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Introduction

In the recent years several notions of type assignment for several (extended) lambda calculi
have been studied. The oldest among these is a well understood and elegantly defined notion
of type assignment on lambda terms, known as the Curry type assignment system [18]. It
expresses abstraction and application, and can be used to obtain a (basic) functional charac-
terization of terms. It is well known that in that system, the problem of typeability

Given a term), are there a basi®3 and a types such thatB - M :0?
is decidable, and that it has the principal type property:

If M is typeable, then there a8 7 such thatP - M : 7, and, for everyB, o such that
B+ Mo, there exist a way of generatind, o) from (P, «).

These two properties found their way into programming, mainly through the pioneering work
of R. Milner [36]. He introduced a functional programming language ML, of which the under-
lying type system is an extension of Curry’s system. The extension consists of the introduc-
tion of polymorphic functions, i.e. functions that can be applied to various kinds of arguments,
even of incomparable type. The formal motivation of this concept lies directly in the notion
of principal types.

Though the Curry system is already powerful and convenient for use in programming prac-
tice, it has drawbacks. Itis, for example, not possible to assign a type to théXterm), and
terms that argl-equal can have different principal type schemes. The Intersection Type Dis-
cipline as presented in [14] by M. Coppo, M. Dezani-Ciancaglini, and B. Venneri (a more en-
hanced system was presented in [11] by H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini)
is an extension of Curry’s system that does not have these drawbacks. The extension being
made consists mainly of allowing for term variables (and terms) to have more than one type.
Intersection types are constructed by adding, next to the type construetof Curry’s sys-
tem, the type constructon* and the type constants’. This slight generalization causes a
great change in complexity; in fact, now all terms having a (head) normal form can be char-
acterized by their assignable types, a property that immediately shows that type assignment
(even in the system that does not contajrsee [1]) is undecidable. Also, by introducing this
extension a system is obtained that is closed updeguality: if B+ M:0 andM =3 N,
thenB + N:o.

The type assignment system presented in [11] (the BCD-system) is based on the system as
presented in [14]. It defines the set of intersection types in a more general way by treating °
as a general type constructor, and introduces two derivation rules for introduction and elim-
ination of intersections; the handling of intersection in this way is inspired by the similarity
between intersection and logical conjunction. A big contribution of [11] to the theory of in-
tersection types is the introduction of a filtetmodel and the proof of completeness of type
assignment; to achieve the latter, the system is strengthened further by introducing a partial
order relation £’ on types as well as adding the type assignment (tle

A disadvantage of the BCD-system (and of any real intersection system, for that matter) is
that type assignment in this system is undecidable. In recent years, some decidable restric-
tions have been studied. The first was the Rank2 intersection type assignment system [4], as
first suggested by D. Leivant in [34], that is very close to the notion of type assignment as
used in ML. The key idea for this system is to restrict the set of types to those of the shape
((o1n---no,)—T), Where thes; (i € n) are types that do not contain intersections.



That intersection types can be used as a basis for programming languages was first dis-
cussed by J. Reynolds in [40]. This led to the development of the (typed) programming lan-
guage Forsythe [41], and to the work of B.C. Pierce [38, 39], who studied intersection types
and bounded polymorphism in the field of typed lambda calculi. Because there only typed
systems are considered, the systems are decidable.

Another disadvantage of the BCD-system is that it is too general: in this system there are
several ways to deduce a desired result, due to the presence of the derivatigninylesE)
and (<). These rules not only allow of superfluous steps in derivations, but also make it
possible to give essentially different derivations for the same result. Moreover, in [11] the
relation < induced an equivalence relation on types. Equivalence classes are big (for
examplew ~ (c—uw), for all typess) and type assignment is closed for

The BCD-system has the principal type property, as was shown in [42]; although for every
M the set{(B,o) | B+ M:o} can be generated using operations specified in [42], the
problem of type-checking

Given atermM and typeo, is there a basig3 such thatB - M :0?

is complicated. This is not only due to the undecidability of the problem, but even a semi-
algorithm is difficult to define, due to the equivalence relation on types. Moreover, because of
the general treatment of intersection types, the sequence of operations needed to go from one
type to another is normally not unique.

The strict type assignment system as defined in [1] is a restriction of the system of [11];
it uses a set of strict types, that is actually the set of normalized tail-proper types of [14].
Although there are rather strong restrictions imposed, the provable results for the strict system
are very close to those for the system of [11]. For example, the sets of normalizable terms
and those having a normal form can be equally elegantly characterized. The main difference
between the two systems is that the strict systenoislosed forn-reduction, whereas the
BCD-system is.

The strict system gives rise to a strict filtefmodel that satisfies all major properties of
the filter \-model as presented in [11], but is an essentially diffepentodel, equivalent to
Engeler's modeD, [22]. In [1] was shown that soundness for the notion of type assignment
of [11] is lost if instead of simple type semantics, the inference type semantics is used. With
the use of the inference type semantics, in [1] soundness and completeness for strict type
assignment was proved, without having the necessity of introducing

The set of types assignable to a tekmin the strict system is significantly smaller than the
set of types assignable fd in the BCD-system. In particular, the problem of type checking
for the strict system is, because of the smaller equivalence classes, less complicated than for
the BCD-system.

The type assignment system as presented here was first presented in [3] (albeit in different
notation), and is a true restriction of the BCD-system that satisfies all properties of that sys-
tem, and is also an extension of Curry’s system. It will be shown that, in order to prove a
completeness result using intersection types, there is no need to be as general as in [11]; this
result can also be obtained for the system presented here. The main advantage of this system
over the BCD-system is that the set of types assignable to a term is significantly smaller. An
other advantage of the system is that derivations are syntax-directed: there is, unlike in the
BCD-system, a one-one relationship between terms and skeletons of derivations. These two
features are supported by a less complicated type structure.



The system presented here is also an extension of the strict type assignment system as pre-
sented in [1]. The major difference is that the system will prove to be closegreduction:
If B+ M:ocandM —, N, thenB F N:o. This does not hold for the strict system.

Some results already known for, for example, the BCD-system, hold for the slstem

If BF M:0andM —, N,thenB + N:o.
If BF M:0andM =3 N, thenB - N:o.
B+ M:oando # w, if and only if M has a head normal form.

B+ M:o andw does not occur irB ando, if and only if M has a normal form.

 has the principal type property.

The first four of these properties will be reviewed here; for the last, see [3].

Notations

In these notes, the symbeglwill be a type-variable; Greek symbols like 53, u, p, o, andr
will range over types, and will be used for principal types—’ will be assumed to associate
to the right, andy’ binds stronger than—’. M, N are used for lambda term&;, D, E for
(arbitrary) combinatorsg, D, E for concrete combinators, amdu, v for terms in Combinator
Systemsy, y, z for term-variables) [N/ x] for the usual operation of substitution on lambda
terms, A for terms inA_L-normal form, and: for approximants of combinator system>s.

is used for based3\z for the basis obtained from® by erasing the statement that hasas
subject, andP for principal bases. All symbols can appear indexed.

We will write n for the set{l,...,n}, and will often use a vector notatior* for the
purpose of abbreviation. For exam@i stands forP M, - - - M,, for a suitablen, and
[N1/x1,...,N,/z,] is abbreviated byN;/xz;].

Two types (bases, pairs of basis and type)disgint if and only if they have no type-
variables in common. Notions of type assignment are defined as ternary relations on bases,
terms, and types, that are denotedHyypossibly indexed if necessary. If in a notion of type
assignment fol/ there are basi® and types such thatB - M : o, thenM is typed witho,
ando isassigned tal/.

1 Type assignment

In this section a notion of type assignment system is presented that is a restricted version of
the BCD-system presented in [11], together with some of its properties. The major feature of
this restricted system is, compared to the BCD-system, a restricted version of the derivation
rules and the use of strict types. It also forms a slight extension of the strict type assignment
system that was presented in [1]; the main difference is that the strict system is not closed for
n-reduction, whereas the system presented here is.

Strict types are the types that are strictly needed to assign a type to a term in the BCD-
system. In the set of strict types, intersection type schemes and the type canptagta
limited role. In particularw is taken to be the empty intersectionnif= 0, thenn,,0; = w, so
w does not occur in an intersection subtype. Moreover, intersection type schemes (sp also
occur in strict types only as subtypes at the left-hand side of an arrow type scheme, as in the
types of [12], [13], and [14].



Definition 1.1 (Tyres) i) Let ® be a countable (infinite) set of type-variables, ranged over

by ¢. 7, the set ofstrict types and the sef” of intersection typesboth ranged over by
o,T,..., are defined through:

o= 0| (T —T)
T o= (TN - NT)

We will write w for an intersection of zero strict types, angl; for the typeo;n - - - no,;
we will also, as usual, omit right-most, outer-most brackets.

ii) A statemenis an expression of the ford : o, with M € A, ando € 7. M is thesubject
ando thepredicateof M :o.

iii) The relation< is defined as the least pre-order (i.e. reflexive and transitive relation) on
7 such that:

Moy < oy, forallien
7<0;, forallien = 7<nN,0;
pLoc&1t7<pu = oc-7<p—nu
iv) On7T, the relation~ is defined byo ~ 7 <= o <7 <o0.

Notice thato <w, for all 0. Unless stated otherwise, if a type is writtenagr;, then all
o; (i € n) are assumed to be strict.

For the relatiorn<, the following properties hold:

Lemmal2 o<1 = oc<T.

i) p<o <= oc=¢.So{o|o~yp} ={p}

i) w<o <= c=w. So{o | o ~w}={w}.

V) o—7<peTls <= JacT,feTp=a—f&a<o& T/
V) o, <7€Tg= Fieno <7

Vi) 0 <7 = do;(ien),rj(jem) o =N, &T=N,7;, &Vjem3Iienlo; <]
Proof: Easy.

Definition 1.3 (Bases) i) A basisis a partial mapping from term variables to types, normally
written as a set of statements of the shape

i) If B; (i € n)are bases, thdnl{B,, ..., B,} (or({n}B;) is the basis defined as follows:

2Ny 0; € (W{n}B; if and only if {x:01, ..., 2:0,,} is the set of all statements abaut
that occur inB, U ... UB,,.

iii) B<B'if and only if for everyx:c’ € B’ there is anr:oc € B such thato <¢’, and
B~ B < B<B'<B.

OftenB U {x:0} (or B, z:0) will be written for the basi§ 1{ B, {z:c'}}, whenz does not occur
in B.

Definition 1.4 (Tvre assicNMENT)  Type assignmerdandderivationsare defined by the fol-
lowing natural deduction system (where all types displayed are strict, excepiridhe rule



(AX), (—E) and(—I)):

A I BrM:09 --- BI—M:an( >0)
X! — (0 <7 E TS nl) - n>
(A9 B,x:al—x:T(U_T 2 o BF M:Nyo;
B,xiobM:T B+ M:0c0—1 BFN:o
(—l): (ceT) (—E):
BrFXe.M:o—T1 B+ MN:T

B+ M:o is used if this statement is derivable using a strict intersection derivation, and
D :: B+ M:o specifies that this result was obtained through the derivation D.

For this notion of type assignment, the following properties hold:

Lemmalb )Brax:io < JpeT [z:pe B&p<o].

i) BFMN:o&koeTy< Id7€T [BFM:7—0c& B+ N:7].

i) BFEXe.M:0 <= JpeT,ucTglo=p—pu& B,x:pt M:pul.

V) BFEM:oc&oeT < Jo;(1€n)jo=N,0;&Vien[BF M:o]].
V) BFM:oc <= {z:teBlzefvM)} - M:o.

vii BFM:c& B'<B = B’ M:o.

Vi) BEM:0 = {x:p|azpe B&axefv(M)} - M:o.

Proof: Easy. [

1.1 Etareduction

Although the rulg(Ax) is defined only for term-variables, is closed for< and weakening.

Lemma 1.6(Weakening) If B M:o0andB’' < B,o <7,thenB’ + M:, so the following
is an admissible rule ir:

Proof: By induction onf-.

(AX) : ThenM = z, and there is:p € B such thap < o. SinceB’ < B, there isz:u € B’
such thaf: < p. Notice thaty < p <o <, so, by Lemmd.5(i), B'F z:7.

(—I1): ThenM = A\x.M’, and there arp € 7, u € 75 such that = p—p and
B,z:p b M’ u. By Lemmal.2 (vi)& (iv) there arep;, u; (i € n) such that
T = Nyp(pi—u;), and fori € n, p; < pandp < ;. SinceB’ < B andp; < p, also
B',x:p; < B, z:p, and by inductiomB, z:p; = M’: u;. So, by(—l), for every: € n,
BF Xe.M':p;—p;, S0, by(nl), B+ Xe.M':T.

(—E): ThenM = M; M, and there is @ € 7 such thatB - M;: u—o andB = M,: p.
Sinces < 7, alsou—o < u—7 and, by induction + M : u—7. Then, by(—E),
B M1M2 . T. |

(nl) : Theno = N,0;, and, for every € n, B = M :0,. By Lemmal.2 (vi), there are
7; (j € m) such that- = N,,,7; and, for everyj € m, there is & € n such thawv; < ;.
By induction, for everyj € m, B’ = M :7;. But then, by(nl), B’ = M : 7.



Now it is easy to prove that type assignment in this system is closed yadéuction. The
proof for this result is split in two parts, Lemnia7 and Theorenl.8 The lemma is also used
in the proof of Lemm&2.7.

Lemmal.7? Iff €7, B,x:o b Mxz:Tandz & fv(M) thenB + M:o—T.

Proof: 7€ 7.& B,xio - Mx:m &z gtv(M) = (—E)
u[B,xiob M:p—17& Byriokz:p& xgfv(M)] = (1.5())
plB,x:ob M:p—1&o<pu&xgfv(M) = (1.5 (vii))
JuBFM:p—1&o<p] = (2.1 (iii))
u B M:p—1 & p—17 <o—-1] = (1.6)
BFEM:0—T. [ |

Theorem 1.8 (+ cLosep Forp-rRebucTioN) If B = M:oandM —, N, thenB - N:o.

Proof: By induction on the definition of—, , of which only the pariz. Mz —, M is
shown, where: does not occur free in/. The other parts are dealt with by straightforward
induction.

(0€Ts): Then: BF Az Mz:o & x ¢ tv(M) = (—1)
dp,plo=p—p& B,z:pk Mz:p] = (1.7)
BFM:o.
(0 =Ny,o;): Then, by(nl), B+ A\x.Mx:0; for all i € n, so, by the previous part,
BF M:o;,s0,by(nl), BF M:o. n

By the structure of this proof, below we will normally focus on strict types when proving
properties.

For example) - \zy.zy: (0—7)—onp—71andd - \x.x: (c—7)—0onp— are both easy
to derive.

(onp <o)
r:o—T,y:onNp bt xr:0—T rio0—=T,yonNp Yo

x:o—T,yionNp Exy:T

x:0—T F Ay.xy:onp—T1

0 F Xey.zy: (0—7)—onp—T

x:0—T F xionp—T

(c—1 <onp—T)
DF Xex: (0—T)—onp—T

1.2 Subject reduction and expansion

Asin [13, 11, 1], it is possible to prove that the type assignment system is closed=ypnder
In the latter two papers this result was obtained by building a fiterodel; from the fact that
every M is interpreted by the set of its assignable types, and that set is a filter, the result is
then immediate (see also Coroll&8y.3. In this paper the result will first be obtained directly,
without constructing a filter model; in this way the precise behaviour of the type constructor
N’ and the type constant can be made apparent.

That the system is closed under subject reduction can be illustrated also by the following
‘Cut and Paste’ proof: Suppose that- (Az.M)N:o, with o € 7.. By (—E), there exists



such that
BF M Xe.M:T—ocandB F N:T.

Since(—1) should be the last step performed for the first result, also
B,z:tH M:candB + N:7.

Now there are (strict) types; (j € m) such that, for every;, in the first derivation, there
exists a sub-derivation of the shape

— (AY
B,x:t = a:ip;

and these are all the applications of rihe) that deal withz. Then, for allj € m, 7 < p; and,
by Lemmal.6, B - N:p,. Then a derivation fo3 - M[N/z]: o can be obtained by replac-
ing, for every; € m, in the derivation foi3, x:7 = M : o, the sub-derivatiol3, z:7 - x: p; by
the (new) derivation fo3 = N: p;.

The problem to solve in a proof for closure undeequality is then that of-expansion:

if BF M[N/x]:0, thenB F (Ax.M)N:o.

Assume that the term-variableoccurs in)M and the termV is a sub-term of\/[N/x], so
N is typed in the derivation for D. B = M[N/x]:0, probably with several different types
o; (i € n). A derivation for

B,x:N,0; = M:o

can be obtained by replacing, in D, all derivations ¢ N : o, by the derivation for
{z:Nypoi} F x:0y

Then, usingnl), B - N:N,0;, and, using—l), B - Az.M:N,0,—0c. Then, using —E),
the redex can be typed.

When the term-variable does not occur i/, the termN is a not a sub-term a¥/[N/x]
andB - M[N/z]:o stands forB - M :o. In this case, the type is used: since: does not
occur inM, x:w can be assumed to appearinand rule(—l) givesB - \x.M :w—o. By
(nl), B+ N:w, so, using —E), the redex can be typed.

To show this result formally, first a substitution lemma is proved. Notice that, unlike for
many other notions of type assignment (Curry’s system, the polymorphic type discipline [24]),
the implication holds in both directions.

Lemma 1.9(SussTiTuTiON LEMMA) Jp [B,x:pt M:o & B+ N:p] <= BF M[N/z]:0.

Proof: By induction on)M. Only the case € 7; is considered.
(M=2z): (=): p[B,aptz:0& BF N:p| = (1.5())
dplp<o& BE N:p| = (1.6)
B+ z[N/z]:0.
(<): BFx[N/z]:0 = Bt N:o;takep = o.
(M =y #x): (=): By Lemmal.5(vii), sincey[N/z| = y.
(<): BFy[N/x]:0 = BF y:o; takep = w.



(M= yM"): (<=): Fp[B,zpklyM:c& BF N:p| < (—1)
dp,a, 0 [B,x:p,yat M:f&o=a—F& BF N:p|] < (IH)
da, 0 [B,y:a b M[N/z]:f & 0 = a—f] < (—1)
BE Xy.(M[N/z]):0 <
BE (A\y.M)[N/x]: 0.

(M =M M,): (=): Fp[B,x:pt MiMy:0& B+ N:p| < (—E)
dp, 7 [Byx:pt My:t—o & B,x:pk My:1& BE N:p| <= (IH)
d7 [BF Mi[N/z|:7—0c & B+ My[N/z|: 7| <= (—E)

B E Mi[N/z|M[N/z):0 <=
BF (MM)[N/x]:0
(<) BF MyMy[N/x]:0 =

B & M[N/z|M[N/z|:0 <= (—E)

A7 [B & M[N/z]:7—0 & B &+ My[N/z]: 7] <= (IH)

Ap1, po, 7 [Byxipi b My:1—0 & BE N:py & Byz:ps = My:7 & B N:ps
= (p=p1np2 & (NI) & 1.5(vi))

dp [B,x:p b MiMsy:0 & B+ N:p]. [

Theorem 1.10 (- cLoseb For=5) M =3 N = (B +F M:0 < B+ N:o), so the follow-
ing rule is an admissible rule in:
_ BFM:o

(=) BFN:o (
Proof: By induction on the definition of=3. The only part that needs attention is that of a
redex,B + (Ax.M)N:0 < Bt M[N/x]:0, whereo € 7Tg; all other cases follow by
straightforward induction. To conclude, notice thatBit- (\z.M)N: o, then, by(—E) and
(—I), there exists @ such thatB, x:p - M:c andB = N: p; the converse of this result
holds, obviously, as well. The result then follows by applying Lenin®éa [

M =5 N)

2 Approximation and normalization results

In [42] an approximation theorem is proved for the BCD-system, that formulates the relation
between the types assignable to a term and those assignable to its approximants, as defined in
[46] (see Definitior2.1 below):

B+ M:c if and only if there existsl € A(M) such thatB - A:o.

In this section, we will show this property for the system presented here. In [42] this result
is obtained through a normalization of derivations, wherg-all )-(—E) pairs, that derive
a type for a redeX\z.M)N, are replaced by one for its redutf[N/z], and all pairs of
(nl)—(nE) are eliminated. (This technique is also used in [13] and [11]. It requires a rather
difficult notion of length of a derivation to show that this process terminates.) In this paper, the
approximation theorem will be proved using the reducibility technique, following Tait [44], as
was done in [15], and [20].

With this result, it can be shown that the BCD-system is conservative over the system
presented here, and proven that the set of all terms having a (head) normal form are typeable
in F (with a type withoutv-occurrences) (Theoregh21).



2.1 Approximants

The notion of approximant was first presented by C. Wadsworth [46] and is defined using the
notion of terms inA_L-normal form (like in [10], L is used, instead d®; also, the symbol

C is used as a relation ok -terms, inspired by a similar relation defined oatBn-trees in

[10]).

Definition 2.1 (ApproxIMATE NORMAL FORMS i) The set ofA L -termsis defined as the sét
of lambda terms, extended by: € A L.

ii) The notion of reduction—4, is defined as— 4, extended by:

Ax. L Bl 1
J_M —>ﬁJ- J_

i) The set ofnormal forms for elements df_Lwith respect to — 4, is the set\/ of A_L-
normal formsor approximate normal formganged over byl and is defined by:

A = J_|)\x.A(A7éJ_)|xE(nZO)

The type assignment rules of the system are generalized to terms contaibyngllowing for

the terms to be elements aflL.. This implies that, because type assignment is almost syntax
directed, if L occurs in a term\/ andB F M : o, then eithels = w, or in the derivation for
Mo, 1 appears in the right hand sub-term of an application, and this right-hand term is typed
with w. Moreover, the termax. 1L and_L M; are typeable by only.

Definition 2.2 (ApproximManTs) i) The partial orderlC C (AL)? is defined as the transitive
and reflexive closure of:

L C M
ME M = \e.MC Ax.M
My C M, &M, T My = MM, T MM,

i) ForAe N,M e A,if A [ M, thenA is adirect approximanbf M.

i) TherelationC C N x AisdefinedbyAC M < IM' =3 M [A LT M].
iv) If AC M, thenA is anapproximantof M.

V) AIM)={AeN | AC M}.

Lemma23BFM:0c& ML M = BFM':o.
Proof: By easy induction on the definition of_ ; the base case, [_ M’, follows from the
fact that thenr = w. u

The following properties of approximants hold:

Lemma2.4 i) IfA e A(x]\?i) andA’ € A(N), thenAA’ € A(xJ\ZN).
i) If Ae A(Mz)andz ¢fv(M), then either:
- A=Az z2¢N(A),andA" € A(M), or
- Az Ae A(M).
i) If M =5 N, thenA(M) = A(N).
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Proof: Easy. [
The following definition introduces an operation of join Ad -terms.
Definition 2.5 i) OnA_L, the partial mappingpin, LI : AL x AL — AL, is defined by:

1uM MulL=M
rUx x
M. M)U(Az.N) = Az.(MUN)
(M M)U(N1Ny) = (M{UNy) (MyUN,)

i) If MUN is defined, thed/ and N are calleccompatible

Note that can be defined as the empty join, i.elMf = MU --- UM, andn = 0, then
M=1.

The last alternative in the definition of defines the join on applications in a more general
way than Scott’s, that would state that

(MlMQ)U(NlNQ) C (M1|_|N1>(M2|_|N2>,

since it is not always sure if a join of two arbitrary terms exists. However, this more general
definition will only be used on terms that are compatible, so the conflict is only apparent.
The following lemma shows that the join acts as least upper bound of compatible terms.

Lemma 2.6 IfA; C M, and M, C M, thenM,UM, is defined, and\/; C M,UM,, M, C
MiUM,, and M UM, T M. [ |

Proof: By induction on the definition of= .

i) If My =L, thenM,UM; = M,, soM; C M;UMs;, My E M;LUM,, and
M;UM; € M, & M. (The caseVl; = 1 goes similarly.)

i) If My = A x.Ny,thenM = \z.N, N; C N, and eithetMs; = 1 or My = \z.N,. The
first case has been dealt with in p&éit and for the other: the, = N. Then, by
induction,N; C N{LIN,, Ny & N;{UN,, andN; LN, = N. Then also
Ax.Ni C A\z.N;UNy, Ax. Ny C \z.N{UN,, andAxz. N, LIN, C Az.N. Notice that
Az.N1UNy = (Az.Np)U(Az. Ny).

i) If My = PQ,,thenM = PQ, P, C P,Q; C Q, and eithetM, = L or My = P,Q)s.
The first case has been dealt with in p@)yt and for the other: the®, C P, Q> C Q.
By induction, we knowP;, C P, LIP,, P, C PLIP,, andP,LUP, C P, as well as
Q1 C Q1UQ2, Q2 C Q1UQ,, andQ, U@, C Q. Then alsaP, @, T (PUP)(Q1UQ-),
PQy E (PIUR)(Q1UQs), and(PUR)(Q1UQ2) C PQ. Notice that
(PUR)(Q1UQ2) = (P1Q1)U(PQ2). u

Notice that, because @4 (iii), .A(M) can be used to define a semantics for the Lambda
Calculus. In fact, it is possible to show that

L{A | Ae A(M)} = BT(M)
whereBT (M) stands for theBohm treeof M, a tree that represents the (possible infinite)

normal form of M (see [10]).
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2.2 Approximation result

In this subsection, the approximation theorem will be proved; the technique used differs
slightly from that of [3]. For reasons of readability, in this subsecliche A(M) [B + A: 0]
will be abbreviated bydppr (B, M, o).

The following basic properties are needed further on.

Lemma 2.7 i)Appr(B,xJ\Z,aer) & Appr(B,N,o0) = Appr(B,xEN, 7).
i) Appr(BU{z:wo}, Mz, 7) & 2 tv(M) & 1€ Ts = Appr(B, M,0—T).
iii) Appr (B, M[N/2]P, o) = Appr (B, (\z.M)NP,0).
Proof: i) A€ A(@M,)& Bl Aio—r & A€ AN)& BF A'ir = (2.4() & (—E))
AA' € A(xM;N) & B+ AA": 7.
i) Ac A(M2) & B, 20 F At & ¢ (M) = (2.4(ii)
a) A=A2&z2¢VA)& A c AM)& B, zobF Azir = (1.7)
AeAM)& BF A:o—T.
b) Mz Ac AM)& B,zo- Air = M2 Ac AIM)& BF Az Aio—T.

—

iii) SinceM[N/z|P =3 ()\x.M)NfD, the result follows by Lemma.4 (jii). |

In order to prove, that for each term typeablé-iran approximant with the same type can
be found, a notion of computability is introduced.

Definition 2.8 (CompuTtaBILITY PREDICATE) COomp(B, M, p) is inductively defined by:
i) Comp(B, M, ) <= Appr(B, M, ).

i) Comp(B, M,0—7) < (Comp(B’, N,o) = Comp(({B,B'}, MN,T)).

i) Comp(B, M,N,0;) < Vien[Comp(B, M,0;).

Notice thatComp(B, M, w) holds as special case of pdii) .

Lemma 2.9 If ComfB, M,s), andB” < B, then Com@B", M, o).

Proof: By induction on the definition o€omp(-).
(0 =¢): Comp(B, M, )& B"<B = Appr(B, M, ¢) =
Appr(B", M, p) = Comp(B", M, ).

(0 = a—p): Comp(B,M,a—f3) = (2.8(ii))
(Comp(B’,Q,a) = Comp(({B, B'}, MQ, 3)) (IH)
(Comp(B’,Q,a) = Comp(({B", B'}, MQ, 3)) (2.8(ii))
Comp(B", M, a—[3).

(0 =Nyo;) 1 Comp(B, M,N,0;) = (2.8(iii))

Vi e n [Comp(B, M, o;)] (IH)
Vi e n[Comp(B", M,o;)] (2.8(iii))
Comp(B”, M, N,0;).

=
=

=
=

We will now show that the computability predicate is closed<or

Lemma 2.10 Take andr such thatr < 7. Then CompB, M,o) = Comp(B, M, 7).
Proof: By straightforward induction on the definition &f.
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(Npo; <o; (i €n)): Comp(B, M,N,0;) = (2.8(iii)) Comp(B, M, o;).

(1<0;(ien) = 17<N,0;): Comp(B, M, 7) = (IH)

Comp(B, M, 0;) (i € n) = (2.8(iii)) Comp(B, M, N,0;).

(p<oc&7<pu = o—-7<p—p): Comp(B,M,c—7) = (2.8(ii))
(Comp(B’, N,o) = Comp(( {B,B'}, MN,7)) = (IH2x)
(Comp(B', N, p) = Comp(B’',N,o) =

Comp(l{B,B'}, MN, ) = Comp(( \{B,B'}, MN,p)) =
(Comp(B', N, p) = Comp(( {B,B'}, MN, i1)) = (2.8(ii))
Comp(B, M, p—p). [ |

We will now show that the computability predicate is closeddegxpansion

Lemma 2.11 Com(®B, M[N/«]P, o) = Comp(B, (\z.M)NP, o).
Proof: By induction on the definition oc€omp(-).
(0 =¢): Comp(B, M|N/z|P,p) = Appr(B, M|N/z|P,p) = (2.7 (iii))

N

Appr (B, (Az.M)NP,p) = Comp(B, (Ax.M)NP, o).

(0 =a—p): Comp(B, M[N/z]P,a—f3) = B (2.8(ii))
(Comp(B’,Q,a) = Comp(({B, B'}, M[N/z] PQ,3)) = (IH)
(Comp(B',Q,a) = Comp({B, B}, \e.M)NPQ,3)) = (2.8(ii)
Comp(B, (\z.M)NP,a—3).

(0 = Nypoi): Comp(B, M[N/z|P, Nyo:) = (2.8(iii))

Vi € n [Comp(B, M[N/2]P,0;)] = (IH)
Vi € n [Comp(B, A\e.M)NP,0;)] = (2.8(iii))
Comp(B, (Az.M)NP, N,u0,).

The following theorem essentially shows that all term-variables are computable of any type,
and that all terms computable of a certain type have an approximant with that same type.

Theorem 2.12 i) Appr (B, :U]\_/[;, p) = Comp(B, :c]\?l-, p).
i) Comp(B, M, p) = Appr(B,M,p).
Proof: Simultaneously by induction on the structure of types. The only interesting case is
whenp = o—7; whenp is a type-variable, the result is immediate and when it is an
intersection type, it is dealt with by induction.
i) Appr(B,aM;,0—7) = (IH (ii) )
(Comp(B', N,0) = Appr(B,zM;,0—7) & Appr(B',N,0)) = (2.7())
(Comp(B', N, o) = Appr(({B,B'},zM;N,7)) = (IH (i)
(Comp(B', N, o) = Comp(\{B, B'},zM;N, 7)) = (2.8(ii))
Comp(B, xﬁi, o—T).

i) Comp(B,M,0—7)& z¢NM) = (IH (i)
Comp(B, M,o0—7) & Comp({z:c},z,0) & z ¢ fv(M) = (2.8(ii))
Comp(l{B,{z:0}}, Mz, 7) & z ¢ (M) = (IH (i) )
Appr (M B,{z:0}}, Mz,0) & 2 ¢ (M) = (2.7 (ii))
Appr (B, M,oc—T). |
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Notice that, as a corollary of the first of these two results, we get that term-variables are
computable for any type.

Corollary 2.13 Comp{x:c},z,0), forall z,o.

Theorem 2.14 If {z1:p1, ..., xy:pn} = Mo, and, for everyi € n, Comp(B;, N;, y1;), then

Comp(({Bi,...,B.}, M[N;/z;],0).

Proof: By induction on the structure of derivations; fet;:pq, . . ., z,:u, } = Bo, and

B°=(WB,...,B,}.

(AX) : ThenM = z;, for somej € n, ;< o, andM|[N,/z;] = z;[N;/z;] = N,. From
Comp(B;, N;, 1), by Lemma2.10 alsoComp(B;, N, ), and, sinceB" < B;, by
Lemma 2.9, als€omp(B°, N;, o).

(—=I1): ThenM = y.M’', 0 = p—7,andBy,y:p = M': 7.

Vi e n [Comp(B;, Ny, 1) & By, y:p b+ M':7 = (IH)
(Comp(B', N, p) = Comp(ﬂ{BO,B’},M’[mLN/y],T)) = (2.1
(Comp(B’, N, p) = Comp(({B°, B'}, (\y.M'[N;/x;])N,7)) = (2.8(ii))
Comp(BY, (Ay.M")[Ni/], p—).

(—E): ThenM = M, M,, By & M : p—o,andBy = Ms: p.

Vi e n [Comp(B;, Ni, 1i;)] & By b My:p—o & By - My:p = (IH)
Comp(BY, Mi [N, /], p—o) & Comp(B, My[Ny /7], p) = (2.8(ii))
Comp(B°, (M M2)[Ni/z], o).

(nl) : Straightforward by induction. ]

As for the BCD-system and the strict system, the relation between types assignable to a
lambda term and those assignable to its approximants can be formulated as follows:

Theorem 2.15 (APPROXIMATION THEOREM) B+ M:o <= FA € A(M) [BF A:o].
Proof: (=): BF M:0 = (2.14& 2.13 Comp(B, M, o) = (2.12(ii))

JAe€ AM) [BF A:0].
(<): LetA e A(M) besuchthaB - A:o. SinceA € A(M), there is anV’ such that

M'" =5 M andA [_ M'. Then, by Lemm&.3 B I~ M': 0 and, by Theoren.1Q also
BFM:o. [ |

2.3 Principal pairs and Semantics

For terms inV, a notion of principal pair can be defined as follows:

Definition 2.16 (PrincipaL PAIR) i) Let A € N. ppre(A), theprincipal pair of A, is defined
by:
a) pre(L) = (w).
b) pre(z) = ({z:¢}, ).
c) If A# 1, andpp(A) = (P, ), then:
1) If z occurs free iM4, andz:o € P, thenpp:(A\z.A) = (P\z,0—).
2) Otherwisepp:(Az.A) = (P, w—).
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d) Iffor i € n, pre(A4;) = (P, m;) (disjoint in pairs), then

PR (2A;) = ({Py, ..., Py {mim— - —m—p}}, 0),

wherey is a type-variable that does not occumpip:(A4;), fori € n.
i) P ={(Pm)|3AeN[pr(A) = (P, m)]}.

The definition is brought to arbitrary terms via:

Definition 2.17 ([3]) i) Let M be a term. Lell()) be the set of all principal pairs for all
approximants of\/: II(M) = {pp:(A4) | A€ A(M)}.
i) II(M) is an ideal inP, and therefore:
a) If II(M) is finite, then there exists a pdiP, ) = | |[I1(M), where(P, ) € P. This
pair is then called the principal pair 6f .
b) If II(M) is infinite,| | TI(M ) does not exist ifP. The principal pair of\/ is then the
infinite set of pairdI(M).

That this gives indeed tharincipal pair for a term)M/ is shown in [3].

Like in [13, 42, 2], it can be proved that there exists a precise relation between terms in
N and principal pairs, both equipped with an appropriate ordering. Here, the relatiam
pairs as given below is used.

Definition 2.18 ([3]) The relation on pairs< is defined by:
i) (B,o) < (0, w).
i) Vien(n>2)[(B,o0;) < (Bj,0)] = (({n}Bi, o) < (({n} B}, N,0i).
iit) (BU{z:p}, p) < (B'U{a:p'}, 1) = (B, p—p) < (B, p'—=).
V) Vi €n [(B;,0;) < (Bl,o})] = (({By,..., B, {x:0,— —0,—0}},0) <

)71

(T{BY,..., B {x:0)——0 —0c}},0).
The following result links the approximant semantics to principal types.

Theorem 2.19 ([3]) (P, ») is a meet semi-lattice isomorphic {&/,C).

2.4 Normalization results

To prepare the characterization of terms by their assignable types, first is proved that a term
in A_L-normal form is typeable without, if and only if it does not contair.. This forms the
basis for the result that all normalizable terms are typeable without

Lemma 2.20 i) B+ A:0 and B, o are w-free, thenA is | -free.
i) If Ais _L-free, then there are-free B ando, such thatB - A:o.

Proof: By induction onA.
i) As before, only the part € 7gis shown.
(A= 1): Impossible, since. is only typeable by.
(A= Xz.A’): Theno = a—f,andB, z:a - A: 3. SinceB, o arew-free, so are
B, x:o and3, so, by inductionA’ is L -free, so also\z. A’ is 1 -free.
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(A= xZ) . Then, by(—E) and(Ax), there arey; (i € n), 7, (j € n), 7, such that
r.m—---—T1,—T € B, foreveryi e n, BF A;:0;, andr —- - -—71,—7 <
01—+ - -—0o,—0. S0, especially, for everye n, o; < 7;. By Theoreml.8, also for
everyi € n, B = A;:7;. Since each; occurs inB, all arew-free, so by induction
each4; is L-free. Then alsa A; is L -free.

i) a) A= \z.A". Byinduction there aré, 7 such thatB - A’:7 andB, r arew-free. If
x does not occur irB, take anu-freeo € 7s. Otherwise, there exist.o € B, ando
isw-free. In any casel3\z - A\z.A’":0—7, andB\xz ando—7 arew-free.

by A= x/TZ with (n > 0). By induction there aré3; (i € n) ando; (i € n) such that
for everyi € n, B; = A;: 04, andB;, o; arew-free. Taker strict, such that does
not occur ino, andB = ({By, ..., B,, {z:0,—---—0,—0c}}. ThenB I z4;:0,
andB ando, arew-free. [ |

Now, as in [1] for the strict system, it is possible to prove that the type assignment system
satisfies the main properties of the BCD-system.

Theorem 2.21 (NormALISATION) 1) 3dB,o0 [B+ M:o & B, o w-freg <= M has a normal
form.
i) 3B,0 € Ts[BF M:0] < M has a head normal form.

Proof: i) (=): If B+ M:o,then, by Theore®.15 3 A € A(M) [B + A:o]. Because of
Lemma2.20 (i), this A is L-free. By Definition2.1, there exists\/’ =5 M such that
ALC M'. SinceA is L-free, in factd = M’, soM' itself is in normal form, so,
especially,M has a normal form.

(<) : If M'isthe normal form of\/, then it is aL-free approximate normal form.
Then, by Lemma&.20 (ii), there arev-free B, o such thatB - M’: 0. Then, by
Theoreml.10 B+ M :o.

i) (=): If B M:o,then, by Theorer2.153A4 € A(M) [B+ A:0]. By
Definition 2.1, there exists\/’ =5 M such thatd T M. Sinces € 75, A # 1, S0A
is either\xz.A; or xA_; withn > 0. SinceA T M’, M’ is either\z.M;, or 35]\71
ThenM has a head-normal form.

(<) : If M has a head-normal form, then there exists=5 M such that)/" is either
Ax. M, or xM;, with eachM; € A.

1) M’ = \x.M;. Sincel is in head-normal form, by induction there are
B,o € Tgsuch thatB - M;:o. If z:7 € B, thenB\x - A\z.M;:0—T,
otherwiﬁB FAx. M :w—T. .

2) M'=xzM,;,(n>0). Takeo € T, then{r:w— - -+ sw—0o} FzM;:0. N

2.5 Strong normalisation

The other well-know result
B+ M : o without usingv <= M is strongly normalisable

also holds, but needs a seperate proof in that it is not a consequence of the Approximation
Theoren®.15 See [1] for a proof for this property for the BCD system that follows very much
the structure of the proof of Theore2rl5 which could be applied directly here. Alternatively,
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see [5] for a proof for the strict system where it is a direct consequence of the result that cut-
elimination is strongly normalizable; this technique has not yet been extended to the system
considered here.

We will now give an alternative proof. We shall prove that, when omega is removed from
the system, every typeable term is strongly normalisable. This will be done using Tait-Girard’s
method.

In the sequel, we will accept the following without proof:

Fact2.1 ) If x@ andN are strongly normalizable, then scn;iﬂ?iN. R
i) If M[N/z]|P andN are strongly normalizable, then so(isc.M )N P.

We useSN for the set of strongly normalisable terms.

Definition 2.22 We define the seRed| p| inductively over types by:

Red[p] = SN
Red[o—T1| = {M |VN [N € Red[o| = MN € Red[7]]}
Red[M,0;] = Ni<icn Red[o;].

We now show that reducibility implies strongly normalisability, and that all term variables
are reducible. For the latter, we need to show that all typeable strongly normalisable terms
that start with a term variable are reducible. The result then follows from the fact that each
term variable is trivially strongly normalisable and that we can type any term variable with

any type.

Lemma 2.23 For alp,
) Red[p| € SN.
i) 2N € SN = aN € Red[p).
Proof: By simultaneous induction on the structure of types, using DefinRi@a [
i) (¢): Immediate.
(c—71): MeRed[o—7| = (IH(ii)) z € Red[o| & M € Red[o—T7]| = (2.22)
Mz e Red[7| = (IH(i)) Mz € SN = M € SN.
(Nuoy) : M € Red[N,0:] = (2.22 M € Red[o;| = (IH(ii)) M € SN. |
i) (p): oN € SN = (2.22) 2N € Red[].
(c—7) : +N € SN = (
PeRed[o| = 2N e SN & P e SN = (
PeRed[o] = NP €SN = (IH ii) )
P e Red|o| :>xﬁPeRedﬁJ = (
eN € Red[o—T |
(Nno;) : By Definition2.22and induction. [

We will now show that the reducibility predicate is closed far

Lemma 2.24 Take andr such thatr < 7. ThenRed|o | C Red[T|.

Proof: By straightforward induction on the definition &f.
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(1<o;(i€en) = 17<N,0;): MeRed[r| = (IH) M € Red[o;] (Vien) =
M € N, Red[o; | = (2.22 M € Red[Ny,0;].

(p<o&7<pu=0-7<p—p): MeRedlo—7| = (2.22

(N e Red[o] = MN € Red[7]) = (IH2x)

(NeRed[p| = NeRed[o] =

MN e Red[7] = MN € Red|[p1]) =
(NeRed[p| = MN € Red[pu]) = (2.22
M e Red[p—pu]. [

We will now show that the reducibility predicate is closed for subject expansion.

Lemma 2.25 M[N/z]P € Red[o| & N € Red[p| = (\z.M)NP € Red[s].

Proof: By induction on the structure of types.
(p): M[N/z]P € Red[¢] & N € Red[p]| = (2.22

MIN/z]P € SN & N € SN = (2.1(ii) & (i))
(\z.M)NP € SN = (2.2
(\z.M)NP € Red[¢ ]|
(0—7): M[N/2]P € Red[o—7]| & N € Red[p] = (2.22)
Q € Red[o| = M[N/2]PQ € Red[7] & N € Red[p] = (IH)
Q € Red[o] = (\o.M)NPQ € Red[7] = (2.22
()\x.M)Nﬁ € Red[o—T |
(Nno;) . Directly by induction and Definitioi2.22 ]

We shall prove our strong normalisation result by showing that every typeable term is re-
ducible. For this, we need to prove a stronger property: We will now show that if we replace
term variables by reducible terms in a typeable term, we obtain a reducible term.

Theorem 2.26 Let B = {x1:p11,. .., Tp:pn}. If By M:o, and, fori € n, N; € Red|[ ],
thenM[N;/x;| € Red[o].
Proof: By induction on the structure of derivations.

(AX) : ThenM = z;, for somej € n, p; < o, andM|[N;/x;| = z;[N;/x;] = N;. From
N; € Red[u;]|, by Lemma2.24 alsoN; € Red|[o].

(—1): ThenM = \y.M’, 0 = p—71,andB,y:p b M': 7.
Vien[N; e Red[pi]] & Byy:p s M':7 = (IH)
N e Red[p| = M'[N;/x;, N/y| € Red[7| = (2.25
N eRed[p] = (A\y.-M'[N;/z;])N € Red[7] = (2.22
(Ay.M")[N;/x;] € Red[ p—T].

(—E), (nl) : Straightforward by induction and Definitich22 |

Theorem 2.27 (STronG NORMALISATION) Any typeable term is strongly normalisable.

Proof: By Lemma2.23 (i), all term variables are reducible of any type, so 26 every
typeable term is reducible. Strong normalisation then follows from Leu23(i). [
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3 Semantics and completeness

3.1 Filter models

Asin[11] and [1], a filterA\-model can be constructed.

Definition 3.1 (FiLTers) 1) A subsetd of 7 is afilter if and only if:
a) o,€d(ien,n>0) = Nyo; €d.
b) red& <0 = oed.
i) If Visasubsetof, thenTV is the smallest filter that contains, andfo = 1{c}.
i) Fs={d C 7 |dis afilter}. Application onFsis defined by:

d-e=1{r|3Jdoecelo—Ted}.

Notice that a filter is never empty; because of pad), for all d, w € d. Notice that, as in
[1], application must be forced to yield filters, since in each arrow type schemec 7, 7
is strict. (Fs, C) is a cpo and henceforward it will be considered with the corresponding Scott
topology.
For filters the following properties hold:

Lemma3.2 ioelr < 7<o.
i) ce{r|BFM:7} <= oe{r|BFM:7}.(So{c | BF M:0o} € Fs.)

Proof: Easy. [ |

Definition 3.3 (DomaIN consTRucTORY Define F' : Fs—[Fs—Fsl andG : [Fs—Fg—Fs
by:

i) Fde=d-e.

i) Gf =1{o—7|7€ f(To)}.

It is easy to check tha’ andG are continuous.

Theorem 3.4 (FiLTER MODEL) (Fsg, -, F, G), with F and G as defined in 3.3, is A-model.
Proof: By [10].5.4.1 itis sufficient to prove thdfoG = Id|z . ~y-
FoGfd= F(Gf)d =
F(H{o—7|7€ f(lo)})d =
Huldpedlp—pe {o—r[7e f(To)}} = (3.2()
Hul3pedipe f(p)} = f(d). u

Definition 3.5 (TeErm INTERPRETATION Let M be a lambda model, anglbe a valuation of
term variables inM.
i) [HJ?/‘, the interpretation of terms iM via ¢ is inductively defined by:
a) [z]¢' = ¢().
b) TMN] = FTMIF TN
) Ma M =GAde MM
i) Be ={z:i0|oe€(x)}.
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SinceFsis the model studied heré;JJ6 stands forﬂ-JJfS. Notice thatB, is not really a basis,
since it can contain infinitely many statements with subjedtowever, for all its design and
purposes, it can be regarded as one.

Theorem 3.6 Forall M, & M|, = {o | B¢+ M:o}.

Proof: By induction on the structure of lambda terms.
i) [zl = &(2). If o € &(z), then certainlyBe - x:0. AssumeB; + z: ot if 2:p € B,
thenp <o, soo € Tp. Sincep € (z), alsoTp C &(x), SO0 € £(x).

i) TMN]. =
FIMlN], =
Mg TNl = (IH)
{p| Bt M:p}-{p|Bet N:p} = (3.1(iii))
Hrl3oe{p| Bt N:ip}lo—T€{p| B M:p}]} =
Hr|3o[BeF Nio& Be - M:o—7]} = (—E)
Hr|BeF MN:7} = (3.2(i))
{7 | B¢ MN:1}

i) o.M, =
GAd € Fo[M]¢wsm) = (IH)

G(Ad € Fsi{p| Bewjay - M:p}) =

Hor | 7 € (Ad€ Fsdp| Beasm - M:p})(10)} =
T{O’—H’ ’ TE {,0 | Bg(Tg/m) F M:p}} =

T{U—”- ’ B§(Ta/x) - M:T} = (Bé = Bg\ZL’)
Ho—7 | BiU{m:p|pefof - M:7} = (3.2(i) & 1.5(vi))
Ho—7 | BiU{z:o} = M:7} = (=)
Ho—7|Bi - x.M:o—7} = (1.5(v)
Ho—=7|Be ke M:o—7} = ((—1) & 3.2(ii))
{p| Be F \z.M:p}. ]

3.2 Soundness and completeness of type assignment

The main result of [11] is the proof for completeness of type assignment.
In constructing a complete system, the semantics of types plays a crucial role.

Definition 3.7 (Tyre INTERPRETATION Let (D, -, ) be a continuousa-model. A mapping :
T — (D) ={X | X C D} is antype interpretatiorif and only if:
i) vio—7)={d|Veecuv(o)|d-eecv(r)}
i) v(ioent) =v(o)nv(r).
Lemma 3.8 Let be a type interpretation. Then< 7 impliesv(o) C v(7).
Proof: Easy.

This notion of type interpretation leads, naturally, to the definition for semantic satisfiabil-
ity.
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Definition 3.9 (satisriasiLiTY) i) Let M = (D, -, [ |) be ax-model and¢ a valuation of
term-variables irD. Then [[ijéw € D is the interpretation ol in M via¢&.
i) Define F by (whereM is aX-model,¢ a valuation and a type interpretation);
a) M,&,vE Mo < [M] e (o).
b) M,{,vE B <= M, v F x:0 foreveryz:o € B.
) BEM:o <= VM, v M, E,vEB = M, (v E M:ol.

Since no confusion is possible, the superscripf dnis omitted.

Theorem 3.10 (Sounonesy B M:o = B F M:o.

Proof: By Definition 3.9 (ii.c), for all M, &, v, if M, &, v E BthenM, &, v F M:o. This
then means that, iM, &, v E z:p for everyz:p € B, then M, &, v E M: o, so, to show:

if [2]2" € v(p) for everyz:p € B, then[M [ € v(0).

We prove the property for the modg&k, by induction on the structure of derivations.

(AX): ThenB | z:0, so there exists:p € B such thap < o. Assume[z]; € v(p), then,
by Lemma3.8, [zl € v(o).

(—I1): ThenB + \y.M':a—f, and alsaB, y:a - M': 3. Lete € v(«

),
Then: Va:r € B,y [[z] o € v(7)] = (IH)
M) € v(d) = 3.9
(6| Be - M":6} € v(B) = (—1)

o |3y ee Bk Ay M :y—0]} e v(f) =
Ho|Iveely—de{p| Be b Ay.M":p}]} € v(B) = (3.1(iii))
{p| Be = Ay.M'":p} - e € v(p).
So, for alle € v(«), we have shown thdtp | B - A\y.M':p} - e € v(53), so, by
Definition 3.7, we get{p | B¢ F Ay.M': p} € v(a—f3).
(—E): ThenM = PQ, and there existg such thatB + P:u—o andB F Q: p.

Then: Va7 € B,y [Tz € v(7)] = (IH)
[Pl € v(u—0o) & Qe € v(n) = (3.6)
{p| B¢ b P:p} € v(p—p) &{p| Be k- Q:p} € v(n) = (—1)

{p|BeFP:p}e{d|Veecuv(p) [d-ecv(n)} &
{p| Be = Q:p} € v(p) =

{o] Bet Pip}-{p| Bk Qiph € u(r) = (3.1(i)
HBJdae{p| Bek QiptlamBe{p| Bek Pip}l} €v(r) =
HB|Ja[Bek Q:a& Be F P:a—f|} e v(r) = (—E)

B | Be - PQ:B} € v(r) =
{8 Be - PQ: 3} € v(r).
(nl): Theno = N,0;, and, fori € n, B+ M:0;.
Then: Va:r € B,y [Tz € v(7)] = (IH)
Vien[{p| Bet M:p} € v(o)] =
{p|Bet M:p}ev(o)N---Nulon)] = (3.7)

{p| Be = M:p} € v(Ny0y).
|

The method followed in [11] for the proof of completeness of type assignment is to define
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a type interpretatiom that satisfies: for all types, v(c) = {d € Fs| o € d}. The approach
taken here is to define a function, and to show that it is a type interpretation.
Theorem 3.11 The mapy, defined by, (0) = {d € Fs| o € d} is a type interpretation.

Proof: It is sufficient to check the conditions of Definiti@7:
(vo(c—1) ={d|Veecy(o)[d-e € vy(T)]}):

Velecy (o) = d-ecuy(r)] <= (3.1(iii))
Velee (o) = {f|Jacela—=ped} e (r) <
Velocee=r1el{f|Jace|a—ped}| <= (1 €Ty)
Velo €e = Jace|a—T ed]] <= (= takee = 10)
o—T €d <= d € vy(o—T)

(vo(onT) = vo(o) Ny(T)) : Easy. ]

Lemma3.12 )BF M:0 <= B¢, - M:o.
II) ]-"5,53,1/0 ': B.
Proof: i) Because for every, {z(x) is afilter.
i) 1:0€ B = (())o€{r|Be, Fa:7} = o€ fz]e,.
Soflzll, € {d € Fs| o € d} = vy (o). |

Since the interpretation of terms by their derivable types givesnaodel, the following
corollary is immediate and an alternative proof for Theodef®

Corollary 3.13 IfM =3 N andB F M:o,thenB + N:o.

Proof: SinceFsis ai-model, if M =3 N, then[fMJJ6 = [fijg, for any¢, and, by Lemma
312(i){¢ | BF M:c} ={0c | BF N:o}. |
Theorem 3.14 (CompLETENESY Leto € 7, thenB F M:0c = B+ M:o.

Proof: BF M:o = (3.9(ii.c), 3.12(ii) & 3.11)

Fs, &g, F M:o = (3.9(i))
WMJJ&B EV()(O') =

celMl, = (3.6)
Be, FM:o = (3.12(i))
BFM:o. [ |

4 Combinator Systems

In this section, we will give a detailed presentation of Combinator Systeis)s €s will be
defined as a special kind of applicatives [32], with the restriction that formal parameters

of function symbols are not allowed to have structure, and right-hand sides of term rewriting
rules are constructed of term-variables only. We have chosen this kind of presentation in view

of a future extension of the results to falks, in the spirit of [8]. Notice that our treatment
differs from, for example, that of [21], where only combinatory comptet@re considered.

Definition 4.1 (ComeinaToR TERMS) i) An alphabetor signatureX = (C,X’) consists of a
countable infinite sef’ of variables ranged over hy, y, z, ..., a non-empty sef =
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{D,z,...} of combinators ranged over byC, D, E, ..., each equipped with an arity
greater thar, and the binary function symbdlp (application).
i) The setZ (C,V) of terms ranged over by, is defined by:

to=ua|C|Ap(t,ta)

As usual, we will write(¢; t5) instead ofAp (¢4, t), and left-most, outermost brackets will
be omitted, sa@; ¢, (t3t4) stands forAp (Ap(ti1,t2), Ap(ts,t4)).

The following is the usual notion of term-substitution formulated for combinator systems.

Definition 4.2 (TErRm-suBsTITUTIONS A term-substitutiorR is a map from terms to terms,
determined by its restriction to a finite set of variables, satisfyirigg B) = R(¢;)R (t2). We
will write tR instead of Rt). If R mapsz; to u;, for i € n, we write {zy—uy, ..., z,—u,}
for R, and writet” for ¢R.

Combinator Systems, and the notion of rewriting on combinator terms, are defined by the
following:

Definition 4.3 (ComBINATOR SysTEMS) i) A combinator ruleon > = (C,X) is a pair(l,r)
of terms in7 (C, V), such that:
a) There are” and distinctzy, ..., z,, such thal = C'x; - - - x,,, wheren = arity(C').
b) The variables occurring inare contained i, andr contains no symbols froid.

i) A Combinator Systerfcs) is a pair of an alphabét and a seR of combinator rules on
¥ = (C, &), such that there isxactly oneule inR for each combinatof’ € C. This rule
(1,7) is calledthe combinator rule fo”; we will use the symbaf” also as name for this
rule and writel —o r.

iii) A combinator ruled — r determines a set séductions/iR — . rR for all term-substitu-
tions R. The left-hand sid& is called aredex it may be replaced by itxbntractum rR
inside any context ; this gives rise taeduction stepsC[IR] — C[rR].

iv) We will write ¢ —g t' if there is a rulel —¢ r in R such thatt — t/, and call —g
the one-step rewrite relatiogenerated byr, and— (respectively —% ) the transitive
(respectively reflexive and transitive) closure-efz (the indexR will be omitted when
it is clear from the context). if, —* t,,, thent,, is areductof ¢,.

Example 4.4(ComeinaTORY Locic) The standard example ofcssis Combinatory Logic¢L)
— defined by Curry independently o€ [16] — that is, in our notation, formulated as follows:
cL = (((s,K,1),X),R), whereR contains the rules

Szyz — wz(yz)
Kry — x
le — x

The last rule was not part of the original definition, but is nowadays normally added.

We will assume that no two combinators have the same interpretation (see Defini-

tion 4.7), so acslike
lr — «x

Jr — x
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is excluded, since it would give an immediate counter example against any full-abstraction
result with respect to the filter semantics (see Sect)on

This notion of reduction on combinator terms as in Definitdb8is also known asveak
reductionand satisfies the Church-Rosser Property (see [10]).

Proposition 4.5(CHurcH-RosseR  If ¢ —* u andt —* v, then there exists such that: —* w
andv —* w. [ ]

We now define (head-)normal forms, (head-)normalizability, strongly normalizability, and
unsolvable terms.

Definition 4.6 ((HEAp-)NORMAL ForRMs) Let ((C,X),R) be acs.
i) Aterm is innormal formwith respect tR if it is irreducible.
ii) Atermtis in head-normal fornwith respect tR if either
a) there are a variable and termg, ..., t, (n > 0) such that = x¢, - - -¢t,, or
b) there are acombinatéf € C and terms;, ..., ¢, € 7(C,V)suchthat = Ct;- - -t,,
andn < arity(C).

iii) A term is(head-)normalizabléf it can be reduced to a term in (head-)normal form. A
rewrite system istrongly normalizingor terminating) if all rewrite sequences are finite;
it is (head-)normalizingf every term is (head-)normalizable.

iv) A term is calledunsolvabldf it has no head-normal form.

4.1 CSversusLC

We now focus on the relation between reductiocsand inLcC.

Definition 4.7 Let C = ((C,X),R) be acs. ()$ : T(C,V) — A, the interpretation of
combinator terms oveC in LC, is defined by:
()§ == forallz € X

(tit2)5
<C>§ = A1y -- $n<7">§ whereC'z;---x, —r €R

Notice that, since we assume the set of term variables$@ndLc to be the same, as well
as the two notions of application on terngg)$ = r for everyr that is the right-hand side of
a combinator rule.

The interpretation in.c of acs, (), respects reduction:

Proposition 4.8 LelC = ((C,X),R) be acs, then, for allt,t' € 7(C,V): if t =* ¢/, then
(1S =5 (t)5.
Proof: By easy induction on the definition ef*. [
In general, the length of the reduction sequence increases significantly.
Only for particularcs it is possible to also define an interpretationLaf, the standard

example is that oEL (see also [18, 10, 21]; in [21] also other combinatory comptetare
discussed).
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Definition 4.9 The mappind] |, : A — 7¢, is defined by:
”—xJJCL =T
WAx-MJJCL = )\*33~WMJJCL
WMNJCL = HMHCL ”NHCL

where\*z.t, with t € 7, is defined by induction on the structuretof
Nz = |
Nat = Kt if znotint
Nty = S(Nz.ty) (N x.ts)

For the interpretations defined above the following property holds:

Exercise 4.1([10]) i) (A*z.t)v — ™.
i) (V2.t)§ —5 Az (6§
i) (0] c)§ 5 M.
iv) If ¢t —wincL, then(t)§t —5 (u)§-. ]

For example,
Mry.zle = No. [ yzle = No.(Vy.z) = Nz.(Kz) = S(\z.K) (Vz.z) = S(KK)!
and
(Mazy.x]c)St = (S(KK)NSE = Aayz.z2(y2)) (Ary.2) \zy.2) A\v.o —5 Azy..

There exists no converse of this property; moreover, the mappjfiigdoes not preserve
normal forms or reductions:

Example 4.10([10]) i) SKis anormal form, butsk)$t — 5 \zy.y,
i) ¢t =s(K(sH))(k(sH)) is a normal form, butt)$- — 5 Ac.(Az.zx)(A\x.zx), which does
not have a3-normal form,
iii) ¢ = sK(slI1(sI1)) has no normal form, whilét)§" —»5 Az.x.

We will show in Sectior6.1 that the combinatorial equivalent of a well-known result for
intersection type assignment in the, i.e. the property that normalising terms can be typed
with a type not containing, no longer holds. Take for example ths

Zxy — Yy
Dr — xx

thenz(DD) is typeable with a type not containing (see Exampl&.17). Notice that, since
DD — DD — -- -, the termz(DD) has no normal form.

As these examples show, normalization resultsaélo not transfer easily tas. Here, we
will study the normalization properties afs directly in thecs framework.

5 Type assignment for CS

In this section, we will develop a notion of type assignmentatthat uses intersection types.
It is inspired by similar definitions presented in [21] and [8]. As in [21], we will assume that,
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for every combinator’, there is a basic type from which all types needed for an occurrence
of C' in a term can be obtained. The extension with respect to [21] is that we will not limit
ourselves to basic types that are the principal type of the corresponding lambda term (see [42,
2]). The differences with [8] are on the level of the language considered. Here, patterns are not
used, i.e. rewrite rules cannot impose structure on arguments of function symbols; moreover,
no function symbol is allowed to appear in the right-hand side of rewrite rules.

5.1 Operations on types

We will now recall three operations on types from [2] that are needed in the definition of
type assignment and are standard in intersection systems. Substitution is the operation that
instantiates a type (i.e. that replaces type-variables by types). The operation of expansion
replaces a type by the intersection of a number of copies of that type. The operation of lifting
replaces a type by a larger one, in the sensg.of

These three operations are of use in Definittoi when we want to specify how, for a
specific combinator, a type required by the context can be obtained from the type provided for
that combinator by the environment (Definitiérb). It is possible to define type assignment
with fewer or less powerful operations on types, but in order to obtain enough expressive
power to prove Theorerd.10 (i), all three operations are needed.

Definition 5.1 (Tvpe-sussTiTuTiON) i) The type-substitution(p—«a) : 7 — 7, that re-
places occurrences gfby o, wherep € ® anda € 7,U {w}, is defined by:

(pra) (¢ )*04

(pr—a)(¢) = if @ %
(pr=a)(o0—T) = if (p—a) (1) =w
(pra)(o—T) = @Ha)( ) = (pr=a) (1) if(pr=a) (1) #w
(pra) (Nuoi) = (p—a)(o7)n---n(p—a)(o;,) where
{o1,---, m}—{mE{Uz(@En)}\(@Ha)(az) w}

ii) The set of type-substitutions is closed under compositio; &ndS, are type-substitu-
tions, then so i§,0S;, whereS,0S,(0) = S, (S;(0)).

i) S(B) ={z:S(«) | z:x € B}.

iv) S((B,o, E)) = (S(B),5(0),{S(p) | p € E}).

Note that the definition of substitution in an arrow type ensures that the resulting type is still
in7.

Itis possible to define a notion of type-substitution that just replaces type variables by strict
types (so where: € 7); using such a definition, we would be forced to use the extra operation
of coveringthat deals with the introduction af (see also [3]; this operation is closely related
to the covering relation of Definitio2.18) To keep the set of operations small, we have
decided not to follow that direction here.

Our definition of expansion is inspired by the one given in [42] for the full intersection
system inLc, we just need to make some minor changes to make sure that the type obtained
is always in7 . For this, we have to check the last type-variable in arrow types (for a detailed
discussion of the complexity of this operation, see [2]).
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Definition 5.2 Thelast type-variableof a strict typeJast(o), is defined by:

last(¢) = ¢
last(c—7) = last(7)

Definition 5.3 (Expansion) For everyy € 7 andn > 2, the pair{u,n) determines amex-
pansion Ex: 7 — 7 which is computed with respect (@, o, F) as follows (whereB is a
basis,c € 7, andFE is a finite set of types).

(Affected variables: The setV, (B, o, E) of type-variables is defined by:

a) If p occurs iny, theny € V,(B, 0, E).
b) If last(r) € V,.(B, 0, E), with 7 € 75 and 7 (a subtype) in(B, o, E), then for all
type-variablesp that occur inr: ¢ € V,(B, 0, E).

(Renamings: Let V,(B,0,E) = {¢1,...,9om}. Choosem x n different type-variables
Oy ooy P50, such that eaclp] does not occur iNB, o, E), forien
andj € m. LetS be such tha§(¢;) = ¢7.

(Expansion of a type Ex(7) is defined by:

Ex(mn---n7,) = EX(m)n---nEX(7,)

(1) = Si(m)n---nS,(r) iflast(r) € V,(B, o, E)

(p) = ¢ if o ZVu(B, 0, E)

Ex(c—p) = Ex(0) — Ex(p) if last(p) € V,.(B,o, E)

(Expansion ofB) : Ex(B) = {x:Ex(p) | z:p € B}.

(Expansion of B, o, E)) : EX((B, 0, E)) = (Ex(B),Ex(c),{EX(p) | p € E}).

When an expansion operatigxis applied to a type without specifying B, o, E') we assume

that the expansion is computed with respecfita, 7).

Ex
Ex

Definition 5.4 (Lirting) A lifting L is an operation denoted RYBy, 70), (B1, 1)), a pair of
pairs such that, <~ andB; < By, and is defined by:

L(O’):’Tl ifO':TO L(B):Bl |fB:B0
L(oc) = o otherwise L(B) = B otherwise

Definition 5.5 (CHAINs oF oPERATIONS ON TYPES A chain on typess an objec{Oq, ..., O,],
where eacl®; is an operation of type-substitution, expansion or lifting, and

[O1,...,0,](0) = On(-+- (01 (0)) )

We will usex to denote the operation of concatenation of chains.

5.2 Type assignment

To complete the definition of type assignment, we present now the type assignment rules that
are used to assign typesinto terms and combinator rules. In order to type the combinators,
we use an environment that provides a typ&dfor everyC € C, and use chains of operations

to obtain the type for an occurrence of the combinator from the type provided for it by the
environment.

Definition 5.6 (EnvironmenT) LetC = ((C,X),R) be acs.
i) An environment folC is a mapping : C — 7.
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i) ForC €C, 1 € 75, and€ an environment, the environmefifC — 7] is defined by:

E[C—T](D) =1 if D=C
EC—T] (D) = &(D) otherwise

Since an environmerét maps allC' € C to types inZs, no combinator is mapped i@
We define now type assignment on terms and combinator rules.

Definition 5.7 (Tvpe assienmENT) LetC = ((C,X),R) be acsand& an environment foC.
i) Type assignmerior terms in7 (C, V) andderivationsare defined by the following natu-
ral deduction system (where all types displayed aréjrexcept forr in rules(<) and
(—B):

BbetiitT—0o Bletyr
t ———— (3Ch[Ch(£(C)) = o)) (—E):
B |_€ C:o B l_g t1t2:0
Bbtetioy - Bleto,
() (20 (2):—
B ¢ t:Nyp0; Ble zo

(€)

(vt € B,7<0)

If B ¢ t:ois derivable using a derivation D, we write:DB +¢ t:0. We write B ¢ t:o
to express that there exists a derivation D such that Bt ¢:0, and ¢ t:c when
0 e t:o. We will write B FZ t:0 if w is not used in the derivation.

i) LetC € C, witharity(C) = n. The combinator rul€'x; - - -z, — r € R is typeable with
respect taf, if there ares; (i € n) € 7 ando € 7, such that(C) = oy—- - -—0,—0,
and{z;:o,} ¢ r:0.

iii) Cis typeable with respect 6, if every rule inR is typeable with respect .

At first sight, the formulationis typeable with respect #® might seem a restriction on the
class of systems that are considered in this section, but it is not. Notice that an environment
just maps combinators to types, without regard for the structure of their rewrite rules. The
condition is added above just to ascertain that the type provided by the environment actually
makes sense, and respects the structure of the rules involved.

The reason not to allow environments to provide types outsidg isf purely practical, to
obtain easier definitions. Notice that it is possible to derive an intersection type for a combi-
nator, using rulé&) a number of times, followed b{nl).

Example 5.8 The rules ofcL (see Exampld.4) are typeable with respect to the environment
EeL.
Ecl(S) = (p1—=pa—p3) = (Pa—p2) > P1NPa—s
Eer(K) = ps—w—ps
Ea(l) = we—s
The termsk s can be typed with the type—« with respect t&f., : take

Ch; = [(¢1 = a—a), (p2—=w), (p3— a—a), (P4 w)]
Chy = [(p5+— a—a)]
Chy = [(ps— a)]
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then (notice thaCh, (p4—p2) = w andCh; (p1npy) = a—a)

Ch (&a(9)) = ((a—a)—w—a—a)—w—(a—a)—a—a
Chy (EcL(K)) = (a—a)—w—a—a
Chs (Ec(l) = a—a

and

Fee S:Chy (Eci(S))  Feg K:Chy (Eci(K))
Feo SKiw— (a— ) —a— Fee Siw
Feo, SKS: (a—a)—a—« Feo 1:Chy (Eci (1))
Fee  SKSI:a—a

The definition of type assignment as as presented in this section allows for the formula-
tion of a precise relation between types assignable to terms, and those assignable to equivalent
lambda terms. In fact, a result similar to part of the following property has already been proved
in [21].

The relation between type assignment.@mand that inC (restricted tocL with the envi-
ronmentE., ) is very strong, as the following theorem shows. To understand that this property
is not straightforward is shown by the following example: take\xz.x: «—«a and notice that
A\r.xle, =1 If £() = (a—a)—a—a, then it is not possible to assign—a to1in F¢
(see also Section).

However, we can show the following two results fog equipped with principal environ-
ments, as defined below.

Definition 5.9 LetC = ((C,X),R) be acs. The environmen€ is calledprincipal for C, if
forall C € C, € (O) is the principal type foC)$ in .1

Theorem 5.10 LetC = ((C,X),R) be acs.

i) If £ is principal forC, thenB F (t)$: o impliesB + t: 0.

i) Blgt:oimpliesB - (t)$:0.

Proof: Assume (without loss of generality), thatc 7.

i) By induction on the structure of terms#(C, V). The only case that needs attention is
that oft = C € C, soB I (C)§: 0. Since€ is principal forC, £(C) is the principal
type for (C)$ in - and there exists (see [2]) a chain of operatiGhssuch that
Ch(&(C)) = o. ButthenB k¢ C:o by rule(&).

i) By induction on the definition of )$; the only alternative that needs consideration is
that oft = C' € C, and then the last rule in the derivation Brt—¢ t:0 is (£). Then
there is a chail€h such thatCh(£(C')) = o. LetCx; - - -z,, — r be the rule forC.

Then, by Definitiorb.7 (i), there arer; (j € n) € 7 andr € 7, such that
{z1:711,..., 207} Fe mTand&(C) = m—- - -—7,—7. Then, by induction,
{171, .., x0T} F o7 (NOtice that(r)§ = r). Then, by rulg{—1) of |-,

1Since for every — r € R, r is in normal form, not containing combinators, it is possible to define the notion
of principal environment directly focs, without side-stepping tac, but that would significantly increase the
complexity of the proofs of this section. It would not affect any of the results; in fact, the definition above would
become a provable property.
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FAzxy...x,.r:11—- - -—7,—T; Sincel- is closed for all three operations of
substitution, expansion, and lifting (see [3]), we also havazx; ... x,.r:c‘, so
- <C’>E\::J. [ ]

5.3 Subject reduction

In this section we will show that the notion of type assignment defined hersaatisfies

the subject reduction property (Theor&mn7). In order to achieve this, we need that the three
operations (type-substitution, expansion, and lifting) defined in the previous section can be
applied to type-derivations, and are sound (the result is a well-defined derivation); the details
of this are skipped here (for a complete version, see [9]). We will also show that the type
assignment ruled) is sound in the following sense: if there is an operat@rsuch that
O(&(C)) = o, then, for every typer € 75 such thato <7, the combinator rule fot” is
typeable with respect to the changed environndgtt— 7].

Proposition 5.11(SounDpNESS oF TYPESUBSTITUTION) Let S be a type-substitution.
|) If B Fe t:o, then $B) Fe tS(O')
i) If Czy---x, — risarule typeable with respect to the environm&npand SE(C)) # w,
then it is typeable with respect &§C' — S(E(C))].

The following essentially shows that lifting is sound:

Lemmab.12 i) 1B ¢ t:c and B’ < B, thenB’ ¢ t:o.
i) If Btg t:oando <7, thenB t¢ t:7.
i) If BES t:o,0 <7,andr isw-free, thenB ¢ ¢:7.

Proposition 5.13(SounbpnEss oF LIFTING Let L be a lifting.
i) If B ke t:p, then L(B) k¢ t:L (p).
i) If Cxy---2z, — risacombinator rule, typeable with respect&pand
L (£(C)) € T, then it is typeable with respect &{C' — L (E(C))].

Proposition 5.14(SounbnEss oF ExPANsiol Let Ex be an expansion operation determined
by (i, n), such that EXB, o, E) = (B',¢', E).
i) If B ¢ t:0 using a sel of types for the occurrences of combinators,ithenB’ ¢ t:o”.
i) If Cxq---2,, —r is a rule, typeable with respect ©, and EXE(C)) = N,,7; €T
(m > 1), then, for every € m, the rule is typeable with respect &C' +— 7;].

We then have:

Theorem 5.15 (Sounbness oFCHaINs) 1) The set of derivations is closed under chains of
operations.
ii) Let! —¢ r be acombinator rule typeable with respect to the environr&iefftCh(£(C'))
=7 € 7, then, for every: € 75 such thatr < i, C'is typeable with respect ©[C — p].

Proof: By Proposition$.11, 5.13 and5.14 [

Using this soundness result, we will now show that the notion of type assignment as defined
in this section satisfies the subject reduction propertys i t:0, andt can be rewritten to
t', then B ¢ t':0. Of course, this result can be obtained through the mappjnys and
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()$, using the relations between the systems mentioned in the previous section, but only for
combinatory completes and principal environments. For othes, we must give a direct
proof, for which we need the following result.

Lemma 5.16(Term-suBsTiTuTION LEMMA) 1) If B ¢ t:o, then, for every term-substitutidh
and basisB’, if for everyz:t € B, B’ F¢ a2R.7, thenB’ ¢ tR.o.
ii) Let C'z;---x, — r be a combinator rule, typeable with respect&o For every term-
substitutionR, basisB and typeu: if B k¢ (Cxy---x,)Ru, thenB k¢ rR:p.
Proof: 1) By inductionont .
(<) : Thent = z. Then there ig:7 € B, such that- < ¢. Then, by Theorers.13
B' ke zR:7 implies B’ F¢ xR:0.
(€): Thent = C. Immediate, sinc€R = (', andC:o does not depend on the basis.
(—E), (nl): By induction.
i) If Cxy---x, — ris atypeable combinator rule, then by Definit®:7 (ii), there are
o; (i € n),o, such tha€(C) = 01— - -—0o,—0c and{z;:0;} ¢ r:0. Also,
(Cxy--ap)R=CxyR---x,R SinceB k¢ CxyR- - z,R:p, there are two cases:
(u € Ts) : then there arg; (i € n), and a chairCh such thaCh(&(C)) =
p1—- - - —p,—p, and, fori € n, B k¢ x;R:u,. Since{z;:0;} k¢ r:o, we have, by
Theoremb.15 (i), {x;:;} Fe r:p. Then, by part(i), alsoB ¢ rR:p.
(Lw=p1N...N0p,) : we apply the above reasoning to eagland apply(n/). [

Using this result, the following becomes easy.

Theorem 5.17 (SussecT RepucTioy LetC = ((C,X),R) be acs. Forall t,¢' € T(C,V): if
B k¢ t:0 andt —* t/, thenB ¢ t':0.

Proof: By induction on the length of the reduction path; the case of lehgglproved by
induction on the structure @f Of this double induction, only the case thatself is the
term-substitution instance of a left-hand side of a combinator rule is of interest; all other
cases are straightforward. Then,deE C and term-substitution R be such that: - r,

t = IR, andt’ = rR. The result follows from Lemm&.16 (ii). [

One should remark that a subject expansion theorem, i.e. the converse of the subject reduc-
tion result:

If B ¢ t:o, andt’ — t, thenB ¢ t':0,

does not hold in general. Take for example the followag) that is typeable with respect to
the given environment
Kry — E(K) = pr—ow—pr
e — E(1) = (p2—p2) =2
The termik reduces to the (head-)normal foknbut can only be typed by with respect to

E. Of course(pa—2)—pa—s IS not the principal type fof1)$- in . In fact, we have the
following result:

Theorem 5.18 (SusiecT Expansioy LetC = ((C,X),R) be acs, and€& be principal forC,
then, for allt, ¢’ € 7(C,V): if B k¢ t:0 andt’ — ¢, thenB k¢ t':0.

Proof: If B t¢ t:0, then by Lemmd.10 (i), alsoB I (t)$:0. Sincet’ — t, by Proposition
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4.8also () — 5 (t)§. Sincet is closed for3-expansion, we havi - (¢')§: 0. Then, by
Theorem5.10 (i), we haveB ¢ 0. [

5.4 Derivation reduction is strongly normalising

We will skip the precise definition of derivation reduction here, and just highlight (in simplified
form) the main steps.

The notion of reduction of derivations depends, of course, on a notidarofation substi-
tution, of which the principle is sketched by the following.

Assume D :: B,x:7 - t:ocand D, :: B+ u:7. The result of substituting Din D, for z:7
is defined in a way similar to the one discussed abovedoNotice that there are (strict) types
p; (7 € m) such that, for every;, in Dy, there exists a sub-derivation,D. B, z:7 - x:p;.
Then, for allj € m, 7 < p; and, by Propositiob.12, there exists a derivation,D: B = N: p,.
Then a derivation for

Dy[Dy/x:7] it B & tlu/x]:0

can be obtained by replacing, in Jor every;j € m, the sub-derivation Dby D;.
So, assume now that= (C'z;---x,)R = Ct;---t, and that there is a combinator rule

Cx,-+-x, — 7. Then D has the form:

Bte Cioy—- - -—0,—0 B be tii0q

Bte Ctyi09—- - -—0,—0 \ Dn /

B g t,0,
Bte Cty---tyo

Then, by Definitiorb.7 (i), there exists B :: {z;:0;} be 0. LetR={zy+—t1,..., 2, —t,}
andt’ = rR, then D reduces to

D' =Dg[Dy/z1:01,...,Dp/xp:0,) s Bbe t' i o

which is a well-defined derivation.

Remark that each derivation redex corresponds to a term redex (because of the presence of
w, the converse does not hold), and that if:0B t¢ ¢: o0 reduces to D:: B ¢ t': 0, thent
reduces ta’.

As shown in [9] (not repeated here), derivations in the restricted type assignment system
are strongly normalizable with respect to the notion of reduction suggested here.

Theorem 5.19 (STronG NORMALISATION) If D :: B k¢ t:0, then SND). [

6 Approximants
Now we will develop, essentially following [46] (see also [10]), a notion of approximant for

combinator terms. As in Sectidhl this will be done by introducing. into the definition of
terms.
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Definition 6.1 (ComsiNaTOR TERMs WiTH L) LetC = ((C,X),R) be acs.
i) The sefT(C, X, 1) is defined by the following grammar:

t =1 ’ x ’ C ’ Ap(tl,tz)

i) The notion of rewriting of Definitior4.3 extends naturally to terms if(C, X, L), and
we will use the same symbol--g’ to denote the rewriting relation induced I&/ on
T(C X, L).

The relationC on terms, as given in the following definition, takésto be the smallest
term.

Definition 6.2 i) We define the relation= onT(C, X, L) inductively by:
1 C t
t C t
tCuy &t Cuy <= t1ts E uqus.

i) t andu are calledcompatiblef there exists a such that C v andu C v.

We will now come to the definition of approximate normal forms and of direct approxi-
mants. The general idea is that a direct approximant of a tesmconstructed out of by
replacing all redexes and potential redexeshy | (a potential redex is a sub-term tleatuld
be a redex ifL were to be replaced by an appropriate term).

Definition 6.3 (ApPPROXIMATE NORMAL FOrRMY LetC = ((C,X'),R) be acs.
i) Ac, the set ofapproximate normal formef T(C, &, L), ranged over by, is defined by:

ax=1lza---a,(n>0)|Cay---a, (n<arity(C)).

iil) DA (t), thedirect approximant of with respect taC is defined by:

DAc () =z
DA (C) = C
DAc (tite) = Lif DA (t) = L or
DAc (t1) = Cay -+ a, andarity(C) = n+1
= TAc (t1) DAc (t2)otherwise

Notice that every normal form if (C, V) is also an approximate normal form.
For C , the following properties hold:

Lemma6.4 DNCulov = tCo.
ii) ¢isahead-normal form=- Jac Ac [aCt & a # 1].
i) If a € Acanda C t, thena C DA ().

Proof: By induction on the definition of= . [
The relation between reduction and is expressed by:

Lemma6.b5 NacAc&kv—"w&alv = aC w.
i) toCt&ty—t, = [t —t' &t; T
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Proof: By induction on the structure of terms. [

We will now introduce, similar to Definitio2.5, a notion of ‘join’ on terms containingd.,
that is of use in the proof of Lemn&13

Definition 6.6 OnT(C, &, L), the partial mapping] : T(C, X, L) x T(C, X, L) — T(C, X, L)
is defined by: L Ut—tUl —¢
tut =t
(tl tQ) L (U,l UQ) = (tl LJ ul) (tg L Uz)

Again, we will use our more general definition only on terms that are compatible.
The following lemma shows that acts as least upper bound for compatible terms.

Lemma 6.7 Ift; C¢ and ¢, T ¢, thent; Ut is defined, and:t; C ¢, Lits, to T ¢, Uty, and
ti Uty Tt

Proof: By induction on the structure of terms. [
Approximants of terms are defined by:

Definition 6.8 (ApPrRoxIMANTS) Ac¢(t) = {a € Ac | u [t =" u & a C ul} is theset of ap-
proximants of.
Notice that we could have used™ TA. (u)’ as well.

In Section?, using this definition, we will define a semantics s, and we will need the
following properties relating approximants and reduction.

Lemma6.9 i)t —*t = Ac(t) = Ac(t).
i) a,a’ € Ac(t) = alad € Ac(t).

Proof: i) (C): t—="t'&ae Ac(t) =
t—="t&Jv[t="v&al ] = (4.5
Jvw[t="v&v—-"w&t =" "w&aClv] = (6.5())
Jw [t =*w & a Cw) = a € Ac(t)

D): t—=*t'&ae Ac(t) =
t—="t&Jv[t =" v&alv] =
=

Jv [t =" v & al v a€ Ac(t)
i) aeAc(t) & d' € Ac(t) = (6.8
Ju,u' [t =*u&aCu&t—"u & ad T = (4.5&6.5(i))
Ju, v/ v [t = *u—"v&t—="u > v&alov&d Cov] = (6.7)
Jo[t—=*v & allad Co = allad € Ac(t)

Lemma 6.10 If4.(t) = {L}, thent is unsolvable.

Proof: If Aq(t) = {L}, then, for allv such that —* v, anda € A, if a C v, thena = L.
So, in particular, there is nesuch that —* v andv is of the shapea, - - -a,,, with (n > 0)
orCay---a, with (n <arity(C')), since otherwise L --- L CvorCL--- 1L Co.
Thereforet does not reduce to a term in head normal form: it is unsolvable. [ |
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The following result is crucial for the proof of Lemn7a3:

Lemma 6.11 Let;,to € 7(C, V), a € Ac(tity), then there existy € Ac(t1), as € Ac(t2)
and«’ such thatn; as —* v anda C /.

Proof: The case:r = 1 istrivial. Fora # L: assumé;t, —* v anda C u, then either:
1) u=wujuy, andt; —* u;, for j = 1,2. Sincea C u; uy anda # L, there areu,, a; such
thata = a; as, anda; C uj, for j = 1, 2. Notice thata; a; € Ac, and take’ = a.
i) There exisC,py,...,p,suchthaCz;---x, —r,

tity—* Cpy--pp — 1P =",

and none of the reductions in the first part of this sequence take place at the root
position. Since some of the reductions that take place after contracting the redex
Cp:---p, are in fact residuals of redexes already occurringin. ., p,,, we can take

the reduction sequence that first contracts all redexes (and their residuals) that already
occur inpy, ..., p,. Then, since the rewrite system is orthogonal (i.e. rules are left

linear and without superpositions), there exjsts . . , p/, andv such that

tito—=*Cpy---pn—=Cpl---p/, —r? —*vandu—*v

and in the reduction sequenc® —* v we mimicr? —* u, but only contract redexes
that are createdfterthe redexC'p) - - - p/, was contracted. Take = DAc (p;), for

i € n, then the redexes that are erased have no relevance to the secflente;
moreover, there is only one redexdru;, - - - a,,, being that term itself, and both
Cay ---a,—y anda, are inA¢. Notice thatt; —* Cp} --- p/,_,, and

Cay - a,1 CCpPy---pl_y, andty —=* pl , a, C p,.

We now focus on the reduction sequence

/ / p
Cpl...pn_>rp —>*/U

Notice that, by the construction sketched above, only redexes that are newly created are
contracted, and that any redex created in this sequence corresponds to a redex being
created for a sequence starting witla; - - - a,,, therefore

Cay-a, —r*—*u

and each term created in this reduction is smaller than (in the senSetioé
corresponding term in the reduction sequence above (hénce), and each redex in
u' corresponds to a redex in Takea’ = DA¢ (v), thena’ C v, and all redexes are
masked byl . Sinceu’ C v by masking all the 'old’ redexes, we also have that

a’ = DAc (v'). Sincea C u, alsoa C v (by Lemma6.5 (i), and therefore C o’ (by
Lemma6.4 (iii))). We then deduce C /. [

To come to a notion of type assignment ®fC, X, L), the definition of type assignment
as given in Definitiorb.7 neednot be changed, it suffices that the terms are allowed to be
in T(C, X, L). In particular,£ does not produce a type far; since L ¢ C, and because of
Definition 5.7, this implies thatl can only appear in (sub)terms that are typed with

We will need the following result.
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Lemma6.12 i) ID :: B k¢ t:o, t C v, then there exist®’ :: B ¢ v:0, where the type-deri-
vationD’ has the same tree-structure BYthat is, the same rules are applied).
i) If D:: B kg t:0, andt C v, then there exist®’ :: B k¢ v:o.

Proof: Easy. [

6.1 Approximation and normalization

In this section we will give the proofs for the approximation and normalisation results.
We will need the following intermediate result.

Lemma6.13 Le€ = ((C,X),R) be acs, then, for allt € 7(C,V): if D :: Bt¢ t:oisin
normal form with respect te-p, then there exists an € A, and D’ such thate C ¢ and
D' :: B ¢ a:o.

Proof: By induction on the structure of derivations.

(—E): ThenD= (D, :: B k¢ t;:7—0,Ds :: B ¢ to:7, —E) :: B ¢ t1ts:0. Then, by
induction, there are; C 1, a3 C ¢y such that D :: B k¢ a;:7—o0,and B, :: B k¢ ay:7,
and(D} :: B k¢ a;:7—0,D} :: B F¢ a:T,—E) :: B b¢ ajaq:0. By Definition6.2we
know thata, a; C t 5. Now ay ay & Ac if there is aC € C such thati; = Cal ---af ™!
andarity(C) = n. Butthen there ar¢l, ..., t7 ' witht, = Ct}--- ¢/, and
t = Ct!-- -t 't,. In particular, by the remark before Theor&i9 D is reducible,
which is impossible. Sa;a; € Ac.

(nl): D=(D; :: Btg t:oy,...,D, 2 B¢ t:o,,nl) 2 B k¢ t:N,0;. By induction, for
i € n, there is amy; Ctin Ac suchthatD:: B; F¢ a;:0;. Takea = a;UU - - - Ua,. Since,
fori € n, a; C a, by Lemma6.12also O :: B; ¢ a:0;, SO we get

(DY :: By kg azoy,...,D] 2 B, kg a:o,,0l) 2 B e a:Nyo0;.

Sinceaq; C t for all 7 € n, by Lemma6.7, alsoa C ¢. Notice that ifn = 0, thena = L.

The cases$f) and @AX) are immediate. [
Theorem 6.14 (ApproxivaTION) LetC = ((C,X'),R) be acs, then: if B t¢ t:o, then there
exists am € A¢(t) such thatB ¢ a:o, forall t € 7(C, V).

Proof: Suppose D: B ¢ t:0, then, by Theorer5.19 SN(D). LetD' :: B’ ¢ v:oc be a
normal form of D with respect to—p . Then by Lemma.13 there is an: € A¢ such that
aCvand D :: BF¢ a:o. Thent —* v, thereforen € A¢(t). |

For principal environments we can show that the converse of this result also holds.

Theorem 6.15 LetC = ((C,X),R) be acs, and& be principal forC, then, if there is an
a € Ac(t) such thatB b¢ a:0, thenB ¢ t:o.

Proof: If a € A¢(t) such thatB ¢ a:0, then there existsasuch that —* v anda C v.
But then, by Lemm®.12 alsoB ¢ v:o. Sincef is principal forC, by Theorenb.18 also
B ¢ tio. [ |

Theorem 6.16 (HEaD-NORMALISATION) Lett € T(C, V). If B k¢ t:0, ando # w, thent has
a head-normal form.
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Proof: If B F¢ t:0, then by Theorens.14 there is am € A¢(t) such thatB +¢ a:0. Since
o # w,a # 1,andsincel € A¢, there arer or C', and terms, . . . , a,, such that
a=xa--a,, 0ra=Cay---a, with arity(C') < n. Also, sincea € A¢(t), there is a such

thatt —* v anda C v. Sincea C v, there are, . . ., t, such that eithev = =t;---t,, or
v =Ct--1,, with arity(C) < n. But thenw is in head-normal form, sbhasa head-normal
form. [ |

The combinatorial equivalent of another well-known result for intersection type assignment
intheLc, i.e. the property

If B ¢ t:0, and B, o are w-free, thent has a normal form
no longer holds.

Example 6.17 Take thecs
Zry — y €(2) = w—pr1—en,
Dz — zx E (D) = ((pa—p3)Np2)—p3

thenz (DD) is typeable with a type not containing but the ternz (DD) has no normal form.

We will now show that, using Theoret19 all terms typeable in the subsystem bf
that does not use ( ¢ ), are strongly normalizable.

Lemma 6.18 i) ID is a derivation in ¢ , andD —p D’, then alsoD’ is a derivation in
Fe .
i) D:: BFZ t.o —p D' :: B'Fg t':0, ifand only ift — ¢'.

Thus, in the type systemy , —p mimics — and vice-versa. This observation immedi-
ately leads to the following result.

Theorem 6.19 Lett € 7(C, V). If B ¢ t:0, thent is strongly normalizable.

Proof: Let D be suchthatD: B ¢ t:0. Since also D: B t¢ t:0, by Theorenb.19 D is
strongly normalizable with respect te. By Lemma6.18 (i), all derivation redexes in D
correspond to redexes trand vice-versa, a property that is preserved under reduction. So
alsot is strongly normalizable. [

It is worthwhile to notice that, unlike forc with I, the reverse implication of the three
theorems does not hold in general. For this, it is sufficient to note that a subject expansion
theorem does not hold (see also the last remark of SestB)n

Another aspect worth noting is that, unlikel, no longer every term in normal form is
typeable without in basis and type. Take for example

t = s(K(SI))(K(sI)),

and note that, by Properfi10every type assignable tdregardless of the environment used)
is a type assignable toy.(Az.zx)(Az.zz) in k. Since this last term has no head-normal form,
only w can be assigned to it.
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7 Semantics

In this section, we will define two semantics fos. The first is a filter model, where terms
will be interpreted by the set of their assignable types; the second an approximation model,
where terms will be interpreted by the set of their approximants.

Definition 7.1 Application onpAc, - : pAc x pAc — pAc, is defined by:
Ay - Ay ={a€Ac|Jas € Aj,a0 € Ay, ufaras = u & a Cul}.
We will define two interpretations of terms:

Definition 7.2 i) The interpretation of terms in the domain of approximants 6vsidefined
as:[t]7 = Ac(t) = {a € Ac | Ju [t =" u & a T u)}.

i) Let ¢ be a valuation of term variables ifi; we write { = B if and only if, for all

xr:0 € B, 0 € (). Mjgg, the interpretation of terms iff via ¢ and& is defined by:

[tl{e = {0 | 3B[¢ = B& Bt tiol}.

Notice that, by rul€nl) and Theoren®.13 {¢ | 3B [B ¢ t:0]} € F.
Both notions of application, as well as that on sets of approximants as that on filters, are
well-defined, in the sense that they respect application on terms.

Lemma 7.3 i)t ll7 - Ttoll? = Ttatal?
ii) thJJf,g- ”_tQJJ?:g = ”_t1t2l|§g-

Proof: i) (C): [tl7 - Ttals = (7.2)
{a € Ac|Ja; € thﬂ?,ag € thﬂ?,u[alag —*u&alul} =
{a € Ac | Jay,as € Ac,u [Fuy [t ="y & ay Cuy] &
Jug [tg =" us & as Cug] & aya9 = u & aCul} C (6.5(i))
{aeAc | Ju[tits = *u& aCul} =
thtﬂj?
(D): Thtld =facAc|Iultits—*u&alu} C (6.11)
{a€eAc|Ta; € thﬂ?,ag € thﬂ?,u[alag —*u&alul} =
”tlﬂ?' Wtﬂj?
i) Ttl7e - Ttlle =
Ho |3 7etlls r—oeltlle)) =
o | 37 3By [By e t1:7—0] & 3By [By ¢ to:7]]} = (C: B =({By, By})
o |37, B[Btetiit—0 & B e tyr]} =
o | 3B [Bte tyta:0]} =
{o | AB [Bt¢ tity:0]} =
thﬂgg u

7.1 The relation =g : equating terms through —x

As seen above in Lemn®&9 (i), if t —* ¢/, thenA¢(t) = Ac(t'), which implies that, at least,
if t =* ¢, then [[tJJ? = [[t’JJ?. The converse does not hold, since unsolvable terms that are not
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in —*, still have the same image undédj?, namely . We now formalize these properties.
The relation=g is the reflexive, symmetric and transitive closure-ek :

Definition 7.4 Let ((C,X),R) be acs. We define the equivalence relatierg C 7 (C, V) x
T(C,V) by:
t—gv = t=Rv
t=prv = V=Rt
t=hv&v=pw = t=fRw

Lemma 7.5 It =g v, then there exists such that —% v andv —§% w.

Proof: By induction on the definition of=g . If t =g v & v =p w = t =g w, then, by
induction there are; andu, such that —5 u; andv —§ uy, andv —4% us andw —§ us.
Sincev —{ uy; andv —{ us, by Property4.5, there exist ai; such that:; —§ vz and

us —g us. Butthen, in particular, —% us andw —% us. The other cases are
straightforward. [

The approximant semantics is adequate, in that it equates terms that are equal in the theory
R.

Theorem 7.6 (ADEQUACY OF THEAPPROXIMATION MoDEL) If t =g v, thenﬁtﬂ? = !TUJJ“CA.
Proof: Consequence of Lemn¥a5and6.9 (). [

The converse of this resulﬂf’[HJJ;;4 = [[UJJ?, thent =g v’ does not hold.

Example 7.7 Take thecs
Sryz — xz(yz)
Kry — x
Dz — zx
Wz — xox

Notice thatsk (DD) andsK (ww) both have only one redex, and that this property is pre-
served under reduction. Then

SK(DD) — SK(DD) — SK(DD) — - - -

and
SK(WW) — SK(WWW) — SK(WWWW) — -

o)
[[SK(DD)JJ“C4 ={l,sl1l,skl}= NSK(WW)JJ?,

but there is na: such that botlsK (DD) —* v andSK(WW) —* w.

7.2 Therelation ~;: = and equating unsolvables

We could modify the relation=g to identify all unsolvable terms, SBK(DD) ~g SK(WW)
(this is used also forc).
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Definition 7.8 Let ((C,X),R) be acs. We define the equivalence relatieer C 7 (C, V) x
T(C,V) by:
t—gv = t=Rrv
t,v are unsolvable = t=~rwv
ARV = URRt
trpv&vrpRw = tRRW
tr~rv = wtrrwo & twrgvw

Notice thatSK (DD) ~r SK(WW).

Theorem 7.9 If t ~g v, then MJ? = HUJJ?.

Proof: By induction on the definition okg. The caseé — v follows from Lemma6.9 (i).

If ¢, v are unsolvable, thevﬁtﬂ? ={l}= [MJ?. The last case is a consequence of
Lemma7.3. The other two cases follow by induction. [

Although, by ~g , terms are equated that are unsolvable, still we do not get a full-abstrac-
tion result, since it can be that solvable terms have the same infinite set of approximants, whilst
sharing no terms during reduction.

Example 7.10 Take Tey — yl(zzy)
Yy — y(zy(zy))
Xzy — x(yy)

Then we have the following reduction sequences:

YXz — z(Xz(X2)) TTz — 2(TT2)
— z(2(2(Xz(X2)))) — 2(2(2(TT2)))
— 2(z(2(2(z(z--))))) — 2(2(2(2(2(z--))))
In particular,

”YXZJ? ={Ll,z1l,2(21),2(2(2L1)),...} = WTTzﬂ?,

butnotYXz ~g TTz.

7.3 The relation ~: full-abstraction

We can obtain a full-abstraction result for the approximation semantics using the following
relation:

Definition 7.11 Let ((C,X),R) be acs. The relation~"" is defined co-inductively as fol-
hnf

lows: t =~ u if and only if either
i) t andu are both unsolvable, or

i) if C'ty---t, is a head normal form of (resp.u), then there is a head normal form

C'uy - - -u,, of u (resp.t) such that, for € n, t; ~" u;, or
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i) if xt;---t, is a head normal form of (resp.u), then there is a head normal form
zu; -+ -u, of u (resp.t) such that, for € n, t; ~" u,.

Theorem 7.12 (FULL ABSTRACTION OF THEAPPROXIMATION MODEL) ¢ ~N" v if and only if
A A
”tﬂc = WUJJC

Proof: (if) : By co-induction. Itis sufficient to show that [[ftﬂ? = [[uJJ? then either

a) t,u are unsolvable, or

b) if C't;---t,is a head normal form df(resp.u), thenC'u; - - -u,, is a head normal
form of u (resp.t), and ITtiJJ? = [fuiJJ? fori € n, or

c) if zt;---t, is a head normal form af(resp.u), thenzu; - - -u,, is a head normal
form of u (resp.t), and Wtiﬂ? = ”uiﬂ? for i € n.

This is a straightforward consequence of the fact thamd¢ have the same set of

approximants.

(only if) : We takea € Wtﬂ? and show € Wuﬂ? by induction on the depth of.
(a=1): Trivial.

(a =Cay...a,): Thent has a head normal fordit, - - -¢,,, and therefore; has a head

normal formC'u; - - -u,, such that; ~" v, for i € n. Sinceq; € [¢;]7 and its depth

is smaller than that aof, by induction we conclude that Wuiﬂ“é. Therefore
a < ”uﬂ?
(a =zay...a,): Similar. |

7.4 Filter semantics and full abstraction

The filter semantics gives a semi-model with respectig, as the following theorem shows.

Theorem 7.13 If t —% v, then Mﬁg C WvJJf,g.

Proof: Takeo € Mjgg. Then there exist® such thatB I t:0, and, since —% v, by
Theorem5.17, alsoB ¢ v:o, SO0 € Wvﬂgg. [

In view of the fact that type assignment ife is not closed for subject-expansion (see the
remark at the end of Sectidnd), it is, in general, not possible to show a stronger result like

'If t =g v, then ﬂtﬂgg = [[v] fg However, when using a principal environment, this result
holds.

Theorem 7.14 (ApEQuUACY oF THEFILTER MoDEL) LetC = ((C,X),R) be acs, and€ be prin-
cipal for C, thent =g v implies ﬂtﬂgg = ﬂvﬂgg.

Proof: By Theoremb.17and5.18 [
We even have the following result easily.

Theorem 7.15 LetC = ((C,X),R) be acs, and & be principal forC, thent ~g v implies
Ttlie = Tvlfe, forallt,v e T(C,V).

Proof: By induction on the definition okg. The caseé — v is covered by Theorers.17
and5.18 If ¢, v are unsolvable, then by Theoresilg ﬂtﬂgg ={w} = [MJ;E. The last case
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is a consequence of Lemnia3. The other two cases follow by straightforward
induction. [

The converse of these results do not hold.
Example 7.16 TakeT, Y, X as in Exampl&’.10 and let

E(T) = ((p1—=p2—p3)ne1)—((p3—0a)Nw2) =4
E(Y) = ((w3—w5—01)N(0a—05)) = ((p1—=P2)NP3NPs) =2
E(X) = (pr1—=p2)—=((pa—p1)Nps)—p2

then
YxJ{e = {w, (=)=, (W—pD)n(e1—e2)) =,
]_‘
(w=@1)N(p1—p2)N(w2—p3))—ws, ...} = [TT]
(notice that these types correspond directly to the approximants of Exam)ebut neither
YX=r TT,NOrYX~gTT.
For the filter semantics, we have, as can be expected:
Theorem 7.17 LetC = ((C,X),R) be acs, and& be principal forC, thent ~" v implies
TeZe = Tullle, forall t,u e T(C,V).

Proof: If ¢ ~"u, then, by Theorerd.12, [t = [ul7. Leto € [t] zg (the other case is
similar), then there exists @ such thatB F¢ ¢:0. Then, by Theorerb.14 there exists an

a € Ac(t) such thatB ¢ a:o. SinceAc(t) = [t17 = Tul? = Ac(w), a € Ac(u), and by
Theorem6.15 B F¢ u:o, SO0 € Wuﬂgg. n

Perhaps surprisingly (at least fac, the approximation and the filter semantics coin-
cide [42, 3]), we do not have a full-abstraction result with respect to filter semantics.

Example 7.18 Take

Exy — zy and E(E) = (p1—p2)—p1—pa

lr — E() = pr1—p
Then [e1]Z, = )7, butneithelel =g I, NorEl ~g I, NOrel ~p™ |
£E £E R R R -
The relation between the two semantics is formulated by:
F F
Theorem 7.19 [t]; . C U, c o Tal ¢

Proof: If o € [ftJJf,g, then there is & such thatB ¢ t:0. Then, by Theorers.14 there is
ana € A¢(t) such thatB ¢ a:o. [ |

Note that the inclusion is strict, since the Subject Expansion property does not hold in
general. Also, as can be expected:

Theorem 7.20 Let C = ((C,X),R) be acs, & principal for C, then(J, . 1A ﬁaﬂzg C
[tlf forallt e T(C,V).
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Proof: If o € U, ¢ g4 [fajjgg, then there exists € ﬂtJJ?, B such thatB ¢ a:o. Then, by
Theoremb.15 alsoB t¢ t:o, SO0 € [MJQS. [ ]
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