
Semantics with Intersection Types∗

Steffen van Bakel

Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, U.K.,

E-mail: svb@doc.ic.ac.uk

(Sections 4 through 7 are based on a paper co-authored by
Maribel Ferńandez, of King’s College, London.)

Contents

1 Type assignment 4
1.1 Eta reduction . 6
1.2 Subject reduction and expansion . 7

2 Approximation and normalization results 9
2.1 Approximants . 10
2.2 Approximation result . 12
2.3 Principal pairs and Semantics . 14
2.4 Normalization results . 15
2.5 Strong normalisation . 16

3 Semantics and completeness 19
3.1 Filter models . 19
3.2 Soundness and completeness of type assignment 20

4 Combinator Systems 22
4.1 CS versus LC . 24

5 Type assignment for CS 25
5.1 Operations on types . 26
5.2 Type assignment . 27
5.3 Subject reduction . 30
5.4 Derivation reduction is strongly normalising 32

6 Approximants 32
6.1 Approximation and normalization . 36

7 Semantics 38
7.1 The relation=R : equating terms through→R 38
7.2 The relation≈R : =R and equating unsolvables 39
7.3 The relation≈hnf

R : full-abstraction . 40
7.4 Filter semantics and full abstraction . 41

∗These notes contain material that appeared before, in slightly different form, in [1], [3], and [9]

1

Introduction

In the recent years several notions of type assignment for several (extended) lambda calculi
have been studied. The oldest among these is a well understood and elegantly defined notion
of type assignment on lambda terms, known as the Curry type assignment system [18]. It
expresses abstraction and application, and can be used to obtain a (basic) functional charac-
terization of terms. It is well known that in that system, the problem of typeability

Given a termM , are there a basisB and a typeσ such thatB ` M :σ?

is decidable, and that it has the principal type property:

If M is typeable, then there areP, π such thatP ` M :π, and, for everyB, σ such that
B ` M :σ, there exist a way of generating〈B, σ〉 from 〈P, π〉.

These two properties found their way into programming, mainly through the pioneering work
of R. Milner [36]. He introduced a functional programming language ML, of which the under-
lying type system is an extension of Curry’s system. The extension consists of the introduc-
tion of polymorphic functions, i.e. functions that can be applied to various kinds of arguments,
even of incomparable type. The formal motivation of this concept lies directly in the notion
of principal types.

Though the Curry system is already powerful and convenient for use in programming prac-
tice, it has drawbacks. It is, for example, not possible to assign a type to the term(λx.xx), and
terms that areβ-equal can have different principal type schemes. The Intersection Type Dis-
cipline as presented in [14] by M. Coppo, M. Dezani-Ciancaglini, and B. Venneri (a more en-
hanced system was presented in [11] by H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini)
is an extension of Curry’s system that does not have these drawbacks. The extension being
made consists mainly of allowing for term variables (and terms) to have more than one type.
Intersection types are constructed by adding, next to the type constructor ‘→’ of Curry’s sys-
tem, the type constructor ‘∩’ and the type constant ‘ω’. This slight generalization causes a
great change in complexity; in fact, now all terms having a (head) normal form can be char-
acterized by their assignable types, a property that immediately shows that type assignment
(even in the system that does not containω, see [1]) is undecidable. Also, by introducing this
extension a system is obtained that is closed underβ-equality: ifB ` M :σ andM =β N ,
thenB ` N :σ.

The type assignment system presented in [11] (the BCD-system) is based on the system as
presented in [14]. It defines the set of intersection types in a more general way by treating ‘∩’
as a general type constructor, and introduces two derivation rules for introduction and elim-
ination of intersections; the handling of intersection in this way is inspired by the similarity
between intersection and logical conjunction. A big contribution of [11] to the theory of in-
tersection types is the introduction of a filterλ-model and the proof of completeness of type
assignment; to achieve the latter, the system is strengthened further by introducing a partial
order relation ‘≤’ on types as well as adding the type assignment rule(≤).

A disadvantage of the BCD-system (and of any real intersection system, for that matter) is
that type assignment in this system is undecidable. In recent years, some decidable restric-
tions have been studied. The first was the Rank2 intersection type assignment system [4], as
first suggested by D. Leivant in [34], that is very close to the notion of type assignment as
used in ML. The key idea for this system is to restrict the set of types to those of the shape
((σ1∩ · · ·∩σn)→τ), where theσi (i ∈ n) are types that do not contain intersections.

2

That intersection types can be used as a basis for programming languages was first dis-
cussed by J. Reynolds in [40]. This led to the development of the (typed) programming lan-
guage Forsythe [41], and to the work of B.C. Pierce [38, 39], who studied intersection types
and bounded polymorphism in the field of typed lambda calculi. Because there only typed
systems are considered, the systems are decidable.

Another disadvantage of the BCD-system is that it is too general: in this system there are
several ways to deduce a desired result, due to the presence of the derivation rules(∩I), (∩E)
and (≤). These rules not only allow of superfluous steps in derivations, but also make it
possible to give essentially different derivations for the same result. Moreover, in [11] the
relation ≤ induced an equivalence relation∼ on types. Equivalence classes are big (for
example:ω ∼ (σ→ω), for all typesσ) and type assignment is closed for∼.

The BCD-system has the principal type property, as was shown in [42]; although for every
M the set{〈B, σ〉 | B ` M :σ} can be generated using operations specified in [42], the
problem of type-checking

Given a termM and typeσ, is there a basisB such thatB ` M :σ?

is complicated. This is not only due to the undecidability of the problem, but even a semi-
algorithm is difficult to define, due to the equivalence relation on types. Moreover, because of
the general treatment of intersection types, the sequence of operations needed to go from one
type to another is normally not unique.

The strict type assignment system as defined in [1] is a restriction of the system of [11];
it uses a set of strict types, that is actually the set of normalized tail-proper types of [14].
Although there are rather strong restrictions imposed, the provable results for the strict system
are very close to those for the system of [11]. For example, the sets of normalizable terms
and those having a normal form can be equally elegantly characterized. The main difference
between the two systems is that the strict system isnot closed forη-reduction, whereas the
BCD-system is.

The strict system gives rise to a strict filterλ-model that satisfies all major properties of
the filterλ-model as presented in [11], but is an essentially differentλ-model, equivalent to
Engeler’s modelDA [22]. In [1] was shown that soundness for the notion of type assignment
of [11] is lost if instead of simple type semantics, the inference type semantics is used. With
the use of the inference type semantics, in [1] soundness and completeness for strict type
assignment was proved, without having the necessity of introducing≤.

The set of types assignable to a termM in the strict system is significantly smaller than the
set of types assignable toM in the BCD-system. In particular, the problem of type checking
for the strict system is, because of the smaller equivalence classes, less complicated than for
the BCD-system.

The type assignment system as presented here was first presented in [3] (albeit in different
notation), and is a true restriction of the BCD-system that satisfies all properties of that sys-
tem, and is also an extension of Curry’s system. It will be shown that, in order to prove a
completeness result using intersection types, there is no need to be as general as in [11]; this
result can also be obtained for the system presented here. The main advantage of this system
over the BCD-system is that the set of types assignable to a term is significantly smaller. An
other advantage of the system is that derivations are syntax-directed: there is, unlike in the
BCD-system, a one-one relationship between terms and skeletons of derivations. These two
features are supported by a less complicated type structure.

3

The system presented here is also an extension of the strict type assignment system as pre-
sented in [1]. The major difference is that the system will prove to be closed forη-reduction:
If B ` M :σ andM →η N , thenB ` N :σ. This does not hold for the strict system.

Some results already known for, for example, the BCD-system, hold for the system`.

• If B ` M :σ andM →η N , thenB ` N :σ.

• If B ` M :σ andM =β N , thenB ` N :σ.

• B ` M :σ andσ 6= ω, if and only ifM has a head normal form.

• B ` M :σ andω does not occur inB andσ, if and only ifM has a normal form.

• ` has the principal type property.

The first four of these properties will be reviewed here; for the last, see [3].

Notations

In these notes, the symbolϕ will be a type-variable; Greek symbols likeα, β, µ, ρ, σ, andτ
will range over types, andπ will be used for principal types. ’→’ will be assumed to associate
to the right, and ‘∩’ binds stronger than ‘→’. M , N are used for lambda terms;C,D,E for
(arbitrary) combinators,C,D,E for concrete combinators, andt, u, v for terms in Combinator
Systems;x, y, z for term-variables,M [N/x] for the usual operation of substitution on lambda
terms,A for terms inΛ⊥-normal form, anda for approximants of combinator systems.B
is used for bases,B\x for the basis obtained fromB by erasing the statement that hasx as
subject, andP for principal bases. All symbols can appear indexed.

We will write n for the set{1, . . . , n}, and will often use a vector notation ‘⇀· ’ for the
purpose of abbreviation. For example,PMi

⇀
stands forPM1 · · ·Mn for a suitablen, and

[N1/x1, . . . , Nn/xn] is abbreviated by[Ni/xi
⇀

].
Two types (bases, pairs of basis and type) aredisjoint if and only if they have no type-

variables in common. Notions of type assignment are defined as ternary relations on bases,
terms, and types, that are denoted by`, possibly indexed if necessary. If in a notion of type
assignment forM there are basisB and typeσ such thatB ` M :σ, thenM is typed withσ,
andσ is assigned toM .

1 Type assignment

In this section a notion of type assignment system is presented that is a restricted version of
the BCD-system presented in [11], together with some of its properties. The major feature of
this restricted system is, compared to the BCD-system, a restricted version of the derivation
rules and the use of strict types. It also forms a slight extension of the strict type assignment
system that was presented in [1]; the main difference is that the strict system is not closed for
η-reduction, whereas the system presented here is.

Strict types are the types that are strictly needed to assign a type to a term in the BCD-
system. In the set of strict types, intersection type schemes and the type constantω play a
limited role. In particular,ω is taken to be the empty intersection: ifn = 0, then∩nσi ≡ ω, so
ω does not occur in an intersection subtype. Moreover, intersection type schemes (so alsoω)
occur in strict types only as subtypes at the left-hand side of an arrow type scheme, as in the
types of [12], [13], and [14].

4

Definition 1.1 (TYPES) i) Let Φ be a countable (infinite) set of type-variables, ranged over
by ϕ. Ts, the set ofstrict types, and the setT of intersection types, both ranged over by
σ, τ, . . ., are defined through:

Ts ::= ϕ | (T → Ts)

T ::= (Ts∩ · · · ∩ Ts)

We will write ω for an intersection of zero strict types, and∩nσi for the typeσ1∩ · · ·∩σn;
we will also, as usual, omit right-most, outer-most brackets.

ii) A statementis an expression of the formM :σ, withM ∈ Λ, andσ ∈ T . M is thesubject
andσ thepredicateof M :σ.

iii) The relation≤ is defined as the least pre-order (i.e. reflexive and transitive relation) on
T such that:

∩nσi ≤ σi, for all i ∈ n
τ ≤ σi, for all i ∈ n ⇒ τ ≤∩nσi

ρ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ

iv) OnT , the relation∼ is defined by:σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

Notice thatσ ≤ ω, for all σ. Unless stated otherwise, if a type is written as∩nσi, then all
σi (i ∈ n) are assumed to be strict.

For the relation≤, the following properties hold:

Lemma 1.2 i)σ ≤ τ ⇒ σ ≤ τ .
ii) ϕ≤ σ ⇐⇒ σ ≡ ϕ. So{σ | σ ∼ ϕ} = {ϕ}.

iii) ω ≤ σ ⇐⇒ σ ≡ ω. So{σ | σ ∼ ω} = {ω}.
iv) σ→τ ≤ ρ ∈ Ts ⇐⇒ ∃α ∈ T , β ∈ Ts [ρ ≡ α→β & α≤ σ & τ ≤ β].
v) ∩nσi ≤ τ ∈ Ts ⇒ ∃ i ∈ n [σi ≤ τ].

vi) σ ≤ τ ⇒ ∃σi (i ∈ n), τj (j ∈m) [σ = ∩nσi & τ = ∩mτj & ∀ j ∈m ∃ i ∈ n [σi ≤ τj]].
Proof: Easy.

Definition 1.3 (BASES) i) A basisis a partial mapping from term variables to types, normally
written as a set of statements of the shapex:σ.

ii) If Bi (i ∈ n) are bases, then∩{B1, . . . , Bn} (or∩{n}Bi) is the basis defined as follows:
x:∩mσi ∈∩{n}Bi if and only if {x:σ1, . . . , x:σm} is the set of all statements aboutx
that occur inB1 ∪ . . . ∪Bn.

iii) B ≤B′ if and only if for everyx:σ′ ∈ B′ there is anx:σ ∈ B such thatσ ≤ σ′, and
B ∼ B′ ⇐⇒ B ≤B′ ≤B.

OftenB ∪{x:σ} (orB, x:σ) will be written for the basis∩{B, {x:σ}}, whenx does not occur
in B.

Definition 1.4 (TYPE ASSIGNMENT) Type assignmentandderivationsare defined by the fol-
lowing natural deduction system (where all types displayed are strict, except forσ in the rule

5

(Ax), (→E) and(→I)):

(Ax) : (σ ≤ τ ∈ Ts)
B, x:σ ` x :τ

(∩I) :
B ` M :σ1 · · · B ` M :σn

(n≥ 0)
B ` M :∩nσi

(→I) :
B, x:σ ` M :τ

(σ ∈ T)
B ` λx.M :σ→τ

(→E) :
B ` M :σ→τ B ` N :σ

B ` MN :τ

B ` M :σ is used if this statement is derivable using a strict intersection derivation, and
D :: B ` M :σ specifies that this result was obtained through the derivation D.

For this notion of type assignment, the following properties hold:

Lemma 1.5 i)B ` x :σ ⇐⇒ ∃ρ ∈ T [x:ρ ∈ B & ρ≤ σ].
ii) B ` MN :σ & σ ∈ Ts ⇐⇒ ∃τ ∈ T [B ` M :τ→σ & B ` N :τ].

iii) B ` λx.M :σ ⇐⇒ ∃ρ ∈ T , µ ∈ Ts [σ = ρ→µ & B, x:ρ ` M :µ].
iv) B ` M :σ & σ ∈ T ⇐⇒ ∃σi (i ∈ n) [σ = ∩nσi & ∀ i ∈ n [B ` M :σi]].
v) B ` M :σ ⇐⇒ {x:τ ∈ B | x ∈ fv(M)} ` M :σ.

vi) B ` M :σ & B′ ≤B ⇒ B′ ` M :σ.
vii) B ` M :σ ⇒ {x:ρ | x:ρ ∈ B & x ∈ fv(M)} ` M :σ.

Proof: Easy.

1.1 Eta reduction

Although the rule(Ax) is defined only for term-variables,̀is closed for≤ and weakening.

Lemma 1.6(WEAKENING) If B ` M :σ andB′ ≤B, σ ≤ τ , thenB′ ` M :τ , so the following
is an admissible rule iǹ :

(≤) :
B ` M :σ

(B′ ≤B, σ ≤ τ)
B′ ` M :τ

Proof: By induction oǹ .
(Ax) : ThenM ≡ x, and there isx:ρ ∈ B such thatρ≤ σ. SinceB′ ≤B, there isx:µ ∈ B′

such thatµ≤ ρ. Notice thatµ≤ ρ≤ σ ≤ τ , so, by Lemma1.5(i),B′ ` x :τ .
(→I) : ThenM ≡ λx.M ′, and there areρ ∈ T , µ ∈ Ts such thatσ = ρ→µ and

B, x:ρ ` M ′ :µ. By Lemma1.2(vi)& (iv) there areρi, µi (i ∈ n) such that
τ = ∩n(ρi→µi), and fori ∈ n, ρi ≤ ρ andµ≤ µi. SinceB′ ≤B andρi ≤ ρ, also
B′, x:ρi ≤B, x:ρ, and by inductionB, x:ρi ` M ′ :µi. So, by(→I), for everyi ∈ n,
B ` λx.M ′ :ρi→µi, so, by(∩I),B ` λx.M ′ :τ .

(→E) : ThenM ≡M1M2 and there is aµ ∈ T such thatB ` M1 :µ→σ andB ` M2 :µ.
Sinceσ ≤ τ , alsoµ→σ ≤ µ→τ and, by induction,B ` M1 :µ→τ . Then, by(→E),
B ` M1M2 :τ .

(∩I) : Thenσ = ∩nσi, and, for everyi ∈ n,B ` M :σi. By Lemma1.2(vi), there are
τj (j ∈m) such thatτ = ∩mτj and, for everyj ∈m, there is ai ∈ n such thatσi ≤ τj.
By induction, for everyj ∈m,B′ ` M :τj. But then, by(∩I),B′ ` M :τ .

6

Now it is easy to prove that type assignment in this system is closed underη-reduction. The
proof for this result is split in two parts, Lemma1.7and Theorem1.8. The lemma is also used
in the proof of Lemma2.7.

Lemma 1.7 Ifτ ∈ Ts,B, x:σ ` Mx :τ andx 6∈ fv(M) thenB ` M :σ→τ .

Proof: τ ∈ Ts & B, x:σ ` Mx :τ & x 6∈ fv(M) ⇒ (→E)

∃µ [B, x:σ ` M :µ→τ & B, x:σ ` x :µ & x 6∈ fv(M)] ⇒ (1.5(i))
∃µ [B, x:σ ` M :µ→τ & σ ≤ µ & x 6∈ fv(M)] ⇒ (1.5(vii))
∃µ [B ` M :µ→τ & σ ≤ µ] ⇒ (1.1(iii))
∃µ [B ` M :µ→τ & µ→τ ≤ σ→τ] ⇒ (1.6)

B ` M :σ→τ .

Theorem 1.8 (` CLOSED FORη-REDUCTION) If B ` M :σ andM →η N , thenB ` N :σ.

Proof: By induction on the definition of→η , of which only the partλx.Mx→ηM is
shown, wherex does not occur free inM . The other parts are dealt with by straightforward
induction.
(σ ∈ Ts) : Then: B ` λx.Mx :σ & x 6∈ fv(M) ⇒ (→I)

∃ρ, µ [σ = ρ→µ & B, x:ρ ` Mx :µ] ⇒ (1.7)

B ` M :σ.

(σ = ∩nσi) : Then, by(∩I),B ` λx.Mx :σi for all i ∈ n, so, by the previous part,
B ` M :σi, so, by(∩I),B ` M :σ.

By the structure of this proof, below we will normally focus on strict types when proving
properties.

For example,∅ ` λxy.xy : (σ→τ)→σ∩ρ→τ and∅ ` λx.x : (σ→τ)→σ∩ρ→τ are both easy
to derive.

x :σ→τ , y :σ∩ρ ` x :σ→τ
(σ∩ρ≤ σ)

x :σ→τ , y :σ∩ρ ` y :σ

x :σ→τ , y :σ∩ρ ` xy :τ

x :σ→τ ` λy.xy :σ∩ρ→τ

∅ ` λxy.xy : (σ→τ)→σ∩ρ→τ

x :σ→τ ` x :σ∩ρ→τ
(σ→τ ≤ σ∩ρ→τ)

∅ ` λx.x : (σ→τ)→σ∩ρ→τ

1.2 Subject reduction and expansion

As in [13, 11, 1], it is possible to prove that the type assignment system is closed under=β.
In the latter two papers this result was obtained by building a filterλ-model; from the fact that
everyM is interpreted by the set of its assignable types, and that set is a filter, the result is
then immediate (see also Corollary3.13). In this paper the result will first be obtained directly,
without constructing a filter model; in this way the precise behaviour of the type constructor
‘∩’ and the type constantω can be made apparent.

That the system is closed under subject reduction can be illustrated also by the following
‘Cut and Paste’ proof: Suppose thatB ` (λx.M)N :σ, with σ ∈ Ts. By (→E), there existsτ

7

such that
B ` λx.M :τ→σ andB ` N :τ.

Since(→I) should be the last step performed for the first result, also

B, x:τ ` M :σ andB ` N :τ.

Now there are (strict) typesρj (j ∈m) such that, for everyρj, in the first derivation, there
exists a sub-derivation of the shape

(Ax)
B, x:τ ` x :ρj

and these are all the applications of rule(Ax) that deal withx. Then, for allj ∈m, τ ≤ ρj and,
by Lemma1.6, B ` N :ρj. Then a derivation forB ` M [N/x] :σ can be obtained by replac-
ing, for everyj ∈m, in the derivation forB, x:τ ` M :σ, the sub-derivationB, x:τ ` x :ρj by
the (new) derivation forB ` N :ρj.

The problem to solve in a proof for closure underβ-equality is then that ofβ-expansion:

if B ` M [N/x] :σ, thenB ` (λx.M)N :σ.

Assume that the term-variablex occurs inM and the termN is a sub-term ofM [N/x], so
N is typed in the derivation for D:: B ` M [N/x] :σ, probably with several different types
σi (i ∈ n). A derivation for

B, x:∩nσi ` M :σ

can be obtained by replacing, in D, all derivations forB ` N :σi by the derivation for

{x:∩nσi} ` x :σi.

Then, using(∩I), B ` N :∩nσi, and, using(→I), B ` λx.M :∩nσi→σ. Then, using(→E),
the redex can be typed.

When the term-variablex does not occur inM , the termN is a not a sub-term ofM [N/x]
andB ` M [N/x] :σ stands forB ` M :σ. In this case, the typeω is used: sincex does not
occur inM , x:ω can be assumed to appear inB, and rule(→I) givesB ` λx.M :ω→σ. By
(∩I),B ` N :ω, so, using(→E), the redex can be typed.

To show this result formally, first a substitution lemma is proved. Notice that, unlike for
many other notions of type assignment (Curry’s system, the polymorphic type discipline [24]),
the implication holds in both directions.

Lemma 1.9(SUBSTITUTION LEMMA) ∃ρ [B, x:ρ ` M :σ & B ` N :ρ] ⇐⇒ B ` M [N/x] :σ.

Proof: By induction onM . Only the caseσ ∈ Ts is considered.
(M ≡ x) : (⇒) : ∃ρ [B, x:ρ ` x :σ & B ` N :ρ] ⇒ (1.5(i))

∃ρ [ρ≤ σ & B ` N :ρ] ⇒ (1.6)

B ` x[N/x] :σ.

(⇐) : B ` x[N/x] :σ ⇒ B ` N :σ; takeρ = σ.
(M ≡ y 6= x) : (⇒) : By Lemma1.5(vii), sincey[N/x] ≡ y.

(⇐) : B ` y[N/x] :σ ⇒ B ` y :σ; takeρ = ω.

8

(M ≡ λy.M ′) : (⇐⇒) : ∃ρ [B, x:ρ ` λy.M :σ & B ` N :ρ] ⇐⇒ (→I)
∃ρ, α, β [B, x:ρ, y:α ` M :β & σ = α→β & B ` N :ρ] ⇐⇒ (IH)

∃α, β [B, y:α ` M [N/x] :β & σ = α→β] ⇐⇒ (→I)
B ` λy.(M [N/x]):σ ⇐⇒
B ` (λy.M)[N/x] :σ.

(M ≡M1M2) : (⇒) : ∃ρ [B, x:ρ ` M1M2 :σ & B ` N :ρ] ⇐⇒ (→E)

∃ρ, τ [B, x:ρ ` M1 :τ→σ & B, x:ρ ` M2 :τ & B ` N :ρ] ⇐⇒ (IH)

∃τ [B ` M1[N/x] :τ→σ & B ` M2[N/x] :τ] ⇐⇒ (→E)

B ` M1[N/x]M2[N/x] :σ ⇐⇒
B ` (M1M2)[N/x] :σ

(⇐) : B ` M1M2[N/x] :σ ⇒
B ` M1[N/x]M2[N/x] :σ ⇐⇒ (→E)

∃τ [B ` M1[N/x] :τ→σ & B ` M2[N/x] :τ] ⇐⇒ (IH)

∃ρ1, ρ2, τ [B, x:ρi ` M1 :τ→σ & B ` N :ρ1 & B, x:ρ2 ` M2 :τ & B ` N :ρ2]

⇒ (ρ = ρ1∩ρ2 & (∩I) & 1.5(vi))
∃ρ [B, x:ρ ` M1M2 :σ & B ` N :ρ].

Theorem 1.10 (` CLOSED FOR=β) M =β N ⇒ (B ` M :σ ⇐⇒ B ` N :σ), so the follow-
ing rule is an admissible rule iǹ:

(=β) :
B ` M :σ

(M =β N)
B ` N :σ

Proof: By induction on the definition of=β. The only part that needs attention is that of a
redex,B ` (λx.M)N :σ ⇐⇒ B ` M [N/x] :σ, whereσ ∈ Ts; all other cases follow by
straightforward induction. To conclude, notice that, ifB ` (λx.M)N :σ, then, by(→E) and
(→I), there exists aρ such thatB, x:ρ ` M :σ andB ` N :ρ; the converse of this result
holds, obviously, as well. The result then follows by applying Lemma1.9.

2 Approximation and normalization results

In [42] an approximation theorem is proved for the BCD-system, that formulates the relation
between the types assignable to a term and those assignable to its approximants, as defined in
[46] (see Definition2.1below):

B ` M :σ if and only if there existsA ∈ A(M) such thatB ` A :σ.

In this section, we will show this property for the system presented here. In [42] this result
is obtained through a normalization of derivations, where all(→I)–(→E) pairs, that derive
a type for a redex(λx.M)N , are replaced by one for its reductM [N/x], and all pairs of
(∩I)–(∩E) are eliminated. (This technique is also used in [13] and [11]. It requires a rather
difficult notion of length of a derivation to show that this process terminates.) In this paper, the
approximation theorem will be proved using the reducibility technique, following Tait [44], as
was done in [15], and [20].

With this result, it can be shown that the BCD-system is conservative over the system
presented here, and proven that the set of all terms having a (head) normal form are typeable
in ` (with a type withoutω-occurrences) (Theorem2.21).

9

2.1 Approximants

The notion of approximant was first presented by C. Wadsworth [46] and is defined using the
notion of terms inΛ⊥-normal form (like in [10],⊥ is used, instead ofΩ; also, the symbol
v is used as a relation onΛ⊥-terms, inspired by a similar relation defined on Böhm-trees in
[10]).

Definition 2.1 (APPROXIMATE NORMAL FORMS) i) The set ofΛ⊥ -termsis defined as the setΛ
of lambda terms, extended by:⊥ ∈ Λ⊥.

ii) The notion of reduction→β⊥ is defined as→β , extended by:

λx.⊥ →β⊥ ⊥
⊥M →β⊥ ⊥

iii) The set ofnormal forms for elements ofΛ⊥with respect to→β⊥ is the setN of Λ⊥-
normal formsor approximate normal forms, ranged over byA and is defined by:

A ::= ⊥ | λx.A (A 6= ⊥) | xAi
⇀

(n≥ 0)

The type assignment rules of the system are generalized to terms containing⊥ by allowing for
the terms to be elements ofΛ⊥. This implies that, because type assignment is almost syntax
directed, if⊥ occurs in a termM andB ` M :σ, then eitherσ = ω, or in the derivation for
M :σ,⊥ appears in the right hand sub-term of an application, and this right-hand term is typed
with ω. Moreover, the termsλx.⊥ and⊥Mi

⇀
are typeable byω only.

Definition 2.2 (APPROXIMANTS) i) The partial order∼ ⊆ (Λ⊥)2 is defined as the transitive
and reflexive closure of:

⊥ ∼ M

M ∼ M ′ ⇒ λx.M ∼ λx.M ′

M1 ∼ M ′
1 & M2 ∼ M ′

2 ⇒ M1M2 ∼ M ′
1M

′
2

ii) ForA ∈ N,M ∈ Λ, if A ∼ M , thenA is adirect approximantof M .
iii) The relationv ⊆ N × Λ is defined by:A vM ⇐⇒ ∃M ′ =β M [A ∼ M ′].
iv) If AvM , thenA is anapproximantof M .
v) A(M) = {A ∈ N | A vM}.

Lemma 2.3B ` M :σ & M ∼ M ′ ⇒ B ` M ′ :σ.

Proof: By easy induction on the definition of∼ ; the base case,⊥ ∼ M ′, follows from the
fact that thenσ = ω.

The following properties of approximants hold:

Lemma 2.4 i) IfA ∈ A(xMi
⇀

) andA′ ∈ A(N), thenAA′ ∈ A(xMi
⇀
N).

ii) If A ∈ A(Mz) andz 6∈ fv(M), then either:
– A ≡ A′z, z 6∈ fv(A), andA′ ∈ A(M), or
– λz.A ∈ A(M).

iii) If M =β N , thenA(M) = A(N).

10

Proof: Easy.

The following definition introduces an operation of join onΛ⊥-terms.

Definition 2.5 i) On Λ⊥, the partial mappingjoin, t : Λ⊥ × Λ⊥ → Λ⊥, is defined by:

⊥tM ≡ Mt⊥ ≡M
xtx ≡ x

(λx.M)t(λx.N) ≡ λx.(MtN)

(M1M2)t(N1N2) ≡ (M1tN1) (M2tN2)

ii) If MtN is defined, thenM andN are calledcompatible.

Note that⊥ can be defined as the empty join, i.e. ifM ≡M1t · · · tMn, andn = 0, then
M ≡ ⊥.

The last alternative in the definition oft defines the join on applications in a more general
way than Scott’s, that would state that

(M1M2)t(N1N2)v (M1tN1)(M2tN2),

since it is not always sure if a join of two arbitrary terms exists. However, this more general
definition will only be used on terms that are compatible, so the conflict is only apparent.

The following lemma shows that the join acts as least upper bound of compatible terms.

Lemma 2.6 IfM1 vM , andM2 vM , thenM1tM2 is defined, andM1 vM1tM2, M2 v
M1tM2, andM1tM2 vM .

Proof: By induction on the definition ofv .
i) If M1 ≡ ⊥, thenM1tM2 ≡M2, soM1 vM1tM2,M2 vM1tM2, and
M1tM2 vM2 vM . (The caseM2 ≡ ⊥ goes similarly.)

ii) If M1 ≡ λx.N1, thenM ≡ λx.N ,N1 vN , and eitherM2 = ⊥ orM2 ≡ λx.N2. The
first case has been dealt with in part(i), and for the other: thenN2 vN . Then, by
induction,N1 vN1tN2,N2 vN1tN2, andN1tN2 vN . Then also
λx.N1 v λx.N1tN2, λx.N2 v λx.N1tN2, andλx.N1tN2 v λx.N . Notice that
λx.N1tN2 ≡ (λx.N1)t(λx.N2).

iii) If M1 ≡ P1Q1, thenM ≡ PQ, P1 v P ,Q1 vQ, and eitherM2 = ⊥ orM2 ≡ P2Q2.
The first case has been dealt with in part(i), and for the other: thenP2 v P ,Q2 vQ.
By induction, we knowP1 v P1tP2, P2 v P1tP2, andP1tP2 v P , as well as
Q1 vQ1tQ2,Q2 vQ1tQ2, andQ1tQ2 vQ. Then alsoP1Q1 v (P1tP2)(Q1tQ2),
P2Q2 v (P1tP2)(Q1tQ2), and(P1tP2)(Q1tQ2)v PQ. Notice that
(P1tP2)(Q1tQ2) ≡ (P1Q1)t(P2Q2).

Notice that, because of2.4(iii), A(M) can be used to define a semantics for the Lambda
Calculus. In fact, it is possible to show that

⊔{A | A ∈ A(M)} = BT(M)

whereBT(M) stands for theBöhm treeof M , a tree that represents the (possible infinite)
normal form ofM (see [10]).

11

2.2 Approximation result

In this subsection, the approximation theorem will be proved; the technique used differs
slightly from that of [3]. For reasons of readability, in this subsection∃A ∈ A(M) [B ` A :σ]
will be abbreviated byAppr(B,M, σ).

The following basic properties are needed further on.

Lemma 2.7 i)Appr(B, xMi

⇀
, σ→τ) & Appr(B,N, σ) ⇒ Appr(B, xMi

⇀
N, τ).

ii) Appr(B ∪ {z:σ},Mz, τ) & z 6∈ fv(M) & τ ∈ Ts ⇒ Appr(B,M, σ→τ).

iii) Appr(B,M [N/x]
⇀
P , σ) ⇒ Appr(B, (λx.M)N

⇀
P , σ).

Proof: i) A ∈ A(xMi
⇀

) & B ` A :σ→τ & A′ ∈ A(N) & B ` A′ :τ ⇒ (2.4(i) & (→E))

AA′ ∈ A(xMi

⇀
N) & B ` AA′ :τ.

ii) A ∈ A(Mz) & B, z:σ ` A :τ & z 6∈ fv(M) ⇒ (2.4(ii))
a) A ≡ A′z & z 6∈ fv(A′) & A′ ∈ A(M) & B, z:σ ` A′z :τ ⇒ (1.7)

A′ ∈ A(M) & B ` A′ :σ→τ .
b) λz.A ∈ A(M) & B, z:σ ` A :τ ⇒ λz.A ∈ A(M) & B ` λz.A :σ→τ .

iii) SinceM [N/x]
⇀
P =β (λx.M)N

⇀
P , the result follows by Lemma2.4(iii).

In order to prove, that for each term typeable in`, an approximant with the same type can
be found, a notion of computability is introduced.

Definition 2.8 (COMPUTABILITY PREDICATE) Comp(B,M, ρ) is inductively defined by:
i) Comp(B,M,ϕ) ⇐⇒ Appr(B,M,ϕ).

ii) Comp(B,M, σ→τ) ⇐⇒ (Comp(B′, N, σ) ⇒ Comp(∩{B,B′},MN, τ)).
iii) Comp(B,M,∩nσi) ⇐⇒ ∀ i ∈ n [Comp(B,M, σi)].

Notice thatComp(B,M, ω) holds as special case of part(iii) .

Lemma 2.9 If Comp(B,M, σ), andB′′ ≤B, then Comp(B′′,M, σ).

Proof: By induction on the definition ofComp(·).
(σ = ϕ) : Comp(B,M,ϕ) & B′′ ≤B ⇒ Appr(B,M,ϕ) ⇒

Appr(B′′,M, ϕ) ⇒ Comp(B′′,M, ϕ).

(σ = α→β) : Comp(B,M,α→β) ⇒ (2.8(ii))
(Comp(B′, Q, α) ⇒ Comp(∩{B,B′},MQ, β)) ⇒ (IH)

(Comp(B′, Q, α) ⇒ Comp(∩{B′′, B′},MQ, β)) ⇒ (2.8(ii))
Comp(B′′,M, α→β).

(σ = ∩nσi) : Comp(B,M,∩nσi) ⇒ (2.8(iii))
∀ i ∈ n [Comp(B,M, σi)] ⇒ (IH)

∀ i ∈ n [Comp(B′′,M, σi)] ⇒ (2.8(iii))
Comp(B′′,M,∩nσi).

We will now show that the computability predicate is closed for≤.

Lemma 2.10 Takeσ andτ such thatσ ≤ τ . Then Comp(B,M, σ) ⇒ Comp(B,M, τ).

Proof: By straightforward induction on the definition of≤.

12

(∩nσi ≤ σi (i ∈ n)) : Comp(B,M,∩nσi) ⇒ (2.8(iii)) Comp(B,M, σi).
(τ ≤ σi (i ∈ n) ⇒ τ ≤∩nσi) : Comp(B,M, τ) ⇒ (IH)

Comp(B,M, σi) (i ∈ n) ⇒ (2.8(iii)) Comp(B,M,∩nσi).
(ρ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ) : Comp(B,M, σ→τ) ⇒ (2.8(ii))

(Comp(B′, N, σ) ⇒ Comp(∩{B,B′},MN, τ)) ⇒ (IH 2×)

(Comp(B′, N, ρ) ⇒ Comp(B′, N, σ) ⇒
Comp(∩{B,B′},MN, τ) ⇒ Comp(∩{B,B′},MN, µ)) ⇒

(Comp(B′, N, ρ) ⇒ Comp(∩{B,B′},MN, µ)) ⇒ (2.8(ii))
Comp(B,M, ρ→µ).

We will now show that the computability predicate is closed forβ-expansion

Lemma 2.11 Comp(B,M [N/x]
⇀
P , σ) ⇒ Comp(B, (λx.M)N

⇀
P , σ).

Proof: By induction on the definition ofComp(·).
(σ = ϕ) : Comp(B,M [N/x]

⇀
P , ϕ) ⇒ Appr(B,M [N/x]

⇀
P , ϕ) ⇒ (2.7(iii))

Appr(B, (λx.M)N
⇀
P , ϕ) ⇒ Comp(B, (λx.M)N

⇀
P , ϕ).

(σ = α→β) : Comp(B,M [N/x]
⇀
P , α→β) ⇒ (2.8(ii))

(Comp(B′, Q, α) ⇒ Comp(∩{B,B′},M [N/x]
⇀
PQ, β)) ⇒ (IH)

(Comp(B′, Q, α) ⇒ Comp(∩{B,B′}, (λx.M)N
⇀
PQ, β)) ⇒ (2.8(ii))

Comp(B, (λx.M)N
⇀
P , α→β).

(σ = ∩nσi) : Comp(B,M [N/x]
⇀
P ,∩nσi) ⇒ (2.8(iii))

∀ i ∈ n [Comp(B,M [N/x]
⇀
P , σi)] ⇒ (IH)

∀ i ∈ n [Comp(B, (λx.M)N
⇀
P , σi)] ⇒ (2.8(iii))

Comp(B, (λx.M)N
⇀
P ,∩nσi).

The following theorem essentially shows that all term-variables are computable of any type,
and that all terms computable of a certain type have an approximant with that same type.

Theorem 2.12 i) Appr(B, xMi
⇀
, ρ) ⇒ Comp(B, xMi

⇀
, ρ).

ii) Comp(B,M, ρ) ⇒ Appr(B,M, ρ).

Proof: Simultaneously by induction on the structure of types. The only interesting case is
whenρ = σ→τ ; whenρ is a type-variable, the result is immediate and when it is an
intersection type, it is dealt with by induction.

i) Appr(B, xMi

⇀
, σ→τ) ⇒ (IH (ii))

(Comp(B′, N, σ) ⇒ Appr(B, xMi
⇀
, σ→τ) & Appr(B′, N, σ)) ⇒ (2.7(i))

(Comp(B′, N, σ) ⇒ Appr(∩{B,B′}, xMi
⇀
N, τ)) ⇒ (IH (i))

(Comp(B′, N, σ) ⇒ Comp(∩{B,B′}, xMi
⇀
N, τ)) ⇒ (2.8(ii))

Comp(B, xMi

⇀
, σ→τ).

ii) Comp(B,M, σ→τ) & z 6∈ fv(M) ⇒ (IH (i))

Comp(B,M, σ→τ) & Comp({z:σ}, z, σ) & z 6∈ fv(M) ⇒ (2.8(ii))
Comp(∩{B, {z:σ}},Mz, τ) & z 6∈ fv(M) ⇒ (IH (ii))

Appr(∩{B, {z:σ}},Mz, σ) & z 6∈ fv(M) ⇒ (2.7(ii))
Appr(B,M, σ→τ).

13

Notice that, as a corollary of the first of these two results, we get that term-variables are
computable for any type.

Corollary 2.13 Comp({x:σ}, x, σ), for all x, σ.

Theorem 2.14 If {x1:µ1, . . . , xn:µn} ` M :σ, and, for everyi ∈ n, Comp(Bi, Ni, µi), then

Comp(∩{B1, . . . , Bn},M [Ni/xi
⇀

], σ).

Proof: By induction on the structure of derivations; let{x1:µ1, . . . , xn:µn} = B0, and
B0 =∩{B1, . . . , Bn}.
(Ax) : ThenM ≡ xj, for somej ∈ n, µj ≤ σ, andM [Ni/xi

⇀
] ≡ xj[Ni/xi

⇀
] ≡ Nj. From

Comp(Bj, Nj, µj), by Lemma2.10, alsoComp(Bj, Nj, σ), and, sinceB0 ≤Bj, by
Lemma 2.9, alsoComp(B0, Nj, σ).

(→I) : ThenM ≡ λy.M ′, σ = ρ→τ , andB0, y:ρ ` M ′ :τ .
∀ i ∈ n [Comp(Bi, Ni, µi)] & B0, y:ρ ` M ′ :τ ⇒ (IH)

(Comp(B′, N, ρ) ⇒ Comp(∩{B0, B′},M ′[Ni/xi
⇀
, N/y], τ)) ⇒ (2.11)

(Comp(B′, N, ρ) ⇒ Comp(∩{B0, B′}, (λy.M ′[Ni/xi
⇀

])N, τ)) ⇒ (2.8(ii))

Comp(B0, (λy.M ′)[Ni/xi
⇀

], ρ→τ).

(→E) : ThenM ≡M1M2,B0 ` M1 :ρ→σ, andB0 ` M2 :ρ.
∀ i ∈ n [Comp(Bi, Ni, µi)] & B0 ` M1 :ρ→σ & B0 ` M2 :ρ ⇒ (IH)

Comp(B0,M1[Ni/xi
⇀

], ρ→σ) & Comp(B0,M2[Ni/xi
⇀

], ρ) ⇒ (2.8(ii))

Comp(B0, (M1M2)[Ni/xi
⇀

], σ).

(∩I) : Straightforward by induction.

As for the BCD-system and the strict system, the relation between types assignable to a
lambda term and those assignable to its approximants can be formulated as follows:

Theorem 2.15 (APPROXIMATION THEOREM) B ` M :σ ⇐⇒ ∃A ∈ A(M) [B ` A :σ].

Proof: (⇒) : B ` M :σ ⇒ (2.14& 2.13) Comp(B,M, σ) ⇒ (2.12(ii))
∃A ∈ A(M) [B ` A :σ].

(⇐) : LetA ∈ A(M) be such thatB ` A :σ. SinceA ∈ A(M), there is anM ′ such that
M ′ =β M andA ∼ M ′. Then, by Lemma2.3,B ` M ′ :σ and, by Theorem1.10, also
B ` M :σ.

2.3 Principal pairs and Semantics

For terms inN, a notion of principal pair can be defined as follows:

Definition 2.16 (PRINCIPAL PAIR) i) Let A ∈ N. ppE(A), theprincipal pair of A, is defined
by:
a) ppE(⊥) = 〈, ω〉.
b) ppE(x) = 〈{x:ϕ}, ϕ〉.
c) If A 6= ⊥, andppE(A) = 〈P, π〉, then:

1) If x occurs free inA, andx:σ ∈ P , thenppE(λx.A) = 〈P\x, σ→π〉.
2) OtherwiseppE(λx.A) = 〈P, ω→π〉.

14

d) If for i ∈ n, ppE(Ai) = 〈Pi, πi〉 (disjoint in pairs), then

ppE(xAi
⇀

) = 〈∩{P1, . . . , Pn, {x:π1→· · ·→πn→ϕ}}, ϕ〉,

whereϕ is a type-variable that does not occur inppE(Ai), for i ∈ n.
ii) P = {〈P, π〉 | ∃A ∈ N [ppE(A) = 〈P, π〉]}.

The definition is brought to arbitrary terms via:

Definition 2.17 ([3]) i) Let M be a term. LetΠ(M) be the set of all principal pairs for all
approximants ofM : Π(M) = {ppE(A) | A ∈ A(M)}.

ii) Π(M) is an ideal inP, and therefore:
a) If Π(M) is finite, then there exists a pair〈P, π〉 =

⊔
Π(M), where〈P, π〉 ∈ P. This

pair is then called the principal pair ofM .
b) If Π(M) is infinite,

⊔
Π(M) does not exist inP. The principal pair ofM is then the

infinite set of pairsΠ(M).

That this gives indeed theprincipal pair for a termM is shown in [3].
Like in [13, 42, 2], it can be proved that there exists a precise relation between terms in

N and principal pairs, both equipped with an appropriate ordering. Here, the relation≺≺ on
pairs as given below is used.

Definition 2.18 ([3]) The relation on pairs≺≺ is defined by:
i) 〈B, σ〉 ≺≺ 〈∅, ω〉.

ii) ∀ i ∈ n (n ≥ 2) [〈Bi, σi〉 ≺≺ 〈B′i, σ′i〉] ⇒ 〈∩{n}Bi,∩nσi〉 ≺≺ 〈∩{n}B′i,∩nσ′i〉.
iii) 〈B ∪{x:ρ}, µ〉 ≺≺ 〈B′ ∪{x:ρ′}, µ′〉 ⇒ 〈B, ρ→µ〉 ≺≺ 〈B′, ρ′→µ′〉.
iv) ∀ i ∈ n [〈Bi, σi〉 ≺≺ 〈B′i, σ′i〉] ⇒ 〈∩{B1, . . . , Bn, {x:σ1→· · ·→σn→σ}}, σ〉 ≺≺
〈∩{B′1, . . . , B′n, {x:σ′1→· · ·→σ′n→σ}}, σ〉.

The following result links the approximant semantics to principal types.

Theorem 2.19 ([3]) 〈P ,��〉 is a meet semi-lattice isomorphic to〈N,∼〉.

2.4 Normalization results

To prepare the characterization of terms by their assignable types, first is proved that a term
in Λ⊥-normal form is typeable withoutω, if and only if it does not contain⊥. This forms the
basis for the result that all normalizable terms are typeable withoutω.

Lemma 2.20 i) IfB ` A :σ andB, σ areω-free, thenA is⊥-free.
ii) If A is⊥-free, then there areω-freeB andσ, such thatB ` A :σ.

Proof: By induction onA.
i) As before, only the partσ ∈ Ts is shown.

(A ≡ ⊥) : Impossible, since⊥ is only typeable byω.
(A ≡ λx.A′) : Thenσ = α→β, andB, x:α ` A :β. SinceB, σ areω-free, so are

B, x:α andβ, so, by induction,A′ is⊥-free, so alsoλx.A′ is⊥-free.

15

(A ≡ xAi
⇀

) : Then, by(→E) and(Ax), there areσi (i ∈ n), τj (j ∈ n), τ , such that
x:τ1→· · ·→τn→τ ∈ B, for everyi ∈ n,B ` Ai :σi, andτ1→· · ·→τn→τ ≤
σ1→· · ·→σn→σ. So, especially, for everyi ∈ n, σi ≤ τi. By Theorem1.8, also for
everyi ∈ n,B ` Ai :τi. Since eachτi occurs inB, all areω-free, so by induction
eachAi is⊥-free. Then alsoxAi

⇀
is⊥-free.

ii) a) A ≡ λx.A′. By induction there areB, τ such thatB ` A′ :τ andB, τ areω-free. If
x does not occur inB, take anω-freeσ ∈ Ts. Otherwise, there existx:σ ∈ B, andσ
is ω-free. In any case,B\x ` λx.A′ :σ→τ , andB\x andσ→τ areω-free.

b) A ≡ xAi
⇀

, with (n ≥ 0). By induction there areBi (i ∈ n) andσi (i ∈ n) such that
for everyi ∈ n,Bi ` Ai :σi, andBi, σi areω-free. Takeσ strict, such thatω does
not occur inσ, andB =∩{B1, . . . , Bn, {x:σ1→· · ·→σn→σ}}. ThenB ` xAi

⇀
:σ,

andB andσ, areω-free.

Now, as in [1] for the strict system, it is possible to prove that the type assignment system
satisfies the main properties of the BCD-system.

Theorem 2.21 (NORMALISATION) i) ∃B, σ [B ` M :σ & B, σ ω-free] ⇐⇒ M has a normal
form.

ii) ∃B, σ ∈ Ts [B ` M :σ] ⇐⇒ M has a head normal form.

Proof: i) (⇒) : If B ` M :σ, then, by Theorem2.15, ∃A ∈ A(M) [B ` A :σ]. Because of
Lemma2.20(i), thisA is⊥-free. By Definition2.1, there existsM ′ =β M such that
AvM ′. SinceA is⊥-free, in factA ≡M ′, soM ′ itself is in normal form, so,
especially,M has a normal form.

(⇐) : If M ′ is the normal form ofM , then it is a⊥-free approximate normal form.
Then, by Lemma2.20(ii), there areω-freeB, σ such thatB ` M ′ :σ. Then, by
Theorem1.10,B ` M :σ.

ii) (⇒) : If B ` M :σ, then, by Theorem2.15, ∃A ∈ A(M) [B ` A :σ]. By
Definition2.1, there existsM ′ =β M such thatAvM . Sinceσ ∈ Ts, A 6≡ ⊥, soA
is eitherλx.A1 or xAi

⇀
, with n ≥ 0. SinceAvM ′,M ′ is eitherλx.M1, orxMi

⇀
.

ThenM has a head-normal form.
(⇐) : If M has a head-normal form, then there existsM ′ =β M such thatM ′ is either

λx.M1 or xMi
⇀

, with eachMi ∈ Λ.
1) M ′ ≡ λx.M1. SinceM1 is in head-normal form, by induction there are

B, σ ∈ Ts such thatB ` M1 :σ. If x:τ ∈ B, thenB\x ` λx.M1 :σ→τ ,
otherwiseB ` λx.M1 :ω→τ .

2) M ′ ≡ xMi

⇀
, (n ≥ 0). Takeσ ∈ Ts, then{x:ω→· · ·→ω→σ} ` xMi

⇀
:σ.

2.5 Strong normalisation

The other well-know result

B ` M :σ without usingω ⇐⇒ M is strongly normalisable

also holds, but needs a seperate proof in that it is not a consequence of the Approximation
Theorem2.15. See [1] for a proof for this property for the BCD system that follows very much
the structure of the proof of Theorem2.15, which could be applied directly here. Alternatively,

16

see [5] for a proof for the strict system where it is a direct consequence of the result that cut-
elimination is strongly normalizable; this technique has not yet been extended to the system
considered here.

We will now give an alternative proof. We shall prove that, when omega is removed from
the system, every typeable term is strongly normalisable. This will be done using Tait-Girard’s
method.

In the sequel, we will accept the following without proof:

Fact 2.1 i) If xMi
⇀

andN are strongly normalizable, then so isxMi
⇀
N .

ii) If M [N/x]
⇀
P andN are strongly normalizable, then so is(λx.M)N

⇀
P .

We useSN for the set of strongly normalisable terms.

Definition 2.22 We define the setReddρc inductively over types by:

Reddϕc = SN
Reddσ→τ c = {M | ∀N [N ∈ Reddσc ⇒ MN ∈ Reddτ c]}
Redd∩nσic =

⋂
1≤i≤nReddσic.

We now show that reducibility implies strongly normalisability, and that all term variables
are reducible. For the latter, we need to show that all typeable strongly normalisable terms
that start with a term variable are reducible. The result then follows from the fact that each
term variable is trivially strongly normalisable and that we can type any term variable with
any type.

Lemma 2.23 For allρ,
i) Reddρc ⊆ SN .

ii) xN
⇀
∈ SN ⇒ xN

⇀
∈ Reddρc.

Proof: By simultaneous induction on the structure of types, using Definition2.22.
i) (ϕ) : Immediate.

(σ→τ) : M ∈ Reddσ→τ c ⇒ (IH(ii)) x ∈ Reddσc & M ∈ Reddσ→τ c ⇒ (2.22)
Mx ∈ Reddτ c ⇒ (IH(i)) Mx ∈ SN ⇒ M ∈ SN .

(∩nσi) : M ∈ Redd∩nσic ⇒ (2.22) M ∈ Reddσic ⇒ (IH(ii)) M ∈ SN .

ii) (ϕ) : xN
⇀
∈ SN ⇒ (2.22) xN

⇀
∈ Reddϕc.

(σ→τ) : xN
⇀
∈ SN ⇒ (2.22& IH(i))

P ∈ Reddσc ⇒ xN
⇀
∈ SN & P ∈ SN ⇒ (2.1(i))

P ∈ Reddσc ⇒ xN
⇀
P ∈ SN ⇒ (IH(ii))

P ∈ Reddσc ⇒ xN
⇀
P ∈ Reddτ c ⇒ (2.22)

xN
⇀
∈ Reddσ→τ c

(∩nσi) : By Definition2.22and induction.

We will now show that the reducibility predicate is closed for≤.

Lemma 2.24 Takeσ andτ such thatσ ≤ τ . ThenReddσc ⊆ Reddτ c.
Proof: By straightforward induction on the definition of≤.
(∩nσi ≤ σi (i ∈ n)) : Redd∩nσic = (2.22)

⋂
i∈nReddσic ⊆ Reddσic.

17

(τ ≤ σi (i ∈ n) ⇒ τ ≤∩nσi) : M ∈ Reddτ c ⇒ (IH) M ∈ Reddσic (∀ i ∈ n) ⇒
M ∈ ⋂

i∈nReddσic ⇒ (2.22) M ∈ Redd∩nσic.
(ρ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ) : M ∈ Reddσ→τ c ⇒ (2.22)

(N ∈ Reddσc ⇒ MN ∈ Reddτ c) ⇒ (IH 2×)

(N ∈ Reddρc ⇒ N ∈ Reddσc ⇒
MN ∈ Reddτ c ⇒ MN ∈ Reddµc) ⇒

(N ∈ Reddρc ⇒ MN ∈ Reddµc) ⇒ (2.22)
M ∈ Reddρ→µc.

We will now show that the reducibility predicate is closed for subject expansion.

Lemma 2.25M [N/x]
⇀
P ∈ Reddσc & N ∈ Reddρc ⇒ (λx.M)N

⇀
P ∈ Reddσc.

Proof: By induction on the structure of types.
(ϕ) : M [N/x]

⇀
P ∈ Reddϕc & N ∈ Reddρc ⇒ (2.22)

M [N/x]
⇀
P ∈ SN & N ∈ SN ⇒ (2.1(ii) & (i))

(λx.M)N
⇀
P ∈ SN ⇒ (2.22)

(λx.M)N
⇀
P ∈ Reddϕc

(σ→τ) : M [N/x]
⇀
P ∈ Reddσ→τ c & N ∈ Reddρc ⇒ (2.22)

Q ∈ Reddσc ⇒ M [N/x]
⇀
PQ ∈ Reddτ c & N ∈ Reddρc ⇒ (IH)

Q ∈ Reddσc ⇒ (λx.M)N
⇀
PQ ∈ Reddτ c ⇒ (2.22)

(λx.M)N
⇀
P ∈ Reddσ→τ c

(∩nσi) : Directly by induction and Definition2.22.

We shall prove our strong normalisation result by showing that every typeable term is re-
ducible. For this, we need to prove a stronger property: We will now show that if we replace
term variables by reducible terms in a typeable term, we obtain a reducible term.

Theorem 2.26 LetB = {x1:µ1, . . . , xn:µn}. If B −̀ω−M :σ, and, fori ∈ n, Ni ∈ Reddµic,
thenM [Ni/xi

⇀
] ∈ Reddσc.

Proof: By induction on the structure of derivations.

(Ax) : ThenM ≡ xj, for somej ∈ n, µj ≤ σ, andM [Ni/xi
⇀

] ≡ xj[Ni/xi
⇀

] ≡ Nj. From
Nj ∈ Reddµjc, by Lemma2.24, alsoNj ∈ Reddσc.

(→I) : ThenM ≡ λy.M ′, σ = ρ→τ , andB, y:ρ −̀ω−M ′ :τ .
∀ i ∈ n [Ni ∈ Reddµic] & B, y:ρ −̀ω−M ′ :τ ⇒ (IH)

N ∈ Reddρc ⇒ M ′[Ni/xi
⇀
, N/y] ∈ Reddτ c ⇒ (2.25)

N ∈ Reddρc ⇒ (λy.M ′[Ni/xi
⇀

])N ∈ Reddτ c ⇒ (2.22)

(λy.M ′)[Ni/xi
⇀

] ∈ Reddρ→τ c.
(→E), (∩I) : Straightforward by induction and Definition2.22.

Theorem 2.27 (STRONG NORMALISATION) Any typeable term is strongly normalisable.

Proof: By Lemma2.23(ii), all term variables are reducible of any type, so, by2.26, every
typeable term is reducible. Strong normalisation then follows from Lemma2.23(i).

18

3 Semantics and completeness

3.1 Filter models

As in [11] and [1], a filterλ-model can be constructed.

Definition 3.1 (FILTERS) i) A subsetd of T is afilter if and only if:
a) σi ∈ d (i ∈ n, n ≥ 0) ⇒ ∩nσi ∈ d.
b) τ ∈ d & τ ≤ σ ⇒ σ ∈ d.

ii) If V is a subset ofT , then↑V is the smallest filter that containsV , and↑σ = ↑{σ}.
iii) FS = {d ⊆ T | d is a filter}. Application onFS is defined by:

d · e = ↑{τ | ∃σ ∈ e [σ→τ ∈ d]}.

Notice that a filter is never empty; because of part(i.a), for all d, ω ∈ d. Notice that, as in
[1], application must be forced to yield filters, since in each arrow type schemeσ→τ ∈ T , τ
is strict.〈FS,⊆〉 is a cpo and henceforward it will be considered with the corresponding Scott
topology.

For filters the following properties hold:

Lemma 3.2 i)σ ∈ ↑τ ⇐⇒ τ ≤ σ.
ii) σ ∈ ↑{τ | B ` M :τ} ⇐⇒ σ ∈ {τ | B ` M :τ}. (So{σ | B ` M :σ} ∈ FS.)

Proof: Easy.

Definition 3.3 (DOMAIN CONSTRUCTORS) DefineF : FS→[FS→FS] andG : [FS→FS]→FS

by:
i) F d e = d · e.

ii) Gf = ↑{σ→τ | τ ∈ f(↑σ)}.

It is easy to check thatF andG are continuous.

Theorem 3.4 (FILTER MODEL) 〈FS, ·, F,G〉, withF andG as defined in 3.3, is aλ-model.

Proof: By [10].5.4.1 it is sufficient to prove thatF◦G = Id[FS→FS].

F◦Gfd = F (Gf)d =

F (↑{σ→τ | τ ∈ f(↑σ)})d =

↑{µ | ∃ρ ∈ d [ρ→µ ∈ ↑{σ→τ | τ ∈ f(↑σ)}]} = (3.2(i))
↑{µ | ∃ρ ∈ d [µ ∈ f(↑ρ)]} = f(d).

Definition 3.5 (TERM INTERPRETATION) LetM be a lambda model, andξ be a valuation of
term variables inM.

i) dd·ccξM, the interpretation of terms inM via ξ is inductively defined by:

a) ddxccξM = ξ(x).

b) ddMNccξM = F ddMccξMddNccξM.

c) ddλx.MccξM = G(λλ d ∈M.ddMccMξ(d/x)).
ii) Bξ = {x:σ | σ ∈ ξ(x)}.

19

SinceFS is the model studied here,dd·ccξ stands fordd·ccFSξ . Notice thatBξ is not really a basis,
since it can contain infinitely many statements with subjectx; however, for all its design and
purposes, it can be regarded as one.

Theorem 3.6 For all M, ξ: ddMccξ = {σ | Bξ ` M :σ}.
Proof: By induction on the structure of lambda terms.

i) ddxccξ = ξ(x). If σ ∈ ξ(x), then certainlyBξ ` x :σ. AssumeBξ ` x :σ: if x:ρ ∈ Bξ,
thenρ≤ σ, soσ ∈ ↑ρ. Sinceρ ∈ ξ(x), also↑ρ ⊆ ξ(x), soσ ∈ ξ(x).

ii) ddMNccξ =

F ddMccξ ddNccξ =
ddMccξ · ddNccξ = (IH)

{ρ | Bξ ` M :ρ} · {ρ | Bξ ` N :ρ} = (3.1(iii))
↑{τ | ∃σ ∈ {ρ | Bξ ` N :ρ} [σ→τ ∈ {ρ | Bξ ` M :ρ}]} =

↑{τ | ∃σ [Bξ ` N :σ & Bξ ` M :σ→τ]} = (→E)

↑{τ | Bξ ` MN :τ} = (3.2(ii))
{τ | Bξ ` MN :τ}

iii) ddλx.Mccξ =

G(λλ d ∈ FS.ddMccξ(d/x)) = (IH)

G(λλ d ∈ FS.{ρ | Bξ(d/x) ` M :ρ}) =

↑{σ→τ | τ ∈ (λλ d ∈ FS.{ρ | Bξ(d/x) ` M :ρ})(↑σ)} =

↑{σ→τ | τ ∈ {ρ | Bξ(↑σ/x) ` M :ρ}} =

↑{σ→τ | Bξ(↑σ/x) ` M :τ} = (B′ξ = Bξ\x)

↑{σ→τ | B′ξ ∪{x:µ | µ ∈ ↑σ} ` M :τ} = (3.2(i) & 1.5(vi))
↑{σ→τ | B′ξ ∪{x:σ} ` M :τ} = (→I)
↑{σ→τ | B′ξ ` λx.M :σ→τ} = (1.5(v))
↑{σ→τ | Bξ ` λx.M :σ→τ} = ((→I) & 3.2(ii))
{ρ | Bξ ` λx.M :ρ}.

3.2 Soundness and completeness of type assignment

The main result of [11] is the proof for completeness of type assignment.
In constructing a complete system, the semantics of types plays a crucial role.

Definition 3.7 (TYPE INTERPRETATION) Let 〈D, ·, ε〉 be a continuousλ-model. A mappingυ :
T → ℘(D) = {X | X ⊆ D} is antype interpretationif and only if:

i) υ(σ→τ) = {d | ∀e ∈ υ(σ) [d · e ∈ υ(τ)]}.
ii) υ(σ∩τ) = υ(σ)∩ υ(τ).

Lemma 3.8 Letυ be a type interpretation. Thenσ ≤ τ impliesυ(σ) ⊆ υ(τ).

Proof: Easy.

This notion of type interpretation leads, naturally, to the definition for semantic satisfiabil-
ity.

20

Definition 3.9 (SATISFIABILITY) i) LetM = 〈D, ·, dd cc〉 be aλ-model andξ a valuation of
term-variables inD. ThenddMccξM ∈ D is the interpretation ofM inM via ξ.

ii) Define `̀ by (whereM is aλ-model,ξ a valuation andυ a type interpretation);
a) M, ξ, υ `̀ M :σ ⇐⇒ ddMccξM ∈ υ(σ).
b) M, ξ, υ `̀ B ⇐⇒ M, ξ, υ `̀ x:σ for everyx:σ ∈ B.
c) B `̀ M :σ ⇐⇒ ∀M, ξ, υ [M, ξ, υ `̀ B ⇒ M, ξ, υ `̀ M :σ].

Since no confusion is possible, the superscript ondd cc is omitted.

Theorem 3.10 (SOUNDNESS) B ` M :σ ⇒ B `̀ M :σ.

Proof: By Definition3.9(ii.c), for allM, ξ, υ, if M, ξ, υ `̀ B thenM, ξ, υ `̀ M :σ. This
then means that, ifM, ξ, υ `̀ x:ρ for everyx:ρ ∈ B, thenM, ξ, υ `̀ M :σ, so, to show:

if ddxccξM ∈ υ(ρ) for everyx:ρ ∈ B, thenddMccξM ∈ υ(σ).

We prove the property for the modelFS, by induction on the structure of derivations.
(Ax) : ThenB ` x :σ, so there existsx:ρ ∈ B such thatρ≤ σ. Assumeddxccξ ∈ υ(ρ), then,

by Lemma3.8, ddxccξ ∈ υ(σ).
(→I) : ThenB ` λy.M ′ :α→β, and alsoB, y:α ` M ′ :β. Let e ∈ υ(α), andξ′ = ξ(e/y).

Then: ∀x:τ ∈ B, y:α [ddxccξ′ ∈ υ(τ)] ⇒ (IH)
ddM ′ccξ′ ∈ υ(β) ⇒ (3.6)

{δ | Bξ′ ` M ′ :δ} ∈ υ(β) ⇒ (→I)
↑{δ | ∃γ ∈ e [Bξ ` λy.M ′ :γ→δ]} ∈ υ(β) ⇒
↑{δ | ∃γ ∈ e [γ→δ ∈ {ρ | Bξ ` λy.M ′ :ρ}]} ∈ υ(β) ⇒ (3.1(iii))
{ρ | Bξ ` λy.M ′ :ρ} · e ∈ υ(β).

So, for alle ∈ υ(α), we have shown that{ρ | Bξ ` λy.M ′ :ρ} · e ∈ υ(β), so, by
Definition3.7, we get{ρ | Bξ ` λy.M ′ :ρ} ∈ υ(α→β).

(→E) : ThenM ≡ PQ, and there existsµ such thatB ` P :µ→σ andB ` Q :µ.
Then: ∀x:τ ∈ B, y:α [ddxccξ ∈ υ(τ)] ⇒ (IH)

ddP ccξ ∈ υ(µ→σ) & ddQccξ ∈ υ(µ) ⇒ (3.6)

{ρ | Bξ ` P :ρ} ∈ υ(µ→ρ) & {ρ | Bξ ` Q :ρ} ∈ υ(µ) ⇒ (→I)
{ρ | Bξ ` P :ρ} ∈ {d | ∀e ∈ υ(µ) [d · e ∈ υ(τ)} &

{ρ | Bξ ` Q :ρ} ∈ υ(µ) ⇒
{ρ | Bξ ` P :ρ} · {ρ | Bξ ` Q :ρ} ∈ υ(τ) ⇒ (3.1(iii))
↑{β | ∃α ∈ {ρ | Bξ ` Q :ρ} [α→β ∈ {ρ | Bξ ` P :ρ}]} ∈ υ(τ) ⇒
↑{β | ∃α [Bξ ` Q :α & Bξ ` P :α→β]} ∈ υ(τ) ⇒ (→E)

↑{β | Bξ ` PQ :β} ∈ υ(τ) ⇒
{β | Bξ ` PQ :β} ∈ υ(τ).

(∩I) : Thenσ = ∩nσi, and, fori ∈ n,B ` M :σi.
Then: ∀x:τ ∈ B, y:α [ddxccξ ∈ υ(τ)] ⇒ (IH)

∀ i ∈ n [{ρ | Bξ ` M :ρ} ∈ υ(σi)] ⇒
{ρ | Bξ ` M :ρ} ∈ υ(σ1) ∩ · · · ∩ υ(σn)] ⇒ (3.7)

{ρ | Bξ ` M :ρ} ∈ υ(∩nσi).

The method followed in [11] for the proof of completeness of type assignment is to define

21

a type interpretationυ that satisfies: for all typesσ, υ(σ) = {d ∈ FS | σ ∈ d}. The approach
taken here is to define a function, and to show that it is a type interpretation.

Theorem 3.11 The mapν0 defined by:ν0 (σ) = {d ∈ FS | σ ∈ d} is a type interpretation.

Proof: It is sufficient to check the conditions of Definition3.7:
(ν0(σ→τ) = {d | ∀e ∈ ν0(σ) [d · e ∈ ν0(τ)]}) :

∀e [e ∈ ν0 (σ) ⇒ d · e ∈ ν0 (τ)] ⇐⇒ (3.1(iii))
∀e [e ∈ ν0 (σ) ⇒ ↑{β | ∃α ∈ e [α→β ∈ d]} ∈ ν0 (τ)] ⇐⇒
∀e [σ ∈ e ⇒ τ ∈ ↑{β | ∃α ∈ e [α→β ∈ d]}] ⇐⇒ (τ ∈ Ts)

∀e [σ ∈ e ⇒ ∃α ∈ e [α→τ ∈ d]] ⇐⇒ (⇒: takee = ↑σ)

σ→τ ∈ d ⇐⇒ d ∈ ν0(σ→τ)

(ν0(σ∩τ) = ν0(σ)∩ ν0(τ)) : Easy.

Lemma 3.12 i)B ` M :σ ⇐⇒ BξB ` M :σ.
ii) FS, ξB, ν0 `̀ B.

Proof: i) Because for everyx, ξB(x) is a filter.
ii) x:σ ∈ B ⇒ ((i))σ ∈ {τ | BξB ` x :τ} ⇒ σ ∈ ddxccξB .

SoddxccξB ∈ {d ∈ FS | σ ∈ d} = ν0 (σ).

Since the interpretation of terms by their derivable types gives aλ-model, the following
corollary is immediate and an alternative proof for Theorem1.10.

Corollary 3.13 IfM =β N andB ` M :σ, thenB ` N :σ.

Proof: SinceFS is aλ-model, ifM =β N , thenddMccξ = ddNccξ, for anyξ, and, by Lemma
3.12(i), {σ | B ` M :σ} = {σ | B ` N :σ}.

Theorem 3.14 (COMPLETENESS) Letσ ∈ T , thenB `̀ M :σ ⇒ B ` M :σ.

Proof: B `̀ M :σ ⇒ (3.9(ii.c),3.12(ii) & 3.11)
FS, ξB, ν0 `̀ M :σ ⇒ (3.9(i))
ddMccξB ∈ ν0 (σ) ⇒
σ ∈ ddMccξB ⇒ (3.6)

BξB ` M :σ ⇒ (3.12(i))
B ` M :σ.

4 Combinator Systems

In this section, we will give a detailed presentation of Combinator Systems (CS). CS will be
defined as a special kind of applicativeTRS [32], with the restriction that formal parameters
of function symbols are not allowed to have structure, and right-hand sides of term rewriting
rules are constructed of term-variables only. We have chosen this kind of presentation in view
of a future extension of the results to fullTRS, in the spirit of [8]. Notice that our treatment
differs from, for example, that of [21], where only combinatory completeCS are considered.

Definition 4.1 (COMBINATOR TERMS) i) An alphabetor signatureΣ = (C,X) consists of a
countable infinite setX of variables ranged over byx, y, z, . . ., a non-empty setC =

22

{D, Z, . . .} of combinators, ranged over byC,D,E, . . ., each equipped with an arity
greater than0, and the binary function symbolAp (application).

ii) The setT (C,V) of terms, ranged over byt, is defined by:

t ::= x | C | Ap(t1, t2)

As usual, we will write(t1 t2) instead ofAp(t1, t2), and left-most, outermost brackets will
be omitted, sot1 t2 (t3 t4) stands forAp(Ap(t1, t2),Ap(t3, t4)).

The following is the usual notion of term-substitution formulated for combinator systems.

Definition 4.2 (TERM-SUBSTITUTIONS) A term-substitutionR is a map from terms to terms,
determined by its restriction to a finite set of variables, satisfying R(t1 t2) = R(t1)R(t2). We
will write tR instead of R(t). If R mapsxi to ui, for i ∈ n, we write{x1 7→u1, . . . , xn 7→un}
for R, and writet~u for tR.

Combinator Systems, and the notion of rewriting on combinator terms, are defined by the
following:

Definition 4.3 (COMBINATOR SYSTEMS) i) A combinator ruleon Σ = (C,X) is a pair(l, r)
of terms inT (C,V), such that:
a) There areC and distinctx1, . . . , xn, such thatl = Cx1 · · ·xn, wheren = arity(C).
b) The variables occurring inr are contained inl, andr contains no symbols fromC.

ii) A Combinator System(CS) is a pair of an alphabetΣ and a setR of combinator rules on
Σ = (C,X), such that there isexactly onerule inR for each combinatorC ∈ C. This rule
(l, r) is calledthe combinator rule forC; we will use the symbolC also as name for this
rule and writel→C r.

iii) A combinator rulel→C r determines a set ofreductionslR→C rR for all term-substitu-
tions R. The left-hand sidelR is called aredex; it may be replaced by its ‘contractum’ rR

inside any context C[]; this gives rise toreduction steps: C[lR]→C C[rR].
iv) We will write t →R t

′ if there is a rulel→C r in R such thatt→C t
′, and call →R

theone-step rewrite relationgenerated byR, and→+
R (respectively→∗R) the transitive

(respectively reflexive and transitive) closure of→R (the indexR will be omitted when
it is clear from the context). Ift0→+ tn, thentn is areductof t0.

Example 4.4(COMBINATORY LOGIC) The standard example of aCS is Combinatory Logic (CL)
– defined by Curry independently ofLC [16] – that is, in our notation, formulated as follows:
CL = (((S,K, I),X),R), whereR contains the rules

Sxyz → xz (yz)

Kxy → x

Ix → x

The last rule was not part of the original definition, but is nowadays normally added.

We will assume that no two combinators have the same interpretation inLC (see Defini-
tion 4.7), so aCS like

Ix → x

Jx → x

23

is excluded, since it would give an immediate counter example against any full-abstraction
result with respect to the filter semantics (see Section7).

This notion of reduction on combinator terms as in Definition4.3 is also known asweak
reductionand satisfies the Church-Rosser Property (see [10]).

Proposition 4.5 (CHURCH-ROSSER) If t→∗ u andt→∗ v, then there existsw such thatu→∗ w
andv→∗ w.

We now define (head-)normal forms, (head-)normalizability, strongly normalizability, and
unsolvable terms.

Definition 4.6 ((HEAD-)NORMAL FORMS) Let ((C,X),R) be aCS.
i) A term is innormal formwith respect toR if it is irreducible.

ii) A term t is in head-normal formwith respect toR if either
a) there are a variablex and termst1, . . . , tn (n ≥ 0) such thatt ≡ xt1 · · ·tn, or
b) there are a combinatorC ∈ C and termst1, . . . , tn ∈ T (C,V) such thatt ≡ Ct1 · · ·tn,

andn < arity(C).
iii) A term is (head-)normalizableif it can be reduced to a term in (head-)normal form. A

rewrite system isstrongly normalizing(or terminating) if all rewrite sequences are finite;
it is (head-)normalizingif every term is (head-)normalizable.

iv) A term is calledunsolvableif it has no head-normal form.

4.1 CS versus LC

We now focus on the relation between reduction inCS and inLC.

Definition 4.7 Let C = ((C,X),R) be a CS. 〈 〉Cλ : T (C,V) → Λ, the interpretation of
combinator terms overC in LC, is defined by:

〈x〉Cλ = x for all x ∈ X
〈t1 t2〉Cλ = 〈t1〉Cλ 〈t2〉Cλ
〈C〉Cλ = λx1 · · ·xn.〈r〉Cλ whereCx1 · · ·xn→ r ∈ R

Notice that, since we assume the set of term variables forCS andLC to be the same, as well
as the two notions of application on terms,〈r〉Cλ = r for everyr that is the right-hand side of
a combinator rule.

The interpretation inLC of a CS, 〈 〉Cλ , respects reduction:

Proposition 4.8 LetC = ((C,X),R) be a CS, then, for all t, t′ ∈ T (C,V): if t→∗ t′, then
〈t〉Cλ →→β 〈t′〉Cλ .

Proof: By easy induction on the definition of→∗.

In general, the length of the reduction sequence increases significantly.
Only for particularCS it is possible to also define an interpretation ofLC; the standard

example is that ofCL (see also [18, 10, 21]; in [21] also other combinatory completeCS are
discussed).

24

Definition 4.9 The mappingdd ccCL : Λ→ TCL is defined by:
ddxccCL = x

ddλx.MccCL = λ∗x.ddMccCL

ddMNccCL = ddMccCL ddNccCL

whereλ∗x.t, with t ∈ TCL, is defined by induction on the structure oft:

λ∗x.x = I

λ∗x.t = Kt if x not in t
λ∗x.t1t2 = S(λ∗x.t1)(λ∗x.t2)

For the interpretations defined above the following property holds:

Exercise 4.1([10]) i) (λ∗x.t)v→ tx 7→v.
ii) 〈λ∗x.t〉Cλ →→β λx.〈t〉Cλ

iii) 〈ddMccCL〉CL
λ →→β M .

iv) If t→ u in CL, then〈t〉CL
λ →→β 〈u〉CL

λ .

For example,

ddλxy.xccCL = λ∗x.ddλy.xccCL = λ∗x.(λ∗y.x) = λ∗x.(Kx) = S(λ∗x.K)(λ∗x.x) = S(KK) I

and

〈ddλxy.xccCL〉CL
λ = 〈S(KK) I〉CL

λ = (λxyz.xz(yz))((λxy.x)λxy.x)λx.x→→β λxy.x.

There exists no converse of this property; moreover, the mapping〈 〉CL
λ does not preserve

normal forms or reductions:

Example 4.10([10]) i) SK is a normal form, but〈SK〉CL
λ →→β λxy.y,

ii) t = S(K(SII))(K(SII)) is a normal form, but〈t〉CL
λ →→β λc.(λx.xx)(λx.xx), which does

not have aβ-normal form,
iii) t = SK(SII(SII)) has no normal form, while〈t〉CL

λ →→β λx.x.

We will show in Section6.1 that the combinatorial equivalent of a well-known result for
intersection type assignment in theLC, i.e. the property that normalising terms can be typed
with a type not containingω, no longer holds. Take for example theCS

Zxy → y

Dx → xx

thenZ(DD) is typeable with a type not containingω (see Example6.17). Notice that, since
DD→ DD→ · · ·, the termZ(DD) has no normal form.

As these examples show, normalization results ofLC do not transfer easily toCS. Here, we
will study the normalization properties ofCS directly in theCS framework.

5 Type assignment for CS

In this section, we will develop a notion of type assignment onCS that uses intersection types.
It is inspired by similar definitions presented in [21] and [8]. As in [21], we will assume that,

25

for every combinatorC, there is a basic type from which all types needed for an occurrence
of C in a term can be obtained. The extension with respect to [21] is that we will not limit
ourselves to basic types that are the principal type of the corresponding lambda term (see [42,
2]). The differences with [8] are on the level of the language considered. Here, patterns are not
used, i.e. rewrite rules cannot impose structure on arguments of function symbols; moreover,
no function symbol is allowed to appear in the right-hand side of rewrite rules.

5.1 Operations on types

We will now recall three operations on types from [2] that are needed in the definition of
type assignment and are standard in intersection systems. Substitution is the operation that
instantiates a type (i.e. that replaces type-variables by types). The operation of expansion
replaces a type by the intersection of a number of copies of that type. The operation of lifting
replaces a type by a larger one, in the sense of≤.

These three operations are of use in Definition5.7, when we want to specify how, for a
specific combinator, a type required by the context can be obtained from the type provided for
that combinator by the environment (Definition5.6). It is possible to define type assignment
with fewer or less powerful operations on types, but in order to obtain enough expressive
power to prove Theorem5.10(i), all three operations are needed.

Definition 5.1 (TYPE-SUBSTITUTION) i) The type-substitution(ϕ 7→α) : T → T , that re-
places occurrences ofϕ by α, whereϕ ∈ Φ andα ∈ Ts∪{ω}, is defined by:

(ϕ 7→α) (ϕ) = α

(ϕ 7→α) (ϕ′) = ϕ′ if ϕ′ 6= ϕ

(ϕ 7→α) (σ→τ) = ω if (ϕ 7→α) (τ) = ω

(ϕ 7→α) (σ→τ) = (ϕ 7→α) (σ)→ (ϕ 7→α) (τ) if (ϕ 7→α) (τ) 6= ω

(ϕ 7→α) (∩nσi) = (ϕ 7→α) (σ′1)∩ · · ·∩ (ϕ 7→α) (σ′m) where
{σ′1, . . . , σ′m} = {σi ∈ {σi (i ∈ n)} | (ϕ 7→α) (σi) 6= ω}

ii) The set of type-substitutions is closed under composition: ifS1 andS2 are type-substitu-
tions, then so isS1◦S2, whereS1◦S2(σ) = S1(S2(σ)).

iii) S(B) = {x:S(α) | x:α ∈ B}.
iv) S(〈B, σ,E〉) = 〈S(B), S(σ), {S(ρ) | ρ ∈ E}〉.

Note that the definition of substitution in an arrow type ensures that the resulting type is still
in T .

It is possible to define a notion of type-substitution that just replaces type variables by strict
types (so whereα ∈ Ts); using such a definition, we would be forced to use the extra operation
of coveringthat deals with the introduction ofω (see also [3]; this operation is closely related
to the covering relation of Definition2.18.) To keep the set of operations small, we have
decided not to follow that direction here.

Our definition of expansion is inspired by the one given in [42] for the full intersection
system inLC, we just need to make some minor changes to make sure that the type obtained
is always inT . For this, we have to check the last type-variable in arrow types (for a detailed
discussion of the complexity of this operation, see [2]).

26

Definition 5.2 The last type-variableof a strict type,last(σ), is defined by:

last(ϕ) = ϕ

last(σ→τ) = last(τ)

Definition 5.3 (EXPANSION) For everyµ ∈ T andn ≥ 2, the pair〈µ, n〉 determines anex-
pansion Ex: T → T which is computed with respect to〈B, σ,E〉 as follows (whereB is a
basis,σ ∈ T , andE is a finite set of types).
(Affected variables) : The setVµ(B, σ,E) of type-variables is defined by:

a) If ϕ occurs inµ, thenϕ ∈ Vµ(B, σ,E).
b) If last(τ) ∈ Vµ(B, σ,E), with τ ∈ Ts and τ (a subtype) in〈B, σ,E〉, then for all

type-variablesϕ that occur inτ : ϕ ∈ Vµ(B, σ,E).
(Renamings) : Let Vµ(B, σ,E) = {ϕ1, . . . , ϕm}. Choosem × n different type-variables

ϕ1
1, . . . , ϕ

1
n, . . . , ϕ

m
1 , . . . , ϕ

m
n , such that eachϕji does not occur in〈B, σ,E〉, for i ∈ n

andj ∈m. Let Si be such thatSi(ϕj) = ϕji .
(Expansion of a type) : Ex(τ) is defined by:

Ex(τ1∩· · ·∩τn) = Ex(τ1)∩ · · ·∩Ex(τn)

Ex(τ) = S1(τ)∩ · · ·∩Sn(τ) if last(τ) ∈ Vµ(B, σ,E)

Ex(ϕ) = ϕ if ϕ 6∈ Vµ(B, σ,E)

Ex(σ→ρ) = Ex(σ)→ Ex(ρ) if last(ρ) 6∈ Vµ(B, σ,E)

(Expansion ofB) : Ex(B) = {x:Ex(ρ) | x:ρ ∈ B}.
(Expansion of〈B, σ,E〉) : Ex(〈B, σ,E〉) = 〈Ex(B),Ex(σ), {Ex(ρ) | ρ ∈ E}〉.
When an expansion operationEx is applied to a typeτ without specifying〈B, σ,E〉we assume
that the expansion is computed with respect to〈∅, τ, ∅〉.

Definition 5.4 (L IFTING) A lifting L is an operation denoted by〈〈B0, τ0〉, 〈B1, τ1〉〉, a pair of
pairs such thatτ0 ≤ τ1 andB1 ≤B0, and is defined by:

L (σ) = τ1 if σ = τ0

L (σ) = σ otherwise
L (B) = B1 if B = B0

L (B) = B otherwise

Definition 5.5 (CHAINS OF OPERATIONS ON TYPES) A chain on typesis an object[O1, . . . ,On],
where eachOi is an operation of type-substitution, expansion or lifting, and

[O1, . . . ,On] (σ) = On (· · · (O1 (σ)) · · ·)

We will use∗ to denote the operation of concatenation of chains.

5.2 Type assignment

To complete the definition of type assignment, we present now the type assignment rules that
are used to assign types inT to terms and combinator rules. In order to type the combinators,
we use an environment that provides a type inTs for everyC ∈ C, and use chains of operations
to obtain the type for an occurrence of the combinator from the type provided for it by the
environment.

Definition 5.6 (ENVIRONMENT) Let C = ((C,X),R) be aCS.
i) An environment forC is a mappingE : C → Ts.

27

ii) ForC ∈ C, τ ∈ Ts, andE an environment, the environmentE [C 7→ τ] is defined by:

E [C 7→ τ] (D) = τ if D = C

E [C 7→ τ] (D) = E(D) otherwise

Since an environmentE maps allC ∈ C to types inTs, no combinator is mapped toω.

We define now type assignment on terms and combinator rules.

Definition 5.7 (TYPE ASSIGNMENT) Let C = ((C,X),R) be aCS andE an environment forC.
i) Type assignmentfor terms inT (C,V) andderivationsare defined by the following natu-

ral deduction system (where all types displayed are inTs, except forτ in rules(≤) and
(→E)):

(E) : (∃Ch [Ch(E(C)) = σ])
B È C:σ

(→E) :
B È t1:τ→σ B È t2:τ

B È t1 t2:σ

(∩I) :
B È t:σ1 · · · B È t:σn

(n ≥ 0)
B È t:∩nσi

(≤) : (x:τ ∈ B, τ ≤ σ)
B È x:σ

If B È t:σ is derivable using a derivation D, we write D:: B È t:σ. We writeB È t:σ
to express that there exists a derivation D such that D:: B È t:σ, and È t:σ when
∅ È t:σ. We will writeB `ω−−E t:σ if ω is not used in the derivation.

ii) LetC ∈ C, with arity(C) = n. The combinator ruleCx1 · · ·xn→ r ∈ R is typeable with
respect toE , if there areσi (i ∈ n) ∈ T andσ ∈ Ts, such thatE(C) = σ1→· · ·→σn→σ,
and{xi:σi⇀} È r:σ.

iii) C is typeable with respect toE , if every rule inR is typeable with respect toE .

At first sight, the formulation ‘is typeable with respect toE ’ might seem a restriction on the
class of systems that are considered in this section, but it is not. Notice that an environment
just maps combinators to types, without regard for the structure of their rewrite rules. The
condition is added above just to ascertain that the type provided by the environment actually
makes sense, and respects the structure of the rules involved.

The reason not to allow environments to provide types outside ofTs is purely practical, to
obtain easier definitions. Notice that it is possible to derive an intersection type for a combi-
nator, using rule(E) a number of times, followed by(∩I).

Example 5.8 The rules ofCL (see Example4.4) are typeable with respect to the environment
ECL:

ECL(S) = (ϕ1→ϕ2→ϕ3)→(ϕ4→ϕ2)→ϕ1∩ϕ4→ϕ3

ECL(K) = ϕ5→ω→ϕ5

ECL(I) = ϕ6→ϕ6

The termSKSI can be typed with the typeα→α with respect toECL: take

Ch1 = [(ϕ1 7→α→α), (ϕ2 7→ω), (ϕ3 7→α→α), (ϕ4 7→ω)]

Ch2 = [(ϕ5 7→α→α)]

Ch3 = [(ϕ6 7→α)]

28

then (notice thatCh1 (ϕ4→ϕ2) = ω andCh1 (ϕ1∩ϕ4) = α→α)

Ch1 (ECL(S)) = ((α→α)→ω→α→α)→ω→(α→α)→α→α
Ch2 (ECL(K)) = (α→α)→ω→α→α
Ch3 (ECL(I)) = α→α

and

ÈCL S :Ch1 (ECL(S)) ÈCL K :Ch2 (ECL(K))

ÈCL SK :ω→(α→α)→α→α ÈCL S :ω

ÈCL SKS : (α→α)→α→α ÈCL I :Ch3 (ECL(I))

ÈCL SKSI :α→α

The definition of type assignment onCS as presented in this section allows for the formula-
tion of a precise relation between types assignable to terms, and those assignable to equivalent
lambda terms. In fact, a result similar to part of the following property has already been proved
in [21].

The relation between type assignment inLC and that inC (restricted toCL with the envi-
ronmentECL) is very strong, as the following theorem shows. To understand that this property
is not straightforward is shown by the following example: take` λx.x :α→α and notice that
ddλx.xccCL = I. If E (I) = (α→α)→α→α, then it is not possible to assignα→α to I in È
(see also Section7).

However, we can show the following two results forCS equipped with principal environ-
ments, as defined below.

Definition 5.9 Let C = ((C,X),R) be aCS. The environmentE is calledprincipal for C, if
for all C ∈ C, E (C) is the principal type for〈C〉Cλ in `.1

Theorem 5.10 LetC = ((C,X),R) be aCS.
i) If E is principal forC, thenB ` 〈t〉Cλ :σ impliesB È t :σ.

ii) B È t :σ impliesB ` 〈t〉Cλ :σ.

Proof: Assume (without loss of generality), thatσ ∈ Ts.
i) By induction on the structure of terms inT (C,V). The only case that needs attention is

that oft = C ∈ C, soB ` 〈C〉Cλ :σ. SinceE is principal forC, E(C) is the principal
type for〈C〉Cλ in ` and there exists (see [2]) a chain of operationsChsuch that
Ch(E(C)) = σ. But thenB È C:σ by rule(E).

ii) By induction on the definition of〈 〉Cλ ; the only alternative that needs consideration is
that oft = C ∈ C, and then the last rule in the derivation forB È t:σ is (E). Then
there is a chainChsuch thatCh(E(C)) = σ. LetCx1 · · ·xn→ r be the rule forC.
Then, by Definition5.7(ii), there areτj (j ∈ n) ∈ T andτ ∈ Ts, such that
{x1:τ1, . . . , xn:τn} È r:τ andE(C) = τ1→· · ·→τn→τ . Then, by induction,
{x1:τ1, . . . , xn:τn} ` r :τ (notice that〈r〉Cλ = r). Then, by rule(→I) of `,

1Since for everyl→ r ∈ R, r is in normal form, not containing combinators, it is possible to define the notion
of principal environment directly forCS, without side-stepping toLC, but that would significantly increase the
complexity of the proofs of this section. It would not affect any of the results; in fact, the definition above would
become a provable property.

29

` λx1 . . . xn.r :τ1→· · ·→τn→τ ; since` is closed for all three operations of
substitution, expansion, and lifting (see [3]), we also have` λx1 . . . xn.r :σ‘, so
` 〈C〉Cλ :σ.

5.3 Subject reduction

In this section we will show that the notion of type assignment defined here onCS satisfies
the subject reduction property (Theorem5.17). In order to achieve this, we need that the three
operations (type-substitution, expansion, and lifting) defined in the previous section can be
applied to type-derivations, and are sound (the result is a well-defined derivation); the details
of this are skipped here (for a complete version, see [9]). We will also show that the type
assignment rule (E) is sound in the following sense: if there is an operationO such that
O(E(C)) = σ, then, for every typeτ ∈ Ts such thatσ ≤ τ , the combinator rule forC is
typeable with respect to the changed environmentE [C 7→ τ].

Proposition 5.11(SOUNDNESS OF TYPE-SUBSTITUTION) Let S be a type-substitution.
i) If B È t:σ, then S(B) È t:S(σ).

ii) If Cx1 · · ·xn→ r is a rule typeable with respect to the environmentE , and S(E(C)) 6= ω,
then it is typeable with respect toE [C 7→ S(E(C))].

The following essentially shows that lifting is sound:

Lemma 5.12 i) IfB È t:σ andB′ ≤B, thenB′ È t:σ.
ii) If B È t:σ andσ ≤ τ , thenB È t:τ .

iii) If B `ω−−E t:σ, σ ≤ τ , andτ is ω-free, thenB `ω−−E t:τ .

Proposition 5.13(SOUNDNESS OF LIFTING) Let L be a lifting.
i) If B È t:ρ, then L(B) È t:L (ρ).

ii) If Cx1 · · ·xn→ r is a combinator rule, typeable with respect toE , and
L (E(C)) ∈ Ts, then it is typeable with respect toE [C 7→ L (E(C))].

Proposition 5.14(SOUNDNESS OF EXPANSION) Let Ex be an expansion operation determined
by 〈µ, n〉, such that Ex〈B, σ,E〉 = 〈B′, σ′, E ′〉.

i) If B È t:σ using a setE of types for the occurrences of combinators int, thenB′ È t:σ′.
ii) If Cx1 · · ·xn → r is a rule, typeable with respect toE , and Ex(E(C)) = ∩mτj ∈ T

(m ≥ 1), then, for everyj ∈m, the rule is typeable with respect toE [C 7→ τj].

We then have:

Theorem 5.15 (SOUNDNESS OFCHAINS) i) The set of derivations is closed under chains of
operations.

ii) Let l→C r be a combinator rule typeable with respect to the environmentE . If Ch(E(C))
= τ ∈ T , then, for everyµ ∈ Ts such thatτ ≤ µ,C is typeable with respect toE [C 7→µ].

Proof: By Propositions5.11, 5.13, and5.14.

Using this soundness result, we will now show that the notion of type assignment as defined
in this section satisfies the subject reduction property: ifB È t:σ, andt can be rewritten to
t′, thenB È t

′:σ. Of course, this result can be obtained through the mappingsdd ccC and

30

〈 〉Cλ , using the relations between the systems mentioned in the previous section, but only for
combinatory completeCS and principal environments. For otherCS, we must give a direct
proof, for which we need the following result.

Lemma 5.16(TERM-SUBSTITUTION LEMMA) i) If B È t:σ, then, for every term-substitutionR
and basisB′, if for everyx:τ ∈ B,B′ È xR:τ , thenB′ È tR:σ.

ii) Let Cx1 · · ·xn → r be a combinator rule, typeable with respect toE . For every term-
substitutionR, basisB and typeµ: if B È (Cx1 · · ·xn)R:µ, thenB È rR:µ.

Proof: i) By induction on È .
(≤) : Thent = x. Then there isx:τ ∈ B, such thatτ ≤ σ. Then, by Theorem5.13,

B′ È xR:τ impliesB′ È xR:σ.
(E) : Thent = C. Immediate, sinceCR = C, andC:σ does not depend on the basis.
(→E), (∩I) : By induction.

ii) If Cx1 · · ·xn→ r is a typeable combinator rule, then by Definition5.7(ii), there are
σi (i ∈ n), σ, such thatE(C) = σ1→· · ·→σn→σ and{xi:σi} È r:σ. Also,
(Cx1 · · ·xn)R = Cx1

R · · ·xnR. SinceB È Cx1
R · · ·xnR:µ, there are two cases:

(µ ∈ Ts) : then there areµi (i ∈ n), and a chainChsuch thatCh(E(C)) =
µ1→· · ·→µn→µ, and, fori ∈ n,B È xiR:µi. Since{xi:σi} È r:σ, we have, by
Theorem5.15(i), {xi:µi} È r:µ. Then, by part(i), alsoB È rR:µ.

(µ = ρ1 ∩ . . . ∩ ρn) : we apply the above reasoning to eachρi and apply(∩I).

Using this result, the following becomes easy.

Theorem 5.17 (SUBJECT REDUCTION) Let C = ((C,X),R) be aCS. For all t, t′ ∈ T (C,V): if
B È t:σ andt→∗ t′, thenB È t

′:σ.

Proof: By induction on the length of the reduction path; the case of length1 is proved by
induction on the structure oft. Of this double induction, only the case thatt itself is the
term-substitution instance of a left-hand side of a combinator rule is of interest; all other
cases are straightforward. Then, letC ∈ C and term-substitution R be such thatl→C r,
t = lR, andt′ = rR. The result follows from Lemma5.16(ii).

One should remark that a subject expansion theorem, i.e. the converse of the subject reduc-
tion result:

If B È t:σ, andt′→ t, thenB È t
′:σ,

does not hold in general. Take for example the followingCS, that is typeable with respect to
the given environment

Kxy → x

Ix → x

E(K) = ϕ1→ω→ϕ1

E(I) = (ϕ2→ϕ2)→ϕ2→ϕ2

The termIK reduces to the (head-)normal formK, but can only be typed byω with respect to
E . Of course,(ϕ2→ϕ2)→ϕ2→ϕ2 is not the principal type for〈I〉CL

λ in `. In fact, we have the
following result:

Theorem 5.18 (SUBJECT EXPANSION) Let C = ((C,X),R) be aCS, andE be principal forC,
then, for allt, t′ ∈ T (C,V): if B È t:σ andt′→ t, thenB È t

′:σ.

Proof: If B È t:σ, then by Lemma5.10(ii), alsoB ` 〈t〉Cλ :σ. Sincet′→ t, by Proposition

31

4.8also〈t′〉Cλ →→β 〈t〉Cλ . Since` is closed forβ-expansion, we haveB ` 〈t′〉Cλ :σ. Then, by
Theorem5.10(i), we haveB È t

′:σ.

5.4 Derivation reduction is strongly normalising

We will skip the precise definition of derivation reduction here, and just highlight (in simplified
form) the main steps.

The notion of reduction of derivations depends, of course, on a notion ofderivation substi-
tution, of which the principle is sketched by the following.

Assume D1 :: B, x:τ ` t :σ and D2 :: B ` u :τ . The result of substituting D2 in D1 for x:τ
is defined in a way similar to the one discussed above forLC. Notice that there are (strict) types
ρj (j ∈m) such that, for everyρj, in D1, there exists a sub-derivation Djx :: B, x:τ ` x :ρj.
Then, for allj ∈m, τ ≤ ρj and, by Proposition5.12, there exists a derivation Dj :: B ` N :ρj.
Then a derivation for

D1[D2/x:τ] :: B ` t[u/x] :σ

can be obtained by replacing, in D1, for everyj ∈m, the sub-derivation Djx by Dj.
So, assume now thatt = (Cx1 · · ·xn)R = Ct1 · · ·tn and that there is a combinator rule

Cx1 · · ·xn→ r. Then D has the form:

B È C:σ1→· · ·→σn→σ

A
A
AA

�
�
��

D1

B È t1:σ1

B È Ct1:σ2→· · ·→σn→σ
...

A
A
AA

�
�
��

Dn

B È tn:σn

B È Ct1 · · ·tn:σ

Then, by Definition5.7(ii), there exists D0 :: {xi:σi⇀} È r:σ. Let R = {x1 7→ t1, . . . , xn 7→ tn}
andt′ = rR, then D reduces to

D′ = D0 [D1/x1:σ1, . . . ,Dn/xn:σn] :: B È t
′ : σ,

which is a well-defined derivation.
Remark that each derivation redex corresponds to a term redex (because of the presence of

ω, the converse does not hold), and that if D:: B È t :σ reduces to D′ :: B È t
′ :σ, thent

reduces tot′.
As shown in [9] (not repeated here), derivations in the restricted type assignment system

are strongly normalizable with respect to the notion of reduction suggested here.

Theorem 5.19 (STRONG NORMALISATION) If D :: B È t:σ, then SN(D).

6 Approximants

Now we will develop, essentially following [46] (see also [10]), a notion of approximant for
combinator terms. As in Section2.1 this will be done by introducing⊥ into the definition of
terms.

32

Definition 6.1 (COMBINATOR TERMS WITH⊥) Let C = ((C,X),R) be aCS.
i) The setT(C,X,⊥) is defined by the following grammar:

t ::= ⊥ | x | C | Ap(t1, t2)

ii) The notion of rewriting of Definition4.3 extends naturally to terms inT(C,X,⊥), and
we will use the same symbol ‘→R ’ to denote the rewriting relation induced byC on
T(C,X,⊥).

The relationv on terms, as given in the following definition, takes⊥ to be the smallest
term.

Definition 6.2 i) We define the relationv onT(C,X,⊥) inductively by:

⊥ v t,

t v t,

t1 v u1 & t2 v u2 ⇐⇒ t1 t2 v u1u2.

ii) t andu are calledcompatibleif there exists av such thattv v anduv v.

We will now come to the definition of approximate normal forms and of direct approxi-
mants. The general idea is that a direct approximant of a termt is constructed out oft by
replacing all redexes and potential redexes int by⊥ (a potential redex is a sub-term thatcould
be a redex if⊥ were to be replaced by an appropriate term).

Definition 6.3 (APPROXIMATE NORMAL FORMS) Let C = ((C,X),R) be aCS.
i) AC, the set ofapproximate normal formsof T(C,X,⊥), ranged over bya, is defined by:

a ::= ⊥ | xa1 · · ·an (n ≥ 0) | Ca1 · · ·an (n < arity(C)).

ii) DAC (t), thedirect approximant oft with respect toC is defined by:

DAC (x) = x

DAC (C) = C

DAC (t1 t2) = ⊥ if DAC (t1) = ⊥ or
DAC (t1) = Ca1 · · · an andarity(C) = n+1

= DAC (t1)DAC (t2)otherwise

Notice that every normal form inT (C,V) is also an approximate normal form.

For v , the following properties hold:

Lemma 6.4 i)tv uv v ⇒ tv v.
ii) t is a head-normal form⇐⇒ ∃a ∈ AC [av t & a 6= ⊥].

iii) If a ∈ AC andav t, thenavDAC (t).

Proof: By induction on the definition ofv .

The relation between reduction andv is expressed by:

Lemma 6.5 i)a ∈ AC & v→∗ w & av v ⇒ avw.
ii) t0 v t & t0→ t1 ⇒ ∃ t′[t→ t′ & t1 v t′].

33

Proof: By induction on the structure of terms.

We will now introduce, similar to Definition2.5, a notion of ‘join’ on terms containing⊥,
that is of use in the proof of Lemma6.13.

Definition 6.6 On T(C,X,⊥), the partial mappingt : T(C,X,⊥) × T(C,X,⊥)→ T(C,X,⊥)
is defined by: ⊥t t = tt⊥ = t

tt t = t

(t1 t2)t (u1u2) = (t1 tu1)(t2 tu2)

Again, we will use our more general definition only on terms that are compatible.
The following lemma shows thatt acts as least upper bound for compatible terms.

Lemma 6.7 Ift1 v t and t2 v t, then t1 t t2 is defined, and:t1 v t1 t t2, t2 v t1 t t2, and
t1 t t2 v t.
Proof: By induction on the structure of terms.

Approximants of terms are defined by:

Definition 6.8 (APPROXIMANTS) AC (t) = {a ∈ AC | ∃u [t→∗ u & av u]} is theset of ap-
proximants oft.

Notice that we could have used ‘avDAC (u)’ as well.

In Section7, using this definition, we will define a semantics forCS, and we will need the
following properties relating approximants and reduction.

Lemma 6.9 i)t→∗ t′ ⇒ AC (t) = AC (t′).
ii) a, a′ ∈ AC (t) ⇒ at a′ ∈ AC (t).

Proof: i) (⊆) : t→∗ t′ & a ∈ AC (t) ⇒
t→∗ t′ & ∃v [t→∗ v & av v] ⇒ (4.5)

∃v, w [t→∗ v & v→∗ w & t′→∗ w & av v] ⇒ (6.5(i))
∃w [t′→∗ w & avw] ⇒ a ∈ AC (t′)

(⊇) : t→∗ t′ & a ∈ AC (t′) ⇒
t→∗ t′ & ∃v [t′→∗ v & av v] ⇒
∃v [t→∗ v & av v] ⇒ a ∈ AC (t)

ii) a ∈ AC (t) & a′ ∈ AC (t) ⇒ (6.8)

∃u, u′ [t→∗ u & av u & t→∗ u′ & a′ v u′] ⇒ (4.5& 6.5(i))
∃u, u′, v [t→∗ u→∗ v & t→∗ u′→∗ v & av v & a′ v v] ⇒ (6.7)

∃v [t→∗ v & at a′ v v] ⇒ at a′ ∈ AC (t)

Lemma 6.10 IfAC (t) = {⊥}, thent is unsolvable.

Proof: If AC (t) = {⊥}, then, for allv such thatt→∗ v, anda ∈ AC, if av v, thena = ⊥.
So, in particular, there is nov such thatt→∗ v andv is of the shapexa1 · · ·an, with (n ≥ 0)
orCa1 · · ·an with (n<arity(C)), since otherwisex⊥ · · · ⊥v v orC⊥ · · · ⊥v v.
Therefore,t does not reduce to a term in head normal form: it is unsolvable.

34

The following result is crucial for the proof of Lemma7.3:

Lemma 6.11 Lett1, t2 ∈ T (C,V), a ∈ AC (t1 t2), then there exista1 ∈ AC (t1), a2 ∈ AC (t2)
andu′ such thata1a2→∗ u′ andav u′.
Proof: The casea = ⊥ is trivial. Fora 6= ⊥: assumet1 t2→∗ u andav u, then either:

i) u = u1u2, andtj→∗ uj, for j = 1, 2. Sinceav u1u2 anda 6= ⊥, there area1, a2 such
thata = a1a2, andaj v uj, for j = 1, 2. Notice thata1a2 ∈ AC, and takeu′ = a.

ii) There existC, p1, . . . , pn such thatCx1 · · ·xn→ r,

t1 t2→∗ Cp1 · · ·pn→ r~p→∗ u,

and none of the reductions in the first part of this sequence take place at the root
position. Since some of the reductions that take place after contracting the redex
Cp1 · · ·pn are in fact residuals of redexes already occurring inp1, . . . , pn, we can take
the reduction sequence that first contracts all redexes (and their residuals) that already
occur inp1, . . . , pn. Then, since the rewrite system is orthogonal (i.e. rules are left
linear and without superpositions), there existsp′1, . . . , p

′
n andv such that

t1 t2→∗ Cp1 · · ·pn→∗ Cp′1 · · · p′n→ r~p
′→∗ v andu→∗ v

and in the reduction sequencer~p
′→∗ v we mimicr~p→∗ u, but only contract redexes

that are createdafter the redexCp′1 · · · p′n was contracted. Takeai = DAC (p′i), for
i ∈ n, then the redexes that are erased have no relevance to the sequencer~p

′→∗ v;
moreover, there is only one redex inCa1 · · · an, being that term itself, and both
Ca1 · · · an−1 andan are inAC. Notice thatt1→∗ Cp′1 · · · p′n−1, and
Ca1 · · · an−1 vCp′1 · · · p′n−1, andt2→∗ p′n, an v p′n.
We now focus on the reduction sequence

Cp′1 · · · p′n→ r~p
′→∗ v

Notice that, by the construction sketched above, only redexes that are newly created are
contracted, and that any redex created in this sequence corresponds to a redex being
created for a sequence starting withCa1 · · · an, therefore

Ca1 · · · an→ r~a→∗ u′

and each term created in this reduction is smaller than (in the sense ofv) the
corresponding term in the reduction sequence above (henceu′ v v), and each redex in
u′ corresponds to a redex inv. Takea′ = DAC (v), thena′ v v, and all redexes are
masked by⊥. Sinceu′ v v by masking all the ’old’ redexes, we also have that
a′ = DAC (u′). Sinceav u, alsoav v (by Lemma6.5(i)), and thereforeav a′ (by
Lemma6.4(iii)). We then deduceav u′.

To come to a notion of type assignment onT(C,X,⊥), the definition of type assignment
as given in Definition5.7 neednot be changed, it suffices that the terms are allowed to be
in T(C,X,⊥). In particular,E does not produce a type for⊥; since⊥ 6∈ C, and because of
Definition5.7, this implies that⊥ can only appear in (sub)terms that are typed withω.

We will need the following result.

35

Lemma 6.12 i) IfD :: B È t:σ, tv v, then there existsD′ :: B È v:σ, where the type-deri-
vationD′ has the same tree-structure asD (that is, the same rules are applied).

ii) If D :: B È t:σ, andtv v, then there existsD′ :: B È v:σ.

Proof: Easy.

6.1 Approximation and normalization

In this section we will give the proofs for the approximation and normalisation results.
We will need the following intermediate result.

Lemma 6.13 LetC = ((C,X),R) be a CS, then, for all t ∈ T (C,V): if D :: B È t:σ is in
normal form with respect to→D, then there exists ana ∈ AC and D′ such thatav t and
D′ :: B È a:σ.

Proof: By induction on the structure of derivations.
(→E) : Then D= 〈D1 :: B È t1:τ→σ,D2 :: B È t2:τ,→E〉 :: B È t1 t2:σ. Then, by

induction, there area1 v t1, a2 v t2 such that D′1 :: B È a1:τ→σ, and D′2 :: B È a2:τ ,
and〈D′1 :: B È a1:τ→σ,D′2 :: B È a2:τ,→E〉 :: B È a1a2:σ. By Definition6.2we
know thata1a2 v t1 t2. Now a1a2 6∈ AC if there is aC ∈ C such thata1 = Ca1

1 · · · an−1
1

andarity(C) = n. But then there aret11, . . . , t
n−1
1 with t1 = Ct11 · · · tn−1

1 , and
t = Ct11 · · · tn−1

1 t2. In particular, by the remark before Theorem5.19, D is reducible,
which is impossible. Soa1a2 ∈ AC.

(∩I) : D = 〈D1 :: B È t:σ1, . . . ,Dn :: B È t:σn,∩I〉 :: B È t:∩nσi. By induction, for
i ∈ n, there is anai v t in AC such that D′i :: Bi È ai:σi. Takea = a1t · · · tan. Since,
for i ∈ n, ai v a, by Lemma6.12also D′′i :: Bi È a:σi, so we get

〈D′′1 :: B1 È a:σ1, . . . ,D
′′
n :: Bn È a:σn,∩I〉 :: B È a:∩nσi.

Sinceai v t for all i ∈ n, by Lemma6.7, alsoav t. Notice that ifn = 0, thena = ⊥.
The cases(E) and (Ax) are immediate.

Theorem 6.14 (APPROXIMATION) Let C = ((C,X),R) be aCS, then: ifB È t:σ, then there
exists ana ∈ AC (t) such thatB È a:σ, for all t ∈ T (C,V).

Proof: Suppose D:: B È t:σ, then, by Theorem5.19, SN(D). Let D′ :: B′ È v:σ be a
normal form of D′ with respect to→D . Then by Lemma6.13, there is ana ∈ AC such that
av v and D′′ :: B È a:σ. Thent→∗ v, thereforea ∈ AC (t).

For principal environments we can show that the converse of this result also holds.

Theorem 6.15 Let C = ((C,X),R) be a CS, andE be principal forC, then, if there is an
a ∈ AC (t) such thatB È a:σ, thenB È t:σ.

Proof: If a ∈ AC (t) such thatB È a:σ, then there exists av such thatt→∗ v andav v.
But then, by Lemma6.12, alsoB È v:σ. SinceE is principal forC, by Theorem5.18, also
B È t:σ.

Theorem 6.16 (HEAD-NORMALISATION) Let t ∈ T (C,V). If B È t:σ, andσ 6= ω, thent has
a head-normal form.

36

Proof: If B È t:σ, then by Theorem6.14, there is ana ∈ AC (t) such thatB È a:σ. Since
σ 6= ω, a 6= ⊥, and sincea ∈ AC, there arex orC, and termsa1, . . . , an such that
a = xa1 · · ·an, or a = Ca1 · · ·an with arity(C) < n. Also, sincea ∈ AC (t), there is av such
thatt→∗ v andav v. Sinceav v, there aret1, . . . , tn such that eitherv = xt1 · · ·tn, or
v = Ct1 · · ·tn, with arity(C) < n. But thenv is in head-normal form, sot hasa head-normal
form.

The combinatorial equivalent of another well-known result for intersection type assignment
in theLC, i.e. the property

If B È t:σ, andB, σ areω-free, thent has a normal form

no longer holds.

Example 6.17 Take theCS

Zxy → y E (Z) = ω→ϕ1→ϕ1,

Dx → xx E (D) = ((ϕ2→ϕ3)∩ϕ2)→ϕ3

thenZ(DD) is typeable with a type not containingω, but the termZ(DD) has no normal form.

We will now show that, using Theorem5.19, all terms typeable in the subsystem ofÈ
that does not useω (`ω−−E), are strongly normalizable.

Lemma 6.18 i) IfD is a derivation in `ω−−E , andD →D D′, then alsoD′ is a derivation in
`ω−−E .

ii) D :: B `ω−−E t:σ →D D′ :: B′ `ω−−E t′:σ, if and only ift→ t′.

Thus, in the type system̀ω−−
E , →D mimics → and vice-versa. This observation immedi-

ately leads to the following result.

Theorem 6.19 Let t ∈ T (C,V). If B `ω−−E t:σ, thent is strongly normalizable.

Proof: Let D be such that D:: B `ω−−E t:σ. Since also D:: B È t:σ, by Theorem5.19, D is
strongly normalizable with respect to→D. By Lemma6.18(ii), all derivation redexes in D
correspond to redexes int and vice-versa, a property that is preserved under reduction. So
alsot is strongly normalizable.

It is worthwhile to notice that, unlike forLC with `, the reverse implication of the three
theorems does not hold in general. For this, it is sufficient to note that a subject expansion
theorem does not hold (see also the last remark of Section5.3).

Another aspect worth noting is that, unlike inLC, no longer every term in normal form is
typeable withoutω in basis and type. Take for example

t = S(K(SII))(K(SII)),

and note that, by Property5.10every type assignable tot (regardless of the environment used)
is a type assignable toλy.(λx.xx)(λx.xx) in `. Since this last term has no head-normal form,
only ω can be assigned to it.

37

7 Semantics

In this section, we will define two semantics forCS. The first is a filter model, where terms
will be interpreted by the set of their assignable types; the second an approximation model,
where terms will be interpreted by the set of their approximants.

Definition 7.1 Application on℘AC, · : ℘AC × ℘AC → ℘AC, is defined by:

A1 · A2 = {a ∈ AC | ∃a1 ∈ A1, a2 ∈ A2, u [a1a2→∗ u & av u]}.

We will define two interpretations of terms:

Definition 7.2 i) The interpretation of terms in the domain of approximants overC is defined
as:ddtccAC = AC (t) = {a ∈ AC | ∃u [t→∗ u & av u]}.

ii) Let ξ be a valuation of term variables inF ; we write ξ |= B if and only if, for all
x:σ ∈ B, σ ∈ ξ(x). ddtccFξ,E , the interpretation of terms inF via ξ andE is defined by:

ddtccFξ,E = {σ | ∃B [ξ |= B & B È t:σ]}.

Notice that, by rule(∩I) and Theorem5.13, {σ | ∃B [B È t:σ]} ∈ F .
Both notions of application, as well as that on sets of approximants as that on filters, are

well-defined, in the sense that they respect application on terms.

Lemma 7.3 i)ddt1cc
A
C · ddt2cc

A
C = ddt1 t2cc

A
C .

ii) ddt1cc
F
ξ,E · ddt2cc

F
ξ,E = ddt1 t2cc

F
ξ,E .

Proof: i) (⊆) : ddt1cc
A
C · ddt2cc

A
C = (7.1)

{a ∈ AC | ∃a1 ∈ ddt1cc
A
C , a2 ∈ ddt2cc

A
C , u[a1a2→∗ u & av u]} =

{a ∈ AC | ∃a1, a2 ∈ AC, u [∃u1 [t1→∗ u1 & a1 v u1] &

∃u2 [t2→∗ u2 & a2 v u2] & a1a2→∗ u & av u]} ⊆ (6.5(ii))
{a ∈ AC | ∃u [t1 t2→∗ u & av u]} =

ddt1 t2cc
A
C

(⊇) : ddt1 t2cc
A
C = {a ∈ AC | ∃u [t1 t2→∗ u & av u]} ⊆ (6.11)

{a ∈ AC | ∃a1 ∈ ddt1cc
A
C , a2 ∈ ddt2cc

A
C , u[a1a2→∗ u & av u]} =

ddt1cc
A
C · ddt2cc

A
C

ii) ddt1cc
F
ξ,E · ddt2cc

F
ξ,E =

↑{σ | ∃ τ ∈ ddt2cc
F
ξ,E [τ→σ ∈ ddt1cc

F
ξ,E]} =

↑{σ | ∃τ [∃B1 [B1 È t1:τ→σ] & ∃B2 [B2 È t2:τ]]} = (⊆: B =∩{B1, B2})
↑{σ | ∃τ, B [B È t1:τ→σ & B È t2:τ]} =

↑{σ | ∃B [B È t1 t2:σ]} =

{σ | ∃B [B È t1 t2:σ]} =

ddt1 t2cc
F
ξ,E

7.1 The relation =R : equating terms through →R

As seen above in Lemma6.9(i), if t→∗ t′, thenAC (t) = AC (t′), which implies that, at least,
if t→∗ t′, thenddtccAC = ddt′ccAC . The converse does not hold, since unsolvable terms that are not

38

in →∗ , still have the same image underdd ccAC , namely⊥. We now formalize these properties.
The relation=R is the reflexive, symmetric and transitive closure of→R :

Definition 7.4 Let ((C,X),R) be aCS. We define the equivalence relation=R ⊆ T (C,V)×
T (C,V) by:

t→∗R v ⇒ t =R v

t =R v ⇒ v =R t

t =R v & v =R w ⇒ t =R w

Lemma 7.5 Ift =R v, then there existsu such thatt→∗R u andv→∗R u.

Proof: By induction on the definition of=R . If t =R v & v =R w ⇒ t =R w, then, by
induction there areu1 andu2 such thatt→∗R u1 andv→∗R u1, andv→∗R u2 andw→∗R u2.
Sincev→∗R u1 andv→∗R u2, by Property4.5, there exist au3 such thatu1→∗R u3 and
u2→∗R u3. But then, in particular,t→∗R u3 andw→∗R u3. The other cases are
straightforward.

The approximant semantics is adequate, in that it equates terms that are equal in the theory
R.

Theorem 7.6 (ADEQUACY OF THEAPPROXIMATION MODEL) If t =R v, thenddtccAC = ddvccAC .

Proof: Consequence of Lemma7.5and6.9(i).

The converse of this result, ’If ddtccAC = ddvccAC , thent =R v’ does not hold.

Example 7.7 Take theCS

Sxyz → xz (yz)

Kxy → x

Dx → xx

Wx → xxx

Notice thatSK(DD) andSK(WW) both have only one redex, and that this property is pre-
served under reduction. Then

SK(DD)→ SK(DD)→ SK(DD)→ · · ·

and
SK(WW)→ SK(WWW)→ SK(WWWW)→ · · · ,

so
ddSK(DD)ccAC = {⊥,S⊥⊥,SK⊥} = ddSK(WW)ccAC ,

but there is nou such that bothSK(DD)→∗ u andSK(WW)→∗ u.

7.2 The relation ≈R : =R and equating unsolvables

We could modify the relation=R to identify all unsolvable terms, soSK(DD)≈R SK(WW)
(this is used also forLC).

39

Definition 7.8 Let ((C,X),R) be aCS. We define the equivalence relation≈R ⊆ T (C,V)×
T (C,V) by:

t→∗R v ⇒ t≈R v

t, v are unsolvable⇒ t≈R v

t≈R v ⇒ v ≈R t

t≈R v & v ≈R w ⇒ t≈R w

t≈R v ⇒ wt≈R wv & tw≈R vw

Notice thatSK(DD)≈R SK(WW).

Theorem 7.9 If t≈R v, thenddtccAC = ddvccAC .

Proof: By induction on the definition of≈R. The caset→∗R v follows from Lemma6.9(i).
If t, v are unsolvable, thenddtccAC = {⊥} = ddvccAC . The last case is a consequence of
Lemma7.3. The other two cases follow by induction.

Although, by≈R , terms are equated that are unsolvable, still we do not get a full-abstrac-
tion result, since it can be that solvable terms have the same infinite set of approximants, whilst
sharing no terms during reduction.

Example 7.10 Take
Txy → y (xxy)

Yxy → y (xy (xy))

Xxy → x(yy)

Then we have the following reduction sequences:

YXz → z (Xz (Xz))

→ z (z (Xz (Xz)))

→ z (z (z (Xz (Xz))))

· · ·
→ z (z (z (z (z (z · · ·)))))

TTz → z (TTz)

→ z (z (TTz))

→ z (z (z (TTz)))

· · ·
→ z (z (z (z (z (z · · ·)))))

In particular,

ddYXzccAC = {⊥, z⊥, z (z⊥), z (z (z⊥)), . . .} = ddTTzccAC ,

butnot YXz ≈R TTz.

7.3 The relation ≈hnf
R : full-abstraction

We can obtain a full-abstraction result for the approximation semantics using the following
relation:

Definition 7.11 Let ((C,X),R) be aCS. The relation≈hnf
R is defined co-inductively as fol-

lows: t≈hnf
R u if and only if either

i) t andu are both unsolvable, or
ii) if Ct1 · · ·tn is a head normal form oft (resp.u), then there is a head normal form

Cu1 · · ·un of u (resp.t) such that, fori ∈ n, ti ≈hnf
R ui, or

40

iii) if xt1 · · ·tn is a head normal form oft (resp.u), then there is a head normal form
xu1 · · ·un of u (resp.t) such that, fori ∈ n, ti ≈hnf

R ui.

Theorem 7.12 (FULL ABSTRACTION OF THEAPPROXIMATION MODEL) t≈hnf
R u if and only if

ddtccAC = dduccAC .

Proof: (if) : By co-induction. It is sufficient to show that ifddtccAC = dduccAC then either
a) t, u are unsolvable, or
b) if Ct1 · · ·tn is a head normal form oft (resp.u), thenCu1 · · ·un is a head normal

form of u (resp.t), andddticc
A
C = dduicc

A
C for i ∈ n, or

c) if xt1 · · ·tn is a head normal form oft (resp.u), thenxu1 · · ·un is a head normal
form of u (resp.t), andddticc

A
C = dduicc

A
C for i ∈ n.

This is a straightforward consequence of the fact thatu andt have the same set of
approximants.

(only if) : We takea ∈ ddtccAC and showa ∈ dduccAC by induction on the depth ofa.
(a = ⊥) : Trivial.
(a = Ca1 . . . an) : Thent has a head normal formCt1 · · ·tn, and thereforeu has a head

normal formCu1 · · ·un such thatti ≈hnf
R ui for i ∈ n. Sinceai ∈ ddticc

A
C and its depth

is smaller than that ofa, by induction we conclude thatai ∈ dduicc
A
C . Therefore

a ∈ dduccAC .
(a = xa1 . . . an) : Similar.

7.4 Filter semantics and full abstraction

The filter semantics gives a semi-model with respect to→R , as the following theorem shows.

Theorem 7.13 If t→∗R v, thenddtccFξ,E ⊆ ddvcc
F
ξ,E .

Proof: Takeσ ∈ ddtccFξ,E . Then there existsB such thatB È t:σ, and, sincet→∗R v, by

Theorem5.17, alsoB È v:σ, soσ ∈ ddvccFξ,E .

In view of the fact that type assignment iǹE is not closed for subject-expansion (see the
remark at the end of Section5.3), it is, in general, not possible to show a stronger result like
’ If t =R v, thenddtccFξ,E = ddvccFξ,E ’. However, when using a principal environment, this result
holds.

Theorem 7.14 (ADEQUACY OF THEFILTER MODEL) LetC = ((C,X),R) be aCS, andE be prin-

cipal for C, thent =R v impliesddtccFξ,E = ddvccFξ,E .
Proof: By Theorem5.17and5.18.

We even have the following result easily.

Theorem 7.15 Let C = ((C,X),R) be aCS, andE be principal forC, thent≈R v implies
ddtccFξ,E = ddvccFξ,E , for all t, v ∈ T (C,V).

Proof: By induction on the definition of≈R. The caset→∗R v is covered by Theorem5.17

and5.18. If t, v are unsolvable, then by Theorem6.16, ddtccFξ,E = {ω} = ddvccFξ,E . The last case

41

is a consequence of Lemma7.3. The other two cases follow by straightforward
induction.

The converse of these results do not hold.

Example 7.16 TakeT,Y,X as in Example7.10, and let

E(T) = ((ϕ1→ϕ2→ϕ3)∩ϕ1)→((ϕ3→ϕ4)∩ϕ2)→ϕ4

E(Y) = ((ϕ3→ϕ5→ϕ1)∩(ϕ4→ϕ5))→((ϕ1→ϕ2)∩ϕ3∩ϕ4)→ϕ2

E(X) = (ϕ1→ϕ2)→((ϕ3→ϕ1)∩ϕ3)→ϕ2

then

ddYXccFξ,E = {ω, (ω→ϕ1)→ϕ1, ((ω→ϕ1)∩(ϕ1→ϕ2))→ϕ2,

((ω→ϕ1)∩(ϕ1→ϕ2)∩(ϕ2→ϕ3))→ϕ3, . . .} = ddTTccF

(notice that these types correspond directly to the approximants of Example7.10) but neither
YX =R TT, norYX≈R TT.

For the filter semantics, we have, as can be expected:

Theorem 7.17 Let C = ((C,X),R) be aCS, andE be principal forC, thent≈hnf
R u implies

ddtccFξ,E = dduccFξ,E , for all t, u ∈ T (C,V).

Proof: If t≈hnf
R u, then, by Theorem7.12, ddtccAC = dduccAC . Letσ ∈ ddtccFξ,E (the other case is

similar), then there exists aB such thatB È t:σ. Then, by Theorem6.14, there exists an
a ∈ AC (t) such thatB È a:σ. SinceAC (t) = ddtccAC = dduccAC = AC (u), a ∈ AC (u), and by
Theorem6.15,B È u:σ, soσ ∈ dduccFξ,E .

Perhaps surprisingly (at least forLC, the approximation and the filter semantics coin-
cide [42, 3]), we do not have a full-abstraction result with respect to filter semantics.

Example 7.18 Take

Exy → xy

Ix → x
and

E(E) = (ϕ1→ϕ2)→ϕ1→ϕ2

E(I) = ϕ1→ϕ1

Then ddEIccFξ,E = ddIccFξ,E but neitherEI =R I, norEI≈R I, norEI≈hnf
R I.

The relation between the two semantics is formulated by:

Theorem 7.19 ddtccFξ,E ⊆
⋃
a ∈ [[t]]AC

ddaccFξ,E .

Proof: If σ ∈ ddtccFξ,E , then there is aB such thatB È t:σ. Then, by Theorem6.14, there is
ana ∈ AC (t) such thatB È a:σ.

Note that the inclusion is strict, since the Subject Expansion property does not hold in
general. Also, as can be expected:

Theorem 7.20 Let C = ((C,X),R) be a CS, E principal for C, then
⋃
a ∈ [[t]]AC

ddaccFξ,E ⊆
ddtccFξ,E , for all t ∈ T (C,V).

42

Proof: If σ ∈ ⋃
a ∈ [[t]]AC

ddaccFξ,E , then there existsa ∈ ddtccAC ,B such thatB È a:σ. Then, by

Theorem6.15, alsoB È t:σ, soσ ∈ ddtccFξ,E .

References
[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline.Theoretical Computer Science,

102(1):135–163, 1992.
[2] S. van Bakel. Principal type schemes for the Strict Type Assignment System.Logic and Computation,

3(6):643–670, 1993.
[3] S. van Bakel. Intersection Type Assignment Systems.Theoretical Computer Science, 151(2):385–435,

1995.
[4] S. van Bakel. Rank 2 Intersection Type Assignment in Term Rewriting Systems.Fundamenta Informaticae,

26(2):141–166, 1996.
[5] S. van Bakel.Strongly Normalisation Cut-Elimination with Strict Intersection Types (Extended Abstract),

International WorkshopIntersection Types and Related Systems 2002(ITRS’02), Electronic Notes in The-
oretical Computer Science, volume 70-1, 2002.

[6] S. van Bakel, F. Barbanera, M. Dezani-Ciancaglini and F.J. de Vries.Intersection Types for Trees. Theoret-
ical Computer Science, 272 (Theories of Types and Proofs 1997): 3-40, 2002.

[7] S. van Bakel and M. Ferńandez. Approximation and Normalization Results for Typeable Term Rewriting
Systems. In Gilles Dowek, Jan Heering, Karl Meinke, and Bernhard Möller, editors,Proceedings of HOA
’95. Second International Workshop on Higher Order Algebra, Logic and Term Rewriting,Paderborn,
Germany. Selected Papers, volume 1074 ofLecture Notes in Computer Science, pages 17–36. Springer-
Verlag, 1996.

[8] S. van Bakel and M. Ferńandez. Normalization Results for Typeable Rewrite Systems.Information and
Computation, 133(2):73–116, 1997.

[9] S. van Bakel and M. Ferńandez.Normalization, Approximation and Semantics for Combinator Systems.
Theoretical Computer Science, 290:975-1019, 2003.

[10] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[11] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type
assignment.Journal of Symbolic Logic, 48(4):931–940, 1983.

[12] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for theλ-Calculus.
Notre Dame, Journal of Formal Logic, 21(4):685–693, 1980.

[13] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes andλ-calculus semantics. In
J.R. Hindley and J.P. Seldin, editors,To H.B. Curry, Essays in combinatory logic, lambda-calculus and
formalism, pages 535–560. Academic press, New York, 1980.

[14] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.Zeitschrift f̈ur
Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[15] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type Theories, Normal Forms and D∞-Lambda-
Models. Information and Computation, 72(2):85–116, 1987.

[16] H.B. Curry. Grundlagen der Kombinatorischen Logik.American Journal of Mathematics, 52:509–536,
789–834, 1930.

[17] H.B. Curry. Functionality in combinatory logic. InProc. Nat. Acad. Sci. U.S.A., volume 20, pages 584–590,
1934.

[18] H.B. Curry and R. Feys.Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
[19] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook of Theoretical

Computer Science, volume B, chapter 6, pages 245–320. North-Holland, 1990.
[20] M. Dezani-Ciancaglini and I. Margaria. A characterisation of F-complete type assignments.Theoretical

Computer Science, 45:121–157, 1986.
[21] M. Dezani-Ciancaglini and J.R. Hindley. Intersection types for combinatory logic.Theoretical Computer

Science, 100:303–324, 1992.
[22] E. Engeler. Algebras and combinators.Algebra universalis, 13(3):389–392, 1981.
[23] K. Futatsugi, J. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of OBJ2. InProceedings 12th ACM

Symposium on Principles of Programming Languages, pages 52–66, 1985.
[24] J.Y. Girard. The System F of Variable Types, Fifteen years later.Theoretical Computer Science, 45:159–

192, 1986.

43

[25] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor,Handbook of Theoretical
Computer Science, pages 633–674. North-Holland, 1990.

[26] J.R. Hindley. The principal type scheme of an object in combinatory logic.Transactions of the American
Mathematical Society, 146:29–60, 1969.

[27] J.R. Hindley. The simple semantics for Coppo-Dezani-Sallé type assignment. In M. Dezani and U. Monta-
nari, editors,International symposium on programming, volume 137 ofLecture Notes in Computer Science,
pages 212–226. Springer-Verlag, 1982.

[28] J.R. Hindley. The Completeness Theorem for Typingλ-terms.Theoretical Computer Science, 22(1):1–17,
1983.

[29] R. Hindley and G. Longo. Lambda calculus models and extensionality.Zeitschrift f̈ur Mathematische Logik
und Grundlagen der Mathematik, 26:289–310, 1980.

[30] G. Huet and J.J. Ĺevy. Computations in Orthogonal Rewriting Systems. In J.-L. Lassez and G. Plotkin,
editors,Computational Logic. Essays in Honour of Alan Robinson. MIT Press, 1991.

[31] B. Jacobs, I. Margaria, and M. Zacchi. Filter Models with Polymorphic Types.Theoretical Computer
Science, 95:143–158, 1992.

[32] J.W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon Press, 1992.

[33] J.W. Klop and A. Middeldorp. Sequentiality in Orthogonal Term Rewriting Systems.Journal of Symbolic
Computation, 12:161–195, 1991.

[34] D. Leivant. Polymorphic Type Inference. InProceedings 10th ACM Symposium on Principles of Program-
ming Languages,Austin Texas, pages 88–98, 1983.

[35] I. Margaria and M. Zacchi. Principal Typing in a∀∩-Discipline. Logic and Computation. To appear.
[36] R. Milner. A theory of type polymorphism in programming.Journal of Computer and System Sciences,

17:348–375, 1978.
[37] J.C. Mitchell. Polymorphic Type Inference and Containment.Information and Computation, 76:211–249,

1988.
[38] B.C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD thesis, Carnegie

Mellon University, School of Computer Science, Pitssburgh, 1991. CMU-CS-91-205.
[39] B.C. Pierce. Intersection Types and Bounded Polymorphism. In M. Bezem and J.F. Groote, editors,

Proceedings of TLCA ’93. International Conference on Typed Lambda Calculi and Applications,Utrecht,
the Netherlands, volume 664 ofLecture Notes in Computer Science, pages 346–360. Springer-Verlag, 1993.

[40] J.C. Reynolds. The essence of Algol. In J.W. de Bakker and J.C. van Vliet, editors,Algorithmic languages,
pages 345–372. North-Holland, 1981.

[41] J.C. Reynolds. Preliminary design of the programming language Forsythe. Technical Report CMU-CS-88-
159, Carnegie Mellon University, Pitssburgh, 1988.

[42] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory.Theoretical
Computer Science, 28:151–169, 1984.

[43] P. Salĺe. Une extension de la théorie des types. In G. Ausiello and C. Böhm, editors,Automata, languages
and programming. Fifth Colloquium,Udine, Italy, volume 62 ofLecture Notes in Computer Science, pages
398–410, Udine, Italy, 1978. Springer-Verlag.

[44] W.W. Tait. Intensional interpretation of functionals of finite type I.Journal of Symbolic Logic, 32(2):198–
223, 1967.

[45] S.R. Thatte. Full Abstraction and Limiting Completeness in Equational Languages.Theoretical Computer
Science, 65:85–119, 1989.

[46] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-models
of the lambda-calculus.SIAM J. Comput., 5:488–521, 1976.

44

