )
. I+ this.pred :(ackN (ki) = Viel) e
(vAR) ; (wvk)
I+ m:(@ackM:vi1 — v) I+ new Suc(m).ackM(this.pred) TVigl (i)
IT+ m.ackM(new Suc(m).ackM(this.pred)) v e
. 5 7

F Tkl - @ckN :pivg) = vier)
. rnew Suc( lklw) : (pred :(ackN :pir1) = vi1))
F new SUC( WkJ]N) :(ackN TH(ki+1) n{@ackM:vi 1 = ) = v)

(NewF)
(NewM)

Sincei was arbitrary, such a derivation exists foriall m]

Theorem A.27(Rank 4 Typeability ofAck[2]). Everyy-predicate may be assigned @achinstance of
the Ack[2] function using a rank 4 derivation, i.e.

vYn.Vi.3D . D F[2ly.ackM( Tnly) : v with D rank 4.

Proof. Take arbitraryn andi. By Lemma A.25 there is a rank 4 derivatigy such thatD; @ +
T2l : (ackM:(ackN :u(njy — vi) — vi). By Lemma A.26 there exists a rank 4 derivatifia such that
Dy i kIl : (ackN :unjy — vi). Then we can build the following rank 4 derivation:

2 / \ Dy /
F WZJN . <aCkMI<a.CkN i) = Vi) = Vi) F l[nJ]N . <aCkN i) = Vi)

F WZJN.aCkM( WnJN) Y

Sincen andi were arbitrary, this holds for afi andi. O

(INVK)
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