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Abstract

This thesis is concerned with the extension of the Curry-Howard Correspondence to clas-
sical logic. Although much progress has been made in this area since the seminal paper by
Griffin, we believe that the question of finding canonical calculi corresponding to classical
logics has not yet been resolved. We examine computational interpretations of classical
logics which we keep as close as possible to Gentzen’s original systems, equipped with
general notions of reduction.

We present a calculus X i which is based on classical sequent calculus and the strongly-
normalising cut-elimination procedure defined by Christian Urban. We examine how
the notion of shallow polymorphism can be adapted to the more-general setting of this
calculus. We show that the intuitive adaptation of these ideas fails to be sound, and give a
novel solution.

In the setting of classical natural deduction, we examine the lambda-mu calculus of
Parigot. We show that the underlying logic is incomplete in various ways, compared with
a standard Gentzen-style presentation of classical natural deduction. We relax the iden-
tified restrictions, yielding a richer calculus (νλµ) with a new kind of binding explicitly
representing first-class continuations.

We examine the relationship between various existing control operators in the literature
and the nu-lambda-mu calculus. We show that the µ-binding, along with our generalised
reduction rules, performs the role of a delimited control operator.

We define a mapping from X i to νλµ, preserving typings and reductions. We believe
this is the first time a general notion of cut-elimination for classical sequent calculus has
been encoded into a calculus based on a Gentzen-style presentation of classical natural
deduction. This encoding allows various of our results from the previous chapters to be
adapted from one paradigm to the other.
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Chapter 1

Introduction

Since the days of Gödel, Curry, Church, Turing and Shannon, the foundations of com-
puter science have always been intrinsically linked with mathematics, and particularly
mathematical logic. All of the founders of computer science have been mathematicians,
and many were also logicians. The historic link between mathematics and computer sci-
ence was strengthened by the discovery of the Curry-Howard Correspondence, providing
a direct connection between the fields of functional programming and formal logic. In the
past two decades, interest in this correspondence has been rejuvenated by the observation
that the typical isomorphism between purely functional languages and minimal logics
might be extended to relate programming calculi incorporating more-expressive features
(control operators) to classical logics. A wealth of research has followed, ranging from
practical attempts to understand existing programming disciplines in a logical sense, to
foundational approaches concerning the essences of these two subjects.

The mathematician and logician Gerhard Gentzen, although unconcerned himself with
computer science, was the inventor of the two systems of formal logic most commonly
used ever since, being natural deduction calculi and sequent calculi [34]. As a result
of the Curry-Howard Correspondence [20, 21, 43], his work has become significant for
the foundations of computer science, and particularly functional programming, since it
is a natural deduction formulation of minimal logic which famously corresponds with
Church’s λ-calculus [18]. This original correspondence is very clean: neither the logic
or the programming calculus need be changed in order to obtain a full-isomorphism of
reductions as well as syntactic entities (proofs-as-programs, formulas-as-types).

Regarding possible isomorphisms between programming calculi and classical logic, it has
been less clear what the best approach might be. While some authors have taken particular
programming features and properties as the essential starting points, and attempted to
coerce a classical logic into a form suitable for a type system, others have taken the
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logics themselves as primitive, and attempted to derive new programming discliplines
accordingly. In addition, there is a range of work in between, adapting both existing
computational and logical presentations in order to find a satisfactory middle-ground.

In this thesis, we are concerned with the question of finding the computational content
of classical logic. In particular, we examine classical logics in presentations close to
their original definitions, and investigate what natural computational behaviours can be
obtained in corresponding term calculi. We subscribe to the increasingly prevelant view
that reductions in such term calculi are inherently non-confluent; this is naturally true of
cut elimination in classical sequent calculi, as originally defined by Gentzen. Although
confluence is a useful practical result, we believe it is advantageous and instructive to first
define an unrestricted, fully-general notion of reductions, and then to examine possible
confluent subsystems when the need arises.

We work with Gentzen’s two paradigms of sequent calculus and natural deduction. In
the case of the sequent calculus, a strong basis of work exists already in defining fully-
general canonical reductions. Indeed, a cut elimination procedure dates back to the very
first presentation of sequent calculi, although for technical reasons it is not fully-general
enough to have a good computational interpretation. The question of finding a pleasing
generalisation of the cut elimination process which is still strongly normalising was a
difficult one, but one which we believe has been best tackled in the PhD thesis of Christian
Urban [76].

Although the Curry-Howard Correspondence relates typed programming calculi with log-
ics, it is practically-interesting to work with untyped calculi which come with type assign-
ment systems. However, it is still possible to show that the typed fragment of a calculus
has a similar correspondence with a logic, and, so long as all of the reduction rules make
sense in the typed case, we believe it is valid to describe even such untyped calculi as
having a logical foundation. Conversely, if one takes any set of sound proof transforma-
tions (sound in the sense that proofs are always mapped onto proofs), these can always be
used to synthesise a typed programming calculus with a Curry-Howard Correspondence.
So long as the reduction rules do not depend explicitly on the types, it is then possible to
erase the types completely, and obtain an untyped calculus with the same kind of logical
foundation. One could imagine, for example, untyped λ-calculus being reinvented from
minimal natural deduction in this way.
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1.1 The Computational Content of a Logic

It is well known that the reduction relation of the λ-calculus is confluent, i.e., that although
there are critical pairs in the unrestricted reduction system, these are always joinable. By
the Curry-Howard Correspondence, this also implies that the induced notion of reduction
on the proofs of Intuitionistic Minimal Logic is confluent. These reductions can be said
to come from the work of Prawitz, who was interested however only in the existence
of a normal form for any proof under his reductions, and not in the uniqueness of this
normal form (which is implied by confluence). From the point of view of provability,
confluence is an orthogonal concern; whether there are many (normal) proofs or just
one for a particular formula is not usually of concern. However, when these proofs are
viewed as programs, and the reduction relation defines their semantics, the question of
confluence seems an important one, since computing different normal forms amounts to a
computation producing different answers. This discrepancy can be explained more clearly
by the following observation:

The computational content of a logic lies not in its strength in terms of provability, but in
its reductions.

Does this mean that the types which are assigned to terms are irrelevant to the computa-
tional meaning of these terms? Certainly this is not the case. But the types do not per se
give us properties about the particular reductions which are possible from a term, and in
general do not guarantee the confluence of those reductions. More generally, the set of
inhabited types for a particular programming calculus does not directly imply anything
about the computational content present in the reductions. We argue that any claim to
have extracted the computational content of a logic (by defining a term calculus with a
Curry-Howard Correspondence) should not be assessed purely on whether the set of in-
habited types coincides with the set of formulas provable in the logic; we view this as a
necessary but by no means sufficient requirement.

To take an extreme example to illustrate this point of view, consider the following “logic”
in which there is precisely one inference rule, and the judgement taut A means “A is a
tautology of propositional classical logic”.

taut A
(Voila!)

"A

Essentially we have abstracted away all of the work in deciding what should be provable,
to some other procedure outside of the formalism1. It can readily be seen that, if one bases

1Technically, this proposal may not actually be considered a propositional logic, if one insists on poly-
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an untyped calculus on this “logic”, via a Curry-Howard Correspondence, one naturally
obtains a syntax with only one object, and an empty reduction relation. The set of inhab-
ited types is exactly the set of formulas valid in classical propositional logic. However, we
certainly have not uncovered the computational content of classical propositional logic as
a result; it seems clear that our calculus has no computational content at all!

The point we wish to make is that the syntactic constructs in the language should be
sufficient to faithfully inhabit all of the proof-steps in the logic. The simplest and most-
common case is for each inference rule of the logic to be explicitly represented by a
(distinct) syntactic construct in the programming calculus. However, in calculi such as
the symmetric λ-calculus [9] and the symmetric λµ-calculus [58], an involutive negation
is built in to the definitions, essentially by identifying the types ¬¬A and A implicitly. In
the latter work of Parigot in particular, we believe that this obscures the classical content
of the proofs, since (for example) the term λx.x can be typed as a double-negation elimi-
nation operator; i.e., assigned the type ¬¬A→A. We believe that an explicit treatment of
negation is one of the most interesting technical aspects of term calculi based on classical
logic, since (as we shall explain this this work) we regard terms of negated type as corre-
sponding to explicit continuations, and terms with classical (but not intuitionistic) types
as those including computational behaviour associated with control operators.

Note that as an implicit consequence of the point of view we are advocating, if one wishes
to uncover the computational content of a logic it seems necessary not to restrict the lan-
guage of proofs in the process (since, by doing so, one is presumably removing reductions
from the reduction relation). We will discuss specific examples with regard to this point,
but should say here first that we do not think it should be adhered to religiously. In
the sequent calculus in particular, one is regularly faced with a number of proofs of the
same conclusion (endsequent), which only differ by rather trivial-looking permutations
of the inference rules with one another. It seems we would like to work modulo some
kind of equivalence relation on these proofs, justified by showing that their computational
behaviour is “essentially the same”. Some progress has been recently made towards a
notion of proof nets for classical logic [65, 47], inspired by the solution to the same kinds
of problems for linear logic [37]. However, a notion of proof nets has not been found
for which cut elimination still corresponds to the original cut elimination in the sequent
calculus. Therefore, although it can be argued that the proof nets make a good paradigm
to work with in their own right, they are not a direct abstraction of the sequent calculus
paradigm. Interestingly, the question of identities on proofs has recently sparked off a
whole new paradigm of logics, called deep inference, which has been the subject of many
recent publications.

nomial time proof-checking [14]. However, it serves to make the point here.
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1.2 Canonical Reduction Relations

Given the set of inference rules which make up a logical formalism, the set of proofs in
the logic is immediately defined. Therefore, if a programming calculus is to be based on
the logic, the syntax (up to choice of notation) and type system (in the case of an untyped
calculus) are also implicitly defined. The key ingredient which may still be missing is the
reduction rules. Since not all proof systems come with a natural set of reduction rules (for
some, a notion of proof normalisation may never have been considered), there remains
the problem of deciding what a suitable notion of reduction would be in the resulting
programming calculus. The choice of the reduction relation is critical to the question of
the computational content; as we have argued above, the computational content of the
calculus is essentially defined by the reductions.

In the historical case of the simply-typed λ-calculus and the natural deduction system
for intuitionistic implicative logic, the well-known concept of β-reduction seems to be
‘the’ canonical notion of reduction2. Since the λ-calculus was invented before the Curry-
Howard Correspondence was observed, there was no need to consider what a suitable
set of reductions might be on the underlying logic; these were already specified in the
programming calculus. The beauty of the correspondence is that the exact same set of
reductions had already been identified as the natural ones for the logic, by Prawitz [60]
and (as was recently discovered by von Plato [80]) previously by Gentzen himself.

For classical logic, Gentzen did not identify a set of reduction rules for his natural de-
duction calculus, but only for sequent calculus. Prawitz was the first to present a set of
proof reductions for classical natural deduction, for the disjunction-free fragment of the
logic. In the case of the introduction and elimination inference rules, he follows exactly
the same reductions as for intuitionistic logic. The additional reduction rules for classical
logic reduce instances of the ‘proof by contradiction’ rule (called !C in Prawitz’s work)
by pushing them outward through the structure of proofs and reducing the degrees of
their conclusions until they are restricted to the atomic case. This was sufficient to define
a clean characterisation of normal forms, and to prove normalisation using the reduction
rules specified. However, apart from these practical considerations, it is not clear what
makes the reduction of the classical rules to the atomic case the ‘canonical’ notion of
reduction.

Since Prawitz’s extra reduction rules for classical logic were conditional on the degree of
the formulas used in the proofs, it is not possible to use them as the basis of reductions for
an untyped term calculus. In contrast, the reduction rules in the intuitionistic case only
depend on the structure of proofs (which inference rules occur with which), and so can be

2or at least, the basis of it; some consider the η rule to be essential, also.
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easily seen to correspond with reduction rules for an untyped calculus. Parigot [54] found
an adaptation of Prawitz’s work which (amongst other results) overcomes this difficulty
by restricting and reformulating the classical reduction rules with an aim to obtaining a
Curry-Howard Correspondence with a classical logic. This sparked off a wealth of other
work, including the discovery of various generalisations of Parigot’s original rules. We
believe that, unlike in the case of classical sequent calculus, a canonical set of reduction
rules for classical natural deduction is not yet settled in the literature, and this is one of
the questions we address in this work.

1.3 Outline of the Thesis

In Chapter 2, we provide a more detailed background for our work, including further
discussions of our goals and point of view. Chapter 3 introduces the term calculus X i

which we will use as our basis for work on the sequent calculus. It is derived from the
work of Christian Urban [76], and its reduction rules reflect his cut elimination procedure.
This chapter mainly defines the basis for later work, but there are also some results such as
a principal typing algorithm. In Chapter 4, we tackle the notion of shallow polymorphism
á la ML, in the context of classical logic. This chapter builds on and corrects the work
presented in [73]. We show that the naı̈ve generalisation of the historical approach is
unsound, in a way which is made particularly clear in the context of the sequent calculus.
We define a novel solution to this problem, and prove its soundness.

In Chapter 5 we digress from the realm of sequent calculus and begin work in the natural
deduction paradigm. We take Parigot’s λµ-calculus as a starting point, and explain why
we do not believe it to correspond with a typical system of Gentzen-style natural deduc-
tion. We identify specific discrepancies with the logic, and by lifting these, define a new
term calculus which we call νλµ. We define a notion of reduction for νλµ which gener-
alises those in the literature, and is motivated by a computational understanding of what
the µ-reductions aim to achieve. We show that the resulting notion of reduction is expres-
sive enough to encode Curien and Herbelin’s λµµ̃-calculus (which is based on classical
sequent calculus), which we believe to be a unique result for a calculus based strictly on
Gentzen-style natural deduction. We also show that a subsyntax of our calculus encodes
the λ-calculus, adding additional reduction paths but no new normal forms.

In Chapter 6, we take a step closer to the practical side of functional programming, by
comparing the νλµ-calculus with control operators. The comparison between classical
logic and control was the historic catalyst (provided by Griffin [38]) for the great inter-
est which has been shown in Curry-Howard for classical logics in the past 18 years. We
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show that our calculus is able to simulate the reductions of various control operators in
the literature, and that, compared with other formulations of λµ, we have more succinct
representations for some of the operators. Furthermore, we show that the reductions of
νλµ can be seen to contain a ‘home-grown’ notion of delimited control, related to oper-
ators such as Felleisens F and the shift/reset operators of Danvy and Filinsky [23]. As a
consequence, we put forth the view it is more natural to regard the computational counter-
part of double-negation elimination to be a delimited control operator than the C operator
originally studied by Griffin.

In Chapter 7, we work on the relationship between our two calculi, aiming for encodings
between the sequent calculus and natural deduction paradigms. We begin with a discus-
sion of existing work towards this goal. We then show how to encode the X i calculus into
the νλµ-calculus, in such a way that reductions and typings are preserved. This provides
a strong link between the two calculi. In the other direction, we find that our attempts at
encodings are thwarted by the generality of the reductions in νλµ. We give some ideas as
to how an encoding might be constructed, and explain the difficulties faced.

We conclude in Chapter 8, by discussing how the results of the previous chapters can
be brought together to uncover new ones. For example, given the insights provided by
Chapter 7, we discuss how the work of Chapter 4 can be adapted to the natural deduction
paradigm, providing another novel notion of type-assignment.
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Chapter 2

Background Material

2.1 Overview

This chapter provides some of the basic background and history relevant to this thesis.
In neither case does it attempt to be complete, but its main role is to explain the general
framework within which we see our work. In the following chapters, further background
and reference material will be introduced and discussed as it is required.

2.2 Notation and Nomenclature

This thesis employs a good deal of mathematical notation, and we wish to make the
notation used as clear as possible. Where there is a standard notation in the literature, we
aim to use this in the thesis, except where it causes conflicts with other notation employed.
Where notation is not standardised in the literature (a good example being notation for the
types of the simply-typed λ-calculus), we aim to choose one to be as clear as possible.

The following are general points on the notation and terms we use in this document, which
we hope may be useful for reference:

1. This document refers to a number of programming calculi. In order to distinguish
these (from for example, sequent calculi), we will generically describe these as term
calculi, and refer to the objects defined by the syntax of a particular calculus as the
terms of the calculus, except where several distinct classes of syntax are defined,
when we will usually follow the nomenclature of the original work.
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2. When describing systems of formal logic, we will initially specify the paradigm we
are working in (natural deduction, sequent calculus etc.) but later on will often refer
to formal proof systems in general simply as logics.

3. Since a key aspect of this work is that formulas of the logics and types of the
term calculi correspond with one another, we will use the same notation for each.
This should not cause confusion; rather it illustrates clearly how the Curry-Howard
Correspondence (see Section 2.6) operates. We use uppercase Roman charac-
ters A,B,C, . . . to denote formulas and types. These a built from atomic formu-
las/types, for which we use the Greek character ϕ and ϕ1,ϕ2, . . ..

4. Where the syntax of a term calculus involves a single class of variables/names,
we will use lowercase Roman characters x, y, z, . . .. Where a second alphabet is
required, we will use Greek characters α, β, γ, . . .. We will usually refer to these
objects as term variables.

5. We use the terminology ‘labelled formula’ or ‘labelled type’ for a term variable
paired with a type, and written x : A. In the context of type systems, this will some-
times be referred to as a statement, and can be read as ‘x of type A’, representing
a type assumption for the variable x. In the context of logic, x : A can be viewed
as a labelled formula; the x is used to distinguish the occurrence of the formula A

from any others which may be available. This allows one to implement multisets of
formulas as sets of labelled formulas.

6. We use uppercase Γ to denote (unordered) sets of formulas/types or (more often)
of labelled formulas/types. Whether labels are intended or not is usually clear from
the context, but we will specify where any confusion could arise.

7. We will write judgements, in both logics and in type systems, using the ‘turnstile’
symbol ". These judgements usually feature a set Γ on the left of the turnstile,
which represents the set of assumptions under which the judgement is made. In a
type system, this amounts to the types which have been assumed for the (free) term
variables. The notation on the right of the turnstile depends on the context. In a nat-
ural deduction system of logic, for example, a judgement may take the form Γ " A,
which denotes that a proof of the formula A has been reached from the assump-
tions Γ. In a type system, statements may take the form Γ "M : A (where M is a
term of the syntax), which denotes that M can be assigned type A using the type
assumptions. In some settings, multiple statements occur on the right-hand side of
the turnstile. We use uppercase ∆ to denote (unordered) sets of formulas/types or
(more often) of labelled formulas/types on the right of a judgement. In this case,
judgements may take the form Γ " ∆. If a term P is required in judgements of this
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form, we will usually write it outside, as in P ··· Γ " ∆. We will sometimes refer
to the sets of formulas Γ, ∆ as a context; specifically the context of the judgement
P ··· Γ " ∆.

8. We will present the proofs of all logics we consider in a derivation style, and in a
sequent-style presentation (i.e., using judgements as described above). There are
various other ways to present some of the logics, particularly those of a natural
deduction formalism (tree-style, boxproofs etc.), but, for ease of comparison and
space considerations, we choose to use derivations as standard.

2.3 Logics

A number of different logics will be discussed during the course of this thesis. We use
the term logic to indicate a specific language of formulas, along with an identified subset
of these formulas which are the tautologies of the logic. For example, when we speak of
implicative classical logic, we mean a language of formulas containing (only) the impli-
cation connective, →, as a constructor, plus (as is always the minimal case) an infinite set
of propositional atoms. Furthermore, we intend that the set of formulas such as A→A and
((A→B)→A)→A, which are classically valid, are the tautologies. However, we do not
mean to distinguish different proof systems or reasoning paradigms as different logics. In-
stead, we may refer to (for example) implicative classical sequent calculus or implicative
classical natural deduction (see later), to specify in which paradigm we are working.

When we wish to speak of a logic in which the syntax of formulas has only one connec-
tive, we will usually use adjectives such as “implicative”, “conjunctive”, etc. However, if
we wish to describe a logic having a larger set of connectives, we will usually write which
are included explicitly. For example, “the →,¬-fragment of classical logic” describes the
logic in which formulas are built using only the implication and negation connectives,
and the tautologies are exactly those which are classical tautologies. By a “full” logic,
we mean a logic in which all of the standard logical connectives are either included in
the syntax of formulas or (at least) defineable in terms of the connectives which are in-
cluded. By a fragment, we describe the logic with the same notion of truth, but a syntax
of formulas restricted to only some of the standard connectives.

The three most common notions of truth (i.e., notions used to define which are the tau-
tologies of a syntax of formulas) relevant for this thesis define minimal, intuitionistic and
classical logics. In a classical logic, all logical connectives are semantically interpreted as
specific boolean functions, and a formula is a tautology if and only if it ‘evaluates’ to true
under every assignment of true or false to each distinct propositional atom. In particular,
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the negation connective ¬ is interpreted as the function mapping true to false and false
to true, and so, when composed with itself, behaves as the boolean identity function. For
this reason, a formula A is a tautology of classical logic if and only if the corresponding
formula ¬¬A is a tautology. In intuitionistic logic, a notion of constructive argument
characterises which formulas are tautologies. Essentially, a formula A is a tautology if
and only if one can provide a ‘constructive argument’ to deduce A. In particular, it is not
acceptable to reason ‘by contradiction’ in a constructive argument; one must deduce con-
clusions directly. In an intuitionistic logic, it no longer holds that A is a tautology iff ¬¬A

is; in particular, it does not hold that ¬¬A→A is a tautology of intuitionistic logic. The
only situation in which a formula A may (in a sense) be deduced non-constructively is in
an absurd situation, i.e., when the formula ⊥ is derivable. In this case, any formula may
be derived (for example, by the “⊥-elimination” rule in intuitionistic natural deduction).
For this reason, ⊥→A is a tautology of intuitionistic logic. Minimal logic is obtained
from intuitionistic logic by restricting even this kind of inference; essentially there is no
special meaning (in terms of provability) attached to absurd situations. Therefore, the
formula ⊥→A is not a tautology of minimal logic.

For some fragments of full classical, intuitionistic and minimal logic, the notions of truth
may coincide. For example, the ¬,∧-fragment of classical logic is identical to the same
fragment of intuitionistic logic. More significantly, the implicative fragments of intuition-
istic and minimal logic coincide (since, informally, they only differ in their treatment of
the ⊥ connective). When the original Curry-Howard Correspondence is described, it is
therefore sometimes described in terms of “intuitionistic implicative logic”, and some-
times “minimal (implicative) logic”. Since in this field, minimal logic is rarely referred
to in anything but the implicative case, the “implicative” qualifier is sometimes dropped.
For consistency, we will always refer to this as minimal logic in this work.

2.4 Gentzen’s Formalisms

In [34], the logician Gerhard Gentzen introduced the two most common presentations of
formal logic used today, being those of natural deduction systems and sequent calculi.
In this section we will give a brief presentation of the two formalisms, which provide the
underlying logical basis for the work discussed in this thesis.
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(ax)
Γ, A " A

Γ, A " B
(→I)

Γ " A→B

Γ " A→B Γ " A
(→E)

Γ " B

Figure 2.1: Natural Deduction for Minimal Implicative Logic

2.4.1 Natural Deduction

The intention of the natural deduction formalism is for formal proofs to follow intuitive
lines of arguments as much as possible (hence “natural”). As such, inference rules focus-
ing on manipulating the conclusions which can be drawn from a given set of hypotheses.
As a natural deduction proof progresses, these hypotheses may be discharged (certain
inference rules may bind hypotheses) but are usually not added to or manipulated in any
other way. Hypotheses are usually stored as sets (which we typically use the meta-variable
Γ to represent in this work.

The inference rules of a natural deduction system mainly come in two distinct varieties:
introduction and elimination rules, each for a particular logical connective. Informally
speaking, the introduction rules specify when and how a conclusion with the appropriate
principal connective can be deduced, whereas the elimination rules specify what can be
deduced from a conclusion with this principal connective.

In addition to the introduction and elimination rules, an axiom rule is included, which
represents trivial deductions of the form “if A is assumed then A can be concluded”.
Since this is the only rule with no premise, all the ‘leaves’ of a derivation are instances of
the axiom rule.

An example natural deduction calculus is given in Figure 2.1, which shows the standard
formulation for minimal (implicative) logic. The rules for the implication connective
follow intuitive argument: ‘if, by additionally assuming A we can deduce B, then we can
deduce A→B’ (→I) and ‘if we know A→B and we know A then we can deduce B’
(→E).

Natural deduction is presented by Gentzen in a ‘tree style’, in which derivations feature
single formulas at the nodes, and the formulas at the leaves represent assumptions in the
derivation. Thus, one of the obvious differences from sequent calculus systems (to be
discussed shortly) was originally in the presentation. However, as mentioned previously,
we will present both paradigms using sequents; in essence this involves making explicit
the assumptions (written on the left of the judgements) which are in scope at each point
in a natural deduction derivation.

Natural deduction has remained popular as a means of formalising proofs, and although
many aesthetic differences can be seen in existing work in the area, the technical details
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of the formalism have remained remarkably intact. This can be attributed to the aim of
the paradigm to conform with intuitive argument, and the fact that (as a consequence)
there seems to be very little ‘bureaucracy’ in the formalism; each inference rule step
corresponds with a (sometimes small) step of intuitive argument. However, in terms of
meta-theoretical properties, it is somewhat unwieldy, particularly in the case of classical
logic. To obtain a natural deduction system for classical logic, one is foced to break the
introduction-elimination pattern of the inference rules, and add a rule of “special status”.
There are many possibilities, as is discussed by Gentzen [34]; he opts to include an addi-
tional kind of axiom rule, allowing the derivation of a formula A ∨ ¬A (for any formula
A), commonly known as the ‘law of excluded middle’. As an alternative, and one which
Gentzen himself later employs for his proofs, one can add one of the rules ‘proof by
contradiction’ or ’double negation elimination’:

Γ,¬A " ⊥
(PC)

Γ " A

Γ " ¬¬A
(¬¬E)

Γ " A

and there exist various other alternatives. However, none of these rules are strictly an
introduction or elimination rule for a logical connective. Apart from any aesthetic con-
siderations, this makes the definition of a suitable notion of proof reduction problematic.
The reason this question was interesting is that if it can be shown that all proofs in the
system can be reduced to a form in which stronger properties hold (in particular, the sub-
formula property, which states that all formulas occurring in a proof are subformulas of
the conclusion of the proof), then, for example, consistency of the formalism can imme-
diately be derived. Consistency requires that a proof of ⊥ (from no assumptions) cannot
be made, and this is easily seen to be impossible in the case of a proof which satisfies the
subformula property.

Until recently, it was thought that Gentzen did not even attempt to define proof reduction
rules for his natural deduction calculi. However, the discovery by von Plato [80] of a
hand-written version of Gentzen’s original manuscript shows that he in fact worked out
a set of proof reduction rules and a proof of normalisation by these rules, for his full
intuitionistic natural deduction calculus. On the other hand, in order to prove consistency
of his classical natural deduction calculus, he found it necessary to invent his second
successful logical paradigm, being that of the sequent calculus.
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2.4.2 Sequent Calculus

While natural deduction was designed to try and follow the lines of intuitive argument
as much as possible, sequent calculi were introduced for their powerful symmetries, and
their usefulness in the proof of technical results. In particular, Gentzen was able to define
a set of proof reductions on his sequent calculi known as ‘cut elimination’ (since they
eliminate all instances of the ‘cut’ rule from any sequent proof). These reductions work
in both the classical and the intuitionistic case, and the cut-free fragment of the sequent
calculi are clearly consistent, since they satisfy the subformula property.

Gentzen discovered that with suitably chosen proof rules, he could formulate a very sym-
metrical system of classical sequent calculus by extending sequents to allow more than
one formula to occur on the right-hand side. The intended meaning of such a sequent
A1, A2, . . . , An " B1, B2, . . . , Bm is ‘if all of A1, A2, . . . , An are true, then at least one
of B1, B2, . . . , Bm is true’. This is rather less intuitive to read than the previous single-
conclusion version, but has the advantage of allowing an elegant set of inference rules,
which also suffice for intuitionistic logic. Intuitionistic sequent calculus is obtained by
simply restricting sequents to only allow at most one formula on the right-hand side.

A key feature of sequent calculi is that they do not feature elimination rules for the logical
connectives. Instead, all rules are introduction rules, but rules introduce formulas on
either side of the sequent. The rules for introduction on the right of the sequent (which
we will refer to as right-introduction rules) roughly correspond with the introduction
rules from natural deduction, and may still be understood as defining when a conclusion
featuring the appropriate connective may be deduced. The role of the left-introduction
rules is slightly less intuitive to understand. However, one may (at least, in the classical
case) informally read them as defining the canonical situations in which a formula with a
particular principal connective can be shown to be false. This can be seen from the fact
that any sequent of the form Γ, A " ∆ is equivalent (in terms of provability) with the
sequent Γ,¬∆ " ¬A, in which ¬∆ denotes the set of formulas obtained by negating each
formula in ∆. We can apply this idea to, for example, the case of implication, in which
case the transformation works out as follows:

Γ " A, ∆ Γ, B " ∆
(→L)

Γ, A→B " ∆
becomes

Γ,¬∆ " A Γ,¬∆ " ¬B
(→L′)

Γ,¬∆ " ¬(A→B)

The translated version of the rule can now be intuitively read as “A→B is false when A

is true and B is false”, which is indeed the exact criterion for an implication formula to
be false in classical logic.
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In Gentzen’s original presentation of sequent calculi there were a number of structural
rules, used for manipulating occurrences and positions of formulas in a sequent, without
changing the structure of the formulas themselves. Since the work of Kleene [46], it has
become popular to make these structural rules implicit in the formulation of the logical
inference rules. The key change to make is to deal with indexed formulas - in this way
contraction can be handled implicitly by automoatically merging occurrences of a formula
with the same index, while leaving those with different indexes distinct. Similarly, while
Gentzen’s presentation deals with ordered sets of formulas, the addition of labels means
that it is straight-forward to identify which formulas are to be bound in an inference
rule, and which occurrences remain in the context. The case of weakening is usually
built in to the axiom rule by allowing an arbitrary context in addition to the essential
formulas. We follow Kleene in these regards, since in this work, we wish to focus on the
logical inferences in a proof, and regard the structural rules as technical considerations
we would rather avoid. However, it should be noted that in other work, most notably
linear logic, the presence of explicit structural rules is essential. In addition, not all of the
implicit techniques described above will work in the case of intuitionistic logic, where,
for example, an explicit weakening rule on the right is still required. For classical logic,
which is the focus of this work, we can manage without any explicit structural rules. An
example of a sequent calculus in the style of Kleene, see Figure 2.2.

(ax)
Γ, x : A " α : A, ∆

Γ " α : A, ∆ Γ, x : A " ∆
(cut)

Γ " ∆

Γ " α : A, ∆ Γ, y : B " ∆
(→L)

Γ, x : A→B " ∆

Γ, x : A " α : B, ∆
(→R)

Γ " β : A→B, ∆

Γ " α : A, ∆
(¬L)

Γ, x :¬A " ∆

Γ, x : A " ∆
(¬R)

Γ " α :¬A, ∆

Figure 2.2: Classical Sequent Calculus with implication and negation, in the style of
Kleene’s G3a

The ‘cut’ rule is the only sequent calculus inference rule (other than the axiom) which is
not an introduction rule, and does not (locally) satisfy the subformula property. Gentzen
famously proved the “cut elimination theorem” (the Haupsatz in [34]), which shows that
the cut rule is redundant from the point of view of provability; i.e., a proof using the cut
rule can always be transformed into a cut-free proof of the same endsequent. The proof
defines a constructive procedure for performing such a transformation. Note that Gentzen
was only interested in the existence of a cut-free proof; in the language of term calculi,
he proved normalisation but not strong normalisation for his set of proof transformations.
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However, since his proof always works on innermost cuts first, he never defines rules for
propagating one instance of the cut rule over another; such permutations are essential for
a satisfactory computational interpretation of a cut elimination procedure, but also make
the question of strong normalisation significantly harder.

The essence of the cut elimination process, can be understood as follows. Consider an
arbitrary cut instance:

!
!
!!

"
"

""
D1

Γ " α : A, ∆

!
!
!!

"
"

""
D2

Γ, x : A " ∆
(cut)

Γ " ∆

We will refer to the (labelled) formula occurrences α : A and x : A as the cut formulas.
The simplest case in the cut elimination is when both cut formulas are the conclusion
of the final inference rules of their respective sub-derivations, and furthermore, that no
implicit contraction took place (i.e., these occurrences are uniquely introduced in the last
step of each sub-derivation). In this case, we will say the formulas are introduced by the
sub-derivations. When both formulas are introduced, there is a reduction rule for each
possible pair of inference rules introducing the formulas, which removes this instance of
the (cut) rule, and constructs a new proof, in which zero or more extra cuts are created of
lower degree1. These reductions will be called logical rules, or logical reductions.

For example, the following reduction is standard for Genzten-style cut-elimination:

!
!
!

"
"

"
D1

Γ, y :B " β : C, ∆
(→R)

Γ " α : B→C
(ax)

Γ, x : B→C " γ : B→C, ∆
(cut)

Γ " γ : B→C, ∆

→

!
!
!

"
"

"
D1

Γ, y : B " β :C, ∆
(→R)

Γ " γ :B→C

Logical rules can only applied when both cut formulas are introduced. This can fail to be
the case for two reasons: either the formula is not the conclusion of the final inference
rule of the sub-derivation, or it is, but the formula also occurs further up in the derivation,
and an implicit contraction takes place here. In either case, the cut can be dealt with
by propagating it through the structure of the appropriate sub-derivation, seeking out
the occurrences of the cut formula. A copy of the cut is deposited next to each such
occurrence. For example, the following reduction can be made:

1The degree of a cut is the degree of its cut formula A, which (as is standard) is the maximum of the
depths of the branches of its syntax tree.
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!
!
!

"
"

"
D3

Γ, x :A, y : A " β : B,α : B, ∆
(→R)

Γ, x :B " γ : A→B,α : B, ∆
(→R)

Γ " γ : A→B,∆

!
!
!

"
"

"
D4

Γ, z :A→B " ∆
(cut)

Γ " δ : A→B, ∆

→

!
!
!

"
"

"
D3

Γ, x : A, y : A " β :B, α : B,∆
(→R)

Γ, x : A " γ :A→B,α : B, ∆

!
!
!

"
"

"
D4

Γ, x :A, z : A→B " α :B,∆
(cut)

Γ, x : A " α : B,∆
(→R)

Γ " ε : A→B, ∆

!
!
!

"
"

"
D4

Γ, z : A→B "∆
(cut)

Γ " ∆

Note that we have renamed one occurrence of γ to a fresh name ε during the propagation
of the cut; this is not strictly necessary, but emphasises the fact that these two formula
occurrences are now bound in different cuts. Although this example illustrates left prop-
agation of a cut, the analogous reductions may take place when the formula bound on
the right of a cut is not introduced. In the special case of a cut formula not being the
conclusion of any inference rule in the sub-derivation (i.e., it was only present in the se-
quent due to a weakening of the context), the act of propagating the cut causes the entire
cut and other sub-derivation to be deleted. In particular, when both cut formulas are of
this kind, a cut can be reduced to either one of its sub-derivations, non-deterministically.
This illustration of the non-determinism inherent in the cut elimination process has be-
come known as “Lafont’s example”, and was discussed in [35]. The status of this inherent
non-confluence is discussed further in Section 2.10.

2.5 Prawitz’s Proof Reductions

In his most-famous work [60], Prawitz made an extensive study of Gentzen’s natural de-
duction calculi, in which he made various important contributions to the area. He defined
the inversion principle, which is an attempt to formalise criteria to characterise good in-
troduction and elimination rules for a logical connective. Essentially, this states that no
more should be derivable by the elimination rule(s) than is contained within the premises
of the introduction rules. Implicitly, this suggests that whenever an elimination rule is
applied whose main formula is the consequence of an introduction rule, the conclusion
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derived was already in some sense available earlier in the proof. This leads to the basis
of the set of proof reduction rules which Prawitz defines, firstly for intuitionistic natural
deduction, and then extends to classical natural deduction. For both systems, Prawitz de-
fines a suitable notion of normal proof (one which cannot be further reduced by his proof
reductions), and is able to show that all proofs can be reduced to such a normal form.
From these results, he is able to directly establish the consistency of the natural deduc-
tion calculi, in a similar fashion to Gentzen’s arguments regarding cut elimination in the
sequent calculus.

Prawitz [60] made an extensive study of normalisation in natural deduction systems for
minimal, intuitionistic and classical logics. In the case of classical logic, he was (to this
author’s knowledge) the first to define a set of reduction rules to deal with the propagation
of occurrences of “proof by contradiction” (PC) within a proof (the rule is called !C in
his work; he uses the symbol ! instead of ⊥, and the C denotes “classical”).

The aim of Prawitz’s reduction rules concerning the (PC) rule were to provide proof trans-
formations to reduce the ‘degree’ of the formula which was the conclusion of the (PC)

rule. For example, one such rule takes a proof in which (PC) derives a conclusion A→B,
and transforms it into a proof in which this occurrence of the rule has been removed, and
a new occurrence of the rule derives a conclusion B. In the case of implication (Prawitz
does not treat negation as a primitive connective, and so implication is the main connec-
tive in common with our work), we can represent his reduction rule using the νλµ-syntax
along with a condition on the types:

(µPrawitz) : µx.M → λy.µw.(M〈νz.[w](z y)/x〉) (if µx.M : A→B)

This rule cannot be translated into an untyped version suitable for incorporation into an
untyped calculus, since it depends on an explicit condition on the type of µx.M . If this
condition were discarded, and the rule blindly applied in an untyped setting, it would
obviously violate any kind of strong normalisation result, since any µ-bound term would
always be a redex, and would always reduce to a term containing a µ-binder. However,
these concerns are irrelevant to the work of Prawitz, since he was considering only trans-
formations of proofs, in which (obviously) formulas occur explicitly.

Prawitz defined a similar rule for each logical connective (apart from ⊥), and these rules
would be overlapping were it not for the conditions on the types (this is a further reason
why Prawitz’s work would not adapt to an untyped setting). Using these rules, he was able
to show that it is always possible to reduce a proof to a normal form in which (amongst
other restrictions) occurrences of the (PC) rule are limited to atomic conclusions. This
choice aids the proof of normalisability. From this result, Prawitz was able to deduce
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consistency of the natural deduction calculus directly, just as Gentzen had done for cut-
free sequent calculus.

Until recently [80], Prawitz’s work was thought to be the first to consider a full system of
proof normalisation for natural deduction calculi. It is still considered to be the seminal
work on the meta-theory of natural deduction calculi, and was the first to attempt to give
a concrete criterion for which sets of introduction and elimination rules are acceptable in
such a calculus.

Prawitz’s proof reductions form the basis of later work by Parigot, as we will describe
in Chapter 5. Prawitz also gives, towards the end of his work, a brief account of sequent
calculi, and gives a verbal description of an encoding of natural deduction proofs into
sequent calculi. His encoding is an improvement on Gentzen’s, since (in at least the
intuitionistic case) he maps normal terms onto cut-free proofs. Encodings between these
two discplines will be discussed in more detail in Chapter 7.

2.6 The Curry-Howard Correspondence

The Curry-Howard Correspondence describes a one-to-one correspondence between the
terms of the simply-typed lambda calculus [18]2 and the natural deduction proofs in a
standard system for minimal implicative logic. However, the correspondence (which
is sometimes called the Curry-Howard Isomorphism) is deeper than this: the types of
λ-calculus terms become formulas in the logic, while reduction (in the usual sense for
the λ-calculus) corresponds precisely with proof normalisation in the logic. The corre-
spondence was the result firstly of observations by Curry [20, 21] about the relationship
between his combinatory logic and a Hilbert-style formalisation of minimal logic, and
secondly by Howard [43] concerning the relationship between λ-calculus and minimal
natural deduction. At approximately the same time as Howard’s observation, de Bruijn
was using a λ-calculus notation to describe proofs, and for this reason, the correspondence
is sometimes referred to as the Curry-Howard-de Bruijn Correspondence. Essentially for
brevity, and with no offence intended, we will refer to the Curry-Howard Correspondence
in this work.

Although the correspondence was originally made between typed λ-calculus and natural
deduction, it is perhaps easiest to see the striking similarities when one considers the
simple type-assigment system for the untyped λ-calculus:

2We assume the reader to be familiar with the λ-calculus.
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Definition 2.6.1 (Illustration of the Curry-Howard Correspondence).

λ-calculus Minimal Natural Deduction

(ax)
Γ, x : A "λ x : A

(ax)
Γ, x : A " A

Γ, x : A "λ M : B
(→I)

Γ "λ λx.M : A→B

Γ, x : A " B
(→I)

Γ " A→B

Γ "λ M : A→B Γ "λ N : A
(→E)

Γ "λ M N : B

Γ " A→B Γ " A
(→E)

Γ " B

It is clear that each inference rule from the logic corresponds to the way in which types are
derived for a syntax construct in the λ-calculus. Furthermore, the correspondence covers
reduction: the familiar (β) reduction rule of the λ-calculus corresponds to the following
proof reduction:

!
!
!!

"
"

""
D1

Γ, x : A " B
(→I)

Γ " A→B

!
!
!!

"
"

""
D2

Γ " A
(→E)

Γ " B

→

!
!
!!

"
"

""
D1〈D2/x〉

Γ " B

in which D1〈D2/x〉 denotes the derivation obtained by starting from D1 and replacing
every instance of the (ax) rule of the form Γ, x : A " A is replaced by a copy of the
derivation D2, concluding Γ " A.

2.6.1 Two views of the extension of Curry-Howard

This thesis concerns the extension of the Curry-Howard Correspondence to the setting of
classical logic. There are two opposite viewpoints which can be easily identified concern-
ing this question. Firstly, one could consider existing programming calculi or ideas which
seem appropriate, and examine to how to adapt them in order to make a type system based
on a suitably chosen (and possibly modified) formulation of classical logic feasible. In
doing so, one might make changes, restrictions or extensions to the original programming
calculus, and the logical formalism. This way of working was the original one, since it is
essentially what Griffin achieves in his seminal paper [38]. He takes an existing calculus
and shows how, given certain restrictions and modifications to the syntax, one can give a
type system corresponding to classical natural deduction.
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The alternative point of view, which seems to be more recent, is to take a formulation
of classical logic as the starting point. If this logic is equipped with a suitable notion
of proof reductions, then it is a straight-forward fashion to choose an appropriate term
representation for the proofs of the logic, and to define correponding reduction rules on
this syntax. Furthermore, by taking the untyped generalisation of such a calculus, one can
immediately obtain an untyped calculus based on this formulation of classical logic. This
approach seems to us to be neatly summarised by the question “what is the computational
counterpart to classical logic?”. The advantage of the approach is that this question can
in principle be convincingly answered, so long as one remains fauthful to the original
logic. The disadvantages are two-fold. Firstly, if a suitable notion of proof reduction is
not already known for the particular formulation of classical logic, then it must be defined
before a suitable term calculus can be synthesised. Furthermore, one must argue for the
suitability of the chosen notion of proof reduction. Secondly, having stayed faithful to the
logic, it is clear that a clean Curry-Howard style correspondence may be achieved, but it
is less clear what the actual computational meaning of the resulting term syntax is.

In this work, we adhere strongly to the second viewpoint described above. We are in-
terested in investigating exactly what computational content can be discovered if one
attempts to build term calculi on canonical formulations of classical logic. In particular,
we focus on Gentzen’s systems of classical natural deduction and classical sequent calcu-
lus, although in the latter case we adopt the structural-rule-free style which has become
popular since the work of Kleene [46].

Perhaps the best examples of work which takes the logic as the starting-point, are the
works of Urban [76] (see Section 2.8) and Lengrand [48], which led to the work of van
Bakel et. al. [78] (see Section 2.9). The work of Curien and Herbelin also has close
ties with Gentzen’s presentation of classical logic, although differs in some respects (see
Section 5.5.4. It is interesting to note that all of these works are based on classical sequent
calculus rather than natural deduction. In the natural deduction paradigm, relatively little
work has been done concerning a direct correspondence with Gentzen’s classical natural
deduction. Rather, perhaps because of the similarities with the paradigm of the λ-calculus,
attempts have mostly been made to coerce presentations of classical natural deduction in
such a way that certain properties and syntactic constructs historically identified with the
study of λ-calculi are preserved. In particular, much of the work, including arguably
the most famous of Parigot [54], focuses on constructing calculi which are confluent.
However, as we shall argue in Section 2.10, this is not a natural property for a general set
of reductions for classical logic to possess, and we believe that the assumption a priori
that such a property is an essential requirement, restricts the study and understanding of
the full computational content of classical logic.
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2.6.2 Curry-Howard for untyped calculi?

The original Curry-Howard Correspondence was made using typed λ-calculus. It is not
possible to form precisely the same kind of correspondence with untyped λ-calculus for
two (related) reasons: firstly, there are untypeable terms in the syntax of the calculus,
which do not correspond to proofs, and secondly, the typeable terms can each be assigned
types in an infinite number of ways. This latter objection does not seem too serious, since
each typeable term has a principal typing, and one could consider using these as the basis
for a correspondence. However, the former point is more serious. On the other hand, from
a programming perspective, it is generally preferable to work with untyped calculi, since
this allows the expression of fully recursive functions, and permits a Turing-complete
computational model. Therefore, we wish to generalise the idea of the Curry-Howard
Correspondence to untyped calculi.

If one takes any typed programming calculus, it can be used to define the syntax of an
untyped programming calculus by erasing all type information from the syntax. Further-
more, the structure of the original type-information usually immediately implies a suitable
type system for the untyped syntax. It is clear that the syntax and type system of untyped
λ-calculus can be obtained from the definitions of typed λ-calculus in this way. Note that
the resulting syntax may be more-general: for example, the untyped λ-calculus term x x

does not have an analogue in the typed version. As far as reduction rules are concerned,
there is a subtle point to consider. In general, one can easily adapt the reduction rules of
the typed calculus to an untyped version by again, erasing type-information in the terms.
However, in some cases it may be that typed calculi have reductions defined in which
explicit conditions are made on the types of terms. For example, in the typed λ-calculus
extended with pairing (or conjunction, in the type language), one might express the rule
for (η)-expansion as M → λx.(M x) if M : A→B. The condition on the types ensures
the soundness of the rule, since, if M is instead a pair, the resulting term would be in-
valid were the rule applied. However, it is not clear how to define an untyped analogue
of this reduction rule, since the explicit condition on the types is essential for soundness.
However, such rules are relatively rare in the literature, and, in particular, most of the re-
duction rules which will be considered in this thesis will not be of this problematic kind.
Therefore, we content ourselves with the fact that the definitions of typed calculi may
yield definitions of corresponding untyped calculi provide such explicit type-conditions
on the reduction rules do not exist.

Conversely, it is straightforward to see that the definitions of an untyped calculus equipped
with a sound type system (satisfying subject reduction) can be used to define a correspond-
ing typed calculus by considering only the sub-syntax of typeable terms, modifying the
syntax of such terms to carry appropriate type-information explicitly and applying the cor-
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responding reduction rules to these terms. This is often referred to as the typed restriction
of a calculus. The only condition that should be added is that all of the original reduction
rules have at least some typeable instances; i.e., none are lost in the typed restriction.

We can give the following slightly informal definition, to capture these ideas:

Definition 2.6.2 (Relating typed and untyped calculi). Let Σ be a typed calculus, whose
reduction rules do not have explicit type-conditions, and are sound. Let Π be an untyped
calculus, equipped with a type system, whose reduction rules are sound w.r.t. the type
system.

1. Given a typed calculus Σ, we say Π is the untyped generalisation of Σ if the follow-
ing conditions hold:

(a) The syntax of Π is obtained from the syntax of Σ by erasing all type informa-
tion.

(b) The reduction rules of Π are obtained from the reduction rules of Σ by erasing
all type information in both the redex and reduct of each rule.

2. Given an untyped calculus Π, we say Σ is the typed restriction of Π if the following
conditions hold:

(a) The syntax of Σ describes exactly the terms obtained from the syntax of Π by:
firstly restricting to the typeable sub-syntax of Π, secondly duplicating each
term once per possible type-derivation in the type system of Π, and annotating
the syntax with sufficient type-annotations to reconstruct this typing uniquely.

(b) The reduction rules of Σ are obtained from the reduction rules of Π by adding
type-annotations to both the redex and reduct of each rule, in accordance with
the newly-defined syntax of Σ.

It is easy to show that if Π is the untyped generalisation of Σ, then Σ is the typed restric-
tion of Π, and vice versa.

We can now define what we mean by an untyped calculus based on an untyped correspon-
dence:

Definition 2.6.3 (Curry-Howard for untyped calculi). We say that an untyped calculus Π

(with a sound type system), is based on a Curry-Howard Correspondence with a particu-
lar formulation of logic, if the typed restriction of Π has a Curry-Howard Correspondence
with the logic, in the sense of the original correspondence.
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2.7 Griffin’s observation

The λC calculus was the first programming calculus for which a connection with classical
logic was made. The calculus itself was invented by Felleisen et. al. [32], in an attempt
to formalise programming constructs which were already in use in languages at the time.
The calculus is essentially a λ-calculus extended with two unary operator on terms, C
(pronounced, “control”), and A (pronounces, “abort”), which provide the facility to ma-
nipulate the context in which an execution takes place. Such operators are examples of
control operators. The λC-calculus itself is defined as follows:

Definition 2.7.1 (The λC Calculus [32, 38]3). Terms M,N , evaluation contexts C and
reduction → are defined as follows, for λC, in which C{M} denotes the insertion of the
term M into the ‘hole’ • of C, and in which values V are defined to be variables or terms
of the form λx.M , as usual:

M,N ::= x

| λx.M

| M N

| C(M)

E ::= •
| C M

| V C

C{(λx.M) N} → C{M〈N/x〉}
C{A(M)} → M

C{C(M)} → M (λz.A(C{z}))

The operator A provides the simplest control over its surrounding context, by completely
discarding it. The operator C, on the other hand, removes the current context, but forms
an abstracted version of the context surrounded by an A operator, and passes this λ-
abstraction to the argument M . The effect is that M has flexible control over the context;
during execution, if a value is passed to the term λz.A(C{z}), then the A will cause other
execution to be terminated, and the original context reinstated with the chosen value in
position. On the other hand, if no value is ever passed to the abstraction, M is free to
evaluate normally, and even to discard the abstracted copy of the context. In particular, it
is possible to treat A as a defined construct: AC(M) =def C(λz.M) where z (∈ fv(M).

Griffin [38] considered the question of typing these control operators, and observed that it
is possible to assign the logically-consistent types ⊥→A to A and ((A→⊥)→⊥)→A) to
control. Thus, it appears that A could be viewed as the computational counterpart of the
natural deduction (⊥E) rule, while C could be viewed as that of double-negation elimina-
tion. This was the first time that an extension of the Curry-Howard Correspondence to a
classical logic was considered, and sparked a whole new research field.

While the significance of this observation should not be underrated, it is less clear now
3Originally, this calculus was referred to as ‘Idealised Scheme’, since it was thought to be modelling the

call/cc construct from Scheme. However, the name λC has become common since the work of Griffin [38].
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that C actually is the computational counterpart of double-negation elimination. Firstly, as
Griffin himself observed, the reduction rules above are not fully consistent with the typ-
ings proposed, in the sense that subject reduction is not guaranteed. In particular, a term
of the form C{A(M)} may in principle have any type, while the subterm M is required
to have type ⊥. Therefore, by applying the reduction rule associated with A, we observe
a subject reduction problem. Griffin proposed a workaround for this issue, by essentially
‘wrapping’ all programs in a special context which was guaranteed to have type ⊥. How-
ever, this kind of restriction is somewhat arbitrary from the point of view of the logic.
Secondly, the most general logically-consistent typing for C is not ((A→⊥)→⊥)→A,
but rather ((A→B)→⊥)→A, for any types A and B. The cause for this discrepancy is
the occurrence of the A operator in the reduction rule for C. If it were removed, then
the most general logically-consistent typing for C would indeed become double-negation
elimination. Furthermore, Felleisen later introduced an operator F [33] whose reduction
semantics do just this; theA is not present. Since it is the occurrence of A in the reduction
rule which causes the subject reduction problems, the F operator has no such issues. We
will discuss these matters further in Chapter 6, where we give further arguments for the
point of view that C is not the canonical inhabitant of double-negation elimination4.

2.8 Urban’s Cut Elimination

In his PhD thesis [76], Urban presents a new set of cut elimination rules for the classical
sequent calculus. His work is motivated by a desire to obtain a notion of cut elimination
which is as general as possible, while still obtaining a strong normalisation result for
his set of reduction rules. By “generality”, it is meant that the natural non-confluence of
classical cut-elimination, rather being regarded as a drawback, should be kept unrestricted
as far as possible. In particular, it is hoped that as many different normal proofs as possible
can be reached by reduction of a proof.

Urban’s cut elimination is based on the very general notion of reduction which is obtained
by adding to Gentzen’s original set of reduction rules (used in the proof of his Haupsatz)
rules for allowing one cut to ‘cross-over’ another one. As Urban explains, these kinds of
reductions are necessary in order to have a chance of a good computational interpretation
of the reductions; without them, one cannot even simulate the reductions of the λ-calculus
(since, essentially, these rules allow the evaluation of a substitution to pass through further
redexes which have not yet been evaluated). However, the unrestricted use of these rules

4It is only fair to point out that Griffin did not claim this fact himself; his contribution was not attempting
to present the ‘best’ computational interpretation of classical logic, but rather to observe that there could be
a relationship at all!
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cause strong normalisation to immediately fail (in the simplest case, two cuts can be made
to cross-over one another indefinitely). Urban invents a novel solution to this problem, and
produces two cut elimination procedures; one of which treats the propagation of cuts as
an immediate implict operation (similarly to the status of substitution in the λ-calculus),
and one which represents propagation syntactically as a step-by-step process (similarly
to the explicit substitutions found in λx [16]). The latter case is presented because it
provides a cut elimination process based only on local rewriting rules, which is the style
in which Gentzen originally defines cut elimination. This latter cut elimination procedure
was later incorporated into the work of Lengrand [48], and forms the basis of the work of
van Bakel et. al. [78] (see Section 2.9), whose origins are an untyped version of Urban’s
term annotations. On the other hand, in this thesis we will study the former version of
Urban’s work, since our contributions are orthogonal to the exact status of propagation in
the cut elimination, and we believe the presentation is slightly simpler. We will, however,
employ an adaptation of the syntax of [78], since we find this easier to work with and
explain than the prefix notation of Urban’s work.

2.9 The X Calculus

The X -calculus [78] is based on an untyped term annotation for classical implicative
sequent calculus, derived from the work of Urban [76] and Lengrand [48]. We recall here
the basic definitions.

Definition 2.9.1 (X -Terms). The terms of the X -calculus are defined by the following
syntax, where x, y range over the infinite set of sockets and α, β over the infinite set of
plugs (sockets and plugs together form the set of connectors).

P, Q ::= 〈x.α〉 | ŷP β̂ ·α | P β̂ [y] x̂Q | P α̂ † x̂Q | P α̂ † x̂Q | P α̂ † x̂Q

capsule export import cut left-cut right-cut

The ·̂ symbolises that the connector underneath is bound in the attached subterm—a bound
socket is written as a prefix to the term, whereas a bound plug is written as a suffix.
For example in the import P β̂ [y] x̂Q, occurrences of β are bound in the subterm P and
occurrences of x are bound in Q. A connector which does not occur under a binder is said
to be free. We will use fp(P ) to denote the free plugs of P , and similarly fs(P ) for free
sockets. The reduction rules are specified below.
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Definition 2.9.2 (Logical Rules). The logical rules are presented by:

(cap-rn) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp-rn) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ α (∈ fp(P )

(med-rn) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ x (∈ fs(P, Q)

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP )β̂ † ẑR

}
α (∈ fp(P ),

x (∈ fs(Q,R)

The first three logical rules above specify a renaming (reconnecting) pro cedure, whereas
the last rule specifies the basic computational step: it allows the body of the function from
the export to be inserted between the two subterms of the import (the resulting cuts may
be bracketed either way, as shown).

Definition 2.9.3 (Activation Rules). We define two cut-activation rules.

(act-L) : P α̂ † x̂Q → P α̂ † x̂Q if P does not introduce α

(act-R) : P α̂ † x̂Q → P α̂ † x̂Q if Q does not introduce x

where: P introduces x: Either P = Qβ̂ [x] ŷR and x (∈ fs(Q,R), or P = 〈x.α〉

P introduces α: Either P = x̂Qβ̂ ·α and α (∈ fp(Q), or P = 〈x.α〉

An activated cut is processed by ‘pushing’ it systematically through the syntactic structure
of the circuit in the direction indicated by the tilting of the dagger. Whenever an active cut
meets a circuit exhibiting the connector it is trying to communicate with, a new (inactive)
cut is ‘deposited’, representing an attempt to communicate at this level. The pushing of
the active cut continues until the level of capsules is reached, where it is either deactivated
or destroyed. Once again, the inactive cut can reduce via a logical rule, or pushing can
continue in the other direction. This behaviour is expressed by the following propagation
rules.

Definition 2.9.4 (Propagation Rules). Left Propagation:

(† †) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P

(cap† ) : 〈y.β〉α̂ † x̂P → 〈y.β〉 β (= α

(exp-outs† ) : (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P )β̂ ·γ)γ̂ † x̂P , γ fresh
(exp-ins† ) : (ŷQβ̂ ·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P )β̂ ·γ, γ (= α

(imp† ) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P )β̂ [z] ŷ(Rα̂ † x̂P )

(cut† ) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P )β̂ † ŷ(Rα̂ † x̂P )
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Right Propagation:

( ††) : P α̂ † x̂〈x.β〉 → P α̂ † x̂〈x.β〉
( †cap) : P α̂ † x̂〈y.β〉 → 〈y.β〉, y (= x

( †exp) : P α̂ † x̂(ŷQβ̂ ·γ) → ŷ(P α̂ † x̂Q)β̂ ·γ
( †imp-outs) : P α̂ † x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R)),

z fresh
( †imp-ins) : P α̂ † x̂(Qβ̂ [z] ŷR) → (P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R), z (= x

( †cut) : P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R)

We write→ for the reduction relation generated by the logical, propagation and activation
rules. The following are admissible rules (see [78, 79]).

Lemma 2.9.5 (Garbage Collection and Renaming).

(† gc) : P α̂ † x̂Q → P, if α (∈ fp(P )

( †gc) : P α̂ † x̂Q → Q, if x (∈ fs(Q)

(ren-L) : P δ̂ † ẑ〈z.α〉, → P [α/δ]

(ren-R) : 〈z.α〉α̂ † x̂P , → P [z/x]

2.10 The question of confluence

One question on which the existing literature on Curry-Howard for classical logic seems
not to have reached a consensus is that of confluence. It is by now a folklore result that
the reductions of the λ-calculus are confluent, meaning that although non-deterministic
choices can be made during reduction, it is always the case that the alternatives have a
common reduct. In particular, this guarantees that whenever a λ-term has a normal form,
the normal form is unique. This can be used as the basis of a semantics for the calculus,
and in general makes reasoning about meta-theoretical results much simpler.

Because of its practical advantages, and natural occurrence in the field of λ-calculi, con-
fluence has been regarded as an essential result of almost all functional languages pro-
posed since. Where non-confluence is discovered, it is usual for the definitions to be
altered, and reductions restricted where necessary in order to guarantee the result. This at-
titude can be justified by the fact that, in the underlying computational model, confluence
is a natural and essential property. Since the study of a Curry-Howard Correspondence
with classical logic had its origins in the study of existing functional calculi, it is only
natural that the initial attitude was that confluence remained an expected and necessary
feature of calculi to be studied.

However, when one returns to the origins of reductions for classical logic, it is clear that
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confluence is not a naturally-occurring phenomenon. In particular, Gentzen’s definition
of cut elimination for classical sequent calculus is inherently non-confluent. We believe
it is important to separate the notion of what the Curry-Howard Correspondence means
fundamentally from the properties commonly associated with it. In particular, while it is
of course the case that the original Curry-Howard Correspondence relates two formalisms
in which the natural notions of reduction are confluent, this is not what defines the corre-
spondence. We believe it is simply the notion of proofs as programs, formulas as types,
proof normalisation as reductions, which describes the essence of the correspondence.
There is nothing here to say that such reductions must be confluent; merely that the no-
tions of reduction on proofs and terms should coincide5. Since, in this work, we take
the logic as the starting point, it seems already evident from Gentzen’s cut elimination
that confluence is not a property we should insist upon. Although this point of view dif-
fers from much of the early work on Curry-Howard for classical logic (most notably in
the natural deduction paradigm [38, 54, 56]), there is an increasing volume of literature
which aims to study a ‘full’ notion of reduction for classical logic, and (at least initially)
abandons confluence as a necessary criterion [9, 19, 76, 48, 78, 67].

The absence of confluence has implications for simulation results between calculi. In
a confluent setting, if one wishes to compare reductions M → N in one calculus with
reductions P →′ Q in another, using some interpretation **M++ from the first two the
second, it is common to prove a statement such as “If M → N then there exists P with
**M++ →′ P and **N++ →′ P ”. Such a statement does not show simulation directly,
but only simulation up to ‘joinability’ in the target calculus (which is normally easier
to achieve). In a confluent calculus this can be justified by the notion that terms with a
common reduct are ‘essentially’ the same, and will in particular share the same unique
normal form. In a non-confluent setting, however, this statement is not very strong, be-
cause the extra reductions used to reach P may make essential choices (losing normal
forms). For these reasons, we believe that it is only acceptable to claim that a non-
confluent calculus can simulate another by proving a statement of the form: “If M → N

then **M++ →′ **N++”.

5We have also heard it said that the eta laws of the λ-calculus must hold for a Curry-Howard Correspon-
dence to be claimed. However, we do not regard this to be an essential feature of what the correspondence
means.
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Chapter 3

A Term Calculus for Classical Sequent
Calculus

3.1 Overview

In this chapter we will define the X i-calculus, which is an untyped term calculus based
on a Curry-Howard Correspondence with classical sequent calculus. It is named after the
X -calculus of [78], but is presented with propagation of cuts as an ‘implicit’ operation (as
we will describe). It is essentially an untyped variant of one of the term representations for
sequent calculus proofs used in Urban’s Phd [76], and the reduction behaviour is modelled
on Urban’s cut elimination. The notation we use is not based on Urban’s prefix notation,
but rather the infix notation of [78].

Urban’s cut elimination procedures were designed to be close to the original cut elimina-
tion of Gentzen, but to allow the propagation of cuts over other cuts (which is necessary
for, e.g., simulation of beta reduction from the λ-calculus) and to avoid as much as pos-
sible restricting the inherent non-determinism of the system, while retaining a strongly
normalising set of reductions. Since, as we discussed in the introduction, we regard the
non-confluence of cut-elimination to be a natural property of proof reductions for classi-
cal logic, this forms an excellent basis for our work. We choose to have cut propagation as
a meta-operation (rather than one whose step-by-step definition forms part of the reduc-
tion rules of the calculus [78]), mainly because this aids comparisons with other calculi
later on. It also emphasises the separation of propagation behaviour from the reduction of
logical cuts, which we find philosophically useful.
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3.2 The X i Calculus

Since the sequents of classical sequent calculus have multiple formulas on both sides
of the sequent, when defining a term inhabitation for the logic it is natural to have two
alphabets of names to index them. Following the definition of the X -calculus (Section
2.9), we see those names indexing formulas on the left of the sequent as inputs, and call
them sockets, and those on the right as outputs, and call them plugs. This particular
calculus is chosen to correspond with a logic with the two connectives negation (¬) and
implication (→) as primitive. The choice of connectives and some possible extensions
will be discussed in more detail later on in this thesis, but suffice to say that these two
form a complete set of connectives, in terms of logical expressibility.

Definition 3.2.1 (X i-Terms (c.f., Definition 2.9.1)). The terms of the X i-calculus (ranged
over by P ,Q,R,etc.) are defined by the following syntax, where x, y range over the infinite
set of sockets and α, β over the infinite set of plugs (sockets and plugs together form the
set of connectors).

P, Q ::= 〈x.α〉 | x̂P α̂·β | P α̂ [y] x̂Q | x̂P · α | x · P α̂ | P α̂ † x̂Q

capsule export import not-right not-left cut

In order to understand the reduction behaviour of this calculus, and also to aid various
discussions later on, it is useful to be able to describe the location of occurrences of a free
connector in a term. To this end, we make use of the following definitions:

Definition 3.2.2 (Exhibiting and Introducing a Connector). For anyX i-term P and socket
x, we say P exhibits x if there is an occurrence of x at the top-level of P ’s syntactic
structure.

We say that P introduces x if x ∈ fs(P ) but, for all proper subterms P ′ of P , x (∈ fs(P ′)

(alternatively, x occurs uniquely at the top-level of P ’s syntactic structure).

For example, x̂〈x.α〉β̂ ·α exhibits α but does not introduce α (since there is a further
occurrence of α within a subterm). Also, 〈x.α〉 introduces (and therefore exhibits) both x

and α.

The most important use for these definitions is in understanding the behaviour of the cut-
elimination procedure. A cut P α̂ † x̂Q in which P introduces α and Q introduces x can
always be removed (and possibly replaced by new cuts between the subterms of P and Q)
- this is the ultimate goal of the cut elimination procedure. These rules (which are called
the logical reduction rules) are described as follows.
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Definition 3.2.3 (Logical Rules). The logical rules are presented by:

(cap-rn) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp-rn) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ α (∈ fp(P )

(med-rn) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ x (∈ fs(P,Q)

(not-right) : (ŷP · α)α̂ † x̂〈x.β〉 → ŷP · γ α (∈ fp(P )

(not-left) : 〈y.α〉α̂ † x̂(x · P β̂) → y · P β̂ x (∈ fs(P )

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP )β̂ † ẑR

}
α (∈ fp(P ),

x (∈ fs(Q,R)

(not) : (ŷP · α)α̂ † x̂(x ·Qβ̂) → Qβ̂ † ŷP α (∈ fp(P ), x (∈ fs(Q)

The first five logical rules above specify a renaming behaviour, whereas the last two pro-
vide the basic computational steps.

The logical rules are only applicable in the special case of a cut whose subterms both
introduce the appropriate connector. In all other cases, a cut is reduced by ‘seeking out’
the positions in its subterms where the appropriate connectors are exhibited. For example,
if P does not introduce α, then a cut P α̂ † x̂Q can be reduced by pushing copies of the
cut with Q through the structure of P , depositing a cut at the level of each occurrence of
α in P . A similar behaviour is possible when x is not introduced in Q. This reduction
behaviour is referred to as (left- or right-)propagation.

In contrast to the X -calculus, we present propagation as a meta-operation, external to the
calculus itself, in much the same way as substitution is treated in the λ-calculus1. We
introduce the notation P{α!x̂Q} to denote the result of left-propagation, which propa-
gates through the structure of the term P , connecting each occurrence of α with a new cut
with Q, via x. The notation Q{P α̂!x} is used for the analogous right-propagation oper-
ation. Note that this notation is not a part of the syntax of the calculus; rather it denotes
the result of evaluating the associated operations. These are defined as follows:

Definition 3.2.4 (Propagation Operations). The operation P{α!x̂Q} is defined recur-
1X can be seen as the ‘explicit’ (i.e., propagation is included explicitly in the reduction rules) version of

the X i calculus, just as λx can be seen as the ‘explicit’ version of the λ-calculus. In terms of Urban’s work,
the X i calculus is essentially the untyped version of his →aux cut elimination procedure, while X can be
equally compared with the ‘localised version’, →loc [76].
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sively over the structure of P , as follows:

〈y.α〉{α!x̂P} = 〈y.α〉α̂ † x̂P

〈y.β〉{α!x̂P} = 〈y.β〉 β (= α

((ŷQβ̂ ·α)){α!x̂P} = (ŷ(Q{α!x̂P})β̂ ·α)α̂ † x̂P

((ŷQβ̂ ·γ)){α!x̂P} = ŷ(Q{α!x̂P})β̂ ·γ, γ (= α

((Qβ̂ [z] ŷR)){α!x̂P} = (Q{α!x̂P})β̂ [z] ŷ(R{α!x̂P})
((ŷQ · α)){α!x̂P} = (ŷ(Q{α!x̂P}) · α)α̂ † x̂P

((ŷQ · γ)){α!x̂P} = ŷ(Q{α!x̂P}) · γ, γ (= α

((z ·Qβ̂)){α!x̂P} = z · (Q{α!x̂P})β̂
((Qβ̂ † ŷ〈y.α〉)){α!x̂P} = (Q{α!x̂P})β̂ † x̂P

((Qβ̂ † ŷR)){α!x̂P} = (Q{α!x̂P})β̂ † ŷ(R{α!x̂P}), R (= 〈y.α〉

The operation Q{P α̂!x} is defined recursively over the structure of Q, as follows:

〈x.β〉{P α̂!x} = P α̂ † x̂〈x.β〉
〈y.β〉{P α̂!x} = 〈y.β〉, y (= x

((ŷQβ̂ ·γ)){P α̂!x} = ŷ(Q{P α̂!x})β̂ ·γ
((Qβ̂ [x] ŷR)){P α̂!x} = P α̂ † x̂((Q{P α̂!x})β̂ [x] ŷ(R{P α̂!x}))
((Qβ̂ [z] ŷR)){P α̂!x} = (Q{P α̂!x})β̂ [z] ŷ(R{P α̂!x}), z (= x

((ŷQ · γ)){P α̂!x} = y · (Q{P α̂!x})γ̂
((x ·Qβ̂)){P α̂!x} = P α̂ † x̂(x · (Q{P α̂!x})β̂)

((z ·Qβ̂)){P α̂!x} = z · (Q{P α̂!x})β̂, z (= x

((〈x.β〉β̂ † ŷR)){P α̂!x} = P α̂ † ŷ(R{P α̂!x})
((Qβ̂ † ŷR)){P α̂!x} = (Q{P α̂!x})β̂ † ŷ(R{P α̂!x}), Q (= 〈x.β〉

The propagation operations are used to define the two propagation rules for this calculus.

Definition 3.2.5 (Propagation Rules). We define two cut-propagation rules.

(prop-L) : P α̂ † x̂Q → P{α!x̂Q} if P does not introduce α

(prop-R) : P α̂ † x̂Q → Q{P α̂!x} if Q does not introduce x

Hereafter, we will write → for the reflexive, transitive, compatible reduction relation
generated by the logical and propagation rules.

We can prove a number of results about propagation. The first two points below assert that
connectors which are ‘sought out’ by propagation (i.e., the α in Q{α!x̂P} and the x in
P{Qα̂!x}), never occur in the resulting terms. The other parts show that the connectors
introduced in a term are preserved under propagation, provided they are neither ‘sought’
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by the propagation operation, nor paired in a capsule with the connector which is ‘sought’.
These will be useful to us for the proofs in Chapter 7.

Proposition 3.2.6 (Effects of Propagation). Let P ,Q be arbitraryX i-terms. Then, for any
y (∈ fs(P ) and β (∈ fs(P ), we have:

1. α (∈ fs(Q{α!x̂P}).

2. x (∈ fp(P{Qα̂!x}).

3. Q introduces y, if and only if, either Q = 〈y.α〉 or Q{α!x̂P} introduces y.

4. Q introduces β and β (= α, if and only if, Q{α!x̂P} introduces β.

5. Q introduces y and y (= x, if and only if, Q{P α̂!x} introduces y.

6. Q introduces β if and only if, either Q = 〈x.β〉 or Q{P α̂!x} introduces β.

Proof. By exhaustive case analysis of the structure of Q, using Definitions 3.2.4 and
3.2.2.

3.2.1 Propagation and Strong Normalisation

Despite the many cases of Definition 3.2.4, almost all can be understood to push the op-
eration throughout the syntactic structure of the term, depositing cuts in each place where
the appropriate connector is introduced. However, for both operations, the penultimate
case listed does not appear to fit this pattern. Indeed, the ‘obvious’ choice for propagating
over a cut appears to be the final case listed (i.e., propagating directly into the subterms).
These rules are introduced in [76], in which the special cases are explained to be the so-
lutions to a technical obstacle in applying the desired technique of symmetric reducibility
candidates, as used by Barbanera and Berardi in [9]. It is natural to wonder whether treat-
ing these special cases in this way is necessary, or is purely a technical consequence of
the particular proof involved. Indeed, in [78], which is based on the ‘localised version’ of
the same cut elimination procedure, these special cases are not included; all propagation
over cuts is treated as in the last cases above. However, we observe that the special cases
are in fact, essential for strong normalisation of typeable terms, which was one of the
fundamental goals of Urban’s work, and our own.

We identify here an invariant of the reduction behaviour of this calculus, which is intu-
itively related to strong normalisation. As we have explained above, the ‘purpose’ of the
propagation rules is to deposit cuts in positions where the connectors which they bind
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are immediately exhibited. These positions are sought out by propagation, and copies of
cuts are deposited at each. In these resulting cuts, the sought-out connector is now intro-
duced in the subterm. Furthermore, during further reduction while this cut remains (i.e. is
not reduced itself), the connector will remain introduced in the subterm. Therefore, in a
sense, the work done by propagation is never undone; once these occurrences are found,
the copies of cuts remain ‘anchored’ to the occurrences until they are reduced. Other
propagation may take place on these terms, but, since different connectors will be sought
out, the resulting new cuts will ‘anchor’ in different places. Actually, this is not quite true:
if it were the case that each syntactic construct in a term could only ‘anchor’ one cut, then
our invariant would seem reasonable. But, a capsule 〈x.α〉 introduces two connectors (in
fact, it is the only syntax construct to do so), and so it is possible for two different cuts to
try and ‘anchor’ with it. If not avoided, this leads to a rather unfortunate source of loops
in reduction, in which two cuts can be seen to fight for ‘anchor position’, as is illustrated
by the following example.

Definition 3.2.7 (Counter-example to Strong Normalisation with naı̈ve Propagation). If
propagation over cuts were always dealt with by the last cases in Definition 3.2.4 (i.e.,
in the cases ∗ below), then would be possible to make the following cyclic reduction
sequence, for any X i-terms P and R such that β (∈ fp(P ) and x (∈ fs(R):

(P α̂ † x̂〈x.β〉)β̂ † ŷR → ((P α̂ † x̂〈x.β〉)){β!ŷR} (prop-L)

= (P{β!ŷR})α̂ † x̂(〈x.β〉{β!ŷR}) (∗)
= P α̂ † x̂(〈x.β〉β̂ † ŷR) (since β (∈P )

→ ((〈x.β〉β̂ † ŷR)){P α̂!x} (prop-R)

→ (〈x.β〉{P α̂!x})β̂ † ŷ(R{P α̂!x}) (∗)
→ (P α̂ † x̂〈x.β〉)β̂ † ŷR (since x (∈R)

. . .

The conditions β (∈ fp(P ) and x (∈ fs(R) are not necessary, but simplify the presentation of
the problematic example. The example is avoided by the special cases in Definition 3.2.4;
i.e., by the design choices of Urban. The special cases can be understood as ‘shortcuts’;
starting from any term of the form (P α̂ † x̂〈x.β〉)β̂ † ŷR it is still possible to reduce either
of the two cuts before the other, but if the outermost is chosen to be evaluated first, then
rather than depositing the new cut as in (P{β!ŷR})α̂ † x̂(〈x.β〉β̂ † ŷR) it is implicitly
and immediately right-propagated, and reduced to (P{β!ŷR})α̂ † x̂R〈x/y〉 which, by
α-conversion is reflected by the special case of Definition 3.2.4.
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3.3 Type Assignment for X i

Since X i is the untyped analogue of a typed term assignment for sequent proofs, it comes
with a natural notion of type-assignment. The type system that we present in this section
corresponds with a simple sequent calculus for the restriction of classical logic to the two
connectives implication (→) and negation (¬). The sequent calculus on which the type
system is based is a variant of Kleene’s G3, in which structural rules are treated implicitly.
Arbitrary weakenings are allowed at the leaves of a derivation (in the (ax) rules), while
contraction is treated implicitly per rule; if a statement is introduced to a context in which
it is already present, it is simply merged. Gentzen’s original formulation also included
exchange rules, for reordering the statements on the left and right of a sequent; in our
setting we treat these collections of statements as (unordered) sets.

Definition 3.3.1 (Types and Contexts). 1. The set of simple types T , ranged over by
A,B, is defined over a set of atomic types V = {ϕ1, ϕ2, ϕ3, . . .} by the grammar:

A,B ::= ϕ | ¬A | A→B

2. A left context Γ is a mapping from sockets to types, denoted as a finite set of state-
ments x:A, such that the subjects of the statements (the sockets) are distinct. We
write Γ, x:A for Γ∪{x:A}. When writing a context as Γ, x:A, we indicate that ei-
ther Γ is not defined on x or contains the same statement x:A. We write Γ\x (Γ
without x) for the context from which the statement concerning x, if any, has been
removed.

Right contexts ∆, and the notations α:A, ∆ and ∆\α are defined in a similar way.

3. A pair 〈Γ; ∆〉 is usually referred to simply as a context, and is a shorthand for the
sequent (with labelled formulas) Γ " ∆. We will sometimes also refer to left/right
contexts simply as contexts, when it is clear to do so.

Armed with these definitions, we can define the simple type assignment system for the
calculus.

Definition 3.3.2 (Typing for X i). 1. Type judgements are expressed via a ternary re-
lation P ··· Γ " ∆, where Γ is a left context, ∆ is a right context, and P is an
X i-term. We say that P is the witness of this judgement.

2. Type assignment is defined by the following sequent calculus:

45



(cap-rn)
〈x.α〉 ··· Γ, x : A " α : A, ∆

P ··· Γ " α : A, ∆ Q ··· Γ, x : A " ∆
(cut)

P α̂ † x̂Q ··· Γ " ∆

P ··· Γ, x : A " α : B, ∆
(→R)

x̂P α̂·β ··· Γ " β : A→B, ∆

P ··· Γ " α : A, ∆ Q ··· Γ, y : B " ∆
(→L)

P α̂ [x] ŷQ ··· Γ, x : A→B " ∆

P ··· Γ, x : A " ∆
(¬R)

x̂P · α ··· Γ " α :¬A, ∆

P ··· Γ " α : A, ∆
(¬L)

x · P α̂ ··· Γ, x :¬A " ∆

We write P ··· Γ " ∆ if there exists a derivation using the above rules that has this
judgement in the bottom line.

It is easy to show that a judgement P ··· Γ " ∆ includes types for (at least) the free con-
nectors in P . In terms of the Curry-Howard Correspondence, P , represents the syntactic
structure of a proof of the sequent Γ " ∆, so P is in fact a witness to this sequent being
provable in the underlying logic. Note that there is no notion of a type for P itself; rather,
the whole context 〈Γ; ∆〉 describes a consistent way of assigning types to P ’s connectors.

It is important to emphasise that the typing rules include a notion of implicit contraction;
if a new statement is introduced on the bottom line of a rule, but it was already present
in the context, then it is simply merged. We do not consider duplicate statements, as we
consider contexts to be unordered sets. This also implicitly implies that a typing rule
cannot be applied if it would result in the addition of a statement x : A to a context Γ, say,
in which x was already assigned a different type.

Example 3.3.3. For example, if the judgement P ··· x : A " α : B, β : A had been derived,
and one wished to apply the (exp-rn) rule to this statement, binding the connectors x

and α, it would not be possible for the connector exhibited in the premise to be β, since
this would mean β was assigned both type A and type A→B. Put more succinctly, the
X i-term x̂〈x.β〉α̂·β is not typeable in the type system presented above.

Since the X i-calculus is the untyped analogue of Urban’s term annotation for sequent cal-
culus proofs, if we omit the types from his syntax (as he does for convenience in the bulk
of his work), we can show how the two different term representations correspond. In or-
der to facilitate the comparison, we will write Urban’s “co-names” with Greek characters
(rather than Roman characters from the first half of the alphabet, as he does). Explicitly
then, the correspondence is as follows:
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Definition 3.3.4 (Correspondence between X i-terms and Urban’s term annotation for
classical sequent calculus[76]).

Urban X i

Ax(x,α) 〈x.α〉
Cut(<α>M, (x)N) P α̂ † x̂Q

ImpR((x)<α>M, β) x̂P α̂·β
ImpL(<α>M, (y)N, x) P α̂ [x] ŷQ

NotR((x)M, α) x̂P · α
NotL(<α>M, x) x · P α̂

Furthermore, the implicit propagation operations can be related as follows:
M{α := (x)N} P{α!x̂Q}
N{x := (α)M} Q{P α̂!x}

Note that we choose not to represent propagation in a manner reminiscent of substitution,
since it is not a substitution operation. Rather, it deposits cuts whose structure matches
the connectors and subterm mentioned between the { } brackets.

We have the following result for the simple type system:

Theorem 3.3.5 (Witness Reduction). If P ··· Γ " ∆, and P → Q, then Q ··· Γ " ∆.

Proof. X i-terms to which types have been assigned correspond to sequent proofs and can
be equivalently represented in the term calculus of Urban; this result then follows from
the soundness of the cut elimination procedure of Urban [76].

We also have a strong normalisation property. Again, this is immediate from the work of
Urban.

Theorem 3.3.6 (Strong Normalisation of X i). If P ··· Γ " ∆ then P is strongly normalis-
ing.

Proof. X i-terms to which types have been assigned correspond to sequent proofs; this
result then follows from the strong normalisation result of Urban [76].
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3.3.1 Principal Typings

For the simple type system presented above, we can define an algorithm to compute prin-
cipal typings (in the language of [82]); i.e., to provide an analogous result to that for the
simple type assignment system for the λ-calculus. The algorithm takes as input an X i-
term and either computes the principal typing of the term, if it is typeable at all, or else
fails, indicating that the term is not typeable.

By most general, we mean that all other possible contexts can be obtained by the oper-
ations of substitution and weakening (i.e. adding redundant information to the context).
The operation of substitution is the usual one for Curry types, but we give the definitions
here for completeness.

Definition 3.3.7 (Substitutions). 1. A substitution S is a (possibly empty) set of pairs
(ϕ, A) where each ϕ is a distinct atomic type, and each A a type. The pair is meant
to denote the replacement of occurrences of ϕ with A. Hence, as notational sugar,
we write such pairs (ϕ .→A).

2. For any substitution S and type A, the action of S on A, written as the juxtaposition
(S A) is defined recursively as follows:

(S ϕ) "
{

A if (ϕ .→A) ∈ S

ϕ otherwise

}

(S ¬A) " ¬(S A)

(S A1→A2) " (S A1) → (S A2)

3. For the special case where the set of pairs is empty we use a special symbol id and
call this the identity substitution.

4. For any two substitutions S1 and S2, we define the composition S2◦S1 (which is
itself a substitution, and may be read informally as “S2 after S1”) by the usual
function composition: for any type variable ϕ, we define (S2◦S1 ϕ) = (S2 (S1 ϕ)).

5. We say two substitutions S1 and S2 are equal if they are identical as functions, i.e.
if for all type variables ϕ, (S1 ϕ) = (S2 ϕ).

6. We extend this definition to allow substitutions to act on contexts in the obvious way
(i.e. the substitution is performed on each of the types in the context).

Principal typings will be defined using Robinson’s unification algorithm [66]. Unifica-
tion is also extended to contexts of sockets (and identically for plugs) in the following
definition:
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Definition 3.3.8 (Unification). 1. The algorithm unify [66] takes two types as argu-
ments and returns a substitution (or fails: we do not model failure cases explicitly,
but assume that if none of the definitions below apply then the algorithm terminates
immediately with failure). It is defined as follows:

unify ϕ ϕ = id
unify ϕ A = (ϕ .→ A) if ϕ (∈A

unify A ϕ = unify ϕ A

unify ¬A ¬B = unify A B

unify A1→A2 B1→B2 = S2◦S1

where
S1 = unify A1 B1

S2 = unify (S1 A2) (S1 B2)

2. Unification is extended to contexts as follows (where ∅ denotes an empty context):

unifyContexts ∅ Γ2 = id

unifyContexts (x : A, Γ1) Γ2 =






unifyContexts Γ1 Γ2 if x (∈Γ2

S2◦S1 if x : B ∈ Γ2

where
S1 = unify A B

S2 = unifyContexts (S1 (Γ1\x)) (S1 (Γ2\x))






We assume the classical soundness and completeness results for unification, along with
their extension to contexts:

Lemma 3.3.9 (Soundness and Completeness of Unification [66]). 1. If unify A B suc-
ceeds, yielding a substitution Su, then (S A) = (S B).

2. If there exists a substitution S such that (S A) = (S B) then unify A B succeeds,
yielding a substitution Su, and there exists a substitution S ′ such that S = S ′◦SU .

3. If unifyContexts Γ1 Γ2 succeeds, yielding a substitution Su, then (S Γ1) = (S Γ2).

4. If there exists a substitution S such that (S Γ1) = (S Γ2) then unifyContexts Γ1 Γ2

succeeds, yielding a substitution Su, and there exists a substitution S ′ such that
S = S ′◦SU .

Unification of contexts is required in order to compute principal typings for a term with
more than one immediate subterm (i.e. for med-rn and cut terms). In these cases, the two
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recursive calls to the algorithm will generate distinct contexts, but in the cases where the
same connector is mentioned in both contexts, they must be made to agree on the types
before the contexts can be ‘merged’. We also require the following standard result:

Lemma 3.3.10 (Soundness of Substitution).
If P ··· Γ " ∆ then for any substitution S, P ··· (S Γ) " (S ∆).

Proof. By straightforward induction on the structure of the term P .

Definition 3.3.11 (Principal contexts). The procedure pC :: X → 〈Γ; ∆〉 is defined in
Figure 3.1, where typeof c Ψ (with c a connector, and Ψ a context) returns A, if x : A ∈ Ψ,
else fresh, i.e., an atomic type not used elsewhere.

The following results state that this algorithm does indeed compute principal typings.

Theorem 3.3.12 (Soundness and Completeness of pC).

1. Soundness: If pC (P ) = 〈Γ, ∆〉, then P ··· Γ " ∆.

2. Completeness: If P ··· Γ " ∆, then there exist Γp and ∆p, and a substitution S such
that pC (P ) = 〈Γp, ∆p〉, and (S Γp) ⊆ Γ and (S ∆p) ⊆ ∆.

Proof. See Proof A.1.1 in Appendix A.

3.4 Other Logical Connectives

We have chosen to treat the two connectives implication and negation as the (only) prim-
itive connectives in the logic underlying the X i-calculus. It is natural to ask whether the
choice of extra, different, or fewer connectives would make a significant difference to the
resulting calculus. One obvious observation to make in the setting of classical logic (in
contrast with intuitionistic logic) is that many of the logical connectives are definable in
terms of others. In fact, there are many possible choices of small subsets of the binary
connectives which are complete, in the sense that any formula expressible using any other
logical connectives is equivalent to a formula written using only connectives from the sub-
set. It is easy to check that negation and implication form a complete set of connectives,
in this sense. It is not the smallest such set, since (for example) the ‘nand’ connective
forms a complete set on its own. However, we were also guided by the fact that certain
connectives have a more-intuitive computational meaning than others. In particular, im-
plication is an obvious choice, since the original Curry-Howard Correspondence identifies
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its computational content with functions, and it has an inherent role in the type systems
for λ-calculi and functional programming languages. However, implication on its own
is not complete for classical logic, and leads to a calculus in which the full symmetries
of the logic cannot be explioted. For example, using implication alone, it is impossible
to prove a sequent with an empty right-hand side, although many sequents with empty
left-hand sides are provable. Once negation is added, the full symmetry is restored.

In [63] (coauthored with Jayshan Raghunandan), the implications of different choices
of primitive connectives for a programming calculus based on cut-elimination, were ex-
plored. It was found that the idea of logical expressiveness does not coincide under the
Curry-Howard Correspondence with computational expressiveness, in the sense that al-
though there may be formulas (types) in one calculus which do not have logically equiv-
alent formulas (types) in another, it may still be possible for the terms of the first calculus
to be encodeable in the syntax of the second, in such a way that reductions and typeability
(but not the exact typings) are preserved. In the language of that paper, ‘computational ex-
pressiveness’ does not imply ‘logical expressiveness’. Conversely, even when one works
with a complete set of connectives, one needs to be careful when encoding a calculus
based on other connectives in order to preserve reductions. Often, the natural encodings
from the logical point of view do not preserve reductions. We do not elaborate on this
point here, since we are satisfied with the expressiveness of the two connectives we have
chosen. Their computational meaning will be more-fully explored in Chapter 5.

In the case of more esoteric connectives, it is not always clear how to define appropriate
logical cut elimination rules. For example, defining suitable cut elimination rules for a
calculus based on the ‘if and only if’ (↔) connective is non-trivial [63]. The forthcoming
PhD thesis of Raghunandan [62] gives a detailed approach to the definition of term calculi
based on arbitrary connectives in the setting of classical sequent calculus.

Note that in the presence of multiple logical connectives, there is a possibility of “stuck”
configurations in the calculus; terms can contain cuts but yet be in a form where no re-
duction rules are applicable to them. For example, the term (x̂〈x.α〉α̂·β)β̂ † ŷ(y · 〈z.γ〉γ̂)

cannot be reduced. There is no cut-elimination rule corresponding to this case, since the
introduction of β is by a rule corresponding to implication in the logic, and the introduc-
tion of y corresponds to a rule for negation. Such a cut does not exist in the logic (the
formula in the cut would need to have both implication and negation as its principal con-
nective, which is impossible), and so the term is guaranteed to be untypeable. However,
this ‘clash’ of connectives is a different source of untypeability from the usual failures of
unification in type assignment (which are due to the “occurs check”: c.f., the condition
“if ϕ (∈A” in Definition 3.3.8). Note that these ‘stuck’ configurations can never occur in
typeable terms, and so this does not affect our strong normalisation result. In particular,
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a typeable term is guaranteed to always run to a cut-free term, which is itself typeable
(Theorems 2 and 3.3.6).

3.5 Confluent Restrictions

The X i-calculus as presented above is highly non-confluent. This is very much inten-
tional; since our reduction rules implement Christian Urban’s cut elimination (in the ty-
peable case). In his thesis [76], this is a stated aim: “. . . the cut-elimination procedure
should not restrict the collection of normal forms reachable from a given proof in such
a way that ‘essential’ normal forms are no longer reachable.” On the other hand, for
certain practical applications (for example, if a programming language were to be built
on top of the calculus), it is desirable to have a confluent reduction system. Although
we are strongly in favour of studying the more-natural non-confluent reduction system in
general, it is possible to restrict the system to obtain a confluent one.

Two simple ways in which this can be achieved, are essentially defined by giving priority
to the left and right propagation of cuts, when both alternatives are possible.

Definition 3.5.1 (Restrictions of X i-reduction). The call-by-name (CBN) and call-by-
value restrictions of X i are defined as follows:

CBN: Cuts may only be left-propagated if they cannot be right-propagated. I.e., the rule
(prop-L) is replaced by the variant:

(prop-Lcbn) : P α̂ † x̂Q → P{α!x̂Q} if P does not introduce α, Q introduces x

CBV: Cuts may only be right-propagated if they cannot be right-propagated. I.e., the
rule (prop-R) is replaced by the variant:

(prop-Rcbv) : P α̂ † x̂Q → Q{P α̂!x} if Q does not introduce x, P introduces α

These are referred to as the call-by-name and call-by-value reduction strategies of the
calculus [48, 78]. Lengrand [48] proves the confluence of variants of these strategies.
The main differences between Lengrand’s system and ours (apart from notational issues)
are that we inhabit a logic extended with negation as well as implication, and in his system
the analogous rule to our (imp) rule is restricted to only one of the two possible reducts,
per strategy. This restriction is necessary for his proof of confluence, but it is not known
whether if one leaves the rule unrestricted (but imposes one of the restrictions on cut
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propagation above), this results in a confluent set of reductions. For the purposes of this
work (in which confluence is not a major feature) we will content ourselves with the
restrictions in the above definitions when we wish to discuss call-by-name or call-by-
value notions of reduction.

3.6 Summary

The X i-calculus introduced in this section will be used as the basis of those aspects of this
thesis which are concerned with the paradigm of classical sequent calculus. In the next
chapter, it will be used to study the problem of introducing ML-style shallow polymor-
phism in the setting of a term calculus based on classical logic. Later on, in Chapter 7, we
will compare the X i-calculus with a term calculus based on classical natural deduction,
and attempt to relate the two paradigms.
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pC (〈x.α〉) = 〈x:ϕ; α:ϕ〉
where ϕ = fresh

pC (x̂P α̂·β) = 〈Γ\x; (∆\α)∪β : A→B〉, if β (∈∆
= S 〈Γ\x; ∆\α〉, if β:C ∈ ∆

where 〈Γ; ∆〉 = pC (P )
A = typeof x Γ
B = typeof α ∆
S = unify C A→B

pC (P α̂ [y] x̂Q) = S2◦S1 〈ΓP∪(ΓQ\x)∪y:A→B; (∆P\α)∪∆Q〉
if y (∈ (S2◦S1 ΓP∪(ΓQ\x))

= S3◦S2◦S1 〈ΓP∪(ΓQ\x); (∆P\α)∪∆Q〉,
if y:C ∈ (S2◦S1 ΓP∪(ΓQ\x))

where 〈ΓP ; ∆P 〉 = pC (P )
〈ΓQ; ∆Q〉 = pC (Q)

A = typeof α ∆P

B = typeof x ΓQ

S1 = unifyContexts ΓP (ΓQ\x)
S2 = unifyContexts (S1 ∆P\α) (S1 ∆Q)
S3 = unify C (S2◦S1 A→B)

pC (x · P α̂) = S 〈ΓP , x : B; ∆P\α〉,
where 〈ΓP ; ∆P 〉 = pC (P )

A = typeof α ∆P

B = typeof x ΓP

S = unify ¬A B

pC (x̂P · α) = S 〈ΓP\x; ∆P ,α : B〉,
where 〈ΓP ; ∆P 〉 = pC (P )

A = typeof x ΓP

B = typeof α ∆P

S = unify¬AB

pC (P α̂ † x̂Q) = S3◦S2◦S1 〈ΓP∪ΓQ\x; (∆P\α)∪∆Q〉
where 〈ΓP ; ∆P 〉 = pC (P )

〈ΓQ; ∆Q〉 = pC (Q)
A = typeof α ∆P

B = typeof x ΓQ

S1 = unifyContexts ΓP ΓQ\x
S2 = unifyContexts (S1 ∆P\α) (S1 ∆Q)
S3 = unify (S2◦S1 A) (S2◦S1 B)

Figure 3.1: The principal contexts algorithm

54



Chapter 4

Polymorphism

4.1 Overview

Polymorphism is a powerful aspect of most modern programming languages. It is a mech-
anism for allowing a program to be applied in various contexts which each expect differ-
ent types, and allows flexibility and reuse of code. In a non-polymorphic programming
language for example, even if a function’s behaviour is independent of the type of its
argument, it must be redefined for each such type.

For a simple example, take the identity function (which takes one argument and returns it
unchanged). This would be expressed in the λ-calculus as λx.x, and in the X i-calculus
by the term x̂〈x.α〉α̂·β. In either calculus, it is possible to derive the type A→A for
this function, for any Curry type A we choose. However, this type A must be fixed in a
non-polymorphic setting, and so it would be impossible to type a program in which the
function were applied to both an integer and a list, as A would need to be two different
types.

When polymorphism is introduced, the identity function typically can be typed with the
type ∀X.(X→X), where the ∀-bound type variable X ranges over all types. This then
correctly expresses that the identity function may be typed as A→A for any and all for-
mulas A. The rules for type-assignment typically allow this type to be instantiated several
different times, so that (for example) it would be acceptable for the identity function to
be applied to both an integer and a list in the same program. The type assignment rules
employed to permit this style of polymophism are based on logical inference rules con-
cerning (second-order) quantifiers (in this case, ∀).

In this chapter we investigate how to adapt various notions of polymorphism to the X i-
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calculus. The problems here are two-fold: firstly what difference does the extension to
a classical logic setting make, and secondly, how should polymorphism be implemented
in the unusual setting of the sequent calculus? We choose to concentrate on the sequent
calculus setting here, since not only does it allow us to tackle both questions, but it also
provides a clearer understanding of issues involved. We show how the main results of this
chapter can be adapted back to the natural deduction setting in Chapter 7.

The notions of polymorphism we discuss are those based on (second-order) logical quan-
tifiers (e.g. ∀). Various other notions of polymorphism exist (for example, finitary poly-
morphism based on intersection types), but we focus on systems with quantifiers since
they are naturally formalised using standard logical inference rules, which helps our ap-
proach.

We begin by studying the notions of ‘first-class polymorphism’ defined for System F
[36, 64], and showing how they can be adapted to a type system for the X i-calculus.
Encodings from System F toX i are defined, and shown to preserve reductions and typings
in these new type systems.

We then move on to ‘shallow polymorphism’, focusing on the Hindley-Milner type sys-
tem (famously used as the basis of the typesystem for ML), and discuss how this can be
adapted to the X ¬-calculus. We show that a naı̈ve approach to this problem results in an
unsound type system, and show how the type system can be adapted in a novel way to
avoid this unsoundness. We show that we can define a notion of principal types similar to
the well-known result for ML.

We show that a ‘dual’ notion of shallow polymorphism can be employed, using existential
quantification (∃) rather than universal. Although in a programming setting based on intu-
itionistic logic (as λ-calculus and indeed ML can be seen to be) the addition of existential
quantification does not make any new programs typeable, in a classical logic setting there
are programs which can be made typeable in this way. We discuss how to understand the
role of these two kinds of quantification with respect to the reduction rules. We show that
the previous results adapt easily to this alternative system.

Finally, we discuss the idea of a type system combining both kinds of quantification at
once. This system can type even more programs, and the roles of the quantifiers can be
seen to be complimentary. We give an example of a program which is made typeable
by employing this richer system. We discuss why it appears to be very difficult to find a
principal typing algorithm for this richer type system, and present an idea for an approach
to this problem.

This chapter builds on and corrects the work presented in [73]. The work presented in
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this section up to and including subsection 4.3.1 is based largely on this publication. The
remainder of the chapter is all unpublished work by the author.

4.1.1 Notation

Throughout this chapter, we will require various notation, particularly regarding the intro-
duction of binders within our type language, and the handling of substitutions, renamings
etc. within types.

The binders we will be employing within types come in the form of (second order) logi-
cal quantifiers: specifically ∀ (universal quantification) and, later, ∃ (existential quantifi-
cation). We will usually refer to types containing these symbols as quantified types. We
choose in this thesis to distinguish between bound and free ‘type variables’, using different
notation and language to describe each. The ‘free type variables’ are (as in previous chap-
ters) referred to as atomic types, and are represented by ϕ,ϕ′, ϕ1, ϕ2 etc.. The bound type
variables are chosen from the latter part of the Roman alphabet; i.e. W,X, Y, Z, X1, X2

etc.. We believe that maintaining a clear distinction between these two notions is both
natural (since their meanings and behaviours are quite different) and useful. This is par-
ticularly so because the results of this chapter are technical in nature, and often depend on
a careful treatment of quantified types.

The early part of the Roman alphabet (A,B,C,D,E, F,A′, A1 etc.) is still used to rep-
resent types. In some parts of this chapter, when the definition of quantified types needs
to be kept separate from Curry types, we use the overlined version of this notation, i.e.,
the symbols A,B, C etc. Types with quantifiers are referred to (interchangeably) in this
chapter as generic types or type schemes.

We often require operations to replace free atomic types ϕ with bound type variables X ,
and we write this operation as A[X/varphi]. We also require the replacement of bound
type variables X with (Curry) types B, which we write as A[B/X]. Note that these
operations are kept distinct from Curry substitutions. We assume that these operations
bind tighter than any logical connectives: for example, ∀X.A[X/ϕ] should be read as
∀X.(A[X/ϕ]).

Since we will frequently be concerned with the question of which atomic types occur
in which types, it is convenient to define the set atoms(A) to be the set of all atomic
types in a type A (note: this does not include type variables). We can then write ϕ ∈
atoms(A) to state that an atomic type occurs within a (generic) type A. For convenience,
we allow ourselves to write this as ϕ ∈ A when this does not cause confusion. We extend

57



this notation to contexts in the obvious way, e.g., ϕ ∈ 〈Γ; ∆〉 means that there exists a
statement in 〈Γ; ∆〉 featuring a type A such that ϕ ∈ A.

When discussing generic types, i.e. types of the form ∀X1.∀X2. . . . .∀Xn.A, we find it
convenient to introduce the . notation, e.g., ∀Xi.A. We do not explicitly quantify over
the subscripts, but it is always intended that a subscript i,j,k etc. is bound under the
corresponding .. We extend this notation slightly informally to facilitate the statement
and proof of our results, by using it as a shorthand for repetition in other statements. For
example, we write {ϕi} for the set {ϕ1, ϕ2, . . .}, and we write ϕi ∈ A to mean “ϕ1 ∈ A

and ϕ2 ∈ A etc..”

4.2 Universal Shallow Polymorphism

In this chapter, we will be concerned with type systems based on the notion of shallow
polymorphism, which employs quantifiers only on the outside of a type. In this section,
we examine such type systems based on the addition of universal quantifiers (written ∀
and read ‘for all’) over (Curry) types. In a logical sense, these correspond to second-
order quantifiers, restricted to range only over propositional formulas. The archetypal
example of this paradigm is the Hindley-Milner[42, 50] type system, which underlies the
type system for the ML programming language. The main advantages of this approach
over that of System F are practical: type checking and type assignment (within certain
constraints, as will will explain) are decideable, and can be implemented by relatively
straightforward algorithms [22]. In contrast, it has been shown that the corresponding
problems are undecideable for System F [82].

We will first review the key aspects of the Hindley-Milner approach, and then examine
how they can be brought to the more-general setting of the X ¬-calculus. This turns out to
be non-trivial; not only do some aspects require extra machinery to be adapted naturally
to the sequent calculus setting, but the intuitive approach fails for the general system;
witness reduction is violated by the more-general reductions possible in the X ¬-calculus.
This problem was not identified in the published work by the author [73], in which a
witness reduction result for this type system is erroneously claimed. We examine here
this problem, and identify three sufficient conditions for such a polymorphic type system
to fail to be sound in this way. We compare with examples in the literature; in particular
the unsoundness of ML when extended with various non-functional concepts, such as
exceptions and control operators. By generalising a solution to these problems in the
literature, we can give a restriction of our unsound type system, which is once more
sound, and has a principal typing property in the spirit of that of ML.
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We begin by examining the formal calculus on which ML is based.

4.2.1 The ML calculus

ML [50] is a language based upon an extension of the λ-calculus, which uses a differ-
ent approach to System F for admitting polymorphism. To obtain decidability of type
assignment, it permits only shallow polymorphism, which means that types are allowed
to contain the ∀ symbol only on the outside of their structure. For example, the formula
∀X.(X→X) would be a valid type in ML (which could be given to the identity function),
whereas a type such as (∀X.X)→(∀Y.Y ) would not (the ∀ symbols appear below the→).

The usual syntax of the λ-calculus is extended with a new construct let x = M in N ,
which abstractly represents a substitution which has not yet taken place, in which M is
to replace x inside the term N . This construct (along with its typing rule) is designed to
give a workaround for the situation when an application (λx.N) M would be untypeable,
whereas the reduct N [M/x] can be typed - in this case the term let x = M in N may be
used instead. The typing rule for let allows M to be given a shallow polymorphic type,
and for this type to be used for x when trying to derive a type for N . With the addition of
rules for instantiating types, it may be that several instances of the polymorphic type are
used for different occurrences of x within N . This additional flexibility is what makes the
system useful.

Definition 4.2.1 (ML Expressions). The set LML of ML expressions is defined by:

M, N ::= x | MN | λx.M | Fix g.M | let x = M in N

The construct Fix g.M is included to allow typeable recursion in the calculus. For sim-
plicity in our discussions of polymorphism we choose to study the subset of ML expres-
sions without Fix, and will hereafter only consider ML expressions within this subset.

Definition 4.2.2 (ML Reductions). The reduction rules in ML are as follows:

(λx.N)M →ML N [M/x]

(let x = M in N) →ML N [M/x]

As is clear from these reduction rules, the two terms let x = N in M and (λx.M)N

both reduce to the same term M [N/x] (semantically, these terms are interpreted in the
same way in [50]). However, they are treated differently by the type system. Milner
writes, “. . . our aim is a type discipline which admits certain expressions in the first form
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and yet rejects their translations into the second form; this is because λ-abstractions may
in general occur without an explicit operand, and need more careful treatment.”. The
typing rules for let provide the polymorphism in this system - it is allowed for each of
the occurrences of x in M to be given a different instance of a polymorphic type found
for N . This is in contrast to the usual way in which the term (λx.M)N would be treated,
which would allow only one Curry type to be used for the variable x. These ideas are
made formal in the following subsection.

4.2.2 Shallow Polymorphic Type Assignment for ML

We choose to present types and type assignment rules using the approach of Damas and
Milner [22], as this gives a clearer treatment than that of [50].

Definition 4.2.3 (Type Schemes / Generic Types [22]). The set of type schemes (also
referred to as generic types in this work) is built from the usual Curry types by allowing
any number (possibly zero) of ∀ quantifiers to be built on the outside. We will use A,B to
range over the usual Curry types, and A to range over type schemes, as defined below.

A,B ::= ϕ | X | (A → B)

A ::= ∀X1.∀X2. . . . ∀Xn.A (n ≥ 0)

Note that in the case n = 0 in the definition of type schemes, we assert that any Curry type
A is a type scheme itself. As in the discussions in the previous section, we distinguish
between atomic types ϕ and type variable symbols X (whereas Milner chooses not to),
and again consider only types with no free type variable symbols (e.g. occurrences of X

which are not surrounded by ∀X.) to be well-formed. In fact, in [50] the set of Curry
types is also extended with type constants, to represent concrete types such an integers,
booleans, etc. However, this is more a practical consideration, and we leave them out in
these discussions for simplicity1.

We use the symbol Γ to represent a basis of assumptions, as before. We write Γ"ML M : A

to mean ‘there is a type derivation assigning the type (scheme) A to the term M under the
basis of assumption Γ’. The form of these type derivations is defined as follows:

1Since, as we shall see, our type derivations are closed under subsitution on atomic types, we can
imagine extending these substitutions to replace atomic types with concrete types; everything works out in
the same way.
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Definition 4.2.4 ([22]). ML-type assignment is defined by the following derivation rules.

(ax)
Γ, x : A"ML x : A

Γ"ML M : A Γ, x : A"ML N : B
(let)

Γ"MLlet x = M in N : B

Γ, x : A"ML M : B
(→I)

Γ"ML λx.M : A→B

Γ"ML M : A→B Γ"ML N : A
(→E)

Γ"ML M N : B

Γ"ML M : A
(∀I)*

Γ"ML M : ∀X.A[X/ϕ]

Γ"ML M : ∀X.A
(∀E)

Γ"ML M : A〈B/X〉

*If ϕ is not free in Γ.

Notice that generic types A may not be used in the (→I) or (→E) rules - this reflects the
fact that ∀-symbols may not appear inside an arrow type. In terms of the type assignment,
this means that whenever an abstraction is to be typed, the variable abstracted over must
have a fixed Curry type, just as in the original λ-calculus system. However, when x is
a variable not occurring under an abstraction, the rules allow more freedom - if x has a
polymorphic type in the basis then the use of the (ax) and (∀E) rules allows a different
instance of this type to be chosen each time x is used.

As an example, consider the term (λz.zz)(λy.y). This remains untypeable in ML, just as
it is in the λ-calculus, because z is bound in a lambda-abstraction over the self application
zz. The self application requires z to be given two types, of the form A→B and A (for
some Curry types A and B), whereas the lambda abstraction forces z to take a unique
Curry type. Using the let construct, it is possible to form the term let z = λy.y in zz,
which will reduce in the same way as our original term. However, it is typeable in the ML
system, because the type ∀X.(X→X) is derivable for λy.y, and different instances of
this type can be taken for the two occurrences of z (e.g. (B→B)→(B→B) and (B→B)

respectively):

(ax)
y : ϕ′ "ML y : ϕ′

(→I)
"ML λy.y : ϕ′→ϕ′

(∀I)
"ML λy.y : ∀X.(X→X)

(ax)
z :∀X.(X→X)"ML z : ∀X.(X→X)

(∀E)
z : ∀X.(X→X)"ML z : (B→B)→(B→B)

(ax)
z : ∀X.(X→X)"ML z : ∀X.(X→X)

(∀E)
z :∀X.(X→X)"ML z : B→B

(→E)
z : ∀X.(X→X)"ML z z : B→B

(let)
"MLlet z = λy.y in z z : B→B

Although ML admits less polymorphism than System F does, it has the advantage of being
very practical - not only is type assignment in ML decidable (in contrast to System F),
but it has a principal type property, similar (but not identical) to that which holds for the
λ-calculus. Milner presents an algorithm (called W) that takes as input a pair of (basis,
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term) and returns a pair of (substitution, type), representing the most general typing for
the term (if one exists) using an instantiation of the basis.

The formal results concerning the algorithm depend on the following definition (essen-
tially from [22]):

Definition 4.2.5 (Generic Instance). A type scheme A = ∀Xi .A has a generic instance
B = ∀Yj .A′ if there exist types Bi and atomic types ϕj such that A′ = A[Bi/Xi] [Yj/ϕj] ,
and the ϕj are not in A.

We write A6B in this case, read “B is a generic instance of A”.

We extend this notion to (right)-contexts ∆1,∆2 as follows: ∆16∆2 ⇔ (α ∈ ∆1 ⇒
α ∈ ∆2 & (typeof α ∆1)6(typeof α ∆2).

Considering the types as logical formulae, in Natural Deduction terms this definition es-
sentially says that B9A if and only if we can derive B from A using a series of (∀E)

steps, followed by a series of (∀I) steps. Equivalently in terms of the sequent calculus,
B9A if and only if the sequent A " B is derivable using only the ∀-fragment of the logic
(i.e., the rules (∀I),(∀E) and (ax)). This notion of derivability gives an intuition as to why
B may be considered ‘smaller’ or ‘less general’ than A. The process of ∀-closure may be
seen as taking the ‘largest’ possible form of a type, in terms of the ordering imposed by
9.

This is made formal by the following results:

Theorem 4.2.6 (Properties of the algorithm W). Soundness: IfW(Γ,M) = 〈S, A〉 then
(S Γ)"ML M : A.

Completeness: If, for a basis Γ and term M , there exist S and A such that (S Γ)"ML M :

A then there exist substitutions S1 and S2 and a type B such that W(Γ,M) =

〈S1, B〉 and (S Γ) = (S2◦S1 Γ) and (S2◦S1 B)6A.

4.2.3 Interlude: Principal Types and Principal Typings

Before we continue with this section, it is important to make clear what we mean by
“principal type property” and the like. Wells [82] wrote a paper specifically addressing
this point, in which definitions are given for “principal types” and “principal typings”.
For a type system to have a “principal typing property” there must be an algorithm which,
given any term of the syntax, either determines that the term is not typeable at all or
else derives all of the information used in a typing judgement for the term (other than
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(ax)
〈y.π〉 ··· y : ϕ"SP π : ϕ

(→R)
by〈y.π〉bπ ·θ ··· "SP θ : ϕ→ϕ

(∀R)
by〈y.π〉bπ ·θ ··· "SP θ :∀X.(X→X)

(ax)
〈x.γ〉 ··· x : A→A"SP γ : A→A

(ax)
〈p.α〉 ··· p : A→A"SP α : A→A

(→L)
〈x.γ〉bγ [x] bp〈p.α〉 ··· x : (A→A)→(A→A), x : A→A"SP α : A→A

(∀L)
〈x.γ〉bγ [x] bp〈p.α〉 ··· x : (A→A)→(A→A), x :∀X.(X→X)"SP α : A→A

(∀L)
〈x.γ〉bγ [x] bp〈p.α〉 ··· x :∀X.(X→X)"SP α : A→A

(cut)
(by〈y.π〉bπ ·θ)bθ † bx(〈x.γ〉bγ [x] bp〈p.α〉) ··· "SP α : A→A

Figure 4.1: Example of shallow-polymorphic type assignment in X

the term itself), in a most-general way. What this information exactly is, and what the
notion of ‘most general’ means depends on the specific calculus and type system. For
example, the simply-typed lambda calculus has a principal typing property, for which
‘most general’ essentially means “can be obtained by applying substitutions and adding
extra (redundant) information to the context Γ (weakening)”. On the other hand, ML,
equipped with the shallow polymorphic type assignment described above, does not have
a principal typing property. Informally, this essentially is because, given a term M with
free variables, it is not possible to determine the most general ‘amount’ of polymorphism
to assume for the types of the free variables. In most cases, the stronger the assumptions
made in Γ, the stronger the derived type for M . Instead, ML has a weaker property, which
is referred to as a principal types property. Essentially, this says that if one fixes an initial
basis of assumptions Γ, as well as a term M , then one can compute the most general pair
of substitution S and generic type A (if such a pair exist) such that (S Γ)"ML M : A.
Since a substitution S cannot affect the quantified (bound) parts of the types in Γ, it can
be understood that the initial Γ determines exactly the polymorphic behaviour which will
be assumed for the free variables of M . This is what the algorithm W achieves.

4.3 Universal Shallow Polymorphism for X i

4.3.1 The intuitive but unsound approach

The key to the use of polymorphism in ML is in the let construct, which is interpreted
as a substitution both syntactically (according to its reduction rule) and semantically (see
[50]). The polymorphism present in the (let)-rule essentially gives a way of typing the
substitution about to take place, such that the multiple occurrences of the name to replace
need not all be typed in the same way. The let-construct is a necessary extension to
the syntax for a shallow polymorphic approach (short of allowing polymorphism to be
used directly with abstractions and applications, which leads to System F), since there is
nothing in the syntax of the λ-calculus to represent these substitutions.
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In theX i-calculus, there is a construct already present which can be seen to encode substi-
tution. The cut P α̂ † x̂Q can, by right-evaluation, approximately simulate the substitution
of P for the occurrences of x in Q. This observation led to the investigation of a notion
of shallow polymorphic type-assignment for the X i-calculus. Following what seems to
be the analagous approach to ML, one adds generic types to the type language, which are
allowed to be used for the typing of cuts and axioms (but not the other syntax constructs),
and the standard logical rules for ∀ are added to the type assignment rules.

Definition 4.3.1 (Naı̈ve Shallow Polymorphic Type Assignment forX i [73]). Types A, B

and type-schemes A are defined as follows:

A,B ::= ϕ | X | (A → B) | (¬A)

A ::= ∀X1.∀X2. . . . ∀Xn.A (n ≥ 0)

The shallow polymorphic type assignment for X i is defined by the following rules (where
A represents a generic type of Definition 4.2.3):

(ax)
〈x.α〉 ··· Γ, x :A"NSP α :A,∆

P ··· Γ"NSP α : A,∆ Q ··· Γ, x :A"NSP ∆
(cut)1

P α̂ † x̂Q ··· Γ"NSP ∆
P ··· Γ"NSP α : A,∆ Q ··· Γ, x :B "NSP ∆

(→R)1
P α̂ [y] x̂Q ··· Γ, y : A→B "NSP ∆

P ··· Γ, x : A"NSP α : B,∆
(→L)1

x̂P α̂·β ··· Γ"NSP β :A→B

P ··· Γ"NSP α :A,∆
(¬L)2

x · P α̂ ··· Γ, x :¬A"NSP ∆

P ··· Γ, x : A"NSP ∆
(¬R)3

x̂P · α ··· Γ"NSP α :¬A

P ··· Γ, x : A[B/X]"NSP ∆
(∀L)

P ··· Γ, x :∀X.A"NSP ∆

P ··· Γ"NSP α : A,∆
(∀R)4

P ··· Γ"NSP α :∀X.A[X/ϕ], ∆

1: if x (∈Γ and α (∈∆. 2: if α (∈∆. 3: if x (∈Γ. 4: if ϕ does not occur in Γ, ∆.

As before, we include a notion of implicit contraction in the above rules (as for the type
system presented in Section 3.3), so that if a derivation rule introduces a statement which
was already present in the context, it is simply merged.

Notice that generic types are not used in the (exp-rn) or (med-rn) rules. This enforces the
restriction that the ∀-symbol may not appear to the left of an ‘→’ in a type, and is similar
to the way the (→I) and (→E) rules are treated in ML.

A subtle problem occurs in defining a shallow polymorphic type assignment in this way,
which suggests a possible relaxation of Definition 3.3.1 to allow multiple statements in
a context with the same subject. The mechanism for taking instances of a type scheme
employs the (∀L) rule, which can be seen to allow instances of the ∀ formula to be taken
further up in a derivation. However, because the instance A[B/X] appears also on the
left-hand side of the sequent, and is labelled with the same name (socket), this eliminates
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the possibility of further instances being taken further up in the same ‘branch’ of the
derivation - the statement ∀X.A may not remain in the upper sequent of the rule, since
we insist in Definition 3.3.1 that the subjects of the statements in a context are distinct.
Thinking in terms of the logical proofs however, the subjects of the statements are not a
consideration - sequent proofs need not be annotated and would certainly allow a use of
the (∀L) rule to include an implicit contraction. For example, in the following proof the
formula ∀X.(X→X) is used is two (∀L) rules:

(Ax)
(A→A) " (A→A)

(Ax)
(A→A) " (A→A)

(→L)
(A→A), (A→A)→(A→A) " A→A

(∀L)
∀X.(X→X), (A→A)→(A→A) " A→A

(∀L)
∀X.(X→X) " A→A

This might correspond to a type derivation in a shallow polymorphic system, (where we
use B as a shorthand for the formula (A→A)) looking like:

(Ax)
〈x.α〉 ··· x : B " α : B

(Ax)
〈y.β〉 ··· y : B " β : B

(→L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x : B, x : B→B " β : B

(∀L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x : ∀X.(X→X), x : B→B " β : B

(∀L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x :∀X.(X→X) " β : B

This is a type derivation we would like to be legal in this system, since we can view this as
part of the type derivation for a term analogous to let x = λy.y in xx, which we wish to
be able to type (c.f. Figure 4.1). It is possible to work around this problem, by adjusting
the set of rules so that instances can be taken implicitly of a quantified formula. In fact,
this solution will be employed in the next section, for reasons which will become clear.
However, for the moment we explore a more basic solution, which yields a type-system
whose underlying derivations are still standard logical proofs.

To deal with the problem of instantiating quantified types in this system, we initially
considered relaxing Definition 3.3.1, allowing multiple statements in a context with the
same subject. This seems at first glance a risky move, but hopefully the example above
has shown that it allows intuitively sound derivations to be constructed. In order to retain
soundness, we needed to be careful that whenever a connector is bound, some statements
involving the connector do not remain in the context. We therefore insisted that whenever
the rules (exp-rn), (med-rn) and (cut) were employed, the connectors mentioned in the top
line of the rule (which are bound in the construction of the respective terms) had a unique
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statement in the rule. This enforces that all the types for a connector disappear from the
contexts when the connector is bound. We also insisted that a derivation is not complete
unless the subjects of the statements in the final sequent are unique (so the relaxation is
only usable temporarily within a derivation). As a consequence of these restrictions, if
several statements with the same subject (but different types) are used in a derivation, it
will be necessary for the ∀ rules to be applied until the types of these statements match,
and they are contracted into a single statement. Until this takes place, it will be impossible
to either bind the connective concerned, or complete the derivation.

This is the type system which was presented in [73], in which a notion of principal con-
texts (with respect to an initial context) was also defined, in the spirit of the principal types
property for ML. As we shall explain next, while this type system seems in many ways
analagous to the way polymorphism is introduced to ML, in our more general setting (and
particularly in the presence of classical logic), this approach is unsound.

4.3.2 Failure of Subject Reduction

Unfortunately, the ‘intuitive’ approach outlined in the previous section does not guarantee
subject reduction (although it was originally believed to do so). The problem is due to the
interaction between the use of implicit (i.e., not represented syntactically in the calculus)
polymorphism in the type derivation, and ability to perform left propagation reductions.
In particular, since the implicit quantifier rules can occur at any point in a derivation, a
left-cut may be propagated ‘through’ an occurrence of the (∀R) rule used to type the
left-hand subterm. In order to construct a new type derivation for the resulting term, we
need to be able to ‘relocate’ the occurrence of the (∀R) rule, to be applied further up on
the derivation. This is not always possible, because the side-condition of the rule is not
always satisfied in this new position. We can make this clearer with an example.

Example 4.3.2 (Failure of Subject Reduction). Define the term P = x̂(ŷ〈x.α〉α̂·γ)β̂ ·γ.
This term can be assigned the same contexts as the identity, in the type system presented
above:

(ax)
〈x.α〉 ··· x : ϕ, y : ϕ"NSP α : ϕ, β : ϕ

(→R)
ŷ〈x.α〉α̂·γ ··· x : ϕ"NSP β : ϕ, γ : ϕ→ϕ

(→R)
x̂(ŷ〈x.α〉α̂·γ)β̂ ·γ ··· ∅ "NSP γ : ϕ→ϕ

(∀R)
x̂(ŷ〈x.α〉α̂·γ)β̂ ·γ ··· ∅ "NSP γ :∀X.(X→X)

Therefore, if we place this term in a cut which ‘applies it to itself’ (i.e. in an ML sense,
we construct let z = P in z z), then the resulting term can be typed as follows:
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!
!
!!

"
"

""
as above

P ··· ∅"NSP γ :∀X.(X→X)

(→L)
〈z.δ〉δ̂ [z] ŵ〈w.ε〉 ··· z :∀X.(X→X), z : (ϕ′→ϕ′)→(ϕ′→ϕ′)"NSP ε : ϕ′→ϕ′

(∀L)
〈z.δ〉δ̂ [z] ŵ〈w.ε〉 ··· z : ∀X.(X→X)"NSP ε : ϕ′→ϕ′

(cut)
P γ̂ † ẑ(〈z.δ〉δ̂ [z] ŵ〈w.ε〉) ··· ∅"NSP ε : ϕ′→ϕ′

However, this term can be shown to reduce as follows:

(bx(by〈x.α〉bα·γ)bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉)
→ (bx((by〈x.α〉bα·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉))bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (prop-L)

→ (bx((by〈x.α〉bα·γ)bγ † bz(((by〈x.α〉bα·γ)bγ † bz〈z.δ〉)bδ [z] bw〈w.ε〉))bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (prop-R)

→ (bx((by〈x.α〉bα·γ)bγ † bz((by〈x.α〉bα·δ)bδ [z] bw〈w.ε〉))bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (exp-rn)
→ (bx((by〈x.α〉bα·δ)bδ † by(〈x.α〉bα † bw〈w.ε〉))bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (exp-imp)
→ (bx((by〈x.α〉bα·δ)bδ † by〈x.ε〉)bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (cap-rn)
→ (bx〈x.ε〉bβ ·γ)bγ † bz(〈z.δ〉bδ [z] bw〈w.ε〉) (prop-R)

→ (bx〈x.ε〉bβ ·γ)bγ † bz(((bx〈x.ε〉bβ ·γ)bγ † bz〈z.δ〉)bδ [z] bw〈w.ε〉) (prop-R)

→ (bx〈x.ε〉bβ ·γ)bγ † bz((bx〈x.ε〉bβ ·δ)bδ [z] bw〈w.ε〉) (cap-rn)
→ (bx〈x.ε〉bβ ·δ)bδ † bx(〈x.ε〉bβ † bw〈w.ε〉) (exp-imp)
→ (bx〈x.ε〉bβ ·δ)bδ † bx〈x.ε〉 (prop-L)

→ bx〈x.ε〉bβ ·ε (exp-rn)

The resulting term is not typeable in this system. In fact, the problem came right in the
first step, when the cut was propagated to the left, through the structure of the term P . In
the typing derivation for P , the crucial (∀R) rule comes right at the very end. But, when
propagating a copy of this cut inside the structure of P , in order to maintain the same
quantified type for the new cut there must be a similar occurrence of the (∀R) rule on this
copy; i.e., the rule needs to be moved upwards in the derivation with the cut. This is not
possible; at this point x is still a free socket in the context, carrying the type ϕ which is to
be generalised by the (∀R) rule.

In short, the condition on the (∀R) rule is not necessarily preserved by moving it further
up the typing derivation, and so, when cuts are left-propagated ‘past’ an occurrence of the
(∀R) rule, it is not always possible to rebuild the same quantifier rule in a suitable new
position. In general, this means that a type derivation cannot always be reconstructed.

With hindsight, the failure of subject reduction is not surprising. It is well-known that the
original ML approach to polymorphism is unsound in the presence of various extensions
to the language, such as references, exceptions and call/cc. As we will discuss in more
detail in Chapter 6, calculi based on classical logic can be closely related to functional
calculi extended with control operators, and we believe that (for example), the version
of ML with call/cc included could also be encoded into the X i-calculus. Therefore, the
polymorphic type-system presented above must almost inevitably be unsound. However,
we believe that the source of the unsoundness is actually much clearer in the sequent
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calculus setting; it is clear that the attempted left propagation of a cut ‘past’ an occurrence
of (∀R) in the left-hand typing derivation, is the exact source of the problem. In fact, we
can describe the essence of this problem by observing that the presence of the following
three aspects will guarantee such an unsoundness:

1. Implicit universal quantification.

2. Call-by-value reductions (not necessarily only these reductions, but their inclusion
in the calculus).

3. Ability to express/encode structural rules (e.g., contraction) manipulating state-
ments on the right of a typing sequent.

Our counter-example depends on the presence of these three features. Implicit quantifi-
cation allows reduction to ‘ignore’ the quantifier steps which are violated in the example.
Left-propagation of a cut which could be right-propagated (i.e., a call-by-value reduction)
ensures that such a violation cannot be ‘fixed’ in the reduct (i.e., there is no way of typing
the reduct by, for example, resorting to non-quantified types). Finally, (implicit) right-
contraction in the typing is used to cause the failure of the side-condition on the (∀R)

after left-propagation is performed.

It is interesting to note that examples exist in the literature of proposed calculi and type
systems which include each possible pair of two out of the three ingredients for unsound-
ness described. The ML calculus has implicit universal quantification, and call-by-value
reductions, but no classical features such as right-contraction in the type system. Parigot’s
presentation of the λµ-calculus in [55] includes implicit universal quantification, and the
ability to (indirectly) express right-contraction in the type system, however the reduction
rules are essentially restricted to call-by-name reductions. Ong and Stewart’s definition
of call-by-value λµ-calculus obviously includes call-by-value reductions, and still per-
mits right-contraction to be expressed in the type system, but no rules for polymorphism
are included. Therefore, in each of these works, one of the three ‘ingredients’ described
above is missing, and so the unsoundness we are concerned with is avoided.

There are three main approaches described in the literature for dealing with this unsound-
ness in the context of ML:

1. Introducing a separate class of (’imperative’) atomic types [75], which must be
used whenever an ’imperative’ feature such as call/cc is to be types, and may not be
generalised using the (∀R) rule. In our setting it is less obvious how to understand
this solution, but it amounts essentially to permitting polymorphic types only on
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cuts where the left-hand subterm satisfies certain properties (we conjecture that
these properties amount to the subterm representing a proof valid in minimal logic,
but this idea is not explored here).

2. Restricting reductions to a call-by-name strategy [49]. It turns out that the prob-
lematic cases cannot be reached by call-by-name reductions. The reason for this
can be fairly clearly seen in the context of the X i-calculus and the counter-example
presented above; restricting to call-by-name amounts to insisting that cuts be prop-
agated preferentially to the right, and only left-propagated if the socket bound in the
right-hand subterm is introduced. In such a situation, any cut which can be typed
with a quantified type may also be typed without quantification; this is because
the uniqueness of the socket means that the ability to take multiple instances of the
quantified type is irrelevant. Therefore, by the time a cut is left-propagated, we may
depend essentially on the subject reduction property of the simple type system.

3. Restricting the form of let-bound terms to bind only values [83] (i.e., only allow
terms of the form let x = V in M . In fact, “values” in [83] include variables, as
well as λ-abstractions. Again, the soundness of this approach can be seen clearly
in our setting; restricting to values here amounts to restricting the left-hand sub-
term of cuts P α̂ † x̂Q to the cases where P introduces α. In such a system, no
left-propagation reductions can ever take place, and so the problematic scenario is
avoided.

Unfortunately, given that our original aim was to eventually define a type system in which
both existential and universal quantification could be employed, none of the above solu-
tions above seem very desirable. We will explain why this is so for each in turn:

1. This approach breaks the logical foundation of the type system, and, while practical
in the ML setting, it is not clear how it would be adapted to deal with existential
quantification, and whether a useful system would result.

2. Unfortunately, just as a call-by-name reduction strategy is required to make implicit
universal quantification safe, a call-by-value strategy would be needed to ensure
subject reduction for a system with similar existential polymorphism. Thus, no
reduction strategy would work for a system with both kinds of polymorphism.

3. Similarly, in order to ensure that subject reduction held for a system with both
kinds of quantifiers, one would need to restrict the system to allow both kinds of
quantifiers in the typing of cuts P α̂ † x̂Q only in the case when both P introduces
α and Q introduces x. Ensuring this condition was met and preserved by reduction
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would result in a system with almost no useful polymorphism - these cuts can be
typed just as well in the simple (non-polymorphic) type system.

By examining the problematic cases in more detail, we were able to come up with a
fourth solution (which is in fact, a generalisation of the restriction to values, above). This
is, to restrict the points in a derivation where polymorphic generalisation (i.e., the (∀R)

rule in the previous type system) may be employed. In order to avoid the unsoundness
described, we only allow generalisation of a statement immediately when it is introduced
into the derivation. For example, when the (→R) rule is applied, the type for the exhibited
plug may be generalised, but if it is not, then it cannot be later on in the derivation.
The advantages of our solution are that it imposes fewer restrictions on the type system
than the restriction to values (more terms are typeable), and that it does not eliminate
in principle the possibility of a useful extended system based on both existential and
universal quantification.

The observation we have gained from the sequent calculus setting is that the unsound-
ness of the naı̈ve system is directly caused by the left-propagation of cuts P α̂ † x̂Q past
occurrences of the (∀R) rule in the typing derivation for P . We note that this can only
only happen because, in general, it is allowed for such occurrences to exist in positions
far devoid from the points in the derivation (and term) where occurrences of α are ex-
hibited. Since it is these points which the left-propagation of the cut reaches, the cut can
of course pass over occurrences of the (∀R) rule on the way. The third solution listed
above ([83]) can be understood then as removing the possibility of such ‘gaps’ between
the occurrences of α and the occurrences of (∀R) applied to the type of α; by insisting
on the strong requirement that P introduces α, i.e., that there is exactly one occurrence
of α in P , and that it is at the top-level, any (∀R) rules to be used in typing the cut must
also occur at this top level. However, we observe that it would suffice to guarantee the
weaker property, that there are no ‘gaps’ between each occurrence of α and the polymor-
phic rules applied to the type for the occurrence; this guarantees that a cut ‘seeking out’
the occurrences of α need never cross over such rules.

Consider the following X i-term, for example (where the subterm P is left unspecified):

((x̂〈x.α〉α̂·β)ε̂ [i] ĵ(x̂〈x.α〉α̂·β))β̂ † ẑP

The left-hand subterm of the cut contains two copies of the identity function x̂〈x.α〉α̂·β,
both of which exhibit occurrences of the output β (the other names within the terms are
also identical, but since these are bound it is only for comparison). The two ‘copies’ of
the identity are independent of one another (the surrounding import does not bind any
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plugs/sockets in the subterms, and acts as a ‘dummy context’ for this example). Since
each copy can be given the polymorphic type ∀X.(X→X), it seems reasonable for the
cut to employ this type, also. Furthermore, since the (∀R) rule applications needed to
derive the type ∀X.(X→X) can be located at each of the points where β is exhibited,
there is no need to risk the possibility of the cut ‘crossing’ these rules by left-propagation.
Essentially, if the polymorphic generalisation steps in a derivation can be located at the
same syntactic level as the connector whose type they apply to is exhibited, the derivation
is safe from the potential unsoundness described above. This notion is tricky to formalise
in a type system with rules for manipulating quantifiers independent of the other rules
in the type system (e.g., the (∀L) and (∀R) rules in the system presented above). How-
ever, since we are now proposing that such rules be employed only at the points where
the corresponding connectors are introduced, we can instead present a system with the
polymorphism steps ‘built in’ to the other rules. This will be presented next.

4.3.3 An Improved Shallow Polymorphic Type System

As in Chapter 3, we write typeof x Γ and typeof α ∆ to denote functions which look up the
type assigned to the connector by the context, and if none is defined, return a fresh atomic
type. For example, if Γ = {x : A, y : B} then typeof x Γ = A, while, for y (= z (= x,
typeof z Γ = ϕ for some fresh atomic type ϕ.

We now extend Definition 4.2.5 to allow the comparison of (right) contexts as follows:

Definition 4.3.3 (Generalised Generic Instance). A type scheme A = ∀Xi .A has a generic
instance B = ∀Yj .A′ if there exist types Bi and atomic types ϕj such that we have A′ =

A[Bi/Xi] [Yj/ϕj] , and the ϕj are not in A.

We write A6B in this case, read “B is a generic instance of A”.

We extend this notion to (right)-contexts ∆1,∆2 as follows: ∆16∆2 ⇔ (α ∈ ∆1 ⇒
α ∈ ∆2 & (typeof α ∆1)6(typeof α ∆2).

It is also useful to have an explicit notation for a ‘closure’ relation on types, which char-
acterises the behaviour of the ∀R rule. This rule can be used to replace types with more
general (larger, in the6 relation) forms, provided this is sound with respect to the context
in which it is used. Thus this relation depends not only on the types which are changed,
but also on the types present in the rest of the context (c.f. the condition on the ∀R rule).
We introduce a relation on types which coincides with any number of valid ∀R steps
being applied to the same statement α : A say, in a context 〈Γ; ∆〉.
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Definition 4.3.4 (Closures and fresh instances). 1. For any type schemes A, B and con-
text 〈Γ; ∆〉, we say A closes to B in 〈Γ; ∆〉, and write A #〈Γ;∆〉 B, if and only if
there exist Xi and ϕi such that B = ∀Xi .A[Xi/ϕi] , where ϕi (∈ 〈Γ; ∆〉 and ϕi (∈B.

2. For any generic type A = ∀Xi.A, we write freshInst(A) = A[ϕi/Xi] where the ϕi

are fresh atomic types.

We have the following results for these definitions:

Proposition 4.3.5. 1. 9 is a preorder on type schemes.

2. For any contexts 〈Γ; ∆〉, #〈Γ;∆〉 is a partial order on type schemes.

3. For any contexts 〈Γ; ∆〉 and type schemes A,B, C, if A6B and B #〈Γ;∆〉 C and
A ∈ 〈Γ; ∆〉, then A6C.

4. For any generic types A,B and substitution S, if A6B then (S A)6(S B).

5. For any generic types A,B, context 〈Γ; ∆〉 and substitution S, if A #〈Γ;∆〉 B then
there exists a substitution S ′ such that dom(S) ⊆ (atoms(A)\atoms(〈Γ; ∆〉)) and
(S ′ B) = B and (S◦S ′ A) #〈(S Γ);(S ∆)〉 (S B).

6. For any Curry type A, type schemes A and B, and contexts 〈Γ; ∆〉, if A #〈Γ;∆〉 A

and A6B then there is a substitution S with dom(S) ⊆ (atoms(A)\atoms(〈Γ; ∆〉))
and (S A) #〈Γ;∆〉 B.

7. For any type A = ∀Xi.A and Curry type B, if A′ = freshInst(A) = A[ϕi/Xi] and
A6B then there exists a substitution S such that dom(S) = {ϕi} and (S A′) = B.

Proof. See Proof A.2.1 in Section A.2.

Definition 4.3.6 (Improved Shallow Polymorphic Type Assignment forX i). The (sound)
shallow polymorphic type assignment for X i is defined by the following rules (where A

represents a generic type of Definition 4.2.3):

(ax)1
〈x.α〉 ··· Γ, x : A"SP α : B,∆

P ··· Γ, x :A"SP α : B,∆
(→R)2

x̂P α̂·β ··· Γ"SP β : C,∆

P ··· Γ"SP α : A,∆ Q ··· Γ, y : B "SP ∆
(→L)3

P α̂ [x] ŷQ ··· Γ, x : C "SP ∆

P ··· Γ"SP α : A,∆ Q ··· Γ, x : A"SP ∆
(cut)

P α̂ † x̂Q ··· Γ"SP ∆

1 A6B. 2 (A→B) #〈Γ;∆〉 C. 3 C6(A→B).
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In comparison with the previous (unsound) proposal, this type system can be seen as a
restriction in which the (now implicit) uses of quantifier rules, which could previously
occur at any apparently valid point in a type derivation, are now restricted to be applied
in precise positions. In fact, all such quantifier rules are essentially applied immediately
after the statement which they affect is introduced into the context. For example, an
occurrence of the (∀L) rule in the naı̈ve type system, which bound a statement originally
introduced by an occurrence of the (→L) rule, is (in the new type system) implicitly
included in the new version of the (→L) rule, by allowing the type for x in the premise
to be a generic instance of the type for x in the conclusion of the rule. This essentially
permits any number of implicit applications of the (∀L) rule here.

We can show the following properties for this type system:

Proposition 4.3.7 (Basic properties). 1. For all substitutions S, if P ··· Γ"SP ∆ then
P ··· (S Γ)"SP (S ∆).

2. (Weakening) If P ··· Γ"SP ∆, and 〈Γ∪Γ′; ∆∪∆′〉 is a well-formed context, then then
P ··· Γ∪Γ′ "SP ∆∪∆′.

3. (Strengthening) If P ··· Γ∪Γ′ "SP ∆∪∆′, with no sockets x occurring both in Γ′

and in fs(P ), and similarly no plugs α occurring in both ∆′ and fp(P ), then
P ··· Γ"SP ∆.

4. If P ··· Γ, x : B "SP ∆ and A6B then P ··· (Γ\x), x : A"SP ∆.

5. If P ··· Γ"SP ∆, α : A and A6B then P ··· Γ"SP (∆\α),α : B.

6. If P ··· Γ"SP ∆ and ∆6∆′ then P ··· Γ"SP ∆′.

Proof. See Proof A.2.2 in Section A.2.

The new type system is a proper restriction of the old one, which can be understood by
adding back the explicit quantifier rules in the naı̈ve type system wherever the 6 and
#〈Γ;∆〉 relations are employed in the improved type system. We omit the rather-lengthly
details here, since we do not depend on this result. However, in brief, in the case of the
(ax) rule one employs an (ax) rule followed by a (possibly empty) sequence of (∀L) rules,
followed by a (possibly empty) sequence of (∀R) rules. In all other cases which employ
6, a (possibly empty) sequence of (∀L) rules is added. In all cases which employ #〈Γ;∆〉,
a (possibly empty) sequence of (∀R) rules is added.

In order to deal succinctly with the more-complex inference rules of the improved type
system in the following proofs, we employ the following straightforward lemma:
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Lemma 4.3.8 (Generation Lemma). 1. 〈x.α〉 ··· Γ"SP ∆ if and only if Γ = Γ′, x : A

and ∆ = α : B with A6B.

2. x̂P α̂·β ··· Γ"SP ∆ if and only if x (∈Γ and α (∈∆ and ∆ = ∆′, β : C and there exist
A,B such that A→B #〈Γ;∆′〉 C and P ··· Γ, x : A"SP α : B, ∆′.

3. P α̂ [x] ŷQ ··· Γ"SP ∆ if and only if α (∈∆ and y (∈Γ and Γ = Γ′, x : C and there exist
A,B such that C6A→B and P ··· Γ′ "SP α : A, ∆ and Q ··· Γ′, y : B "SP ∆.

4. x̂P · α ··· Γ"SP ∆ if and only if x (∈Γ and ∆ = ∆′,α : B and there exists A such that
¬A #〈Γ;∆′〉 B and P ··· Γ, x : A"SP ∆.

5. x · P α̂ ··· Γ"SP ∆ if and only if α (∈∆ and Γ = Γ′, x : B and there exists A such that
B6¬A and P ··· Γ′ "SP α : A, ∆.

6. P α̂ † x̂Q ··· Γ"SP ∆ if and only if α (∈∆ and x (∈Γ and there exists A such that
P ··· Γ"SP α : A, ∆ and Q ··· Γ, x : A"SP ∆.

Proof. Each case follows from the fact that each syntactic construct can be typed by a
unique typing rule, imposing exactly the conditions described.

We can now show that this new type system amends the unsoundness of the previous one.

Theorem 4.3.9 (Witness Reduction for Improved Type Assignment). 1. If both of the
following hold:

P ··· Γ"SP α : A, ∆ (4.1)

Q ··· Γ, x : A"SP ∆ (4.2)

then we have:

(a) Q{P α̂!x} ··· Γ"SP ∆

(b) P{α!x̂Q} ··· Γ"SP ∆

2. If P ··· Γ"SP ∆ and P → Q then Q ··· Γ"SP ∆.

Proof. See Proof A.2.3 in Section A.2.

Using our previous observation concerning the fact that let and a cut can both explicitly
represent a substitution, we define an encoding of the language of ML into X i.
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Definition 4.3.10 (Encoding ML in X i).

**x++αML = 〈x.α〉
**λx.M++αML = x̂**M++βMLβ̂ ·α
**MN++αML = **M++βMLβ̂ † ŷ(**N++γMLγ̂ [y] ẑ〈z.α〉)

**let x = M in N++αML = **M++βMLβ̂ † x̂**N++αML

where y, z, β, γ are fresh connectors.

This is an extension of the encoding of λ-calculus given for the X -calculus [78]. In all
cases there is exactly one occurrence of the plug α in the resulting X i-term, and this is
the only free plug.

Lemma 4.3.11 (Cuts simulate substitutions).

1. For all ML-terms M, N , **N++αML{**M++βMLβ̂!x}→ **(N [M/x])++αML.

2. For all ML-terms M, N , **M++βMLβ̂ † x̂**N++αML → **(N [M/x])++αML.

Proof. 1. By straightforward induction on the structure of the term N .

2. From the previous part.

The fact that such a cut behaves like the substitution of the original system relies on the
fact that β occurs only once in the left-hand subterm of the cut. If an arbitrary X i-term
were to appear here in which β occurred many times, the cut might be activated to the left
(via the rule (act-L)), and copies of the right-hand term made during propagation; then
the behaviour might be quite different.

Returning to our encoding of ML, we have the following result.

Theorem 4.3.12 (Simulation of ML). For all ML-terms M, N , if M →ML N then
**M++αML → **N++αML.

Proof. Examining definition 4.2.2, there are two cases to consider.
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(M ≡ (λx.M1 M2)) Then N ≡M1[M2/x]. Applying Definition 4.3.10, we can see that:

**λx.M1 M2++βML = **λx.M1++δMLδ̂ † ŷ(**M2++εMLε̂ [y] ẑ〈z.β〉)

= (x̂**M1++φMLφ̂·δ)δ̂ † ŷ(**M2++εMLε̂ [y] ẑ〈z.β〉)

→ **M2++εMLε̂ † x̂(**M1++φMLφ̂ † ẑ〈z.β〉)

→ **M2++εMLε̂ † x̂(**M1++φML[β/φ])

= **M2++εMLε̂ † x̂**M1++βML

This case is completed by Lemma 4.3.11.

(M ≡let x = M2 in M1) Again, N ≡M1[M2/x]. The result follows immediately from
Lemma 4.3.11, noting that

**let x = M2 in M1++βML = **M2++εMLε̂ † x̂**M1++βML

We can show that our type system is at least as flexible as the restricted type system for
ML which we have generalised:

Proposition 4.3.13 (Preservation of Typings). For all ML-terms M , if Γ "ML M : A in the
type system in which polymorphism is restricted to let-terms which bind values [83], then
**M++βML ··· Γ"SP β : A.

It is natural to ask whether our generalisation is useful in the original context of ML. For
example, can we define a type system for ML based on the observations of this chapter
which allows more typeable terms than [83], and is still sound? We can answer this
question in the affirmative; if we define a type system via our encoding into the X i-
calculus (i.e., we encode ML-terms and then type their encodings), we obtain a more
permissive system. A simple example of this extra flexibility can be seen as follows:

Example 4.3.14 (Enhanced type assignment for ML). Consider the ML-term let x =

let y = λz.z in y in x. It is fairly clear that this term reduces to the identity λz.z, and
it would be nice if it were typeable as such. Furthermore, since there are no free variables
in the term (and no imperative features, of course), it seems as though it must be safe to
do so. However, the value restriction [83] does not permit the outermost let-construct
to employ a polymorphic type, since let y = λz.z in y is not a value. However, con-
sider now the encoding into X i; we obtain (using the plug α as output of the whole
term) ((ẑ〈z.β〉β̂ ·γ)γ̂ † ŷ〈y.δ〉)δ̂ † x̂〈x.α〉. The polymorphic type derivable for the term
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ẑ〈z.β〉β̂ ·γ can be ‘carried through’ each of the cuts, and in particular, when the subterm
〈y.δ〉 is typed, the polymorphic type can be assigned to δ immediately, as is required by
the system. The first part of such a typing derivation follows (the outermost cut is typed
analogously to the one shown):

(ax)
〈z.β〉 ··· z : ϕ"SP β : ϕ

(→R)
bz〈z.β〉bβ ·γ ··· ∅"SP γ :∀X.(X→X)

(ax)
〈y.δ〉 ··· y :∀X.(X→X)"SP δ :∀X.(X→X)

(cut)
(bz〈z.β〉bβ ·γ)bγ † by〈y.δ〉 ··· ∅"SP δ :∀X.(X→X)

4.3.4 Principal Typings

It is well known that a notion of principal types for ML terms exists (as presented by
Milner), with respect to an initial basis Γ. This is result is shown through the definition
of the algorithm W , which takes as input an ML-term and initial basis Γ, and can be
used to compute the most general pair of substitution S and generic type A such that
(S Γ) "ML M : A.

In the case of Milner’s algorithm W , the types returned are not quantified, but in showing
the completeness of the algorithm the ∀-closure of the type is taken. The closure can be
seen to convert a type into its most general form, and so it can be argued that the principal
type should be defined after this closure is taken. This is the idea we follow here; we will
generalise the types of our outputs as much as possible, in our definition of a principal
context.

We can define principal typings in our shallow polymorphic version of X i, with respect
to a given context 〈Γ; ∆〉 which gives a type to the free connectors in a term. Notice that
such a context provides types for the outputs as well as the inputs.

We define an algorithm, based on the W algorithm of [22], which takes as input an X i-
term P and a left-context Γ, and either fails (in which case P is not typeable) or else
produces a pair of substitution S and right-context ∆, representing the least substitution
and strongest right-context possible such that P ··· (S Γ)"SP ∆. Before we are able to
define this algorithm, we will to define a number of ‘helper’ operations.

Firstly, we require an operation to take the ‘strongest’ closure of a generic type A in a
context 〈Γ; ∆〉; essentially this implicitly applies the (∀R) to the appropriate statement as
many times as is possible. Viewed otherwise, the operation computes the ‘largest’ (in the
6 relation) generic type B, such that A #〈Γ;∆〉 B.

Definition 4.3.15 (∀-closure). The ∀-closure of type A with respect to a context 〈Γ; ∆〉,
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is defined by: ∀-closure A 〈Γ; ∆〉 = ∀X1 . . . ∀Xn.(A[Xi/ϕi]) where ϕ1, . . . , ϕn are the
atomic types occurring in A but not in 〈Γ; ∆〉.

We can show that this operation does indeed compute the ‘largest’ possible result, with
the following result:

Proposition 4.3.16 (∀-closure is the most general closure). If B = ∀-closure A 〈Γ; ∆〉
then:

1. A #〈Γ;∆〉 B.

2. If A #〈Γ;∆〉 C then B6C.

3. For all substitutions S, (S B)6∀-closure (S A) 〈(S Γ); (S ∆)〉.

4. If ∆6∆′ then B6∀-closure A 〈Γ; ∆〉.

Proof. See Proof A.2.4 in Section A.2.

In our amended type system, whenever a statement is introduced into a right-context it
may be ‘closed’ to a stronger type (with more ∀ quantification). Furthermore, this is the
only point in the derivation at which these kinds of generalisations may be applied to the
statement. For our type-inference algorithm to compute the most general right-context
possible, it will use the operation of ∀-closure whenever such closures are permitted by
the rules, in order to obtain the best possible type so far. For example, if we were to run our
algorithm on the term x̂〈x.α〉α̂·β, we would expect it to generate a type such as (ϕ→ϕ)

for β but then to also quantify (close) it to the most-general possible type ∀X.(X→X).

This approach seems in line with the presentation of our type inference rules; we are
employing them in the most-general way possible. However, it leads to a new problem
when the contraction of multiple occurrences of a plug β in a term takes place. In general,
different quantified types get computed by the algorithm for the different occurrences of
a plug β, and at some stage these need to be ‘merged’ into just one type that works
in all positions. In a simple type system, without quantified types, one usually applies
Robinson’s unification algorithm to perform this ‘merging’. However, we need to deal
with the fact that quantifiers will, in general, occur in the types. Furthermore, we wish the
resulting type to itself be quantified as much as possible.

This leads to a desire for an operation which, given two generic types A and B, computes
a third generic type C which is the ‘most general’ type which can be used in place of both
A and B. This has parallels with unification; indeed we would expect that if both A and
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B contain no quantifiers, then it would perform exactly the operation of unification. On
the other hand, if A and B contained no atomic types, it would seem reasonable that the
operation should compute the ‘biggest’ (in the 6 sense) generic type which is a generic
instance of both A and B. In general, we seek the ‘biggest’ generic type C and minimal
substitution S such that both (S A)6C and (S B)6C. Informally, we seek a most general
solution in S and C to the problem:

(S A)6C & (S B)6C

We define an algorithm, which we call ‘generic unification’, in order to compute this
‘most general solution’. In order to do so, we need to introduce operations to modify the
domains of substitutions. This is because, during the algorithm, fresh instances of the
generic types will be taken, and the substitutions subsequently defined will (in general)
act on the fresh atomic types introduced. However, these types were not present in the
original generic types, and so the resulting substitution would not be the most general one;
it might perform the minimal operations on A and B but also peform other operations
which are redundant from the point of view of the initial problem.

In order to overcome these difficulties, we define two new operations on substitutions.
Firstly, we define the restriction of a substitution S to a set of atomic types Φ, which is
written (S ∩Φ) and is itself a substitution which acts on elements of Φ exactly as S does,
and on all other atomic types as the identity.

As a shorthand, we also define a complementary operation (S ∩ (dom(S)\Φ)) (i.e. re-
stricting a substitution to everything but the set Φ), which we write as (S\Φ).

We give formal definitions as follows:

Definition 4.3.17 (Restriction of a substitution). For any substitution S and set of atomic
types Φ, the restriction of S to Φ, written (S ∩ Φ) is defined by:

(S ∩ Φ) = {(ϕ .→ A)|(ϕ .→ A) ∈ S & ϕ ∈ S}

We also define the shorthand:

(S\Φ) = (S ∩ (dom(S)\Φ)) = {(ϕ .→ A)|(ϕ .→ A) ∈ S & ϕ (∈S}

In order to reason formally about the effect of these operations later on, we will require a
number of properties about their definitions.

Lemma 4.3.18 (Range and domain).
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1. For any substitutions S1, S2 if dom(S1)∩range(S2) = ∅ and dom(S2)∩range(S1) =

∅ then (S2◦S1) = (S1◦S2).

2. If S2◦S1 = S4◦S3 and dom(S2)∩ range(S1) = ∅ and dom(S2)∩ dom(S3) = ∅ and
dom(S2)∩ range(S3) = ∅, then there exists a substitution S5 such that S1 = S5◦S3.

3. For any substitution S, type scheme A and atomic type ϕ, if ϕ ∈ (S A) then either:

(a) ϕ ∈ atoms(A) and ϕ (∈ dom(S), or,

(b) ϕ (∈ atoms(A) and there exists ϕ′ ∈ atoms(A) with ϕ ∈ atoms(S ϕ′).

4. For any binding renaming [Xi/ϕi] , and any type scheme A and atomic type ϕ, if
ϕ ∈ atoms(A[Xi/ϕi] ) then ϕ ∈ atoms(A) and ϕ (∈ {ϕi}.

Lemma 4.3.19 (Restrictions). 1. If atoms(A) ⊆ {ϕi} then (S∩{ϕi} A) = A.

2. For any substitution S, type scheme A and set of atomic types {ϕ}, if atoms(A) ∩
{ϕ} = ∅ then (S A) = ((S\{ϕ}) A).

3. For any substitution S and set of atomic types {ϕ}, if dom(S) ⊆ {ϕ} then S\{ϕ} =

id.

4. For any substitutions S1 and S2 and set of atomic types {ϕ}, if {ϕ}∩dom(S1) = ∅
then (S2◦S1)\{ϕ} = (S2\{ϕ})◦S1.

5. For any substitution S, generic type A and set of atomic types {ϕ}, if (S A) = A

then (S\{ϕ} A) = A.

6. For any substitutions S,S ′, if it is the case that for all ϕ ∈ dom(S ′), we have
(S ′ ϕ) = (S ϕ), then it holds that S ′ = S ∩ dom(S ′).

7. For any substitution S and set of atomic types {ϕ}, we have:

S = ((S ∩ {ϕ})◦(S\{ϕ}) = (S\{ϕ})◦((S ∩ {ϕ})

Armed with these definitions and results, we can now present the definition of generic
unification.
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Definition 4.3.20 (Generic Unification).

unifyGen A B = (Sr,∀Xi.Cu[Xi/ϕi] )

where
A′ = freshInst(A)

B′ = freshInst(B)

Su = unify A′ B′

Cu = (Su A′)

{ϕi} = atoms(Cu)\(atoms(Su A)∪atoms(Su B))

Sr = (Su ∩ (atoms(A)∪atoms(B)))

Note that this algorithm may fail, in the case where the call unify A′ B′ results in failure.
As usual, we do not model the failure case explicitly, but speak of success of failure of
the algorithm as a whole.

We can give a formal justification for the definition of the algorithm, using the following
results:

Theorem 4.3.21 (Soundness and Completeness of Generic Unification). For any generic
types A and B:

1. (Soundness:) If unifyGen A B succeeds, resulting in a pair (Sr, C) then (Sr A)6C

and (Sr B)6C.

2. (Completeness:) If S is a substitution and D a generic type such that (S A)6D

and (S B)6D, then unifyGen A B succeeds, resulting in a pair (Sr, C), and there
exists a further substitution S ′ such that S = S ′◦Sr and (S ′ C)6D.

Proof. See Proof A.2.5 in Section A.2.

Just as for the simple type assignment system (Definition 3.3.2), we require the generali-
sation of unification to contexts, we require here the generalisation of generic unification
to right-contexts. We choose to omit a concrete definition, but depend on the following
properties, which are relatively easy to guarantee given the previous theorem:

Proposition 4.3.22 (Soundness and Completeness of Generic Context Unification). There
exists an algorithm unifyGenContexts which takes two right-contexts ∆1 and ∆2 as ar-
guments, and (if it succeeds) returns a pair of substitution Su and right-context ∆u, satis-
fying:

1. If unifyGenContexts ∆1 ∆2 succeeds, then (Su ∆1)6∆u and (Su ∆2)6∆u.
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2. If S is a substitution and ∆ a right-context such that (S ∆1)6∆ and (S ∆2)6∆,
then unifyGenContexts ∆1 ∆2 succeeds, and there exists a further substitution S ′

such that S = S ′◦Su and (S ′ ∆u)6∆.

We are now in a position to define our type-inference algorithm.

Definition 4.3.23 (sppc). The procedure sppc :: 〈X i, Γ〉 → 〈S, ∆〉 is defined in Figure
4.2.

We can now give our principal contexts result.

Theorem 4.3.24 (Soundness and Completeness of sppc). Given an X i-term R and an
initial left-context Γ such that

fs(R) ⊆ dom(Γ) (4.3)

we have:

1. If sppc (R, Γ) succeeds and sppc (R, Γ) = 〈SR, ∆R〉 then R ··· Γ"SP ∆.

2. If there exist 〈S, ∆〉 such that R ··· (S Γ)"SP ∆, then a call sppc (R, Γ) succeeds,
and if sppc (R, Γ) = 〈SR, ∆R〉 then there exists a further substitution S ′ such that
S = S ′◦SR and (S ′ ∆R)6∆.

Proof. See Proof A.2.6 in Section A.2.

4.4 Extensions to the Type System

4.4.1 Existential Shallow Polymorphism

Since classical sequent calculus exhibits a natural symmetry between left and right-contexts
(inputs and outputs, in a computational sense), it is natural to consider the asymmetric no-
tions of (universal) polymorphism presented so far as an incomplete picture. Universal
polymorphism allows an output (plug) type to be generalised with quantified variables,
and then to be connected to multiple input types, each taking a different instantiation of
the variables. What then, if we allow this the opposite way around? It seems natural to
consider the generalisation of an input type, to be instantiated many times for the multiple
outputs it is connected with.

In a logical sense, this amounts to the incorporation of existential quantification; being the
dual notion to universal. As might be hoped, it is straightforward to adapt the earlier work
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sppc (〈x.α〉, Γ) = 〈id, {α :A}〉
where A = typeof x Γ
sppc (x̂P α̂·β,Γ) = 〈Sr, (Su ∆P \α\β)∪{β : D}〉
where ϕ = fresh

〈SP , ∆P 〉 = sppc (P, Γ∪{x :ϕ})
A = (SP ϕ)
B = freshInst(typeof α ∆P )
C = ∀-closure A→B 〈(SP Γ);∆P \α〉

〈Su,D〉 =
{

unifyGen C typeof β ∆P if β ∈ ∆P

〈id, C〉 otherwise
Sr = (Su◦SP ∩ atoms(Γ))

sppc (P α̂ [y] x̂Q,Γ) = 〈Sr,∆c〉
where 〈SP , ∆P 〉 = sppc (P, Γ)

ϕ = fresh
〈SQ, ∆Q〉 = sppc (Q, (SP Γ)∪{y :ϕ})

A = freshInst(typeof α SQ ∆P )
B = (SQ ϕ)
C = freshInst(typeof x SQ◦SP Γ)
Su = unify C A→B

〈Sc,∆c〉 = unifyGenContexts (Su◦SQ ∆P \α) (Su ∆Q)
Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ))

sppc (x̂P · β,Γ) = 〈Sr, (Su ∆P \β)∪{β : D}〉
where ϕ = fresh

〈SP , ∆P 〉 = sppc (P, Γ∪{x :ϕ})
A = (SP ϕ)
C = ∀-closure ¬A 〈(SP Γ);∆P 〉

〈Su,D〉 =
{

unifyGen C typeof β ∆P if β ∈ ∆P

〈id, C〉 otherwise
Sr = (Su◦SP ∩ atoms(Γ))

sppc (y · P α̂,Γ) = 〈Sr, (Su ∆P )〉
where 〈SP , ∆P 〉 = sppc (P, Γ)

A = freshInst(typeof α ∆P )
C = freshInst(typeof x SP Γ)
Su = unify C ¬A
Sr = (Su◦SP ∩ atoms(Γ))

sppc (P α̂ † x̂Q,Γ) = 〈Sr,∆c〉
where 〈SP , ∆P 〉 = sppc (P, Γ)

A = typeof α ∆P

〈SQ, ∆Q〉 = sppc (Q, (SP Γ)∪{x : A})
〈Sc,∆c〉 = unifyGenContexts (SQ ∆P \α) ∆Q

Sr = (Sc◦SQ◦SP ∩ atoms(Γ))

Figure 4.2: Principal Contexts for Shallow Polymorphic system
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of this chapter to define a type system allowing (only) existential shallow polymorphism,
instead of universal. The essence of the symmetry here can be seen by examination of the
quantifier rules from the logic:

Γ, A " ∆
(∃L)∗

Γ,∃X.A〈x/ϕ〉 " ∆

Γ " A〈B/X〉, ∆
(∃R)

Γ " ∃X.A, ∆
∗: if ϕ does not occur in Γ, ∆.

All of the work presented in this chapter can be adapted analogously for this alternative
quantifier. The notion of closure of a type (Definition 4.3.4) is identical for existential
quantification. The notion of generic instance (Definition 4.2.5) is also the same for the
existential quantifier, except that to read A6B as “A is more general than B” requires the
relation to be inverted compared with the definition for ∀. The type system which results
from these changes is as follows:

Definition 4.4.1 (Existential Shallow Polymorphic Type Assignment for X i). The ex-
istential shallow polymorphic type assignment for X i is defined by the following rules
(where A represents a shallow existential type):

(ax)1
〈x.α〉 ··· Γ, x : A"SP α : B,∆

P ··· Γ, x :A"SP α : B,∆
(→R)2

x̂P α̂·β ··· Γ"SP β : C,∆
P ··· Γ"SP α :A,∆ Q ··· Γ, y :B "SP ∆

(→L)3
P α̂ [x] ŷQ ··· Γ, x :C "SP ∆

P ··· Γ, x : A"SP ∆
(¬R)4

x̂P · β ··· Γ"SP β : C,∆

P ··· Γ"SP α :A,∆
(¬L)5

x · P α̂ ··· Γ, x : C "SP ∆

P ··· Γ"SP α :A,∆ Q ··· Γ, x : A"SP ∆
(cut)

P α̂ † x̂Q ··· Γ"SP ∆

1 A6B. 2 (A→B)6C. 3 (A→B) #〈Γ;∆〉 C. 4 (¬A)6C. 5 (¬A) #〈Γ;∆〉

C.

The resulting type system is sound, although the analogous naı̈ve system would not be
(in this case, it is right propagation that presents a potential for unsoundness, but this is
eliminated above by the same restriction; polymorphic generalisation steps, in the form
of the (∃L) rule, can only be employed at the points at which the appropriate connectors
occur).

We can also define a principal typings algorithm, by ‘reflecting’ the definitions employed
in the previous section. In particular, such an algorithm would type a cut by typing first the
right-hand subterm, and then using the (potentially existentially-quantified) type obtained
to help type the left.

It is interesting that existential polymorphism is traditionally understood in the context
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of information hiding, i.e., providing a facility to lose typing information from a term,
rather than providing extra power in terms of typeability. However, this is a question
of paradigm; in a traditional functional setting, based on minimal logic (such as the
λ-calculus), the addition of existential quantification does extend the typeable terms,
while the addition of universal quantification (along with suitable syntactic constructs
such as let-binding) does. This can be readily understood by moving again to the sequent
calculus setting; when injecting ML (for example) into X i, via the translation above, one
always obtains a term in which there is exactly one free plug, and exactly one occurrence
of the plug. Therefore, the additional power in terms of typeability which existential
polymorphism brings, is not applicable, since it caters for the situation when multiple
occurrences of the same plug need to be typed in different ways.

To summarise, in the setting of classical sequent calculus, the two variants of polymor-
phism can be seen exactly as dual to one another; universal polymorphism allowing gen-
eralisation of outputs and instantiation at multiple inputs, and vice versa for existential.

4.4.2 Symmetric Shallow Polymorphism?

A possible and natural extension to this work which has not been investigated in depth
is the possibility allowing both kinds of quantification to be exploited in a shallow poly-
morphic type system. Since the cuts in the X i-calculus can simultaneously bind multiple
occurrences of both inputs and outputs, it seems reasonable that there may be example
terms which would be made typeable by such a system (such terms do in fact, exist).

The main problem envisaged with such a system is decideable type-assignment. In partic-
ular, the presented approach to typing a cut seems not to adapt to this setting. In the case
of universal polymorphism, a cut is typed by typing the left-hand subterm first, and using
the information gained to help type the right. The reverse ordering of subcalls is suitable
for a system with existential polymorphism. But with both connectives permitted, there is
no obvious approach; it may be that each subterm provides some polymorphic behaviour
which allows to overcome difficulties in typing the other subterm.

We present here an example to motivate the potential application of such a type-system.
For the purposes of this particular example, it is useful to employ the notion of pairing,
corresponding with logical conjunction (∧). The sequent calculus rules for this connective
can be presented as follows:

Γ " A, ∆ Γ " B, ∆
(∧R)

Γ " A ∧B, ∆

Γ, A " ∆
(∧L1)

Γ, A ∧B " ∆

Γ, B " ∆
(∧L2)

Γ, A ∧B " ∆

85



However, rather than extend our types and calculus to accommodate this connective, we
can define pairing by A ∧ B ≡ ¬(A→¬B). We will treat A ∧ B as a shorthand, in the
following discussion. We choose to encode the first two of the three inference rules above
(we do not require the third), as follows:

Γ " A, ∆

Γ " B, ∆
(¬L)

Γ,¬B " ∆
(→L)

Γ, A→¬B " ∆
(¬R)

Γ " ¬(A→¬B), ∆

Γ, A " ∆
(→I)

Γ " A→¬B, ∆
(¬L)

Γ,¬(A→¬B) " ∆

Correspondingly (by inhabiting these derivations with X i-terms), when we wish to take
two inputs (on x and w, say) and output the corresponding pair (on γ), we use the term
ŷ(〈x.α〉α̂ [y] ẑ(z · 〈w.β〉β̂)) · γ, which is typeable as follows:

(ax)
〈x.α〉 ··· Γ, x : A,w : B " α : A, ∆

(ax)
〈w.β〉 ··· Γ, w : B " β : B, ∆

(¬L)
z · 〈w.β〉β̂ ··· Γ, w : B, z :¬B " ∆

(→L)
〈x.α〉α̂ [y] ẑ(z · 〈w.β〉β̂) ··· Γ, x : A,w : B, y : A→¬B " ∆

(¬R)
ŷ(〈x.α〉α̂ [y] ẑ(z · 〈w.β〉β̂)) · γ ··· Γ, x : A, w : B " γ :¬(A→¬B), ∆

On the other hand, corresponding to the rule (∧L1), when we want a term which takes
an input of type A ∧ B (on l, say) and produces an output of type A (on π), we use
l · (m̂〈m.π〉σ̂·τ)τ̂ , which can be typed as follows:

(ax)
〈m.π〉 ··· Γ,m : A " π : A,σ :¬B, ∆

(→R)
m̂〈m.π〉σ̂·τ ··· Γ " τ : A→¬B,π : A, ∆

(¬L)
l · (m̂〈m.π〉σ̂·τ)τ̂ ··· Γ, l :¬(A→¬B) " π : A, ∆

Now we are equipped to construct our example. Consider the function which takes an
argument and produces a pair of two copies of that argument. This would be expected to
have the output type A→(A∧A). The operation of duplicating an input x and producing
the pair on γ is (according to the above) represented by:

P1 = ŷ(〈x.α〉α̂ [y] ẑ(z · 〈x.β〉β̂)) · γ

and so the function described is x̂P1γ̂ ·δ.
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Now consider the pairing of x and w represented by

P2 = ŷ(〈x.α〉α̂ [y] ẑ(z · 〈w.β〉β̂)) · γ

and form the function x̂P2γ̂ ·δ. This term has a free input w, of type B, say, and the
output type δ is then A→(A∧B). Both of the terms x̂P1γ̂ ·δ and x̂P2γ̂ ·δ have (in a sense)
an identity function embedded inside; if one considers the function implicitly defined by
mapping x to the first projection of γ, this is the identity in both cases. With this in mind,
we construct a term which accepts a function of type A→(A ∧ B) as input (on socket
p), extracts this implicit function of type A→A, and then applies the function to itself,
leaving the result on output ω. This can be represented by the term:

Q = (q̂(〈q.ε〉ε̂ [p] r̂(r · (ŝ〈s.η〉σ̂·λ)λ̂))η̂ ·µ)µ̂ [p] l̂(l · (m̂〈m.π〉σ̂·τ)τ̂)

in which the two occurrences of p correspond to the two uses of the input, each of which
is reconstructed into a function of type A→A by the surrounding structure. The point of
this example is, in order to type the self-application (buried) within this term, we need to
reflect in the typing that the function extracted is indeed the identity function, and is not
just typeable as A→A, but as ∀X.(X→X) as usual. However, we now form the term (in
which the import binding ◦ and o and inputting on n plays no active role, and is present
only to allow the two subterms):

((x̂P1γ̂ ·δ)◦̂ [n] ô(x̂P2γ̂ ·δ))δ̂ † p̂Q

In this term, the two occurrences of δ cannot obviously be given a common polymorphic
type. Their natural simple types are C→(C ∧ C) (for any C), and A→(A ∧ B) (for
any A, where B is the type of w). It is possible to unify these types, to give the type
B→(B→B) to δ, where B is also the type of the free w in P2, but then the type of δ may
not be generalised (B occurs in the context). This means that the self-application within
Q cannot be typeable. However, from the structure of Q, we know that the second element
of the pair returned by the function on δ is always discarded, and we wish to ignore it in
the type-assignment. This is possible with the use of an existential type. We note that the
two types C→(C ∧C) and A→(A∧B) can both be ‘weakened’ (applying the (∃R) rule)
to give ∃Y.(C→(C ∧ Y )) and ∃Y.(A→(A ∧ Y )), reflecting the fact that we wish to treat
the type in place of Y as irrelevant. But now, A and C are arbitrary, and do not occur in
the context, so we can ‘close’ both types to the common type ∀X.∃Y.(X→(X∧Y )). The
presence of the ∀-quantifier makes it possible to type the term Q also; the variable X may
be instantiated as some type D→D for the first occurrence of p, and as the corresponding
type D for the second. We omit the exact derivation, since it is prohibitively large, but the
rough shape of the type derivation for Q is as follows:
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(ax)
q :D " ε :D

(ax)
s :D " η :D

(∧L1)
r : D ∧ E " η : D

(→L)
p :∀X.∃Y.(X→(X ∧ Y )), q : D " η : D

(→R)
p :∀X.∃Y.(X→(X ∧ Y )) " µ :D→D

(ax)
m : D→D " π : D→D

(∧L1)
l : (D→D) ∧ F " π :D→D

(→L)
p :∀X.∃Y.(X→(X ∧ Y )) " π : D→D

This example motivates the use of types involving both quantifiers. The term in question
is not typeable in the simple type system, nor in a shallow polymorphic type system using
just one of the quantifiers.

4.5 Summary

We have shown that the problems with ML-style type assignment in the presence of con-
trol operators have parallels when defining such a type assignment for calculi based on
classical logic. Furthermore, in the case of classical sequent calculus, the source of the
potential unsoundness can be readily identified; it is the propagation of cuts past im-
plicit occurrences of polymorphic generalisation rules which causes trouble. With this in
mind, we were able to identify a restriction of the naı̈ve system which precisely avoids the
problematic cases, while retaining a reasonable degree of flexibility in the type system.
Furthermore, the symmetric nature of classical sequent calculus suggested that existential
quantification might also play an interesting role in such a type system, and (as we have
demonstrated) there seems to be scope for a powerful and symmetric type assignment
based on the incorporation of both quantifiers.

We spent considerable effort proving that our formalisation of shallow polymorphism
with the universal quantifier is sound, and retains a notion of principal types similar to
that which is known for ML. In the process, we were required to formalise the notion of
generic unification, which has a soundness and completeness property of its own.

In the next chapters, we turn to the paradigm of classical natural deduction, and abandon
the work presented here for the time being. However, in Chapter 7, we will present work
on relating the two paradigms, and show that the results presented in this section can be
adapted appropriately.
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Chapter 5

A Term Calculus for Classical Natural
Deduction

5.1 Overview

In this chapter, we present a programming calculus based on a Curry-Howard Correspon-
dence with a canonical system of classical natural deduction, close to the original formu-
lation due to Gentzen. The calculus is an extension of Parigot’s λµ-calculus, which we
call νλµ-calculus. Our motivation is to achieve a Curry-Howard Correspondence without
significantly modifying the original logic. At the same time, we aim for a notion of reduc-
tion which generalises those which exist already in the literature for similar calculi. As for
the X i-calculus, we choose to employ both the implication and negation connectives in
the logic. From a computational point of view, this involves introducing a separate binder
for constructing continuations: we represent continuations as distinct first-class citizens.
This will be shown to have advantages in an untyped setting, since the µ-reduction rules
of the calculus can treat continuations and functions differently.

We discuss a generalisation of the µ-reduction rules of existing calculi, and give intuitive
motivations for the reductions in terms of the type system. We state a principal typing
property for the calculus, which generalised the well-known result for the λ-calculus. We
compare the νλµ-calculus with some existing calculi and show that we can represent and
generalise both the λµ and λµµ̃-calculi, preserving typings and reductions. This calculus
will also be used as the basis of further work in the natural deduction paradigm, in the
following chapters.
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5.2 Background

5.2.1 Natural Deduction for Classical Logic

We give here for reference a fairly-standard set of Gentzen-style natural deduction rules
for classical logic with the →, ¬ and ⊥ connectives.

Definition 5.2.1 (Classical Natural Deduction with → ¬ ⊥). Formulas (ranged over by
A,B) are defined by the following grammar: A,B := ⊥ | ϕ | ¬A | A→B (in which ϕ

ranges over an infinite set of atomic formulae).

(ax)
Γ, A " A

Γ, A " B
(→I)

Γ " A→B

Γ " A→B Γ " A
(→E)

Γ " B

Γ,¬A " ⊥
(PC)

Γ " A

Γ, A " ⊥
(¬I)

Γ " ¬A

Γ " ¬A Γ " A
(¬E)

Γ " ⊥

The system consists of the usual axiom rule, introduction and elimination rules for the ¬
and → connectives, and the rule ‘proof by contradiction’ (sometimes ‘reductio ad absur-
dum’), which makes the logic classical. Gentzen [34] describes that classical natural de-
duction is obtained by taking the intuitionistic introduction/elimination rules for the con-
nectives, and adding a rule with “special status” (not fitting the introduction/elimination
pattern) to make the logic classical. In our case, the (PC) rule fulfils this role. This
differs from Gentzen’s original choice, in which he adds instead the ‘law of excluded
middle’ (i.e., A∨¬A is made an axiom of the logic, for every formula A). We choose this
approach partly because we do not treat disjunction as a primitive connective, but also
because we follow previous work ([60, 54]). Considering our stated aim of keeping the
logic close to its origins, we do not regard this difference as a serious one, since Gentzen
himself employs this alternative when proving the equivalence of his calculi with one an-
other, and with those of Hilbert. Note that we omit the standard rule for (⊥E) since it
is subsumed by the (PC) rule (when the bound assumption ¬A is introduced by weak-
ening the context Γ). A detailed comparison of various alternative classical logics and
corresponding programming calculi can be found in [2].

5.2.2 The λµ-calculus

The λµ-calculus was introduced by Parigot in [54], and has been extensively studied as a
calculus relating to classical logic. It is a calculus based essentially on a Curry-Howard
correspondence, but the logic with which it corresponds is not presented in the style of
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Gentzen. The logic is often referred to as ‘natural deduction with multiple conclusions’,
or sometimes even just ‘natural deduction’, although this is somewhat misleading (as will
be discussed below). We recall here the basic definitions.

Definition 5.2.2 (λµ Syntax). 1 The syntax of λµ-terms is defined over two distinct infinite
sets of variables (one of Roman letters x, y, . . . and one of Greek letters α, β, . . .) by the
following syntax:

M, N := x | λx.M | M N | [α]M | µα.M

The reduction rules of the λµ-calculus rely on an additional special notion of substitution.
The syntax M〈[β](M ′ N)/[α]M ′〉 denotes the replacement of all subterms of M of the
form [α]M ′ with the corresponding term [β](M ′ N) (this is sometimes referred to as
structural substitution in the literature). As usual, we assume these substitutions to be
capture-free.

Definition 5.2.3 (λµ Reductions). The reductions of the λµ-calculus are defined by the
following rules:

(β) (λx.M) N → M〈N/x〉
(µ) (µα.M) N → µβ.M〈[β](M ′ N)/[α]M ′〉
(µr) [β]µα.M → M〈β/α〉
(µη) µα.[α]M → M if α (∈M

Since we wish to discuss the logic underlying the λµ-calculus, we will also recall the
basic type-assignment rules. We omit the rules for quantifiers (e.g., in [55]), since they
are not relevant to this chapter, and obscure the correspondence between the logic and the
syntax constructs.

Definition 5.2.4 (Type Assignment for λµ).

(ax)
Γ, x : A "λµ x : A | ∆

Γ, x : A "λµ M : B | ∆
(→I)

Γ "λµ λx.M : A→B | ∆

Γ "λµ M : A→B | ∆ Γ "λµ N : A | ∆
(→E)

Γ "λµ M N : B | ∆

Γ "λµ M :⊥ | α : A, ∆
(µ)

Γ "λµ µα.M : A | ∆

Γ "λµ M : A | ∆
(name)

Γ "λµ [α]M :⊥ | α : A, ∆

1In the original presentation of [54], the syntax of the λ-calculus was extended only with terms of the
form µα.[β]M ; i.e. the last two constructs above only occur together. This simplifies the type-assignment
for the calculus, at the expense of some logical expressiveness. Various subsequent work (for example
[26, 15, 53, 61]) has involved separating these as constructs; we adopt this approach.
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The logic underlying this type system is not an example of a standard natural deduc-
tion calculus: the inference rules corresponding to the constructs µα.M and [α]M are
presented as structural rules, which allow one to manipulate a collection of conclusions,
choosing which is the ‘current’ or ‘active’ one2. These rules do not fit into the intro-
duction/elimination scheme usual for natural deduction rules.3 The original intention of
the natural deduction style (which was to correspond with natural argument as much as
possible), and the characterisation of the inference rules in terms of the semantics of the
logical connectives (see [60]) no longer applies in an obvious way to this logic. On the
other hand, Parigot shows how to relate the logic back to a usual presentation of natural de-
duction in [54], in which negation occurs within types, as well as implication and bottom
(⊥). This is achieved by replacing each multiple-conclusion sequent Γ "λµ M : A | ∆

by the single-conclusion sequent Γ,¬∆ "M : A, in which ¬∆ = {α :¬A | α : A ∈ ∆}.
Under this transformation, the type-assignment rules become the following:

(ax)
Γ, x : A,¬∆ " x : A

Γ, x : A,¬∆ "M : B
(→I)

Γ,¬∆ " λx.M : A→B

Γ,¬∆ "M : A→B Γ,¬∆ " N : A
(→E)

Γ,¬∆ "M N : B

Γ,¬∆,α :¬A "M :⊥
(µ)

Γ,¬∆ " µα.M : A

Γ,¬∆ "M : A
(n)

Γ,¬∆,α :¬A " [α]M :⊥

The rules (ax), (→I) and (→E) are now essentially the familiar rules from the λ-calculus.
The (µ) rule can now be seen as a version of the ‘proof by contradiction’ inference rule,
while the (n) rule is related to the (¬E) in which the left-hand premise has been restricted
to an axiom (but using a Greek variable), as is illustrated in Figure 5.1. In this way, the
λµ-calculus can be seen to have a Curry-Howard correspondence with a restricted version
of the natural deduction system of Definition 5.2.1. The precise restrictions in place are
as follows:

1. Assumptions are divided into two ‘classes’ (the two classes of variables in λµ). In
this discussion, we will refer to these as ‘usual’ and ‘special’ assumptions.

2. The (PC) rule is restricted to bind only ‘special’ assumptions in its premise (this
corresponds to the µ-binding of Greek variables).

2In fact, these are reminiscent of the exchange rule employed in the original sequent calculus [34].
3Ong and Stewart [53] present the typing rules for these two constructs as an introduction/elimination

pair for the connective⊥. However, these rules do not form such a pair in the sense made explicit by Prawitz
[60]. In particular, the rule for µ-binding is not the natural deduction elimination rule for ⊥, since it binds
an assumption.
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(ax)
Γ,¬∆,α :¬A " α :¬A Γ,¬∆ "M : A

(¬E)
Γ,¬∆, α :¬A " [α]M :⊥

. . .
Γ,¬∆ "M : A

(n)
Γ,¬∆,α :¬A " [α]M :⊥

Figure 5.1: Comparison: rule (n) is a restriction of (¬E)

3. The (¬E) rule is restricted to allow only axioms to occur as the first (major) premise,
and these axioms may only feature ‘special’ assumptions (this corresponds to only
allowing Greek variables to occur in the position of α in [α]M ).

4. ‘Special’ assumptions may not be used in any other way (Greek variables do not
occur in the position of Roman variables).

5. The (¬I) rule is removed (no syntax construct is present to ‘inhabit’ this rule).

These restrictions do not seem very intuitive from the point of view of the logic. For
example, in the (¬E) rule, it should be possible for an arbitrary proof of the conclusion
¬A to occur in the position of the major premise. It is natural to consider the effect of
these restrictions on the expressiveness of λµ as a term assignment for classical logic in
general. In the presentation of λµ given in [55],⊥ is not given a full treatment as a type (in
fact, ⊥ is not explicitly mentioned in the definition of types, although is referred to later
on). Parigot writes “. . . [we use] the following special interpretation of naming for ⊥: for
α a µ-variable, ⊥α is not mentioned (in fact one could have a special variable ϕ for ⊥)”.
This implicit treatment of what is essentially a (⊥E) step appears to make the Curry-
Howard correspondence with the full logic incomplete (although this is open to some
debate, depending on whether one identifies ⊥ with an empty stoup in the judgements).
Ariola and Herbelin argue in [2] that the λµ calculus corresponds with ‘minimal classical
logic’4. They define an extension of λµ, adding a special syntax construct [tp]M , where
tp acts as a ‘continuation constant’. In logical terms, the new construct corresponds with
an explicit (⊥E), and they then show that full classical provability is achieved. It seems
surprising that the addition of the (⊥E) rule to the logic provides any additional strength
in terms of provability, since this rule is (in a standard natural deduction setting) subsumed
by the (PC) rule, which is already inhabited by the µ-binding construct. This apparent
inconsistency stems from the fact that the presentation of the type system of λµ (c.f.,
Definition 5.2.4) is quite different from a usual natural deduction presentation. In terms
of provability, the apparent ‘gap’ in the original system could be resolved simply by

4Minimal classical logic is defined in [2] as minimal logic extended with Pierce’s law ((A→B)→A)→A
but without the rule (⊥E) (which is not derivable in this logic). It is between minimal and classical logic in
strength, but distinct from intuitionistic logic (which is minimal logic plus (⊥E)).
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interpreting an empty stoup as a stoup with type ⊥ inside. In fact, this is essentially the
approach taken in [61, 15].

Although completeness from a provability perspective is a definite requirement in order
to consider a calculus to represent the full computational content of classical logic, we
argue that it is not sufficient. Since we interpret “proofs as programs”, it is the proofs
that give us our computational objects, and the proof reductions which essentially specify
the possible computational behaviour (c.f., Section 1.1 ). Therefore, in order to speak
about a Curry-Howard correspondence with full classical logic, as well as ensuring that
all valid formulas are provable we should be concerned that all ‘interesting’ proofs of
these formulas are represented.

We consider here each of the five restrictions identified above, and make appropriate addi-
tions and alterations to the λµ-calculus so that they can be lifted, with the aim of restoring
a Curry-Howard correspondence with a Gentzen-style natural deduction system. In this
way, we obtain a calculus still much in the spirit of the λµ-calculus, but with a richer and
more expressive syntax. Starting then from the version of λµ defined above, we make the
following changes (corresponding to each of the five points previously identified):

1. The two classes of variables are collapsed into a single set of (Roman) variables.

2. µ-binders now bind the usual term variables: terms of the form µx.M are allowed.

3. Terms of the form [M ]N are allowed (i.e. there is no restriction on the term M ).

4. Greek variables no longer occur in the syntax at all (due to point 1.).

5. A syntax construct inhabiting the (¬I) rule is added, which involves a third kind of
binder. We write these new terms as νx.M (in which x is bound)5.

In this way, we obtain a syntax which exactly inhabits the natural deduction system of
interest. However, we have yet to define the reduction rules for this syntax, and so develop
it into a full programming calculus. This is the aim of the next section.

5We are aware that the notation ν for a binder is already overloaded in the literature, but have not found
a satisfactory alternative, and hope this does not cause confusion.
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5.3 Syntax and Type Assignment

Definition 5.3.1 (Syntax). The syntax of the νλµ-calculus is defined over the set of vari-
ables x, y, z, . . . as follows:

M, N := x variable
| λx.M function abstraction
| M N function application
| µx.M context consumer
| νx.M continuation abstraction
| [M ]N continuation application

The descriptions attached to the syntax constructs will be explained below. The typeable
fragment of the syntax gives a term representation for the classical natural deduction
system of Definition 5.2.1. This can be seen by the following type assignment system for
the calculus.

Definition 5.3.2 (Type assignment for νλµ-calculus). Types (ranged over by A,B) are
defined over an infinite set of atomic types ϕ1,ϕ2, . . . by the following syntax: A,B :=

⊥ | ϕ | ¬A | A→B.
In the sequel, Γ is a finite set of statements {x : A, y : B, . . .} in which no variable may
occur more than once. We write Γ, x : A to mean Γ∪{x : A}, and assume that this restric-
tion is always respected (i.e., it is always either the case that x is not mentioned in Γ, or
that x : A ∈ Γ).
We write Γ " M : A to mean that there is a derivation using the rules below with this
statement as the last line. The type assignment rules are as follows:

(Ax)
Γ, x : A " x : A

Γ, x :¬A "M :⊥
(PC)

Γ " µx.M : A

Γ, x : A "M : B
(→I)

Γ " λx.M : A→B

Γ "M : A→B Γ " N : A
(→E)

Γ "M N : B

Γ, x : A "M :⊥
(¬I)

Γ " νx.M :¬A

Γ "M :¬A Γ " N : A
(¬E)

Γ " [M ]N :⊥

As usual, implication is regarded as a function type: A→B denotes a function from A to
B. The bottom (⊥) type is given to a term to denote that the term does not produce an
‘answer’ (sometimes such terms are referred to as ‘silent’). In particular, a term of type⊥
may never occur (typeably) on the left of any kind of application. Negation is interpreted
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as the type for continuations; the type ¬A represents a continuation, which expects an
argument of type A, but does not return anything. One could compare this with the type
A→⊥.

Example 5.3.3. A common dual notion to the usual Modus Ponens (→E) in logic is given
as follows: ‘from A→B and ¬B one can deduce ¬A’. This notion can be inhabited by
syntax: given a term M of type A→B, and a term N of type ¬B, we can form the term
νx.[N ](M x), which is typeable as follows:

Γ, x : A " N :¬B

Γ, x : A "M : A→B
(ax)

Γ, x : A " x : A
(→E)

Γ, x : A "M x : B
(¬E)

Γ, x : A " [N ](M x) :⊥
(¬I)

Γ " νx.[N ](M x) :¬A

In fact, this is the simplest term inhabiting this type. What does it mean in terms of
computational behaviour? M is a function from A to B, while N is a continuation with
a ‘hole’ of type B. The result is a continuation which, given a term x of type A, feeds
it through the function M and then passes the result (of type B) on to N . Thus we have
a kind of ‘dual’ to function application: we combine a function with its continuation,
and produce a new continuation as a result, without yet specifying any argument to the
function. This is suggestive of a symmetrical view of functions: both their input and their
output can be interacted with. However, note that no reduction has taken place within the
term M : to directly combine the continuation N with the body of the function M requires
the features of the calculus relating the classical logic, which we shortly describe.

5.3.1 Principal Typings

We define a principal typing algorithm for the type system defined above, which gener-
alises the standard result for the λ-calculus. This is defined using unification and substi-
tution, as presented in Definitions 3.3.7 and 3.3.8.

Definition 5.3.4 (Principal Typing Algorithm for νλµ). The algorithm pt takes a νλµ

term as argument, and returns a pair of basis Γ and type A. It is defined recursively on
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the structure of the term as follows:

pt (x) = 〈{x : ϕ},ϕ〉
where ϕ = fresh

pt (λx.M) = 〈Γ\x,A→B〉
where 〈Γ,B〉 = pt (M)

A = typeof x Γ

pt (M N) = 〈(S2◦S1 Γ1)∪(S2◦S1 Γ2),(S2◦S1 A)〉
where 〈Γ1,A〉 = pt (M)

〈Γ2,B〉 = pt (N)

ϕ = fresh
S1 = unifyContexts Γ1 Γ2

S2 = unify (S1 A) (S1 B→ϕ)

pt (νx.M) = if B = ⊥ then 〈Γ\x,¬A〉
where 〈Γ,B〉 = pt (M)

A = typeof x Γ

pt ([M ]N) = 〈(S2◦S1 Γ1)∪(S2◦S1 Γ2),⊥〉
where 〈Γ1,A〉 = pt (M)

〈Γ2,B〉 = pt (N)

ϕ = fresh
S1 = unifyContexts Γ1 Γ2

S2 = unify (S1 A) (S1 ¬B)

pt (µx.M) = if B = ⊥ then 〈Γ\x,(S ϕ)〉
where 〈Γ,B〉 = pt (M)

A = typeof x Γ

ϕ = fresh
S = unify A ¬ϕ

Since the algorithm is defined recursively on the structure of the term, it is clear that it
always terminates. Apart from the explicit failure cases shown, the algorithm may also
terminate with failure if any of the required unifications themselves fail. Again, we choose
to abstract away the details of dealing with such failures, and simply assume that if any
failures are encountered, the whole algorithm fails. From here onward, whenever we
make an assertion pt (M) = 〈Γ,A〉 we make the implicit assumption that the algorithm
succeeded.

The following results show that the algorithm above does indeed compute principal typ-
ings:

Proposition 5.3.5 (Principal typings for νλµ). For any νλµ term M , we have the follow-
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ing two properties:

Soundness If pt (M) = 〈Γ,A〉 then Γ "M : A.

Completeness If there exist Γ′,B such that Γ′ " M : B then pt (M) succeeds, and there
exists a substitution S such that (S Γ) ⊆ Γ′ and (S A) = B where 〈Γ,A〉 = pt (M).

Proof. Both by induction on the structure of the term M . The arguments follow similar
lines to the proofs of Theorem 3.3.12 (and are slightly simpler, due to the single contexts
in the type derivations), and are omitted here.

5.4 Reduction Rules

We write →νλµ to denote the reflexive, transitive, compatible closure of the reduction
rules which we define for the νλµ-calculus. However, so long as it is not confusing, we
will usually drop the subscript and just write → for this relation.

5.4.1 β Reductions

The reduction rules (λ) and (ν) below are the standard logical rules for the → and ¬
connectives6, in which M〈N/x〉 denotes the implicit substitution of the term N in place
of all occurrences of the variable x in the term M . As usual, we assume all substitutions
in this chapter to be capture-free.

(λ) (λx.M) N → M〈N/x〉
(ν) [νx.M ]N → M〈N/x〉

We now wish to present an intuitive reading for those syntax constructs (Definition 5.3.1)
not inherited from the λ-calculus. A ν-bound term provides an explicit representation
for constructing a continuation: a term which expects an input but does not produce a
meaningful output. Terms of the form [M ]N represent the application of the continuation
M to the argument N , and do not return a value to their surrounding context.

Remark 5.4.1. In terms of literature relating continuations to evaluation contexts, it
might be considered more natural to represent the application of a continuation to an

6The rule (λ) is of course the usual (β) rule of the λ-calculus; we rename it here only because both of
the rules below are similar to (β).
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argument syntactically as M [N ] instead (the insertion of N into the ‘hole’ of M ); we
choose not to do so since we extend the standard syntax for λµ.

It is natural to ask why we represent negation explicitly in the type language, instead
of using a type A→⊥ instead. This is because the ability to distinguish a continuation
from a function in terms of the (untyped) syntax is a useful feature when defining the
µ-reductions. In particular, a µ-reduction in a function application behaves differently
from a µ-reduction in a continuation application, as will become clear in the forthcoming
discussions.

It is worth noting that historically, the separation of continuations from functions has
also been seen as desirable in more practical settings, for example in Standard ML. As
Duba, Harper and McQueen write in [27], “Another way of typing continuations, and
the one currently adopted in Standard ML of New Jersey, is to abandon the view that
continuations are functions in the ordinary sense . . . In practice, it is useful to be able to
easily distinguish the invocation of a continuation from the application of a function.” In
our calculus this is achieved by the continuation applications [M ]N as separate entities
from the usual function applications M N .

5.4.2 Contexts

It will facilitate the discussions of µ-binding to be able to explicitly describe the context
in which a µ-bound term occurs; by this we mean an surrounding term with a ‘hole’, as is
described by the following definition:

Definition 5.4.2 (Contexts). Contexts C are defined using the νλµ-syntax, and the special
symbol • used to denote the (unique) ‘hole’ in the term:

C ::= • | C M | M C | λx.C | [C]M | [M ]C | νx.C | µx.C

We write C{M} to denote the insertion of the term M into the ‘hole’ of C, i.e., informally,
C{M} = C〈M/•〉 (however, note that this ‘insertion’ is allowed to be capturing, unlike
our usual substitutions).

For example, we could regard the νλµ term x (λy.((µz.M) y)) as C{µz.M}, where C is
the context x (λy.(• y)). There are many other ways it could be decomposed into a term
inserted into a context.

We note that there is a close relationship between contexts of type ⊥ and ν-bound terms
in our syntax. In fact, for any context C of type ⊥ and with a ‘hole’ of type A, the
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term νx.C{x} (where x is chosen to be a fresh variable) is of type ¬A: the hole in the
context is abstracted to form an explicit continuation. Application of this continuation
to an argument, i.e. reducing a term of the form [νx.C{x}]M , corresponds exactly with
inserting the term M into the context C. Note that an arbitrary term of the form νx.N

cannot always be related to a context (according to the above definition), since x may
occur multiple times.

5.4.3 µ Reductions

As was discussed in the introduction, there is currently no standard (and obviously com-
plete) set of proof reduction rules for classical natural deduction. This is in contrast to
the case of the sequent calculus setting, in which the notion of cut elimination is well-
established. In the natural deduction setting, it is the move to classical logic which makes
the definition of a canonical set of reduction rules unclear. If one remains in a minimal
logic setting, the usual notions of β-style reductions (sometimes extended with η reduc-
tions, etc.) will suffice. Since the presence of the µ-binding construct is exactly what
makes the νλµ-calculus correspond to a classical logic, it seems crucial to choose the
reduction rules incorporating this construct (which we refer to as µ-reductions) carefully.

Firstly, we wish to revisit the (µ) reduction rule of the λµ-calculus. Parigot notes in [54]
that if one wishes to avoid the special structural substitutions M〈[β](M ′ N)/[α]M ′〉, one
can instead employ usual substitution, inserting an abstraction which, after an extra β

reduction, has the same effect. This turns out to suggest the following alternative formu-
lation of the rule, adapted for our setting:

Definition 5.4.3 (Alternative formulation of λµ reduction rule (µ)).

(µx.M) N → µy.M〈νz.[y](z N)/x〉

It can be seen that, in the case where the µ-bound variable x occurs only in sub-terms of M

of the form [x]M ′, the effect of this substitution is to replace such subterms with terms of
the form [νz.[y](z N)]M ′, which in turn reduce (by the rule (ν) given in subsection 5.4.1
above) to terms of the form [y](M ′ N). Therefore the overall effect is similar to that which
could be obtained using the structural substitution M〈[y](M ′ N)/[x]M ′〉. An advantage
with this alternative formulation (without structural substitution), is that it works as a
reduction rule when x is allowed to be employed in arbitrary positions in M . For example,
consider the case M = [w]x. Using the reduction rule of Definition 5.4.3 we obtain a
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perfectly well-defined result, since:

(([w]x))〈νz.[y](z N)/x〉 = ([w]νz.[y](z N))

On the other hand, the structural substitution M〈[y](M ′ N)/[x]M ′〉 is not defined to deal
with this case. However, in [3] it is argued that the use of structural substitutions makes for
a ‘smoother’ theory when comparing the calculus with control operators. Furthermore,
we find in practice that in the cases where structural substitution could be applied, the
extra ν-redexes introduced by taking the approach of Definition 5.4.3 are almost always
unwanted, and will be evaluated immediately. We will in fact adopt a ‘middle-ground’
between these two approaches: essentially a substitution which acts as structural substi-
tution when such action is defined, and as normal substution otherwise. However, for the
purposes of the immediate discussions, we will deal just in the style of Definition 5.4.3,
and make the necessary modifications afterwards.

We have not, thus far, considered η-like rules for our calculus. However, the rule (µη),
which allows the reduction µx.[x]M → M if x (∈M , is included in the original definition
of λµ. In fact, this rule turns out to be useful for ‘tidying up’ after various µ-reductions,
and so we are keen to include it. However, since we regard it as an η-like rule, we will
postpone the decision of whether or not to include it in our calculus until later in these
discussions.

We wish to give two explanations of the general idea we see as underlying the µ-reductions.
These focus on the idea that the intended behaviour of µ-binders is to move outwards
through the syntax, consuming their outlying context until a point is reached at which
they are no longer required.

The first of our explanations focuses on the computational interpretation of a µ-bound
term (we will then move on to discuss the reductions at the level of proofs). For the
purposes of these discussions, we would like to imagine we are inventing the µ-binder
and µ-reductions from scratch, in order to demonstrate the motivation we see behind the
rules. This idea will then generalise to provide the set of µ-reductions we adopt for our
calculus.

In order to understand the intended behaviour of a term µx.M , we find it helpful to ex-
amine the form which the body M is allowed to (typeably) take. According to the type
system, the typing of M must be of the form: Γ, x :¬A " M :⊥. That is, M must be a
term of type⊥, which itself has a free variable x of type ¬A. We can view M as requiring
a term of type ¬A (that is, a continuation with a ‘hole’ of type A) to replace the variable x

with. A ‘constructive’ way of representing this requirement in the νλµ-calculus would be
to ν-bind the term M ; the term νx.M is of type ¬¬A, indicating that it requires an input of

101



type ¬A, and, if applied to such a term, will result in type⊥. If this approach is taken, the
way to then remove the ν-binder on the term would be to use an application of the form
[νx.M ]N : i.e., we apply it to a further term N of type ¬A, which must be given explicitly
in the syntax. However, we consider a ‘trick’ which is possible: a way of obtaining the
desired continuation of type ¬A by more subtle means. Suppose we were to introduce
terms of the form µx.M , and define (arbitrarily, for the purpose of this discussion) that
such a term will have type A. Considering the kind of context C in which such a term can
be (typeably) placed, it must be a term with a ‘hole’ of type A itself. Then, starting from
the term C{µx.M}, the continuation of type ¬A which M requires could be implicitly
defined using whatever the context C is: by ν-abstracting over the ‘hole’ in the context to
form the term νz.C{z} we can7 obtain a term of type ¬A suitable to substitute for x. This
is in a sense a ‘non-constructive’ (or at least, indirect) way of specifying the term to insert
for x; defined implicitly by the context. We regard this to be the role of the µ-binding
in the calculus: to capture its surrounding context, convert it into a ν-abstracted form to
explicitly represent it as a continuation, and bind it to a variable. Therefore, we intuitively
read terms of the form µx.M as “bind the context to x, and evaluate M . Note that this
idea is closely related to Bierman’s abstract machine for the λµ-calculus, as described in
[15].

There are some problems to consider with this point of view. Firstly, in talking about
the whole context in which a term is inserted, we lose the notion of local, compatible
reductions (such a context could be arbitrarily large, and could itself then be placed in
another program). This problem is solved by making a µ-reduction consume only the
immediate context, i.e., one level further out in the syntax. Secondly, if this context is
not itself of type ⊥, then it does not represent a continuation in the way we would like.
Suppose the context is of type B, then we now require a continuation of type ¬B before
we can obtain ⊥. This need for a new continuation can be obtained by introducing a
new µ-binding appropriately. More generally, one might aim for a local reduction rule
to consume the context immediately surrounding a µ-bound term to be defined for every
possible syntax construct which may ‘sit outside’. Thus, the combination of these rules
would allow the µ-binding to progress outwards through the structure of the term, until it
reached the outermost level, or (as we will explain) a level at which it is no longer needed.
In the special cases of the µ-bound term occurring on the left of a function application, and
on the right of a continuation application, we can see this behaviour in the reduction rules
of the λµ-calculus. For example, in the rule (µα.M) N → µβ.M〈[β](M ′ N)/[α]M ′〉
(c.f. Definition 5.2.3), the µ-binder initially occurs under an application, whereas after
the rule is applied, it is at the top level.

7depending on the type of the whole context - see next paragraph.
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With the idea in mind that µ-binders should be propagated outward through the syntax
we examine the underlying proofs to see how this might be achieved. The analogous
notion here is that instances of the (PC) rule should be propagated outward towards the
conclusion of a proof. Let us examine, for example, the standard case of a µ-bound term
on the left of a function application (i.e. a term of the form (µx.M) N . By examining the
type assignment rules, we can see this corresponds to a derivation of the form:

!
!
!!

"
"

""
M

Γ, x :¬(A→B) "M :⊥
(PC)

Γ " µx.M : A→B

!
!
!!

"
"

""
N

Γ " N : A
(→E)

Γ " (µx.M) N : B

If we wish to move the occurrence of (PC) further down, it seems reasonable that we
must apply it as the last step; i.e. build a derivation which ends:

Γ, y :¬B " ⊥
(PC)

Γ " B

Since we seek a derivation of type ⊥, it seems that the derivation corresponding to M

would be a good candidate. However, this derivation relies on an assumption x of type
¬(A→B). We have available to us an assumption y of ¬B, and also the proof N of A.
We notice that ¬(A→B) is classically equivalent to A∧¬B, and so it should be possible
to construct a proof of ¬(A→B) from the assumption ¬B and the proof of A. This proof
can be found and inhabited as follows:

(ax)
Γ, y :¬B, z : A→B " y :¬B

(ax)
Γ, y :¬B, z : A→B " z : A→B Γ, y :¬B, z : A→B " N : A

(→E)
Γ, y :¬B, z : A→B " z N : B

(¬E)
Γ, y :¬B, z : A→B " [y](z N) :⊥

(¬I)
Γ, y :¬B " νz.[y](z N) :¬(A→B)

If copies of this derivation are now used to replace each occurrence of the assumption x in
the derivation corresponding to M (we denote the resulting derivation by M∗), we reach
the derivation:

!
!
!!

"
"

""
M∗

Γ, y :¬B "M〈νz.[y](z N)/x〉 :⊥
(PC)

Γ " µy.M〈νz.[y](z N)/x〉 : B
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The argument above derives the reduction rule

(µ→1) (µx.M) N → µy.M〈νz.[y](z N)/x〉

which is exactly that of Definition 5.4.3 (which is itself an alternative formulation of the
rule of the original λµ-calculus). So, we have shown a ‘first principles’ approach for
deriving this µ-reduction rule: starting from the objective of permuting (PC) rules further
down in a proof, we have obtained the usual reduction rule for the µ-binder.

Applying the same argument to the situation in which the (PC) rule occurs as the second
premise of an (→E) rule, i.e. starting from a term of the form N (µx.M), we can derive
the following ‘symmetrical’ reduction rule to the one above:

(µ→2) N (µx.M) → µy.M〈νz.[y](N z)/x〉

This is essentially the rule considered by Parigot in [57] and adopted by various other
authors (e.g. [4, 53]).

We can consider other possible inference rules which may occur below an occurrence of
(PC) and, taking the same ‘first principles’ approach, attempt to derive further reduction
rules.

For example, consider a term of the form [N ]µx.M . This would represent a derivation of
the form:

!
!
!!

"
"

""
N

Γ " N :¬A

!
!
!!

"
"

""
M

Γ, x :¬A "M :⊥
(PC)

Γ " µx.M : A
(¬E)

Γ " [N ]µx.M :⊥

As previously, we consider the application of the (PC) rule as the last inference step
(i.e., we derive the final conclusion ⊥ using this rule). However, this would result in a
derivation ending:

Γ, y :¬⊥ " ⊥
(PC)

Γ " ⊥
This seems somewhat counter-intuitive; we obtain⊥ from a proof of ⊥, by contradiction.
Furthermore, in a logical sense, the assumption ¬⊥ is vacuously true, and so cannot
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contribute anything meaningful to the subproof above. Instead of taking this approach, we
note that M is already a proof of⊥, which depends on an assumption x of type ¬A. Since
N is itself a proof of ¬A, N can in fact be inserted for x directly, eliminating the need
for the (PC) rule altogether. This analysis, along with a similar one of the ‘symmetrical’
situation (µ-binding on the right of a continuation application) lead to the following two
reduction rules (the first of which is standard from λµ, and the second of which is new):

(µ¬1) [µx.M ]N → M〈νz.[z]N/x〉
(µ¬′

2) [N ]µx.M → M〈N/x〉

There is an asymmetry here, because in the second of the two rules, we have taken a slight
‘short-cut’: instead of building the term νz.[N ]z to substitute for x, we have substituted N

directly. In terms of the types, this makes no difference. However, for technical reasons,
which we will explain in the following chapter (see Section 6.4.2 for details), we choose
to abandon this short-cut, and instead adopt the two symmetrical alternatives:

(µ¬1) [µx.M ]N → M〈νz.[z]N/x〉
(µ¬2) [N ]µx.M → M〈νz.[N ]z/x〉

So far, this approach seems to have worked in all cases: by examining the underlying
proof structure, we can find a way of rearranging to either move outward or eliminate an
occurrence of the (PC) rule (correspondingly, of a µ-bound term). What if the µ-bound
term occurs under a binder itself? For example, we could form the term νy.µx.M . Is
there a rule for reducing the µ-binder in this situation? Returning to the derivations, we
see that we now have one of the form:

Γ, y : A, x :¬⊥ "M :⊥
(PC)

Γ, y : A " µx.M :⊥
(¬I)

Γ " νy.µx.M :¬A

As discussed previously, the use of (PC) to derive ⊥ seems to be redundant. We can in
fact eliminate this construct entirely: the term νz.z represents a canonical proof of type
¬⊥, and by replacing x with this term, we can remove the µ-binding; this results in the
rule:

νy.µx.M → νy.M〈νz.z/x〉

The same argument suggests an analogous rule for reducing terms of the form µy.µx.M ,
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i.e.,
µy.µx.M → µy.M〈νz.z/x〉

The final case to examine is that of µ-binding occurring under a λ-binder (i.e., terms of
the form λy.µx.M . This represents a derivation of the form:

Γ, y : A, x :¬B "M :⊥
(PC)

Γ, y : A " µx.M : B
(→I)

Γ " λy.µx.M : A→B

Our usual technique leads us to seek a derivation ending:

Γ, z :¬(A→B) " ⊥
(PC)

Γ " A→B

Thus we seek a derivation of ⊥ from the assumption ¬(A→B). The derivation repre-
sented by M would appear to be a possible candidate, since it is of type ⊥. However,
it depends on the two assumptions A and ¬B. As commented previously, ¬(A→B) is
classically equivalent to A ∧ ¬B. Therefore it would seem we can find a suitable rule by
deriving proofs for A and ¬B each depending on the assumption of ¬(A→B). Indeed,
this is possible, and in the case of ¬B there is no problem. However, in constructing a
proof of A, it turns out that the (PC) rule must be employed (some redundant assumptions
have been omitted to save space):

(ax)
z :¬(A→B), x :¬A " z :¬(A→B)

(ax)
x :¬A " x :¬A

(ax)
y : A " y : A

(¬E)
x :¬A, y :A " [x]y :⊥

(PC)
x :¬A, y : A " µw.[x]y : B

(→I)
x :¬A " λy.µw.[x]y :A→B

(¬E)
z :¬(A→B), x :¬A " [z]λy.µw.[x]y :⊥

(PC)
z :¬(A→B) " µx.[z]λy.µw.[x]y : A

In other words, by attempting to move the µ-binding outside the λ-binding, we introduce
new occurrences of µ-binders under λ-binders into the structure of M . Worse, the occur-
rences are of the same type, and could also be transformed by such a rule. This leads to
non-termination (of typeable terms), and therefore such a rule must be abandoned.

In fact, a weaker rule can be defined, to allow a µ-binding to escape a λ-bound term in
the special case of occurring on the left of an application: (λy.µx.M) N → µz.[νx.M ]N
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Although this rule looks somewhat surprising, it is a well-typed reduction, and appears
to allow the µ-binding to propagate outward, while leaving the redex essentially in place
(the (λ) redex has become a (ν) redex, which can still reduce by the substitution of N for
x, as in the original term). However, this rule seems less intuitive than the others we have
considered, and does not combine well with the inclusion of the (µη) rule. A term of the
form λy.µx.[x]M (with x (∈M ) can be reduced by the above rule, but if (µη) was applied
first, then no µ reduction rule applies to the reduct λy.M .

Instead, inspired by the λµµ̃-calculus of Curien and Herbelin [19], we discovered that a
better reduction behaviour could be achieved by changing the rule (λ); that is, we modify
the original reduction rule of the λ-calculus. We replace the rule (λ) with the following:

(λ′) (λx.M) N → µy.[νx.[y]M ]N

This rule looks rather alien to the notion of reduction from the λ-calculus, however we
observe that in the presence of the rule (µη), the original reduction rule can still be simu-
lated:

(λx.M) N → µy.[νx.[y]M ]N (λ′)

→ µy.[y]M〈N/x〉 (ν)

→ M〈N/x〉 (µη)

What then, is the advantage of this new version of the β rule? It turns out that, in the
presence of the other µ-reduction rules discussed, we can also use it to allow µ-binders to
escape λ-binders:

(λx.µz.M) N → µy.[νx.[y]µz.M ]N (λ′)

→ µy.[νx.M〈y/z〉]N (µ¬2)

= µz.[νx.M ]N (α conversion)

We therefore adopt this rule, along with (µη). This completes our analysis of the ‘canon-
ical’ µ-reduction rules; for each kind of ‘context’ surrounding a µ-bound term we have
attempted to identify a reduction rule which ν-abstracts the context as a (sometimes par-
tial) continuation, and substitutes this new term for the µ-bound variable. This follows our
guiding intuition: a µ-bound term essentially binds its surrounding context to a variable,
in all situations.

Returning to the question of structural substitutions, we can now apply our general view
of µ-reductions to the question of the necessity of the ν-abstracted terms which arise out
of reduction. In particular, if we consider multiple applications of µ-reduction rules, the
case for structural substitution becomes stronger.
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Example 5.4.4. Consider the term (u ((µx.[x]M) v)). By applying the µ-reduction rules
described above, this can be reduced as follows:

(u ((µx.[x]M) v)) → (u (µx.[νy.[x](y v)]M)) (µ→1)

→ µx.[νy.[νz.[x](u z)](y v)]M (µ→2)

Note that we have reused the binder x at each step, in order to illustrate the ‘movement’ of
the µ-binding; however, these are different binders. The resulting term does not seem very
intuitive. In particular, the subterm νy.[νz.[x](u z)](y v) is rather cryptic. This is in fact
the combination of two ‘partial’ continuations which have each been constructed by con-
suming and abstracting one level of the immediate context to the µ-bound term. The redex
within this subterm can be reduced by the rule (ν), resulting in the term νy.[x](u (y v)).
The meaning of this term can be more-readily understood directly; it can be understood
to be the context (u (• v)) in which the µ-bound term originally resided, whose ‘output’
is fed to the continuation variable x (in a continuation application), and whose ‘hole’ (•)
has been ν-abstracted, to form a term representing this partially-captured continuation.
However, the capture of the context is made even clearer if we reduce both ν-redexes in
the term µx.[νy.[νz.[x](u z)](y v)]M to reach µx.[x](u (M v)). By comparing with the
original term (u ((µx.[x]M) v)), one can see at this stage that the µ-binding has moved
outward, and the context has been consumed into the structure of the term.

The point of this example is to illustrate that it is only after the reduction of the newly-
created (ν)-redexes that the resulting terms can be seen to neatly correspond to our intu-
itive semantics for the µ-reductions. Therefore, it seems that structural substitution would
be a more natural choice than the creation of new ν-bindings and redexes. This is an in-
formal observation in support of the conclusion of [3]; that structural substitution makes
for a neater reduction behaviour. However, since one of our stated aims was to retain a full
correspondence with the original logic, we do not wish to restrict occurrences of µ-bound
variables, in the way the λµ-calculus does. Instead, we define a notion of substitution ‘in
between’ the two approaches; since our objection to structural substitution is that it cannot
be applied in all cases, we apply it when it can, and introduce explicit ν-bindings when
it cannot. This idea is formalised as a new meta operation, which we call semi-structural
substitution.

Definition 5.4.5 (Semi-Structural Substitution). We define the operation M〈ŷ(N)/x〉 re-

108



cursively over the structure of M , by the following rules:

x〈ẑ(N)/x〉 = νz.N

y〈ẑ(N)/x〉 = y if y (= x

([x]M)〈ẑ(N)/x〉 = N〈M〈ẑ(N)/x〉/z〉
([M1]M2)〈ẑ(N)/x〉 = [M1〈ẑ(N)/x〉]M2〈ẑ(N)/x〉 if M1 (= x

(M1 M2)〈ẑ(N)/x〉 = M1〈ẑ(N)/x〉M2〈ẑ(N)/x〉
(νy.M)〈ẑ(N)/x〉 = νy.M〈ẑ(N)/x〉
(λy.M)〈ẑ(N)/x〉 = λy.M〈ẑ(N)/x〉
(µy.M)〈ẑ(N)/x〉 = µy.M〈ẑ(N)/x〉

We can then formulate the reduction rules discussed above using this operation; wher-
ever we would have substituted a ν-bound term, i.e., applied a substitution of the form
M〈νz.N/x〉, we instead apply a semi-structural substitution of the form M〈ẑ(N)/x〉.

The complete set of reduction rules for the calculus are as follows.

Definition 5.4.6 (Reduction rules for the νλµ-calculus).

(λ′) (λx.M) N → µy.[νx.[y]M ]N

(ν) [νx.M ]N → M〈N/x〉
(µ→1) (µx.M) N → µy.M〈ẑ([y](z N))/x〉
(µ→2) N (µx.M) → µy.M〈ẑ([y](N z))/x〉
(µ¬1) [µx.M ]N → M〈ẑ([z]N)/x〉
(µ¬2) [N ]µx.M → M〈ẑ([N ]z)/x〉
(µν) νy.µx.M → νy.M〈ẑ(z)/x〉
(µµ) µy.µx.M → µy.M〈ẑ(z)/x〉
(µη) µx.[x]M → M if x (∈M

As usual, we define our reduction relation→ to be the reflexive, transitive, compatible clo-
sure of the above rules. Although we have now formally replaced the (λ) rule previously
discussed, we will treat it as an admissible rule, as is justified by the above discussion
(and so still allow ourselves to use it for reduction), in order to shorten the examples we
require later.

The reductions defined above are sound with respect to the type system (Definition 5.3.2):

Proposition 5.4.7 (Substitution lemmas and subject reduction).

1. If x (∈Γ and Γ "M : A and Γ, x : A " N : B, then Γ " N〈M/x〉 : B.

2. If x, z (∈Γ and Γ "M :⊥ and Γ, x :¬A " N : B, then Γ " N〈ẑ(M)/x〉 : B.
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3. If Γ "M : A and M → N then Γ " N : A.

Proof. 1. By straightforward induction on the structure of the term N .

2. By straightforward induction on the structure of the term N , using part 1.

3. By straightforward induction on the length of the reduction sequence, and the struc-
ture of the term M , using parts 1 and 2.

5.5 Examples

5.5.1 Example: Representing Pairing

As a simple example of the syntax and reductions of the νλµ-calculus, we show how to
encode pairing, by providing a representation for pairs of terms 〈M,N〉, and their usual
two projection operators (fst and snd). These constructs correspond logically to the rules
for the conjunction (∧) connective, which is not treated as a primitive connective in our
logical setting. Instead, we make use of the classical equivalence of the formulae A∧B

and ¬(A→¬B).

Our representations are as follows (in which all variable names mentioned are assumed to
be fresh, i.e. not occurring in M ,N ):

〈M,N〉 = νw.[w M ]N

fst(M) = µx.[M ]λy.µz.[x]y

snd(M) = µx.[M ]λy.x

These come from the following derivations:
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(ax)
w : A→¬B " w : A→¬B w : A→¬B " M : A

(→E)
w : A→¬B " w M :¬B w : A→¬B " N : B

(¬E)
w : A→¬B " [w M ]N :⊥

(¬I)
" νw.[w M ]N :¬(A→¬B)

x :¬A " M :¬(A→¬B)

(ax)
x :¬A, y : A, z :¬¬B " x :¬A

(ax)
x :¬A, y : A, z :¬¬B " y : A

(¬E)
x :¬A, y : A, z :¬¬B " [x]y :⊥

(PC)
x :¬A, y : A " µz.[x]y :¬B

(→I)
x :¬A " λy.µz.[x]y : A→¬B

(¬E)
x :¬A " [M ]λy.µz.[x]y :⊥

(PC)
" µx.[M ]λy.µz.[x]y : A

x :¬B " M :¬(A→¬B)

(ax)
x :¬B " x :¬B

(→I)
x :¬B " λy.x : A→¬B

(¬E)
x :¬B " [M ]λy.x :⊥

(PC)
" µx.[M ]λy.x : B

Our term representations are the inhabitants of the appropriate canonical natural deduction
proofs. For example, the simplest proof of the formula ¬(¬A→B) from assumptions A

and B is inhabited by the νλµ-term νw.[w M ]N , as shown above. To show that we
can simulate the expected behaviour, we must verify that fst(〈M,N〉) → M and then
snd(〈M,N〉) → N . This is demonstrated as follows:

fst(〈M,N〉) = µx.[νw.[w M ]N ]λy.µz.[x]y

→ µx.[(λy.µz.[x]y) M ]N (ν)

→ µx.[µz.[x]M ]N (λ)

→ µx.[x]M (µ¬1)

→ M (µη)

snd(〈M,N〉) = µx.[νw.[w M ]N ]λy.x

→ µx.[(λy.x) ]MN (ν)

→ µx.[x]N (λ)

→ N (µη)

Remark 5.5.1. It is interesting to note that these reductions need not be deterministic,
highlighting the non-confluent nature of the calculus. In fact, it is possible that, because
of some effect stemming from one of the terms M or N , the reduction behaviour can po-
tentially be quite different from that shown above. For example, if N were of the form
µv.N ′, with v (∈N ′ (i.e., N can be read as A(N ′), as explained in Chapter 6), then the
term representing fst(〈M,N〉) can also reduce to N (essentially, M is discarded by eval-
uating the ‘abort’ first):
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fst(〈M,µv.N ′〉) = µx.[νw.[w M ]µv.N ′]λy.µz.[x]y

→ µx.[νw.N ′]λy.µz.[x]y (µ¬2)

→ µx.N ′ (ν)

=α N

Note that the last line is by α-conversion, since x does not occur in N . This non-
confluence is a natural consequence of the intuitive semantics of such control operators.

5.5.2 Encoding the λ-calculus

A natural example to examine is the encoding of the λ-calculus in our new calculus. We
will show not only that we can encode the calculus, preserving reductions and typings, but
that although νλµ is non-confluent, the image of the λ-calculus in νλµ is confluent. The
encoding of a λ-calculus term M is written M and defined recursively by the ‘obvious’
injection:

x = x

λx.M = λx.M

M N = M N

For convenience, we choose not to distinguish syntactically between λ-calculus terms and
their counterparts in the νλµ calculus. For example, if λx.t is a term of the λ-calculus,
we regard it also as a term of νλµ, for purposes of our discussions.

In the following discussions, we write t1 →β t2 for the reflexive, transitive, contextual
closure of the usual one-step reduction relation of the λ-calculus (β reductions only), and
=β for the reflexive, transitive, symmetric contextual closure. We will make use of the
following standard result (slightly restated):

Lemma 5.5.2 (Confluence of λ-calculus). For any two λ-calculus terms t1,t2, if t1 =β t2

then there exists a λ-calculus term t such that t1 →β t and t2 →β t.

As was essentially described above, although the (β) rule of the λ-calculus is not present
in our reduction rules for νλµ, it can be simulated, as the following result makes clear.

Proposition 5.5.3 (Simulation of the λ-calculus). For any λ-calculus terms t1, t2, if t1 →β

t2 then t1 →νλµ t2.
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Proof. Since both reduction relations are compatible, we need only check the (β) rule
directly:

(λx.M) N → µy.[νx.[y]M ]N (λ)

→ µy.[y]M〈N/x〉 (ν)

→ M〈N/x〉 (µη)

It is interesting to examine whether or not the image of the λ-calculus defines a confluent
subset of the νλµ calculus. In other words, is it possible to interpret a λ-calculus term
in our setting, and then run it in ways which are essentially different from those of the
original? Intuitively it seems this should not be possible: since we start in the realm of
an intuitionistic natural deduction proof, and have a subject reduction property, we expect
to stay in this realm. To take the same idea from a programming perspective, if we start
from a term without ‘effects’, we would not expect it to become a term with effects during
reduction.

We wish to consider the (smallest) subset of the νλµ syntax including the image of the
λ-calculus and closed under reduction. We will call this sub-syntax of the νλµ-syntax Λ.
We will use m,n to range over the terms in this sub-syntax Λ. After some experimentation,
various properties can be observed, which show this subset is a true restriction. One key
fact is that µ-bound variables always occur linearly (exactly one occurrence is bound).
This means that effects such as duplicating and discarding contexts/continuations are no
longer available. Because of this linear nature of the µ-binder, the µ reductions actually
become rather weak; our intuition was that they essentially only move parts of the context
around in this restricted setting, before the ‘real’ evaluations are eventually performed. In
order to make this idea more concrete, we will give encodings from Λ back to the pure
syntax of the λ-calculus (in which only the ‘real’ reductions take place). Firstly, we make
the following observations about the restricted syntax.

Proposition 5.5.4 (Λ is a true restriction of νλµ). The following properties hold for the
sub-syntax Λ:

1. µ-bound variables x always occur linearly in terms (there is exactly one occurrence
bound).

2. µ-bound terms are always of the form µx.[m]n, and ν-bound terms are always of
the form νx.[m]n.

3. Conversely, terms of the form [m]n can only occur as the body of a µ or ν-binding.
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4. Terms of the form [m]n can only occur when m is either a µ-bound variable x or
m is a term of the form νy.[m1]m2 (in which the form of m1 is subject to the same
restrictions).

5. Conversely, µ-bound variables x, and terms of the form νx.[m1]m2 can only occur
on left of terms of the form [m]n.

6. In terms of the form νx.[m1]m2, x never occurs in m1.

7. In terms of the form µx.[m1]m2, the (unique) occurrence of x is always in m1.

Proof. All of the conditions are trivially satisfied by the encoding of a term of the λ-calculus
itself. We illustrate that these properties are preserved by reduction, with the example of
the (µ→1) rule.

Suppose then, that the properties all hold for a term of the form (µx.m) n. Since property
2 holds for this term, m must be of the form [m1]m2 for some terms m1,m2. The reduct
of the rule is the term µy.[m1]m2〈νz.[y](z n)/x〉. Property 1 can be seen to be preserved;
since x occurred linearly in the original term then the substitution is made in exactly one
place, and exactly one occurrence of y results. Properties 2 and 3 can be seen from the
form of the reduct. Properties 4 and 5 can be seen to be preserved since the substitution
replaces a µ-bound variable with a term of the other permissible form. Property 6 still
holds because of the form of the term being substituted in place of x. Property 7 is
preserved since the substitution inserts the unique occurrence of y (within a term) in place
of the unique occurrence of x.

In fact, the last of these restrictions can be deduced from the others, in the following way.
Firstly, given the restriction on occurrences of ν-binders and terms of the form νm.n,
it is apparent that the outermost syntax construct of a term must either be a construct
from the λ-calculus, or a µ-binder. Assuming that we eventually reach a µ-bound term
by traversing down the structure of the term, and that it is of the form µx.[m]n. By the
conditions above, m is either a µ-bound variable, in which case it must be x, or else m is
of the form νy.[m1]m2. However, this gives a new application to which property 4 applies.
In order for this to terminate, the µ-bound variable x must eventually occur on the left of
one of these applications. Since it occurs linearly, it must never occur on the right of one
of these applications (property 7). However, since no further opportunity for µ-binders to
occur has been reached, the terms occurring on the left of [m]n terms (in context position
in these continuation applications) are of a very specific form, which depends on the name
of unique enclosing µ-bound variable. We characterise these particular terms by defining,
for each variable x the set of ‘contexts depending on x’, ranged over by c(x). This allows
us to specify our restricted syntax more precisely:
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Definition 5.5.5 (Characterisation of terms of Λ). The terms of the subset Λ are defined
by the grammar below. We use c(x) to range over ‘contexts defined over x’:

m,n ::= y

| λy.m

| m n

| µy.[c(y)]m (y (∈m)

c(x) ::= x

| νy.[c(x)]m (y (∈ c(x))

So far, this doesn’t give a very clear picture of what this restricted syntax might mean
in terms of the original λ-calculus. However, below we will show that encodings from
this syntax back to the pure λ-calculus are possible, with useful properties. Our method
was inspired by the work of Bierman [15], who gave a semantics for the λµ-calculus in
terms of evaluation contexts. The extension of this work to the full νλµ-calculus is not
obviously possible, since it relies heavily on the confluent nature of λµ. However, by
following the belief that the sub-syntax we are now dealing with is now confluent, we
borrow from his ideas.

The basic idea behind Bierman’s abstract machine is that when a λµ-term of the form
µα.M is to be evaluated in a context E{.}, the context E{.} is ‘stored’ and bound to
α, and then the term M evaluated. If subterms of the form [α]N are encountered, the
context E{.} is restored, i.e., one evaluates E{N} at this point. Following this idea
(and as discussed previously), one can read terms of the form [m]n as ‘evaluate n in the
context denoted by m’. In our setting this requires a generalisation of Bierman’s idea,
since it is possible for terms of the form [m]n to occur in which m is not a µ-bound
variable. However, as identified in the restrictions above, the only other possibility which
arises is that m is of the form νy.[c(x)]m2, i.e., we wish to give an interpretation for the
term [νy.[c(x)]m2]n. Since y occurs only in m2, and bearing in mind that the (ν) redex
provides the facility to substitute copies of n for the ys in m2, we choose to read this term
as ‘evaluate let x = n in m2 in the context c(x)’. This gives an idea for how to retrieve a
term closer to one of the λ-calculus instead (essentially by an expansion of the ‘let’ into a
β-redex); the term [c(x)]((λy.m2) n) is a term which we would intuitively read in a similar
way. By recursively replacing all terms of the form [νy.[c(x)]m2]n with the corresponding
terms [c(x)]((λy.m2) n), we eventually obtain terms in which the only contexts c(x) are x

itself. This means that the only µ-bound terms are of the form µx.[x]m, in which m is a
term of the λ-calculus with x (∈m. By finally replacing terms of this form with simply m

itself (c.f. the (µη) rule), we reach terms of the pure λ-calculus syntax. This idea can be
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formalised by the following definition:

Definition 5.5.6 (Λ back to the λ-calculus (with expansions)). We use t, t1, t2 to range
over terms in the νλµ syntax which are also terms of the λ-calculus. We define two
mutually recursive mappings: (m)◦ which maps terms of Λ to λ-calculus terms, and (m)•

which maps terms of the form [c(x)]t (where t is a term of the λ-calculus) into terms of the
form [x]t2 where t2 is also a (possibly different) term of the λ-calculus.

The definitions are as follows:

(x)◦ = x

(λx.m)◦ = λx.(m)◦

(m n)◦ = (m)◦ (n)◦

(µx.[c(x)]m)◦ = t

where
[x]t = ([c(x)](m)◦)•

([x]t)• = [x]t

([νy.[c(x)]m]t)• = ([c(x)]((λy.(m)◦) t))•

The following proposition essentially states that the mappings above are well-defined:

Proposition 5.5.7. 1. The evaluation of (m)◦ and ([c(x)]t)• (by the rules defined above)
always terminates.

2. ([c(x)]t1)• always evaluates to a term of the form [x]t2 (where t1,t2 are terms of the
λ-calculus).

Proof. 1. By mutual induction on the structure of the terms m featuring in (m)◦ and
the contexts c(x) featuring in ([c(x)]t)•.

2. By induction on the definition of ([c(x)]t)• (using part 1 to ensure well-foundedness).

What has been done here? Essentially, we have restored all portions of context which have
been shifted by µ reductions back to their original positions, and then applied expansions
to restore λ-calculus redexes in the position of (ν) ones. Once the contexts are all back in
place, all the µ-bindings are of the trivial kind (to which the (µη) rule applies) and can be
eliminated. The idea is that the λ-calculus term we end up with represents ‘essentially’
where we have got to so far in the computation, without the complications of rearranged
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contexts, etc. Many of the (µ) reductions turn out to be transparent under the mapping
above (i.e. both redex and redex are mapped to the same λ term), although some result in
a β-expansion. The (ν) reductions on the other hand make actual substitutions, and these
correspond to (β) reductions in the λ-calculus. Thus, we have a correspondence between
the two reduction relations, but expansions are sometimes required on one side or another.

We can emphasise the correspondence between the reduction relations by the following
result:

Lemma 5.5.8. For any terms m,n of the sub-syntax Λ, if m →νλµ n then (m)◦ =β (n)◦.

In order to give a stronger correspondence between reductions in our restricted νλµ, and
those of the λ-calculus, we define a second pair of mappings. The idea now is, rather than
to create the new λ-calculus redexes in the case ([νy.[c(x)]m]t)•, we evaluate them. That
is, instead of (λy.(m)◦) t we use (m)◦〈t/y〉. The advantage here is that the resulting term
can actually be reached by νλµ reductions.

The definitions of these modified mappings are otherwise similar to those given above,
but we include them for reference:

Definition 5.5.9 (Λ back to the λ-calculus (with reductions)).

(x)◦◦ = x

(λx.m)◦◦ = λx.(m)◦◦

(m n)◦◦ = (m)◦◦ (n)◦◦

(µx.[c(x)]m)◦◦ = t

where
[x]t = ([c(x)](m)◦◦)••

([x]t)•• = [x]t

([νy.[c(x)]m]t)•• = ([c(x)](m)◦◦〈t/y〉)••

We can now set up the remaining framework required to prove confluence of the subset Λ.
Firstly, we observe that since the only difference between the mappings (m)◦ and (M)◦◦

is that extra β reductions have taken place in the result of the latter, we have in particular
that their results are always =β to one another:

Lemma 5.5.10. For any term m of Λ, we have (m)◦ =β (m)◦◦.

Proof. By straightforward induction on the definition of (m)◦◦ (which is well-founded,
by an argument similar to that of Proposition 5.5.7(1)).
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The advantage of the second mapping is that it provides a closer correspondence between
the two reduction relations. On the one hand, the changes that the mapping itself makes
to an input term can be simulated by the reductions of νλµ. On the other hand, if one
interprets a term via the mapping and then performs λ-calculus reductions on the result,
these can also be simulated in the νλµ calculus.

Lemma 5.5.11. For any term m of Λ, we have m → (m)◦◦.

Proof. By straightforward induction on the definition of (m)◦◦.

Note that an analogous result would not have been possible for the first mappings defined,
since expansions take place to restore the λ-calculus redexes. In fact, one could have done
without these mappings at all, but the proof of an analogous result to Lemma 5.5.8 is then
harder, since there is more work to do in one result.

We are now in a position to prove our confluence result:

Theorem 5.5.12 (The image of the λ-calculus is confluent in νλµ). Let m,m1,m2 be any
terms in the sub-syntax Λ such that m → m1 and m → m2. Then there exists a term
n ∈ Λ such that m1 → n and m2 → n.

Proof. By applying Lemma 5.5.8 twice, we have that (m1)◦ =β (m)◦ and that (m)◦ =β

(m2)◦. By Lemma 5.5.10 twice, we obtain (m1)◦◦ =β (m2)◦◦. By Lemma 5.5.2, there
exists a term t of the λ-calculus such that (m1)◦◦ →β t and (m2)◦◦ →β t. By applying
Proposition 5.5.3 in both cases, we have (m1)◦◦ →νλµ t and (m2)◦◦ →νλµ t. Finally, by
Lemma 5.5.11, we have m1 →νλµ (m1)◦◦ →νλµ t and m2 →νλµ (m2)◦◦ →νλµ t. We
conclude, taking n to be t.

Note that we actually show not only that m1 and m2 are joinable, but that they can al-
ways be made to join on a term of the λ-calculus. In particular, this implies that the
normal forms in Λ are all terms of the λ-calculus; all other syntax constructs only occur
in intermediate reductions.

5.5.3 Simulation of λµ

We show that the λµ-calculus can be encoded into the νλµ calculus by a simple injection.
Since this calculus deals with two separate classes of variables, for ease of definition we
extend the (single) class of variables in νλµ to include Greek characters also.
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Definition 5.5.13 (Encoding λµ). We encode λµ into νλµ in the following way:

**x++λµ = x

**λx.M++λµ = λx.**M++λµ

**M N++λµ = **M++λµ **N++λµ

**[α]M++λµ = [α]**M++λµ

**µα.M++λµ = µα.**M++λµ

As in the previous sections, we need to define, for any right-context ∆ (of a λµ typing),
¬∆ = {α :¬A | α : A ∈ ∆}. We can then state the following results for our encoding.

Proposition 5.5.14 (Simulation of λµ). 1. The mapping **.++λµ is an injection.

2. For any λµ terms M ,N , if M →λµ N then **M++λµ → **N++λµ.

3. For any λµ term M , if Γ "λµ M : A | ∆ then Γ,¬∆ " **M++λµ : A.

Proof. 1. By inspection of Definition 5.5.13, we can see that the encoding is compo-
sitional, and maps terms with distinct top-level syntax constructs onto terms with
distinct top-level syntax constructs. Therefore, the result follows by a straightfor-
ward induction on the structure of terms.

2. To show that reduction is preserved, we could present a full inductive argument.
However, by inspection of Definitions 5.2.3 and 5.4.6, it is clear that the λµ reduc-
tion rules are closely related to a subset of the νλµ reduction rules. There are three
significant discrepancies:

(a) The λµ-calculus includes the normal (β)-rule, whereas we have our modified
(λ′). However, the argument of Proposition 5.5.3 shows that the former can
be simulated by the latter.

(b) The (µ) rule of λµ corresponds to the (µ→1) rule of νλµ, but employs struc-
tural substitution, whereas we employ semi-structural substitution. However,
since α may only occur in positions [α]N in λµ, in these cases the two opera-
tions coincide (see Definition 5.4.5).

(c) The (µr) rule of λµ corresponds to the (µ¬2) rule of νλµ, but the substitutions
employed differ; in λµ the reduct of [β]µα.M is M〈β/α〉, whereas in νλµ it
would be M〈ẑ([β]z)/α〉. However, again we note that occurrences of α in
M are syntactically restricted to be in subterms of the form [α]N . By Defi-
nition 5.4.5, we have ([α]N)〈ẑ([β]z)/α〉 = ([β]z)〈N/z〉 = ([β]N); i.e. the
same reduct is reached as in λµ. In more general terms, since semi-structural
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substitution is defined to coincide with structural substitution in the restricted
cases which occur in λµ, this difference in the presentation of the rules does
not affect our simulation result.

3. By straightforward induction on the structure of the derivation Γ "λµ M : A | ∆.

As an example of the differences between these two calculi, we consider terms in each
which might be seen to have type ¬¬A→A. In [2], issues regarding the inhabitation of
this type in λµ are discussed: “In Parigot’s style. . . [this type]. . . is represented with the
term λy.µα.[γ](y (λx.µδ.[α]x))”. This term is significantly more complex than might be
expected of a canonical term inhabiting this type, which reflects the need to work around
the restrictions on the form of terms involving µ-variables. This is improved upon by
allowing the body of a µ-abstraction to be any term of type ⊥ [61, 15], permitting a term
such as λy.µα.(y (λx.[α]x)) instead. However, the canonical natural deduction proof of
¬¬A→A yields the νλµ term λy.µx.[y]x. This cannot be a λµ term, because the µ-bound
variable is used as a standard term variable. Therefore we have a simpler representation
than in other comparable calculi. This term has behaviour similar (although not identical,
as we shall see) to the Felleisen’s C operator: when applied to an argument (bound to y),
it captures the outlying context (binding it to x), and then passes x to y in a continuation
application. The representation of control operators will be discussed further in the next
chapter.

5.5.4 The λµµ̃ Calculus

In this section, we show that we can encode the λµµ̃-calculus into νλµ. This is perhaps
more surprising than our previous simulation results, since λµµ̃ is based on a sequent cal-
culus presentation of logic. The λµµ̃-calculus [19] has a Curry-Howard correspondence
with a modified version of Gentzen’s LK (sequent calculus for classical logic). The modi-
fication generalises the usual sequents Γ "∆ to allow an optional distinguished statement
on the left or right of the turnstile (but never both at once). If such a formula is present,
it is written between the turnstile and a stoup (|). These three possible kinds of sequents
give rise to three different classes of syntax: terms (which correspond to sequents with
a distinguished formula on the right), contexts (with a distinguished formula on the left)
and commands (the standard kind of sequent, with no distinguished formula).

Definition 5.5.15 (λµµ̃ Syntax). The syntax of the terms (ranged over by v), contexts
(ranged over by e) and commands (ranged over by c) of the λµµ̃-calculus is specified by
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the following mutually-recursive definitions, in which x, y range over term variables, and
α, β over context variables:

c := 〈v | e〉
v := x | λx.v | µα.c

e := α | v· e | µ̃x.c

The commands 〈v | e〉 correspond to cuts in the logical sense, and reduction induces a
partial cut-elimination. However, not all cuts are redexes in this calculus: the command
〈x | α〉 is in normal form, for example. Commands pair a term with a context, and
evaluation of such a command intuitively defines what it means to evaluate the term in
the context. However, this intuition can be slightly misleading; it is not always the term
which is inserted into the context and sometimes the dual behaviour can be observed. The
full reduction rules are defined as follows:

Definition 5.5.16 (λµµ̃ Reductions). The reduction relation of the λµµ̃-calculus (which
we write as →λµµ̃ is defined to be the reflexive, transitive, compatible closure of the fol-
lowing rules, and is defined in terms of the usual notion of implicit substitution.

(→′) 〈λx.v1 | v2· e〉 →λµµ̃ 〈v2 | µ̃x.〈v1 | e〉〉
(µ) 〈µβ.c | e〉 →λµµ̃ c〈e/β〉
(µ̃) 〈v | µ̃x.c〉 →λµµ̃ c〈v/x〉

The first of these rules provides the logical reduction for the implication connective, but
in a more-general form than simply translating the (β) rule of the λ-calculus. This rule is
discussed in detail in [19], but can essentially be seen as a ‘breaking-down’ of the function
application into the evaluation of the body of the function v1 in the context e, with the term
v2 available to be substituted for x (by the (µ̃) rule)8. Note that the context e is ‘cut with’
v1 at an inner level, compared with the argument v2. By comparing with the usual cut-
elimination for the sequent calculus, this corresponds to one of the two bracketings of the
usual logical reduction rule for implication. The dual idea is to allow the argument v2

to be ‘cut with’ v1 first, and then insert the result into the context e. This corresponds
to a different bracketing of the two resulting cuts, and is less naturally expressible in the
syntax of λµµ̃ because of the lack of an explicit name for the output of the function λx.v1.
In fact, this original cut-elimination step is not simulated by the reductions of λµµ̃.

We show that it is possible to encode the λµµ̃-calculus into νλµ, in such a way that re-
ductions and typings are preserved. The key observation is that, while λµµ̃ distinguishes
between terms and contexts, in the νλµ-calculus there is a construct present to explicitly
represent continuations (or contexts), being the ν-binding. Contexts then, which have a

8This is the rule which inspired us to define the (λ′) reduction rule for νλµ: see Definition 5.4.6
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distinguished formula A on the left, representing their input, will be repackaged as con-
tinuations (ν-binding the input) of type ¬A. Commands, which have no distinguished
formula, will correspond to a term of type ⊥, which can be constructed from a continua-
tion and a term using the [M ]N construct. These ideas are made concrete by the following
definition.

To simplify the presentation, we extend the alphabet of variable names in νλµ to include
Greek letters (which do not, however, have any special meaning in the calculus).

Definition 5.5.17 (Encoding λµµ̃). We encode λµµ̃ by the following mapping (which
applies to terms, contexts, and commands alike; one could consider this three mutually-
recursive definitions). In the case for encoding a context of the form v· e, we assume y to
be a fresh variable.

〈v | e〉 = [e]v

x = x

λx.v = λx.v

µα.c = µα.c

α = α

v· e = νy.[e](y v)

µ̃x.c = νx.c

Note that commands are encoded exactly as continuation applications; the context e takes
the role of the continuation whereas the term v is the argument to the continuation. In
particular, note that the standard critical pair 〈µα.c1 | µ̃x.c2〉, which reduces to both
c1〈µ̃x.c2/α〉 and c2〈µα.c1/x〉 in the λµµ̃-calculus, is encoded as [νx.c2]µα.c1, forming a
similar critical pair. We have the following results with respect to this encoding.

Proposition 5.5.18 (Simulation of λµµ̃). 1. The mapping . is an injection.

2. (a) For any command c, if c : Γ "λµµ̃ ∆ then Γ,¬∆ " c :⊥.

(b) For any term v, if Γ "λµµ̃ v : A | ∆ then Γ,¬∆ " v : A.

(c) For any context e, if Γ | e : A "λµµ̃ ∆ then Γ,¬∆ " e :¬A.

3. For any λµµ̃ commands c1,c2 (or terms, or contexts) , if c1 →λµµ̃ c2 then c1 →νλµ

c2.

Proof. 1. By induction on the definition of the encoding. By inspection of the right-
hand sides, the only possibility of a counterexample is if contexts v· e and µ̃x.c

existed, such that v· e = νx.[e](x v) = νx.c = µ̃x.c. This would only be possible if
c = 〈e | v′〉 for some term v′ such that v′ = x v. But by inspection, a term is never
encoded as an application.
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Γ,¬∆, y : B→C " e :¬C

(Ax)
Γ,¬∆, y : B→C " y : B→C Γ,¬∆, y : B→C " v : B

(→E)
Γ,¬∆, y : B→C " y v : C

(¬E)
Γ,¬∆, y : B→C " [e](y v) :⊥

(¬I)
Γ,¬∆ " νy.[e](y v) :¬(B→C)

Figure 5.2: Proof

2. By simultaneous induction on the structures of terms, contexts and commands. The
only interesting case is for a context v· e. By inspection of the type-assignment
rule, we must have A = B→C for some types B and C, with Γ "λµµ̃ v : B | ∆ and
Γ | e : C "λµµ̃ ∆. By induction, twice, we obtain Γ,¬∆ " v : B and Γ,¬∆ " e :¬C.
The derivation of Figure 5.2 completes the case.

3. We show here only the case for the (→′) rule (the other cases being simpler). We
have:

〈λx.v1 | v2· e〉 = [v2· e]λx.v1

= [νy.[e](y v2)]λx.v1

→λµµ̃ [e]((λx.v1) v2) (ν)

→λµµ̃ [e]µz.[νx.[z]v1]v2 (λ′)

→λµµ̃ [νx.[e]v1]v2 (µ¬2)

= [µ̃x.〈v1 | e〉]v2

= 〈v2 | µ̃x.〈v1 | e〉〉

In [19], the following remark is made: “Without logical or computational loss, one may
force the body of a λ-abstraction to have the form µα.c (expanding λx.v as λx.µα.〈v | α〉
when necessary)”. If this approach were to be taken, then the rule (→′) could be replaced
by the following rule:

(→′′) 〈λx.µα.c | v· e〉 →λµµ̃






〈v | µ̃x.〈µα.c | e〉〉
or

〈µα.〈v | µ̃x.c〉 | e〉






In this way, the correspondence with the logical cut elimination rule for implication would
be restored. However, we note further that this rule is already fully simulated in the νλµ-
calculus. The first alternative is reachable as demonstrated in the proof above, but the
second can also be achieved as follows:
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〈λx.µα.c | v· e〉 = [v· e]λx.µα.c

= [νy.[e](y v)]λx.µα.c

→λµµ̃ [e]((λx.µα.c) v) (ν)

→λµµ̃ [e]µz.[νx.[z]µα.c]v (λ′)

→λµµ̃ [e]µz.[νx.c〈z/α〉]v (µ¬2)

= [e]µα.[νx.c]v (α conversion)

= [e]µα.〈v | µ̃x.c〉
= 〈µα.〈v | µ̃x.c〉 | e〉

The reductions in νλµ are therefore powerful enough to simulate a stronger notion of
reduction than that already present in λµµ̃. We will expand on this result in Chapter 7.

5.6 Thoughts on Strong Normalisation

For any term calculus based on a Curry-Howard Correspondence, we regard the Strong
Normalisation of typeable terms to be an essential property. This result guarantees that,
in the subset of the language corresponding to proofs (the typeable terms), the reduction
rules specify a set of proof reductions which are guaranteed to terminate. Unfortunately,
although we conjecture the νλµ-calculus to be strongly normalising, we have not yet
managed a proof of this result. We consider here the main technical difficulties with
constructing such a proof.

In the context of the non-constructive behaviour associated with classical logic, the com-
putability techniques of Tait [74] and Girard [36] (a powerful tool for proving strong nor-
malisation for other calculi) are not directly applicable. This is explained by Barbanera
and Berardi in [10], in which they illustrate that the intuitive notion of computability for
their calculus (also based on classical logic) creates a circularity. Adapting their explana-
tion to the case of νλµ, the intuitive definitions would include:

1. νx.M is computable if, for all terms N with the same type as x, M〈N/x〉 is com-
putable.

2. µx.M is computable if, for all terms N with the same type as x, M〈N/x〉 is com-
putable.

This immediately creates a circularity in the definitions: the computable terms of type
¬A depend on those of type A, and vice versa. Barbanera and Berardi instead introduce
a generalisation of the reducibility technique, using stratified candidates, from which the
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desired candidate sets can be built using a fix-point operation (see [10] for a very clear
proof). Their technique has been used by Yamagata [84] to prove the strong normalisation
of Parigot’s Symmetric λµ-calculus [58], and also to prove the strong normalisation of the
extension of the Symmetric λ-calculus to second order logic [85].

Since our νλµ-calculus is similar in some respects to the Symmetric λµ-calculus, it seems
that this technique ought to be useful in proving the strong normalisation of νλµ. One
obstacle to the application of this technique is that we have allowed⊥ to be a proper type,
and negation to be a standard logical connective, in-keeping with the original logic, but in
contrast to the approaches of [10] and [58]. It appears that the extension to allow negation
to be a proper connective should be possible. Having⊥ as a type creates more difficulties,
but we might be satisfied with dropping this aspect of our calculus, in order to obtain a
strong normalisation result.

An alternative approach, and one which we had hoped to successfully apply, would be
to encode the νλµ-calculus into the X i-calculus, for which a strong normalisation result
is already known. Unfortunately, for the reasons outlined in Chapter 7, this has not been
possible; essentially the reductions in νλµ include behaviour which is not easily simulat-
able in the X i-calculus.

5.7 Further Related Work

Streicher and Russ [72] define a variant of λµ-calculus, in which the syntax of λµ is
extended as follows: in the place of α in the syntax construct [α]M , they allow lists of
terms, terminated by a µ-variable (a Greek variable). This extra flexibility allows for
“. . . a considerable simplification of the equational presentation of λµ-calculus.” It can
be seen to be a step in the same direction as our work, since their lists of terms of the
form M1 :: M2 :: . . . :: Mn :: α could be represented in the νλµ-calculus by the explicit
continuation term νz.[α](((z M1) M2) . . .Mn).

A CPS translation of the λµ-calculus is presented by de Groote [24], which allows a clear
understanding of the (fairly limited) control behaviour present in the calculus. It would be
interesting to show how to extend this work to confluent subsystems of the νλµ-calculus,
and even to examine which terms (if any) are interpreted in the same way under all CPS
translations; in this way we could highlight the non-confluent aspects of the syntax in a
clearer manner.

The closest work we have seen to the νλµ-calculus is that of Rocheteau [67]. He iden-
tifies the collection of λµ reductions existing in the literature, and sets out to define a
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generalisation of λµ which can both encompass them, and be compared directly with
the λµµ̃-calculus. As such, he has very similar aims to our work. However, he choose
to introduce a second class of syntax for ‘contexts’, whose typing rules correspond to
left-introduction rules from the sequent calculus. In order to combine the terms with the
contexts, he employs a rule similar to the cut rule of the sequent calculus. Thus, contrary
to our stated aim, he does not inhabit Gentzen’s classical natural deduction.

5.8 Summary

We have defined a new programming calculus, based essentially on the well-known λµ-
calculus, but with various extensions and modifications made in order to obtain a natu-
ral Curry-Howard Correspondence with a system of classical natural deduction close to
Gentzen’s original. We have arrived at a set of reduction rules which are both (inten-
tionally) non-confluent, and general enough both the subsume most of those employed in
other variants of the λµ-calculus, and to allow the simulation of a fairly general cut-
elimination procedure for classical sequent calculus (i.e., the reductions of the λµµ̃-
calculus).

A natural question to ask of this work is, why has it not been done before? Although it is
not yet possible to be sure that the calculus we have presented is strongly-normalising, we
believe this to be the case, and if so, the νλµ-calculus could be considered a well-behaved
basis on which to build other calculi, or to study confluent subsystems. Furthermore, it is
pleasing from a philosophical point of view that the calculus achieves a correspondence
in the ‘spirit’ of the original Curry-Howard Correspondence; the match between the νλµ-
calculus and a standard presentation of classical natural deduction is just as clean as that
between λ-calculus and minimal natural deduction. It seems that the real answer to this
question is that the need to achieve confluence in applicative-style calculi appears to have
been dominant, even in the study of such calculi based on classical logic. As we have ar-
gued previously, we do not believe confluence to be a natural feature of calculi in this area,
and while it can always be achieved by sufficiently resitrcting reductions, we believe it is
valuable to first explore the problem in general. This approach does (on the other hand)
seem to have been common in the more-recent study of calculi based on classical sequent
calculus, perhaps because a well-understood notion of reduction was already established
in this paradigm (being cut elimination), which is itself naturally non-confluent. Gentzen,
of course, was not concerned with matters such as confluence (or even strong normalisa-
tion), since for him the value in defining a cut elimination procedure was in proving the
existence of a cut-free proof. Since the notion of cut-elimination is so well-established,
we regard the ability of the νλµ-calculus to encode these reductions to be a key result. In
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Chapter 7 we will return to this point and show how to encode the X i-calculus (whose
reductions are still more general than those of λµµ̃) into νλµ.

It is also important to consider how this calculus, with its abstract and largely mathe-
matical origins, can be related to ‘real’ programming. The most common parallel which
is drawn here is to compare calculi based on classical logics with functional languages
extended with control operators. An analysis of this question, in the context of the νλµ-
calculus, is the subject of the next chapter.
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Chapter 6

Control Operators

6.1 Overview

Control operators are syntactic constructs added to functional calculi (and related lan-
guages) whose reduction behaviours give explicit control over the context in which an ex-
pression is evaluated (sometimes also referred to as its continuation). It was the seminal
paper of Griffin [38] which first sparked an interest in the relationship between functional
calculi with control operators and classical logic. Indeed, this was the point at which
researchers began to seriously consider the notion of a Curry-Howard Isomorphism for
classical logic.

In Griffin’s paper, he observes that the control operator C can, in certain situations, be
assigned the type ((A→⊥)→⊥)→A, i.e., its type can be that of the double-negation-
elimination axiom of classical logic. The suggestion that programming constructs might
inhabit classical types was a striking one, since up to that point the prevalent view was that
it was only constructive logic which could have a computational content. Since then, a
wealth of research has sprung up investigating possible correspondences between classical
logics and computation.

In this chapter, we relate the νλµ-calculus to the practical area of control operators. We
consider a number of well-known control operators from the literature, and explore the
idea that they may be represented by the canonical νλµ-terms of the appropriate types. In
many cases, we find a close correspondence between such νλµ-terms and the behaviours
of the original operators. We show that the µ-binding of the νλµ-calculus can be seen to
add a notion of delimited control, as provided by (for example), Felleisen’sF operator. As
a consequence of this approach, we also discover that a variant of Felleisen’s F operator
correponds most closely with the canonical inhabitant of double-negation-elimination,

128



Γ "M : A Γ, z : A " Ca{z} : B
(context)(z +∈Ca{•})

Γ " Cc{M} : B

6.2.1 Undelimited Control Operators

Abort

The simplest control operator in the literature was invented by Felleisen, and presented in
[32]. It is called ‘abort’, and represented as A. It provides the crudest facility for directly
manipulating the outlying context; when applied to an argument M in a context C, the
context is abandoned (deleted), and M is the result. This behaviour is described by the
following reduction rule:

Definition 6.2.2 (The abort operator). The behaviour of abort (A) is described by the
following reduction rule:

Ca{A(M)}→ M

For example, the program (x (A(y) z)) can be reduced by this rule to y. The problem
with the reduction rule above, is that it is obviously not compatible; if the redex is placed
within a further context, then the new behaviour is to abandon this context also. More
explicitly, Ca{A(M)}→ M but C ′

a{Ca{A(M)}} does not in general reduce to C ′
a{M}.

The original solution to this problem was to allow the rule to be applied only when the
context is the ‘entire program’. However, as Felleisen discussed in [31], this is not an
elegant solution; a better approach is to deal with a delimited version of this operator, as
we shall discuss later.

Call/cc

Probably the most well-known control operator is ‘call-with-current-continuation’, or
‘call/cc’ for short. Not only is it widely referred to in the literature, but it is implemented
in several popular languages. Scheme is the classic example of a language including
call/cc, but a variant of the operator is also included in the Standard ML of New Jersey.

Like many of the operators discussed in this chapter, call/cc provides direct access to the
surrounding context or continuation at the point of invocation (the ‘current continuation’).
The behaviour of the operator is to make a copy of this context and reify it as a special
kind of function (see the definition below). If this function is called with an argument,
the effect is to throw back that argument to the copy of the context, and to abort whatever
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other evaluation was currently taking place. For this reason, the kind of language construct
created by call/cc is sometimes referred to as an abortive continuation.

We will use the symbol K to represent the call/cc operator in a functional language, and
write K(M) for the application of call/cc to an argument M . The behaviour of this op-
erator can be described by a simple operational rule, in terms of the previously-discussed
‘abort’ operator.

Definition 6.2.3 (The call/cc operator). The behaviour of call/cc (K) is described by the
following reduction rule:

Ca{K(M)}→ Ca{M (λx.A(Ca{x}))}

We can see that the behaviour of the operator is to build an abstraction of the current
context, with an additional ‘abort’ inserted around the copy of the context. This kind
of term is referred to in the literature as an abortive continuation; when an argument
is passed to it, the argument is evaluated in the copy of the context, and the surround-
ing ‘abort’ abandons any other evaluation still to take place. In order to better illus-
trate the behaviour of this operator, we consider examples of the reduction behaviour
of terms of the form Ca{K(λy.M)}. Firstly, if M does not make use of the reified
abortive continuation, then evaluation proceeds as normal. Concretely, if y (∈M , we have
Ca{K(λy.M)}→ Ca{(λy.M) (λx.A(Ca{x}))}→ Ca{M}. On the other hand, suppose
the abortive continuation (inserted for y) is applied to an argument (M ′) within the body
of M . For simplicity, we assume in this case that there is a unique occurrence of y in M ,
and that M can be written in the form C ′

a{y M ′} (in general this may not be possible; for
example the application may occur underneath a λ-abstraction). In this case, we observe
the following behaviour:

Ca{K(λy.C ′
a{y M ′})} → Ca{(λy.C ′

a{y M ′}) (λx.A(Ca{x}))}
→ Ca{C ′

a{(λx.A(Ca{x})) M ′}}
→ Ca{C ′

a{A(Ca{M ′})}}
→ Ca{M ′}

This example shows that call/cc provides the facility to abandon evaluation of M and
return an answer M ′ to the original context Ca. The ‘abort’ in the reduction rule for K is
crucial for acheiving this behaviour, for two reasons. Firstly, it is the abort operator which
allows the remainder of M (being the context C ′) to be discarded. Secondly, since the
outer context C is copied in the rule, the ‘abort’ ensures that the context is not evaluated
twice, by discarding one copy.

Note that in general, there could be multiple occurrences of y in M , and so the kind
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of reduction described above would not obviously be deterministic. If confluence is a
requirement, this is usually resolved by a more-restrictive notion of evaluation context,
which ensures a unique decomposition of a term into a redex and evaluation context. We
will return to the issue of different kinds of evaluation context later in this chapter.

‘Control’

The operator ‘control’ (which we write as C), was also presented by Felleisen in [32].
It provides a behaviour similar in some ways to that of K, but with an important differ-
ence: the outer context is not copied by C, but is only captured within the reified abortive
continuation. This behaviour is explicitly described by the following definition:

Definition 6.2.4 (The C operator). The behaviour of ‘control’ (C) is described by the
following reduction rule:

Ca{C(M)}→ M (λx.A(Ca{x}))

The C operator gives its argument more complete control over its surrounding context
than K does. As a special case it is possible to completely discard the context, i.e. A can
be simulated. This can be achieved as follows:

AC(M) =def C(λk.M) (k (∈M)

The C operator can also simulate K, by explicitly reintroducing the copying of the bound
context:

KC(M) =def C(λk.(k (M k)))

Conversely, K alone cannot express C (as it is unable to express the required A step).

Remark 6.2.5. Recall that we argued that the two reasons for the inclusion of A in the
reduction rule forK were: firstly, to avoid evaluating both copies made of the surrounding
context, and secondly, to allow the evaluation of the argument to be ‘aborted’. In the case
of the C operator, it is not so clear that A is necessary. Firstly, since the outer context C is
not copied, there is no need to discard one copy. Secondly, since C can directly express A
(and the way it is expressed depends only on the way in which the context is captures, not
on the extra A introduced by the reduction rule for C), this A could be inserted manually
with another occurrence of C. These points seem to suggest that the inclusion of A in
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the reduction rule is somewhat redundant as far as expressibility is concerned. In fact,
Felleisen later introduced an operator F which has a similar behaviour to C, but does not
include A in its reduction rule. The removal of A actually leads to better properties, as
we shall shortly discuss.

6.2.2 Type Assignment

It was Griffin’s seminal paper [38] which first sparked interest in the search for an exten-
sion of the Curry-Howard Correspondence to a classical logic. His observation was that
it is possible to type the C operator with the type ¬¬A→A (for any type A), suggesting
that a logical correspondence could be found with the usual implicative logic extended
with double-negation elimination (yielding a classical logic). In fact, since there is no
explicit negation present in Griffin’s work, his proposed typing for the C operator was
((A→⊥)→⊥)→A for any type A.

Considering the reduction rules presented above, one can derive the most general con-
sistent typing for the operators. For example, in the case of ‘abort’, say M has type B,
and the hole in Ca has type A. Then A must be typed as B→A, for any types A and B.
From a logical perspective, this is inconsistent, and Griffin proposed to insist that B be
the special type ⊥, in order to resolve the inconsistency; under this interpretation, A has
the type ⊥→A, which is a tautology (of intuitionistic and classical logic, but not mini-
mal logic). This suggests that A is the computational counterpart of the (⊥E) of natural
deduction. For the purpose of these discussions, we will therefore allow the following
type-assignment rule:

Γ "M :⊥
(⊥E)

Γ " A(M) : A

Considering the most-general typing for K, we recall the reduction rule:

Ca{K(M)}→ Ca{M (λx.A(Ca{x}))}

Suppose that Ca has a hole of type A, and the ‘output type’ of Ca is some type D (i.e.,
when a term of type A is inserted in the hole of the context Ca, the resulting term has type
D). Suppose also that M has some type C. Then, from the left-hand side of the rule, K
must be given type C→A:
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Γ " K : C→A Γ "M : C
(→E)

Γ " K(M) : A Γ, z : A " Ca{z} : D
(context)

Γ " C{K(M)} : D

Considering the right-hand side of the reduction rule, we see that the variable x (placed
in the ‘hole’ of Ca) must have type A. Ca{x} must have type ⊥ (according to our typing
for ‘abort’), i.e., D = ⊥, and then A(Ca{x}) can be assigned any type B, say, as shown:

(ax)
Γ, x : A " x : A Γ, x : A, z : A " Ca{z} :⊥

(context)
Γ, x : A " Ca{x} :⊥

(⊥E)
Γ, x : A " A(Ca{x}) : B

The term λx.A(Ca{x}) then has type A→B, meaning that M must have type (A→B)→A,
i.e. we require C = (A→B)→A. Returning to our typing for K, then, we deduce that the
most general consistent type for the operator is ((A→B)→A)→A. This type corresponds
to Pierce’s Law; a formula which is a tautology of classical logic, but not of intuitionistic
logic. The ‘typed’ version of the reduction rule can now be written as follows:

Γ " K : ((A→B)→A)→A Γ "M : (A→B)→A
(→E)

Γ " K(M) : A Γ, z : A " Ca{z} :⊥
(context)

Γ " Ca{K(M)} :⊥

→

Γ "M : (A→B)→A

(ax)
Γ, x : A " x : A Γ, x : A, z : A " Ca{z} :⊥

(context)
Γ, x : A " Ca{x} :⊥

(⊥E)
Γ, x :A " A(Ca{x}) :B

(→I)
Γ " λx.A(Ca{x}) : A→B

(→E)
Γ "M (λx.A(Ca{x})) : A Γ, z : A " Ca{z} :⊥

(context)
Γ " Ca{M (λx.A(Ca{x}))} :⊥

Applying the same analysis to the operator C, we obtain ((A→B)→⊥)→A as the most
general typing for the operator. This can, in the special case of B = ⊥, allow C to be
viewed as a computational representation of double-negation elimination, and it was this
point which sparked the interest in the computational content of classical logic. However,
although this is a historically-significant oberservation, as we will argue, there are actu-
ally other control operators which are better candidates to correspond with the double-
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negation elimination of classical logic. Note that the type ((A→B)→⊥)→A is in fact
logically consistent without identifying B with ⊥. This more-general typing comes di-
rectly from the use of ‘abort’ in the reduction, which allows one to obtain an arbitrary
type (the use of ‘abort’ is typed ⊥→B) in the reduction rule.

If one coerces B to be⊥, in order to consider ‘control’ to be the computational counterpart
of double-negation elimination, then the occurrence A in A(x) is in fact of type ⊥→⊥,
and so seems to be a redundant step from the point of view of the proof. This is discussed
by Ariola and Herbelin in [2]: “. . . these steps are of type ⊥→⊥. Therefore it seems
we have a mismatch. While the aborts are essential in the reduction semantics they are
irrelevant in the corresponding proof.” They criticise the work of Ong and Stewart [53]
and of de Groote [25], since these works do not include the abort steps in the reduction
rules for C. The work of de Groote is particularly relevant to our calculus, since he
compares the λC-calculus with the λµ-calculus. However, as Ariola and Herbelin observe,
in order to obtain a neat correspondence, de Groote in fact adopts the reduction rules
related to a different operator of Felleisen’s: the F operator [33], instead of the usual
ones for C. We will argue that this is a natural direction to explore; the operator C is
actually not a canonical representation of double-negation elimination, and the behaviour
of F is closer to this goal. We will return to this issue in the next section.

Unfortunately, there is still an inconsistency with the general reduction behaviour of the
operators above. Take A, for example, and consider a context Ca whose ‘hole’ is of type
A, and, given x of type A, Ca has type B. Then Ca{A(M)} has type A, for any term M of
type ⊥. But this term runs to M , violating subject reduction, unless A happens to be the
type ⊥, also. This is a serious flaw with the correspondence between these operators and
their logical counterparts suggested above; any Curry-Howard Correspondence should
mean that subject reduction is trivially satisfied, since reductions on typeable terms should
be valid reductions on proofs. Griffin proposes a solution to this problem by ‘wrapping’
any program in a top-level context which is guaranteed to be of type ⊥, and making
modifications to the reduction rules to ensure that this special context is never removed
during reduction. However, this restriction does not seem very pleasing, from either the
computational or the logical point of view, and Felleisen proposed the operator F to avoid
this workaround.

We should emphasise that Griffin’s observation was critical for this whole area of re-
search, and the fact that the reduction behaviour for the C operator (which he did not
define himself) does not neatly match up with a perfect Curry-Howard interpretation of
the calculus could not have been avoided by his work. Instead, he gives the ‘best fit’
possible, between the operator’s semantics and a desired type system based on classical
logic. However, motivated by the problems described above, Felleisen defined improved
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versions of the C operator, whose reduction behaviour did not require these ‘fixes’ to
guarantee a well-behaved system. Similarly, many other authors have proposed compa-
rable well-behaved control operators. The key idea was that, rather than allowing control
over the ‘whole program’, the abstracted context could be delimited by a further syntactic
entity known (for historical reasons) as a prompt. We will argue that these refined con-
trol operators are more-suitable as computational representations of the inference rules of
classical logic.

6.2.3 Delimited Control Operators

The F operator was introduced by Felleisen to ‘fix’ the problems which the C operator
had (particularly, the undesirable problems with reduction at the top level of a term). He
summarises the motivations for introducing this operator in [31]. The behaviour is defined
in terms of a second construct #, a prompt2, which delimits the context captured by the
effect of F . Although prompts were originally intended to give an explicit representation
of the top-level, it was soon realised that they can be added as a first-class syntax con-
struct, and terms of the form # M as well as F M may occur arbitrarily. We recall the
definitions:

Definition 6.2.6 (The ΛF# calculus [33]). The terms of the ΛF# calculus are defined by
the following grammar:

M,N ::= x | λx.M | M N | F(M) | #(M)

The reduction rules are as follows 3:

(λx.M) N → M〈N/x〉
(F M) N → F (λk.(M (λm.(k (m N)))))

N (F M) → F (λk.(M (λm.(k (N m)))))

# (F M) → # (M (λx.x))

# V → V (if V is a value)

The reduction rules for F in an application (the second and third rules above) are exactly
those for the C operator, but without the abort steps. We observe that the behaviour of F
can in fact be summarised by an operational rule:

2The name is chosen for historical reasons: originally the prompt was introduced to be an explicit
representation for the top-level of a program, where (in an interactive interpreter) the user types at a prompt!

3In fact, we have slightly generalised Felleisen’s definition, which allows the third of these rules to be
applied only when N is a value (this ensures confluence, but is not a criterion we feel necessary for the
purposes of this work, and without it we can allow a uniform treatment of applicative contexts, e.g., for
Proposition 6.2.7 below).

136



Proposition 6.2.7. For any applicative context Ca (c.f. Definition 6.2.1) and ΛF# term
M , the following reduction is possible:

C{#(Ca{F(M)})}→ C{#(M (λx.Ca{x}))}

Proof. By induction on the definition of the context Ca.

Ca = • : Then for any term N we have Ca{N} = N . We observe:

#(Ca{F(M)}) = #(F(M))

→ #(M (λx.x))

= #(M (λx.Ca{x}))

Ca = C ′
a N : Then:

#(Ca{F(M)}) = #(C ′
a{F(M) N})

→ #(C ′
a{F (λk.(M (λm.(k (m N)))))})

→ #((λk.(M (λm.(k (m N))))) (λx.C ′
a{x})) (by induction)

→ #(M (λm.((λx.C ′
a{x}) (m N))))

→ #(M (λm.C ′
a{m N}))

= #(M (λm.Ca{m}))

Ca = N C ′
a : Similar to the previous case.

We consider next the most-general way of typing the operator F . The proposition above
suggests that subject reduction will require the property that whatever type can be given
to Ca{F(M)} can also be given to M (λx.Ca{x}). Suppose then, that Ca has a hole of
type A, that Ca{x} is of type B (if x is of type A), and that M is of type C. Then the
first term forces F to be of type C→A. Considering the second, the variable x must have
type A, and so λx.Ca{x} has type A→B. Since Ca{F(M)} has type B, we require that
M (λx.Ca{x}) have type B also. Therefore, M must have type (A→B)→B, i.e., we
require C = (A→B)→B. This implies that the most-general typing of the operator F is
((A→B)→B)→A. This type can also be seen to represent double-negation elimination,
if B is coerced to be type ⊥. However, unlike in the case of C, double-negation elimina-
tion is the most general logically-consistent typing which we can give to the F operator.
Therefore, considering the types alone, F is at least as good as C as an inhabitant of the
type ¬¬A→A.
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Note that by giving the type ¬¬A→A to the F operator, we force the term λx.Ca{x} to
be of type ¬A, and the application of M to this term is actually a continuation application.
Furthermore, this implies that the prompt # featuring in these rules is always applied to
a term of type ⊥. The reduction rule #(V ) → V implies that prompts should be typed
as ⊥→⊥. Therefore, although there is no problem with this typing in terms of subject
reduction, it does impose a restriction on the use of prompts: in Felleisen’s work a prompt
may be inserted at a point in the program with any type (the type B, in the discussion
above), whereas for a logical interpretation, we insist on type ⊥. However, we are not
asserting that this is the correct way of typing the F and # operators; rather we observe
that it is a typing consistent with the reduction rules, and allows us to compare with pos-
sible proof reduction rules for a double negation elimination operator. Ariola, Herbelin
and Sabry in [5] make a similar observation regarding the typing of prompts from a log-
ical perspective: “. . . this is a restriction from the point of view of any computationally
interesting type system for control for which one would expect the top-level to be of an
inhabited type (e.g., the type of integers). But this is really where the Curry-Howard
correspondence holds. . . ”.

Given these observations about the typing of the various terms above, we would, in the
νλµ-setting, roughly express the rule characterising F as follows:

C{#(Ca{F(M)})}→ C{#([M ]νx.Ca{x})}

This seems close to one of the rules we will shortly describe for characterising the µ-
reductions of the νλµ-calculus (Definition 6.3.1 in the next section):

C{Cc{µx.M}}→ C{M〈νz.Cc{z}/x〉}

In fact, as we will show, the µ-binder of the νλµ-calculus behaves in a similar way to a de-
limited control operator. In a sense, we have “home-grown” a delimited control operator
from our general approach to inhabiting the logic. In order to explore this idea further, we
consider the canonical νλµ-terms inhabiting ⊥→A (as ‘abort’ was typed), Pierce’s Law
(as call/cc), and double-negation-elimination, and examine their computational behaviour.

6.3 Control Operators in νλµ

Recall that µ-bound terms propagate outwards through applicative contexts, consuming
and binding their context as a continuation. When the level of a continuation applica-
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tion is reached, this behaviour terminates (the µ-binder is removed). We can now give a
characterisation of this kind of continued µ reduction by the following operational-style
rules:

Lemma 6.3.1 (Characterisation of repeated µ-reductions). The following reductions are
derivable in the νλµ-calculus (so long as Ca is not the empty context, •):

Ca{µx.M} → µy.M〈νz.[y]Ca{z}/x〉
Cc{µx.M} → M〈νz.Cc{z}/x〉

Proof. By straightforward induction on the definition of the contexts, similar to the proof
of Proposition 6.2.7.

We now turn to the inhabitation of the types of interest. Firstly, considering the type
⊥→A. To aid comparison with other operators, we find it convenient to consider instead
the inhabitation of a derived rule for (⊥E), which can be simulated by the (PC) rule:

Γ, x :¬A "M :⊥
(PC)

" µx.M : A

Therefore, we define Aνλµ(M) = µx.M with x (∈M . To check this has the correct
operational behaviour, we make use of Definition 6.3.1:

Ca{Aνλµ(M)} = Ca{µx.M} (λ)

→ µy.M〈νz.[y]Ca{z}/x〉 (Definition 6.3.1)

= µy.M (x (∈M)

We have not reached M by this reduction, although the context Ca has been discarded,
as expected. In fact, the persistence of the µ-binder in the result avoids the problem
with subject reduction which is seen with the operational definition of the behaviour of
C (as discussed above). On the other hand, if the context employed were a continuation-
delimited one, the full effect of the abort would be seen (the reader may wish to verify
that Cc{Aνλµ(M)}→ M ).

Consider next Pierce’s Law (((A→B)→A)→A), the type of the call/cc operator (here-
after denoted by K). By seeking the canonical natural deduction proof matching this
type, we obtain the νλµ-term Kνλµ = λx.µy.[y](x (λz.µw.[y]z)), which inhabits the fol-
lowing derivation (in which terms, and assumptions in non-essential positions, have been
omitted).
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(ax)
¬A " ¬A

(ax)
(A→B)→A " (A→B)→A

(ax)
¬A " ¬A

(ax)
A " A

(¬E)
¬A, A " ⊥

(PC)
¬A,A " B

(→I)
¬A " A→B

(→E)
(A→B)→A,¬A " A

(¬E)
(A→B)→A,¬A " ⊥

(PC)
(A→B)→A " A

(→I)
" ((A→B)→A)→A

The behaviour of this term in a continuation delimited context can be seen to be that
expected of call/cc:

Cc{Kνλµ M}
→ Cc{µy.[y](M (λz.µw.[y]z))} (λ)

→ [νx.Cc{x}](M (λz.µw.[νx.Cc{x}]z)) (5.2)

→ Cc{M (λz.µw.[νx.Cc{x}]z)} (ν)

→ Cc{M (λz.µw.Cc{z})} (ν)

= Cc{M (λz.Aνλµ(Cc{z}))} (ν)

Remark 6.3.2. Note that this behaviour is seen for a continuation-delimited context Cc:
in fact what we have here is a delimited version of the call/cc operator, since it only
captures the surrounding context up to the next continuation application.

Recall now, the operational rule defining the action of C:

Ca{C M}→ M (λx.A(Ca{x}))

In fact, if the operator is to be related to double-negation elimination, the λ-binder em-
ployed here is really building a continuation (a term of negated type); in the νλµ-setting
we would employ a ν-binder instead. Similarly, the applications of M to this term is
in fact a continuation application. Therefore, we would represent the rule in the richer
νλµ-syntax as:

Ca{C M}→ [M ]νx.A(Ca{x})
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In order to try to find an analogous operator in our calculus, we start by finding a natural
deduction proof of ¬¬A→A. The simplest such proof yields a νλµ-term as follows:

(ax)
x :¬¬A, y :¬A " x :¬¬A

(ax)
x :¬¬A, y :¬A " y :¬A

(¬E)
x :¬¬A, y :¬A " [x]y :⊥

(PC)
x :¬¬A " µy.[x]y : A

(→I)
" λx.µy.[x]y :¬¬A→A

We can show that the term λx.µy.[x]y has the following behaviour in a continuation-
delimited context:

Cc{Cνλµ M} = Cc{(λx.µy.[x]y) M}
→ Cc{µy.[M ]y} (λ)

→ ([M ]y)〈νz.Cc{z}/y〉 (Definition 6.3.1)

→ [M ]νz.Cc{z}

This does not appear to match the behaviour of the C operator, since no A steps occur in
the redex. However, as suggested previously, these abort steps are not essential for the
inhabitation of double-negation elimination. For example, as we have observed, the F
operator can itself be typed as a double negation elimination operator (i.e. given the type
¬¬A→A). There is no subject reduction conflict between this typing and the associated
reduction rules. Furthermore, the reduction behaviour of the νλµ-term Cνλµ above (which
we argue is a fairly canonical term inhabiting this type, in a calculus in the style of λµ) is
actually closer to F than C (there is no ‘abort’ present around the captured continuation).
Instead, we discovered that a νλµ-term closely corresponding to the behaviour of C can
be found by taking the canonical inhabitant of the type ¬(A→B)→A; the simplest proof
yields a term as follows:

(ax)
x :¬(A→B), y :¬A " x :¬(A→B)

(ax)
x :¬(A→B), y :¬A, z : A, w :¬B " y :¬A

(ax)
x :¬(A→B), y :¬A, z : A, w :¬B " z : A

(¬E)
x :¬(A→B), y :¬A, z : A, w :¬B " [y]z :⊥

(PC)
x :¬(A→B), y :¬A, z : A " µw.[y]z : B

(→I)
x :¬(A→B), y :¬A " λz.µw.[y]z : A→B

(¬E)
x :¬(A→B), y :¬A " [x]λz.µw.[y]z :⊥

(PC)
x :¬(A→B) " µy.[x]λz.µw.[y]z : A

(→I)
" λx.µy.[x]λz.µw.[y]z :¬(A→B)→A

Recalling that our representation of A(M) in νλµ is µw.M where w (∈M , it is clear
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that the term λx.µy.[x]λz.µw.[y]z obtained above behaves similarly to the term derived
for the F operator, but with an extra ‘abort’ step explicitly inserted around the captured
copy of the context (which is bound to y). The subterm λz.µw.[y]z can be compared
with the term λz.A(CA{z}) in the reduction rule for ‘control’. So, we naturally obtain
a term corresponding to closely to C in our calculus by inhabiting not double-negation
elimination, but the type we have argued is the most general logically-consisted type for
C.

For these reasons, we regard F as a better candidate than C to provide a Curry-Howard
correspondence with a calculus with double-negation elimination. This explains why, in
the work of de Groote, Ong and Stewart, it was found that better correspondences could
be identified if the abort steps were removed from the reduction rules for C; essentially
those authors were employing a version of the F operator instead.

Remark 6.3.3. In various calculi in the literature, it is considered an error to use a
delimited control operator without a surrounding delimiter (prompt). However, since our
reductions are defined locally, there is no problem if a µ-bound term is not enclosed by
a continuation application. It will be impossible for the µ-binding to disappear during
reduction in this case, but this is not a problem.

Since the νλµ-terms described above exhibit comparable behaviour to delimited versions
of the relevant control operators from the literature when placed in continuation-delimited
contexts, we would like to draw an analogy between these special kinds of context, and
the use of prompts in the literature. In fact, there is quite a natural comparison to be made:
the context captured by operators such as F is delimited by the nearest enclosing prompt,
whereas the context captured by repeated µ-reductions is delimited by the nearing enclos-
ing continuation application. This suggests that terms of the form [M ]N in our calculus,
are comparable with terms of the form #(M N) in the style of Felleisen’s calculi. In fact,
the practical motivation for including continuation applications separately from function
applications in our calculus is exactly this: to delimit the behaviour of the µ-reductions.
If we apply the restriction that # can only be applied to terms of type ⊥, then these two
syntaxes also coincide in their possible typings, so long as the negated type ¬A of M is
converted appropriately into an implicative type of the form A→⊥.

However, the µ-reductions still do not exactly correspond with those of F . In the rule
describing F , the prompt remains unaffected on the right-hand side. On the other hand,
for νλµ, the outer continuation application is absorbed as part of the context Cc. So in
fact, our µ operator does not relate to F precisely either. There are however many other
delimited control operators in the literature, who explore other possibilities regarding the
management of prompts in these reductions. In particular, the choice of whether or not to
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leave the prompt in its original position, and whether or not to place a prompt around the
captured context, yield four subtly-different operators. These are summarised neatly by
Kiselyov [45], and by Dybvig et. al. in [28], in which they are described as follows:

−F− This operator does not leave a prompt in the original position, nor in the captured
continuation: C{#(Ca{−F−(M)})}→ C{M (λx.Ca{x})}. This is related to the
operator cupto of Gunter et. al. [39], and is also called control0 in [45].

−F+ This operator does not leave a prompt in the original position, but places one around
the captured continuation: C{#(Ca{−F+(M)})}→ C{M (λx.#(Ca{x}))}. This
is related to the spawn of [41], and is called shift0 in [45]. It is also briefly referred
to by Felleisen, in [31], as F−.

+F− This operator leaves a prompt in the original position, but not in the captured con-
tinuation: C{#(Ca{+F−(M)})} → C{#(M (λx.Ca{x}))}. This is Felleisen’s
F operator itself.

+F+ This operator leaves a prompt in the original position, and also places one around
the captured continuation: C{#(Ca{+F+(M)})} → C{#(M (λx.#(Ca{x})))}.
This is Danvy and Filinsky’s shift operator [23].

Considering the relative expressiveness of these four variants, it is fairly easy to see that
a variant which has fewer prompts than a second can always express the second straight-
forwardly (i.e., extra prompts can easily be added in a translation). Less obviously, it is
possible for those with more prompts to simulate those with fewer. This was shown by
the work of Shan [17], who showed that shift (with the most prompts) can express the
other variants, and, more generally, by Kiselyov [45]. We therefore do not regard the dis-
tinction between the four variants as essential. However, it is worth pointing out that the
encodings of control operators with fewer prompts are not compositional; a global trans-
formation of an entire program is required in order to simulate the one with the other.
Although it is valuable to know exactly how this encoding can be achieved, the fact that it
exists is perhaps not all that surprising, since we know that it is always possible to apply
a variant of CPS transform to a program in order to obtain a λ-calculus program with the
“same content”. Therefore, in a sense, all of these paradigms have equal expressiveness,
if one allows for global transformations of entire programs. One could instead be con-
cerned with issues of efficiency, and also how naturally a calculus can express a desired
operation. However, we do not explore such questions in detail here; we are satisfied that
the control behaviour in the νλµ-calculus (which we will now describe) is adequate.
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We observe that the νλµ-term λx.µy.[x]y corresponds with the third operator −F+ (or
shift0) above. Since λx.µy.[x]y represents the canonical natural deduction proof of double-
negation-elimination, and we argue that the νλµ-calculus represents a general and canon-
ical computational interpretation of Gentzen’s classical natural deduction, we conclude
that, rather than the historically-accepted candicate C, the −F+ operator arises naturally
as the computational counterpart of double-negation elimination. This observation is the
main result of this chapter.

6.4 Design choices in νλµ-reductions

Having illustrated the relationship between the µ-reductions of the νλµ-calculus and the
behaviour of delimited control operators, we can make clearer the reasons for some of the
design choices in the reductions of the νλµ-calculus.

6.4.1 Negation as a primitive connective

Returning to one of the questions of the previous chapter, we can now explain more clearly
why it is advantageous to consider negation as a primitive connective, rather than to define
it using ¬A = A→⊥. In brief, it allows our µ-binding construct to have the behaviour of
a delimited control operator (such as F), rather than an undelimited one (such as C). We
will elucidate on this point here.

We have given an explanation in this chapter of the control behaviour associated with the
µ-binding construct in the calculus, and have shown how it can be seen to be a form of
delimited control, as is well-studied in the literature on control operators. Although we do
not include an explicit ‘prompt’ operator in the syntax of our calculus, the characterisa-
tion of repeated µ-reductions (Lemma 6.3.1) and the definition of continuation-delimited
contexts on which it depends (Definition 6.2.1) show that the control behaviour of a µ-
bound term is delimited by the nearest enclosing continuation application (term of the
form [M ]N ). This implies that these kinds of application play a role above and beyond
that of function application. The reason is that a µ-binder can be removed when the con-
sumed context is of type ⊥, and it is this chosen behaviour (c.f., rules (µ¬1) and (µ¬2))
which causes the construct to behave like a delimited control operator. This is indeed a
design choice; one could always construct a new µ-binding oblivious to the fact that the
context is of type ⊥; for example, one could replace (µ¬1) with the rule:

(µ¬′
1) : [µx.M ]N → µy.M〈ẑ([y][z]N)/x〉
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In this case, the µ-binder always persists whenever it is reduced within an application,
and we revert to undelimited control. The µ-bound term in the reduct of the rule (µ¬′

1) is
necessary of type ⊥, and as previously discussed, it can be seen therefore to be redundant
(it seeks a ‘continuation’ for ‘no value’). If the binding is removed, and the variable y

replaced by the canonicalterm of type ¬⊥, being νw.w (as is employed in the (µµ) and
(µν) rules of the calculus), then the original reduct of the (µ¬1) rule is reached:

M〈ẑ([y]([z]N))/x〉〈νw.w/y〉 = M〈ẑ([νw.w]([z]N))/x〉
→ M〈ẑ([z]N)/x〉 (ν)

Therefore, the (µ¬1) rule can be seen as a refinement of the ‘obvious’ reduction rule. Of
course, this point of view depends on the starting point; in fact, since the λµ-calculus was
our departure point then it is natural to have µ-binders disappear in such a reduction rule,
due to the rule for “µ-renaming” (c.f., Definition 5.2.3):

(µr) : [β]µα.M → M〈β/α〉

Therefore, to take another point of view, we have generalised the pattern of λµ here: µ-
bound terms in function applications reduce to µ-bound terms (c.f., rule (µ) of Definition
5.2.3), whereas µ-bound terms in continuation applications can have their µ-bindings
removed.

To see most clearly what would happen if one were to treat negation as a defined connec-
tive, we can consider just replacing every ν-bound term νx.M with a λ-bound one λx.M ,
and every continuation application [M ]N with function application M N . Because we
allow ⊥ to be a proper type in our calculus, there is nothing wrong with the above re-
placements in terms of the typeability; essentially we are replacing ¬A with A→⊥, and
replacing continuations with functions returning ⊥. Furthermore, if one does not make
any µ-reductions, then it is fairly clear that the resulting terms behave in similar fashions.
The difference then, is in the behaviour of the µ-bound terms themselves. By removing all
continuation applications from a term, we remove the delimiting effects these terms have
on the µ reductions, which can change the reduction behaviour of the term, by making the
µ-reductions ‘coarser’.

For example, consider the νλµ-term (λz.x) ([µw.y]u). The µ-bound variable w does
not occur in the sub-term y, and so will have the control effect of discarding its context
(the term µw.y can be read as A(y)). However, this control effect is delimited by the
(immediately) surrounding continuation application. Therefore, even if the µ-reductions
are chosen to execute first, it is only the variable u which gets discarded, and the eventual
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result is unchanged:

(λz.x) ([µw.y]u) → (λz.x) y (µ¬1)

→ µv.[νz.[v]x]y (λ′)

→ µv.[v]x (ν)

→ x (µη)

The reader may wish to verify that x is in fact the only normal form reachable from the
original term. However, if we apply the “translation” described above, we obtain the term
(λz.x) ((µw.y) u). This can now be reduced in the following way:

(λz.x) ((µw.y) u) → (λz.x) (µw.y) (µ→1)

→ µw.y (µ→2)

We can see that the µ-bound term is now able to capture more of the context than previ-
ously. The inclusion of both continuation and function application as separate constructs
in the calculus therefore allows for more control over the reductions: if it is desirable for
a µ-bound term to consume the context even beyond a point of type ⊥, then a function
application can always be employed, as shown above. However, the continuation appli-
cations themselves allow for the notion of control to be more refined when this is wanted;
if they were removed from the calculus then there would be no natural way in which
the effect of the µ-reductions could be delimited, and so this potential for refined control
behaviour would be lost.

6.4.2 The (µ¬2) rule

There is another slightly subtle design decision in the νλµ-reductions which we can now
explain: why our rule (µ¬2) does not in fact correspond directly to the generalisation of
the λµ rule (µr) above (Definition 5.4.6). The ‘obvious’ generalisation which we could
have used was the following rule:

(µ¬′
2) : [N ]µx.M → M〈N/x〉

whereas we choose to reduce to the term M〈ẑ([N ]z)/x〉 instead. One reason for this
choice is to maintain a symmetry between this rule and the rule (µ¬1); in turn, this
makes the uniform treatment of “continuation delimited contexts” possible, as in Defi-
nition 6.2.1. However, given the discussions of this chapter, we can now see a practical
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distinction which can be made, too. If reduction were to follow the pattern of the origi-
nal λµ rule, and substitute N for x in M directly, then this would mean that the implicit
‘prompt’ in the original continuation application would not be retained in the substituted
term, resulting in the ‘escape’ of any control effects within N . For example, consider
the term (λz.x) ([µw.y]µv.(u v)). If we reduce this term according to the standard νλµ-
reductions, it is ensured that each of the µ-bound terms remains delimited by a continua-
tion application (just as they are surrounded by one in the initial term). For example, it is
possible to reduce as follows:

(λz.x) ([µw.y]µv.(u v)) → (λz.x) (u (νz.[µw.y]z)) (µ¬2)

→ (λz.x) (u (νz.y)) (µ¬1)

The behaviour of the µ-binder never reaches the outer application, due to the fact that
delimiting continuation applications are preserved around the µ-bound terms. However, if
one adopts to rule (µ¬′

2) instead, then this is no longer the case, as the following reduction
shows:

(λz.x) ([µw.y]µv.(u v)) → (λz.x) (u (µw.y)) (µ¬′
2)

→ (λz.x) (µw.y) (µ→′
2)

→ µw.y (µ→′
2)

In this case, the µ-bound term is allowed to ‘escape’ and capture the outer context as
well. Its control behaviour will only be delimited by another continuation application in
some surrounding term. Therefore, in this case, the µ-bound terms would behave more
like the shift operator (also called +F+(M) in the discussion above); effectively their
surrounding prompts are completely discarded when reached. Although there is nothing
inherently wrong with this behaviour (indeed, the shift operator is well-known in the
literature), the fact that this behaviour is not symmetrical with the (µ¬1) rule makes it
undesirable; essentially we would have a control operator which behaves as shift if on the
right of continuation applications, and like shift0 if on the left. Furthermore, the ability of
the shift operator to escape its prompt and find the next dynamically enclosing one makes
it difficult to reason about the behaviour of the operator. This would be still worse if such
behaviour was context dependent (i.e., sometimes it happens and sometimes it doesn’t).
For these reasons, and in order to maintain a uniform definition of this control behaviour,
we adopt the rule (µ¬2) and maintain the close correspondence with shift0.

6.5 Future Work

For the rest of the chapter, we give some informal ideas on how to make the correspon-
dence between νλµ and control operators clearer, and how to extend its ideas.
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6.5.1 Formal Correspondences

We consider relating the νλµ-calculus with a calculus in the style of ΛF#, but based on
the −F+ operator. For the moment, we must retain the restriction that prompts can only
be applied to terms of type⊥, but we will consider the possibility of lifting this restriction
in the next subsection.

We consider the following variant of ΛF# (Definition 6.2.6):

Definition 6.5.1 (The Λ−F+ calculus). The terms of the Λ−F+ calculus are defined by
the following grammar:

M, N ::= x | λx.M | M N | −F+(M) | #(M)

The reduction rules are as follows:

(λx.M) N → M〈N/x〉
(F M) N → F (λk.(M (λm.(k (m N)))))

N (F M) → F (λk.(M (λm.(k (N m)))))

# (F M) → M (λx.#(x))

# V → V (if V is a value)

This calculus is identical with Felleisen’s ΛF#, but for the penultimate rule, which treats
the prompt differently. This difference is exactly what distinguishes the two control oper-
ators: the resulting prompt is attached to the captured continuation, rather than remaining
in position around the whole reduction. Unfortunately, we cannot give any formal cor-
respondence results between this calculus and νλµ since, on the one hand, νλµ features
ν-binding, whereas Λ−F+ has no corresponding construct, and, on the other hand, νλµ

reductions feature semi-structural substitution, whereas Λ−F+ builds full abstractions for
each partially-captured continuation. However, we could envisage a correspondence be-
tween a simplified version of νλµ and this calculus. If we replace all ν-bound terms with
λ-bound terms in νλµ, and modify the (ν) rule to be [λx.M ]N → M〈x/N〉, we obtain a
calculus without explicit continuation terms, but which might be suitable for comparison.
We can then define mappings between the two syntaxes by mapping terms of the form
[M ]N in νλµ into terms of the form #(M N) in Λ−F+, and vice versa. Meanwhile,
other terms of the form #(M) in Λ−F+ can be interpreted as [νz.z]M in νλµ. Finally,
terms of the form µx.M map to terms of the form −F+(λx.M), and terms of the form
−F+(M) map back to µx.(M x). We conjecture that such mappings could be used as
the basis of equational correspondences between suitably-defined confluent sub-calculi.
A call-by-value strategy would be easiest to work with, since the rule # V → V is more
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natural then.

6.5.2 Top level types

The restriction to only allow prompts to occur with⊥ type seems necessary from the point
of view of the logic, but rather restrictive from the programming perspective. In [6, 4],
Ariola et. al. explore various type systems for calculi with delimited control which allow
more flexible use. In particular, the idea is explored that prompts can occur with differ-
ent types, even within the same program. The type system needs then to keep track of
the type of the current ‘top-level’ (i.e., the closest surrounding prompt). This idea works
neatly for control operators which retain prompts during reduction (i.e., the variants −F+

and +F+ above). In the case of the νλµ-calculus, this would involve keeping track of the
type of the next enclosing [M ]N term; these terms would no longer be restricted to have
type ⊥, but could be given a different top-level type. Therefore, the distinction between
function application and continuation application would become purely one of delimit-
ing the µ-reductions; both types of application could in principle return any type. For
the µ-reductions to work correctly, it would be necessary for the type system to enforce
that the type of the surrounding [M ]N term agreed with the return type of the µ-bound
variable. This kind of extension would be interesting for future work, since it should
then be possible for the νλµ-calculus to fully simulate an expressive calculus of delimited
control, using only its standard syntax. However, the correspondence with the standard
presentation of the original logic would of course be lost.

6.6 Summary

We have shown how the νλµ-calculus can be understood to be a calculus featuring ex-
plicit functions and continuations, plus a notion of delimited control, most closely-related
to the shift0 or spawn control operators from the literature. We have argued that this no-
tion of control is sufficient to express most of the other control operators in the literature,
although in some cases a direct, compositional encoding is not possible (just as not all
existing control operators can express one another in a.straightforward manner). Further-
more, although some design decisions have been taken along the way, the reductions of
the calculus (and the control behaviour in particular) are essentially “home-grown” from
the original logic; we have reached our definitions by applying and generalising existing
ideas in (what we hope is) a natural way.

As a result of the logical origins of our calculus, we find that the type of delimited terms
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(which are continuation applications in our case) is restricted to always be ⊥. However,
as we have remarked, it may be possible to relax this restriction if one is happy to with-
draw from the original logical correspondence, and obtain a calculus which may be fully
comparable with existing notions of delimited control.
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Chapter 7

The Relationship Between Cut
Elimination and Normalisation

7.1 Overview

So far in this thesis, we have worked with the two main logical paradigms of sequent cal-
culus and natural deduction in isolation. In both cases, we have presented calculi which
we believe to be good candidates to represent the computational content of the logics,
and have developed further results based on the definitions. It is natural to consider the
relationship between these two calculi, and in the process, the relationship between the
reductions specified by cut elimination in the sequent calculus, and by proof normalisa-
tion steps in the natural deduction setting. This topic is not new, and we shall begin by
giving an overview of various work which has been produced in the area. However, to
our knowledge, there does not exist work in the literature showing how to encode a gen-
eral non-confluent cut-elimination procedure (as is typical for classical sequent calculus)
into the natural deduction paradigm, in such a way that full reduction is preserved. In
this chapter we achieve this result by defining an injective encoding of the X i-calculus
(Chapter 3) into the νλµ-calculus (Chapter 5), and showing it to preserve reductions and
typings. This result advocates further the generality of the reductions of the νλµ-calculus.

Having achieved pleasing results concerning the encoding from the sequent calculus
paradigm to the natural deduction, it is natural to consider the reverse question, and at-
tempt to reach an encoding in the other direction. In our case, we would like an encoding
of the νλµ-calculus into X i, with the same good theoretical properties. Unfortunately, we
have only been able to achieve a partial result of this kind so far. We give instead a discus-
sion of the difficulties presented. In particular, some of the reductions in νλµ seem less
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easily expressible than others, in the sequent calculus paradigm, and we consider what
extra reductions these might imply for X i.

7.2 Previous Encodings Between Sequent Calculus and
Natural Deduction

There exist several works in the literature relating sequent calculi with natural deduction
systems, and studying the corresponding relationships between term calculi based in each
of the logical paradigms.

7.2.1 Gentzen’s encodings

The first encodings between sequent calculus and natural deduction were defined by
Gentzen in his original publication of these paradigms [34]. He showed that the prov-
ability of sequent calculi, natural deduction systems, and Hilbert systems coincide, both
for intuitionistic and for classical logic. This was shown by encoding the proofs of each
paradigm into the next, so that by composing these encodings, the equal provability of the
three systems was established. The main reasons for obtaining these results in Gentzen’s
work were (presumably) to relate his calculi to the existing notion of deduction defined
by Hilbert, and, most importantly, to facilitate the proof of meta-theoretical results, such
as consistency of the calculi. In particular, Gentzen was unable to show consistency of
his natural deduction calculi directly, but instead, by showing that they were equal to their
sequent calculus counterparts in terms of provability, and by showing that the sequent cal-
culi were themselves equivalent to their cut-free fragments (by cut elimination), he could
reduce the problem to that of showing consistency of the cut-free fragment. This was then
an immediate consequence of the subformula property, which is enjoyed by the cut-free
fragments of Gentzen’s sequent calculi.

Since Gentzen was only concerned with the existence of corresponding proofs in the other
paradigms, he was not especially concerned about the choice of encoding employed. For
example, there is no necessity for the composition of all three encodings to be the identity
map on proofs, or even anything close to this. In addition, in this work Gentzen did not
consider notions of proof normalisation for the paradigms other than sequent calculus,
since the cut elimination result in this setting was sufficient to prove his consistency re-
sults. Therefore, no parallel is drawn in this work between notions of proof reduction in
the different paradigms.
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7.2.2 Prawitz’s encodings

Prawitz includes in his work a short chapter on sequent calculus, in which he gives (im-
plicitly, in the form of an argument) an encoding of natural deduction into sequent calculus
which is an improvement on Gentzen’s. The significant improvement from the compu-
ational point of view is that, in the intuitionistic case, it maps normal natural deduction
proofs onto cut-free sequent proofs (this is not the case for Gentzen’s encodings). To illus-
trate this point using term calculi, the λ-calculus term x y would be encoded into the X i-
calculus (i.e., the sequent calculus paradigm) as the term 〈x.β〉β̂ † ẑ(〈y.γ〉γ̂ [z] ŵ〈w.α〉),
in which a cut is introduced. When the cut is eliminated, one reaches the normal form
〈y.γ〉γ̂ [x] ŵ〈w.α〉which is the result of Prawitz’s encoding. The result concerning preser-
vation of normal forms is not stated in his work, however, and no study is made there of
the relationship between reductions in these two paradigms.

7.2.3 Urban’s encodings

We believe that the closest work to this thesis, both in terms of content and general phi-
losophy, is Christian Urban’s PhD thesis [76]. It is the work of Urban which provides the
cut-elimination underpinning for the X i-calculus, and he is a strong advocate of the point
of view that classical logic has a naturally non-confluent set of reductions.

In Urban’s work, he includes sections comparing his cut-elimination procedure with a
set of reductions for a “natural deduction calculus”. At first glance, this would appear
to already establish the main result we claim in this chapter, since (in the classical case)
his unrestricted cut-elimination is encoded, preserving reductions. However, the “natural
deduction” calculus which is employed in Urban’s work is not a Gentzen-style calculus
(and in fact, we shall argue that it actually bears a closer resemblance to a sequent calcu-
lus); it is based on the “sequence-conclusion” natural deduction of Boričić, extended with
a ‘substitution’ rule, and with elimination rules replaced by rules from Parigot’s free de-
duction [56]. We recall the definition of Urban’s formulation here, in which we omit the
rules for conjunction and disjunction, and employ Greek letters for the second alphabet
of names, in order to facilitate comparisons with our work.

Definition 7.2.1 (Urban’s variant of Boričić sequence-conclusion calculus for classical
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logic [76]).

(ax)
Γ, x : A " α : A, ∆

Γ " α : A, ∆ Γ, x : A " ∆
(Subst)

Γ " ∆

Γ, x : A " α : B, ∆
(→I)

Γ " β : A→B, ∆

Γ " α : A→B, ∆ Γ " β : A, ∆ Γ, x : B " ∆
(→E)

Γ " ∆

Γ, x : A " ∆
(¬I)

Γ " α :¬A, ∆

Γ " α :¬A, ∆ Γ " β : A, ∆
(¬E)

Γ " ∆

The most obvious difference between this presentation and Gentzen’s natural deduction
is the use of multiple conclusions in the sequents. However, there are other striking sim-
ilarities with the classical sequent calculus. The existence of the (Subst) rule essentially
equips the calculus with a cut, while the elimination rules (whose forms are usually a
distinguishing feature of natural deduction systems) are of a form in which no new con-
clusion is derived in the consequent. In the case of the (¬E) rule, this simplay means that
the occurrence of ⊥ which is derived as standard, has been removed. Since ⊥ mainly
plays the role of a place-holder for a conclusion, this choice is understandable in a set-
ting with multiple conclusions, and is similar to the situation in sequent calculus, where
negation can be included without any need of ⊥. In the case of implication (and indeed
conjuction and disjunction, which we have omitted here), we see that, rather than the tra-
ditional Modus Ponens formulation, we have instead three premises, the last of which can
be seen to ‘absorb’ the statement B which would usually be derived. This rule, instead of
defining the canonical consequences which can be derived from an implicative formula,
defines exactly the situation in which the formula can be removed from the sequent, leav-
ing no new conclusion. Therefore, instead of a usual natural deduction elimination rule,
what we have here closely resembles the form of a left-introduction rule from the sequent
calculus. We observe in fact, that if we take the (→E) defined above and restrict the first
premise to be an axiom, then we obtain the following form:

(ax)
Γ, y : A→B " α : A→B, ∆ Γ " β : A, ∆ Γ, x : B " ∆

(→E)
Γ, y : A→B " ∆

Removing the axiom entirely would yield exactly the left-introduction rule from the se-
quent calculus. Therefore, what we have in the calculus above is a generalisation of the
left-rule in the sequent calculus. The same observation applies in the cases of conjunction
and disjunction.
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To summarise, this “natural deduction” presentation has multiple conclusions, a cut rule,
and, in place of the standard elimination rules, generalisations of the left-introduction
rules from the sequent calculus. Therefore, we argue that it does not truly represent a
calculus in the natural deduction paradigm, but is rather a hybrid, closest to the sequent
calculus itself. This provides a significant simplification of the problem of obtaining a
correspondence with sequent calculus. Urban himself writes that he chooses this formu-
lation in order to simplify the problem: “. . . the reasons for choosing this particular set of
inference rules are entirely pragmatic: they simplify considerably the translations between
natural deduction proofs and sequent proofs. Other sets of inference rules can also be used
to study the correspondence, although the machinery required is more complicated”. We
subscribe to the idea that the problem is significantly harder in the context of a Gentzen-
style presentation of classical natural deduction. We believe that to present an adequate
solution is a non-trivial extension of Urban’s correspondence. Indeed, Urban claims “. . . it
is very impractical to do the extension using Gentzen’s natural deduction calculus NK, be-
cause this calculus requires double negation translations for encoding classical proofs”.
This suggests that such encodings would not preserve typings (since double negations
would be added to the types in various locations), but this is not in fact the case for our
work. We achieve a pleasing result in this direction, although our correspondence is only
one-way.

7.2.4 The intuitionistic case

There have been several publications concerning the relationship between natural deduc-
tion and sequent calculus in the intuitionistic case. Gentzen and Prawitz both provided
encodings, but did not examine the relationships between the notions of reduction in these
settings. The works of Zucker [86] and, later, Pottinger [59], were the first to compare
reductions in these two paradigms, in the case of intuitionistic logic. They showed that
the two notions of reduction could indeed correspond, but only in a limited fragment of
the logics (in particular, the rules for disjunction presented difficulties). However, the
correspondence between proofs in sequent calculus and those in natural deduction was
many-to-one.

Herbelin [40] presented an improved correspondence by introducing the λ-calculus, which
corresponds with a restricted form of intuitionistic sequent calculus. This formulation is
the intuitionistic restriction of the work of Joinet et. al. [44, 77], and is called LJT (after
their LKT). It forms the basis of work by Dyckhoff and Pinto [29, 30], who show that
it provides a useful theoretical bridge between the traditional formalisms of natural de-
duction and sequent calculus. The key advance in Herbelin’s work is that cut-free sequent
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proofs are in one-to-one correspondence with normal natural deduction proofs (in contrast
to previous attempts). This is achieved by restricting the legal forms of sequent proofs to
eliminate the perceived ‘redundancy’, and employing a λ-calculus extended with explicit
substitution and list-construction operators (to explicitly represent a list of arguments, like
a call-stack). These works, and others, have been neatly summarised by Barendregt and
Ghilezan [12].

Herbelin’s work has been more recently extended by Santo [69, 70], who has made
progress concerning isomorphisms of reductions, and isomorphisms between non-normal
proofs. This work culminated in a recent paper [71] describing an isomorphism between
unrestricted intuitionistic sequent calculus and an extension of standard intuitionistic nat-
ural deduction, to allow explicit “applicative contexts” in the syntax. He presents a full
isomorphism of both terms and reductions. The mappings between the two paradigms
reflect Herbelin’s original idea of exchanging the associativity of a list of applications.
His natural deduction calculus includes “generalised elimination rules”.

7.2.5 Other encodings

Ogata [51] showed that Parigot’s λµ-calculus can be encoded into a variant of classical
sequent calculus, being the LKT calculus of Danos et. al. [77]. This encoding is shown
to preserve reductions, and the nature of the encoding is related to continuation-passing-
style transformations. Both the source and target calculi are confluent (and therefore,
restricted) calculi based on classical logics.

Curien and Herbelin [19] use translations into the natural deduction paradigm in order
to neatly define and motivate the call-by-name and call-by-value restrictions of their λµµ̃

calculus. Although their full calculus corresponds with classical sequent calculus, the two
translations are to minimal natural deduction (i.e., λ-calculus), which is possible for such
confluent restrictions only.

In [81], Wadler relates an extended version of his “dual calculus” to variants of the λµ-
calculus. He defines encodings between the dual calculus and λµ in both directions (sep-
arately, for call-by-name and call-by-value versions of each), which preserve equalities
in the two calculi. Reductions, however, are not preserved by the encodings, and the
encodings for the different evaluation strategies are quite different. Therefore, these are
not suitable in our setting, where we cannot rely on equational reasoning (due to non-
confluence), and wish to provide encodings which preserve reductions (independent of
any evaluation strategy).

Audebaud and van Bakel [8] relate the λµ-calculus with the X -calculus [78], giving en-
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codings between the two which preserve typings. However, reductions are not directly
preserved, rather the weaker property is shown that if a reduction P → Q is possible,
then the interpretations of the two terms have a common reduct. Similarly, Rocheteau
[67] studies the relationship between the λµµ̃-calculus [19] and a generalisation of the
λµ-calculus, but the simulation results hold only up to ‘joinability’ in the same way.

7.3 Encoding X i into νλµ

In order to simplify the presentation, we extend the syntax for variables in νλµ to include
Greek letters as well as Roman ones. However, we do not consider these to have any
special meaning (unlike in λµ); all are considered to be standard term variables in the
calculus.

Definition 7.3.1 (Encoding X i into νλµ).

**〈x.α〉++ = [α]x

**x̂P α̂·β++ = [β]λx.**P ++α
**P α̂ [x] ŷQ++ = [νy.**Q++]

(
x **P ++α

)

**x̂P · α++ = [α]νx.**P ++
**x · P α̂++ = [x]**P ++α

**P α̂ † x̂Q++ =

{
**Q++{**P ++α/x} if Q introduces x

[νx.**Q++]**P ++α otherwise

}

**P ++α =

{
M if P introduces α, where **P ++ = [α]M

µα.**P ++ otherwise

}

To be sure that the auxiliary definition **P ++α makes sense, we need the following prop-
erty:

Proposition 7.3.2. For all X i-terms P and plugs α, there exists a νλµ-term M such that
**P ++ = [α]M with α (∈M , if and only if, one of the following conditions hold:

1. P introduces α.

2. P = Qβ̂ [x] ŷR, and R introduces y, and there exists a νλµ-term N such that
**Q++ = [α]N with α (∈N .

3. P = Qβ̂ † ŷR, and R introduces y, and there exists a νλµ-term N such that **Q++ =

[α]N with α (∈N .

In particular, if P introduces α, then **P ++ = [α]M with α (∈M .
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Proof. By straightforward induction on the structure of the term P , using Definition 7.3.1.

The two alternatives when encoding a cut, along with the auxiliary definition **P ++α mean
that cuts P α̂ † x̂Q are potentially encoded in four different ways, depending on whether α

and x are introduced. The reason for this non-uniform treatment is that, in the reductions
of νλµ, binders are not ‘reconstructed’ when the cut is ‘propagated’. So, if we were to
encode all cuts as [νx.**Q++]µα.**P ++, our simulation result would not be possible, since
terms of this form will not be constructed after reduction.

As an easy first result, we show that the typings possible in the X i-calculus are preserved
by the encoding.

Theorem 7.3.3 (Encoding X i to νλµ, preserves typings). For any right-context ∆, let
∆ = {α : A | α : A ∈ ∆}. Then, for any X i-term P , we have P ··· Γ " ∆ if and only if
Γ, (¬∆) " **P ++ :⊥.

Proof. By straightforward induction on the structure of the term P .

Lemma 7.3.4 (Encoding of cuts). Let P α̂ † x̂Q be an arbitrary X i-term of this form (a
cut). Then we have:

1. µα.**P ++ → **P ++α.

2. [νx.**Q++]**P ++α → **P α̂ † x̂Q++.

3. [νx.**Q++]µα.P → **P α̂ † x̂Q++.

Proof. 1. In the case where **P ++α = µα.**P ++, the result holds trivially. On the other
hand, if we have **P ++ = [α]N , for some term N with α (∈N , then µα.[α]N →
**P ++α by the rule (µη), as required.

2. If Q does not introduce x, then we are done, since **P α̂ † x̂Q++ = [νx.**Q++]**P ++α.
Alternatively, if Q introduces x, then **P α̂ † x̂Q++ = **Q++{**P ++α/x}. We con-
clude, noting that [νx.**Q++]**P ++α → **Q++{**P ++α/x}.

3. By combining parts 1 and 2.

We observe next that since our encoding introduces a continuation application as part of
the encoding of each syntactic construct in an X i-term P , in the special case where P in-
troduces x, we can view the encoding of P as a continuation-delimited context (Definition
6.2.1), in which x marks the ‘hole’.
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Lemma 7.3.5 (Encoding to Continuation-Delimited Contexts). If P is an X i-term such
that P introduces x, then there exists a continuation-delimited context CC such that
CC{x} = **P ++.

Proof. By inspection of the cases **〈x.α〉++ and **P α̂ [x] ŷQ++ and **x · P α̂++ in Definition
7.3.1.

This allows us to prove a technical lemma, which is useful for dealing with the cases
in our encoding where substitutions make unclear the precise structure of the resulting
terms.

Corollary 7.3.6. If P is an X i-term such that P introduces x, and µy.M is a νλµ-term,
then **P ++〈µy.M/x〉 → M〈x̂(**P ++)/y〉

Proof. By combining Lemma 7.3.5 with Lemma 6.3.1.

The main work towards our simulation result is in relating the meta-operations in the two
calculi. Our encoding is defined with the view in mind that right-propagation of cuts
should roughly correspond with the usual term substitution in an applicative setting. Left-
propagation, on the other hand, can be related to our semi-structural substitutions. This
observation appears to be new, and gives an intuitive explanation of what left propagation
of cuts might mean in a computational sense: while right-propagation and term substitu-
tion bring terms to contexts in which they are used, left-propagation and semi-structural
substitution can be used to bring contexts to terms. This relationship (at least one-way) is
formalised in the following results:

Lemma 7.3.7 (Simulation of Propagation by Substitutions). For all X i-terms P and Q:

1. If **Q{P α̂!x}++ = **Q++〈**P ++α/x〉, and β (∈ fs(P ) and α (= β, then we have
**Q{P α̂!x}++β = **Q++β〈**P ++α/x〉.

2. **Q{P α̂!x}++ = **Q++〈**P ++α/x〉.

3. If β (= α and β (∈ fp(Q), then:

(a) If Q introduces x and **P{α!x̂Q}++ = **P ++〈x̂(**Q++)/α〉, then we have
**P{α!x̂Q}++β = **P ++β〈x̂(**Q++)/α〉.

(b) If Q does not introduce x and **P{α!x̂Q}++ = **P ++〈νx.**Q++/α〉, then
**P{α!x̂Q}++β = **P ++β〈νx.**Q++/α〉.

4. (a) If Q introduces x, **P{α!x̂Q}++ = **P ++〈x̂(**Q++)/α〉.
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(b) If Q does not introduce x, then **P{α!x̂Q}++ = **P ++〈ẑ([νx.**Q++]z)/α〉.

Proof. 1. We consider two cases.

Q introduces β: Then by Proposition 7.3.2, **Q++ = [β]M for some νλµ-term M

with β (∈M , and **Q++β = M . Therefore **Q{P α̂!x}++ = ([β]M)〈**P ++α/x〉
= [β]M〈**P ++α/x〉. By Proposition 3.2.6(4), Q{P α̂!x} introduces β, and so
**Q{P α̂!x}++β = M〈**P ++α/x〉 as required.

Q does not introduce β: Then **Q++β = µβ.**Q++. By Proposition 3.2.6(4), we
conclude that Q{P α̂!x} does not introduce β. Therefore **Q{P α̂!x}++β =

µβ.(Q{P α̂!x}) = µβ.**Q++〈**P ++α/x〉, by assumption. By definition of
substitution then, we conclude **Q{P α̂!x}++β = (µβ.**Q++)〈**P ++α/x〉 as
required.

2. By induction on the structure of the term Q. We show here only a representative set
of cases.

Q = 〈x.β〉:

**Q{P α̂!x}++ = **P α̂ † x̂〈x.β〉++ (Definition 3.2.4)

= [β]**P ++α (Definition 7.3.1)

= ([β]x)〈**P ++α/x〉 (substitution)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)

Q = 〈y.β〉:

**Q{P α̂!x}++ = **〈y.β〉++ (Definition 3.2.4)

= [β]y (Definition 7.3.1)

= ([β]y)〈**P ++α/x〉 (substitution)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)

Q = Q1β̂ [x] ŷQ2:

**Q{P α̂!x}++
= **P α̂ † x̂((Q1{P α̂!x})β̂ [x] ŷ(Q2{P α̂!x}))++ (Definition 3.2.4)

= [νy.**(Q2{P α̂!x})++]**(Q1{P α̂!x})++β (Definition 7.3.1)

= [νy.**Q2++〈**P ++α/x〉]**(Q1{P α̂!x})++β (by induction)

= [νy.**Q2++〈**P ++α/x〉]**Q1++β〈**P ++α/x〉 (induction and part 1)

= ([νy.**Q2++]**Q1++β)〈**P ++α/x〉 (substitution)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)
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Q = 〈x.β〉β̂ † ŷQ2 : We distinguish two subcases.

Q2 introduces y: Note that since y is bound in Q2, we may assume y (∈ fs(P ).

**Q{P α̂!x}++
= **P α̂ † ŷ(Q2{P α̂!x})++ (Definition 3.2.4)

= **(Q2{P α̂!x})++〈**P ++α/y〉 (Definition 7.3.1)

= **Q2++〈**P ++α/x〉〈**P ++α/y〉 (by induction)

= **Q2++〈x/y〉〈**P ++α/x〉 (substitution, y (∈ fs(P ))

= **Q2++〈**〈x.β〉++β/y〉〈**P ++α/x〉 (Definition 7.3.1)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)

Q2 does not introduce y:

**Q{P α̂!x}++
= **P α̂ † ŷ(Q2{P α̂!x})++ (Definition 3.2.4)

= [νy.**(Q2{P α̂!x})++]**P ++α (Definition 7.3.1)

= [νy.**Q2++〈**P ++α/x〉]**P ++α (by induction)

= ([νy.**Q2++]x)〈**P ++α/x〉 (substitution, y (∈ fs(P ))

= ([νy.**Q2++]**〈x.β〉++β)〈**P ++α/x〉 (Definition 7.3.1)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)

Q = Q1β̂ † ŷQ2 and Q1 (= 〈x.β〉: We distinguish two subcases.

Q2 introduces y: Note that since y is bound in Q2, we may assume y (∈ fs(P ).

**Q{P α̂!x}++
= **(Q1{P α̂!x})β̂ † ŷ(Q2{P α̂!x})++ (Definition 3.2.4)

= **(Q2{P α̂!x})++〈**Q1{P α̂!x}++β/y〉 (Definition 7.3.1)

= **Q2++〈**P ++α/x〉〈**Q1{P α̂!x}++β/y〉 (by induction)

= **Q2++〈**P ++α/x〉〈**Q1++β〈**P ++α/x〉/y〉 (induction and part 1)

= **Q2++〈**Q1++β/y〉〈**P ++α/x〉 (substitution, y (∈ fs(P ))

= **Q++〈**P ++α/x〉 (Definition 7.3.1)
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Q2 does not introduce y:

**Q{P α̂!x}++
= **(Q1{P α̂!x})β̂ † ŷ(Q2{P α̂!x})++ (Definition 3.2.4)

= [νy.**(Q2{P α̂!x})++]**(Q1{P α̂!x})++β (Definition 7.3.1)

= [νy.**Q2++〈**P ++α/x〉]**(Q1{P α̂!x})++β (by induction)

= [νy.**Q2++〈**P ++α/x〉]**Q1++β〈**P ++α/x〉 (induction and part 1)

= ([νy.**Q2++]**Q1++β)〈**P ++α/x〉 (substitution)

= **Q++〈**P ++α/x〉 (Definition 7.3.1)

3. By induction on the structure of the term P , similar to part 1.

4. (a) By induction on the structure of the term P . We show two illustrative cases.

P = 〈y.α〉:

**P{α!x̂Q}++ = **〈y.α〉α̂ † x̂Q++ (Definition 3.2.4)

= **Q++〈y/x〉 (Definition 7.3.1)

= ([α]y)〈x̂(**Q++)/α〉 (Definition 5.4.5)

= **P ++〈x̂(**Q++)/α〉 (Definition 7.3.1)

P = ŷP1β̂ ·α: By Proposition 3.2.6(1), we know that α (∈ fs(Q1{P α̂!x}).
This fact is used for the step marked (∗) below.

**P{α!x̂Q}++
= **(ŷ(P1{α!x̂Q})β̂ ·α)α̂ † x̂Q++ (Definition 3.2.4)

= **Q++〈λy.**(P1{α!x̂Q})++β/x〉 (Definition 7.3.1 and (∗))
= **Q++〈λy.**P1++β〈x̂(**Q++)/α〉/x〉 (induction and part 3)

= ([α]λy.**P1++β)〈x̂(**Q++)/α〉 (Definition 5.4.5)

= **P ++〈x̂(**Q++)/α〉 (Definition 7.3.1)

(b) By induction on the structure of the term P , similar to part 2.

Since our encoding of X i-terms into νλµ-terms is not compositional, due to the use of
substitutions in the encodings, we require the following lemma in order to justify that
reduction remains compatible:

Lemma 7.3.8 (Reduction preserved under substitution). For all νλµ-terms M1,M2,N and
variables x, if M1 → M2 then M1〈N/x〉 → M2〈N/x〉.

Proof. By induction on the structure of the term M1.
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We can now prove that, although our encoding is not compositional, reductions which
were compatible in the original calculus remain so in the target:

Lemma 7.3.9 (Encoding X i to νλµ preserves compatibility). Let C[P ] be an X i-term
with P as a proper sub-term. Let Q be a further X i-term, and let C[Q] denote the term
obtained from C[P ] by replacing the subterm P with the term Q (informally, we treat C[]

as a context). Then, if **P ++ → **Q++ then **C[P ]++ → **C[Q]++.

Proof. By induction on the size of the ‘context’ C[·]. The base case (empty context) is
trivial. The inductive cases are mostly immediate, or else follow by Lemma 7.3.8.

We can finally prove our desired result.

Theorem 7.3.10 (Encoding X i to νλµ preserves reductions). For all X i-terms P and Q,
if P → Q then **P ++ → **Q++.

Proof. By induction on the length of the reduction sequence P → Q and on the structure
of the term P , using Lemma 7.3.9; we need only consider the case where P is itself a
redex, and P reduces to Q in one step. Therefore, we check that for each X i reduction
rule (Definitions 3.2.3 and 3.2.5), the result holds.

(cap-rn): We show **〈y.α〉α̂ † x̂〈x.β〉++ → **〈y.β〉++:

**〈y.α〉α̂ † x̂〈x.β〉++ = (([β]x))〈y/x〉
= [β]y

= **〈y.β〉++

(exp-rn): We show **(ŷP β̂ ·α)α̂ † x̂〈x.γ〉++ → **ŷP β̂ ·γ++, if α (∈ fp(P ), which implies
that α (∈ fv(**P ++):

**(ŷP β̂ ·α)α̂ † x̂〈x.γ〉++ = (([γ]x))〈λy.**P ++β/x〉
= [γ]λy.**P ++β
= **ŷP β̂ ·γ++

(med-rn) : We show **〈y.α〉α̂ † x̂(P β̂ [x] ẑQ)++ → **P β̂ [y] ẑQ++, given that x (∈ fs(P, Q),
i.e. P β̂ [x] ẑQ introduces x.

**〈y.α〉α̂ † x̂(P β̂ [x] ẑQ)++ = (([νz.**Q++]
(
x **P ++β

)
))〈y/x〉

= [νz.**Q++]
(
y **P ++β

)

= **P β̂ [y] ẑQ++
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(exp-imp): Assume that α (∈ fp(P ) and x (∈ fs(Q,R). Then α (∈ fv(**P ++) and Qγ̂ [x] ẑR

introduces x. We will require as a lemma that [w]**P ++β → **P ++〈w/β〉 (which
is easily checked by cases on whether or not P introduces β). We will refer
to this Lemma as (∗) below. We show that: **(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR)++ →{
**(Qγ̂ † ŷP )β̂ † ẑR++
**Qγ̂ † ŷ(P β̂ † ẑR)++

as follows:

**(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR)++
= **(Qγ̂ [x] ẑR)++〈**ŷP β̂ ·α++α/x〉
= ([νz.**R++]

(
x **Q++γ

)
)〈**ŷP β̂ ·α++α/x〉 (Definition 7.3.1)

= ([νz.**R++]
(
x **Q++γ

)
)〈λy.**P ++β/x〉 (Definition 7.3.1)

= [νz.**R++]
(
(λy.**P ++β) **Q++γ

)
(substitution)

→ [νz.**R++]µw.[νy.[w]**P ++‘b]**Q++γ (λ′)

From here, we show that the two required reducts can be reached separately. Firstly:

[νz.**R++]µw.[νy.[w]**P ++β]**Q++γ
→ [νz.**R++]µβ.[νy.**P ++]**Q++γ (∗, ‘a-conversion)

→ [νz.**R++]µβ.**(Qγ̂ † ŷP )++ (Lemma 7.3.4(2))
→ **(Qγ̂ † ŷP )β̂ † ẑR++ (Lemma 7.3.4(3))

Secondly:

[νz.**R++]µw.[νy.[w]**P ++β]**Q++γ → [νy.[νz.**R++]**P ++β]**Q++γ (µ¬2)

→ [νy.**(P β̂ † ẑR)++]**Q++γ (Lemma 7.3.4(2))
→ **Qγ̂ † ŷ**(P β̂ † ẑR)++++ (Lemma 7.3.4(2))

(not): We show **(ŷP · α)α̂ † x̂(x ·Qβ̂)++ → **Qβ̂ † ŷP ++, given that α (∈ fp(P ) and
x (∈ fs(Q), as follows:

**(ŷP · α)α̂ † x̂(x ·Qβ̂)++ = ([x]**Q++β)〈νy.**P ++/x〉 (Definition 7.3.1)

= [νy.**P ++]**Q++β (substitution)

→ **Qβ̂ † ŷP ++ (Lemma 7.3.4(2))

(prop-R): We show **P α̂ † x̂Q++ → **Q{P α̂!x}++, given that Q does not introduce x.

**P α̂ † x̂Q++ = [νx.**Q++]**P ++α (Definition 7.3.1)

→ **Q++〈**P ++α/x〉 (ν)

= **Q{P α̂!x}++ (Lemma 7.3.7(2))

(prop-L): We show **P α̂ † x̂Q++ → **P{α!x̂Q}++, given that P does not introduce α.
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We distinguish two cases:

Q introduces x:

**P α̂ † x̂Q++ = **Q++〈µα.P/x〉 (Definition 7.3.1)

→ **P ++〈x̂(**Q++)/α〉 (Corollary 7.3.6)

= **P{α!x̂Q}++ (Lemma 7.3.7(4))

Q does not introduce x:

**P α̂ † x̂Q++ = [νx.**Q++]µα.**P ++ (Definition 7.3.1)

→ **P ++〈ẑ([νx.**Q++]z)/α〉 (µ¬2)

= **P{α!x̂Q}++ (Lemma 7.3.7(4))

As far as we are aware, this is the first time a full cut-elimination procedure for classi-
cal sequent calculus has been encoded into an applicative-style calculus, preserving (the
highly non-confluent) reductions. The existence of this encoding relates the problems of
strong normalisation of the two calculi.

Corollary 7.3.11 (Strong Normalisation of νλµ implies Strong Normalisation of X i).

1. If P and Q are X i-terms such that P → Q in one step, and **P ++ = **Q++,
then the reduction rule applied in this step must be one of (cap-rn), (exp-rn-rn),
(med-rn-rn), (not-left-rn), (not-right-rn) and (not).

2. If P0, P1, . . . is any sequence of X i-terms such that P0 is typeable, and for all Pj in
the sequence with j > 0, Pj−1 → Pj in one step (in particular Pj−1 (= Pj), and
**Pj++ = **Pj+1++, then the sequence is necessarily finite.

3. If the νλµ-calculus satisfies the property that all typeable terms are strongly nor-
malising, then the X i-calculus does also.

Proof. 1. By inspection of the proof above, we can see that these are the only rules for
which it is possible that the reduction step maps onto identity in the νλµ-calculus.

2. Note that by Theorem , each of the Pjs remains typeable with the same context
which P0 could be assigned. Since **Pj++ = **Pj−1++, part 1 enumerates all of the
rules which can be applied in the reductions Pj−1 → Pj . For all of these rules but
the (not) rule, the number of cuts in the term decreases. Furthermore, for the (not)
rule, the number of cuts stays the same, and the cut removed is replaced by a cut
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whose type (on the bound connectors) must be of lower degree (i.e. if the redex
cut carried type ¬A, the new cut carries type A. Therefore, these rules cannot be
applied indefinitely to a term; the sequence must eventually terminate.

3. Let P0 be any typeable X i-term, and let P0, P1, . . . be any sequence of X i-terms
such that, for all Pj in the sequence with j > 0, Pj−1 → Pj in one step (in par-
ticular Pj−1 (= Pj). Let S0, S1, . . . be the sequence of maximal subsequences of
the sequence P0, P1, . . . satisfying the property that every term in a subsequence
Sk maps onto the same νλµ-term, under the encoding of Definition 7.3.1. By part
2, each of the subsequences Sk is finite. Let M0,M1, . . . be the corresponding se-
quence of νλµ-terms, i.e., for all Pj in the subsequence Sk, **Pj++ = Mk. Then,
by construction, M0 = **P0++, and each pair of successive terms Mk, Mk+1 in the
sequence are distinct from one another. We can repeatedly apply Theorem 7.3.10
to obtain that M0 → M1 → . . . is a sequence of νλµ-reductions. Furthermore,
since P0 was assumed to be typeable, by Theorem 7.3.3, M0 is also typeable. If
the νλµ-calculus satisfies the property that all typeable terms are strongly normal-
ising, then the sequence M0 → M1 → . . . must be finite. This means that the
corresponding sequence of subsequences S0, S1, . . . must be finite. Therefore, the
original sequence P0, P1, . . . is a finite conjunction of finite sequences, and so is
itself finite. Since the sequence was arbitary, no infinite reduction sequence out of
P0 exists.

7.3.1 Additional reduction rules

As well as preservation of reductions, it is interesting to note that extra reductions are
sometimes possible in the interpreted term, which were not present in the original. For
example, anX i-term of the form P α̂ [x] ŷQ in normal form, might possibly (depending on
the structures of P and Q) be interpreted as a νλµ-term of the form [νy.**Q++]

(
x (µα.**P ++)

)
,

in which there are two redexes: the outer continuation application can be reduced by the
rule (ν), while the inner function application can be reduced by the rule (µ→2). A similar
comment applies to the encoding of terms of the form x · P α̂; the resulting term [x]**P ++α
has an extra (µ¬2) redex in the case where P does not introduce α. is not of the form
[α]M with α (∈M . These extra reductions in the encoded term suggest the following extra
reduction rules could be added to X i:
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Definition 7.3.12 (Possible extra reduction rules for X i).

(imp-extra-1) P α̂ [x] ŷQ → P{α!ẑ(〈z.β〉β̂ [x] ŷQ)} (if P does not introduce α)

(imp-extra-2) P α̂ [x] ŷQ → Q{(P α̂ [x] ẑ〈z.β〉)β̂!y} (if Q does not introduce y)

(not-extra) x · P α̂ → P{α!ŷ(x · 〈y.β〉β̂)} (if P does not introduce α)

The most obvious objection to the possible inclusion of these reduction rules is that they
break the ‘cut=redex’ paradigm usual for sequent calculus (and present in the definition
of the X i-calculus). However, it is still interesting to consider their implications: they do
make sense in terms of the types, and make a kind of intuitive sense also. For example,
if there are many occurrences of y in Q, then the second rule above allows these to be
‘sought out’ before any cut with the ys in Q is actually built. So this appears to be a kind
of ‘look-ahead’ rule; it anticipates the behaviour that would eventually be possible if the
med-rn term were reduced in a ct by the rule (exp-imp).

However, it turns out that the rules formulated above are somewhat naı̈ve: if the two
rules (imp-extra-1) and (imp-extra-2) were both added as reduction rules, then strong
normalisation of typeable terms would immediately be violated, in a similar way to that
shown in Definition 3.2.7. In particular, a term of the form P α̂ [x] ŷ(〈y.β〉β̂ [z] ŵR)

could be constructed which runs by the first rule to (P α̂ [x] ŷ〈y.β〉)β̂ [z] ŵR, which runs
by the second rule back to the original, creating a loop. This does not imply that the νλµ-
calculus itself has such looping reductions: instead, the rules above do not accurately
reflect the reductions of νλµ. If we try to simulate the same looping behaviour using the
encoded versions of the terms, we can see the inconsistency:

**P α̂ [x] ŷ(〈y.β〉β̂ [z] ŵR)++ = [νy.**(〈y.β〉β̂ [z] ŵR)++]
(
x **P ++α

)

= [νy.[νw.**R++](z y)]
(
x **P ++α

)

→ [νw.**R++]
(
z

(
x **P ++α

))
(ν)

(= [νw.**R++]
(
z (µβ.[νy.[β]y]

(
x **P ++α

)
)
)

= **(P α̂ [x] ŷ〈y.β〉)β̂ [z] ŵR++

In order to obtain the ‘loop’, we have to make some expansions in the νλµ-reduction.
Therefore, although the possible extra rules for X i are too problematic to be included,
the reductions present in νλµ do not exhibit the same problems. We have not identified a
useful restriction of the three ‘extra’ rules above, which does not create such loops. The
main reason for considering the addition of these extra rules, is that they (or some better-
behaved variants) actually appear to be necessary to make an encoding back from νλµ to
X i viable. These, and other issues, are discussed further in the next section.
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7.4 Some thoughts on encoding νλµ into X i

We have not been able to find an analogous ‘inverse encoding’ to that of the previous
section. This appears to be because the νλµ-calculus is rather too expressive; there are
terms which do not have ‘obvious’ analogues in the X i-calculus, and reduction rules
which do not easily correspond to cut elimination steps. This seems somewhat surprising,
since the logical origins of both calculi are fairly clear. We discuss some of the issues
encountered here.

7.4.1 Making ⊥ an explicit connective

Since our νλµ-syntax does not provide names for outputs, any encoding of νλµ into X i

should take a plug as a parameter, which, except in the case of a ‘silent’ term (one which is
necessarily of type ⊥), provides an explicit name for the output of the term. For example,
we might interpret the variable x with respect to the plug α (written **x++α) as the X i-term
〈x.α〉, in which the output name is explicit. In the case of a ‘silent’ term, this name can
still be provided, but should be ignored by the encoding. For example, we might interpret
[x]y with respect to the plug α as x · 〈y.β〉β̂, which does not mention α (and indeed, has
no free outputs).

In some cases, we wish to enforce that a term be ‘silent’. For example, in νλµ we know
that the body of a µ- or ν-abstraction must (if it is typeable) necessarily be of type⊥. This
lack of an output type is essential for the soundness of the µ-reduction rules. We wish this
fact to be reflected in an encoding, also. For example, it might seem tempting to define
**νx.M++α = x̂**M++β · α. This is indeed the right idea, so long as M is ‘silent’ (i.e. β

does not occur in the result). But consider the νλµ-term νx.x. When we encode into X i,
using the rule above, we introduce a free occurrence of β from the body of the ν-bound
term: **νx.x++α = x̂〈x.β〉 · α. This fails to respect our idea that the inner-subterm should
be ‘silent’. Furthermore, the choice of β as a free name is arbitrary (α was mentioned in
the original encoding, but not β), and so we have a rather-strange non-determinism in the
resulting encoding.

One way to get around this problem, is to explicitly represent ‘silent variables’ in a differ-
ent manner. An easy way to manage this is to add ⊥ as an explicit connective in the logic
underlying X i. This implies the addition of ⊥ into the language of types. To manage this
addition in the inference rules, it is sufficient to add a left-introduction rule for ⊥ (there is
no corresponding right-introduction rule). The inference rule is the following:
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(⊥L)
Γ, x :⊥ " ∆

Since this rule introduces a statement on the left of the sequent (but nothing else), and has
no premises, it should be inhabited by a syntax construct which introduces a free socket
(but not plug), and has no subterms. This construct should resemble a capsule whose
output is ‘silent’, and we use the notation 〈x.•〉 for it. Therefore, we could add terms of
this form to the syntax of X i, and add the following rule to the type system:

(⊥L)
〈x.•〉 ··· Γ, x :⊥ " ∆

Naturally, a term of the form 〈x.•〉 introduces the socket x and no other connector. The
only additional reduction rule associated with this syntax construct is a rule for renaming
with capsules:

(bot-rn) : 〈x.α〉α̂ † ŷ〈y.•〉 → 〈x.•〉

There is no rule which explicitly removes a 〈x.•〉 contruct from a term (in contrast to the
other syntax constructs, who all have logical rules to unravel them). This means that the
only way a 〈x.•〉 construct can be removed during reduction is if it is bound in a cut such
as P α̂ † x̂〈x.•〉 in which α does not occur in P .

With the new syntax construct present, we can now define an operation to ‘silence’ an
output in an X i-term:

Definition 7.4.1 (Silencing an output). We define the mapping (P )α .→⊥ recursively on the
structure of P as follows:

(〈x.•〉)α .→⊥ = 〈x.•〉
(〈x.α〉)α .→⊥ = 〈x.•〉
(〈x.β〉)α .→⊥ = 〈x.β〉 β (= α

((x̂Qβ̂ ·α))α .→⊥ = (x̂(Q)α .→⊥β̂ ·α)α̂ † ŷ〈y.•〉
((x̂Qβ̂ ·γ))α .→⊥ = x̂(Q)α .→⊥β̂ ·γ, γ (= α

((Qβ̂ [y] x̂R))α .→⊥ = (Q)α .→⊥β̂ [y] x̂(R)α.→⊥

((x̂Q · α))α .→⊥ = (x̂(Q)α .→⊥ · α)α̂ † ŷ〈y.•〉
((x̂Q · γ))α .→⊥ = x̂(Q)α .→⊥ · γ, γ (= α

((y ·Qβ̂))α .→⊥ = y · (Q)α.→⊥β̂

((Qβ̂ † x̂R))α .→⊥ = (Q)α .→⊥β̂ † x̂(R)α .→⊥
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It is straightforward to show that α (∈ fp((P )α.→⊥), for any term P . We can now resolve
the difficulty we previously described concerning the encoding of terms which we wish
to be ‘silent’. Rather than the arbitrary occurrence of a new free plug in the result, we
‘silence’ this plug (therefore the exact choice of the name is irrelevant). Returning to
our previous example, we now define **νx.M++α = x̂(**M++β)β .→⊥ · α. For example, this
would mean that **νx.x++α = x̂〈x.•〉 · α.

Unfortunately, although this approach seems promising, it is not sufficient. The difficulty
we come across when encoding the full νλµ calculus, is illustrated by case of the (ν)

reduction rule. If we consider a simple case, such as [νx.x]y → y (which is only typeable
by making y a variable of type ⊥), and encode the two terms via a plug α, we can see
the problem precisely. The encoding of the redex via α will (according to the discussion
above), be **[νx.x]y++α = **y++ββ̂ † x̂**x++⊥ = 〈y.β〉β̂ † x̂〈x.•〉. This X i-term reduces to
〈y.•〉. But, the encoding of the original redex, y, via the plug α, gives 〈y.α〉 instead.
Therefore, we have a mismatch. The problem is that, although we were able to see that
the bound variable x in the original term must be ‘silent’, this information is lost in the
reduction, and the variable y now appears just as a normal variable (which cound be
typeable with any type, not just ⊥). The encoding reflects this loss of information too,
and so we obtain an inconsistent result.

We have not found a way to avoid this problem for νλµ in general. However, one could
attempt to give an encoding which works for a subset of νλµ. In particular, if we wish to
avoid the problem described above, we need to be sure that the terms which are ‘silenced’
by the encoding remain ‘silent’ after reduction. One way in which this can be achieved, is
to restrict the bodies of ν- and µ-abstraction to always be continuation applications (terms
of the form [M ]N ). This would not be very pleasing regarding the original ambitions of
νλµ to represent the full logic, but still provides a very rich syntax, which is closed under
reductions. Furthermore, the image of X i, under the encoding presented in the previous
section, falls within this syntax, suggesting that it might be an interesting restriction to
study.

7.4.2 Inputs to Outputs

Since we relate µ-reductions with left-propagation of cuts, we need to design any encod-
ing so that the encoding of a µ-bound term results in an X i-term with occurrences of
outputs rather than inputs, corresponding to the occurrences of its bound variable. This is
also related to our desire to present an ‘inverse’ to the encoding in the previous section:
there, all outputs α in the original X i-term and mapped onto occurrences of a correspond-
ing variable α. In order for the inverse encoding to reach the original term, we must

170



somehow map these variable occurrences back on to outputs. In particular, since outputs
α of type A map on to variables α of type ¬A, we now require an operation to replace
occurrences of inputs of type ¬A with outputs of type A. We observe that this can be
achieved as a ‘second phase’: firstly an νλµ-term is encoded into X i, and then, where ap-
propriate, a transformation is applied on the resulting term to replace inputs with outputs.
In the X i-setting, there is an easy way in which this can be achieved. If P is an X i-term in
which x occurs with type ¬A, and in which β does not occur, then P{(ŷ〈y.β〉 · α)α̂!x}
is an X i-term in which β occurs with type A.

7.5 Shallow Polymorphism for νλµ

A different application of our understanding of the relationship between the X i and νλµ-
calculi, is that we can consider how to adapt the results of Chapter 4 to the νλµ-calculus.
In particular, Theorem 7.3.3 gives us a strong relationship between the typings possible in
the simple type systems for both calculi. We can use this intuition as the basis of an exten-
sion of the νλµ-calculus to shallow polymorphism. We would anticipate subject reduction
to be just as problematic as in the case of theX i-calculus, but since we have already found
an elegant solution to those problems, the adaptation is relatively straightforward.

One interesting observation which becomes quickly clear is that an analogous type system
for νλµ cannot deal with strictly shallow types (i.e.m it is no longer sufficient to consider
only types with quantifiers on the outside). However, the extension is not very great, and
rather natural, as the following example should illustrate.

Consider the self-application of the identity function. This is represented by the X i-term
(x̂〈x.α〉α̂·β)β̂ † ŷ(〈y.γ〉γ̂ [y] ẑ〈z.δ〉), which is typeable according to Definition 4.3.6 in
the following way:

(ax)
〈x.α〉 ··· x : ϕ′ "SP α : ϕ′

(→R)
bx〈x.α〉bα·β ··· ∅"SP β : ∀X.(X→X)

(ax)
〈y.γ〉 ··· y :∀X.(X→X)"SP γ : ϕ→ϕ

(ax)
〈z.δ〉 ··· z : ϕ→ϕ"SP δ : ϕ→ϕ

(→L)
〈y.γ〉bγ [y] bz〈z.δ〉 ··· y : ∀X.(X→X)"SP δ : ϕ→ϕ

(cut)
(bx〈x.α〉bα·β)bβ † by(〈y.γ〉bγ [y] bz〈z.δ〉) ··· ∅ "SP δ : ϕ→ϕ

Now, if we encode this term into the νλµ-calculus, by applying Definition 7.3.1, we
hope the resulting term can be typeable in a suitably-defined analogous polymorphic type
system. Applying the definition, we have

**(x̂〈x.α〉α̂·β)β̂ † ŷ(〈y.γ〉γ̂ [y] ẑ〈z.δ〉)++δ = µδ.[νy.[νz.[δ]z](y y)]λx.x
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If we reduce the inner (ν) redex in the resulting term, we reach something looking reason-
ably close to the original: µδ.[νy.[δ](y y)]λx.x. Note that, as is typical of our encoding,
the cut in the original term has become a continuation application in the νλµ-term. How-
ever, in the original term the cut carried the shallow polymorphic type ∀X.(X→X). If
we want to use this type in the resulting term, the subterm λx.x may reasonably be typed
with it, but the subterm νy.[δ](y y) needs instead the type ¬(∀X.(X→X)). This is not
a shallow-polymorphic type. Similarly, if λx.x could be assigned the type ∀X.(X→X),
intuitively we would expect that a term µw.[w]λx.x could do as well. But, in construct-
ing this derivation, we will need an occurrence of the negated shallow polymorphic type
¬(∀X.(X→X)). This seems to motivate an extension to the language of types and type-
schemes, allowing possibly-negated type schemes A:

A,B ::= ϕ | X | (A → B)

A ::= ∀X1.∀X2. . . . ∀Xn.A (n ≥ 0)

A ::= A | ¬A

Given this extension, we then consider the following type-derivation to be the counterpart
of that shown for the original X i term:

(ax)
δ :¬(ϕ→ϕ) " δ :¬(ϕ→ϕ)

(ax)
y :∀X.(X→X) " y : (ϕ→ϕ)→(ϕ→ϕ)

(ax)
y :∀X.(X→X) " y : ϕ→ϕ

(→E)
y :∀X.(X→X) " y y : ϕ→ϕ

(¬E)
δ :¬(ϕ→ϕ), y :∀X.(X→X) " [δ](y y) :⊥

(¬I)
δ :¬(ϕ→ϕ) " νy.[δ](y y) :¬(∀X.(X→X))

(ax)
x : ϕ′ " x : ϕ′

(→I)
" λx.x : ∀X.(X→X)

(¬E)
δ :¬(ϕ→ϕ) " [νy.[δ](y y)]λx.x :⊥

(PC)
∅ " µδ.[νy.[δ](y y)]λx.x : ϕ→ϕ

We can formally define the analogous type system for νλµ as follows:

Definition 7.5.1 (Shallow-polymorphic type assignment for νλµ-calculus).

(Ax)1

Γ, x : A " x : B
Γ, x :¬A "M :⊥

(PC)
Γ " µx.M : A

Γ, x : A "M : B
(→I)2

Γ " λx.M : C

Γ "M : A→B Γ " N : A
(→E)

Γ "M N : B

Γ, x : A "M :⊥
(¬I)3

Γ " νx.M : B

Γ "M :¬A Γ " N : A
(¬E)

Γ " [M ]N :⊥

1 A6B. 2 (A→B) #Γ C. 3 either B = ¬A or A = A and (¬A) #Γ B.
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This type system follows analogous restrictions on polymorphic generalisation to that
presented for the X i-calculus (Definition 4.3.6). Quantifiers can be added to the types of
λ-abstractions and ν-abstractions, so long as it is sound to do so (the predicate A #Γ B

is the obvious adaptation of that of Definition 4.3.4), and, in the case of ν-abstraction,
so long as we do not go outside of our type language. This extra restriction is needed
because we allow the type of the ν-bound variable to potentially be a type scheme (in
contrast with λ-binding), in order to model the substitution of polymorphic values into
contexts.

The fact that µ-bound terms may also carry polymorphic types, means that (just as in the
case of Chapter 4), terms of polymorphic type are not restricted to values. Indeed, the
term µx.((w ([x]λy.y)) ([x]λz.z)) (in which the variable w is just ‘dummy’ structure for
the purpose of the example), contains two copies of the polymorphic identity function,
and can be typed as such according to the typing rules above (we leave the derivation to
the keen reader) as w :⊥→⊥→⊥ " µx.((w ([x]λy.y)) ([x]λz.z)) : ∀X.(X→X).

We have not proved properties of this proposed type system for νλµ, but it seems that sub-
ject reduction and principal typings can be dealt with analogously to the work of Chapter
4. If so, we have a fairly general and sound polymorphic type system for a term cal-
culus based on classical natural deduction, which we believe to be a new result. Even
when compared with related calculi, such as ML with call/cc, we believe our system to
be (slightly) more permissive than, for example, the proposal of Wright [83]. We believe
that the particular type system described above would not have been easy to arrive at by
working directly in the natural deduction paradigm (in particular, the conditions on when
negated type schemes can and cannot occur, are subtle), but the analogous system arose
naturally through our work in the sequent calculus paradigm, in which the unsoundness
of the naı̈ve system can be understood clearly.

7.6 Confluent restrictions of νλµ

One of the results we hoped to achieve by defining encodings between our two calculi was
to provide a clear definition and explanation of the call-by-name and call-by-value restric-
tions of our νλµ-calculus. As was discussed in Chapter 3, there is a simple definition of
these confluent restrictions in the context of the sequent calculus, which is obtained by
favouring either left or right propagation of cuts, when both are possible (c.f., Definition
3.5.1). Our original plan was that, armed with a suitable encoding of νλµ into X i, we
could define the call-by-name and call-by-value restrictions of νλµ by encoding redexes
into the sequent calculus, and examining what the restrictions there naturall implied for
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the original term. This approach is not applicable, since we have not obtained such an
encoding, however we have at least reached a partial understanding of how computations
may be related between the two disciplines, through our encoding in the other direction.
In particular, we have identified that left-propagation of cuts in X i, and mu-reductions in
νλµ are closely related (while, less surprisingly, right-propagation and term substitution
also approximately correspond).

We consider here a more intensional definition of the call-by-name and call-by-value dis-
ciplines, and show that it can be generalised to provide an understanding of our particular
problem, but also applied to other calculi. In doing so, we observe that the existing def-
initions of call-by-name λµ-calculus are restricted beyond the ‘natural’ definitions, and
argue that, in fact, call-by-value restrictions of the λµ and νλµ-calculi are not naturally
confluent restrictions.

The most well-known example of these subsystems is the call-by-name λ-calculus. As
is well-known, this is obtained from the full λ-calculus by restricting the β-rule to only
apply when the function argument is a value, where values are either λ-abstractions or
variables. In other cases, reduction is blocked, for example (λx.x) (y z) is a normal
form in CBV λ-calculus. Initially, it might seem somehwat surprising that variables are
considered values, since, in principle, this means that the set of values is not closed under
substitution. Therefore, it might be thought possible that, although the example above is
in normal form, the term (λx.x) w runs to w, and, if y z is then substituted for w, then the
original ‘block’ to reduction seems to be evaded. The reason that this kind of flaunting
of the intentions of CBV does not occur, is that, because of exactly the same restriction,
the only substitutions which are ever generated by CBV reduction replace variables with
values. Therefore, it is in fact the case that the syntactic category of values is closed under
CBV substitutions.

We consider then, that one could obtain CBV λ-calculus in another way. Instead of be-
ginning with the value restriction, we could obtain the same calculus by requiring that all
substitutions generated by reduction must always be of values for variables. This restric-
tion would then implicitly define the same restriction of the β rule as is well-known. Why
then, do we consider this to be advantageous? The point is that the very same definition
serves to implicitly define a notion of call-by-value for other calculi. For example, in the
context of the λµµ̃-calculus (c.f., Section 5.5.4), there is a term-for-variable substitution
similar to that in the λ-calculus. If one imposes the restriction that the only substitutions
of this kind which may be generated are those replacing variables with values, then one
immediately obtains the restriction that the (µ̃) reduction rule may not be applied when
the left-hand term of the command is not a value (which is equivalent to it being a µ-bound
term, in this calculus). This is exactly the restriction imposed by Curien and Herbelin to
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define the CBV version of λµµ̃. Dually, in order to obtain CBN λµµ̃, one can insist that
substitutions of contexts for context-variables are only generated when the context is an
“applicative context” [19], which is essentially a dual notion to that of terms being values.
This restriction on the second class of substitutions, naturally implies the definitions of
λµµ̃. Note that, for each of the two subsystems, it is only necessary to impose a restriction
on one of the two classes of substitution, leaving the other unchanged.

Now we consider this idea for the νλµ-calculus. We focus on the case of call-by-value,
since it is simpler to reason about in our setting. We argue that to define CBV νλµ, we
need only insist that term substitutions may never be generated unless the term replac-
ing the variable is a value, where values are λ-abstractions, ν-abstractions and variables.
This implies that the (ν) reduction rule (which is the only rule which generates term-
for-variable substitutions) should be restricted to be only applicable when the right-hand
subterm (argument is a value), i.e.:

(νCBV) : [νx.M ]V → M〈V/x〉

According to our pattern, no other restrictions should be necessary; the other reduction
rules largely generate semi-structural substitutions, which we would only expect to re-
strict to define call-by-name. In particular, note that we do not appear to need to restrict
the (λ′) rule, since this rule does not generate any kind of substitution. This can also be
compared to the situation in λµµ̃, where the (→′) rule is not restricted in either subcalcu-
lus. However, this approach does not suggest that any of the µ-reductions of the calculus
need naturally be restricted in call-by-value. For example, the two rules (c.f. Definition
5.4.6):

(µ→1) (µx.M) N → µy.M〈ẑ([y](z N))/x〉
(µ→2) N (µx.M) → µy.M〈ẑ([y](N z))/x〉

seem both to be compatible (according to the reasoning above) with the idea of call-
by-value reduction. In particular, this suggests that the ‘natural’ notion of call-by-value
reduction in this calculus is still non-confluent. This would explain the observation by
Rocheteau [67] that some authors have defined CBV λµ-calculus with one rule present,
and some with the other; essentially the choice between the two could be viewed as an ar-
bitrary restriction imposed to guarantee confluence of call-by-value reduction. We believe
it is interesting to note that a reduction system could appear to be naturally call-by-value
and still naturall non-confluent, in the setting of classical logic.

Since we have claimed that µ-reductions in νλµ correspond with left-propagation reduc-
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tions in the setting of classical sequent calculus, it is natural to ask whether the discus-
sion above implies that the notion of call-by-value reduction which we consider for the
X i-calculus (Definition 3.5.1) is also non-confluent. The reason this is not an obvious
consequence is tied up with the problems we have with encoding νλµ into X i; the second
of the two rules above cannot easily be encoded, and in fact corresponds informally with
one of the possible extra reduction rules discussed in Definition 7.3.12. Therefore, there is
not an obvious counter-example to the confluence of call-by-name reduction in X i, unless
these extra rules were to be added.

7.7 Summary

We have presented an encoding of a fully-general cut-elimination procedure for classical
sequent calculus, into a Gentzen-style natural deduction paradigm. Concretely, we have
encoded the X i-calculus into the νλµ-calculus, in such a way that reductions and typings
are preserved. We have investigated the possibility of an encoding in the other direction,
but have not, thus far, been able to obtain one. However, the reduction rules which cannot
easily be simulated lead naturally to the consideration of addition of extra reduction rules
in the sequent calculus paradigm, which seems an interesting area of future work.

It is also interesting to consider whether such encoding could be extended to the case of
‘explicit’ substitution operations. For example, the X -calculus [78] is based on the ‘lo-
calised version’ of Christian Urban’s cut elimination [76], in which propagation of cuts is
modelled step-by-step by the reduction rules, in much the same manner as explicit sub-
stitutions in the λx calculus [16]. A natural question to ask is whether the encoding we
have presented could be easily extended to an encoding of the X -calculus. This would
(at least) require the addition of explicit substitution operators into the term syntax of the
νλµ-calculus, but this should be achievable without much effort. Previous work already
shows that the incorporation of explicit substitutions into the λµ-calculus [7], and the re-
lated λ∆-calculus [13], is possible without breaking the good properties of the calculi.
However, we observe that the direct preservation of cut-elimination reductions becomes
problematic in this case. This is essentially because the exact orders of propagating ‘sub-
stitutions’ in the two paradigms do not always match up. Therefore, it is not easy to
achieve the result that every reduction step in the source calculus is modelled in the target
calculus: we can only show that once the substitutions have been fully evaluated, then
the reductions match up. These technical difficulties are evaded in our work, since we
abstract away from the step-by-step progation of substitution operations.
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Chapter 8

Conclusions

Throughout this thesis, we have been concerned with the investigation of computational
content for the classical logics presented by Gentzen. We have, with the notable excep-
tion of Kleene’s permutation-free presentation of the sequent calculus, adhered strongly
to the viewpoint that it is interesting to consider this subject with respect to the original
presentations of the logics, and in full generality. In particular, the natural non-confluence
which pervades this work is regarded as an essential ingredient of general calculi based
on classical logics, and we allow it to be fully expressed in our work. Aesthetic consid-
erations aside, this attitude can be justified by the argument that, in order to understand
exactly what the natural computational content in these logics might be, we should work
without restricting the notions of reductions from their most-general forms. We believe it
is valuable to consider what these notions of reduction might mean in general, before (if
necessary) restricting them to obtain a suitable fragment for further study.

We began by outlining a brief history of the work which has chiefly contributed to this
point of view. While the seminal work of Griffin [38] and the subsequent work by Parigot
[54, 56] and many other authors was essential to the development of this research field,
we believe it is the work of Christian Urban[76] which most-conclusively argues that a
meaningful and expressive computational content for classical logic can (and should) be
extracted with a non-confluent set of reductions. Indeed, rather than arguing to restrict
to a unique normal form, he aims to extract as many normal forms as possible from
a given proof. His set of reductions, while not entirely complete (in the sense that some
“potential” normal forms are not reachable, as he discusses in the conclusion of his thesis),
seem to give the most general notion of cut elimination for classical sequent calculus
which has been proved to be strongly normalising.

We used the work of Urban as the basis of our chosen term calculus based on classical
sequent calculus, and presented an untyped variation of his work, X i, incorporating the
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infix notation introduced by van Bakel et. al. [78]. The resulting calculus is automatically
known to satisfy witness reduction and strong normalisation, and because of its strong ties
to the logic and general notion of reduction, we use it as the basis of our work on classical
sequent calculus. We showed other standard properties, including a notion of principal
typing for the simple type system.

In considering the question of ML-style shallow polymorphism for this calculus, we dis-
covered that the naı̈ve generalisation of our simple type system causes an unsoundness,
which is related to the unsoundness of the original ML type system when extended with
imperative features and control operators. We believe that in the sequent calculus setting
the exact cause of the unsoundness is clearer to see; it manifests itself as an interplay be-
tween the left propagation of cuts and the implicit polymorphic generalisation steps which
are allowed in the type system. Having thus pinpointed the exact cause, we were able to
define an improved type system which neatly evades the problem, while maintaining a
reasonably strong facility for polymorphism. Furthermore, in the context of the classical
sequent calculus, it seems natural to view the existential quantifier as having a dual role to
that of the universal, and we show that we can define this alternative kind of polymorphic
type system in a straightforward manner, by exploiting the symmetries of the underlying
logic.

We succeeded in proving that our proposed shallow polymorphic type system is sound,
and has a principal types property similar to that of ML. Because of the nature of our
restrictions on the naı̈ve type system, the principal types property in the setting of the
X i-calculus was a non-trivial generalisation. In particular, we needed to introduce an ex-
tended notion of unification, to handle the combination of generic types (or type schemes)
in the most general way. As a by-product, we have given formal proofs of the soundness
and completeness of this operation, which we have been unable to find in the existing
literature.

In the context of classical natural deduction we have argued that a ‘canonical’ set of re-
ductions, analogous with the cut elimination in classical sequent calculus, has not been
previously defined. Furthermore, the calculi presented in the literature which are based on
classical natural deduction, tend not to reflect Gentzen’s original formulation. We believe
this is largely because of the expectation of confluence which, until relatively recently, has
pervaded the work on applicative-style calculi. Because, if one wishes to obtain conflu-
ence, it is necessary to restrict the ‘natural’ notion of reductions in a classical logic setting,
a wide number of different calculi have been proposed, differing in subtle ways from one
another, and none standing out as a canonical basis for the study of this paradigm. As a
consequence of our desire to faithfully inhabit the original logic, and to provide a notion
of reduction as general as that provided by Gentzen’s cut elimination, we discovered an
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extension of the famous λµ-calculus which we dubbed νλµ, and believe forms a simple
basis for further work. The constructs of the calculus can be understood relatively intu-
itively, and the reductions of the calculus can be seen to incorporate a natural behaviour
strongly related to that of delimited control operators. Exploring the consequences of
this observation in more detail, we have shown that the historically accepted computa-
tional counterpart of the double-negation elimination inference rule of classical natural
deduction (Felleisen’s C operator) is not the most natural candidate, and that the reduc-
tion behaviours and typings of delimited control operators such as his F operator make
these more natural choices.

The νλµ-calculus includes reduction behaviour which is closely related with delimited
control operators, and is also able to encode many existing calculi related to classical
logic. In particular, we have shown that the X i-calculus can be encoded into νλµ, di-
rectly preserving reductions (and typings). We believe this to be the first time that a
general notion of cut elimination for classical logic has been encoded into a notion of
proof normalisation for a Gentzen-style classical natural deduction. In the other direc-
tion, we were not able to provide similar results, since the reductions of νλµ appear to be
more general than those which are present in the X i-calculus. In particular, it appears that
some νλµ-reductions do not naturally correspond to cut elimination steps, but instead to
different kinds of sound transformations on sequent proofs (which nonetheless appear in
some sense to simplify proofs).

Finally, we have been able to use the knowledge gained about encodings between the
two paradigms of sequent calculus and natural deduction, to adapt the results of previous
chapters to different settings. In particular, we have derived what appears to be a natural
formulation of a shallow polymorphic type system for νλµ, which we believe to have the
same desirable results as those we proved for the X i-calculus. The potential unsoundness
in a shallow polymorphic type system based around classical logic was (we argue) easiest
to understand directly in the setting of classical sequent calculus, and the adaptation of our
solution to the natural deduction paradigm was made easy by our knowledge of encodings.
We believe it would have been significantly harder to discover the same solution directly
for the νλµ-calculus.

8.1 Future Work

The most obvious area for future work is the νλµ-calculus, for which we do not yet have
a proof of strong normalisation. We regard this as an essential property for such a calcu-
lus, but it seems that standard techniques such as symmetric reducibility candidates are
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not directly applicable, because of the generality of the reductions and the type-language.
Nonetheless, we believe that such a proof should be possible, perhaps given some exten-
sion of the usual approach.

Through our attempts to encode the νλµ-calculus back to theX i-calculus, we have identi-
fied some possible additional reduction rules which could be added to X i. These rules are
not cut elimination rules, but nonetheless appear to have a reasonable behaviour in terms
of simplifying sequent proofs in other ways. Whether or not versions of these rules can
be added to the X i-calculus without breaking strong normalisation is not entirely clear,
but this question appears to be tied up with a strong normalisation result for νλµ, as well
as with our desire for encodings in both directions between the two paradigms.

Although we have made some headway in relating the νλµ to the field of control op-
erators, it would be interesting to study practical applications of our calculi. There are
various interesting directions which have been partially explored in the field. In [1], Ari-
ola et. al. show that a variant of the λµµ̃-calculus is suitable for representing the details of
typical abstract machines for programming calculi, not only in terms of expressiveness,
but also efficiency. This is an interesting application of the classical sequent calculus to
practical programming. Ohori [52] also shows that a Curry-Howard correspondence can
be established between a variant of sequent calculus and a low-level language for machine
code.

In [11], Barbenera et. al. analyse the non-confluence of the symmetric λ-calculus, and re-
lated the non-deterministic aspects to concurrent programming. In particular, they demon-
strate that certain programs in their calculus can be regarded as communicating concurrent
processes. It would be interesting to analyse this idea in the context of (for example) the
X i-calculus. Recently, it has been shown that the X -calculus (whose reductions are finer-
grained than those of the X i-calculus), can be encoded into the π-calculus, preserving
reductions [68]. This seems an interesting area for future research, since in the realm of
process calculi the non-deterministic aspects of classical logic are desirable. It would be
particularly interesting is to see if an encoding in the other direction were possible, i.e., to
model a process calculus in a calculus based on classical logic.

In the realm of conventional programming our work on shallow polymorphism has poten-
tial practical benefits. In particular, the fact that we have identified the potentially equal
status of both universal and existential quantification in such a type system seems to be a
new idea. It is precisely the classical features of these calculi which make this the case,
and most interestingly, permit examples which can only be typed using a combination
of these two types of polymorphism. We believe that a sound type system including the
two quantifiers together could be defined, although it seems that the question of princi-
pal types would need extensive extra work, and may even become impossible with this
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extension.

8.2 Closing Remarks

Throughout this thesis we have justified our work by comparisons with other calculi and
languages, however, there is no doubt that aesthetic and philosophical considerations have
had a significant influence on most of our work. The original Curry-Howard Correspon-
dence is remarkably clean, and presents the well-understood λ-calculus as the computa-
tional counterpart of a canonical presentation of minimal logic. While we believe that
practical considerations should not be forgotten, we find that the computational content
of classical logic is interesting in its own right, and to define calculi with a similarly clean
correspondence with Gentzen’s original logics is an exciting achievement. Furthermore,
by maintaining sufficiently general notions of reduction, we are able to represent most
other calculi which exist in the field in a natural way and relate our calculi which are
rooted firmly in Gentzen’s work to programming concepts which are already prevalent in
theoretical computer science.
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[39] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and
control in ml-like languages. In FPCA ’95: Proceedings of the seventh international
conference on Functional programming languages and computer architecture, pages
12–23, New York, NY, USA, 1995. ACM.

[40] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science
Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-30,
1994, Selected Papers, volume 933 of Lecture Notes in Computer Science, pages
61–75. Springer, 1995.

[41] R. Hieb and R. Kent Dybvig. Continuations and concurrency. In PPOPP ’90:
Proceedings of the second ACM SIGPLAN symposium on Principles & practice of
parallel programming, pages 128–136, New York, NY, USA, 1990. ACM.

[42] J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, 1969.

[43] W. A. Howard. The formulae-as-types notion of construction. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980.

[44] Jean-Baptiste Joinet. Étude de la Normalisation du Calcul des Séquents Classique
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Appendix A

Supporting Proofs

A.1 Proofs for Chapter 3

Proof A.1.1 (of Theorem 3.3.12). 1. Soundness:

P ≡〈x.α〉 Then Γ = {x:ϕ} and ∆ = {α:ϕ} for fresh ϕ. By the rule (ax), we
obtain 〈x.α〉 ··· {x:ϕ} "{ α:ϕ}

P ≡ x̂Qα̂·β Γ = (S (ΓQ\x)) and ∆ = (S (β:C, ∆Q\α)). By induction, we obtain
Q ··· ΓQ " ∆Q.

Notice that, since A = typeof x Γ, either x : A ∈ ΓQ or x (∈ΓQ. Hence
(ΓQ\x), x:A ⊇ ΓQ. By similar argument, α:B, (∆Q\α) ⊇ ∆Q. Then, by
weakening where necessary, we have Q ··· (ΓQ\x), x:A " α:B, (∆Q\α).

Applying the rule (→R), we obtain x̂Qα̂·β ··· ΓQ\x " β:A→B, ∆Q\α. Now,
by Lemma 3.3.10, x̂Qα̂·β ··· (S (ΓQ\x)) " (S (β:A→B, ∆Q\α)). Notice that
(S (ΓQ\x)) = Γ. By definition of S, (S A→B) = (S C), and so we also have
(S (β:A→B, ∆Q\α)) = ∆

P ≡Qα̂ [y] x̂R From the definition, we have Γ = (S3 (S2◦S1 (ΓQ∪(ΓR\x))), y:C)

and ∆ =( S3◦S2◦S1 ((∆Q\α)∪∆R)). By induction, twice, Q ··· ΓQ " ∆Q

and R ··· ΓR " ∆R.

By weakening we have Q ··· ΓQ " (∆Q\α),α:A and R ··· x:B, (ΓR\x) " ∆R.
Let S = S3◦S2◦S1, for brevity.

By Lemma 3.3.10, we know that both Q ··· (S ΓQ) " (S ((∆Q\α),α:A)) and
R ··· (S (x:B, (ΓR\x))) " (S ∆R).

By definition of S1, we know that (S (ΓQ∪(ΓR\x))) gives a well-formed con-
text. Since x appears as a binder in Qα̂ [y] x̂R, we may assume that x does
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not also appear free in the term. In particular, we can assume that x (∈ΓQ,
and therefore that (S (ΓQ∪(ΓR\x), x:B)) is a well-formed context. By simi-
lar argument, given the definition of S2, we have that (S (α:A, (∆P\α)∪∆Q))

is well-formed.

By further weakening of the judgements, and applying the rule (→L), we
obtain Qα̂ [y] x̂R ··· (S (ΓQ∪(ΓR\x))), y:(S A)→(S B) " (S (∆P\α)∪∆Q).

Notice that ∆ =( S ((∆P\α)∪∆Q)). Since S3 = unify C (S2◦S1 A→B), we
have (S A)→(S B) = (S3 C). Hence, (S (ΓQ∪(ΓR\x))), y:(S A)→(S B) =

Γ.

P ≡Qα̂ † x̂R Similar to the previous case.

2. Completeness: By induction on the structure of derivations.

P ≡〈x.α〉 Then Γ = Γ′, x:A and ∆ = α:A, ∆′ for some type A and contexts Γ′, ∆′.
We have pc(〈x.α〉) = 〈x:ϕ; α:ϕ〉 for a fresh type-variable ϕ. Take S to be the
substitution (ϕ .→A).

P ≡ x̂Qα̂·β Then say ∆ =∆ ′, β:D→E. From the (→R) rule, we obtain that
Q ··· Γ, x:D " α:E, ∆′.

By induction, there exists S1 such that (S1 ΓQ) ⊆ Γ, x:D and (S1 ∆Q) ⊆
α:E, ∆′. Define the substitutions S2, S3 and S4 as follows:

S2 =

{
id if x:A ∈ ΓQ

(A.→D) otherwise

S3 =

{
id if α:B ∈ ∆Q

(B .→E) otherwise

S4 =

{
id if β:C ∈ ∆Q

(C .→(D→E)) otherwise

Note that S2,S3,S4 act on fresh type variables (if any). Let S ′ = S4◦S3◦S2◦S1.
Claim:

(i) (S ′ A) = D

(ii) (S ′ ΓQ\x:A) ⊆ Γ

(iii) (S ′ B) = E

(iv) (S ′ ∆Q\α:B) ⊆ ∆′

(v) (S ′ C) = (S ′ A→B)

(vi) (S ′ β:C, ∆Q\α:B) ⊆ ∆′, β:D→E
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Proof. (i) and (ii): Consider two cases:

x:A ∈ ΓQ :

Then, since (S1 ΓQ) ⊆ Γ, x:D we must have (S1 A) = D. Notice
that S2 = id in this case, and that S3,S4 act on other type variables
(if any). Hence (S ′ A) = (S1 A) = D (i).
In this case, ΓQ = (ΓQ\x:A), x:A. We have:

(S1 ΓQ\x:A), x:D = (S1 ΓQ\x:A), x:(S1 A)

= (S1 (ΓQ\x:A), x:A)

= (S1 ΓQ)

⊆ Γ, x:D

Therefore (S1 ΓQ\x:A) ⊆ Γ (ii).

x:A (∈ΓQ :

Then A is fresh, (S1 A) = A and S2 = (A.→D). Hence (S ′ A) = D

(i).
Since x:A (∈ΓQ, we have ΓQ\x:A = ΓQ and also x (∈ (S1 ΓQ). There-
fore:

(S1 ΓQ) ⊆ Γ, x:D ⇒ (S1 ΓQ) ⊆ Γ

⇒ (S1 ΓQ\x:A) ⊆ Γ

⇒ (S ′ ΓQ\x:A) ⊆ Γ

as required (ii).

(iii) and (iv): By similar argument to (i) and (ii), considering cases for α:B ∈
∆Q.

(v): Consider two cases:

β:C ∈ ∆Q :

We have by part (iv) that (S ′ ∆Q\α:B) ⊆ ∆′, and so in particular,
that β:(S ′ C) ∈ ∆′. However, we have x̂Qα̂·β ··· Γ " ∆′, β:D→E,
and so ∆′, β:D→E must be a well-formed context. Hence we must
have:

(S ′ C) = D→E

= (S ′ A)→(S ′ B)

= (S ′ A→B)

β:C (∈∆Q :

Then C is fresh, and S4 = (C .→(D→E)). Hence (S ′ C) = D→E =

(S ′ A→B).

(vi): By (v), (S ′ C) = D→E. Hence this follows directly from (iv).
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Since S ′ unifies C and A→B, by Lemma 3.3.9(i) we have ∃S such that S ′ =

S◦Su (where Su = unify C A→B, as above). Now, letting 〈ΓP ; ∆P 〉 =

pC (P ), by the definition of the algorithm, ΓP = (Su ΓQ\x:A) and ∆P =

(Su β:C, ∆Q\α:B). Using the Claim (ii) above we have:

(S ΓP ) = (S Su ΓQ\x:A)

= (S ′ ΓQ\x:A)

⊆ Γ

Similarly, by the Claim (vi) above, (S ∆P ) ⊆ ∆′, β:D→E = ∆, as required.

(med) Then P ≡Qα̂ [y] x̂R and Γ =Γ ′, y:D→E for some types D,E and context
Γ′. From the rule, we know Qα̂ [y] x̂R ··· Γ′, y:D→E "∆ and Q ··· Γ′ " α:D, ∆

and R ··· Γ′, x:E " ∆.

Let
〈ΓQ; ∆Q〉 = pc(Q)

〈ΓR; ∆R〉 = pc(R)

A = typeof α ∆Q

B = typeof x ΓR

SΓ = unifyContexts ΓQ (ΓR\x)

S∆ = unifyContexts (SΓ ∆Q\α) (SΓ ∆R)

C = typeof y (S∆◦SΓ ΓQ∪(ΓR\x))

SC = unify C (S∆◦SΓ A→B)

By induction, twice, ∃S1, S2 such that:

(S1 ΓQ) ⊆ Γ′

(S1 ∆Q) ⊆ α:D, ∆

(S2 ΓR) ⊆ Γ′, x:E

(S2 ∆R) ⊆ ∆

Note that we may assume that the sets of type-variables occurring in each of
the two pairs 〈ΓQ; ∆Q〉 and 〈ΓR; ∆R〉 are distinct (since they should all be
fresh at some stage in the calls). This means in particular we may assume
that S1 has no effect on 〈ΓR; ∆R〉 and likewise for S2, 〈ΓQ; ∆Q〉. Define the
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substitutions S3, S4 and S5 by:

S3 =

{
id if α:A ∈ ∆Q

(A .→D) otherwise

S4 =

{
id if x:B ∈ ΓR

(B .→E) otherwise

S5 =

{
id if y:C ∈ (S∆◦SΓ ΓQ∪(ΓR\x))

(C .→(D→E)) otherwise

Let S ′ = S5◦S4◦S3◦S2◦S1.
Claim:

(i) (S ′ B) = E

(ii) (S ′ ΓQ∪(ΓR\x:B)) ⊆ Γ′

(iii) (S ′ A) = D

(iv) (S ′ (∆Q\α:A)∪∆R) ⊆ ∆

(v) If y:C ∈ (S∆◦SΓ ΓQ∪(ΓR\x)) : then ∀C ′y:C ′ ∈ ΓQ∪(ΓR\x:B) ⇒
(S ′ C ′) = (S ′ A→B)

(vi) If y:C ′ (∈ΓQ∪(ΓR\x), then (S ′ C) = (S ′ A→B).

Proof. (i) and (ii): Consider two cases:

x:B ∈ ΓR :

Since (S2 ΓR) ⊆ Γ′, x:E we must have (S2 B) = E. Hence (S ′ B) =

E (i).
In this case, ΓR = (ΓR\x:B), x:B. We have (S2 (ΓR\x:B), x:B) ⊆
Γ′, x:E, and so (S2 ΓR\x:B) ⊆ Γ′. We know also that (S1 ΓQ) ⊆ Γ′,
and so this must hold for the union of these two contexts after both
substitutions have been applied: (S ′ ΓQ∪(ΓR\x:B)) ⊆ Γ′(ii).

x:B (∈ΓR :

Then S4 = (B .→E) and so (S ′ B) = E (i).
We have ΓR\x:B = ΓR and also x (∈ (S ′ ΓR). As usual, since S1 does
not act on GQ and S3,S4,S5 only on fresh type-variables, we may de-
duce from (S2 ΓR) ⊆ Γ′, x:E that (S ′ ΓR) ⊆ Γ′, x:E. By the above,
we deduce (S ′ ΓR\x:B) ⊆ Γ′. We have also that (S1 ΓQ) ⊆ Γ′, i.e.
(S ′ ΓQ) ⊆ Γ′ and so we may deduce that (S ′ ΓQ∪(ΓR\x:B)) ⊆ Γ′

as required (ii).

(iii) and (iv): By similar argument to (i) and (ii), considering cases for α:B ∈
∆Q.
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(v): Let C ′ be a type satisfying y:C ′ ∈ ΓQ∪(ΓR\x). Notice that such C ′

need not be unique (since y may occur in both ΓQ and (ΓR\x), but the
argument which follows works for both of the occurrences, where there
are two.
We have by part (ii) that (S ′ ΓQ∪(ΓR\x:B)) ⊆ Γ′, and so in particular
that y:(S ′ C ′) ∈ Γ′. However, we have Qα̂ [y] x̂R ··· Γ′, y:D→E " ∆,
and so Γ′, y:D→E must be a well-formed context. Hence we must have:

(S ′ C ′) = D→E

= (S ′ A)→(S ′ B)

= (S ′ A→B)

(vi): In this case, C is fresh, and S5 = (C .→(D→E)). Hence (S ′ C) =

D→E = (S ′ A→B) (using (i) and (iii)).

From here on, let C ′ be a type such that:

S3 =

{
y:C ′ ∈ ΓQ∪(ΓR\x) if y:C ∈ (S∆◦SΓ ΓQ∪(ΓR\x))

C ′ = C otherwise

Combining (v) and (vi) above, it is clear that (S ′ C ′) = (S ′ A→B) in all
cases. Furthermore, in both cases we have (S∆◦SΓ C ′) = C (since C is fresh
in the latter case, and so the substitutions have no effect).

By (ii) it can be seen that S ′ unifies the contexts ΓQ and (ΓR\x:B), while from
(iv) that it also unifies (∆Q\α:A) and ∆R. It also unifies C ′ and A→B, hence,
applying Lemma 3.3.9, we have ∃S such that S ′ = S◦SC◦S∆◦SΓ, observing
that SC = unify C (S∆◦SΓ A→B) = unify (S∆◦SΓ C ′) (S∆◦SΓ A→B).

Now, letting 〈ΓP ; ∆P 〉 = pC (P ), by the definition of the algorithm,
ΓP = (SC (S∆◦SΓ ΓQ∪(ΓR\x)), y:C) and ∆P = (SC◦S∆◦SΓ (∆Q\α)∪∆R).
Using the Claim (ii) above we have:

(S ΓP ) = (S SC (S∆◦SΓ ΓQ∪(ΓR\x)), y:C)

= (S SC (S∆◦SΓ ΓQ∪(ΓR\x)), y:S∆◦SΓ C ′)

= (S SC S∆◦SΓ ΓQ∪(ΓR\x), y:C ′)

= (S◦SC◦S∆◦SΓ ΓQ∪(ΓR\x), y:C ′)

= (S ′ ΓQ∪(ΓR\x), y:C ′)

Now, combining the fact that (S ′ C ′) = (S ′ A→B) = D→E with (ii) above,
we obtain (S ′ ΓQ∪(ΓR\x), y:C ′) ⊆ Γ′, y:D→E, i.e. (S ΓP ) ⊆ Γ as required.

Similarly, by the Claim (iv) above, (S ∆P ) ⊆ ∆, as required.
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(cut) Then P ≡Qα̂ † x̂R. From the rule, Qα̂ † x̂R ··· Γ " ∆ and Q ··· Γ " α:D, ∆

and R ··· Γ, x:D " ∆, for some type D.

Let
〈ΓQ; ∆Q〉 = pc(Q)

〈ΓR; ∆R〉 = pc(R)

A = typeof α ∆Q

B = typeof x ΓR

SΓ = unifyContexts ΓQ (ΓR\x)

S∆ = unifyContexts (SΓ ∆Q\α) (SΓ ∆R)

SU = unify (S∆◦SΓ A) (S∆◦SΓ B)

By induction, twice, ∃S1, S2 such that:

(S1 ΓQ) ⊆ Γ

(S1 ∆Q) ⊆ α:D, ∆

(S2 ΓR) ⊆ Γ, x:D

(S2 ∆R) ⊆ ∆

Define the substitutions S3 and S4 by:

S3 =

{
id if α:A ∈ ∆Q

(A .→D) otherwise

S4 =

{
id if x:B ∈ ΓR

(B .→D) otherwise

Let S ′ = S4◦S3◦S2◦S1.
Claim:

(i) (S ′ A) = D

(ii) (S ′ ΓQ∪(ΓR\x:B)) ⊆ Γ

(iii) (S ′ B) = D

(iv) (S ′ (∆Q\α:A)∪∆R) ⊆ ∆

Proof. All similar to the proofs for the (med) case.

By (ii) it can be seen that S ′ unifies the contexts ΓQ and (ΓR\x:B), while
from (iv) that it also unifies (∆Q\α:A) and ∆R. It also unifies A and B, by
(i) and (iii). Therefore, applying Lemma 3.3.9, we have ∃S such that S ′ =

S◦SU◦S∆◦SΓ.

Now, letting 〈ΓP ; ∆P 〉 = pC (P ), by the definition of the algorithm,
ΓP = (SU◦S∆◦SΓ ΓQ∪(ΓR\x)) and ∆P = (SU◦S∆◦SΓ (∆Q\α)∪∆R).
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As in previous cases, we have:

(S ΓP ) = (S◦SU◦S∆◦SΓ ΓQ∪(ΓR\x))

= (S ′ ΓQ∪(ΓR\x))

⊆ Γ

Similarly, (S ∆P ) ⊆ ∆, as required.

A.2 Proofs for Chapter 4

Proof A.2.1 (of Proposition 4.3.5). 1. Reflexivity is immediate. For transitivity, sup-
pose that ∀Xi.A9∀Yj.B and ∀Yj.B9∀Zk.C. By definition, we have for some
types Di , Ej and atomic types ϕj (∈A and ϕ′

k (∈B that B = A[Di/Xi] [Yj/ϕj]

and C = B[Ej/Yj] [Zk/ϕ′
k] . Composing these two facts, we have that C =

A[Di/Xi] [Yj/ϕj] [Ej/Yj] [Zk/ϕ′
k] . Let S be the substitution {(ϕj .→ Ej) }. Then

note that since ϕj (∈A, (S A[Di/Xi] ) = A[(S Di)/Xi] . Then we have:

C = A[Di/Xi] [Yj/ϕj] [Ej/Yj] [Zk/ϕ′
k]

= A[Di/Xi] [Ej/ϕj] [Zk/ϕ′
k]

= (S A[Di/Xi] )[Zk/ϕ′
k]

= A[(S Di)/Xi] [Zk/ϕ′
k]

Finally, we can see that ϕ′
k (∈A since if it were the case that ϕ′

k∈A then since ϕj (∈A

we would have ϕ′
k∈A[Di/Xi] [Yj/ϕj] = B; a contradiction.

2. Reflexivity and transivity are straightforward. Anti-symmetry follows from the fact
that if A #〈Γ;∆〉 B and A(=B then B contains strictly more ∀ symbols than A.

3. Let A = Xi.A. Then, since A6B, we know that for some Di , Yj , ϕj we must have
B = ∀Yj.(A[Di/Xi] [Yj/ϕj] ), with ϕj (∈A. In addition, since B #〈Γ;∆〉 C, we must
have for some Zk and ϕ′

k (∈ 〈Γ; ∆〉 that C = ∀Zk.B[Zk/ϕ′
k] . Since ϕ′

k (∈ 〈Γ; ∆〉 and
A∈〈Γ; ∆〉, we have ϕ′

k (∈A. Hence, C = ∀Zk.∀Yj.(A[Di/Xi] [Yj/ϕj] [Zk/ϕ′
k] )

with ϕj ,ϕ′
k (∈A, i.e. C6A as required.

4. Without loss of generality, say A = ∀Xi.A and B = ∀Yj.(A[Ci/Xi] [Yj/ϕj] ) (with
ϕj (∈A). Note that ϕj (∈B also, due to the renaming [Yj/ϕj] . Let S ′ = (S ∩ {ϕj}).
Then we have (S ′ A) = (S A) and (S ′ B) = (S B). Therefore, it suffices to prove
that (S ′ A)6(S ′ B). This can be seen from the fact that (S A) = ∀Xi.(S A) and
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the following working:

(S ′ B) = (S ′ ∀Yj.(A[Ci/Xi] [Yj/ϕj] )) defn of B

= ∀Yj.(S ′ (A[Ci/Xi] [Yj/ϕj] )) defn of substitution
= ∀Yj.((S ′ A[Ci/Xi] )[Yj/ϕj] ) defn of S ′

= ∀Yj.((S ′ A)[(S ′ Ci)/Xi] [Yj/ϕj] )

= ∀Yj.((S ′ A)[Di/Xi] [Yj/ϕj] ) setting Di = (S ′ Ci)

5. By definition, there exist ϕi and Xi such that B = ∀Xi.A[Xi/ϕi] and ϕi (∈ 〈Γ; ∆〉 .
Define S ′ = {(ϕi .→ ϕ′

i) }, where ϕ′
i are fresh atomic types. Then we know that

B = ∀Xi.(S ′ A)[Xi/ϕ′
i] . Therefore, (S B) = (S (∀Xi.(S ′ A)[Xi/ϕ′

i] )) =

∀Xi.(S◦S ′ A)[Xi/ϕ′
i] . By construction, ϕ′

i (∈ 〈(S Γ); (S ∆)〉 , and so we conclude
(S◦S ′ A) #〈(S Γ);(S ∆)〉 (S B) as required.

6. By definition, for some Xi and ϕi (∈ 〈Γ; ∆〉, we must have A = ∀Xi.A[Xi/ϕi] .
Additionally, since A6B, there must exist Ci and ϕj and Yj such that we can
obtain B = ∀Yj.(A[Xi/ϕi] )[Ci/Xi] [Yj/ϕj] and ϕj (∈A . Let S be the substitution
{(ϕi .→ Ci) }. Then B = ∀Yj.(S A)[Yj/ϕj] . Let S ′ = {(ϕj .→ ϕ′

j) } where ϕ′
j are

fresh. Then B = ∀Yj.(S ′◦S A)[Yj/ϕ′
j] and ϕ′ (∈ 〈Γ; ∆〉 , i.e., (S ′◦S A) #〈Γ;∆〉 B.

Finally, since ϕi (∈ 〈Γ; ∆〉, we have S 〈Γ; ∆〉 = 〈Γ; ∆〉 as required.

7. Since A6B, there must exist Ci such that B = A[Ci/Xi] . Let S = {(ϕi .→ Ci) }.
Then the result immediately follows.

Proof A.2.2 (of Proposition 4.3.7). 1. By induction on the structure of the term P . We
give two representative cases (all others are simpler):

〈x.α〉: Then by Lemma 4.3.8(1), Γ = Γ′, x : A and ∆ = α : B, ∆′ with A6B. By
Proposition 4.3.5(4), (S A)6(S B). Therefore, by applying the rule (ax), we
obtain 〈x.α〉 ··· (S Γ′), x : (S A)"SP α : (S B), ∆′ as required.

x̂P α̂·β: Then by Lemma 4.3.8(2), ∆ = β : C, ∆′ and there exist A,B such that

P ··· Γ, x : A"SP α : B, ∆′ (A.1)

and (A→B) #〈Γ;∆′〉 C. By Proposition 4.3.5(5), there exists a substitution S ′

such that:

(S◦S ′ (A→B)) #〈(S Γ);(S ∆′)〉 (S C) (A.2)

(S ′ 〈Γ; ∆〉) = 〈Γ; ∆〉 (A.3)

(S ′ C) = C (A.4)
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. By induction, using (Eq. A.1) with the substitution (S◦S ′), we obtain
P ··· (S◦S ′ Γ), x : (S◦S ′ A)"SP α : (S◦S ′ B), (S◦S ′ ∆′). Using (Eq. A.3) and
(Eq. A.4), this becomes P ··· (S Γ), x : (S◦S ′ A)"SP α : (S◦S ′ B), (S ∆′). Fur-
thermore, noting that (S◦S ′ (A→B)) = (S◦S ′ A)→(S◦S ′ B), we can apply
the rule (→R) using (Eq. A.2) to obtain x̂P α̂·β ··· (S Γ)"SP β : (S C), (S ∆′)

as required.

2. By induction on the structure of the term P . The only cases which are not straight-
forward are when ‘closures’ are taken, since we must be careful that the appro-
priate conditions can still be fulfilled within the larger context. This situation is
exemplified by the case of a term x̂P α̂·β, and this is the only case we show here. As
usual, by Lemma 4.3.8(2), we obtain the statements P ··· Γ, x : A"SP α : B, ∆′′ with
∆ = β : C, ∆′′ and (A→B) #〈Γ;∆′′〉 C. By unravelling the definition, we know that
C = ∀Xi.(A→B)[Xi/ϕi] , for some Xi and some ϕi (∈ 〈Γ; ∆′′〉 . In order to en-
sure that we can still ‘close’ the type in the larger context, we rename these atomic
types: define the substitution S = {(ϕi .→ ϕ′

i) } for fresh ϕ′
i. Note that (S Γ) = Γ

and (S ∆′′) = ∆′′. Then, by part 1, we obtain P ··· Γ, x : (S A)"SP α : (S B), ∆′′.
Since x and α are bound in the original term, we may assume that x (∈Γ′ and
α (∈∆′. Therefore, 〈Γ, x : (S A), Γ′; α : (S B), ∆′′, ∆′〉 is a well-formed context. By
induction, P ··· Γ, x : (S A), Γ′ "SP α : (S B), ∆′′, ∆′. In order to be able to apply the
(→R) and conclude, it would suffice to show that (S A→B) #〈Γ∪Γ′;∆∪∆′〉 C. But
this follows by construction of S.

3. By straightforward induction on the structure of the derivation.

4. By induction on the structure of the term. We present two representative cases.

P = 〈x.α〉: By Lemma 4.3.8(1), there exist X ,∆′ such that ∆ = α : C, ∆′ and
B6C. By Proposition 4.3.5(1) we have A6C. Therefore, by applying the
rule (ax), we obtain 〈x.α〉 ··· (Γ\x), x : A"SP α : C, ∆ as required.

P = 〈y.α〉, y (= x: This case is immediate from Lemma 4.3.8(1).

P = ŷP1α̂·β: By straightforward induction, using Lemma 4.3.8(2).

P = Qα̂ [x] ŷR: By Lemma 4.3.8(3) and Proposition 4.3.7(2), there exist C,D such
that Q ··· Γ, x : B "SP α : C, ∆ and R ··· Γ, x : B, y : D "SP ∆ and B6(C→D).
By induction, Q ··· (Γ\x), x : A"SP α : C, ∆ and R ··· (Γ\x), x : A, y : D "SP ∆.
By Proposition 4.3.5(1), we have A6(C→D). By the rule (→L), we obtain
P ··· (Γ\x), x : A"SP ∆ as required.

5. By induction on the structure of the term P . We present two representative cases.
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P = 〈x.α〉: By Lemma 4.3.8(1), there exist C,Γ′ such that Γ = Γ′, x : C and C6B.
By Proposition 4.3.5(1), C6A. Therefore, by the rule (ax), we can deduce
that 〈x.α〉 ··· Γ′, x : C "SP α : A, (∆\α) as required.

P = x̂Qβ̂ ·α: By Lemma 4.3.8(2), there exist C,D such that (C→D) #〈Γ;∆〉 A and
Q ··· Γ, x : C "SP β : D, ∆. By Proposition 4.3.5(6), there exists a substitution
S such that (S 〈Γ; ∆〉) = 〈Γ; ∆〉 and (S C→D) #〈Γ;∆〉 B. By Proposition
4.3.7(1) we have Q ··· Γ, x : (S C)"SP β : (S D), ∆. We consider two cases:

α : B ∈ ∆: Then, by induction, Q ··· Γ, x : (S C)"SP β : (S D),α : B, (∆\α).
By the rule (→R), we obtain x̂Qβ̂ ·α ··· Γ"SP α : B, (∆\α) as required.

α (∈∆: Then, by the (→R) rule, we obtain x̂Qβ̂ ·α ··· Γ"SP α : B, ∆ as re-
quired.

6. By induction on the structure of the term P , similar to the previous part.

Proof A.2.3 (of Theorem 4.3.9). 1. (a) By induction on the structure of the term Q.

Q = 〈x.β〉: Then Q{P α̂!x} = P α̂ † x̂Q and the result follows by applica-
tion of the (cut) rule.

Q = 〈y.β〉, y (= x: Then Q{P α̂!x} = Q. Since x (∈ fs(Q), By (Eq. 4.2) and
Proposition 4.3.7(3) we obtain Q ··· Γ"SP ∆ as required.

Q = ŷQ1β̂ ·γ: Then Q{P α̂!x} = ŷ(Q1{P α̂!x})β̂ ·γ. By (Eq. 4.2) and
Lemma 4.3.8(2), there exist B,C,D and ∆′ such that we can deduce
Q1 ··· Γ, x : A, y : B "SP β : C, ∆ and ∆ = ∆′, γ : D and (B→C) #〈Γ,x : A;∆′〉

D. From the induction hypothesis, Q1{P α̂!x} ··· Γ, y : B "SP β : C, ∆.
Now we apply (→R) rule to obtain ŷ(Q1{P α̂!x})β̂ ·γ ··· Γ"SP γ : D, ∆′

as required.

Q = Q1β̂ [x] ẑQ2:
Q{P α̂!x} = P α̂ † ŷ((Q1{P α̂!x})β̂ [y] ẑ(Q2{P α̂!x})) in which y

is fresh. By (Eq. 4.2) and Lemma 4.3.8(3), there exist B,C,D such that
D6(B→C) and (by weakening, by applying Proposition 4.3.7(2) where
necessary) both Q1 ··· Γ, x : A"SP β : B, ∆ and Q2 ··· Γ, x : A, z : C "SP ∆.
By induction, twice, we obtain that both Q1{P α̂!x} ··· Γ"SP β : B, ∆ and
also Q2{P α̂!x} ··· Γ, z : C "SP ∆. Since D6(B→C), we can apply the
(→L) rule to obtain (Q1{P α̂!x})β̂ [y] ẑ(Q2{P α̂!x}) ··· Γ, y : D "SP ∆.
Finally, we apply the (cut) rule to obtain the required result.

Q = Q1β̂ [y] ẑQ2, y (= x: By straightforward induction, similar to the previ-
ous case.

Q = ŷQ1 · β: Similar to the ŷQ1β̂ ·γ case.

Q = y ·Q1β̂: Similar to the Q1β̂ [y] ẑQ2 cases.
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Q = Q1β̂ [x] ẑQ2: Then Q{P α̂!x} = P α̂ † ŷ(Q1{P α̂!x}). By Lemma
4.3.8(6), there exists B such that both

〈x.β〉 ··· Γ, x : A"SP β : B, ∆ (A.5)

Q1 ··· Γ, x : A, y : B "SP ∆ (A.6)

By Lemma 4.3.8(1), we must have

A6B (A.7)

By applying Proposition 4.3.7(2) to (Eq. A.5), we obtain

P ··· Γ, y : B "SP α : A, ∆ (A.8)

By applying induction to (Eq. 4.2) and (Eq. A.8), we obtain

Q1{P α̂!x} ··· Γ, y : B "SP ∆ (A.9)

By applying Proposition 4.3.7(4) to (Eq. A.7) and (Eq. A.9), we obtain

Q1{P α̂!x} ··· Γ, y : A"SP ∆ (A.10)

As a final step, by applying the rule (cut) to (Eq. 4.1) and (Eq. A.10) we
obtain P α̂ † ŷ(Q1{P α̂!x}) ··· Γ"SP ∆ as required.

Q = Q1β̂ † ŷQ2, Q (= 〈x.β〉:
Q{P α̂!x} = (Q1{P α̂!x})β̂ † ŷ(Q2{P α̂!x}).
Using (Eq. 4.2) and applying Lemma 4.3.8(6), there exists a type B such
that Q1 ··· Γ, x : α"SP β : B, ∆ and Q2 ··· Γ, x : A, y : B "SP ∆. By induc-
tion, Q{P α̂!x} ··· Γ"SP β : B, ∆ and Q2{P α̂!x} ··· Γ"SP y : B, ∆. We
conclude by applying the rule (cut).

(b) By induction on the structure of the term P . The argument is similar to the pre-
vious part, and we show only the most-interesting case, where P = ŷP1β̂ ·α.
Then P{α!x̂Q} = (ŷ(P1{α!x̂Q})β̂ ·γ)γ̂ † x̂Q, in which γ is fresh. By
(Eq. 4.1) and Lemma 4.3.8(2), there exist B,C with P1 ··· Γ, y : B "SP β : C, ∆

and B→C #〈Γ;∆〉 A. By applying Proposition 4.3.7(2) as necessary, we
obtain P1 ··· Γ, x : A, y : B "SP β : C, ∆ and Q ··· Γ, x : A, y : B "SP β : C, ∆. By
induction, P1{α!x̂Q} ··· Γ, y : B "SP β : C, ∆. By the rule (→R) we obtain
ŷ(P1{α!x̂Q})β̂ ·γ ··· Γ"SP γ : A, ∆. Finally, by the rule (cut) we obtain that
(ŷ(P1{α!x̂Q})β̂ ·γ)γ̂ † x̂Q ··· Γ"SP ∆ as required.
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2. By inductions on the number of reduction steps, and the structure of the term P , we
need only consider the case where P is the redex itself, and is reduced in one step to
Q. Therefore, we show the witness reduction result for each of the reduction rules
in turn:

(cap-rn) : 〈x.α〉α̂ † ŷ〈y.β〉 → 〈x.β〉
Suppose 〈x.α〉α̂ † ŷ〈y.β〉 ··· Γ"SP ∆. By Lemma 4.3.8(6), α (∈∆ and x (∈Γ and
there exists B such that 〈x.α〉 ··· Γ"SP α : B, ∆ and 〈y.β〉 ··· Γ, y : B "SP ∆. By
applying Lemma 4.3.8(1) twice, there exists A,C,Γ′,∆′ such that Γ = Γ′, x : A

and ∆ = β : C, ∆′ with A6B and B6C. By Proposition 4.3.5(1), A6C.
Therefore, by the rule (ax), we obtain 〈x.β〉 ··· Γ′, x : A"SP β : C, ∆′ as re-
quired.

(exp-rn) : (x̂P α̂·β)β̂ † ŷ〈y.γ〉 → x̂P α̂·γ (if β (∈ fp(P ))

Suppose (x̂P α̂·β)β̂ † ŷ〈y.γ〉 ··· Γ"SP ∆. By Lemma 4.3.8(6), β (∈∆ and y (∈Γ

and there exists C such that x̂P α̂·β ··· Γ"SP β : C, ∆ and 〈y.γ〉 ··· Γ, y : C "SP ∆.
By Lemma 4.3.8(2), there exist A,B,∆′′ such that (A→B) #〈Γ;∆〉 C and
P ··· Γ, x : A"SP α : B, ∆′′ and (β : C, ∆) = (β : C, ∆′′). Since β (∈P , by Propo-
sition 4.3.7(3), we may assume without loss of generality that we have β (∈∆′′,
and therefore that ∆′′ = ∆. By Lemma 4.3.8(1), there exist D,∆′ such that
∆ = γ : D, ∆′ and C6D. By Proposition 4.3.5(6), there exists a substitution
S such that (S 〈Γ; ∆〉) = 〈Γ; ∆〉 and (S A→B) #〈Γ;∆〉 D. By Proposition
4.3.7(1), we have P ··· Γ, x : (S A)"SP α : (S B), γ : D, ∆′. By the rule (→R),
we deduce that x̂P α̂·γ ··· Γ"SP γ : D, ∆ as required.

(med-rn) : 〈x.α〉α̂ † ŷ(P β̂ [y] ẑQ) → P β̂ [x] ẑQ (if y (∈ fs(P,Q))

Suppose 〈x.α〉α̂ † ŷ(P β̂ [y] ẑQ) ··· Γ"SP ∆. By Lemma 4.3.8(6), α (∈∆ and
y (∈Γ and there exists B such that we have both 〈x.α〉 ··· Γ"SP α : B, ∆ and
P β̂ [y] ẑQ ··· Γ, y : B "SP ∆. By Lemma 4.3.8(1), there exist A,Γ′ such that
Γ =Γ ′, x : A and A6B. By Lemma 4.3.8(3), there exist C,D,Γ′′ such that
(Γ, y : B) = (Γ′′, y : B) and B6(C→D) and P ··· Γ′′ "SP β : C, ∆ and also
Q ··· Γ′′, z : D "SP ∆. By Proposition 4.3.7(3) we can assume without loss of
generality that Γ′′ = Γ. Since A6B6(C→D), by Proposition 4.3.5(1) we
can deduce A6(C→D). By applying the rule (→L) we can finally obtain
P β̂ [x] ẑQ ··· Γ′, x : A"SP ∆ as required.

(not-right) : (x̂P · α)α̂ † ŷ〈y.β〉 → x̂P · β (if α (∈ fp(P ))

Similar to the (exp-rn) case above.

(not-left) : 〈x.α〉α̂ † ŷ(y · P β̂) → x · P β̂ (if y (∈ fs(P ))

Similar to the (med-rn) case above.
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(exp-imp) : (x̂P α̂·β)β̂ † ŷ(Qγ̂ [y] ẑR) →
{

(Qγ̂ † x̂P )α̂ † ẑR

Qγ̂ † x̂(P α̂ † ẑR)

}
(if β (∈ fp(P ),

y (∈ fs(Q,R))

Suppose (x̂P α̂·β)β̂ † ŷ(Qγ̂ [y] ẑR) ··· Γ"SP ∆. By Lemma 4.3.8(6), β (∈∆ and
y (∈Γ and there exists C such that we have both x̂P α̂·β ··· Γ"SP β : C, ∆ and
Qγ̂ [y] ẑR ··· Γ, y : C "SP ∆. By Lemma 4.3.8(2), there exist A,B,∆′ such that
A→B #〈Γ;∆〉 C and P ··· Γ, x : A"SP α : B, ∆′ and (β : C, ∆) = (β : C, ∆′).
As in previous cases, w.l.o.g. ∆′ = ∆ since β (∈Γ and β (∈ fs(P ). Now, by
Lemma 4.3.8(3) and similar argument, there exist D,E such that C6(D→E)

and Q ··· Γ"SP γ : D, ∆ and R ··· Γ, z : E "SP ∆. By Proposition 4.3.5(6), there
exists a substitution S such that (S 〈Γ; ∆〉) = 〈Γ; ∆〉 and (S A→B) #〈Γ;∆〉

(D→E). In particular, (S A) = D and (S B) = E. By Proposition 4.3.7(1),
we obtain P ··· Γ, x : D "SP α : E, ∆. Now, by applying Proposition 4.3.7(2)
and the rule (cut) repeatedly, we first obtain both Qγ̂ † x̂P ··· Γ"SP α : E, ∆

and P α̂ † ẑR ··· Γ, x : D "SP ∆, and then obtain both (Qγ̂ † x̂P )α̂ † ẑR ··· Γ"SP ∆

and Qγ̂ † x̂(P α̂ † ẑR) ··· Γ"SP ∆ as required.

(not) : (x̂P · α)α̂ † ŷ(y ·Qβ̂) → Qβ̂ † x̂P (if α (∈ fp(P ), y (∈ fs(Q))

Similar to the (exp-imp) case above.

(prop-R) : P α̂ † x̂Q → Q{P α̂!x}(if Q does not introduce x)

By Lemma 4.3.8(6) and part 1a.

(prop-L) : P α̂ † x̂Q → P{α!x̂Q}(if P does not introduce α)

By Lemma 4.3.8(6) and part 1b.

Proof A.2.4 (of Proposition 4.3.16).

1. Immediate from the definition, since B[ϕi/Xi] = A.

2. Let C = ∀Yi.A[Yi/ϕi] . Let {ϕj} be the subset of {ϕi} which actually occur in A.
Without loss of generality, replace all of the other atomic types in {ϕi} with fresh
atomic types. By the definition of closure, we have ϕi (∈ 〈Γ; ∆〉 . Now let {ϕk} be
the set of atomic types occurring in A but not in 〈Γ; ∆〉. Then {ϕj} ⊆ {ϕk}, and
for some {Xk}, B = ∀Xk. .A[Xk/ϕk] . Then C = ∀Yi.B[ϕk/Xk] [Yi/varphii] as
required.

3. Write B = ∀Xi.A[Xi/ϕi] , where {ϕ} are the atomic types occurring in A but not
in 〈Γ; ∆〉. Now let C = ∀-closure (S A) 〈(S Γ); (S ∆)〉 = ∀Yj.(S A)[Yj/ϕj] ,
where {ϕj} are the atomic types occurring in A but not in 〈(S Γ); (S ∆)〉. Then
we aim to show (S B)6C. This follows because (S A) = (S B)[((S ϕi)/Xi]

and so we have C = ∀Yj.(S B)[((S ϕi)/Xi] [Yj/ϕj] . Finally, we must be sure
that ϕj (∈ (S B). Suppose that there is some ϕj ∈ (S B) (and we will show a
contradiction). Then, by Lemma 4.3.18(3), there are two possible cases:
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ϕj ∈ B and (S ϕj) = ϕj: Then, since B = ∀-closure A 〈Γ; ∆〉, we must have
ϕj ∈ 〈Γ; ∆〉. However, then ϕj ∈ 〈(S Γ); (S ∆)〉, contradicting the definition
of C.

∃ϕ ∈ B with ϕj ∈ (S ϕ): Then, since B = ∀-closure A 〈Γ; ∆〉, we must have
ϕ ∈ 〈Γ; ∆〉. But then ϕj ∈ 〈(S Γ); (S ∆)〉, contradicting the definition of C.

4. Follows easily from the observation that for any atomic type ϕ and types A6B,
ϕ ∈ A ⇒ ϕ ∈ B.

Proof A.2.5 (of Theorem 4.3.21). 1. Let A = ∀Yj.A and B = ∀Zk.B. In accordance
with the definition of the algorithm, let A′ = freshInst(A) = A[ϕj/Yj] and B′ =

freshInst(B) = B[ϕk/Zk] . Since the call succeeds, we must have that the call
unify A′ B′ succeeds, yielding a substitution

Su = unify A′ B′ (A.11)

Let Cu = (Su A′). Note that by soundness of unification (Lemma 3.3.9) we have
(Su B′) = (Su A′) = Cu.

Define a set of atomic types Ψ = {ϕi} = atoms(Cu)\(atoms(Su A)∪atoms(Su B)).
We have that C = ∀Zi.Cu[Zi/ϕi] while S = (Su ∩ (atoms(A)∪atoms(B))).

We will now show that (S A)6C. The argument that also (S B)6C is analagous
and will be omitted.

Notice firstly that (using Lemma 4.3.19(1)), we have (Sr A) = (Su A) = ∀Yj.(Su A).
Define a set of types Dj = (Su ϕj) . Then by construction, we have that:

Cu = (Su A[ϕj/Yj] ) = (Su A)[(Su ϕj)/Yj] = (Su A)[Dj/Yj]

Therefore, Cu[Zi/ϕi] = (Su A)[Dj/Yj] [Zi/ϕi] . Furthermore, by the definition of
the set Ψ, we have ϕi (∈ (Su A) . Therefore, by Definition 4.2.5, we have ∀Yj.(Su A)6C.
Since we know (Sr A) = ∀Yj.(Su A), we have (Sr A)6C as required.

2. Firstly, let us define (in which all of the ϕj , ϕk ,ϕl are fresh):

A = ∀Yj.A (A.12)

B = ∀Zk.B (A.13)

D = ∀Wl.D (A.14)

A′ = freshInst(A) = A[ϕj/Yj] (A.15)

B′ = freshInst(B) = B[ϕk/Zk] (A.16)

D′ = freshInst(D) = D[ϕl/Wl] (A.17)
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Since (S A)6D, we know (from Definition 4.2.5) that, for some E ′
j and some

ϕ′
l (∈ atoms(S A), we have D = (S A)[E ′

j/Yj] [Wl/ϕ′
l] . Define the substitution

SA = {(ϕ′
l .→ ϕl) }, and define the types Ej = (SA E ′

j) . Then we obtain that
D = (S A)[Ej/Yj] [Wl/ϕl] . Notice that

ϕl (∈ atoms(S A) (A.18)

since the ϕl were chosen to be fresh.

In a similar fashion, from the fact that (S B)6D we can deduce that, for some
types Fk we have D = (S B)[Fk/Zk] [Wl/ϕl] , and that

ϕl (∈ atoms(S B) (A.19)

Since D′ = D[ϕl/Wl] , we deduce from the above that (S A)[Ej/Yj] = D′ =

(S B)[Fk/Zk] . Define next the two substitutions

SE = {(ϕj .→ Ej) } (A.20)

SF = {(ϕk .→ Ek) } (A.21)

By construction, we have (SF◦SE◦S A′) = (S A)[Ej/Yj] = D′ = (SF◦SE◦S B′).
Therefore, the substitution (SF◦SE◦S) is a unifier for the types A′ and B′. By
completeness of unification (Lemma 3.3.9), there exist substitutions S1 and Su such
that

(SF◦SE◦S) = (S1◦Su) (A.22)

Su = unify A′ B′ (A.23)

In particular, the call unify A′ B′ does not fail, and so neither does the call unifyGen A B

in question. Therefore, there exist (Sr, C) = unifyGen A B, where:

Sr = (Su ∩ (atoms(A)∪atoms(B))) (A.24)

{ϕi} = atoms(Su A′)\(atoms(Su A)∪atoms(Su B)) (A.25)

C = ∀Xi.(Su A′)[Xi/ϕi] (A.26)

For convenience, we define C ′ = (Su A′), so that C = ∀Xi.C ′[Xi/ϕi] .

We seek next to show that (S1 C)6D, from which we will be able to obtain the
desired result without too much trouble. We would like to begin by showing that
(S1 C) = ∀Xi.(S1◦Su A′)[Xi/ϕi] . However, this is not necessarily true, since we
have no guarantee that the ϕis are not affected by the substitution S1. We choose
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to work around this, by choosing a new set ϕ′
i of fresh atomic types (one for each

atomic type ϕi) and employing a renaming substitution

S2 = {(ϕi .→ ϕ′
i) } (A.27)

We can now see instead that

(S1 C) = ∀Xi.(S1◦S2◦Su A′)[Xi/ϕ′
i] (A.28)

To be able to deduce that (S1 C)6D, then (by Definition 4.2.5), we require a set
of types Gi such that D = (((S1◦S2◦Su A′)[Xi/ϕ′

i] )[Gi/Xi ][Wl/ϕl ], and to show
also that ϕl (∈ (S1 C) .

We claim that if we define the types Gi = (S1 ϕi) then these will do the trick.
Firstly, if we define the substitution SG = {(ϕ′

i .→ S1 ϕi) } then we can show that
(((S1◦S2◦Su A′)[Xi/ϕ′

i] )[Gi/Xi ][Wl/ϕl ] = D as follows:

(((S1◦S2◦Su) A′)[Xi/ϕ′
i] )[(S1 ϕi)/Xi] [Wl/ϕl]

= ((SG◦S1◦S2◦Su) A′)[Wl/ϕl] composing [Xi/ϕ′
i] , [(S1 ϕi)/Xi]

= ((S1◦SG◦S2◦Su) A′)[Wl/ϕl] Lemma 4.3.18(1)
= ((S1◦(S1 ∩ {ϕi})◦Su) A′)[Wl/ϕl] Lemma 4.3.19(6)
= (((S1\{ϕi})◦(S1 ∩ {ϕi})◦Su) A′)[Wl/ϕl] idempotency of S1, Lemma 4.3.19(2)
= ((S1◦Su) A′)[Wl/ϕl] Lemma 4.3.19(7)
= ((SF◦SE◦S A′)[Wl/ϕl] (SF◦SE◦S = S1◦Su)

= D′[Wl/ϕl] (D′ = SF◦SE◦S A′)

= D

We need to also show that ϕl (∈ (S1 C) , which, combined with the argument above
would justify that (S1 C)6D. We will argue by contradiction; assuming that for
some ϕl ∈ {ϕl} we have

ϕl ∈ (S1 C) (A.29)

we will show that a contradiction inevitably follows. By (Eq. A.29) and (Eq. A.28),
we deduce that

ϕl ∈ ∀Xi.(S1◦S2◦Su A′)[Xi/ϕ′
i] (A.30)

Then, by Lemma 4.3.18(4), we must have 4.3.18(3), we identify two cases:

Case 1: ϕl (∈ dom(S1) and ϕl ∈ (S2◦Su A′) Then since (Eq. A.27) ϕl (∈ {ϕ′
i}, by
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Lemma 4.3.18(3) again, we must have

ϕl ∈ atoms(Su A′) (A.31)

But from the freshness of ϕl when chosen (Eq. A.17) we must have: ϕl (∈ atoms(A′)

and ϕl (∈ atoms(B′). Furthermore, by (Eq. A.23), we can assume also that
ϕl (∈ atoms(Su A′), contradicting (Eq. A.31)

Case 2: ∃ϕ, H with ϕ ∈ atoms(S2◦Su A′) and (ϕ .→ H) ∈ S1 and ϕl ∈ atoms(H)

We must have ϕ (∈ {ϕ′
i} since this set of atomic types was chosen to be fresh

at (Eq. A.27). Therefore, by Lemma 4.3.18(3), we must have ϕ ∈ (Su A′)

and ϕ (∈ {ϕi}. By (Eq. A.25) it must be the case that either ϕ ∈ (Su A) or
ϕ ∈ (Su B). But then, by the assumptions of this case, either ϕl ∈ (S1◦Su A)

or ϕl ∈ (S1◦Su B). By (Eq. A.22), (Eq. A.20) and (Eq. A.21), we have that
either ϕl ∈ (S A) ot ϕl ∈ (S B), contradicting (Eq. A.18) and (Eq. A.19),
respectively.

This completes the argument justifying that

(S1 C)6D (A.32)

We now need to work on the form of the substitutions involved. We will employ the
set of atomic types Ψ = {ϕj}∪{ϕk}, noting that, by (Eq. A.20) and (Eq. A.21),
we know

Ψ = dom(SF◦SE) (A.33)

We can then show:

SF◦SE◦S = S1◦Su (Eq. A.22)

∴ (SF◦SE◦S)\Ψ = (S1◦Su)\Ψ
∴ ((SF◦SE)\Ψ)◦S = (S1\Ψ)◦Su Lemma 4.3.19(4)
∴ id◦S = (S1\Ψ)◦Su Lemma 4.3.19(3)

If we define the substitution
S3 = (S1\Ψ) (A.34)

then we have
S = S3◦Su (A.35)

Furthermore, since Ψ ∩ atoms(C) = ∅, by (Eq. A.32), (Eq. A.34) and Lemma
4.3.19(2), we obtain

(S3 C)6D (A.36)
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We are almost done, but the substitution actually returned from the call is Sr =

(Su ∩ (atoms(A)∪atoms(B))) as defined in (Eq. A.24).

We now write Φ = (atoms(A)∪atoms(B)) and deduce by Lemma 4.3.19(7) that

S3◦Su = S3◦(Su ∩ Φ)◦(Su\Φ) (A.37)

Finally, define S4 = S3◦(Su ∩ Φ). We observe that:

(S4 C) = (S3◦(Su ∩ Φ) C)

= (S3 C) Lemma 4.3.19(5)
6 D (Eq. A.36)

Therefore, we have that S = S4◦Sr and (S4 C)6D, as required.

Proof A.2.6 (of Theorem 4.3.24). 1. By induction on the structure of the term R.

R = 〈x.α〉: Let A = typeof x Γ. From the definition of the algorithm, we have
SR = id and ∆R = {α : A}. By (Eq. 4.3), we have Γ = Γ, x : A. Then, by the
rule (ax), we have 〈x.α〉 ··· Γ, x : A"SP α : A as required.

R = x̂P α̂·β: In accordance with the algorithm, let:

ϕ = fresh (A.38)

〈SP , ∆P 〉 = sppc (P, Γ∪{x : ϕ}) (A.39)

A = (SP ϕ) (A.40)

B = freshInst(typeof α ∆P ) (A.41)

C = ∀-closure A→B 〈(SP Γ); ∆P\α〉 (A.42)

〈Su, D〉 =

{
unifyGen C typeof β ∆P if β ∈ ∆P

〈id, C〉otherwise
(A.43)

Sr = (Su◦SP ∩ atoms(Γ)) (A.44)

sppc (x̂P α̂·β, Γ) = 〈Sr, (Su ∆P\α\β)∪{β : D}〉 (A.45)

By induction, using (Eq. A.39), we have

P ··· (SP Γ∪{x : ϕ})"SP ∆P (A.46)

. By applying Propositions 4.3.7(2) and 5 to (Eq. A.46) as appropriate, and
using (Eq. A.40) and (Eq. A.41), we obtain

P ··· (SP Γ), x : A"SP (∆P\α),α : B (A.47)
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.

We wish now to apply the type-assignment rule (exp-rn). However, examining
the conclusion of this rule, we need to ensure that the resulting right-context
will be well-formed, i.e. deal with the possibility that β ∈ ∆P already. To do
this, we consider two cases:

β ∈ ∆P : Then, by (Eq. A.43) we have

〈Su, D〉 = unifyGen C typeof β ∆P (A.48)

. Since the original call to sppc (R, Γ) was assumed to succeed, this
sub-call to unifyGen must also succeed, so such a pair exists. By the
soundness of unifyGen (Theorem 4.3.21(1)), we have that

(Su C) 6 D (A.49)

(Su typeof β ∆P ) 6 D (A.50)

. By Proposition 4.3.7(1), and (Eq. A.47), we have

P ··· (Su SP Γ), x : (Su A)"SP (Su (∆P\α)),α : (Su B) (A.51)

.
By Proposition 4.3.7(4), we obtain
P ··· (Su◦SP Γ), x : (Su A)"SP (Su (∆P\α\β)), β : D,α : (Su B) and (Su A→B) #〈(Su◦SP Γ);(Su (∆P \α\β)),β : D〉.
Therefore, by applying the rule (→R), we obtain x̂P α̂·β ··· (Su◦Sp Γ)"SP (Su ∆P\α\β), β : D.

β (∈∆P : Then, by (Eq. A.43), we have Su = id and D = C. Furthermore,
since β (∈∆P , by applying Proposition 4.3.16 to (Eq. A.42), and apply-
ing the rule (exp-rn) to (Eq. A.47), we obtain

x̂P α̂·β ··· (SP Γ)"SP (∆P\α), β : D (A.52)

Therefore, trivially we have x̂P α̂·β ··· (Su◦Sp Γ)"SP (Su ∆P\α\β), β : D.

We conclude the case, noting that (Sr Γ) = (Su◦Sp Γ) by definition of Sr.
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R = P α̂ [x] ŷQ: In accordance with the algorithm, let:

〈SP , ∆P 〉 = sppc (P, Γ) (A.53)

ϕ = fresh (A.54)

〈SQ, ∆Q〉 = sppc (Q, (SP Γ)∪{y : ϕ}) (A.55)

A = freshInst(typeof α SQ ∆P ) (A.56)

B = (SQ ϕ) (A.57)

C = freshInst(typeof x SQ◦SP Γ) (A.58)

Su = unify C A→B (A.59)

〈Sc, ∆c〉 = unifyGenContexts (Su◦SQ ∆P\α) (Su ∆Q)(A.60)

Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ)) (A.61)

sppc (P α̂ [y] x̂Q, Γ) = 〈Sr, ∆c〉 (A.62)

By induction, twice (using (Eq. A.53) and (Eq. A.55) with (Eq. A.57)), we
obtain:

P ··· (SP Γ)"SP ∆P (A.63)

Q ··· (Sq◦Sp Γ), y : B "SP ∆Q (A.64)

By Proposition 4.3.7(1) and (Eq. A.63), we obtain

P ··· (SQ◦SP Γ)"SP (SQ ∆P ) (A.65)

Using Proposition 4.3.7(5) with (Eq. A.56) (and applying Proposition 4.3.7(2)
if necessary), we obtain

P ··· (SQ◦SP Γ)"SP (SQ ∆P\α),α : A (A.66)

Now, let C = typeof x typeof x (SQ◦SP Γ) (and so C = freshInst(C), by
(Eq. A.58)). By definition of freshInst, we have C6C. By Proposition 4.3.5(4)
and using (Eq. A.59), we have

(Sc◦Su C)6(Sc◦Su C) = (Sc◦Su A→B) = ((Sc◦Su A)→Sc◦Su B)

(A.67)
By applying Proposition 4.3.7(1) twice, to (Eq. A.66) and (Eq. A.64), we
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obtain:

P ··· (Sc◦Su◦SQ◦SP Γ)"SP (Sc◦Su◦SQ ∆P\α),α : (Sc◦Su A) (A.68)

Q ··· (Sc◦Su◦SQ◦SP Γ), y : (Sc◦Su B)"SP (Sc◦Su ∆Q) (A.69)

By the soundness of unifyGenContexts (Proposition 4.3.22(1)), we have that
(Sc◦Su◦SQ ∆P\α)6∆C and (Sc◦Su ∆Q)6∆C . Therefore, by Proposition
4.3.7(6), we obtain that both P ··· (Sc◦Su◦SQ◦SP Γ)"SP ∆C ,α : (Sc◦Su A) and
Q ··· (Sc◦Su◦SQ◦SP Γ), y : (Sc◦Su B)"SP ∆C . Using (Eq. A.67) and the rule
(→L), we obtain P α̂ [x] ŷQ ··· (Sc◦Su◦SQ◦SP Γ)"SP ∆C , and we conclude by
Lemma 4.3.19(1).

R = x̂P · β: Similar to the x̂P α̂·β case.

R = x · P α̂: Similar to the P α̂ [x] ŷQ case.

R = P α̂ † x̂Q: By induction, twice, we obtain that both P ··· (SP Γ)"SP ∆P and
Q ··· (SQ◦SP Γ), x : (SQ A)"SP ∆Q. By weakening (Proposition 4.3.7(2)) as
necessary, we obtain P ··· (SP Γ)"SP (∆P\α),α : A. Then, by applying Propo-
sition 4.3.7(1), twice, P ··· (Sc◦SQ◦SP Γ)"SP (Sc◦SQ ∆P\α),α : (Sc◦SQ A)

and Q ··· (Sc◦SQ◦SP Γ), x : (Sc◦SQ A)"SP (Sc ∆Q).

By the soundness of unifyGenContexts (Proposition 4.3.22(1)), and Propo-
sition 4.3.7(6), we obtain that both P ··· (Sc◦SQ◦SP Γ)"SP ∆c,α : (Sc◦Su A)

and Q ··· (Sc◦SQ◦SP Γ), x : (Sc◦SQ A)"SP ∆c. By applying the rule (cut), we
obtain P α̂ † x̂Q ··· (Sc◦SQ◦SP Γ)"SP ∆c. We conclude by applying Lemma
4.3.19(1), since Sr = (Sc◦SQ◦SP ∩ atoms(Γ)).

2. By induction on the structure of the term R.

R = 〈x.α〉: By Lemma 4.3.8(1), we must have Γ =Γ ′, x : A and ∆ = α : B, ∆′

with (S A)6B. Since ∆R = {α : (S A)}, and SR = id, can choose S ′ = S

and then we have we have (S ′ ∆R)6∆ as required.
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R = x̂P α̂·β: From the definition of the algorithm, we have:

sppc (x̂P α̂·β, Γ) = 〈Sr, (Su ∆P\α\β)∪{β : D}〉 (A.70)

ϕ = fresh (A.71)

〈SP , ∆P 〉 = sppc (P, Γ∪{x : ϕ}) (A.72)

A = (SP ϕ) (A.73)

B = freshInst(typeof α ∆P ) (A.74)

C = ∀-closure A→B 〈(SP Γ); ∆P\α〉 (A.75)

〈Su, D〉 =

{
unifyGen C typeof β ∆P if β ∈ ∆P

〈id, C〉 otherwise
(A.76)

Sr = (Su◦SP ∩ atoms(Γ)) (A.77)

By Lemma 4.3.8(2), we must have ∆ = β : G, ∆′ and there exist E,F such
that

P ··· (S Γ), x : E "SP α : F, ∆′ (A.78)

E→F #〈(S Γ);∆′〉 G (A.79)

Define SE = {(ϕ .→ E)}. Then, by construction, (SE◦S Γ, x : ϕ) = ((S Γ), x : E).
By induction, using (Eq. A.72), there exists S1 such that

SE◦S = S1◦SP (A.80)

(S1 ∆P )6(∆′,α : F ) (A.81)

Let B = typeof α ∆P (so that, by (Eq. A.74), B = freshInst(B)). By Propo-
sition 4.3.5(7), there exists S2 such that dom(S2) consists of only the fresh
atomic types in B = freshInst(B), and (S2◦S1 B) = F . Now we have

(S2◦S1 A→B) = E→F (A.82)

(S2◦S1 ∆P\α) = (S1 ∆P\α)6∆′ (A.83)

By using (Eq. A.75) with Proposition 4.3.16(3), we are able to show that
(S2◦S1 C)6∀-closure (S2◦S1 A→B) (S2◦S1 〈(SP Γ); ∆P\α〉), and, by our
knowledge of dom(S2) and using (Eq. A.82), we can simplify this to obtain
(S1 C)6∀-closure E→F 〈(S1◦SP Γ); (S1 (∆P\α))〉. Now, by (Eq. A.81), we
have (S1 (∆P\α))6∆′. Using this, (Eq. A.80) and the fact that dom(SE) =

ϕ, we use and using Proposition 4.3.16(4) to obtain (S1 C)6∀-closure E→F 〈(S Γ); ∆′〉.
By Proposition 4.3.16(1), using (Eq. A.79), we obtain ∀-closure E→F 〈(S Γ); ∆′〉6G,
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and so by Proposition 4.3.5(1) we have

(S1 C)6G (A.84)

We claim that we can now show that, for some substitution S3 satisfying
S3◦Su = S1, we have (S3 D)6G and (S3 (Su (∆P\α)))6∆′, from which
(as we shall then show) we can complete the case easily. We consider two
cases:

(β ∈ ∆P ): Then, by (Eq. A.81), we have β ∈ ∆′. Since ∆ = β : G, ∆′, we
must have β : G ∈ ∆′. Now, let H = typeof β ∆P . Then (S1 H)6G. By
(Eq. A.84) and Theorem 4.3.21(2) (and following (Eq. A.76)), there ex-
ists S3 such that S3◦Su = S1 and (S3 D)6G, and therefore, by (Eq. A.81),
we obtain (S3◦Su (∆P\α))6∆′ as claimed.

(β (∈∆P ): Then, by (Eq. A.76), (Su, D) = (id, C). Let S3 = S1, and then
trivialyl we have S3◦Su = S1 and (S3 D)6G (from (Eq. A.84)) and
(S3◦Su (∆P\α))6∆′ (by (Eq. A.81)).

Therefore, in both cases, we have:

(S3 D)6G (A.85)

(S3 (Su (∆P\α)))6∆′ (A.86)

S3◦Su = S1 (A.87)

Therefore, we can deduce (S3 (Su (∆P\α\β)))6(∆′\β), and so it follows that
(S3 (Su (∆P\α\β)), β : D)6∆′ as needed. Finally, by combining (Eq. A.80)

with (Eq. A.87), and applying Lemma 4.3.19(7), we obtain SE◦S = S1◦SP =

S3◦Su◦SP = (S3◦((Su◦SP )\atoms(Γ)))◦((Su◦SP )∩atoms(Γ)). Now, noting
that dom(SE) = {ϕ}, we apply Lemma 4.3.18(2) and deduce that there exists
a substitution S5 such that S = S5◦((Su◦SP ) ∩ atoms(Γ)), as required.
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R = P α̂ [x] ŷQ: In accordance with the algorithm, we have:

〈SP , ∆P 〉 = sppc (P, Γ) (A.88)

ϕ = fresh (A.89)

〈SQ, ∆Q〉 = sppc (Q, (SP Γ)∪{y : ϕ}) (A.90)

A = freshInst(typeof α SQ ∆P ) (A.91)

B = (SQ ϕ) (A.92)

C = freshInst(typeof x SQ◦SP Γ) (A.93)

Su = unify C A→B (A.94)

〈Sc, ∆c〉 = unifyGenContexts (Su◦SQ ∆P\α) (Su ∆Q)(A.95)

Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ)) (A.96)

sppc (P α̂ [y] x̂Q, Γ) = 〈Sr, ∆c〉 (A.97)

By Lemma 4.3.8(3), we have, for some Γ′,D,E and F , that

Γ = Γ′, x : D (A.98)

(S D)6(E→F ) (A.99)

P ··· (S Γ′)"SP α : E, ∆ (A.100)

Q ··· (S Γ′), y : F "SP ∆ (A.101)

For reference, we explicitly write

D = ∀Xi.D (A.102)

By induction, using (Eq. A.88) and (Eq. A.100), there exists S1 such that:

S = S1◦SP (A.103)

(S1 ∆P )6(α : E, ∆) (A.104)

By (Eq. A.98), (Eq. A.101) and weakening (Proposition 4.3.7(2)) as neces-
sary, we obtain

Q ··· (S Γ), y : F "SP ∆ (A.105)

Now, let
SF = {(ϕ .→ F )} (A.106)

Then (SF◦S1 ((SP Γ), y : ϕ)) = ((S Γ), y : F ) by construction. Using (Eq. A.90)
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and (Eq. A.105), by induction, there exists S2 such that:

SF◦S1 = S2◦SQ (A.107)

(S2 ∆Q)6∆ (A.108)

Now define (respecting (Eq. A.91)):

A = typeof α (SQ ∆P ) (A.109)

A = freshInst(A) (A.110)

By (Eq. A.102) amd (Eq. A.93), C = (SQ◦SP D[ϕi/Xi] ) for fresh ϕi . Now,
using (Eq. A.107) and (Eq. A.103), we have

S2◦SQ◦SP = SF◦S1◦SP = SF◦S (A.111)

and so (S2 C) = (S2 SQ◦SP D[ϕi/Xi] ) = (S D)[ϕi/Xi] given (Eq. A.106).
By (Eq. A.99) and Proposition 4.3.5(7), there exists S3 such that

dom(S3) = {ϕi} (A.112)

(S3◦S2 C) = (E→F ) (A.113)

By (Eq. A.104),(Eq. A.89) and (Eq. A.108) we have (SF◦S1 ∆P )6(α : E, ∆).
By (Eq. A.107), this means that (S2◦SQ ∆P )6(α : E, ∆), and in particular,
by (Eq. A.109), we have (S2 A)6E. By Proposition 4.3.5(7) and (Eq. A.110)

(in which, say {ϕj} are the fresh atomic types chosen), there exists S4 such
that

dom(S4) = {ϕj} (A.114)

(S4◦S2 A) = E (A.115)

(note that (Eq. A.110) implies that, up to choice of fresh atomic types, (S2 A) =

freshInst(S2 A), given that S2 does not clash with the atomic types chosen).

Due to (Eq. A.112), (Eq. A.114) and (Eq. A.115), we deduce (S4◦S3◦S2 A) =

E. Also, by (Eq. A.92), (S4◦S3◦S2 B) = (S4◦S3◦S2◦SQ ϕ) = F . By
(Eq. A.113), we have (S4◦S3◦S2 C) = E→F = (S4◦S3◦S2 A→B). By
completeness of unification (Lemma 3.3.9(2)), there exists a substitution S5

such that
S4◦S3◦S2 = S5◦Su (A.116)

Now, using (Eq. A.116), (Eq. A.107), (Eq. A.112) and (Eq. A.114), we
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obtain:

(S5◦Su◦SQ ∆P\α) = (S4◦S3◦S2◦SQ ∆P\α) (Eq. A.116)

= (S4◦S3◦SF◦S1 ∆P\α) (Eq. A.107)

= (S1 ∆P\α) (Eq. A.112), (Eq. A.114), (Eq. A.106)

6 ∆ (Eq. A.104)

Similarly, we deduce (S5◦Su ∆Q) = (S2 ∆Q)6∆ using (Eq. A.108). There-
fore, by (Eq. A.95), there exists S6 with S5 = S6◦S5 and (S6 ∆C)6∆. Now,
S4◦S3◦SF◦S = S4◦S3◦S2◦SQ◦SP = S5◦Su◦SQ◦SP = S6◦Sc◦Su◦SQ◦SP .
Therefore, S4◦S3◦SF◦S = S6◦((Sc◦Su◦SQ◦SP )\atoms(Γ))◦((Sc◦Su◦SQ◦SP )∩
atoms(Γ)), by Lemma 4.3.19(7). By applying Lemma 4.3.18(2), using (Eq. A.112),
(Eq. A.114) and (Eq. A.106), there exists S7 such that S = S7◦Sr as re-
quired.

R = x̂P · β: Similar to the x̂P α̂·β case.

R = x · P α̂: Similar to the P α̂ [x] ŷQ case.

R = P α̂ † x̂Q: In accordance with the algorithm, we have:

〈SP , ∆P 〉 = sppc (P, Γ) (A.117)

A = typeof α ∆P (A.118)

〈SQ, ∆Q〉 = sppc (Q, (SP Γ)∪{x : A}) (A.119)

〈Sc, ∆c〉 = unifyGenContexts (SQ ∆P\α) ∆Q (A.120)

Sr = (Sc◦SQ◦SP ∩ atoms(Γ)) (A.121)

sppc (P α̂ † x̂Q, Γ) = 〈Sr, ∆c〉 (A.122)

By Lemma 4.3.8(6), there exists B such that

P ··· (S Γ)"SP α : B, ∆ (A.123)

Q ··· (S Γ), x : B "SP ∆ (A.124)

By induction, using (Eq. A.117), there exists S1

S = S1◦SP (A.125)

(S1 ∆P )6(α : B, ∆) (A.126)

By (Eq. A.118), (S1 A)6B. By (Eq. A.124) and Proposition 4.3.7(4), we
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obtain
Q ··· (S Γ), x : (S1 A)"SP ∆ (A.127)

. Note that
(S1 ((SP Γ), x : A)) = ((S Γ), (S1 A) : ) (A.128)

Therefore, by induction, using (Eq. A.119), there exists S2 such that

S1 = S2◦SQ (A.129)

(S2 ∆Q)6∆ (A.130)

By (Eq. A.126), (S2 SQ ∆P\α)6∆. By (Eq. A.126),(Eq. A.130),(Eq. A.120)

and Theorem 4.3.21(2), there exists S3 with S2 = S3◦Sc. Using (Eq. A.125)

and (Eq. A.129), we obtain as required:

S = S3◦Sc◦SQ◦SP

= (S3◦((Sc◦SQ◦SP )\atoms(Γ)))◦((Sc◦SQ◦SP ) ∩ atoms(Γ))
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