
Type Systems for Programming Languages

Course notes

Steffen van Bakel

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
s.vanbakel@imperial.ac.uk

Spring 2001

(revised Autumn 2022)

These notes accompany the course Type Systems for Programming Languages, given to

students at the Department of Computing, Imperial College London.

The course is intended for students interested in theoretical computer science, who pos-

sess some knowledge of logic. No prior knowledge on type systems or proof techniques is

assumed, other than being familiar with the principle of structural induction.

Introduction

Adding type information to a program is important for several reasons.

• Using type assignment, it is possible to build an abstract interpretation of programs by

viewing terms as objects with input and output, and to abstract from the actual values those

can have by looking only to what kind (type) they belong.

• Type information makes a program more readable because it gives a human being addi-

tional, abstracted –so less detailed– information about the structure of a program.

• Furthermore, type information plays an essential role in the implementation during code

generation: the information is needed to obtain an efficient implementation and also makes

separate compilation of program modules possible.

• Type systems warn the programmer in an early stage (at compile time) if a program

contains severe errors. If a program is type-error free, it is safe to run: “Typed programs cannot

go wrong” (Milner [43]). The meaning of this well-known quotation is the following: a compile-

time analysis of a program filters out certain errors in programs which might occur at run-time, like

applying a function defined on integers to a character.

Typing deals with the analysis of the domain and range on which procedures (functions)

are defined and a check that these functions are indeed applied consistently; this is achieved

through a compile-time approximation of its run-time behaviour, by looking at the syntactic

structure of the program only. This course studies systems that define type assignment in the

context of functional languages. Because of the strong relation between the Lambda Calculus

and functional programming, type assignment systems are normally defined and studied in

the context of the Lambda Calculus. We will start these notes following this approach, but

then focus on how to manipulate these systems in order to be able to deal with polymorphism,

recursion, and see how this comes together in Milner’s ml. We will then investigate the diffi-

culties of dealing with pattern matching, and move our attention to Term Rewriting Systems.

1

After that, we show how to extend the system with algebraic data types and recursive types,

and conclude by having a look at intersection types and semantics.

Contents

1 The Lambda Calculus 3

1.1 λ-terms . 3

1.2 β and α-conversion . 4

1.3 Approximation semantics . 9

1.4 Making substitution explicit . 12

1.5 Example: a numeral system . 12

2 The Curry type assignment system 14

2.1 Curry type assignment . 15

2.2 Subject Reduction . 16

2.3 The principal type property . 18

3 Dealing with polymorphism 22

3.1 The language ΛN . 23

3.2 Type assignment for ΛN . 24

4 Dealing with recursion 26

4.1 The language ΛNR . 26

4.2 Expressing recursion in the Lambda Calculus . 27

4.3 Type assignment and algorithms . 28

5 Milner’s ml 30

5.1 The ml Type Assignment System . 30

5.2 Milner’s W . 35

5.3 Polymorphic recursion . 37

5.4 The difference between Milner’s and Mycroft’s system . 38

6 Pattern matching: term rewriting 40

6.1 Term Rewriting Systems . 40

6.2 Type assignment for trs . 42

6.3 The principal pair for a term . 43

6.4 Subject reduction . 44

6.5 A type check algorithm for trss . 47

6.6 An example: Combinatory Logic . 48

6.7 The relation between cl and the Lambda Calculus . 48

6.8 Extending cl . 50

6.9 Type Assignment for cl . 51

7 Basic extensions to the type language 52

7.1 Data structures . 52

7.2 Recursive types . 54

7.3 The equi-recursive approach . 55

7.4 The iso-recursive approach . 56

7.5 Recursive data types . 57

7.6 Algebraic datatypes . 58

8 The intersection type assignment system 60

8.1 Intersection types . 60

8.2 Intersection type assignment . 61

8.3 Subject reduction and normalisation . 62

8.4 Rank 2 and ml . 66

8.5 Approximation results . 67

8.6 Characterisation of (head/strong) normalisation . 69

8.7 Principal intersection pairs . 71

2

1 The Lambda Calculus

The Lambda Calculus [15, 10] is a formalism, developed in the 1930s, that is equivalent to

Turing machines and is an excellent platform to study computing in a formal way because of

its elegance and shortness of definition. It is the calculus that lies at the basis of functional

languages like Miranda [53], Haskell [33], and CaML [27]. It gets its name from the Greek

character λ (lambda). Church defined the λ-calculus as a way of formally defining computa-

tion, i.e. to start a (mathematical) process that in a finite number of steps produces a result.

He thereby focussed on the normal mathematical notation of functions, and analysed what is

needed to come to a notion of computation using that.

1.1 λ-terms

The set of λ-terms, ranged over by M, is constructed from a set of term-variables and two

operations, application and abstraction. It is formally defined by:

Definition 1.1 (λ-terms) Let V = {x,y,z, x1, x2, x3, . . .} be a set of term-variables. Λ, the set of

λ-terms is defined by the following grammar:

M, N ::= x | (λx.M) | (MN)

variable abstraction application

We say that M in (M · N) appears in function position and that N is an argument.

Or, in an inference system:

(x ∈ V)
x ∈ Λ

M ∈ Λ
(x ∈ V)

(λx.M) ∈ Λ

M ∈Λ N ∈ Λ

(MN) ∈Λ

The operation of application takes two terms M and N, and produces a new term, the appli-

cation of M to N. You can see the term M as a function and N as its operand.

The operation of abstraction takes a term-variable x and a term M and produces an ab-

straction term (λx.M). In a sense, abstraction builds an anonymous function; you can read

λx.M as ‘given the operand x, this function returns M’. In normal mathematics, functions are

defined as in sq x = x2; then we can use sq as a name for the square function, as in sq 3. In

the λ-calculus, we write λx.x2 rather than sq x = x2, and (λx.x2)3 rather than sq 3, so function

definition and application are not separated.

Leftmost, outermost brackets can be omitted, so MN (PQ) stands for ((MN) (PQ)). Also,

repeated abstractions can be abbreviated, so λxyz.M stands for (λx.(λy.(λz.M))).

As we will see below, computation in the λ-calculus is expressed through term substitution,

where a term takes the position of a variable. Not all variables can replaced like this. Those

x that occur underneath the scope of a corresponding λx (so occur in a subterm starting with

that abstraction) are called bound and cannot be replaced; those that do not, are called free and

can be replaced. These notions are formally defined by.

Definition 1.2 (Free and bound variables) The set of free variables of a term M (fv (M)) and

its bound variables (bv (M)) are defined by:

fv (x) = {x}

fv (λy.M) = fv (M) {y}

fv (MN) = fv (M) ∪ fv (N)

bv (x) =

bv (λy.M) = bv (M) ∪ {y}

bv (MN) = bv (M) ∪ bv (N)

We write x 6∈ M for x 6∈ fv (M) ∪ bv (M).

We call M closed if M contains no free variables, i.e. fv (M) = .

To avoid ambiguity, we will assume that bound and free variables are always different (this is

called Barendregt’s convention), renaming bound variables when necessary (see below).

3

In calculating using functions, we need the operation of substitution (normally not formally

specified), to express that the parameter replaces the variable in a function, as in (λx.x2)3

becomes 32. This feature, replacing all free occurrences of x in a term M by the term N,

denoted by M [N/x], is at the basis of the computational step of the λ-calculus.

Definition 1.3 The substitution of the term variable x by the term N is defined inductively

over the structure of terms by:

x [N/x] = N

y [N/x] = y (y 6= x)

(PQ) [N/x] = P [N/x] Q [N/x]

(λy.M) [N/x] = λy.(M [N/x]) (y 6= x)

(λx.M) [N/x] = λx.M

We will see below the problem this definition gives in terms of inadvertently binding free

variables, and how to avoid that from happening.

1.2 β and α-conversion

On Λ, the basic computational step is that of effecting the replacement of a bound variable in

an abstraction by the parameter of the application. The notion of computation is defined as a

relation ‘→β’ on terms that specifies that, if M →β N, then M executes ‘in one step’ to N.

Definition 1.4 (β-conversion) i) The β-reduction rule is defined by:

(λx.M)N →β M [N/x]

A term of the shape (λx.M)N is called a reducible expression (redex for short); the term

M [N/x] that is obtained by reducing this term is called a contractum (from ‘contracting

the redex’) or reduct.

ii) The binary one-step reduction relation ‘→β’ on λ-terms (as usual, we will write M →β N

rather than 〈M, N〉 ∈→β) is defined by adding the ‘contextual closure’ rules:

M →β N ⇒











λx.M →β λx.N

PM →β PN

MP →β NP

iii) The reduction relation ‘→∗
β’ (sometimes also written as ‘→→β’), called β-reduction, is de-

fined as the reflexive, transitive closure of ’→β’:

M →β N ⇒ M →∗
β N

M →∗
β M

M →∗
β N ∧ N →∗

β P ⇒ M →∗
β P

iv) ‘=β’ is the equivalence relation generated by ‘→∗
β’:

M →∗
β N ⇒ M =β N

M =β N ⇒ N =β M

M =β N ∧ N =β P ⇒ M =β P

We can define these relations also using inference rules as in Figure 1.

This notion of reduction is actually directly based on function application in mathematics.

To illustrate this, take again function f defined by f x = x2, so such that f = (λx.x2). Then f 3

is the same as (λx.x2)3, which reduces by the rule above to 32.

Example 1.5 We show some examples of reduction and equality. Notice that we have both:

4

(β) : (λx.M)N →β M [N/x]

(Appl-L) :
M →β N

MP →β NP

(Appl-R) :
M →β N

PM →β PN

(Abstr) :
M →β N

λx.M →β λx.N

(Inheritr) :
M →β N

M →∗
β N

(Refl) : M →∗
β M

(Transr) :
M →∗

β N N →∗
β P

M →∗
β P

(Inheriteq) :
M →∗

β N

M =β N

(Symm) :
M =β N

N =β M

(Transeq) :
M =β N N =β P

M =β P

Figure 1. Definition of ‘→β’, ‘→∗
β’, and ‘=β’ through inference rules

(λxyz.xz (yz)) (λab.a)

→β λyz.(λab.a)z (yz)

→β λyz.(λb.z) (yz)

→β λyz.z

(λuv.uv) (λc.c) (λyz.z)

→β (λv.(λc.c)v) (λyz.z)

→β (λc.c) (λyz.z)

→β λyz.z

so we have both

(λxyz.xz (yz)) (λab.a) →∗
β λyz.z

(λuv.uv) (λc.c) (λyz.z) →∗
β λyz.z

and thereby

(λxyz.xz (yz)) (λab.a) =β (λuv.uv) (λc.c) (λyz.z)

It is important to note that reduction as defined above will break Barendregt’s convention.

Take for example the term (λxy.xy) (λxy.xy), which adheres to the convention. Reducing this

term using the above definition for term substitution would give:

(λxy.xy) (λxy.xy) → (λy.xy) [(λxy.xy)/x]

= λy.(λxy.xy)y

Notice that this term no longer adheres to the convention, since y is bound and free in (the

sub-term) (λxy.xy)y. The problem here is that we need to be able to tell which occurrence

of y is bound by which binder. At this stage we could still argue that we can distinguish the

two ys by saying that the ‘innermost’ binding is strongest, and that only a free variable can

be bound, and that therefore only one y (the right-most) is bound by the outermost binding.

When, however, we continue with the reduction, we get

λy.(λxy.xy)y → λy.(λy.xy) [y/x]

= λy.(λy.yy)

We would now be forced to accept that both ys are bound by the innermost λy, which would

be wrong. The problem is that the free occurrence of y becomes bound during substitution;

this is called a variable capture.

At the ‘human’ level, to not have to worry about variable capture, we use a notion of equiv-

alence (or rather, convergence) on terms; it considers terms equivalent that can be obtained

from each other by renaming bound variables. It corresponds to the mathematical idea that

the functions f x = x2 and g y = y2 are identical. Essentially, this relation, called α-conversion,

is defined through
λy.M =α λz.(M [z/y]) (z 6∈ M)

extending it to all terms much in the spirit of β-conversion. We can avoid the capture problem

above by α-converting the term λy.(λxy.xy)y to λy.(λxz.xz)y before performing the reduction.

So the replacement of a variable x by a term N should perhaps be defined by:

5

x [N/x] = N

y [N/x] = y (y 6= x)

(λy.M) [N/x] = λy.(M [N/x]) (y 6∈ fv (N) & y 6= x)

(PQ) [N/x] = P [N/x]Q [N/x]

(λy.M) [N/x] = λz.(M [z/y]) [N/x] (y ∈ fv (N) & y 6= x,z fresh)

(λx.M) [N/x] = λx.M

a rather complicated definition, and the one used in implementation (rather CPU-heavy be-

cause of the additional ‘renaming’ [z/y]); notice the α-conversion taking place in the fourth

line. Using this definition, we get:

(λxy.xy) (λxy.xy) → (λy.xy) [(λxy.xy)/x] = λy.(λxy.xy)y

→ λy.(λy.xy) [y/x] =α λy.(λz.xz) [y/x]

= λy.(λz.yz) = λyz.yz

a reduction that prevents capture, but does not preserve the convention.

In practice, we abstract away from these difficulties: we will assume that all terms sat-

isfy Barendregt’s convention and use α-conversion freely to preserve the convention during

reduction. We therefore will be using the definition:

Definition 1.6 (Term substitution) The substitution of the term variable x by the term N is

defined inductively over the structure of terms by:

x [N/x] = N

y [N/x] = y (y 6= x)

(PQ) [N/x] = P [N/x]Q [N/x]

(λy.M) [N/x] = λy.(M [N/x])

By Barendregt’s convention, in (λx.M)N not only can we assume that x does not occur free

in N, but also that all bound variables in M are not free in N; therefore, in (λy.M) [N/x], we

can assume the same, and do not need to check if variable capture will occur. This implies

that we reduce the above term as follow:

(λxy.xy) (λxy.xy) → (λz.xz) [(λxy.xy)/x]

→ λz.(λxy.xy)z = λzy.zy

or
(λxy.xy) (λxy.xy) → (λy.xy) [(λxz.xz)/x]

→ λy.(λxz.xz)y = λyz.yz

(notice that λzy.zy =α λyz.yz).

For us, it suffices to know that we can always, whenever convenient, rename the bound

variables of a term. This is such a fundamental feature that normally, as in mathematics,

α-conversion plays no active role; terms are considered modulo α-conversion.

In implementations of the λ-calculus, it is normal that a strategy is used, that systematically

picks a redex amongst those available. The one that stands, for example, at the basis of

reduction in Haskell [33], is that of lazy reduction, whereas for languages based on ml (see

Section 5) call-by-value is used.

Definition 1.7 (Reduction strategies) i) We define head reduction ‘→h’ as a restriction of

‘→β’ by:

(λx.M)N →h M [N/x]

M →h N

λx.M →h λx.N

M →h N

MP →h N P

ii) Call-by-name reduction (cbn, also known as lazy reduction) is defined through:

(λx.M)N →n M [N/x]

M →n N

MP →n N P

6

iii) We consider all abstractions and variables values, and use V to denote those1. Call-by-

value reduction (cbv) is defined through:

(λx.M)V →v M [V/x]

M →v N

MP →v N P

M →v N

V M →v V N

iv) Normal order reduction is defined through:

(λx.M)N →N M [N/x]

M →N N

MP →N N P

M →N N
(P contains no redex)

PM →N PN

M →N N

λx.M →N λx.N

v) Applicative order reduction is defined through:

(M, N contain no redex)
(λx.M)N →A M [N/x]

M →A N

MP →A N P

M →A N
(P contains no redex)

PM →A PN

M →A N

λx.M →A λx.N

Another way of defining some of these strategies is through the notion of evaluation con-

texts.

Definition 1.8 i) Evaluation contexts are defined as terms with a single hole ⌈⌋ by:

C ::= ⌈ ⌋ | CM | MC | λx.C

We write C⌈M⌋ for the term obtained from the context C by replacing its hole ⌈⌋ with M,

allowing variables to be captured.

ii) Then one-step β reduction can be defined through:

C⌈(λx.M)N⌋ → C⌈M [N/x]⌋

for any evaluation context.

iii) cbn evaluation contexts are defined through:

Cn ::= ⌈⌋ | Cn M

The Call-by-name (cbn) reduction strategy →β
n is defined through:

Cn⌈(λx.M)N⌋ → Cn⌈M [N/x]⌋

iv) Call-by-value evaluation contexts are defined through:

Cv ::= ⌈ ⌋ | Cv M | V Cv

The Call-by-value (cbv) reduction strategy →β
v is defined through:

Cv⌈(λx.M)V⌋ → Cv⌈M [V/x]⌋

Notice that cbn and cbv are called strategies since in both there can only ever be one redex

to contract.

Notice that for all these notions, reduction is limited by omitting contextual rules, so in

cbn-reduction it is impossible to reduce under abstraction or in the right-hand side of an

application; a redex will only be contracted if it occurs at the start of the term.

cbv-reduction does the same, until the term it is reducing becomes a value; it then runs the

argument until that becomes a value, thus creating a redex where the right-hand term is a

value, and contracts that redex. Some of these notions do not reduce redexes that occur inside

abstractions (whereas, for example, head reduction does); for those notions, an abstraction

is considered to be ‘finished’ (as are numbers, for example, and variables) and are therefore

called values.

The following terms will reappear frequently in these notes:

1 We could add numbers, characters, etc to these.

7

I = λx.x

K = λxy.x

S = λxyz.xz(yz)

Normally also the following reduction rule is considered, which expresses extensionality:

Definition 1.9 (η-reduction) Let x 6∈ fv (M), then λx.Mx →η M.

As mentioned above, we can see ‘→β’ as the ‘one step’ execution, and ‘→∗
β’ as a ‘many step’

execution. We can then view the relation ‘=β’ as ‘executing the same function’.

This notion of reduction satisfies the ‘Church-Rosser Property’ or confluence:

Property 1.10 (Church-Rosser) i) If M →∗
β N and M →∗

β P, then there

exists a term Q such that N →∗
β Q and P →∗

β Q.

ii) If M =β N and M →∗
β P, then there exists Q such that P →∗

β Q and

N →∗
β Q.

M→
∗

β →
∗

β

N P→
∗

β

→
∗

β

Q

(This is, for obvious reasons, also called the diamond property). So diverging computations can

always be joined.

Although the λ-calculus itself has a very compact syntax, and its notion of reduction is

easily defined, it is, in fact, a very powerful calculus: it is possible to encode all Turing

machines (executable programs) into the λ-calculus. In particular, it is possible to have non-

terminating terms.

Example 1.11 i) Take (λx.xx) (λx.xx). This term reduces as follows:

(λx.xx) (λx.xx) →β (xx) [(λx.xx)/x]

= (λx.xx) (λx.xx)

so this term reduces only to itself.

ii) Take λ f .(λx. f (xx)) (λx. f (xx)). This term reduces as follows:

λ f .(λx. f (xx)) (λx. f (xx)) →β λ f .(f (xx)) [(λx. f (xx))/x]

= λ f . f ((λx. f (xx))(λx. f (xx)))

→β λ f . f (f ((λx. f (xx))(λx. f (xx))))
...

→β λ f . f (f (f (f (f (f (f (. . .)))))))

Actually, the second term also acts as a fixed point constructor, i.e. a term that maps any given

term M to a term N that M maps unto itself, i.e. such that MN =β N: we will come back to

this in Section 4.

Theorem 1.12 (Fixed-point theorem) For every term M there exists a term N (the fixed-point of

M), such that MN =β N.

Proof : The proof is given by taking N = Y M, where Y = λ f .(λx. f (xx)) (λx. f (xx)).

Y M =∆ (λ f .(λx. f (xx)) (λx. f (xx)))M

→β (λx.M (xx)) (λx.M (xx))

→β M ((λx.M (xx))(λx.M (xx)))

and
M (Y M) =∆ M ((λ f .(λx. f (xx)) (λx. f (xx)))M)

→β M ((λx.M (xx))(λx.M (xx)))

So in particular, MN =∆ M (Y M) =β Y M =∆ N.

8

So Y is a fixed-point constructor, i.e. given M, Y M is a fixed-point of M, i.e. M (Y M) =β Y M.

There are many different fixed-point constructors.

Of course, it is also possible to give λ-terms for which β-reduction is terminating.

Definition 1.13 i) A term is in normal form if it does not contain a redex. Terms in normal

form can be defined by:

N ::= x | λx.N | xN1 · · ·Nn (n ≥ 0)

ii) A term M is in head-normal form if it is of the shape x1 · · ·xn .yM . . . Mm, with n ≥ 0 and

m ≥ 0; then y is called the head-variable. Terms in head-normal form can be defined by:

H ::= x | λx.H | xM1 · · ·Mn (n ≥ 0, Mi ∈ Λ)

iii) A term M is (head-)normalisable is it has a (head-)normal form, i.e. if there exists a term N

in (head-)normal form such that M →∗
β N.

iv) We call a term without head-normal form meaningless (it can never interact with any

context).

v) A term M is strongly normalisable, SN, if all reduction sequences starting from M are finite.

If a term has a head-normal form, then head-reduction on that term is terminating.

Example 1.14 i) The term λ f .(λx. f (xx)) (λx. f (xx)) contains an occurrence of a redex (being

(λx. f (xx)) (λx. f (xx))), so is not in normal form. It is also not in head-normal form,

since it does not have a head-variable. However, its reduct λ f . f ((λx. f (xx)) (λx. f (xx)))

is in head-normal form, so the first term has a head normal form. Notice that it is not in

normal form, since the same redex occurs.

ii) The term (λx.xx) (λx.xx) is a redex, so not in normal form. It does not have a normal

form, since it only reduces to itself, so all its reducts will contain a redex. Similarly, it

does not have a head-normal form.

iii) The term (λxyz.xz(yz)) (λab.a) is a redex, so not in normal form. It has only one reduct,

(λyz.(λab.a)z(yz)), which has only one redex (λab.a)z. Contracting this redex gives

λyz.(λb.z) (yz), which again has only one redex, which reduces to λyz.z. We have ob-

tained a normal form, so the original term is normalisable. Also, we have contracted all

possible redexes, so the original term is strongly normalisable.

iv) The term (λab.b) ((λx.xx) (λx.xx)) has two redexes. Contracting the first (outermost)

will create the term λb.b. This term is in normal form, so the original term has a normal

form. Contracting the second redex (innermost) will create the same term, so repeatedly

contracting this redex will give an infinite reduction path. In particular, the term is not

strongly normalisable.

We have already mentioned that it is possible to encode all Turing machines into the λ-calculus.

A consequence of this result is that we have a ‘halting problem’ also in the λ-calculus: it is

impossible to decide if a given term is going to terminate. It is likewise also impossible to

decide if two terms are the same according to =β.

1.3 Approximation semantics

There are various ways of giving meaning to the λ-calculus. Some people just consider the

reduction rules, and then speak of ‘operational semantics’, others consider Set Theory the only

real setting for semantics and use ‘denotational semantics’, often using Scott domains [30].

Here we will use a more light-weight approach, and define a semantics that is denotational

in character, but uses the reduction system for its definition. It uses a notion of approximant

for λ-terms, as was first presented by Wadsworth [54], which is defined using the notion of

terms in Λ⊥-normal form. It is based on an extension of the syntax of terms by adding the

9

term constant ⊥, which operationally stands for ‘unknown’, ‘meaningless’, or ‘no informa-

tion’. It is used to mask sub-terms, typically those containing redexes, and allows to focus on

the ‘stable part’ of a term, the part that will/can no longer change as a result of reduction.

Definition 1.15 i) The set Λ⊥ of Λ⊥-terms is defined by adding the term constant ⊥:

M, N ::= x | ⊥ | λx.M | MN

ii) The notion of reduction ‘→⊥’ is defined as ‘→β’, extended by:

λx.⊥ →⊥ ⊥

⊥M →⊥ ⊥

iii) The set of normal forms for elements of Λ⊥, with respect to ‘→⊥’, is the set A of λ⊥-normal

forms or approximate normal forms, ranged over by A, defined by:

A ::= ⊥ | λx.A (A 6= ⊥) | xA1 · · ·An (n ≥ 0)

Remark that approximate normal forms are defined in much the same way as terms in normal

form in Definition 1.13, but taking care of the case that λx.⊥ is considered to be a redex. It

is easy to show that the approximate normal forms are the normal forms with respect to

‘→⊥’-reduction.

As can be seen from the second part, the reduction system is set up, as before, to reduce

terms to redex-free expressions, but the presence of ⊥ changes the behaviour of terms quite

dramatically. In the reduction system, it acts a a ‘sink hole’ for terms; any applicative term

starting with ⊥ will run to ⊥: this is because, given that ⊥ represents that fact that the first

term is ‘unknown’, anything can happen: replacing ⊥ by an appropriate term, all arguments

can be discarded and therefore we can only safely assume that ‘unknown’ will be produced for

the application. Similarly, any function that returns ‘unknown’ will have to act as ‘unknown’

itself.

We will now define the notion of approximant. These are λ⊥-normal forms, redex-free terms

that can contain ⊥, and are used to be able to repesent finite parts of possibly infinitely large

λ-terms in head-normal form.

Definition 1.16 (Approximants) i) The partial order ⊑ ⊆ (Λ⊥)2 is defined as the smallest

pre-order (i.e. reflexive and transitive relation) such that:

⊥ ⊑ M

x ⊑ x

M ⊑ M′ ⇒ λx.M ⊑ λx.M′

M1 ⊑ M′
1 ∧ M2 ⊑ M′

2 ⇒ M1M2 ⊑ M ′
1M′

2

ii) For A ∈A, M ∈ Λ, if A ⊑ M, then A is called a direct approximant of M.

iii) The set of approximants of M, A (M), is defined through:

A (M) =∆ {A ∈A | ∃M′ ∈ Λ (M →∗
β M′ ∧ A ⊑ M′)}.

Notice that if A is a direct approximant of M, then A and M have the same structure, except

in places where A contains ⊥ (notice that M is a pure λ-term); also M might contain redexes,

but A will then have ⊥ in that (or larger) location. The set of approximants of a term is built

up using reduction, and after each step constructing the approximants that are below each

resulting term.

Example 1.17 We have seen that

(λxyz.xz(yz)) (λab.a) →β λyz.(λab.a)z(yz) →β λyz.(λb.z) (yz) →β λyz.z

and the direct approximants of these terms are, respectively, ⊥, ⊥, ⊥, and {⊥,λyz.z}, so

A ((λxyz.xz(yz)) (λab.a)) = {⊥, λyz.z}

Likewise,

10

(λxyz.xz(yz)) a (λcd.c) →β (λyz.az(yz)) (λcd.c) →β λz.az((λcd.c) z) →β λz.az(λd.z)

with direct approximants, respectively,

⊥, ⊥, {⊥, λz.a⊥⊥, λz.az⊥}, {⊥, λz.a⊥⊥, λz.az⊥, λz.a⊥(λd.z), λz.az(λd.z) }

Also: A (λx.x) = {⊥, λx.x}

A (λx.xx) = {⊥, λx.x⊥, λx.xx}

A (λx.x((λy.yy)(λy.yy))) = {⊥, λx.x⊥}

A (λxyz.xz(yz)) = {⊥, λxyz.x⊥⊥, λxyz.x⊥(y⊥), λxyz.x⊥(yz),

λxyz.xz⊥, λxyz.xz(y⊥), λxyz.xz(yz)}

A (λ f .(λx. f (xx))(λx. f (xx))) = {⊥, λ f . f⊥, λ f . f (f⊥), λ f . f (f (f⊥)), . . .}

The following properties of approximants hold:

Proposition 1.18 i) If A∈A (xM1 · · ·Mn), A 6=⊥ and A
′ ∈A (N), then also AA

′ ∈A (xM1 · · ·MnN).

ii) If A ∈A (Mz) and z 6∈ fv (M), then either A = ⊥, or:

– A ≡ A
′z, z 6∈ fv (A′), and A

′ ∈A (M), or

– λx.A ∈A (M).

iii) If A ⊑ M and M →∗
β N, then A ⊑ N.

iv) If A ∈A (M) and M →∗
β N, then also A ∈A (N).

v) If A ∈A (N) and M →∗
β N, then also A ∈A (M).

We leave the proof of these properties as an exercise.

The following definition introduces an operation of join on Λ⊥-terms.

Definition 1.19 i) On Λ⊥, the partial mapping join, ⊔ : Λ⊥×Λ⊥→ Λ⊥, is defined by:

⊥⊔M ≡ M⊔⊥ ≡ M

x⊔ x ≡ x

(λx.M)⊔ (λx.N) ≡ λx.(M⊔N)

(M1M2)⊔ (N1N2) ≡ (M1⊔N1) (M2⊔N2)

ii) If M⊔N is defined, then M and N are called compatible.

So compatible terms are equal, except for positions where one contains ⊥ and the other does

not; the join of (compatible) terms is then built out of these two terms, choosing the non-⊥

part each time (if possible; ⊥ might appear in both terms in the same position).

Notice that, e.g., (λx.x)⊔ (λyz.yz) is undefined, so a join of two arbitrary terms does not

always exist. However, that is only an issue if the function should be total, which is not the

case here; our definition will only be used on terms that are compatible.

The following lemma shows that ‘⊔ ’ acts as least upper bound of compatible terms.

Lemma 1.20 If M1 ⊑ M, and M2 ⊑ M, then M1⊔M2 is defined, and:

M1 ⊑ M1⊔M2, M2 ⊑ M1⊔M2, and M1⊔M2 ⊑ M.

Notice that M1 ⊑ (M1⊔M2)⊑ (M1⊔M2⊔M3)⊑ · · ·, so it is natural to consider ⊥ to be the

empty join, i.e. if M ≡ M1⊔ · · · ⊔Mn, and n = 0, then M ≡ ⊥.

A (·) can be used to define a semantics for the Lambda Calculus.

Theorem 1.21 If M =β N, then A (M) =A (N).

Proof : By induction on the definition of ‘=β’, using part (iv) and (v) of Proposition 1.18.

In fact, we can show that overlaying all approximants for M creates BT(M), the Böhm tree

of M, a tree that represents the (possible infinite) normal form of M (see [10]).

Notice that the reverse of this property does not hold. We have A ((λx.xx) (λx.xx)) =

{⊥} = A ((λx.xxx) (λx.xxx)), but these terms are not related through =β. So this semantics

11

is not fully abstract.

1.4 Making substitution explicit

In implementations (and semantics) of the λ-calculus, implicit substitution [N/x] on terms

creates particular problems; remark that in M[N/x], the substitution is assumed to be instan-

taneous, irrespective of where x occurs in M. Of course, in an implementation, substitution

during execution of a program comes with a cost; many approaches to implement substitution

efficiently exist, varying from string reduction, λ-graphs, and Krivine’s machine [40].

Normally, a calculus of explicit substitutions [12, 1, 42, 41], where substitution is a part of the

syntax of terms, is considered better suited for an accurate account of the substitution process

and its implementation. There are many variants of such calculi; the one we look at here is λx,

the calculus of explicit substitution with explicit names, defined by Bloo and Rose [12]. λx gives

a better account of substitution as it integrates substitutions as first class citizens by extending

the syntax with the construct M〈x := N〉, decomposes the process of inserting a term into

atomic actions, and explains in detail how substitutions are distributed through terms to be

eventually evaluated at the variable level.

Definition 1.22 (Explicit λ-calculus λx cf. [12]) i) The syntax of the explicit lambda calculus

λx is defined by:
M, N ::= x | λx.M | MN | M〈x := N〉

The notion of bound variable of Definition 1.2 is extended by: occurrences of x in M are

bound in M〈x := N〉 (and by Barendregt’s convention, then x cannot appear in N).

ii) The reduction relation ‘→x’ on terms in λx is defined by the following rules:

(λx.M)N → M〈x := N〉

(MN)〈x := L〉 → (M〈x := L〉) (N〈x := L〉)

(λy.M)〈x := L〉 → λy.(M〈x := L〉)

x〈x := L〉 → L

M〈x := L〉 → M (x 6∈ fv (M))

M → N ⇒































λx.M → λx.N

ML → NL

LM → LN

M〈x := L〉 → N〈x := L〉

L〈x := M〉 → L〈x := N〉

Notice that we allow reduction inside the substitution.

iii) We write ‘→:=’ if the rule (β) does not get applied in the reduction.

Note that the rule M〈x := N〉〈y := L〉 → M〈y := L〉〈x := N〈y := L〉〉 is not part of the reduc-

tion rules: its addition would lead to undesired non-termination.

As for ‘→β’, reduction using ‘→x’ is confluent. It is easy to show that ‘→:=’ is (on its own)

a terminating reduction, i.e. there are no infinite reduction sequences in ‘→∗
:=’. Thereby, if no

reduction starting from M terminates, then every reduction sequence in ‘→x’ starting from M

has an infinite number of β-steps.

The rules express reduction as a term rewriting system (see Section 6). Explicit substitu-

tion describes explicitly the process of executing a β-reduction, i.e. expresses syntactically the

computation as a succession of atomic, constant-time steps, where the implicit substitution of

the β-reduction step is split into several steps. Therefore, the following is easy to show:

Proposition 1.23 (λx implements β-reduction) i) M →β N ⇒ M →∗
x N.

ii) M ∈ Λ∧ M →∗
x N ⇒ ∃L ∈ Λ (N →∗

:= L ∧ M →∗
β L).

* 1.5 Example: a numeral system

We will now show the expressivity of the λ-calculus by encoding numbers and some basic

operations on them as λ-terms; because of Church’s Thesis, all computable functions are, in

fact, encodable, but we will not go there.

12

Definition 1.24 We define the booleans True and False as:

True = λxy.x

False = λxy.y

Then the conditional is defined as:
Cond = λb t f .b t f

In fact, we can see Cond as syntactic sugar, since also True M N → M and False M N → N.

Definition 1.25 The operation of pairing of terms is defined via

〈M, N〉 = λz.zMN

(or pair = λxyz.zxy) and the first and second projection functions are defined by

First = λp.pTrue

Second = λp.pFalse

Numbers can now be encoded quite easily by specifying how to encode zero and the suc-

cessor function (remember that IN, the set of natural numbers, is defined as the smallest set

that contains 0 and is closed for the (injective) successor function):

Definition 1.26 The (Scott) Numerals are defined by:

⌈⌈0⌋⌋ = K

Succ = λnxy.yn

Pred = 〈K,I〉 = λp.pKI

So, for example, ⌈⌈3⌋⌋ = ⌈⌈S(S(S(0)))⌋⌋

= Succ (Succ (Succ ⌈⌈0⌋⌋))

= (λnxy.yn)((λnxy.yn)((λnxy.yn)K))

→β λab.b((λnxy.yn)((λnxy.yn)K))

→β λab.b(λcd.d((λnxy.yn)K))

→β λab.b(λcd.d(λxy.yK))

Notice that ⌈⌈0⌋⌋ = True. It is now easy to check that

Cond ⌈⌈n⌋⌋ f g →∗
β

{

f (⌈⌈n⌋⌋ = 0)

g ⌈⌈n − 1⌋⌋ (otherwise)

which implies that, in this system, we can define the test IsZero as identity, λx.x.

Of course, this definition only makes sense if we can actually express, for example, addition

and multiplication.

Definition 1.27 Addition and multiplication are now defined by:

Add = λnm.Cond (IsZero n) m (Succ (Add (Pred n) m))

Mult = λnm.Cond (IsZero n) Zero (Add (Mult (Pred n) m) m)

Notice that these definitions are recursive; we will see in Section 4 that we can express

recursion in the λ-calculus.

There are alternative ways of encoding numbers in the λ-calculus, like the Church Numerals

n = λ f n. f nx which would give an elegant encoding of addition and multiplication that do not

depend on recursion, but has a very complicated definition of predecessor.

Exercises

Exercise 1.28 Write the following terms in the original, full notation:

i) λxyz.xzyz.

13

ii) λxyz.xz (yz).

iii) (λxy.x) (λz.wz).

Remove the omissible brackets in the following terms:

iv) (λx1.(((λx2.(x1x2))x1)x3)).

v) ((λx1.(λx2.((x1x2)x1)))x3).

vi) ((λx.(λy.x)) (λz.(za))).

Exercise 1.29 Assume that x 6∈ fv (L) and x 6= y. Show that M [N/x] [L/y] = M [L/y] [N [L/y]/x].

Exercise 1.30 Establish for each of the following terms if they have a head-normal form, or even a

normal form.

i) (λxyz.xz(yz)) (λab.a).

ii) (λ f .(λx. f (xx)) (λx. f (xx))) (λa.a).

iii) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.a).

iv) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.b).

v) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.ab).

* Exercise 1.31 Show that, when M =β N, then there are terms M1, M2, . . . , Mn, Mn+1 such that M ≡

M1, N ≡ Mn+1, and, for all 1≤ i≤n, either Mi →
∗
β Mi+1, or Mi+1 →

∗
β Mi.

Exercise 1.32 Show that λ f .(λx. f (xx))(λx. f (xx)) is a fixed-point constructor for the Lambda Cal-

culus, i.e. show that, for all terms M,

M ((λ f .(λx. f (xx)) (λx. f (xx)))M) =β (λ f .(λx. f (xx)) (λx. f (xx)))M

Exercise 1.33 Show that (λxy.y(xxy))(λxy.y(xxy)) is a fixed-point constructor for the Lambda Cal-

culus.

Exercise 1.34 Show that all terms in normal form are in head-normal form.

Exercise 1.35 Show that, if M has a normal form, it is unique (hint: use the Church-Rosser property).

* Exercise 1.36 i) If A ∈A (xM1 · · ·Mn), A 6= ⊥ and A′ ∈A (N), then also AA′ ∈A (xM1 · · ·MnN).

ii) If A ∈A (Mz) and z 6∈ fv(M), then either A = ⊥, or:

– A ≡ A′z, z 6∈ fv (A′), and A′ ∈A (M), or

– λx.A ∈A (M).

* Exercise 1.37 i) If A ⊑ M and M →∗
β N, then A ⊑ N.

ii) If A ∈A (M) and M →∗
β N, then also A ∈A (N).

iii) If A ∈A (N) and M →∗
β N, then also A ∈A (M).

* Exercise 1.38 If M1 ⊑ M, and M2 ⊑ M, then M1⊔M2 is defined, and:

M1 ⊑ M1⊔M2, M2 ⊑ M1⊔M2, and M1⊔M2 ⊑ M.

* Exercise 1.39 Verify that Cond True M N → M and Cond False M N → N.

* Exercise 1.40 Verify that First 〈M, N〉 →β M and Second 〈M, N〉→β N.

* Exercise 1.41 Show that Pred (Succ n)→β n; can we show the same for Succ (Pred n)?

2 The Curry type assignment system

In this section, we will present the basic notion of type assignment for the λ-calculus, as first

studied by H.B. Curry in [22] (see also [23]). Curry’s system – the first and most primitive

one – expresses abstraction and application and has as its major advantage that the problem

of type assignment is decidable.

14

2.1 Curry type assignment

Type assignment follows the syntactic structure of terms, building the type of more complex

objects out of the type(s) derived for its immediate syntactic component(s). The main feature

of Curry’s system is that terms of the shape ‘λx.M’ will get a type of the shape ‘A→B’, which

accurately expresses the fact that we see the term as a function, ‘waiting’ for an input of type

A and returning a result of type B.

The type for λx.M is built out of the search for the type for M itself: if M has type B, and

in this analysis we have used no other type than A for the occurrences x in M, we say that

A→B is a type for the abstraction. Likewise, if a term M has been given the type A→B, and a

term N the type A, than apparently the second term N is of the right kind to be an input for

M, so we can safely build the application MN and say that it has type B.

Curry’s system is formulated by a system of derivation rules that act as description of build-

ing stones that are used to build derivations; the two observations made above are reflected

by the two derivation rules (→I) and (→E) as below in Definition 2.2. Such a derivation has

a conclusion (the expression of the shape Γ ⊢c M : A that appears in the bottom line), which

states that given the assumptions in Γ, A is the type for the term M.

Type assignment assigns types to λ-terms, where types are defined as follows:

Definition 2.1 i) Tc, the set of types, ranged over by A, B, . . ., is defined over a set of type

variables Φ, ranged over by ϕ, by:

A, B ::= ϕ | (A→B)

ii) A statement is an expression of the form M : A, where M ∈ Λ and A ∈ Tc. M is called the

subject and A the predicate of M : A.

iii) A context Γ is a set of statements with only distinct variables as subjects; we use Γ, x:A for

the context Γ ∪{x:A} where either x:A ∈ Γ or x does not occur in Γ, and x:A for , x:A.

We write x ∈ Γ if there exists A such that x:A ∈ Γ, and x 6∈ Γ if this is not the case.

The notion of context will be used to collect all statements used for the free variables of a term

when typing that term. In the notation of types, right-most and outer-most parentheses are

normally omitted, so (A→B)→C→D stands for ((A→B)→(C→D)).

We will now give the definition of Curry type assignment.

Definition 2.2 (cf. [22, 23]) i) Curry type assignment and derivations are defined by the follow-

ing derivation rules (that define a natural deduction system).

(Ax) :
Γ, x:A ⊢c x : A

(→I) :
Γ, x:A ⊢c M : B

(x 6∈ Γ)
Γ ⊢c λx.M : A→B

(→E) :
Γ ⊢c M1 : A→B Γ ⊢c M2 : A

Γ ⊢c M1 M2 : B

ii) We will write Γ ⊢c M : A if this statement is derivable, i.e. if there exists a derivation, built

using these three rules, that has this statement in the bottom line.

We will extend Barendregt’s convention to judgements Γ ⊢ M : A (in all notions of type

assignment we consider here) by demanding that in Γ ⊢ M : A no term variable bound in M

can occur in Γ; this implies that the side-condition on rule (→I) can be omitted.

Example 2.3 We cannot type ‘self-application’, xx. Since a context should contain statements

with distinct variables as subjects, there can only be one type for x in any context. In order to

type xx, the derivation should have the structure

Γ, x:A→B ⊢c x : A→B Γ, x:A ⊢c x : A

Γ, x:? ⊢c xx : B

for certain A and B. So we need to find a solution for A→B = A, and this is impossible

15

given our definition of types. For this reason, the term λx.xx is not typeable, and neither is

λ f .(λx. f (xx))(λx. f (xx)). In fact, the procedure ppc that tries to construct a type for terms as

defined below (see Definition 2.14) will fail on xx.

Also, since ⊥ is not mentioned in the type assignment rules, any approximant containing

⊥ will not be typeable.

2.2 Subject Reduction

The following theorem states that types are preserved under reduction; this is an important

property within the context of programming, because it states that the type we can assign

to a program can also be assigned to the result of running the program. So if the type of a

program M is Integer, then we can safely put it in a context that demands an Integer, as in

1 + M, because running M will return an Integer. We do not know which, of course, until

we actually run M, so our type analysis acts as an abstract interpretation of M.

Theorem 2.4 (Soundness) If Γ ⊢c M : A and M →∗
β N, then Γ ⊢c N : A .

Notice that this result states that if a derivation exists for the first result, one exist for the

second. In the proof for the result, we will reason over the structure of the given derivation

(the first), and show that a derivation exists for the second statement by constructing it.

Before coming to the proof of this result, first we illustrate it by the following:

Example 2.5 Suppose first that Γ ⊢c (λx.M)N : A ; since this is derived by (→E), there exists

B such that Γ ⊢c λx.M : B→A and Γ ⊢c N : B . Then (→I) has to be the last step performed

for the first result, and there are sub-derivations for Γ, x:B ⊢c M : A and Γ ⊢c N : B , so the full

derivation looks like the left-hand derivation below. Then a derivation for Γ ⊢c M[N/x] : A can

be obtained by replacing in the derivation for Γ, x:B ⊢c M : A , the sub-derivation Γ, x:B ⊢c x : B

(consisting of just rule (Ax)) by the derivation for Γ ⊢c N : B , as in the right-hand derivation.

(Ax)
Γ, x:B ⊢ x : B

D1

Γ, x:B ⊢ M : A
(→I)

Γ ⊢ λx.M : B→A

D2

Γ ⊢ N : B
(→E)

Γ ⊢ (λx.M)N : A

D2

Γ ⊢c N : B

D1[N/x]

Γ ⊢c M[N/x] : A

Notice that we then also need to systematically replace x by N throughout D1.

We will need the following result below:

Lemma 2.6 (Free variables) : If Γ ⊢c M : A and x ∈ fv (M), then there exists B such that x:B ∈ Γ.

(Weakening) : If Γ ⊢c M : A , and Γ′ is such that, for all x:B ∈ Γ′ either x:B ∈ Γ or x does not occur

free or bound in M, then Γ′ ⊢c M : A .

(Thinning) : If Γ, x:B ⊢c M : A and x 6∈ fv(M), then Γ ⊢c M : A .

We will leave the proof of this result as Exercise 2.18. Notice for the first part that we assume

that Γ has no statements on term-variables that occur bound in M.

Notice that the formulation of the second part (rather than just stating Γ′ ⊇ Γ, as is normally

done) is forced by the extension of Barendregt’s convention to judgements.

In order to formally prove the Soundness theorem, we first prove a term substitution lemma.

Lemma 2.7 (Term Substitution) ∃C (Γ, x:C ⊢c M : A ∧ Γ ⊢c N : C) ⇒ Γ ⊢c M [N/x] : A .

Proof : By induction on the structure of derivations.

(Ax) : Then either:

16

(M ≡ x) : ∃C (Γ, x:C ⊢c x : A ∧ Γ ⊢c N : C) ⇒ (Ax) A = C ∧ Γ ⊢c N : C ⇒

Γ ⊢c N : A ⇒ Γ ⊢c x [N/x] : A

(M ≡ y 6= x) : ∃C (Γ, x:C ⊢c y : A ∧ Γ ⊢c N : C) ⇒ y:A ∈ Γ ⇒ Γ ⊢c y : A

(→I) : Then M ≡ λy.P, and

∃C (Γ, x:C ⊢c λy.P : A ∧ Γ ⊢c N : C) ⇒ (→I)

∃C, A′, B′ (Γ, x:C,y:A′ ⊢c P : B′ ∧ A = A′→B′ ∧ Γ ⊢c N : C) ⇒ (2.6)

∃C, A′, B′ (Γ, x:C,y:A′ ⊢c P : B′ ∧ A = A′→B′ ∧ Γ,y:A′ ⊢c N : C) ⇒ (IH)

∃A′, B′ (Γ,y:A′ ⊢c P [N/x] : B′ ∧ A = A′→B′) ⇒ (→I)

Γ ⊢c λy.P [N/x] : A = Γ ⊢c (λy.P)[N/x] : A

(→E) : Then M ≡ PQ, and

∃C (Γ, x:C ⊢c PQ : A ∧ Γ ⊢c N : C) ⇒ (→E)

∃B (Γ, x:C ⊢c P : B→A ∧ Γ, x:C ⊢c Q : B ∧ Γ ⊢c N : C) ⇒ (IH)

∃B (Γ ⊢c P [N/x] : B→A ∧ Γ ⊢c Q [N/x] : B) ⇒ (→E)

Γ ⊢c P[N/x]Q[N/x] : A = Γ ⊢c (PQ) [N/x] : A

The proof for Theorem 2.4 then becomes:

Proof : By induction on the derivation showing M →∗
β N, using Fig 1; we only show some of

the cases.

(β) : Then M ≡ (λx.P)Q →β P[Q/x]. We have to show that Γ ⊢c (λx.P)Q : A implies Γ ⊢c

P [Q/x] : A . Notice that, if Γ ⊢c (λx.P)Q : A , then, by (→E) and (→I), there exists C

such that Γ, x:C ⊢c P : A and Γ ⊢c Q : C . The result then follows from Lemma 2.7.

(Appl-L) : Then M ≡ PQ, N ≡ RQ, and PQ →β RQ because P →β R. If Γ ⊢c PQ : A , then,

by (→E) there exists C such that Γ ⊢c P : C→A and Γ ⊢c Q : C . By induction we have

Γ ⊢c R : C→A ; then by (→E) we obtain Γ ⊢c RQ : A .

(Inheritr) : Then M →∗
β N because M →β N. Assume Γ ⊢c M : A ; since M →β N, by induction

we have Γ ⊢c N : A .

(Transr) : Then M →∗
β N because M →∗

β P and P →∗
β N. Assume Γ ⊢c M : A ; since M →∗

β P,

by induction we have that Γ ⊢c P : A ; since P →∗
β N again by induction we also have

Γ ⊢c N : A .

We can also show that type assignment is closed for η-reduction:

Theorem 2.8 If Γ ⊢c M : A and M →η N, then Γ ⊢c N : A .

Proof : By induction on the definition of →η, of which only the part λx.Mx →η M, x 6∈ fv (M)

is shown; the other parts follow by straightforward induction. Assume x 6∈ fv (M), then

Γ ⊢c λx.Mx : A ⇒ (→I)

∃B,C (A = B→C ∧ Γ, x:B ⊢c Mx : C) ⇒ (→E)

∃B,C, D (A = B→C ∧ Γ, x:B ⊢c M : D→C ∧ Γ, x:B ⊢c x : D) ⇒ (2.6)

∃B,C, D (A = B→C ∧ Γ ⊢c M : D→C ∧ B = D) ⇒

∃B,C (A = B→C ∧ Γ ⊢c M : B→C) ⇒ Γ ⊢c M : A.

Example 2.9 We cannot derive ⊢c λbc.(λy.c) (bc) : A→B→B , so we lose the converse of the

Subject Reduction property (see Theorem 2.4), i.e. Subject Expansion: If Γ ⊢c M : A and N →∗
β

M, then Γ ⊢c N : A . The counter example is in Exercise 2.17: take M = λbc.c, and N =

λbc.(λy.c) (bc), then it is easy to check that N →∗
β M, ⊢c λbc.c : A→B→B , but not ⊢c

λbc.(λy.c) (bc) : A→B→B .

17

2.3 The principal type property

Principal type schemes for Curry’s system were first defined in [32]. In that paper Hindley

actually proved the existence of principal types for an object in Combinatory Logic [21] (see

Definition 6.19), but the same construction can be used for a proof of the principal type

property for terms in the Lambda Calculus.

The principal type property expresses that amongst the whole family of types you can

assign to a term, there is one that can be called ‘principal’ in the sense that all other types can

be created from it. For the system as defined in this section, the ‘creation’ of types is done by

(type-)substitution, defined as the operation on types that replaces type variables by types in

a consistent way.

Definition 2.10 (Type substitution) i) The substitution (ϕ 7→ C) : Tc −−≻Tc, where ϕ is a type

variable and C ∈ Tc, is inductively defined by:

(ϕ 7→ C) ϕ = C

(ϕ 7→ C) ϕ′ = ϕ′ (ϕ′ 6= ϕ)

(ϕ 7→ C) A→B = ((ϕ 7→ C) A)→ ((ϕ 7→ C) B)

ii) If S1, S2 are substitutions, then so is S1◦S2, where S1◦S2 A = S1 (S2 A).

iii) S Γ = {x:S B | x:B ∈ Γ}.

iv) S〈Γ ; A〉 = 〈S Γ ; S A〉.

v) If there is a substitution S such that S A = B, then B is a (substitution) instance of A.

vi) IdS is the identity substitution that replaces all type variables by themselves.

So, for Curry’s system, the principal type property is expressed by: for each typeable term

M, there exist a principal pair of context Π and type P such that Π ⊢c M : P , and for all context

Γ, and types A, if Γ ⊢c M : A , then there exists a substitution S such that S〈Π ; P〉 = 〈Γ ; A〉.

The principal type property for type assignment systems plays an important role in pro-

gramming languages that model polymorphic functions, where a function is called polymor-

phic if it can be correctly applied to objects of various types. In fact, the principal type there

acts as a general type-scheme that models all possible types for the procedure involved.

Before we come to the actual proof that the Curry type assignment system has the principal

type property, we need to show that substitution is a sound operation:

Lemma 2.11 (Soundness of substitution) For every substitution S: if (we have a derivation for)

Γ ⊢c M : A , then (we can construct a derivation for) S Γ ⊢c M : S A .

Proof : By induction on the structure of derivations.

(Ax) : Then M ≡ x, and x:A ∈ Γ. Notice that then x:S A ∈ S Γ, so, by rule (Ax), S Γ ⊢c x : S A .

(→I) : Then there are P, A,C such that M ≡ λx.P, A = C→D, and Γ, x:C ⊢c P : D . Since this

statement is derived in a sub-derivation, by induction we can assume that S (Γ, x:C) ⊢c P :

S D . Since S(Γ, x:C) = S Γ, x:S C, we also have S Γ, x:S C ⊢c P : S D . So there is a derivation

that shows this, to which we can apply rule (→I), to obtain S Γ ⊢c λx.P : S C→S D . Since

SC→S D = S(C→D) = S A, by definition of substitutions, we get S Γ ⊢c λx.P : S A .

(→E) : Then there are P, Q, and B such that M ≡ PQ, Γ ⊢c P : B→A , and Γ ⊢c Q : B . Since

these two statements are derived in a sub-derivation, by induction we can assume both

S Γ ⊢c P : S (B→A) and S Γ ⊢c Q : S B . Since S (B→A) = S B→S A by definition of sub-

stitution, we also have S Γ ⊢c P : S B→S A , and we can apply rule (→E) to obtain S Γ ⊢c

PQ : S A .

Principal types for λ-terms are defined using the notion of unification of types that was

defined by Robinson in [49]. Robinson’s unification, also used in logic programming, is a

18

procedure on types (or logical formulae) which, given two arguments, returns a substitution

that maps the arguments to a smallest common instance with respect to substitution. It can

be defined as follows:

Definition 2.12 i) (Robinson’s unification) Unification of Curry types is defined by:

unify ϕ ϕ = (ϕ 7→ ϕ)

unify ϕ B = (ϕ 7→ B) (ϕ does not occur in B)

unify A ϕ = unify ϕ A

unify (A→B) (C→D) = S2◦S1

where S1 = unify A C

S2 = unify (S1 B) (S1 D)

ii) The operation UnifyContexts generalises unify to contexts:

UnifyContexts (Γ1, x:A) (Γ2, x:B) = S2◦S1,

where S1 = unify A B

S2 = UnifyContexts (S1 Γ1) (S1 Γ2)

UnifyContexts (Γ1, x:A) Γ2 = UnifyContexts Γ1 Γ2, if xdoes not occur in Γ2.

UnifyContexts Γ2 = IdS.

The following property of Robinson’s unification is very important for all systems that

depend on it, and formulates that unify returns the most general unifier of two types. This

means that if two types A and B have a common substitution instance, then they have a least

common instance C which can be created through applying the unifier of A and B to A (or to

B), and all their common instances can be obtained from C by substitution.

Proposition 2.13 ([49]) For all A, B: if S1 is a substitution such that S1 A = S1 B, then there are

substitutions S2 and S3 such that

S2 = unify A B and

S1 A = S3◦S2 A = S3◦S2 B = S1 B.

which corresponds to the diagram on the right.

We say that S3 extends S2.

D

S1 S3 S1

C

S2 S2

A B

Unification is associative and commutative: we can show that, for all types A, B, and C

unify ((unify A B) A) C = unify ((unify A C) A) B

= unify ((unify B C) B) A

= unify A ((unify B C) B)

= unify B ((unify A C) A)

= unify C ((unify A B) A)

which justifies a ‘higher-order notation’; we write unify A B C . . . for any number of types.

We will use the same higher-order notation for UnifyContexts.

The definition of principal pairs for λ-terms in Curry’s system then looks like:

Definition 2.14 We define for every term M the (Curry) principal pair by defining the notion

ppc M = 〈Π ; P〉 inductively by:

i) For all x, ϕ: ppc x = 〈x:ϕ ; ϕ〉.

ii) If ppc M = 〈Π ; P〉, then:

a) If x ∈ fv (M), then (by construction) there is a A such that x:A ∈ Π, and ppc λx.M =

19

ppc x = 〈x:ϕ ; ϕ〉

where ϕ is fresh

ppc λx.M =

{

〈Π′ ; A→P〉 (Π = Π′, x:A)

〈Π ; ϕ→P〉 (x 6∈ Π)

where 〈Π ; P〉 = ppc M

ϕ is fresh

ppc MN = S2◦S1 〈Π1 ∪Π2 ; ϕ〉

where 〈Π1 ; P1〉 = ppc M

〈Π2 ; P2〉 = ppc N

S1 = unify P1 P2→ϕ

S2 = UnifyContexts (S1 Π1) (S1 Π2)

ϕ is fresh

Figure 2. The principal pair algorithm for Λ in Curry’s system

〈Π x ; A→P〉.

b) otherwise ppc (λx.M) = 〈Π ; ϕ→P〉, where ϕ does not occur in 〈Π ; P〉.

iii) If ppc M1 = 〈Π1 ; P1〉 and ppc M2 = 〈Π2 ; P2〉 (we choose, if necessary, trivial variants by

renaming type variables such that the 〈Πi ; Pi〉 have no type variables in common), ϕ is a

type variable that does not occur in either of the pairs 〈Πi ; Pi〉, and

S1 = unify P1 (P2→ϕ)

S2 = UnifyContexts (S1 Π1) (S1 Π2),

then ppc (M1M2) = S2◦S1 〈Π1 ∪Π2 ; ϕ〉.

A principal pair for M is often called a principal typing.

This definition in fact gives an algorithm that finds the principal pair for λ-terms, if it

exists. Below, where we specify that algorithm more like a program, we do not deal explicitly

with the error cases. This is mainly for readability: including an error case somewhere (which

would originate from unify) would mean that we would have to ‘catch’ those in every function

call to filter out the fact that the procedure can return an error; in Haskell this problem can be

dealt with using monads.

The algorithm as presented here is not purely functional. The 0-ary function fresh is sup-

posed to return a new, unused type variable. It is obvious that such a function is not referential

transparent, but for the sake of readability, we prefer not to be explicit on the handling of type

variables.

Definition 2.15 The principal pair algorithm for Curry’s system is given in Figure 2.

Extending this into a runnable program is a matter of patient specification: for example,

above we ignore how contexts are represented, as well as the fact that in implementation,

substitutions are not that easily extended from types to contexts in a program.

The proof that the procedure ‘ppc ’ indeed returns principal pairs is given by showing that

all possible pairs for a typeable term M can be obtained from the principal one by applying

substitutions. In this proof, Property 2.13 is needed.

Theorem 2.16 (Completeness of substitution.) If Γ ⊢c M : A , then there are context Π, type P

and a substitution S such that: ppc M = 〈Π ; P〉, and both S Π ⊆ Γ and S P = A.

Proof : By induction on the structure of terms in Λ.

(M ≡ x) : Then, by rule (Ax), x:A ∈ Γ, and ppc x = 〈{x:ϕ} ; ϕ〉 by definition. Take S = (ϕ 7→

A).

(M ≡ λx.N) : Then, by rule (→I), there are C, D such that A = C→D, and Γ, x:C ⊢c N : D .

Then, by induction, there are Π′, P′ and S′ such that ppc N = 〈Π′ ; P′〉, and S′Π′ ⊆ Γ, x:C,

S P′ = D. Then either:

a) x occurs free in N, so there exists an A′ such that x:A′ ∈ Π′, and also ppc (λx.N) =

〈Π′ x ; A′→P′〉. Since S′ Π′ ⊆ Γ, x:C, in particular S′ A′ = C and S′ (Π′ x) ⊆ Γ. Notice

that now S′ (A′→P′) = C→D. Take Π = Π′ x, P = A′→P′, and S = S′.

b) otherwise ppc (λx.N) = 〈Π′ ; ϕ→P′〉, x does not occur in Π′, and ϕ does not occur in

20

〈Π′ ; P′〉. Since S′ Π′ ⊆ Γ, x:C, in particular S′ Π′ ⊆ Γ. Take S = S′◦(ϕ 7→ C), then, since

ϕ does not occur in Π′, also SΠ′ ⊆ Γ. Notice that S(ϕ→P′) = C→D; take Π = Π′,

P = ϕ→P′.

(M = M1M2) : Then, by rule (→E), there exists a B such that Γ ⊢c M1 : B→A and Γ ⊢c M2 : B .

By induction, there are S1,S2, 〈Π1 ; P1〉= ppc M1 and 〈Π2 ; P2〉= ppc M2 (no type variables

shared) such that S1 Π1 ⊆ Γ, S2 Π2 ⊆ Γ, S1 P1 = B→A and S2 P2 = B. Notice that S1,S2 do

not interfere. Let ϕ be a type variable that does not occur in any of the pairs 〈Πi ; Pi〉,

and
Su = unify P1 (P2→ϕ)

Sc = UnifyContexts (Su Π1) (Su Π2)

then, by the definition above, ppc M1M2 = Sc◦Su 〈Π1 ∪Π2 ; ϕ〉.

We will now argue that ppc M1M2 is successful: since this can only fail on unification

(of P1 and P2→ϕ, or in the unification of the contexts), we need to argue that these

unification are successful. Take S3 = S2◦S1◦(ϕ 7→ A), then

S3 P1 = B→A, and

S3 P2→ϕ = B→A.

so P1 and P2→ϕ have a common instance B→A, and by Proposition 2.13, Su exists.

We now need to argue that a substitution S exists such that S (Sc◦Su (Π1 ∪Π2)) ⊆ Γ.

Notice that we have
S3 Π1 ⊆ Γ, and

S3 Π2 ⊆ Γ

since Π1 and Π2 share no type-variables. Since Γ is a context, each term variable has

only one type, and therefore S3 is a unifier for Π1 and Π2, so we know that S4 exists that

extends the substitution that unifies the contexts, even after being changed with Su, so

such that
S4 (Su Π1) ⊆ Γ, and

S4 (Su Π2) ⊆ Γ.

So S4 also unifies Su Π1 and Su Π2, so by Proposition 2.13 there exists a substitution S5

such that S4 = S5◦Sc◦Su. Take S = S5.

We have seen that there exists an algorithm ‘ppc ’ that, given a term M, produces its principal

pair 〈Π ; P〉 if M is typeable, and returns ‘error’ if it is not. This property expresses that type

assignment can be effectively implemented. This program can be used to build a new program

that produces the output ‘Yes’ if a term is typeable, and ‘No’ if it is not; you can decide the

question with a program, and, therefore, the problem is called decidable.

Because of the decidability of type assignment in this system, it is feasible to use type

assignment at compile time (you can wait for an answer, since it exists), and many of the now

existing type assignment systems for functional programming languages are therefore based

on Curry’s system. In fact, both Hindley’s initial result on principal types for Combinatory

Logic [32], and Milner’s seminal paper [43] both are on variants Curry’s system. These two

papers are considered to form the foundation of types for programming languages, and such

systems often are referred to as Hindley-Milner systems.

Every term that is typeable in Curry’s system is strongly normalisable. This implies that,

although the Lambda Calculus itself is expressive enough to allow all possible programs,

when allowing only those terms that are typeable using Curry’s system, it is not possible to

type non-terminating programs. This is quite a strong restriction that would make it unusable

within programming languages, but which is overcome in other systems, that we will discuss

later in Section 5.

21

Exercises

Exercise 2.17 Verify the following results:

i) ⊢c λx.x : A→A .

ii) ⊢c λxy.x : A→B→A .

iii) ⊢c λxyz.xz(yz) : (A→B→C)→(A→B)→A→C.

iv) ⊢c λbc.c : A→B→B .

v) ⊢c λbc.(λy.c) (bc) : (B→A)→B→B .

vi) ⊢c λbc.(λxy.x) c(bc) : (B→A)→B→B .

vii) ⊢c (λabc.ac(bc)) (λxy.x) : (B→A)→B→B .

Exercise 2.18 Verify the following results:

i) If Γ ⊢c M : A , and Γ′ ⊇ Γ, then Γ′ ⊢c M : A .

ii) If Γ ⊢c M : A , then {y:D ∈ Γ | y ∈ fv (M)} ⊢c M : A .

iii) If Γ ⊢c M : A and x ∈ fv(M), then there exists D such that x:D ∈ Γ.

so show Lemma 5.5.

* Exercise 2.19 Show that, for all substitutions S and types A and B, S(A→B) = SA→SB.

* Exercise 2.20 Show Lemma 2.11: for every substitution S: if Γ ⊢c M : A , then S Γ ⊢c M : S A .

* Exercise 2.21 Show that, if ppc M = 〈Π ; P〉, then Π ⊢c M : P . You’ll need Lemma 2.6 and 2.11 here.

Exercise 2.22 Give, with derivations, the principal types for the terms λxyz.xz(yz), λxy.x, λxy.xy,

and λx.x in Curry’s system.

Using these types, calculate the principal types of the terms (λxyz.xz(yz))(λxy.x)(λx.x) and

(λxy.xy)(λx.x) in the Curry system; specify the main calls to unify.

What can you conclude about the sets of types assignable to both terms?

Exercise 2.23 Is it possible to type (λxyz.xz(yz))(λx.x)(λx.x)((λxyz.xz(yz))(λx.x)(λx.x)) in Curry’s

system? Motivate your answer.

3 Dealing with polymorphism

In this section, we will show how to extend the Lambda Calculus in such a way that we can

express that functions that are polymorphic, i.e. can be applied to inputs of different types. To

illustrate the need for polymorphic procedures, consider the following example.

Suppose we have a programming language in which we can write the following program:

I x = x

I I

The definition of I is of course a definition for the identity function. In order to find a

type for this program, we can translate it directly to the λ-term (λx.x) (λx.x) and type that.

But then we would be typing the term λx.x twice, which seems a waste of effort. We could

translate the program to the term (λa.aa) (λx.x), but we know we cannot type it.

By the principal type property of the previous section, we know that the types we will

derive for both the occurrences of λx.x will be instances of its principal type. So, why not

calculate that (done once), take a fresh instance of this type for each occurrence of the term -

to guarantee optimal results - and work with those? This is the principle of polymorphism.

The first to introduce this concept in a formal computing setting was R. Milner [43] (see also

Section 5). Milner’s Type Assignment System makes it possible to express that various occur-

rences of I can have different types, as long as these types are related (by Curry-substitution)

to the type derived for the definition of I.

22

In this section we will use this approach to define a notion of type assignment for ΛN, a λ-

calculus with names name and definitions like name = M, which we will present below. Since the

intention of the definitions is to specify each name name only once, and to see the occurrences

of name in the final term as calls to the body of name, when type checking we would like to be

able to associate each call to name to its definition, but without checking the type for name for

each call over and over again.

This is used to find types for terms that contain names. Each occurrence of a name name in

the program can be regarded as an abbreviation of the right-hand side in its definition, and

therefore the type associated to the occurrence should be an instance of the principal type of

the right-hand side term; we associate name to that term, and store the principal type of the

right-hand side with name in an environment: the type of name is called generic, and the term

defined by name is called a polymorphic function. In fact, we would like to model that each call

to name can have a different type; we then call such a name polymorphic.

3.1 The language ΛN

First, we will look at an extension of the Lambda Calculus, ΛN (Lambda Calculus with Names),

that enables us to focus on polymorphism by introducing names for λ-terms, and allowing

names to be treated as term variables during term construction. The idea is to define a

program as a list of definitions, followed by a term (the main) which may contain calls.

Definition 3.1 i) The syntax for programs in ΛN is defined by:

M, N ::= x | name | λx.N | MN

name ::= ‘string of characters’

Defs ::= Defs ; name = M | ǫ (M is closed and name-free)

Program ::= Defs : M

Like before, redundant brackets will be omitted.

ii) Reduction on terms in ΛN with respect to a Program is defined as normal β-reduction

for the Lambda Calculus, extended by name → M, if name = M appears in the list of

definitions.
(λx.M)N → M [N/x]

(name = M ∈ Defs)
name → M

M → N

λx.M → λx.N

M → N

MP → N P

M → N

PM → PN

M → N

M →∗ N M →∗ M

M →∗ N N →∗ P

M →∗ P

and reduction on Programs is defined by:

M → N

Defs : M → Defs : N

We have put the restriction that in name = M, M is a closed λ-term. This forms, in fact, a

sanity criterion; similarly, free variables are not allowed in method bodies in Java, or on the

right or term rewriting rules (see Section 6). We could deal with open terms as well, but this

would complicate the definitions and results below unnecessarily.

Notice that, in the body of definitions, calls to other definitions are not allowed, so names

are just abbreviations for closed, pure λ-terms; we could even restrict bodies of definitions

such that no redexes occur there, but that is not necessary for the present purpose. Moreover, it

is possible that a name is used that is not in the list of definitions; this term is then irreducible.

Programs written in ΛN can easily be translated to λ-terms; the translation consists of re-

placing, starting with the final term, all names by their bodies.

It is possible to give a natural interpretation of ΛN in Λ, which is a generalisation of the one

we saw in the previous section.

23

Definition 3.2 〈·〉λ : ΛN → Λ is defined by:

〈x〉λ = x,

〈name〉λ =

{

〈M〉λ ((name = M) appears in the list of definitions.)

undefined (otherwise)

〈λx.N〉λ = λx.〈N〉λ

〈PQ〉λ = 〈P〉λ〈Q〉λ

It is now straightforward to check that reduction is preserved by this interpretation (see

Exercise 3.7).

3.2 Type assignment for ΛN

In this section we will develop a notion of type assignment on programs in ΛN. In short, we

will type check each definition to make sure that the body of each definition is a typeable

term, and store the type found (i.e. the principal type for the body of the definition) in an

environment. When encountering a call to name, we will force the type for name here to be an

instance of the principal type by copying the type in the environment, and allowing unification

to change the copy, thereby instantiating it.

The notion of type assignment we will study below for this extended calculus is an exten-

sion of Curry’s system for the λ-calculus, and has been studied extensively in the past, e.g. in

[32, 26, 8]. Basically, Curry (principal) types are assigned to named λ-terms. When trying

to find a type for the final term in a program, each definition is typed separately. Its right-

hand side is treated as a λ-term, and the principal type for the term is derived as discussed

above. Of course, when typing a term, we just use the environment; in the definition how that

environment is created is not an issue, we only need to check that the environment is sound,

i.e. correct.

The notion of type assignment defined below uses the notation Γ;E ⊢ M : A; here Γ is a

context, E an environment, and M a λ-term, perhaps containing names. We also use the notion

E ⊢ Defs : ♦; here ♦ is not really a type, but just a notation for ‘OK’; also, since definitions

involve only closed terms, we need not consider contexts there.

Definition 3.3 (Type Assignment for ΛN) i) An environment E is a mapping from names to

types; similar to contexts, E ,name:A is the environment defined as E ∪{name:A} where

either name:A ∈ E or name does not occur in E .

ii) Type assignment (with respect to E) is defined by the following natural deduction system.

Notice the use of a substitution in rule (Call).

(Ax) :
Γ, x:A;E ⊢ x : A

(→I) :
Γ, x:A;E ⊢ N : B

Γ;E ⊢ λx.N : A→B
(→E) :

Γ;E ⊢ P : A→B Γ;E ⊢ Q : A

Γ;E ⊢ PQ : B

(ǫ) :
E ⊢ ǫ : ♦

(Defs) :
E ⊢ Defs : ♦ ; ⊢ M : A

E ,name:A ⊢ Defs ; name = M : ♦

(Call) :
Γ;E ,name:A ⊢ name : S A

(Program) :
E ⊢ Defs : ♦ Γ;E ⊢ M : A

Γ;E ⊢ Defs : M : A

Notice that, in rule (Defs), we insist that M is closed by demanding it be typed using an empty

context. Moreover, the rule extends the environment by adding the pair of name and the type

A found for M; this does not preclude that name:A already occurs in E .

For this notion of type assignment, we can easily show the subject reduction result (see

Exercise 3.8). Notice that names are defined before they are used; this of course creates

problems for recursive definitions, which we will deal with in the next section.

24

ppΛN x E = 〈x:ϕ ; ϕ〉

where ϕ is fresh

ppΛN name E = 〈 ; FreshInstance(Ename)〉

ppΛN (λx.M) E =

{

〈Π′ ; A→P〉 (Π = Π′, x:A)

〈Π ; ϕ→P〉 (x 6∈ Π)

where 〈Π ; P〉 = ppΛN M E

ϕ is fresh

ppΛN (MN) E = S2◦S1 〈Π1 ∪Π2 ; ϕ〉

where 〈Π1 ; P1〉 = ppΛN M E

〈Π2 ; P2〉 = ppΛN N E

S1 = unify P1 P2→ϕ

S2 = UnifyContexts (S1 Π1) (S1 Π2)

ϕ is fresh

BuildEnv (Defs ; name = M) = (BuildEnv Defs),name:A

where 〈 ; A〉 = ppΛN M

BuildEnv ǫ = {}

ppΛN (Defs; M) = ppΛN M E

where E = BuildEnv Defs

Figure 3. Principal contexts and types for ΛN

Example 3.4 We can now derive:

(ǫ)
⊢ ǫ : ♦

(Ax)
x:ϕ; ⊢ x : ϕ

(→I)
; ⊢c λx.x : ϕ→ϕ

(Defs)
I:ϕ→ϕ ⊢ I = λx.x : ♦

..

.

.

(Call)
; I:ϕ→ϕ ⊢ I : (A→A)→A→A

(Call)
; I:ϕ→ϕ ⊢ I : A→A

(→E)
; I:ϕ→ϕ ⊢ I I : A→A

(Program)
; I:ϕ→ϕ ⊢ I = λx.x : I I : A→A

We will now give an algorithm that, using an environment, checks if the term in a program

in ΛN can be typed. As far as variables, abstraction, and applications are concerned, the

algorithm follows the approach of Definition 2.15. As mentioned above, for every definition

a pair – consisting of the principal type (found for the right-hand side) and the name of the

defined function – is put in the environment. Every time name is encountered in a term, the

algorithm looks in the environment to see what its (principal) type is. It takes a fresh instance

of this type, by calling the substitution FreshInstance which replaces all type variables by fresh

ones, and uses this instance when trying to find a type for the term; since the algorithm

calls unification which gets applied to types, the type might change of course, depending on

the structure of the term surrounding the call name. Would we take the type stored in the

environment directly, this could in principle change the type in the environment. By creating

a fresh instance we avoid this; we will at most substitute the freshly created type variables,

and never those already in the environment.

This way we are sure that unifications that take place to calculate the type for one occurrence

of name do not affect the type already found for another. Moreover, this way the types actually

used for name will always be substitution instances of the principal type that is associated to

name in the environment.

Definition 3.5 The algorithm that calculates the types for a program in ΛN is defined in Fig-

ure 3.

Notice that the environment gets extended by the call to ppΛN that types a program by travers-

ing the list of definitions; it adds the principal type of the body of a definition to the name of

25

that definition in the environment.

This algorithm is more in common with the practice of programming languages: it type-

checks the definitions, builds the environment, and calculates the principal type for the final

term. Notice that ppΛN , restricted to λ-terms, is exactly ppc , and that then the second argument

- the environment - becomes obsolete.

We leave the soundness of this algorithm as an exercise.

Exercises

Exercise 3.6 Consider the ΛN program

I = λx.x ;

B = λxyz.x(yz) ;

K = λxy.x ;

S = λxyz.xz(yz) :

S (B I) (K I)

i) Give a suitable environment for this program, and give a type-derivation for the final term.

ii) Reduce this term to normal form.

iii) Show that the type found is a valid type for the normal form as well.

* Exercise 3.7 Prove that, if t → t′ in ΛN, then and 〈t〉λ is defined, then 〈t〉λ →∗
β 〈t′〉λ.

* Exercise 3.8 If Γ;E ⊢ t : A, and t → t′, then Γ;E ⊢ t′ : A.

4 Dealing with recursion

In this section, we will focus on a type assignment system for a simple applicative language

called ΛNR that is in fact ΛN with recursion.

4.1 The language ΛNR

First, we define ΛNR, that enables us to focus on polymorphism and recursion, by introducing

names for λ-terms and allowing names to occur in all terms, so also in definitions.

Definition 4.1 The syntax for programs in ΛNR is defined by:

name ::= ‘string of characters’

M, N ::= x | name | λx.M | MN

Defs ::= Defs ; (name = M) | Defs ; (rec name = M) | ǫ (M is closed)

Program ::= Defs : M

Reduction on ΛNR-terms is defined as before for ΛN.

Notice that, with respect to ΛN, by allowing names to appear within the body of definitions

we not only create a dependency between definitions, but also the possibility of recursive

definitions.

Example 4.2 S = λxyz.xz(yz) ;

K = λxy.x ;

I = SKK ;

rec Y = λm.m(Ym) :

YI

26

4.2 Expressing recursion in the Lambda Calculus

Programs written in ΛNR can easily be translated to λ-terms; for non-recursive programs the

translation consists of replacing, starting with the final term, all names by their bodies. In case

of a recursive definition, we will have to use a fixed-point constructor.

Example 4.3 As an illustration, take the well-known factorial function

Fac n = 1 (n = 0)

Fac n = n × (Fac n−1) (otherwise)

In order to create the λ-term that represents this function, we first observe that we could write

it in ΛNR as:

Fac = λn.(Cond (n = 0) 1 (n × (Fac n−1)))

Now, since this last definition for Fac is recursive, we need the fixed-point operator to define

it in Λ. Remember that we know that (where Y = λ f .(λx. f (xx)) (λx. f (xx)))

YM =β M (YM)

Now, if M = λx.N, this becomes

Y(λx.N) =β (λx.N) (Y(λx.N)) →β N [Y(λx.N)/x]

This gives us an equation like:

F = N[F/x]

with solution

F = Y(λx.N).

So, in general, when we have an equation like F = C[F], where C[] is a term with a hole (so

C[F] is a notation for a term in which F occurs) then we can write

F = C[F] = (λ f .C[f])F = Y(λ f .C[f])

In case of our factorial function, the term we look for then becomes:

Fac = Y(λ f .λn.Cond (n = 0) 1 (n × (f (n − 1))))

To see that this indeed does what we intend, consider:

Fac 4 = Y(λ f .λn.Cond (n = 0) 1 (n × (f (n − 1)))) 4

= (λn.Cond (n = 0) 1 (n × (Fac (n − 1)))) 4

→ Cond (4 = 0) 1 (4 × (Fac 3))

= 4 × (Fac 3)

→ 4 × (Cond (3 = 0) 1 (3 × (Fac 2)))

→ 4 × (3 × Fac 2)

→ 4 × (3 × (2 × (1 × (Cond (0 = 0) 1 (0 × (Fac −1))))))

→ 4 × (3 × (2 × (1 × 1))) = 4!

Notice that this approach is going to cause a problem when we want to type terms in ΛNR:

we cannot just translate the term, type it in ⊢c and give that type to the original ΛNR term,

since, for recursive terms, this would involve typeing Y. This is impossible.

Instead, a more ad-hoc approach is used: rather than trying to type a term containing

self-application, an explicit construction for recursion is added.

Take the example above. We know that num→num should be the type for Fac, and that

Fac = λn.Cond (n = 0) 1 (n × (Fac n−1))

so num→num should also be the type for

λn.Cond (n = 0) 1 (n × (Fac n−1))

27

Notice that, by checking its context, the occurrence of Fac in this term has type num→num as

well. Therefore,
λgn.Cond (n = 0) 1 (n × (g (n − 1)))

should have type (num→num)→num→num. These observations together imply that a desired

type for λ f .(λx. f (xx)) (λx. f (xx)) to serve in this case would be

((num→num)→num→num)→num→num.

Therefore, for ΛNR it suffices, when typing a recursive definition, to demand that the

recursive calls have exactly the same type as the whole body of the recursive definition:

Γ;E , f :A ⊢ C[f] : A.

Example 4.4 We can generalise the observation of the previous example, and deduce that, in

order to type both YM and M (YM) with the same type, we need to assume that Y has type

(A→A)→A, for all A. So when enforcing typeable recursion for the λ-calculus, we would

need to extend the language Λ by adding a constant term

M, N ::= · · · | Y

add the reduction rule
YM → M (YM)

and add the type assignment rule

Γ ⊢ Y : (A→A)→A

This extension is enough to encode all typeable ΛNR programs.

When we will discuss Milner’s ml in the next section, we will add a new language construct,

i.e. a second kind of abstraction, fixg.E, but the way to type this is essentially the same.

4.3 Type assignment and algorithms

Naturally, the notion of type assignment for ΛNR is an extension of that of ΛN.

Definition 4.5 (Type assignment for ΛNR) i) An environment E is a mapping from names

and recursive names to types:

E ::= ǫ | E ,name:A | E , rec name:A

where as before we assume that when writing E ,name:A, we have that name:A ∈ E or

name does not occur in E , and similar for rec name.

ii) Type assignment for programs in ΛNR is defined through the following rules:

(Ax) :
Γ, x:A;E ⊢ x : A

(→I) :
Γ, x:A;E ⊢ M : B

Γ;E ⊢ λx.M : A→B
(→E) :

Γ;E ⊢ M : A→B Γ;E ⊢ N : A

Γ;E ⊢ MN : B

(Call) :
Γ;E ,name:A ⊢ name : S A

(Def) :
E ⊢ Defs : ♦ ;E ⊢ M : A

E ,name:A ⊢ Defs ; name = M : ♦

(Rec Call) :
Γ;E , rec name:A ⊢ name : A

(Rec Def) :
E ⊢ Defs : ♦ ;E , rec name:A ⊢ M : A

E ,name:A ⊢ Defs ; rec name = M : ♦

(ǫ) :
E ⊢ ǫ : ♦

(Program) :
E ⊢ Defs : ♦ Γ;E ⊢ M : A

Γ;E ⊢ Defs : M : A

Notice that the main difference between this and the notion we defined for ΛN lies in

rule (Def); since we now allow names to appear inside the body of definitions, we can no

longer type the body as a pure λ-term. To make sure that the type derived for a recursive

function is the same as for its recursive calls inside the bodies, in rule (Rec Def) we insist on

;E , rec name:A ⊢ M : A as a premise, not just ;E ⊢ M : A; this is paired with the presence of

28

ppΛNR x E = 〈x:ϕ ; ϕ ; E 〉

where ϕ is fresh

ppΛNR name E =

{

〈 ; A ; E 〉 (rec name:A ∈ E)

〈 ; FreshInstance A ; E 〉 (name:A ∈ E)

ppΛN λx.M E =

{

〈Π′ ; A→P ; E ′〉 (Π = Π′, x:A)

〈Π ; ϕ→P ; E ′〉 (x 6∈ Π)

where 〈Π ; P ; E ′〉 = ppΛN M E

ϕ is fresh

ppΛN MN E = S2◦S1 〈Π1 ∪Π2 ; ϕ,E ′′〉

where 〈Π1 ; P1 ; E ′〉 = ppΛN M E

〈Π2 ; P2 ; E ′′〉 = ppΛN N E ′

S1 = unify P1 P2→ϕ

S2 = UnifyContexts (S1 Π1) (S1 Π2)

ϕ is fresh

BuildEnv (Defs ; name = M) E = (BuildEnv Defs E),name:A

where 〈 ; A ; E 〉 = ppΛN M E

BuildEnv (Defs ; rec name = M) E = (BuildEnv Defs E),name:S A

where 〈 ; A ; E ′〉 = ppΛNR M (E , rec name:ϕ)

S = unify A B

rec name:B ∈ E ′

ϕ is fresh

BuildEnv ǫ E = E

ppΛN (Defs; M) = ppΛN M E

where E = BuildEnv Defs

Figure 4. Principal environments and types for ΛNR

rule (Rec Call), which enforces that all recursive calls are typed with exactly the environment

type.

When looking to type a program using an algorithm, we need a type for every name we

encounter in the environment and need to have dealt with definitions before their use. With

recursive definitions, the latter creates an obvious problem, which we solve as follows. As-

sume n = M is a recursive definition. When constructing the type of M, we assume n has a

type variable as type; this can be changed by unification into a more complex type depending

on the context of the (recursive) call. At the end of the analysis of the body, we will have

constructed a certain type A for n, and need to check that the type produced for the body is

unifiable with A; if all steps are successful, this will produce the correct type, both for M as

for n.

Note that only for recursion we need to modify a type for a name in the environment; all

other types created for names a simply stored in the environment.

We now give the principal type algorithm for ΛNR; notice that, since the environment gets

changed for recursive definitions, it is also returned as result.

Definition 4.6 The algorithm that calculates the types for a program in ΛNR is defined in

Figure 4.

Notice that, in the case for application, S2◦S1 gets applied to E , producing a changed envi-

ronment; this is only relevant when typing a recursive definition. Again, we assume that the

body of a definition is a closed term.

29

Exercises

Exercise 4.7 Take P to be the program in Example 4.2. Find an environment E such that ;E ⊢ P : ϕ,

and build the derivation that justifies this judgement. Show that the final term reduces to itself.

Exercise 4.8 Consider the ΛNR program

E = λxy.xy ;

S = λxyz.xz(yz) ;

rec Y = λm.m(Ym) :

Y (S (E E))

Give a suitable environment for this program.

Is the program typeable? If so, give a derivation; if not, argue why.

5 Milner’s ml

In [43], a formal type discipline was presented for polymorphic procedures in a simple pro-

gramming language called Lml, designed to express that certain procedures work well on

objects of a wide variety. This kind of procedure is called (shallow) polymorphic, and it is

essential to obtain enough flexibility in programming.

Lml is based on the λ-calculus, but adds two syntactical constructs: one that expresses that

a sub-term can be used in different ways, and one that expresses recursion; this is paired with

a type assignment system that accurately deals with these new constructs. In [24] an algorithm

W was defined that has become very famous and is implemented in a type checker that is

embedded in the functional programming language ml. W is shown to be semantically sound

(based on a formal semantics for the language [43] – so typed programs cannot go wrong), and

syntactically sound, so if W accepts a program, then it is well typed.

We will also present a variant as defined by A. Mycroft [45], which is a generalisation of

Milner’s system, by allowing a more permissive rule for recursion. Both systems are present

in the implementation of the functional programming languages Miranda [53] and Haskell

[33]. Milner’s system is used when the type assignment algorithm infers a type for an object;

Mycroft’s system is used when the type assignment algorithm does type checking, i.e. when

the programmer has specified a type for an object.

5.1 The ml Type Assignment System

In this subsection, we present Milner’s Type Assignment System as was done in [25], and not

as in [24, 43], because the former presentation is more detailed and clearer.

Definition 5.1 (ml expressions) i) ml expressions are defined by the grammar:

E ::= x | c | λx.E | E1E2 | let x = E1 in E2 | fixg .E

We consider x bound over E2 in let x = E1 in E2, and g bound over E in fixg .E.

ii) The notion of term substitution over ml-terms is the natural extension of the similar

notion for λ-terms of Definition 1.6:

x [E/x] = E

y [E/x] = y (y 6= x)

(λy.E′) [E/x] = λy.(E′ [E/x])

(E1E2) [E/x] = E1 [E/x]E2 [E/x]

(let y = E1 in E2) [E/x] = let y = E1 [E/x] in E2 [E/x]

(fixg .E′) [E/x] = fixg .E′ [E/x]

iii) The notion of reduction on Lml, →ml, is defined as →β, extended by:

let x = E1 in E2 →ml E2 [E1/x]

fixg .E →ml E [(fixg .E)/g]

30

and the additional contextual rules:

E →ml E′ ⇒











let x = E in E2 →ml let x = E′ in E2

let x = E1 in E →ml let x = E1 in E′

fixg .E →ml fixg .E′

Here c is a term constant, like a number, character, or operator. As before, we will economise

on brackets.

With this extended notion of reduction, the terms (let x = E2 in E1) and (λx.E1)E2 are de-

notations for reducible expressions (redexes) that both reduce to the term E1[E2/x]. However,

the semantic interpretation of these terms is different. The term (λx.E1)E2 is interpreted as

a function with an operand, whereas the term (let x = E2 in E1) is interpreted as the term

E1[E2/x] would be interpreted. This difference is reflected in the way the type assignment

system treats these terms.

In fact, the let-construct is added to ml to cover precisely those cases in which the term

(λx.E1)E2 is not typeable, but the contraction E1[E2/x] is, while it is desirable for the term

(λx.E1)E2 to be typeable. The problem to overcome is that, in assigning a type to (λx.E1)E2,

the term-variable x can only be typed with one Curry-type; this is not required for x in (let x =

E2 in E1). As argued in [24], it is of course possible to set up type assignment in such a way

that E1[E2/x] is typed every time the let-construct is encountered, but that would force us to

type E2 perhaps many times; even though in normal implementations E2 would be shared,

the various references to it could require it to have different types. The elegance of the let-

construct is that E2 is typed only once, and that its (generalised) principal type is used when

typing E1[E2/x].

The language defined in [43] also contains a conditional-structure (if-then-else). It is not

present in the definition of Lml in [24], so we have omitted it here. The construct fix is intro-

duced to model recursion; it is present in the definition of Lml in [43], but not in [24]. Since

it plays a part in the extension defined by Mycroft of this system, we have inserted it here.

Notice that fix is not a combinator, but an other abstraction mechanism, like λ·.·.

The set of ml types is defined much in the spirit of Curry types (extended with type con-

stants ‘C that can range over the normal types like int, bool, etc.), ranged over by A, B; these

types can be quantified, creating generic types or type schemes, ranged over by σ,τ. An ml-

substitution on types is defined like a Curry-substitution as the replacement of type variables

by types, as before. ml-substitution on a type-scheme τ is defined as the replacement of free

type variables by renaming the generic type variables of τ if necessary.

Definition 5.2 (ml types and type substitution [43]) i) The set of ml types is defined in two

layers.
A, B ::= ϕ | c | (A → B) (basic types)

σ,τ ::= A | (∀ϕ .τ) (polymorphic types)

We will call types of the shape ∀ϕ .τ also quantified types. We will omit brackets as before,

and abbreviate (∀ϕ1 .(∀ϕ2 . · · ·(∀ϕn . A)· · ·)) by ∀ϕ . A. We say that ϕ is bound in ∀ϕ .τ,

and define free and bound type variables accordingly; as is the case for λ-terms, we keep

names of bound and free type variables separate.

ii) An ml-substitution on types is defined by:

(ϕ 7→ C) ϕ = C

(ϕ 7→ C) c = c

(ϕ 7→ C) ϕ′ = ϕ′ (ϕ′ 6= ϕ)

(ϕ 7→ C) A→B = ((ϕ 7→ C) A)→ ((ϕ 7→ C) B)

(ϕ 7→ C) ∀ϕ′ .ψ = ∀ϕ′ .((ϕ 7→ C) ψ)

iii) Unification of is extended to type constants by:

31

unify ϕ c = (ϕ 7→ c),

unify c ϕ = unify ϕ c

unify c c = IdS

Notice that all other cases involving a type constant hereby fail.

Since ϕ′ is bound in ∀ϕ′ .ψ, we can safely assume that, in (ϕ 7→ C) ∀ϕ′ .ψ, ϕ 6= ϕ′ and ϕ′ 6∈

fv (C).

Notice that we need to consider types also modulo some kind of α-conversion, in order to

avoid binding of free type variables while substituting; from now on, we will do that.

Remark that for ∀ϕ1 · · ·∀ϕn . A the set of type variables occurring in A is not necessarily

equal to {ϕ1, . . . , ϕn} .

We now define the closure of a type with respect to a context; we need this in Definition 5.10.

Definition 5.3 Γ A = ∀ϕ . A where ϕ are the type variables that occur free in A but not in Γ.

In the following definition we will give the derivation rules for Milner’s system as presented

in [25]; in the original paper [43] no derivation rules are given; instead, it contains a rather

complicated definition of ‘well typed prefixed expressions’.

Definition 5.4 (ml type assignment [25]) We assume the existence of a function ν that maps

each constant to ‘its’ type, which can be Int, Char, or even a polymorphic type, but is always a

closed type, i.e. has no free type variables.

ml-type assignment and ml-derivations are defined by the following deduction system.

(Ax) :
Γ, x:τ ⊢ x : τ

(C) :
Γ ⊢ c : ν c

(→I) :
Γ, x:A ⊢ E : B

Γ ⊢ λx.E : A→B
(→E) :

Γ ⊢ E1 : A→B Γ ⊢ E2 : A

Γ ⊢ E1E2 : B

(let) :
Γ ⊢ E1 : τ Γ, x:τ ⊢ E2 : B

Γ ⊢ let x = E1 in E2 : B
(fix) :

Γ, g:A ⊢ E : A

Γ ⊢ fix g .E : A

(∀I) :
Γ ⊢ E : τ

(ϕ not (free) in Γ)
Γ ⊢ E : ∀ϕ .τ

(∀E) :
Γ ⊢ E : ∀ϕ .τ

Γ ⊢ E : τ[A/ϕ]

Notice the use of basic types in rules (→I), (→E), and (let), and of polymorphic types in

rules (Ax) and (let).

The quantification of type variables is introduced in order to model the substitution opera-

tion on types that we have seen in previous sections; rather than allowing a blanket replace-

ment of all type variables in-one-go, using ∀ϕ .τ labels the type variable ϕ as being available

for substitution, so stands for ‘all ϕ in τ can be replaced by a basic type’. The side condition

on the rule (∀I) is there to make sure that only those type variables are labelled that do not

occur (also) in the context; the labelling only takes place on the type, and there is no back

pointer of any kind to the context.

We can model the replacement of the type variable ϕ in A by the type B for the (closed)

term M (which we modelled by (ϕ 7→ B)A and the soundness of substitution), through

⊢ml E : A
(∀I)

⊢ml E : ∀ϕ . A
(∀E)

⊢ml E : A[B/ϕ]

The let-construct corresponds in a way to the use of definitions in ΛNR; notice that we can

represent n = N : M by let n = N in M. But let is more general than that. First of all, a

32

let-expression can occur at any point in the ml-term, not just on the outside, and, more sig-

nificantly, E1 need not be a closed term. In ml it is possible to define a term that is partially

polymorphic, i.e. has a type like ∀ϕ . A, where A has also free type variables. Notice that, when

applying rule (∀I), we only need to check if the type variable we are trying to bind does not

occur in the context; this can generate a derivation for Γ ⊢ml E : ∀ϕ . A, where the free type

variables in A are those occurring in Γ.

For the above defined notion of type assignment, we have a number of results. As for ⊢c,

we can show:

Lemma 5.5 (Free variables) : If : Γ ⊢ml E : τ and x ∈ fv (E), then there exists σ such that x:σ ∈ Γ.

(Weakening) : If Γ ⊢ml E : τ, and Γ′ is such that, for all x:σ ∈ Γ′ either x:σ ∈ Γ or x does not occur

free or bound in E, then Γ′ ⊢ml E : τ.

(Thinning) : If Γ, x:σ ⊢ml E : τ and x 6∈ fv (E), then Γ ⊢ml E : τ.

The proof of this result is much as that for Exercise 2.18.

Before expressing the relation between terms and the types we can assign to them, we define

some auxiliary relations between types.

Definition 5.6 We define the relation ‘>Γ’ as the smallest reflexive and transitive relation such

that:
ρ >Γ ∀ϕ .ρ (ϕ not free in Γ and not bound in ρ)

∀ϕ .ρ >Γ ρ[B/ϕ]

provided no ϕ′ is free in A. If σ >Γ τ, we call τ a generic instance of σ.

Notice that ‘>Γ’ depends on Γ in the sense that each context induces a relation.

The relation ‘>Γ’ is used in Theorem 5.11, and σ >Γ τ expresses that we can change a

derivation for Γ ⊢ml E : σ to one for Γ ⊢ml E : τ by applying a sequence of (∀I) and (∀E) steps.

The following follows easily:

Proposition 5.7 If Γ ⊢ml E : σ and σ >Γ τ, then Γ ⊢ml E : τ.

When a system has non-syntax directed type assignment rules, a generation lemma ex-

presses the structure of derivable judgements for each syntactic construct.

Lemma 5.8 (Generation Lemma) i) If Γ ⊢ml x : σ, then there exists x:τ ∈ Γ such that τ >Γ σ.

ii) If Γ ⊢ml λx.E : σ, then there exist A, B such that Γ, x:A ⊢ml E : B, and σ = ∀ϕi . A→B, and

A→B >Γ σ.

iii) If Γ ⊢ml E1E2 : σ, then there exist A, B such that Γ ⊢ml E1 : A→B, Γ ⊢ml E2 : A, and B >Γ σ.

iv) If Γ ⊢ml fixg .E : σ, then there exists A such that Γ, g:A ⊢ml E : A, and σ = ∀ϕi . A, and A >Γ σ.

v) If Γ ⊢ml let x = E1 in E2 : σ, then there exists A,τ such that Γ, x:τ ⊢ml E2 : A, and Γ ⊢ml E1 : τ,

and A >Γ σ.

Proof : All are shown by induction on the structure of derivations. We show just two cases.

i) If Γ ⊢ml x : σ, then this derivation ends either with an application of rule:

(Ax) : Then x:σ ∈ Γ; notice that σ >Γ σ.

(∀I) : Then σ = ∀ϕ .ρ, and Γ ⊢ml x : ρ, with ϕ not free in Γ. By induction, there exists x:τ ∈ Γ

such that τ >Γ ρ; since ρ >Γ ∀ϕ .ρ, also σ >Γ ∀ϕ .ρ.

(∀E) : Then σ = ρ[B/ϕ] and Γ ⊢ml x : ∀ϕ .ρ. By induction, there exists x:τ ∈ Γ such that

τ >Γ ∀ϕ .ρ; since ∀ϕ .ρ >Γ ρ[B/ϕ], also τ >Γ ρ[B/ϕ].

v) If Γ ⊢ml let x = E1 in E2 : σ, then this derivation ends either with an application of rule:

(let) : Then there exists A,τ such that σ = A and Γ ⊢ml E1 : τ and Γ, x:τ ⊢ml E2 : A. Notice that

A >Γ A.

33

(∀I) : Then σ = ∀ϕ .ρ, and Γ ⊢ml let x = E1 in E2 : ρ, with ϕ not free in Γ. By induction, there

exists A,τ such that Γ ⊢ml E1 : τ, Γ, x:τ ⊢ml E2 : A, and A >Γ ρ. Since ρ >Γ ∀ϕ .ρ, also

A >Γ ∀ϕ .ρ.

(∀E) : Then σ = ρ[B/ϕ] and Γ ⊢ml let x = E1 in E2 : ∀ϕ .ρ. By induction,, there exists A,τ

such that Γ ⊢ml E1 : τ, Γ, x:τ ⊢ml E2 : A, and A >Γ ∀ϕ .ρ. Since ∀ϕ .ρ >Γ ρ[B/ϕ], also

A >Γ ρ[B/ϕ].

So, for each syntactic construct, a derivation for that construct contains an application of the

type assignment rule directly dealing with it, perhaps followed by a sequence of applications

of the rules (∀I) and (∀E).

It is easy to show that the subject reduction property holds also for ml (see Exercise 5.16).

The ml notion of type assignment, when restricted to the pure Lambda Calculus, is also a

restriction of the Polymorphic Type Discipline, or System F, as presented in [29]. This system

is obtained from Curry’s system by adding the type constructor ‘∀’: if ϕ is a type variable and

A is a type, then ∀ϕ . A is a type. A difference between the types created in this way and the

types (or type-schemes) of Milner’s system is that in Milner’s type-schemes the ∀-symbol can

occur only at the outside of a type (so polymorphism is shallow); in System F, ∀ is a general

type constructor, so A→∀ϕ . B is a type in that system. Moreover, type assignment in System

F is undecidable, as shown by Wells [55], whereas as we will see it is decidable in ml.

In understanding the (let)-rule, notice that the generic type τ is used. Assume that τ =

∀ϕ . A, and that in building the derivation for the statement E2 : B, τ is instantiated (otherwise

the rules (→I) and (→E) cannot be used) into the types A1, . . . , An, so, for every Ai there exists

are B such that Ai = A[B/ϕ]. So, for every Ai there is a substitution Si such that Si A = Ai.

Assume, without loss of generality, that E1 : τ is obtained from E1 : A by (repeatedly) applying

the rule (∀I). Notice that the types actually used for x in the derivation for E2 : B are, therefore,

substitution instances of the type derived for E1.

In fact, this is the only true use of quantification of types in ml: although the rules allow

for a lot more, essentially quantification serves to enable polymorphism:

Γ ⊢ E1 : A
(∀I)

Γ ⊢ E1 : ∀ϕ . A

(Ax)
Γ, x:∀ϕ . A ⊢ x : ∀ϕ . A

(∀E)
Γ, x:∀ϕ . A ⊢ x : A[B/ϕ]

(Ax)
Γ, x:∀ϕ . A ⊢ x : ∀ϕ . A

(∀E)
Γ, x:∀ϕ . A ⊢ x : A[C/ϕ]

Γ, x:∀ϕ . A ⊢ E2 : D
(let)

Γ ⊢ let x = E1 in E2 : D

Since we can show the Substitution Lemma also for ml, from Γ ⊢ml E1 : A we can show that

Γ ⊢ml E1 : A[B/ϕ] and Γ ⊢ml E1 : A[C/ϕ] (notice that ϕ does not occur in Γ), and we can type

the contraction of the redex as follows (notice that then quantification is no longer used):

Γ ⊢ E1 : A[B/ϕ] Γ ⊢ E1 : A[C/ϕ]

Γ ⊢ E2[E1/x] : D

Example 5.9 The program ‘I = λx.x : I I’ translates as ‘let i = λx.x in ii’ which we can type by:

(Ax)
x:ϕ ⊢ x : ϕ

(→I)
⊢ λx.x : ϕ→ϕ

(∀I)
⊢ λx.x : ∀ϕ . ϕ→ϕ

i:∀ϕ . ϕ→ϕ ⊢ i : ∀ϕ . ϕ→ϕ

i:∀ϕ . ϕ→ϕ ⊢ i : (A→A)→A→A

(Ax)
i:∀ϕ . ϕ→ϕ ⊢ i : ∀ϕ . ϕ→ϕ

(∀E)
i:∀ϕ . ϕ→ϕ ⊢ i : A→A

(→E)
i:∀ϕ . ϕ→ϕ ⊢ ii : A→A

(let)
⊢ let i = λx.x in ii : A→A

As for rule (fix), remember that, to express recursion, we look for a solution to an equation

34

W Γ c = 〈id, B〉

where ν c = ∀ϕ . A

B = A[ϕ′/ϕ]

all ϕ′ are fresh

W Γ x = 〈id, B〉

where x:∀ϕ . A ∈ Γ

B = A[ϕ′/ϕ]

all ϕ′ are fresh

W Γ (λx.E) = 〈S, S(ϕ→A)〉

where 〈S, A〉 = W (Γ, x:ϕ) E

ϕ is fresh

W Γ (let x = E1 in E2) = 〈S2◦S1, B〉

where 〈S1, A〉 = W Γ E1

〈S2, B〉 = W (S1 Γ, x:σ) E2

σ = S1 ΓA

W Γ (fix g .E) = 〈S2◦S1,S2 A〉

where 〈S1, A〉 = W (Γ, g:ϕ) E

S2 = unify (S1 ϕ) A

ϕ is fresh

W Γ (E1E2) = 〈S3◦S2◦S1,S3 ϕ〉

where ϕ is fresh

〈S1, A〉 = W Γ E1

〈S2, B〉 = W (S1 Γ) E2

S3 = unify (S2 A) (B→ϕ)

Figure 5. Milner’s Algorithm W

like F = N[F/x] which has as solution F = Y(λx.N). One way of dealing with this, and

the approach of [24], is to add the constant Y to the calculus as discussed in Example 4.4.

Instead, here we follow the approach of [25] and add recursion via additional syntax. Since,

by the reasoning above, we normally are only interested in fixed-points of abstractions, in some

papers this has led the definition of fixg x .E as general fixed-point constructor, which would

correspond to our fixg .λx.E; the rule then is formulated as follows:

(fix) :
Γ, g:A→B, x:A ⊢ E : B

Γ ⊢ fix g x .E : A→B

This is, for example, the approach of [46].

Another approach is the use of letrec, a combination of let and fix, of the form

letrec g = λx.E1 in E2

with derivation rule

(letrec) :
Γ, g:B→C, x:B ⊢ E1 : C Γ, g:τ ⊢ E2 : A

(τ = Γ(B→C))
Γ ⊢ letrec g = λx.E1 in E2 : A

This construct letrec g = λx.E1 in E2 can be viewed as syntactic sugar for

let h = (fixg .λx.E1) in E2[h/g]

but we will not be using these notations here.2

5.2 Milner’s W

We will now define Milner’s algorithm W . Notice that, different from the algorithms we

considered above, W does not distinguish names and variables, so deals only with a context.

Above we needed to pass the environment as a parameter; this was mainly because we could

not safely assume a type for names or depend on unification to construct the correct type. A

similar thing is true for let-bound variables: these might need to have a quantified type, which

does not get constructed by W ; so, for the same reason, W passes the context as a parameter,

which should have the correct type for variables to make the term typeable.

Definition 5.10 (Milner’s Algorithm W [43]) Milner’s type assignment algorithm for ml

is defined in Figure 5. Notice the use of S1 ΓA (see Definition 5.3) in the case for let, where we

add a quantified type for x to the context.

This system has several important properties:

35

• The system has a principal type property, in that, given Γ and E, there exists a principal

type, calculated by W . It does not enjoy the principal pair property, as argued in [56].

This is essentially due to the fact that, when a derivation for Γ, x:τ ⊢ml E : A might exists,

the abstraction λx.E need not be typeable.

• Type assignment is decidable.

In fact, W satisfies:

Theorem 5.11 • Completeness of W . If for a term E there are contexts Γ and Γ′ and type A, such

that Γ′ is an instance of Γ and Γ′ ⊢ml E : A, then W Γ E = 〈S, B〉, and there is a substitution S′

such that Γ′ = S′ (S Γ) and S′ (S B) >Γ′ A.

• Soundness of W . For every term E: if W Γ E = 〈S, A〉, then S Γ ⊢ml E : A.

Example 5.12 To express addition in ml, we can proceed as follows. We can define addition by:

Add = λxy.Cond (IsZero x) y (Succ (Add (Pred x) y))

We have seen in the first section that we can express Succ , Pred, and IsZero in the λ-calculus,

and now know that we can express recursive definitions in ml: so we can write

Add = fixa .λxy.Cond (IsZero x) y (Succ (a (Pred x) y))

Assuming we have:
νSucc = Num→Num

νPred = Num→Num

ν IsZero = Num→Bool

νCond = ∀ϕ .Bool→ϕ→ϕ→ϕ

we can type the definition of addition as follows (where we write N for Num, B for Bool, and Γ

for a:N→N→N, x:N,y:N):

Let

D1 =

(C)
Γ ⊢ Cond : ∀ϕ .B→ϕ→ϕ→ϕ

(∀E)
Γ ⊢ Cond : B→N→N→N

(C)
Γ ⊢ IsZero : N→B

(Ax)
Γ ⊢ x : N

(→E)
Γ ⊢ IsZero x : B

(→E)
Γ ⊢ Cond (IsZero x) : N→N→N

(Ax)
Γ ⊢ y : N

(→E)
Γ ⊢ Cond (IsZero x) y : N→N

D2 =
(C)

Γ ⊢ml Succ : N→N

(Ax)
Γ ⊢ml a : N→N→N

(C)
Γ ⊢ml Pred : N→N

(Ax)
Γ ⊢ml x : N

(→E)
Γ ⊢ml Pred x : N

(→E)
Γ ⊢ml a (Pred x) : N→N

(Ax)
Γ ⊢ml y : N

(→E)
Γ ⊢ml a (Pred x) y : N

(→E)
Γ ⊢ml Succ (a (Pred x) y) : N

then we can construct:

D1

Γ ⊢ Cond (IsZero x) y : N→N

D2

Γ ⊢ Succ (a (Pred x) y) : N
(→E)

Γ ⊢ Cond (IsZero x) y (Succ (a (Pred x) y)) : N
(→I)

a:N→N→N, x:N ⊢ λy.Cond (IsZero x) y (Succ (a (Pred x) y)) : N→N
(→I)

a:N→N→N ⊢ λxy.Cond (IsZero x) y (Succ (a (Pred x) y)) : N→N→N
(fix)

⊢ fix a .λxy.Cond (IsZero x) y (Succ (a (Pred x) y)) : N→N→N

36

5.3 Polymorphic recursion

In [45] A. Mycroft defined a generalisation of Milner’s system (independently, a similar sys-

tem was defined in [35]). This generalisation is made to obtain more permissive types for

recursively defined objects.

The example that Mycroft gives to justify his generalisation is the following

map (f , l) = if null (l) then l else cons (f (hd l),map (f , tl l))

squarelist (l) = map (λx.x2, l)

Using the notation of ΛNR, this becomes:

map = λ f l.Cond (null l) l (cons (f (hd l)) (map f (tl l))) ;

squarelist = λl.map (λx.mul x x) l :

squarelist (cons 2 nil)

where Cond, hd, tl, null (the test if a list is empty, i.e, the same as nil), cons, and mul are assumed

to be familiar list constructors and functions, and we supply a final term to build a program.

In the implementation of ml, there is no check if functions are independent or are mutually

recursive, so all definitions are dealt with in one step. For this purpose, the language Lml is

formally extended with a pairing function ‘〈·, ·〉’, and the translation of the above expression

into Lml will be:

let 〈map,squarelist〉 = fix 〈m, s〉.〈λgl.Cond (null l) l (cons (g (hd l))(mg(tl l))),

λl.(m(λx.mul x x) l)〉

in (squarelist (cons 2 nil))

Within Milner’s system these definitions (when defined simultaneously in ml) would get

the types:
map :: (num→num)→[num]→[num]

squarelist :: [num]→[num]

while the definition of map alone would yield the type:

map :: ∀ϕ1ϕ2 .(ϕ1→ϕ2)→[ϕ1]→[ϕ2].

Since the definition of map does not depend on the definition of squarelist, one would expect

the type inferrer to find the second type for map. That such is not the case is caused by the

fact that all occurrences of a recursively defined function on the right-hand side within the

definition must have the same type as in the left-hand side.

There is more than one way to overcome this problem. One is to recognise mutual recursive

rules, and treat them as one definition. (Easy to implement, but difficult to formalise, a

problem we run into in Section 6). Then, the translation of the above program could be:

let map = (fixm .λgl.Cond (null l) l (cons (g (hd l))(mg(tl l))))

in (let squarelist = (λl.(map (λx.mul x x) l))

in (squarelist (cons 2 nil)))

The solution chosen by Mycroft is to allow of a more general rule for recursion than Milner’s

(fix)-rule (the set of types used by Mycroft is the same as defined by Milner).

Definition 5.13 ([45]) Mycroft type assignment is defined by replacing rule (fix) by:

(fix) :
Γ, g:τ ⊢Myc E : τ

Γ ⊢Myc fix g .E : τ

Thus, the only difference lies in the fact that, in this system, the derivation rule (fix) allows

for type-schemes instead of types, so the various occurrences of the recursive variable can be

37

ppΛNR x E = 〈x:ϕ ; ϕ〉

where ϕ is fresh

ppΛNR name E = 〈 ; FreshInstance(Ename)〉

ppΛN λx.M E = 〈Π′ ; A→P〉 (Π = Π′, x:A)

〈Π ; ϕ→P〉 (x 6∈ Π)

where 〈Π ; P〉 = ppΛN M E

ϕ is fresh

ppΛN MN E = S2◦S1 〈Π1 ∪Π2 ; ϕ〉

where 〈Π1 ; P1〉 = ppΛN M E

〈Π2 ; P2〉 = ppΛN N E

S1 = unify P1 P2→ϕ

S2 = UnifyContexts (S1 Π1) (S1 Π2)

ϕ is fresh

CheckEnv (Defs ; name = M) E = (CheckEnv Defs E) ∧ (E name) = P

where 〈 , P〉 = ppΛN M E

CheckEnv ǫ E = true

ppΛN (Defs; M) E = ppΛN M E , if CheckEnv Defs E

Figure 6. A type-check algorithm for ΛNR using Mycoft’s approach

typed with different Curry-types.

Mycroft’s system has the following properties:

• Like in Milner’s system, in this system polymorphism can be modelled.

• Type assignment in this system is undecidable, as shown by A.J. Kfoury, J. Tiuryn and

P. Urzyczyn in [36].

For ΛNR, Mycroft’s approach results in:

Definition 5.14 (Mycroft-style type assignment for ΛNR) Type assignment for programs

in ΛNR using polymorphic recursion is defined through the rules (Ax), (→I), (→E), and

(Program) of Definition 4.5, and replacing the rules (ǫ), (Call), (Rec Call), (Def), and (Rec Def)

by following rules:

(ǫ) :
E ⊢ ǫ : ♦

(Call) :
Γ;E ,name:A ⊢ name : S A

(Defs) :
E ,name:A ⊢ Defs : ♦ ;E ,name:A ⊢ M : A

E ,name:A ⊢ Defs ; name = M : ♦

Mycroft’s approach is implemented by the algorithm in Figure 6.

Notice that these rules now check the environment, rather than construct it. In this approach,

in the algorithm the environment never gets updated, so has to be provided (by the user)

before the program starts running. This implies that the above algorithm is more a type-check

algorithm rather than a type-inference algorithm as are those that we have seen above.

5.4 The difference between Milner’s and Mycroft’s system

Since Mycroft’s system is a true extension of Milner’s, there are terms typeable in Mycroft’s

system that are not typeable in Milner’s. For example, in Mycroft’s system

fixg .((λab.a) (g λc.c) (g λde.d)) : ∀ϕ1ϕ2 . ϕ1→ϕ2.

is a derivable statement (as shown in Figure 7, where Γ = g:∀ϕ1ϕ2 . ϕ1→ϕ2; notice that the

type variables ϕ3 and ϕ4 do not occur (free) in the context, so can be bound, and that we use

renaming of bound type variables when quantifying). It is easy to see that this term is not

typeable using Milner’s system, because the types needed for g in the body of the term cannot

be unified.

But, the generalisation allows for more than was aimed at by Mycroft: in contrast to what

Mycroft suggests, type assignment in this system is undecidable. And not only is the set of

38

.

.

.

.

.

.

.

.

.

.

.

.

(Ax)
Γ, a:ϕ3→ϕ4,b:B ⊢ a : ϕ3→ϕ4

(→I)
Γ,b:B ⊢ λb.a : (ϕ3→ϕ4)→B→ϕ3→ϕ4

(→I)
Γ ⊢ λab.a : (ϕ3→ϕ4)→B→ϕ3→ϕ4

(Ax)
Γ ⊢ g : ∀ϕ1ϕ2 . ϕ1→ϕ2

(∀E)
Γ ⊢ g : ∀ϕ2 . (C→C)→ϕ2

(∀E)
Γ ⊢ g : (C→C)→ϕ3→ϕ4

(Ax)
Γ, c:C ⊢ c : C

(→I)
Γ ⊢ λc.c : C→C

(→E)
Γ ⊢ g λc.c : ϕ3→ϕ4

(→E)
Γ ⊢ (λab.a) (g λc.c) : B→ϕ3→ϕ4 (Ax)

Γ ⊢ g : ∀ϕ1 ϕ2 . ϕ1→ϕ2
(∀E)

Γ ⊢ g : ∀ϕ2 . (D→E→D)→ϕ2
(∀E)

Γ ⊢ g : (D→E→D)→B

(Ax)
Γ, e:E ⊢ d : D

(→I)
Γ,d:D ⊢ λe.d : E→D

(→I)
Γ ⊢ λde.d : D→E→D

(→E)
Γ ⊢ g λde.d : B

(→E)
Γ ⊢ (λab.a) (g λc.c) (g λde.d) : ϕ3→ϕ4

(∀I)
Γ ⊢ (λab.a) (g λc.c) (g λde.d) : ∀ϕ2 . ϕ3→ϕ2

(∀I)
Γ ⊢ (λab.a) (g λc.c) (g λde.d) : ∀ϕ1 ϕ2 . ϕ1→ϕ2

(fix)
⊢ fix g .(λab.a) (g λc.c) (g λde.d) : ∀ϕ1 ϕ2 . ϕ1→ϕ2

Figure 7. A derivation for ⊢Myc fix g .(λab.a) (g λc.c)(g λde.d) : ∀ϕ1 ϕ2 . ϕ1→ϕ2

(Ax)
Γ ⊢ r : ∀ϕ1ϕ2 ϕ3 . ϕ1→ϕ2→ϕ3

(∀E)
Γ ⊢ r : ϕ7→ϕ4→ϕ6

(Ax)
Γ ⊢ r : ∀ϕ1ϕ2ϕ3 . ϕ1→ϕ2→ϕ3

(∀E)
Γ ⊢ r : ϕ5→(A→B→A)→ϕ7

(Ax)
Γ ⊢ y : ϕ5

(→E)
Γ ⊢ r y : (A→B→A)→ϕ7

(Ax)
Γ, a:A,b:B ⊢ a : A

(→I)
Γ, a:A ⊢ λb.a : B→A

(→I)
Γ ⊢ λab.a : A→B→A

(→E)
Γ ⊢ r y (λab.a) : ϕ7

.

.

.

.

.

(→E)
Γ ⊢ r (r y (λab.a)) : ϕ4→ϕ6

(Ax)
Γ ⊢ x : ϕ4

(→E)
Γ = r:∀ϕ1 ϕ2ϕ3 . ϕ1→ϕ2→ϕ3, x:ϕ4,y:ϕ5 ⊢ r (r y (λab.a))x : ϕ6

(→I)
r:∀ϕ1 ϕ2 ϕ3 . ϕ1→ϕ2→ϕ3, x:ϕ4 ⊢ λy.r (r y (λab.a))x : ϕ5→ϕ6

(→I)
r:∀ϕ1 ϕ2 ϕ3 . ϕ1→ϕ2→ϕ3 ⊢ λxy.r (r y (λab.a))x : ϕ4→ϕ5→ϕ6

(∀I)
r:∀ϕ1 ϕ2 ϕ3 . ϕ1→ϕ2→ϕ3 ⊢ λxy.r (r y (λab.a))x : ∀ϕ1ϕ2ϕ3 . ϕ1→ϕ2→ϕ3

(fix)
⊢ fixr .λxy.r (r y (λab.a))x : ∀ϕ1 ϕ2ϕ3 . ϕ1→ϕ2→ϕ3

Figure 8. A type derivation for ⊢Myc fixr .λxy.r (r y (λab.a)) x : ∀ϕ4ϕ5 ϕ6 . ϕ4→ϕ5→ϕ6

terms that can be typed in Mycroft’s system larger than in Milner’s, it is also possible to assign

more general types to terms that are typeable in Milner’s system. For example, the statement

⊢Myc fixr .λxy.r (r y (λab.a)) x : ∀ϕ1 ϕ2ϕ3 . ϕ1→ϕ2→ϕ3

is derivable in Mycroft’s system, as shown in Figure 8 (where we have collapsed sequences

of (∀I) and (∀E) steps). Notice that ∀ϕ4ϕ5 ϕ6 . ϕ4→ϕ5→ϕ6 = ∀ϕ1ϕ2 ϕ3 . ϕ1→ϕ2→ϕ3, so we can

apply rule (fix); moreover A and B are irrelevant for this construction. That term is also

typeable in Milner’s system, as shown in Exercise 5.21.

We have seen the differences between the two approaches also in the previous section.

Milner’s ML uses fix to represent recursion definitions, and the occurrences of f in E in fix f .E

are recursive calls to the function defined by fix f .E. The type assignment rule for fix states

that if Γ, f :A ⊢ E : A, then Γ ⊢ fix f .E : A, so the recursive definition is only considered typeable

if fix f .E : A, E, and all recursive calls for f in E all have the same type. ML then allows the

type for fix f .E : A to be quantified, and allow recursive definitions to be let-bound (which, as

we know, models calling a definition), and be polymorphic.

39

When using this approach in ΛNR, the recursive calls all have the same type as the definition;

calls outside the definitions can be treated as polymorphic. Mycroft does not insist on typeing

recursive calls with the same type, so using his approach for ΛNR all calls can be polymorphic.

This is reflected in the type assignment rules for calls.

Exercises

* Exercise 5.15 Show that ml-substitution is a sound operation in the ML type assignment system. You

can use (S σ)[(S A)/ϕ] = S (σ[A/ϕ]), and can assume that free and bound (by ∀) type-variables are

distinct.

* Exercise 5.16 Show that type assignment in ml satisfies subject reduction: if Γ ⊢ml M : σ, and M →ml

N, then Γ ⊢ml N : σ.

Exercise 5.17 Assuming the types Bool and Int and the following extensions to ml:

• a prefix addition ‘+’ with type Int→Int→Int;

• a conditional language construct ‘Cond’ with type Bool→A→A→A;

• a test for zero ‘=0’ with type Int→Bool;

• a function ‘-1’ with type Int→Int;

express the multiplication function as an ml-expression, and give a derivation that types this term;

you can assume that all added functions are treated as constants.

Exercise 5.18 Assume now the type constructor [·] and the constructor Cons with type ∀ϕ.ϕ→[ϕ]→[ϕ].

Abbreviating your answer to Exercise 5.17 by D :: ⊢ Times : Int→Int→Int, and using the information

for the previous part, write an ml-expression that represents the (infinite) list of all square numbers.

Show that this term is typeable.

Exercise 5.19 Express, using the information from Exercise 5.17, the factorial function as an ML ex-

pression, and show that this term is typeable.

Exercise 5.20 Using your answer to Exercise 5.19, write an ML expression that represents the list of

all factorial numbers, and show, abbreviating if needed your answer to the previous part, that this term

is typeable.

Exercise 5.21 Take R = fixr .λxy.r (r y (λab.a)) x, the term of Figure 8; give the derivation for

⊢ml R : ∀ϕ4ϕ5 .(ϕ4→ϕ5→ϕ4)→(ϕ4→ϕ5→ϕ4)→ ϕ4→ϕ5→ϕ4.

6 Pattern matching: term rewriting

The notion of reduction we will study in this section is that of term rewriting [38, 39], a notion

of computation which main feature is that of pattern matching, making it syntactically closer

to most functional programming languages than the pure Lambda Calculus.

6.1 Term Rewriting Systems

Term rewriting systems can be seen as an extension of the λ-calculus by allowing the formal

parameters to have structure. Terms are built out of variables, function symbols and application;

there is no abstraction, functions are modelled via rewrite rules that describe how terms can be

modified.

Definition 6.1 (Syntax) i) An alphabet or signature Σ consists of a countable, infinite set X of

variables x1, x2, x3, . . . (or x,y,z, x′,y′, . . .), a non-empty set F of function symbols F, G, . . .,

each with a fixed arity.

ii) The set T(F,X) of terms, ranged over by t, is defined by:

40

t ::= x | F | (t1 · t2)

As before, we will omit ‘·’ and obsolete brackets.

iii) A replacement, written {x1 7→ t1, . . . , xn 7→ tn} or as a capital character like ‘R’ when we

need not be specific, is an operation on terms where term variables are consistently

replaced by terms, and corresponds to the implicit substitution of the λ-calculus. We

write tR for the result of applying the replacement R to t.

Reduction on T(F,X) is defined through rewrite rules. They are intended to show how

a term can be modified, by stating how a (sub)term that matches a certain structure will be

replaced by another that might be constructed using parts of the original term.

Definition 6.2 (Reduction) i) A rewrite rule is a pair (l,r) of terms. Often, a rewrite rule will

get a name, e.g. r, and we write
r : l → r

Two conditions are imposed:

a) l = F t1 · · · tn, for some F ∈ F with arity n and t1, . . . , tn ∈ T(F,X), and

b) fv (r) ⊆ fv (l).

ii) The patterns of this rule are the terms ti, 1≤ i≤n, such that either ti is not a variable, or ti

is variable x and there is a tj (1≤ i 6= j≤n) such that x ∈ fv (tj).

iii) A rewrite rule l → r determines a set of rewrites lR → rR for all replacements R. The

left-hand side lR is called a redex, the right-hand side rR its contractum.

iv) A redex t may be substituted by its contractum t′ inside a context C⌈·⌋; this gives rise

to rewrite steps C⌈t⌋ → C⌈t′⌋. Concatenating rewrite steps we have rewrite sequences t0 →

t1 → t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn.

Notice that, if l → r is a rule, then l is not a variable, nor an application that ‘starts with’

a variable. Also, r does not introduce new variables: this is because, during rewriting, the

variables in l are not part of the term information, but are there only there to be ‘filled’ with

sub-terms during matching, which are then used when building the replacement term; a new

variable in r would have no term to be replaced with. In fact, we could define term rewriting

correctly by not allowing any variables at all outside rewrite rules.

As we have seen above, Combinatory Logic is a special trs.

Definition 6.3 A Term Rewriting System (trs) is defined by a triple 〈F,X,R〉 of an alphabet Σ

and a set R of rewrite rules.

We take the view that in a rewrite rule a certain symbol is defined.

Definition 6.4 Let 〈F,X,R〉 be a trs. In a rewrite rule r : F t1 · · · tn → r ∈ R, F ∈ F is called

the defined symbol of r, and r is said to define F. F is a defined symbol if there is a rewrite rule

that defines it, and Q ∈ F is called a constructor if Q is not a defined symbol.

The notion of defined symbols is important when we define how we type a rule.

Notice that the defined symbol of a rule is allowed to appear more than once in a rule; in

particular, it is allowed to appear on the right-hand side, thereby modelling recursion.

Example 6.5 The following is a set of rewrite rules that defines the functions append and map

on lists and establishes the associativity of append. The function symbols nil and cons are

constructors.

41

append nil l → l

append (cons x l) l′ → cons x (append l l′)

append (append l l′) l′′ → append l (append l′ l′′)

map f nil → nil

map f (cons y l) → cons (f y) (map f l)

With this notion of rewriting, we obtain more than just the normal functional paradigm:

there, in a rewrite rule, function symbols are not allowed to appear in ‘constructor position’

(i.e in a pattern) and vice-versa. For example, in the rule F t1 · · · tn → r , the symbol F

appears in function position and is thereby a function symbol (we have called those defined

symbols); the terms ti can contain symbols from F , as long as those are not function symbols,

i.e. are constructors.

This division is not used in trs: the symbol append appears in the third rule in both

function and constructor position, so, in trs, the distinction between the notions of function

symbol and constructor is lost.

Example 6.1 (Surjective Pairing) In particular, the following is a correct trs.

In-left (Pair x y) → x

In-right (Pair x y) → y

Pair (In-left x) (In-right x) → x

A difficulty with this trs is that it forms Klop’s famous ‘Surjective Pairing’ example [37];

this function cannot be expressed in the λ-calculus because when added to the λ-calculus, the

Church-Rosser property no longer holds.

This implies that, although both the λ-calculus and trs are Turing-machine complete, so

are expressive enough to encode all computable functions (algorithms), there is no general

syntactic solution for patterns in the λ-calculus, so a full-purpose translation (interpretation)

of trs in the λ-calculus is not feasible.

6.2 Type assignment for trs

We will now set up a notion of type assignment for trs, as defined and studied in [9, 6,

7]. For the same reasons as before we use an environment providing a type for each function

symbol. From it we can derive many types to be used for different occurrences of the symbol

in a term, all of them ‘consistent’ with the type provided by the environment; an environment

functions as in the Milner and Mycroft algorithms.

Definition 6.6 (Environment) Let 〈F,X,R〉 be a trs. An environment for this trs is a map-

ping E : F → Tc.

We define type assignment much as before, but with a small difference. Since there is no

notion of abstraction in trs, we have no longer the need to require that contexts are mappings

from variables to types; instead, here we will use the following definition.

Definition 6.7 A trs-context is a set of statements with variables (not necessarily distinct) as

subjects.

Notice that this generalisation would allow for xx to be typeable.

Definition 6.8 (Type Assignment on Terms) Let 〈F,X,R〉 be a trs, and E and environment

for it. Type assignment (with respect to E) is defined by the following natural deduction system.

Note the use of a substitution in rule (Call).

42

(Ax) :
Γ, x:A;E ⊢ x : A

(Call) :
Γ;E , F:A ⊢ F : SA

(→E) :
Γ;E ⊢ t1 : A→B Γ;E ⊢ t2 : A

Γ;E ⊢ t1t2 : B

As before, the use of an environment in rule (Call) introduces a notion of polymorphism for

our function symbols. The environment returns the ‘principal type’ for a function symbol; this

symbol can be used with types that are ‘instances’ of its principal type, obtained by applying

substitutions.

The main properties of this system are:

• Principal types. We will focus on this in Section 6.3.

• Subject reduction. This will be proven in Section 6.4.

Remark 6.9 It is, in general, not possible to prove a strong normalisation result for typeable

terms: take a term t that is typeable, and the rewrite rule t → t, then clearly t is not nor-

malisable. However, it is possible to prove a strong normalisation result for systems where

recursive rules are restricted to be of the shape

F C⌈x⌋ → C′ [F C1[x] . . . F Cm [x]],

where, for every 1 ≤ j ≤ m, Cj [x] is a strict subterm of C⌈x⌋, so F is only called recursively on

terms that are substructures of its initial arguments (see [7] for details); this scheme generalises

primitive recursion.

Notice that, for example, the rules of a combinator system like cl (see Section 6.6) are not

recursive, so this result gives us immediately a strong normalisation result for combinator

systems.

6.3 The principal pair for a term

In this subsection, the principal pair for a term t with respect to the environment E is defined,

consisting of context Π and type P, using Robinsons unification algorithm unify. In the fol-

lowing, we will show that for every typeable term, this is a legal pair and is indeed the most

general one.

Definition 6.10 Let 〈F,X,R〉 be a trs, and E and environment for it. We define the notion

pp t E = 〈Π ; P〉 inductively by:

pp x E = 〈x:ϕ ; ϕ〉

where ϕ = fresh

pp F E = 〈 ; FreshInstance (E F)〉

pp t1t2 E = S〈Π1 ∪Π2 ; ϕ〉

where ϕ = fresh

〈Π1 ; P1〉 = pp t1 E

〈Π2 ; P2〉 = pp t2 E

S = unify P1 P2→ϕ

Notice that, since we allow a context to contain more than one statement for each variable, we

do not require Π1 and Π2 to agree via the unification of contexts.

The following shows that substitution is a sound operation on derivations.

Lemma 6.11 (Soundness of substitution) Let 〈F,X,R〉 be a trs, and E and environment for it.

If Γ;E ⊢ t : A, then S Γ;E ⊢ t : S A, for every type-substitution S.

(see Exercise 6.28).

In the following theorem we show that the operation of substitution is complete.

Theorem 6.12 (Completeness of substitution) Let 〈F,X,R〉 be a trs, and E and environment

for it. If Γ;E ⊢ t : A, then there are Π, P, and a substitution S such that: pp t E = 〈Π ; P〉, and

S Π ⊆ Γ, S P = A.

Proof : By induction on the structure of t.

43

(t ≡ x) : Then x:A ∈ Γ. Then there is a ϕ such that pp x E = 〈x:ϕ ; ϕ〉. Take S = (ϕ 7→ A).

(t ≡ F) : Then Π = , and P = FreshInstance (E F). By rule (Call) there exists a substitu-

tion S such that A = S (E F). But then there exists a substitution S′ such that A =

S′ (FreshInstance (E F)).

(t ≡ t1 t2) : Then there exists B ∈ Tc such that Γ;E ⊢ t1 : B→A, and Γ;E ⊢ t2 : B. By induction,

for i = 1,2, there are Πi, Pi, and a substitution Si such that

pp ti E = 〈Πi ; Pi〉, S1 Π1 ⊆ Γ, S2 Π2 ⊆ Γ, S1 P1 = B→A, and S2 P2 = B,

Let ϕ be a fresh type-variable; since now S1 P1 = B→A = S2◦(ϕ 7→ A) (P2→ϕ), by Prop-

erty 2.13, there exists substitutions Su,S′ such that Su = unify P1 P2→ϕ, and S1◦S2◦(ϕ 7→

A) = S′◦Su = S2◦(ϕ 7→ A)◦S1. Take S = S1◦S2◦(ϕ 7→ A), and C = S ϕ.

6.4 Subject reduction

By Definition 6.2, if a term t is rewritten to the term t′ using the rewrite rule l → r, there is a

subterm t0 of t, and a replacement R, such that lR = t0, and t′ is obtained by replacing t0 by rR.

To guarantee the subject reduction property, we should accept only those rewrite rules l → r,

that satisfy:

For all replacements R, contexts Γ and types A: if Γ;E ⊢ lR : A, then Γ;E ⊢ rR : A.

because then we are sure that all possible rewrites are safe. It might seem straightforward

to show this property, and indeed, in many papers that consider a language with pattern

matching, the property is just claimed and no proof is given. But, as we will see in this

section, it does not automatically hold. However, it is easy to formulate a condition that

rewrite rules should satisfy in order to be acceptable.

Definition 6.13 Let 〈F,X,R〉 be a trs, and E and environment for it.

i) We say that l → r ∈ R with defined symbol F is typeable with respect to E , if there are Π, P

and E such that pp l E = 〈Π ; P〉, Π;E ⊢ r : P, and such that the leftmost occurrence of F

in finding 〈Π ; P〉 (so in the derivation for Π;E ⊢ l : P) is typed with E(F).

ii) We say that 〈F,X,R〉 is typeable with respect to E , if all r ∈ R are.

To illustrate the need of separating how we type the defined symbol of a rule, consider how

we deal with a term like S K. If it is just a subterm, then we see both S and K as calls, and

allow their types to be instances of the type stored for them in the environment, so can take

fresh instances for both. If S K is the leftmost part of the left-hand side of a rewrite rule, we

have
S K t1 · · ·tn → Rhs

for some t1, . . . , tn with n ≥ 0, then S is the defined symbol, so is not considered to be a call, but

rather the symbol that is being defined in this rule, much like fact is defined by:

fact 0 = 1

fact (Succ n) = (Succ n) x (fact n)

Then for that defining occurrence (or all others, recursive calls, in the rule if we use Milner’s

approach), we use the environment type for S; this is a way of checking that the type we have

in the environment is the correct one, one that fits the definition of S, i.e. fits the rule. Since K

is not the defined symbol, it is a call, so we take an instance.

Notice that the notion pp t E is defined independently from the definition of typeable

rewrite rules; the structure of the rules is only represented through the types of the defined

symbols in E . Also, since only ‘the leftmost occurrence of F in the derivation for Π;E ⊢ l : P is

typed with E(F)’, this notion of type assignment uses Mycroft’s solution for recursion; using

Milner’s, the definition would have defined ’all occurrences of F in the derivations for Π;E ⊢ l : P

44

and Π;E ⊢ r : P are typed with E(F)’.

In the following lemma we show that if F is the defined symbol of a rewrite rule, then the

type E F dictates not only the type for the left and right-hand side of that rule, but also the

principal type for the left-hand side.

Lemma 6.14 Let 〈F,X,R〉 be a trs, and E and environment for it. If F is the defined symbol of the

typeable rewrite rule F t1 · · · tn → r ∈R, then there are contexts Π, Γ, and types Ai (i ∈ n) and A such

that

E F = A1→·· ·→An→A,

pp l E = 〈Π ; A〉

Π;E ⊢ ti : Ai

Γ;E ⊢ l : A, and

Γ;E ⊢ r : A.

Proof : Easy, using Theorem 6.12 and the fact that if B is a substitution instance of A, and A a

substitution instance of B, then A = B.

As an example of a rule that is not typeable, take the rewrite rule in the next example: the

types assigned to the nodes containing x and y are not the most general ones needed to find

the type for the left-hand side of the rewrite rule.

Example 6.15 As an example of a rewrite rule that does not satisfy the above restriction, so

will not be considered to be typeable, take

M (S x y) → S I y.

Take the environment E S = (ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ ϕ1→ϕ3

E K = ϕ4→ϕ5→ϕ4

E I = ϕ6→ϕ6

E M = ((ϕ7→ϕ8)→ϕ9)→(ϕ7→ϕ8)→ ϕ8.

To obtain pp M (S x y) E , we assign types to nodes in the tree in the following way. Let

A = ((ϕ1→ϕ2)→ϕ4→ϕ3)→((ϕ1→ϕ2)→ϕ4)→(ϕ1→ϕ2)→ ϕ3, and

Γ = x:(ϕ1→ϕ2)→ ϕ4→ϕ3, y:(ϕ1→ϕ2)→ ϕ4

Γ;E ⊢ M : ((ϕ1→ϕ2)→ϕ3)→(ϕ1→ϕ2)→ ϕ2

Γ;E ⊢ S : A Γ;E ⊢ x : (ϕ1→ϕ2)→ϕ4→ϕ3

Γ;E ⊢ S x : ((ϕ1→ϕ2)→ϕ4)→(ϕ1→ϕ2)→ ϕ3 Γ;E ⊢ y : (ϕ1→ϕ2)→ϕ4

Γ;E ⊢ S x y : (ϕ1→ϕ2)→ϕ3

Γ;E ⊢ M (S x y) : (ϕ1→ϕ2)→ϕ2

If the right-hand side term of the rewrite rule should be typed with (ϕ1→ϕ2)→ϕ2, the type

needed for y is (ϕ1→ϕ2)→ϕ1 where

B = ((ϕ1→ϕ2)→ϕ1→ϕ2)→((ϕ1→ϕ2)→ϕ1)→(ϕ1→ϕ2)→ ϕ2, and

Γ′ = y : (ϕ1→ϕ2)→ϕ1

Γ′;E ⊢ S : B Γ′;E ⊢ I : (ϕ1→ϕ2)→ϕ1→ϕ2

Γ′;E ⊢ S I : ((ϕ1→ϕ2)→ϕ1)→(ϕ1→ϕ2)→ ϕ2 Γ′;E ⊢ y : (ϕ1→ϕ2)→ϕ1

Γ′;E ⊢ S I y : (ϕ1→ϕ2)→ϕ2

Take the term M (S K I), which rewrites to S I I. Although the first term is typeable, with

45

C = ϕ4→ϕ5

D = (C→C→C)→(C→C)→C→C

;E ⊢ M : (C→C)→C→ϕ5

;E ⊢ S : D ;E ⊢ K : C→C→C

;E ⊢ S K : (C→C)→C→C ;E ⊢ I : C→C

;E ⊢ S K I : C→C

;E ⊢ M (S K I) : (ϕ4→ϕ5)→ ϕ5

the term S I I is not typeable with the type (ϕ4→ϕ5)→ ϕ5. In fact, it is not typeable at all:

pp (S I I) E fails on unification.

So this rule does not satisfy subject reduction, and should therefore be rejected.

The problem with the above rewrite system is that the principal pair for the left-hand side

of the rule that defines M is not a valid pair for the right-hand side; the latter is only typeable

if the types in the context are changed further. Now, when typing an instance of the left-

hand side, we have no knowledge of the rule, and will type this term as it stands; the changes

enforced by the right-hand side will not be applied, which, in this case, leads to an untypeable

term being produced by reduction.

We solve this problem by rejecting rules that would pose extra restrictions while typing the

right-hand side, as formulated in Definition 6.13. In the following theorem, we prove that our

solution is correct. For this we need the following lemma that formulates the relation between

replacements performed on a term and possible type assignments for that term.

Lemma 6.16 (Replacement lemma) Let 〈F,X,R〉 be a trs, and E and environment for it.

i) If pp t E = 〈Π ; P〉, and for the replacement R there are Γ, A such that Γ;E ⊢ tR : A, then there is

a substitution S, such that S P = A, and, for every statement x:C ∈ Π: Γ;E ⊢ xR : SC.

ii) If Γ;E ⊢ t : A, and R is a replacement and Γ′ a context such that for every statement x:C ∈ Γ:

Γ′;E ⊢ xR : C, then Γ′;E ⊢ tR : A.

Proof : By induction on the structure of t.

i) (t ≡ x) : Then Π = x:ϕ, and P = ϕ. Take S = (ϕ 7→ A). By assumption, Γ;E ⊢ xR : A, so

for every x:C in Γ we have Γ;E ⊢ xR : S C.

(t ≡ F) : Then Π = , and P = E F. By rule (Call) there exists a substitution S0 such that

A = S0 (E F), and we have Γ;E ⊢ FR : A for every context Γ.

(t ≡ t1 t2) : Let ϕ be a type-variable not occurring in any other type. If pp t1 t2 E = 〈Π ; P〉,

then for i = 1,2, there are 〈Πi ; Pi〉 (disjoint), such that pp ti E = 〈Πi ; Pi〉. By induction,

for i = 1,2, there is a substitution Si such that Si Pi = Ai, and, for every x:A′ ∈ Πi, Γ;E ⊢

xR : Si A′. Notice that S1 and S2 do not interfere in that they are defined on separate

sets of type variables. Take S′ = S2◦S1◦(ϕ 7→ A), then, for every x:A′ ∈ Π1 ∪Π2, Γ;E ⊢

xR : S′ A′, and S′ ϕ = A. By property 2.13 there are substitutions S and Sg such that

Sg = unify(E F, P1→ϕ), and S′ = S ◦ Sg and 〈Π ; P〉 = Sg 〈Π1 ∪Π2 ; ϕ〉.

Then, for every x:B′ ∈ Sg(Π1 ∪Π2), Γ;E ⊢ xR : S B′, and S(Sg ϕ) = A.

ii) (t ≡ x, F) : Trivial.

(t ≡ t1 t2) : Then there exists B, such that Γ;E ⊢ t1 : B→A and Γ;E ⊢ t2 : B. By induction,

Γ′;E ⊢ t1
R : B→A and Γ′;E ⊢ t2

R : B. So, by (→E), we obtain Γ′;E ⊢ (t1 t2)R : A.

Theorem 6.17 (Subject Reduction Theorem) Let 〈F,X,R〉 be a trs, and E an environment for

it. If all rules in R are typeable with respect to E , then: if Γ;E ⊢ t : A and t → t′, then Γ;E ⊢ t′ : A.

Proof : Let r : l → r be the typeable rewrite rule applied in the rewrite step t → t′. We will prove

that for every replacement R and type A, if Γ;E ⊢ lR : A, then Γ;E ⊢ rR : A, which proves the

46

TypeTerm x E → 〈x:ϕ ; ϕ〉

where ϕ is fresh

TypeTerm t1t2 E → S 〈Π1 ∪Π2 ; ϕ〉

where 〈Π1 ; P1〉 = TypeTerm t1 E

〈Π2 ; P2〉 = TypeTerm t2 E

S = unify P1 P2→ϕ

ϕ is fresh

TypeTerm F E → Freeze(E F) (this is defining occurrence of F)

FreshInstance (E F) (otherwise)

Figure 9. The algorithm TypeTerm

theorem.

Since r is typeable, there are Π, P such that 〈Π ; P〉 is a principal pair for l with respect to E ,

and Π;E ⊢ r : P. Suppose R is a replacement such that Γ;E ⊢ lR : A. By Lemma 6.16(i) there is

a Γ′ such that for every x:C ∈ Γ′, Γ;E ⊢ xR : C, and Γ′;E ⊢ l : A. Since 〈Π ; P〉 is a principal pair

for l with respect to E , by Definition 6.10 there is a substitution S such that S 〈Π ; P〉= 〈Γ′ ; A〉.

Since Π;E ⊢ r : P, by Theorem 6.11 also Γ′;E ⊢ r : A. Then by Lemma 6.16(ii) Γ;E ⊢ rR : A.

* 6.5 A type check algorithm for trss

In this section we present a type check algorithm, as first presented in [9], that, when applied

to a trs and an environment determines whether this trs is typeable with respect to the

environment.

The goal of the type check algorithm presented below is to determine whether a type assign-

ment can be constructed such that all the conditions of Definitions 6.8 and 6.13 are satisfied.

The main function of the algorithm, called TypeTRS, expects a trs as well as an environ-

ment as parameters. It returns a boolean that indicates whether the construction of the type

assignment was successful.

It is easy to prove that the algorithm presented here is correct and complete:

Theorem 6.18 Let 〈F,X,R〉 be a trs, and E and environment for it.

i) If t is typeable with respect to E , then TypeTerm tE returns pp t E .

ii) If TypeTerm tE returns the pair 〈Γ ; A〉, then pp t E = 〈Γ ; A〉.

iii) There is a type assignment with respect to E for the trs R, if and only if TypeRules R E .

Proof : By straightforward induction on the structure of terms and rewrite rules.

The algorithm does not perform any consistency check on its input so it assumes the input

to be correct according to Definitions 6.1 and 6.2. Moreover, all possible error messages and

error handling cases are omitted, and the algorithm TypeRules returns only true for rewrite

systems that are typeable. It could easily be extended to an algorithm that rejects untypeable

rewrite rules. Notice that, below, a trs is a pair of rules and term; as in ΛN and ΛNR, the term

is there in order for the trs to become a program rather than a collection of procedures.

The type of a symbol is either an instance of the type for that symbol given by the environ-

ment (in case of a symbol) or that type itself (in case of a defined symbol). The distinction

between the two is determined by the function TypeTerm, in Figure 9.

Notice that the call ‘Freeze (E F)’ is needed to avoid simply producing E F, since it would

mean that the type variables in the environment change because of unification. However,

the defining symbol of a rewrite rule can only be typed with one type, so any substitution

resulting from a unification is forbidden to change this type. We can ensure this by using

’non-unifiable’ type variables; the non-specified function Freeze replaces all type variables by

47

non-unifiable type variables. The unification algorithm should be extended in such a way

that all the type variables that are not new (so they appear in some environment type) are

recognised, so that it refuses to substitute these variables by other types.

TypeRule takes care of checking the safeness constraint as given in Definition 6.13, by check-

ing if the unification of left and right-hand sides of a rewrite rule has changed the left-hand

side context. It calls on UnifyContexts because we need to make sure that the variables have

the same types both on the left as on the right.

TypeRule (l → r) E → (S2 (S1 Γl)) = Γl

where 〈Πl ; P1〉 = TypeTerm l E

〈Πr ; P2〉 = TypeTerm r E

S2 = UnifyContexts (S1 Πl) (S1 Πr)

S1 = unify P1 P2,

TypeRules [] E → true

TypeRules [r | R] E → (TypeRule r E) ∧ (TypeRules R E)

and the procedure that type checks the program:

TypeTRS 〈R : t〉 E → TypeTerm t E , if TypeRules R E

6.6 An example: Combinatory Logic

We now will focus on Curry’s Combinatory Logic [21], an alternative approach to express

computability, developed at about the same time as Church’s λ-calculus. It will be defined

as a special kind of applicative trs, with the restriction that formal parameters of function

symbols are not allowed to have structure, and right-hand sides of term rewriting rules are

constructed of term-variables only.

Definition 6.19 (Combinatory Logic [21]) The original definition of Combinatory Logic de-

fines two rules:
K x y → x

S x y z → xz (yz)

and defines terms as
t ::= K | S | t1t2

The first rule expresses removal of information, whereas the second expresses distribution:

notice that its third parameter gets distributed over the first and second.

Notice that we can define I as SKK, since SKK x → K x (K x)→ x. We therefore will consider

the following rule to be present as well.

I x → x

Notice that this defines a higher-order language with a first-order reduction system: the com-

binators K, S, and I officially do not have a fixed arity and can be applied to any number of

terms, though they need a specific number present for their rules to become applicable.

* 6.7 The relation between cl and the Lambda Calculus

To emphasise the power of a system as simple as cl, we now focus on the relation between

cl and the λ-calculus, and show that every λ-term can be translated to a cl program via

a process called bracket abstraction. This shows of course that Combinatory Logic is Turing

Complete: all computable functions can be expressed in terms of S, K, and I.

Definition 6.20 i) For cl, the interpretation of terms in Λ is given by:

48

〈x〉λ = x

〈S〉λ = (λxyz.x z (y z)),

〈K〉λ = (λxy.x),

〈I〉λ = (λx.x),

〈t1t2〉λ = 〈t1〉λ〈t2〉λ

ii) (Bracket abstraction) Fun x t,2 with t ∈ Tcl, is defined by induction on the structure of

terms:
Fun x x = I,

Fun x t = K t (x not in t),

Fun x (t1t2) = S(Fun x t1) (Fun x t2) (otherwise)

iii) The mapping ⌈⌈ ⌋⌋
cl : Λ → Tcl is defined by:

⌈⌈x⌋⌋cl = x,

⌈⌈λx.M⌋⌋
cl = Fun x ⌈⌈M⌋⌋

cl,

⌈⌈MN⌋⌋
cl = ⌈⌈M⌋⌋

cl
⌈⌈N⌋⌋

cl.

Notice that Fun, that takes a variable and a term in Tcl and returns a term in Tcl, is only

evaluated in the definition of ⌈⌈ · ⌋⌋cl with a variable or an application as second argument.

As for the accuracy of the above definitions, we show first that Fun acts as abstraction:

Lemma 6.21 (Fun x t) v → t[v/x].

Proof : By induction on the definition of Fun.

(Fun x x) t = I t → t

(Fun x t1) t2 = K t1 t2 → t1 (x not in t1)

(Fun x (t1 t2)) t3 = S (Fun x t1) (Fun x t2) t3 →

((Fun x t1) t3) ((Fun x t2) t3) → (IH)

t1[t3/x] t2[t3/x] = (t1 t2)[t3/x].

For the interpretations defined above the following property holds:

Lemma 6.22 ([10]) i) 〈Fun x t〉λ →∗
β λx.〈t〉λ

ii) 〈⌈⌈M⌋⌋
cl〉λ →→β M.

iii) If t → u in cl, then 〈t〉λ →→β 〈u〉λ.

Proof : i) By induction on the definition of the function Fun.

a) Fun x x = I, and 〈I〉λ = λx.x.

b) If x not in t, then Fun x t = K t, and 〈K t〉λ = 〈K〉λ 〈t〉λ = (λab.a) 〈t〉λ →β λb.〈t〉λ.

c) Fun x (t1t2) = S (Fun x t1) (Fun x t2), and

〈S (Fun x t1) (Fun x t2)〉λ =∆

〈S〉λ 〈Fun x t1〉λ 〈Fun x t2〉λ →β (IH)

〈S〉λ (λx.〈t1〉λ) (λx.〈t2〉λ) =∆

(λabc.ac(bc)) (λx.〈t1〉λ) (λx.〈t2〉λ) →∗
β

λc.(λx.〈t1〉λ) c ((λx.〈t2〉λ) c) →∗
β

λc.(〈t1〉λ[c/x]) (〈t2〉λ[c/x]) =α λx.(〈t1〉λ〈t2〉λ) =∆ λx.〈t1t2〉λ

ii) By induction on the structure of (λ-)terms.

a) M = x. Since 〈⌈⌈x⌋⌋cl〉λ = 〈x〉λ = x, this is immediate.

2 Fun is normally called λ∗ in the literature.

49

b) M = λx.N. Since 〈⌈⌈λx.N⌋⌋
cl〉λ = 〈Fun x⌈⌈N⌋⌋

cl 〉λ →∗
β λx.〈⌈⌈N⌋⌋

cl〉λ by the previous

part, and λx.〈⌈⌈N⌋⌋
cl〉λ →∗

β λx.N by induction.

c) M = PQ. Since 〈⌈⌈PQ⌋⌋
cl〉λ = 〈⌈⌈P⌋⌋cl〉λ 〈⌈⌈Q⌋⌋

cl〉λ →∗
β PQ by induction.

iii) We focus on the case that t = Ct1 · · ·tn for some name C with arity n. Let Cx1· · ·xn → t′ be

the definition for C, then u = t′[ti/xi]. Notice that 〈t〉λ = (λx1 · · ·xn .〈t′〉λ)〈t1〉λ · · ·〈tn〉λ →∗
β

〈t′〉λ[〈ti/xi〉λ] = 〈t′[ti/xi]〉λ = 〈u〉λ.

Example 6.23 ⌈⌈λxy.x⌋⌋cl = Fun x ⌈⌈λy.x⌋⌋cl

= Fun x (Fun y x)

= Fun x (K x)

= S (Fun x K) (Fun x x)

= S (K K) I

and 〈⌈⌈λxy.x⌋⌋cl〉λ = 〈S (K K) I〉λ

= (λxyz.x z (y z)) ((λxy.x)λxy.x)λx.x

→→β λxy.x.

There exists no converse of the second property: notice that ⌈⌈〈K〉λ⌋⌋cl = S (K K) I which are

both in normal form, and not the same; moreover, the mapping 〈 〉λ does not preserve normal

forms or reductions:

Example 6.24 ([10]) i) S K is a normal form, but 〈S K〉λ →∗
β λxy.y;

ii) t = S (K (S I I)) (K (S I I)) is a normal form, but 〈t〉λ →∗
β λc.(λx.xx) (λx.xx), which does not

have a β-normal form, and not even a head-normal form;

iii) t = S K (S I I (S I I)) has no normal form, while 〈t〉λ →∗
β λx.x.

6.8 Extending cl

Bracket abstraction algorithms like ⌈⌈ ⌋⌋
cl are used to translate λ-terms to combinator systems,

and form, together with the technique of lambda lifting the basis of the Miranda [53] compiler.

It is possible to define such a translation also for combinator systems that contain other com-

binators. With some accompanying optimisation rules they provide an interesting example. If

in the bracket abstraction we would use the following combinator set on the left:

I x → x

K x y → x

S x y z → x z (y z)

B x y z → x (y z)

C x y z → x z y

W x y → x y y

S (K x) (K y) → K (x y)

S (K x) I → x

S (K x) y → B x y

S x (K y) → C x y

then we could, as in [23], extend the notion of reduction by defining the optimisations on the

right. The correctness of these new rules is easy to check.

Notice that, by adding this optimisation, we are stepping outside the realm of λ-calculus

by adding pattern matching: the rule S (K x) (K y)→ K (x y) expresses that this reduction can

only take place when the first and second argument of S are of the shape K t. So, in particular,

these arguments can not be any term as is the case with normal combinator rules, but must

have a precise structure. In fact, adding these rules introduces pattern matching.

Also, we now allow reduction of terms starting with S that have only two arguments present.

50

6.9 Type Assignment for cl

We now give the definition of type assignment on combinatory terms, that is a simplified

version of the notion of type assignment for trs we saw above.

Definition 6.25 (Type Assignment for cl) Type assignment on terms in cl is defined by the

following natural deduction system.

(S) :
Γ ⊢ S : (A→B→C)→(A→B)→A→C

(K) :
Γ ⊢ K : A→B→A

(I) :
Γ ⊢ I : A→A

(Ax) :
Γ, x:A ⊢ x : A

(→E) :
Γ ⊢ t1 : A→B Γ ⊢ t2 : A

Γ ⊢ t1t2 : B

Example 6.26 It is easy to check that the term S K I I can be assigned the type ϕ→ϕ.

⊢cl S : B→C→D→ϕ→ϕ ⊢cl K : B

⊢cl S K : C→D→ϕ→ϕ ⊢cl I : C

⊢cl S K I : D→ϕ→ϕ ⊢cl I : D

⊢cl S K I I : ϕ→ϕ

where B = (ϕ→ϕ)→(ϕ→ϕ)→ ϕ→ϕ

C = (ϕ→ϕ)→ ϕ→ϕ

D = ϕ→ϕ

The relation between type assignment in the λ-calculus and that in cl is very strong, as

Exercise 6.34 shows. As a corollary of this exercise, we obtain the decidability of type assign-

ment in our system. As a matter of fact, decidability of type assignment for cl was the first

of this kind of property proven, by J.R. Hindley [32].

Exercises

Exercise 6.27 Take the following term rewriting system and environment.

B x y z → x (y z)

C x y z → x z y

K x y → x

S x y z → x z (y z)

E K = 1→2→1,

E B = (1→2)→(3→1)→3→2,

E C = (1→2→3)→2→1→3,

E S = (1→2→3)→(1→2)→1→3

i) Add the following rules to the system above.

S (K x) (K y) → K (x y)

S (K x) y → B x y

S x (K y) → C x y

Show that the system is still typeable using the same environment.

ii) Add now also the rule
S (K x) I → x

Show that the system is no longer typeable using the same environment. What would you have to

change to make the system typeable?

iii) What would be a reason, if any, not to add the last rule?

* Exercise 6.28 If Γ;E ⊢ t : A, then S Γ;E ⊢ t : S A, for every S.

* Exercise 6.29 (Soundness of pp) Verify that pp t E = 〈Π ; P〉 implies Π;E ⊢ t : P. You need the

previous exercise here, and can assume that weakening is admissible.

51

Exercise 6.30 i) Express the factorial function as a term rewriting system and show the necessary

derivations.

ii) Extend the rewrite system with a rule, and a single term (so write a program) that calculates the

list of all factorial numbers. Extend the environment appropriately and show that the new rule

and the term are typeable.

Exercise 6.31 Take the Term Rewriting System

append nil l → l

append (cons x l) l′ → cons x (append l l′)

append (append l l′) l′′ → append l (append l′ l′′)

map f nil → nil

map f (cons y l) → cons (f y) (map f l)

Give an environment that makes these rules typeable (you can use []); show the corresponding

derivations for the last rule.

Exercise 6.32 Define B x y z → x (y z)

C x y z → x z y

W x y → x y y

Give an environment that makes these rules typeable, and check the result through derivations.

Exercise 6.33 Check that the optimisation rules given in Section 6.8 are admissible, and check if they

introduce any conflict with respect to types.

* Exercise 6.34 Show, by induction on the definition of Fun, ⌈⌈ ⌋⌋cl and 〈 〉λ, that

i) Γ,y:A ⊢ECL
t : B implies Γ ⊢ECL

Fun y t : A→B.

ii) Γ ⊢c M : A implies Γ ⊢ECL
⌈⌈M⌋⌋

cl : A.

iii) Γ ⊢ECL
t : A implies Γ ⊢c 〈t〉λ : A .

* Exercise 6.35 i) Show that ⌈⌈λxy.xy⌋⌋cl = S(S(KS)(S(KK)I))(KI).

ii) Show that 〈⌈⌈λxy.xy⌋⌋cl〉λ →∗
β λxy.xy by reducing the first term (you do not need to show each

individual step, but could do as many as you like ‘in parallel’).

iii) Show that ⊢ECL
S(S(KS)(S(KK)I))(KI) : (A→B)→A→B.

Exercise 6.36 Is S K ((S I I) (S I I)) typeable? Motivate your answer.

7 Basic extensions to the type language

In this section we will briefly discuss a few basic extensions (to, in our case, ml) that can be

made to obtain a more expressive programming language, i.e. to add those type features that

are considered basic: data structures, and recursive types.3

7.1 Data structures

Two basic notions that we would like to add are tuples and choice, via the introduction of the

type constructors product and sum (or disjoint union) to our type language.

Definition 7.1 The grammar of types is extended as follows:

A, B ::= · · · | A × B | A + B

3 This section is in part based on [47]

52

The type A × B denotes a way of building a pair out of two components (left and right) with

types A and B. The type A + B describes disjoint union either via left injection applied to a

value of type A, or right injection applied to a value of type B.

We will extend ml with syntactic structure for these type constructs, that act as markers for

the introduction or elimination for them.

Definition 7.2 (Pairing) We extend the calculus with the following constructors

E ::= . . . | 〈E1, E2〉 | left (E) | right (E)

with their type assignment rules:

(Pair) :
Γ ⊢ E1 : A Γ ⊢ E2 : B

Γ ⊢ 〈E1, E2〉 : A × B
(left) :

Γ ⊢ E : A × B

Γ ⊢ left (E) : A
(right) :

Γ ⊢ E : A × B

Γ ⊢ right (E) : B

The reduction rules that come with these constructs are:

left 〈E1, E2〉 → E1

right 〈E1, E2〉 → E2

E → E′ ⇒



















〈E, E2〉 → 〈E′, E2〉

〈E1, E〉 → 〈E1, E′〉

left (E) → left (E′)

right (E) → right (E′)

Notice that these rules are expressed through pattern matching, and that left and right are term

constructors, not constants.

We could be tempted to add the rule

〈left (E),right (E)〉 → E

as well, but a difficulty with this in combination with the two projection rules is that it forms

Klop’s famous ‘Surjective Pairing’ counter example that we mentioned in Example 6.1 and

destroys confluence, an arguably very desirable property for programming languages.

Definition 7.3 ((Disjoint) Union) We extend the calculus with the following constants

E ::= . . . | case (E1, E2, E3) | inj·l(E) | inj·r (E)

with their type assignment rules:

(case) :
Γ ⊢ E1 : A + B Γ ⊢ E2 : A→C Γ ⊢ E3 : B→C

Γ ⊢ case (E1, E2, E3) : C

(inj·l) :
Γ ⊢ E : A

Γ ⊢ inj·l (E) : A + B
(inj·r) :

Γ ⊢ E : B

Γ ⊢ inj·r (E) : A + B

Notice that the additional syntactic structure as added to the programming language acts as a

syntactic marker, so that it is always possible to decide which part of the composite type was

actually derived.

The reduction rules that come with these constructors are:

case (inj·l(E1), E2, E3) → E2 E1

case (inj·r(E1), E2, E3) → E3 E1

E → E′ ⇒































case (E, E2, E3) → case (E′, E2, E3)

case (E1, E, E3) → case (E1, E′, E3)

case (E1, E2, E) → case (E1, E2, E′)

inj·l(E) → inj·l (E′)

inj·r(E) → inj·r (E′)

Notice that application is used on the right-hand side of these rules and that also these rules

are expressed through pattern matching.

53

7.2 Recursive types

A type built out of products, sums, and base types can only describe structures of finite size,

and we cannot describe lists, trees, or other data structures of (potential) unbounded size. For

this, some form of recursive types is needed. As a matter of fact, the informal definition

“a list is either empty or a pair of an element and a list”

is recursive.

To be able to express recursive types properly, some computer programming languages

have a unit type as a type that holds no information and allows only one value; it can be seen

as the type of 0-tuples, i.e. the product of no types. It is also used to specify the argument

type of a function that does not require arguments; then we write E : A rather than E : unit→A.

In the functional programming languages Haskell [33], and Clean [13], the unit type is called

() and its only value is also (), reflecting the 0-tuple interpretation. In sml (Standard ml [31,

44]), the type is called unit but the value is written as (). Using this approach here, we extend

the syntax with ‘()’, the type language with ‘unit’ and add the rule

(unit) : Γ ⊢ () : unit

but under the condition that unit can only be assigned to (), and vice versa.

Using pairing, we can express lists of type B via the equation

A = unit + (B × A);

This is indeed a formalisation of the informal definition above. The most obvious way of

introducing recursive types into a type system is to ensure that such a recursive equation

admits a solution, i.e. to extend the language of types in such a way that there exists a type A

such that A = unit + (B × A); remark that we cannot solve this without such an extension.

Definition 7.4 (Recursive types) The grammar of types is extended with:

A, B = · · · | X | µX .A

We define a relation =µ on types as the smallest equivalence relation containing

µX .A =µ A[µX .A/X]

Then the ‘list B’ type (or [B]) that is a solution to the above equation is

µX .unit + (B × X)

because [B] =∆ µX .unit + (B × X)

=µ (unit + (B × X)) [µX .unit + (B × X)/X]

= unit + (B × (µX .unit + (B × X))) =∆ unit + (B × [B])

which corresponds to the graphs:

+

unit ×

B

+

unit ×

B +

unit ×

B
. . .

We can see recursive types as descriptions for infinite trees, where sub-trees are shaped like

the tree itself, and we can generate these infinite trees by unfolding the recursive definition.

Two recursive types A and B are said to be the same when their infinite unfolding coincide.

Conditions on recursive types rule out meaningless types, such as µX .X, which (infinite)

unfolding is not well defined.

54

There are two ways to deal with recursive types in programming, either by having syntactic

markers for the =µ steps or not.

7.3 The equi-recursive approach

We first look at the variant that does not use syntactic markers.

Definition 7.5 (Equi-recursive type assignment) In the equi-recursive approach, two equal

types can be used interchangeably: this is formalised by introducing a new typing rule:

(µ) :
Γ ⊢ E : A

(A =µ B)
Γ ⊢ E : B

Notice that the rule is not syntax-directed (i.e. E does not change), so it can be applied at any

point in a derivation.

Example 7.6 A term now has a [B] type if either it is of the shape inj·l() or inj·r〈a,b〉:

(unit)
Γ ⊢ () : unit

(inj·l)
Γ ⊢ inj·l () : unit + (B × [B])

(µ)
Γ ⊢ inj·l () : [B]

Γ ⊢ E1 : B Γ ⊢ E2 : [B]
(Pair)

Γ ⊢ 〈E1, E2〉 : B × [B]
(inj·r)

Γ ⊢ inj·r 〈E1, E2〉 : unit+ (B × [B])
(µ)

Γ ⊢ inj·r 〈E1, E2〉 : [B]

Assuming numbers and pre-fix addition, we can express the function that calculates the

length of a list by:

LL = fix ll .λ list.case (list,λx.0,λx.+ 1 (ll(right (x))))

Notice that now

(fix ll .λ list.case(list,λx.0,λx.+ 1 (ll(right (x))))) (inj·r 〈a,b〉) →

(λ list.case(list,λx.0,λx.+ 1 (LL(right (x))))) (inj·r〈a,b〉) →

case (inj·r 〈a,b〉,λx.0,λx.+ 1 (LL(right (x)))) →

(λx.+ 1 (LL(right (x)))) 〈a,b〉 →

+ 1 (LL (right 〈a,b〉)) → + 1 (LL b)

Using I for the type for numbers, for the term above we can construct the derivation (hiding

obsolete statements in contexts) in Figure 10.

This approach to recursive types is known as the equi-recursive approach [2, 28], because

equality modulo infinite unfolding is placed at the heart of the type system. One of its strong

points is to not require any explicit type annotations or declarations, so that full type inference

is preserved. For this reason, it is exploited, for instance, in the object-oriented subsystem of

Objective Caml [48]. Its main disadvantage is that, in the presence of equi-recursive types,

apparently meaningless programs have types.

Example 7.7 We can type self-application; the term λx.xx can be assigned the type µX .X→ϕ:

(Ax)
x:µX .X→ϕ ⊢ x : µX .X→ϕ

(µ)
x:µX .X→ϕ ⊢ x : (µX .X→ϕ)→ϕ

(Ax)
x:µX .X→ϕ ⊢ x : µX .X→ϕ

(→E)
x:µX .X→ϕ ⊢ xx : ϕ

(→I)
⊢ λx.xx : (µX .X→ϕ)→ϕ

(µ)
⊢ λx.xx : µX .X→ϕ

55

Γ′′ ⊢ l : [ϕ]
(µ)

Γ′′ ⊢ l : unit + (ϕ×[ϕ]

Γ′′, x:unit ⊢ 0 : I

Γ′′ ⊢ λx.0 : unit→I

Γ′ ⊢ + : I→I→I Γ′ ⊢ 1 : I

Γ′ ⊢+ 1 : I→I

Γ′ ⊢ ll : [ϕ]→I

Γ′ ⊢ x : ϕ×[ϕ]

Γ′ ⊢ right (x) : [ϕ]

Γ′ ⊢ ll(right (x)) : I

Γ′ ⊢ + 1 (ll(right (x))) : I

Γ′′ ⊢ λx.+ 1 (ll(right (x))) : (ϕ×[ϕ])→I

.

.

.

.

.

.

.

Γ′′ ⊢ case (l,λx.0,λx.+ 1 (ll(right (x)))) : I

Γ, ll:[ϕ]→I ⊢ λ list.case (l,λx.0,λx.+ 1 (ll(right (x)))) : [ϕ]→I

Γ ⊢ fix ll .λ list.case (l,λx.0,λx.+ 1 (ll(right (x)))) : [ϕ]→I

Γ ⊢ a : ϕ Γ ⊢ b : [ϕ]

Γ ⊢ 〈a,b〉 : ϕ×[ϕ]

Γ ⊢ inj·r 〈a,b〉 : unit+ (ϕ×[ϕ])
(µ)

Γ ⊢ inj·r 〈a,b〉 : [ϕ]

Γ ⊢ (fix ll .λ list.case (l,λx.0,λx.+ 1 (ll(right (x))))) (inj·r 〈a,b〉) : I

Figure 10. A derivation for ⊢ (fix ll .λ list.case (l,λx.0,λx.+ 1(ll(right (x))))) (a,b) : I (where

Γ′ = Γ′′, x:ϕ×[ϕ], and Γ′′ = Γ, ll:[ϕ]→I, l:[ϕ]).

7.4 The iso-recursive approach

In the iso-recursive approach to recursive types, the above is not possible. It prohibits the

use of the non-syntax sensitive rule (µ), and adds syntactic markers for the two conversions

µX .A = A[µX .A/X] and A[µX .A/X] = µX .A.

Definition 7.8 The syntax is extended by

E ::= · · · | fold(E) | unfold (E)

and we add the reduction rules

unfold (fold (E)) → E E → E′ ⇒

{

unfold (E) → unfold (E′)

fold (E) → fold (E′)

and the type assignment rules:

(fold) :
Γ ⊢ E : A[µX .A/X]

Γ ⊢ fold(E) : µX .A
(unfold) :

Γ ⊢ E : µX .A

Γ ⊢ unfold(E) : A[µX .A/X]

Notice that it is possible to apply (unfold) directly after (fold), but that would be a waste of

effort; however, as a result of reduction such a derivation can be constructed. We therefore

also have the reduction rule unfold (fold (E))→ E.

Example 7.9 A term now has a [B] type if either it is of the shape fold (inj·l()) or fold (inj·r〈a,b〉):

(unit)
Γ ⊢ () : unit

(inj·l)
Γ ⊢ inj·l () : unit + (B × [B])

(fold)
Γ ⊢ fold(inj·l()) : [B]

Γ ⊢ E1 : B Γ ⊢ E2 : [B]
(Pair)

Γ ⊢ 〈E1, E2〉 : B × [B]
(inj·r)

Γ ⊢ inj·r 〈E1, E2〉 : unit+ (B × [B])
(fold)

Γ ⊢ fold(inj·r 〈E1, E2〉) : [B]

A term like λx.xx is no longer typeable; instead, the only version of that term typeable now

with µX .X→ϕ is fold (λx.(unfold x)x):

56

x:µX .X→ϕ ⊢ x : µX .X→ϕ

x:µX .X→ϕ ⊢ unfold(x) : (µX .X→ϕ)→ϕ x:µX .X→ϕ ⊢ x : µX .X→ϕ

x:µX .X→ϕ ⊢ unfold(x)x : ϕ

⊢ λx.unfold(x)x : (µX .X→ϕ)→ϕ

⊢ fold(λx.unfold(x)x) : µX .X→ϕ

So, in a sense, in the iso-recursive approach we can replace a recursive type by its folding or

unfolding only ‘on demand’, i.e. when specified in the term.

* 7.5 Recursive data types

Remark that the two added rules above depend on the equation µX .A = A[µX .A/X] which

is itself only implicitly part of the inferred statements, so a better representation would be:

(foldµX . A) :
Γ ⊢ E : A[µX .A/X]

Γ ⊢ foldµX . A (E) : µX .A
(unfoldµX . A) :

Γ ⊢ E : µX .A

Γ ⊢ unfoldµX . A (E) : A[µX .A/X]

since the equation µX .A = A[µX .A/X] is of course implicit in µX .A. Then each recursive

type has its own fold and unfold statements.

If we now add identifiers to recursive types, and express the [A] type constructor as a

solution to the type equation

A = unit + (B × A);

we have the type assignment rules

(fold [B]) :
Γ ⊢ E : unit+(B × [B])

Γ ⊢ fold[B](E) : [B]
(unfold [B]) :

Γ ⊢ E : [B]

Γ ⊢ unfold[B](E) : unit+ (B × [B])

The (fold[B]) rule now expresses: if we have derived that a term E has type unit + (B × [B])

(typically by deriving either unit and using (inj·l) or deriving B × [B] and using (inj·r)), then

we can fold this information up, and say that E has type [B] as well. This implies that type

[B] gets ’constructed’ for E only if either the type unit or the type B × [B] is derived for E. For

(unfold), it works the other way around: if we have derived that E has type [B], then we can

unfold that information, and say that E has type unit + (B × [B]) (this is typically for used for a

variable x, where x:[B] is assumed); we then have access to the types unit and B × [B], and can

do a case analysis.

For the list type constructor declared as above, the empty list (of type [B]) is written

fold[B] (inj·l())

A list l of type [ϕ] is deconstructed by

case (unfold[B] l, λx. . . ., λX.let hd = left (x) in let tl = right (x) in . . .)

More generally, recursive (data) types can be defined via:

C ϕ = AC[ϕ]

where C is the user-defined type constructor, defined over a number of type variables ϕ, and

AC[ϕ] is a type which main structure is A and can refer to C, making the definition recursive,

as well as to the type variables. Declarations of iso-recursive types can in fact be mutually

recursive: every equation can refer to a type constructor introduced by any other equation.

Now C ϕ and AC[ϕ] are distinct types, but it is possible to convert one into the other via

folding and unfolding.

Definition 7.10 The syntax is extended by

57

E ::= · · · | foldC (E) | unfoldC (E)

and we add the reduction rules

unfoldC (foldC (E)) → E E → E′ ⇒

{

unfoldC (E) → unfoldC (E
′)

foldC (E) → foldC (E
′)

and the type assignment rules

(foldC) :
Γ ⊢ E : AC[B]

Γ ⊢ foldC (E) : C B
(unfoldC) :

Γ ⊢ E : C B

Γ ⊢ unfoldC (E) : AC[B]

for every type definition C ϕ = AC[ϕ].

Notice that we have a kind of polymorphism this way: the type is declared using variables,

whereas the inference rule is specified with for every instance.

Converting C B to its unfolding AC[B] – or folding AC[B] to C B – requires an explicit use of

foldC or unfoldC, that is, an explicit syntax in the calculus, making a recursive type-conversion

only possible on call, i.e. if a foldC or unfoldC call is present in the program. This is contrary to

the equi-recursive approach, where the conversion is silent, and not represented in the syntax.

Common use is to fold when constructing data and to unfold when deconstructing it. As can

be seen from this example, having explicit (un)folding gives a complicated syntax.

Example 7.11 In this setting, the (silent) µ-conversion in the definition of LL in Example 7.9 are

now made explicit, and LL becomes

LL = fix ll .λ list.case(unfold[B] (list),λx.0,λx.+1 (ll(right (x))))

Notice that now

(fix ll .λ list.case (unfold [B](list),λx.0,λx.+1 (ll(right (x))))) (fold [B](inj·r〈a,b〉)) →

(λ list.case (unfold [B](list),λx.0,λx.+1 (LL(right (x))))) (fold [B](inj·r〈a,b〉)) →

case (unfold [B](fold [B](inj·r(〈a,b〉))),λx.0,λx.+1 (LL(right (x)))) →

case (inj·r(〈a,b〉),λx.0,λx.+1 (LL(right (x)))) →

(λx.+1 (LL(right (x)))) 〈a,b〉 → + 1 (LL(right 〈a,b〉)) → + 1 (LL b)

and

(fix ll .λ list.case (unfold [B](list),λx.0,λx.+1 (ll(right (x))))) (fold [B](inj·l())) →

(λ list.case (unfold [B](list),λx.0,λx.+1 (LL (right (x))))) (fold [B](inj·l())) →

case (unfold [B](fold [B](inj·l())),λx.0,λx.+1 (LL(right (x)))) →

case (inj·l(),λx.0,λx.+1 (LL(right (x)))) → (λx.0) () → 0

* 7.6 Algebraic datatypes

In ml and Haskell, structural products and sums are defined via iso-recursive types, yielding

so-called algebraic data types [14]. The idea is to avoid requiring both a (type) name and a (field

or tag) number, as in fold (inj·l()). Instead, it would be desirable to mention a single name, as

in [] for the empty list. This is permitted by algebraic data type declarations.

Definition 7.12 An algebraic data type constructor C is introduced via a record type definition:

C ϕ = Πk
i=1 ℓi : Ai[ϕ] (short for ℓ1 : A1[ϕ]× · · · × ℓk : Ak[ϕ])

or the or variant type definition:

C ϕ = Σk
i=1 ℓi : Ai[ϕ] (short for ℓ1 : A1[ϕ] + · · · + ℓk : Ak[ϕ])

The record labels ℓi used in algebraic data type declarations must all be pairwise distinct, so

that every record label can be uniquely associated with a type constructor C and with an

index i.

58

As before, these definitions are interpreted polymorphically.

For readability, we normally write ℓ for ℓ () (so when E is empty in ℓ E), so the label needs

no arguments. The implicit type of the label ℓi is Ai[ϕ]→C ϕ; we can in fact also allow the

label to be parameterless, as in the definition

Bool = True : unit + False : unit

which we normally write as

Bool = True + False

Definition 7.13 The record type definition

C ϕ = Πk
i=1 ℓi : Ai[ϕ]

introduces the constructors ℓi for 1 ≤ i ≤ k and buildC, with the following rules:

(ℓi) :
Γ ⊢ E : C B

(1 ≤ i ≤ k)
Γ ⊢ ℓi E : Ai[B]

(buildC) :
Γ ⊢ E1 : A1[B] · · · Γ ⊢ Ek : Ak[B]

Γ ⊢ buildC E1 . . . Ek : C B

so the labels act as projection functions into the product type, defined as term constants.

Notice that, since the labels are constants, we could have defined

(ℓi) : (1 ≤ i ≤ k)
Γ ⊢ ℓi : C B → Ai[B]

(buildC) : Γ ⊢ buildC : A1[B]→ ·· · → Ak[B]→ C B

Example 7.14 In this setting, pairing can be expressed via the product type

〈〉 ϕ1 ϕ2 = left : ϕ1 × right : ϕ2

and the rules
Γ ⊢ E : 〈 〉 A1 A2

Γ ⊢ left E : A1

Γ ⊢ E : 〈 〉 A1 A2

Γ ⊢ rightE : A2

Γ ⊢ E1 : A1 Γ ⊢ E2 : A2

Γ ⊢ build〈 〉 E1 E2 : 〈 〉 A1 A2

Of course an in-fix notation would give better readability: Γ ⊢ 〈E1, E2〉 : 〈A1, A2〉. Notice that

now left and right are term constants, not term constructors.

Definition 7.15 The variant type definition

C ϕ = Σk
i=1 ℓi : Ai[ϕ]

introduces the constructors ℓi (with 1 ≤ i ≤ k) and caseC, typeable via the rules:

(ℓi) :
Γ ⊢ E : Ai[B]

(1 ≤ i ≤ k)
Γ ⊢ ℓi E : C B

(caseC) :
Γ ⊢ E : C B Γ ⊢ E1 : A1[B]→D · · · Γ ⊢ Ek : Ak[B]→D

Γ ⊢ caseC (E, E1, . . . , Ek) : D

(Notice that the latter is a generalised case of the rule presented above.)

For readability, we write case E [ℓ1 : E1· · ·ℓk : Ek] for caseC (E, E1, . . . , Ek) when k > 0, and

C ϕ = Σk
i=1 ℓi : Ai[ϕ], thus avoiding to label case.

We can now give the type declaration for lists as

[ϕ] = [] : unit + Cons : ϕ × [ϕ]

This gives rise to the rules

([]) : Γ ⊢ [] : [B] (Cons) :
Γ ⊢ E : B × [B]

Γ ⊢ Cons E : [B]

(case[B]) :
Γ ⊢ E1 : [B] Γ ⊢ E2 : unit→D Γ ⊢ E3 : (B × [B])→D

Γ ⊢ case[B] (E1, E2, E3) : D

Notice that here Cons and [] act as fold, and the rule (case) as unfold; also, we could have used

Γ ⊢ E2 : ϕ′ in the last rule.

59

In this setting, our example becomes:

(fix ll . λlist.case[ϕ] (list, λx.0, λx. + 1 (ll(right (x))))) (Cons〈a,b〉)

or

(fix ll . λlist.case (list, Nil : λx.0, Cons : λx. + 1 (ll(right (x))))) (Cons〈a,b〉)

This yields concrete syntax that is more pleasant, and more robust, than that obtained when

viewing structural products and sums and iso-recursive types as two orthogonal language

features. This explains the success of algebraic data types.

Exercises

Exercise 7.16 Using Example 7.7, find a type for (λx.xx) (λx.xx).

Exercise 7.17 Similar to the previous exercise, find a type for λ f .(λx. f (xx))(λx. f (xx)).

Exercise 7.18 Give the derivation for

⊢ (fix ll .λ list.case (unfold (l),λx.0,λx.+1 (ll(right (x))))) (fold (inj·r〈a,b〉)) : I

Exercise 7.19 Using the equi-recursive approach and the type µX.X→(ϕ→ϕ)→ϕ, Turing’s fixed-

point combinator (λxy.y(xxy))(λxy.y(xxy)) is typeable.

Give a variant of this term that would be typeable in the iso-recursive approach and show that it is a

fixed-point combinator.

8 The intersection type assignment system

In this section we will present a notion of intersection type assignment, and discuss some of

its main properties. The system presented here is one out of a family of intersection systems

[16, 18, 19, 11, 17, 20, 3, 5], all more or less equivalent; we will use the system of [3] here,

because it is the most intuitive.

Intersection types are an extension of Curry types by adding an extra type constructor ‘∩’,

that enriches the notion of type assignment in a dramatic way. In fact, type assignment now

turns out to be closed for =β, which immediately implies that it is undecidable.

We can recover from the undecidability by limiting the structure of types, an approach that

is used in [6, 34], the trivial one being to do without intersection types at all, and use Curry

types.

We will see that intersection types are strongly linked to (approximation) semantics, and

form a powerful tool to study semantics of a variety of calculi.

8.1 Intersection types

Intersection types are defined by extending Curry types with the type constructor ‘∩’; we

limit the occurrence of intersection types in arrow types to the left-hand side, so have to use a

two-level grammar.

Definition 8.1 (Strict types) i) The set Ts of intersection types is defined by the grammar:

A ::= ϕ | (σ→A) (strict types)

σ,τ ::= (A1∩ · · ·∩ An) (n ≥ 0) (intersection types)

ii) On Ts, the relation ≤ (induced by intersection) is defined as the smallest relation satisfy-

ing:

60

∀1≤ i≤n [A1∩ · · · ∩An ≤ Ai] (n ≥ 1)

∀1≤ i≤n [σ ≤ Ai] ⇒ σ ≤ A1∩ · · ·∩ An (n ≥ 0)

σ ≤ τ ≤ ρ ⇒ σ ≤ ρ

iii) We define the equivalence relation ∼ on types by:

σ ≤ τ ≤ σ ⇒ σ ∼ τ

σ ∼ τ ∧ A ∼ B ⇒ σ→A ∼ τ→B

We will work with types modulo ∼.

As usual in the notation of types, right-most, outermost brackets will be omitted, and, as in

logic, ‘∩’ binds stronger than ‘→’, so C∩D→C→D stands for ((C∩D)→(C→D)).

We will write ∩n Ai for A1∩ · · · ∩An, and use ⊤4 to represent an intersection over zero

elements: if n = 0, then ∩n Ai = ⊤, so, in particular, ⊤ does not occur in an intersection subtype.

Moreover, intersection type schemes (so also ⊤) occur in strict types only as subtypes at the

left-hand side of an arrow type.

The type ⊤ is typically used to type a (sub-)term that will disappear during reduction;

we see it therefore as a ‘don’t care’ type, and use it for terms which type is irrelevant (or

non-existing) for the typing of the term under consideration.

Notice that, by definition, in ∩n Ai, all Ai are strict; sometimes we will deviate from this by

writing also σ∩τ; if σ = ∩n Ai and τ = ∩mBj, then

σ∩τ = A1∩ · · ·∩ An ∩B1∩ · · ·∩Bm

Definition 8.2 (Contexts) i) A statement is an expression of the form M : σ, where M is the

subject and σ is the predicate of M : σ.

ii) A context Γ is a set of statements with (distinct) variables as subjects, normally written as

a list of statements.

iii) The relations ≤ and ∼ are extended to contexts by:

Γ ≤ Γ′ ⇐⇒ ∀x:τ ∈ Γ′ ∃x:σ ∈ Γ (σ ≤ τ)

Γ ∼ Γ′ ⇐⇒ Γ ≤ Γ′ ≤ Γ.

iv) Given two contexts Γ1 and Γ2, we define the contexts Γ1 ∩Γ2 as follows:

Γ1 ∩Γ2 =∆ {x:σ∩τ | x:σ ∈ Γ1 ∧ x:τ ∈ Γ2 } ∪

{x:σ | x:σ ∈ Γ1 ∧ x 6∈ Γ2 } ∪ {x:τ | x:τ ∈ Γ2 ∧ x 6∈ Γ1 }

and write ∩n Γi for Γ1 ∩ · · ·∩Γn, and Γ∩x:σ for Γ∩{x:σ}, and also use the notation of

Definition 2.1.

8.2 Intersection type assignment

The intersection type assignment system is defined as follows.

Definition 8.3 Strict type assignment and strict derivations are defined by the following infer-

ence system (where all types displayed are strict, except σ in the derivation rules (→I) and

(→E)):

(Ax) : (n ≥ 1)
Γ, x:∩n Ai ⊢ x : Ai

(∩ I) :
Γ ⊢ M : A1 · · · Γ ⊢ M : An

(n ≥ 0)
Γ ⊢ M : ∩n Ai

(→I) :
Γ, x:σ ⊢ M : B

Γ ⊢ λx.M : σ→B
(→E) :

Γ ⊢ M : σ→B Γ ⊢ N : σ

Γ ⊢ MN : B

We write Γ ⊢∩ M : σ, if this is derivable using a strict derivation.

4 In the literature, the symbol ω is often used.

61

Notice that in Γ ⊢∩ M : σ the context can contain types that are not strict. Moreover, in this

system we can type the approximants; rule (∩ I) allows for ⊥ to occur inside M for the case

n = 0 (see also Lemma 8.29).

For this notion of type assignment, the following properties hold:

Lemma 8.4 (Generation Lemma) i) Γ ⊢∩ MN : A ⇐⇒ ∃σ ∈ Ts (Γ ⊢∩ M : σ→A ∧ Γ ⊢∩ N : σ).

ii) Γ ⊢∩ λx.M : A ⇐⇒ ∃σ, B (A = σ→B ∧ Γ, x:σ ⊢∩ M : B).

Also the properties of weakening and strengthening hold:

Lemma 8.5 i) If Γ ⊢∩ M : σ, and Γ′ ⊇ Γ, then Γ′ ⊢∩ M : σ.

ii) If Γ ⊢∩ M : σ, then {x:τ | x:τ ∈ Γ ∧ x ∈ fv (M)} ⊢∩ M : σ.

Notice that, by our extension of Barendregt’s convention to judgements, in Γ′ ⊢ M : σ no term

variable bound in M can occur in Γ′.

We can now derive some unexpected results:

Example 8.6 In this system, we can derive both ⊢∩ (λxyz.xz(yz))(λab.a) : ⊤→A→A and

⊢∩ λyz.z : ⊤→A→A:

Γ ⊢ x : A→⊤→A Γ ⊢ z : A

Γ ⊢ xz : ⊤→A Γ ⊢ yz : ⊤

x:A→⊤→A,y:⊤,z:A ⊢ xz(yz) : A

x:A→⊤→A,y:⊤ ⊢ λz.xz(yz) : A→A

x:A→⊤→A ⊢ λyz.xz(yz) : ⊤→A→A

⊢ λxyz.xz(yz) : (A→⊤→A)→⊤→A→A

a:A,b:⊤ ⊢ a : A

a:A ⊢ λb.a : ⊤→A

⊢ λab.a : A→⊤→A

⊢ (λxyz.xz(yz)) (λab.a) : ⊤→A→A

(where Γ = x:A→⊤→A,y:⊤,z:A) and

z:A,y:⊤ ⊢ z : A

y:⊤ ⊢ λz.z : A→A

⊢ λyz.z : ⊤→A→A

Notice that, by using Γ = x:A→⊤→A,y:B,z:A in the first derivation above, we could as well

have derived ⊢∩ (λxyz.xz(yz)) (λab.a) : B→A→A, for any Curry types A and B; as we have

seen in Example 2.3, this is not possible in Curry’s system.

8.3 Subject reduction and normalisation

That subject reduction holds in this system is not difficult to see. The proof follows very

much the same lines as the one given for Theorem 2.4, and will follow below; first we give an

intuitive ‘cut and paste’ argument.

Suppose there exists a type assignment for the redex (λx.M)N, so there are a context Γ and

a type A such that there is a derivation for Γ ⊢∩ (λx.M)N : A. Since A is not an intersection,

by (→E) there is a type ∩nBi such that there are derivations Γ ⊢∩ λx.M : ∩nBi→A and Γ ⊢∩ N :

∩nBi. Since (→I) should be the last step performed in the derivation for Γ ⊢∩ λx.M : ∩nBi→A

(the type is also not an intersection), there is also a derivation for Γ, x:∩nBi ⊢∩ M : A. Since (∩ I)

must have been the last step performed in the derivation for Γ ⊢∩ N : ∩nBi, for every 1≤ i≤n,

there exists a derivation for Γ ⊢∩ N : Bi. In other words, we have the derivation:

62

(Ax)
Γ, x:∩nBi ⊢ x : B1 . . .

(Ax)
Γ, x:∩nBi ⊢ x : Bn

D1

Γ, x:∩nBi ⊢ M : A
(→I)

Γ ⊢ λx.M : (∩nBi)→A

D1
2

Γ ⊢ N : B1 · · ·

Dn
2

Γ ⊢ N : Bn
(∩ I)

Γ ⊢ N : ∩nBi
(→E)

Γ ⊢ (λx.M)N : A

Contracting a derivation for the redex M[N/x] then gives a derivation for Γ ⊢∩ M[N/x] : A

that can be obtained by replacing for 1≤ i≤n the sub-derivations

(Ax)
Γ, x:∩nBi ⊢∩ x : Bj

by the derivation for

D
j
2

Γ ⊢ N : Bj

yielding

D1
2

Γ ⊢ N : B1 · · ·

Dn
2

Γ ⊢ N : Bn

D1[N/x]

Γ ⊢ M[N/x] : A

The real problem to solve in a proof for closure under β-equality is then that of β-expansion:

suppose we have derived Γ ⊢∩ M[N/x] : A and also want to derive Γ ⊢∩ (λx.M)N : A.

We distinguish two cases. If the term-variable x occurs in M, then the term N is an actual

subterm of M[N/x]; assume N occurs typed in the derivation for Γ ⊢∩ M[N/x] : A5 and is

typed with the different types B1, . . . , Bn, so, for 1≤ i≤n, Γ ⊢∩ N : Bi.

D1
2

Γ ⊢ N : B1 · · ·

Dn
2

Γ ⊢ N : Bn

D1

Γ ⊢ M[N/x] : A

Then in Curry’s system M cannot be typed using the same types, since then the context would

contain more than one type for x, which is not allowed. In the intersection system a term-

variable can have different types within a derivation, combined in an intersection, and the

term M can then be typed by Γ, x:∩nBi ⊢∩ M : A, and from this we get, by rule (→I), Γ ⊢∩
λx.M : ∩nBi→A. Since, for every 1≤ i≤n, Γ ⊢∩ N : Bi, by rule (∩ I) we also have Γ ⊢∩ N : ∩nBi.

Then, using (→E), the redex can be typed.

(Ax)
Γ, x:∩nBi ⊢ x : B1 · · ·

(Ax)
Γ, x:∩nBi ⊢ x : Bn

D1

Γ, x:∩nBi ⊢ M : A
(→I)

Γ ⊢ λx.M : (∩nBi)→A

D1
2

Γ ⊢ N : B1 · · ·

Dn
2

Γ ⊢ N : Bn
(∩ I)

Γ ⊢ N : ∩nBi
(→E)

Γ ⊢ (λx.M)N : A

For the second case, if x does not occur in M, then the term N is not a subterm of M[N/x],

so N is not typed in the derivation for Γ ⊢∩ M[N/x] : A, then in fact we have

D1

Γ ⊢ M : A

5 This need not be the case, as it can be that it occurs inside a subterm of M that is typed with ⊤.

63

By weakening, the term M can then be typed by Γ, x:⊤ ⊢∩ M : A, and from this we get, by rule

(→I), Γ ⊢∩ λx.M : ⊤→A. Since also Γ ⊢∩ N : ⊤ by rule (∩ I), using (→E), the redex can be

typed.

D1

Γ ⊢ M : A
(Weak)

Γ, x:⊤ ⊢ M : A
(→I)

Γ ⊢ λx.M : ⊤→A
(∩ I)

Γ ⊢ N : ⊤
(→E)

Γ ⊢ (λx.M)N : A

Notice that it might well be that N is typeable in its own right, with a strict type. This is of

no consequence: the construction does not need N to be typeable, since it will be discarded

during reduction.

Before we come to a formal proof of this result, first we need some auxiliary results that are

needed in the proof. The next lemma states that type assignment is closed for ‘≤’.

* Lemma 8.7 If Γ ⊢∩ M : σ and σ ≤ τ, and Γ′ ≤ Γ, then Γ′ ⊢∩ M : τ.

Also, a term-substitution lemma is needed. Notice that, unlike for Curry’s system, the

implication holds in both directions.

Lemma 8.8 ∃σ (Γ, x:σ ⊢∩ M : τ ∧ Γ ⊢∩ N : σ) ⇐⇒ Γ ⊢∩ M[N/x] : τ .

Proof : By induction on M. Only the case τ = A is considered.

(M ≡ x) : (⇒) : ∃σ (Γ, x:σ ⊢∩ x : A ∧ Γ ⊢∩ N : σ) ⇒ (Ax)

∃A1, . . . , An, 1 ≤ j ≤ n (σ = ∩n Ai ∧ A = Aj ∧ Γ ⊢∩ N : ∩n Ai) ⇒ (8.7)

Γ ⊢∩ x[N/x] : Aj.

(⇐) : Γ ⊢∩ x[N/x] : A ⇒ Γ, x:A ⊢∩ x : A ∧ Γ ⊢∩ N : A.

(M ≡ y 6= x) : (⇒) : ∃σ (Γ, x:σ ⊢∩ y : A ∧ Γ ⊢∩ N : σ) ⇒ (8.5) Γ ⊢∩ y[N/x] : A.

(⇐) : Γ ⊢∩ y[N/x] : A ⇒ Γ ⊢∩ y : A ∧ Γ ⊢∩ N : ⊤.

(M ≡ λy.M′) : (⇐⇒) : ∃σ (Γ, x:σ ⊢∩ λy.M′ : A ∧ Γ ⊢∩ N : σ) ⇐⇒ (→I)

∃σ,τ, B (Γ, x:σ,y:τ ⊢∩ M′ : B ∧ A = τ→B ∧ Γ ⊢∩ N : σ) ⇐⇒ (IH)

∃τ, B (Γ,y:τ ⊢∩ M′[N/x] : B ∧ A = τ→B) ⇐⇒ (→I)

Γ ⊢∩ λy.M′[N/x] : A.

(M ≡ M1M2) : (⇐⇒) : Γ ⊢∩ M1M2 [N/x] : A ⇐⇒ (→E)

∃ρ (Γ ⊢∩ M1[N/x] : ρ→A ∧ Γ ⊢∩ M2[N/x] : ρ) ⇐⇒ (IH)

∃σ1,σ2,ρ (Γ, x:σi ⊢∩ M1 : ρ→A ∧ Γ ⊢∩ N : σ1 ∧ Γ, x:σ2 ⊢∩ M2 : ρ ∧ Γ ⊢∩ N : σ2)

⇐⇒ (σ = σ1 ∩σ2) ∧ (∩ I) ∧ (8.7) ∧ (→E)

∃σ (Γ, x:σ ⊢∩ M1M2 : A ∧ Γ ⊢∩ N : σ).

Notice that, although we only present the case for strict types, we do need the property for all

types in the last part.

Theorem 8.9 If M =β N, then Γ ⊢∩ M : τ if and only if Γ ⊢∩ N : τ, so the following rule is admissible

in ‘⊢∩’:

(=β) :
Γ ⊢∩ M : τ

(M =β N)
Γ ⊢∩ N : τ

Proof : By induction on the definition of ‘=β’. The only part that needs attention is that of

a redex, and τ = A, so Γ ⊢∩ (λx.M)N : A ⇐⇒ Γ ⊢∩ M[N/x] : A; all other cases follow by

straightforward induction. To conclude, notice that, if Γ ⊢∩ (λx.M)N : A, then, by (→E) and

(→I), there exists σ such that Γ, x:σ ⊢∩ M : A and Γ ⊢∩ N : σ. The result then follows from

64

Lemma 8.8.

* Example 8.10 Remember from Example 1.11 that we have:

λ f .(λx. f (xx)) (λx. f (xx)) →β λ f . f ((λx. f (xx))(λx. f (xx)))

→β λ f . f (f ((λx. f (xx))(λx. f (xx))))

→β λ f . f (f (f ((λx. f (xx))(λx. f (xx)))))
...

→β λ f . f (f (f (f (f (f (f (. . .)))))))

We can type these reducts as follows:

First, for λ f . f (ZZ) (where Z = λx. f (xx)):

f :⊤→A ⊢ f : ⊤→A
(∩ I)

f :⊤→A ⊢ ZZ : ⊤

f :⊤→A ⊢ f (ZZ) : A

⊢ λ f . f (ZZ) : (⊤→A)→A

The two sub-terms Z in this derivation both occur in a term typed with ⊤, so are not typed

themselves. Using the construction of the proof of subject expansion (Lemma 8.8), we need to

create a derivation for Z from the types it has inside the starting derivation; there are none,

so we have to use ⊤ to type it.

We first reverse the substitution xx [Z/x], and abstract to x to create:

f :⊤→A, x:⊤ ⊢ f : ⊤→A
(∩ I)

f :⊤→A, x:⊤ ⊢ xx : ⊤

f :⊤→A, x:⊤ ⊢ f (xx) : A

f :⊤→A ⊢ λx. f (xx) : ⊤→A

and following the construction discussed above we can construct for the redex λ f .ZZ:

f :⊤→A, x:⊤ ⊢ f : ⊤→A
(∩ I)

f :⊤→A, x:⊤ ⊢ xx : ⊤

f :⊤→A, x:⊤ ⊢ f (xx) : A
(→I)

f :⊤→A ⊢ λx. f (xx) : ⊤→A
(∩ I)

f :⊤→A ⊢ λx. f (xx) : ⊤
(→E)

f :⊤→A ⊢ (λx. f (xx))Z : A

⊢ λ f .(λx. f (xx))Z : (⊤→A)→A

Second, for λ f . f (f (ZZ)): take σ = (⊤→A)∩ (A→B), then we can construct:

f :σ ⊢ f : A→B

f :σ ⊢ f : ⊤→A
(∩ I)

f :σ ⊢ ZZ : ⊤

f :σ ⊢ f (ZZ) : A

f :σ ⊢ f (f (ZZ)) : B

⊢ λ f . f (f (ZZ)) : (⊤→A)∩ (A→B)→B

and following the construction discussed above we can construct a derivation for λ f . f (ZZ).

f :σ ⊢ f : A→B

f :σ, x:⊤ ⊢ f : ⊤→A
(∩ I)

f :σ, x:⊤ ⊢ xx : ⊤

f :σ, x:⊤ ⊢ f (xx) : A
(→I)

f :σ ⊢ λx. f (xx) : ⊤→A
(∩ I)

f :σ ⊢ λx. f (xx) : ⊤
(→E)

f :σ ⊢ (λx. f (xx))Z : A

f :σ ⊢ f (ZZ) : B

⊢ λ f . f (ZZ) : (⊤→A)∩ (A→B)→B

Notice that now Z has a strict type ⊤→A, so the sub-derivation for f :σ ⊢∩ λx. f (xx) : ⊤→A

65

gets used to build the derivation for the redex; the second occurrence is typed with ⊤. We

would need to build the intersection of ⊤→A and ⊤, but that corresponds to just using ⊤→A.

So we can construct a derivation for λ f .ZZ :

f :σ, x:⊤→A ⊢ f : A→B

f :σ, x:⊤→A ⊢ x : ⊤→A
(∩ I)

f :σ, x:⊤→A ⊢ x : ⊤

f :σ, x:⊤→A ⊢ xx : A
..

f :σ, x:⊤→A ⊢ f (xx) : B
(→I)

f :σ ⊢ λx. f (xx) : (⊤→A)→B

f :σ, x:⊤ ⊢ f : ⊤→A
(∩ I)

f :σ, x:⊤ ⊢ xx : ⊤

f :σ, x:⊤ ⊢ f (xx) : A

f :σ ⊢ λx. f (xx) : ⊤→A
(→E)

f :σ ⊢ ZZ : B

⊢ λ f .ZZ : (⊤→A)∩ (A→B)→B

etc.

Interpreting a term M by its set of assignable types T (M) = {σ ∈ Ts | ∃Γ (Γ ⊢∩ M : σ)}

gives a semantics for M, and a filter model for the Lambda Calculus (for details, see [11, 3, 5]).

Example 8.11 Types are not invariant by η-reduction. For example, notice that λxy.xy→η λx.x;

we can derive ⊢∩ λxy.xy : (ϕ1→ϕ2)→ϕ1 ∩ ϕ3→ϕ2, but not ⊢∩ λx.x : (ϕ1→ϕ2)→ϕ1 ∩ ϕ3→ϕ2.

(Ax)
x:ϕ1→ϕ2,y:ϕ1 ∩ ϕ3 ⊢∩ x : ϕ1→ϕ2

(Ax)
x:ϕ1→ϕ2,y:ϕ1 ∩ ϕ3 ⊢∩ y : ϕ1

(→E)
x:ϕ1→ϕ2,y:ϕ1 ∩ϕ3 ⊢∩ xy : ϕ2

(→I)
x:ϕ1→ϕ2 ⊢∩ λy.xy : ϕ1 ∩ϕ3→ϕ2

(→I)
⊢∩ λxy.xy : (ϕ1→ϕ2)→ϕ1 ∩ ϕ3→ϕ2

We cannot derive ⊢∩ λx.x : (ϕ1→ϕ2)→ϕ1 ∩ ϕ3→ϕ2, since we cannot transform the type ϕ1→ϕ2

into ϕ1 ∩ ϕ3→ϕ2 using ≤. There exists intersection systems that do allow this (see, for example,

[3]).

8.4 Rank 2 and ml

It is possible to limit the structure of intersection types, and allow the intersection type con-

structor only up to a certain rank (or depth); for example, 1) in rank 0, no intersection is used;

2) in rank 1, intersection is only allowed on the top; 3) in rank 2, intersection is only allowed on the

top, or on the left of the top arrow; etc. All these variants give decidable restrictions. Moreover,

rank 2 is already enough to model ml’s let.

Example 8.12 The let is used for the case that we would like to type the redex (λx.E2)E1

whenever the contractum is typeable using Curry types, but cannot:

Γ ⊢ E1 : A[B/ϕ] Γ ⊢ E1 : A[C/ϕ]

Γ ⊢ E2[E1/x] : D

Using rank 2 types, the let-construct is not needed, since we can type the redex (λx.E2)E1

directly (let Γ′ = Γ, x:A[B/ϕ] ∩ A[C/ϕ]):

(Ax)
Γ′ ⊢ x : A[B/ϕ]

(Ax)
Γ′ ⊢ x : A[C/ϕ]

Γ′ ⊢ E2 : D
(→I)

Γ ⊢ λx.E2 : A[B/ϕ] ∩ A[C/ϕ]→D

Γ ⊢ E1 : A[B/ϕ] Γ ⊢ E1 : A[C/ϕ]
(∩ I)

Γ ⊢ E1 : A[B/ϕ] ∩ A[C/ϕ]
(let)

Γ ⊢ (λx.E2)E1 : D

66

8.5 Approximation results

In this section, we will prove the approximation theorem for ‘⊢∩’; from this result, we can show

the characterisation of head-normalisation and normalisation of λ-terms using intersection

types, i.e., all terms having a head-normal form are typeable in ‘⊢∩’ (with a type not equivalent

to ⊤), and all terms having a normal form are typeable with a context and type that do not

contain ⊤ at all. Because all these properties can be reduced to the halting problem, type

assignment with intersection types is undecidable.

This result will be proven here using the reducibility technique [52]; we just state and show

the main properties.

We will first focus on the approximation theorem

Γ ⊢∩ M : σ ⇐⇒ ∃ A ∈A (M) (Γ ⊢∩ A : σ)

So, for every type we can assign to a term M, we can find an approximant for M, so a redex-

free term (that might contain ⊥) that fits one of the reducts of M, and has that same type. In

other words, the assigned type predicts (part of) the shape of the (infinite) normal form of M.

For reasons of readability, we will abbreviate ∃ A ∈A (M) (Γ ⊢∩ A : σ) by Appr (Γ, M,σ).

The proof itself is rather convoluted and unexpected. We will define a notion of term

computable in a type, inductively over the structure of types (to be exact, it is defined over

triples of contexts, terms and types, or derivable statements), and show that if a term M is

computable in a type σ, then there exists an approximant of M that has type σ.

This then means that we need to show that if Γ ⊢∩ M : σ, then M is computable in σ. The

main result for this is in Theorem 8.20, where we show that any computable extension M,

where we replace variables by computable terms, yields a computable term of type σ. Since

we also show that all variables are computable in any type, these two then imply that M is

computable in σ.

A number of auxiliary results is needed to prove these steps. First we show that type

assignment is upward closed for ‘⊑’ (see Definition 1.16); this is a direct consequence of the

fact that ⊥ can only appear in terms that are typed with ⊤.

Lemma 8.13 Γ ⊢∩ M : σ ∧ M ⊑ M′ ⇒ Γ ⊢∩ M′ : σ.

Proof : By easy induction on the definition of ‘⊑’; the base case, ⊥ ⊑ M′, follows from the fact

that then σ = ⊤.

The following basic properties are needed further on, and are direct consequences of results

shown in Section 1.3.

* Lemma 8.14 i) Appr (Γ, xM1 · · ·Mn,σ→A) ∧ Appr (Γ, N,σ) ⇒ Appr (Γ, xM1 · · ·MnN, A).

ii) Appr (Γ ∪ {z:σ}, Mz, A) ∧ z 6∈ fv (M) ⇒ Appr (Γ, M,σ→A).

iii) Appr (Γ, M[N/x]P ,σ) ⇒ Appr (Γ, (λx.M)NP,σ).

Proof : i) A ∈A (xM1· · ·Mn) ∧ Γ ⊢∩ A : σ→A ∧ A′ ∈A (N) ∧ Γ ⊢∩ A′ : σ

⇒ (1.18(i) ∧ (→E) ∧ A 6= ⊥) AA′ ∈A (xM1 · · ·MnN) ∧ Γ ⊢∩ AA′ : A.

ii) A ∈A (Mz) ∧ Γ,z:σ ⊢∩ A : A ∧ z 6∈ fv (M) ⇒ (1.18(ii))

a) A ≡ A′z ∧ z 6∈ fv (A′) ∧ A′ ∈ A (M) ∧ Γ,z:σ ⊢∩ A′z : A ⇒

A′ ∈A (M) ∧ Γ ⊢∩ A′ : σ→A.

b) λz.A ∈A (M) ∧ Γ,z:σ ⊢∩ A : A ⇒ λz.A ∈A (M) ∧ Γ ⊢∩ λz.A : σ→A.

iii) Since M[N/x]P =β (λx.M)NP, the result follows by Lemma 1.21.

In order to prove that, for each term typeable in ‘⊢∩’, an approximant can be found that can

be assigned the same type, a notion of computability is introduced.

67

* Definition 8.15 (Computability predicate) The predicate Comp(Γ, M, ρ) is inductively de-

fined by:

Comp(Γ, M, ϕ) ⇐⇒ Appr (Γ, M, ϕ)

Comp(Γ, M, σ→A) ⇐⇒ (Comp(Γ′, N, σ) ⇒ Comp(∩{Γ, Γ′}, MN, A))

Comp(Γ, M, ∩n Ai) ⇐⇒ ∀1≤ i≤n (Comp(Γ, M, Ai))

Notice that Comp(Γ, M, ⊤) holds as special case of the third part.

We will now show that the computability predicate is closed for ‘≤’:

* Lemma 8.16 i) If Comp(Γ, M, σ), and Γ′ ≤ Γ, then Comp(Γ′, M, σ).

ii) If Comp(Γ, M, σ), and σ ≤ τ, then Comp(Γ, M, τ).

Proof : By straightforward induction on the definition of ‘≤’.

We will now show that the computability predicate is closed for β-expansion

* Lemma 8.17 Comp(Γ, M[N/x]P , σ) ⇒ Comp(Γ, (λx.M)NP, σ).

Proof : By induction on the definition of Comp.

(σ = ϕ) : Comp(Γ, M[N/x]P , ϕ) ⇒ Appr (Γ, M[N/x]P , ϕ) ⇒ (8.14(iii))

Appr (Γ, (λx.M)NP, ϕ) ⇒ Comp(Γ, (λx.M)NP, ϕ).

(σ = τ→A) : Comp(Γ, M[N/x]P , τ→A) ⇒ (8.15)

(Comp(Γ′, Q, τ) ⇒ Comp(∩{Γ, Γ′}, M[N/x]PQ, A)) ⇒ (IH)

(Comp(Γ′, Q, τ) ⇒ Comp(∩{Γ, Γ′}, (λx.M)NPQ, A)) ⇒ (8.15)

Comp(Γ, (λx.M)NP, τ→A).

(σ = ∩n Ai) : By induction.

The following theorem essentially shows that all term-variables are computable of any type,

and that all terms computable of a certain type have an approximant with that same type.

These results are interdependent, in that they can only be shown together, using simultane-

ously induction.

* Theorem 8.18 i) Appr (Γ, xM1 · · ·Mn,ρ) ⇒ Comp(Γ, xM1 · · ·Mn, ρ).

ii) Comp(Γ, M, ρ) ⇒ Appr (Γ, M,ρ).

Proof : Simultaneously by induction on the structure of types. The only interesting case is when

ρ = σ→A; when ρ is a type-variable, the result is immediate and when it is an intersection

type, it is dealt with by induction.

i) Appr (Γ, xM1 · · ·Mn,σ→A) ⇒ (IH(ii))

(Comp(Γ′, N, σ) ⇒ Appr (Γ, xM1 · · ·Mn,σ→A) ∧ Appr (Γ′, N,σ)) ⇒ (8.14(i))

(Comp(Γ′, N, σ) ⇒ Appr (∩{Γ, Γ′}, xM1 · · ·MnN, A)) ⇒ (IH(i))

(Comp(Γ′, N, σ) ⇒ Comp(∩{Γ, Γ′}, xM1 · · ·MnN, A)) ⇒ (8.15)

Comp(Γ, xM1 · · ·Mn, σ→A).

ii) Comp(Γ, M, σ→A) ∧ z 6∈ fv (M) ⇒ (IH(i))

Comp(Γ, M, σ→A) ∧ Comp({z:σ}, z, σ) ∧ z 6∈ fv (M) ⇒ (8.15)

Comp(∩{Γ,{z:σ}}, Mz, A) ∧ z 6∈ fv(M) ⇒ (IH(ii))

Appr (∩{Γ,{z:σ}}, Mz, A) ∧ z 6∈ fv (M) ⇒ (8.14(ii))

Appr (Γ, M,σ→A).

Notice that, as a corollary of the first of these two results, we get that term-variables are

computable for any type:

68

* Corollary 8.19 Comp({x:σ}, x, σ), for all x, σ.

The main result of this section states that a computable extension of a typeable term yields

a computable term.

* Theorem 8.20 (Replacement Theorem) If x1:µ1, . . . , xn:µn ⊢∩ M : σ, and, for every 1≤ i≤n,

Comp(Γi, Ni, µi), then Comp(∩nΓi, M[Ni/xi], σ).

Proof : By induction on the structure of derivations; let x1:µ1, . . . , xn:µn = Γ0, and Γ′ = ∩nΓi.

(Ax) : Then M ≡ xj, for some 1 ≤ j ≤ n, µj ≤ σ, and M[Ni/xi] ≡ xj[Ni/xi] ≡ Nj.

Comp(Γj, Nj, µj) ⇒ (µj ≤ σ ∧ 8.16)

Comp(Γj, Nj, σ) ⇒ (Γ′ ≤ Γj ∧ 8.16)

Comp(Γ′, Nj, σ).

(→I) : Then M ≡ λy.M′, σ = ρ→A, and Γ0,y:ρ ⊢∩ M′ : A.

∀1≤ i≤n (Comp(Γi, Ni, µi)) ∧ Γ0,y:ρ ⊢∩ M′ : A ⇒ (IH ∧ 8.16(i))

(Comp(Γ′, N, ρ) ⇒ Comp(∩{Γ′, Γ′}, M′[Ni/xi, N/y], A)) ⇒ (8.17)

(Comp(Γ′, N, ρ) ⇒ Comp(∩{Γ′, Γ′}, (λy.M′[Ni/xi])N, A)) ⇒ (8.15)

Comp(Γ′, (λy.M′)[Ni/xi], ρ→A).

(→E) : Then M ≡ M1M2, Γ0 ⊢∩ M1 : ρ→σ, and Γ0 ⊢∩ M2 : ρ.

∀1≤ i≤n (Comp(Γi, Ni, µi)) ∧ Γ0 ⊢∩ M1 : ρ→σ ∧ Γ0 ⊢∩ M2 : ρ ⇒ (IH)

Comp(Γ′, M1[Ni/xi], ρ→σ) ∧ Comp(Γ′, M2[Ni/xi], ρ) ⇒ (8.15)

Comp(Γ′, (M1M2)[Ni/xi], σ).

(∩ I) : Straightforward by induction.

Now we can show:

* Theorem 8.21 Γ ⊢∩ M : σ then Comp(Γ, M, σ)

Proof : By Corollary 8.19, for every xi:τi ∈ Γ we know that Comp(Γ, xi, τi), so in particular by

Theorem 8.20 we have Comp(Γ, M[xi/xi], σ), and that M[xi/xi] = M.

We can now show the approximation result.

Theorem 8.22 (Approximation theorem) Γ ⊢∩ M : σ ⇐⇒ ∃ A ∈A (M) (Γ ⊢∩ A : σ).

Proof :(⇒) : Γ ⊢∩ M : σ ⇒ (8.21) Comp(Γ, M, σ) ⇒ (8.18(ii)) ∃ A ∈A (M) (Γ ⊢∩ A : σ).

(⇐) : Let A∈A (M) be such that Γ ⊢∩ A : σ. Since A∈A (M), there is an M′ such that M′ =β M

and A ⊑ M′. Then, by Lemma 8.13, Γ ⊢∩ M′ : σ and, by Corollary 8.9, also Γ ⊢∩ M : σ.

8.6 Characterisation of (head/strong) normalisation

Using the approximation result, the following head-normalisation result becomes easy to

show.

Theorem 8.23 (Head-normalisation) ∃Γ, A (Γ ⊢∩ M : A)⇐⇒ M has a head-normal form.

Proof :(⇒) : If Γ ⊢∩ M : A, then, by Theorem 8.22, there exists A ∈ A (M) such that Γ ⊢∩ A : A.

By Definition 1.15, there exists M′ =β M such that A ⊑ M. Since A is strict, A 6≡ ⊥, so A

is either λx.A1 or xA1 · · ·An, with n ≥ 0. Since A ⊑ M′, M′ is either λx.M1, or xM1 · · ·Mn.

Then M has a head-normal form.

(⇐) : If M has a head-normal form, then there exists M′ =β M such that M′ is either λx.M1

or xM1· · ·Mn, with Mi ∈ Λ, for all 1≤ i≤n. Then either:

a) M′ ≡ λx.M1. Since M1 is in head-normal form, by induction there are Γ, A such that

Γ ⊢∩ M1 : A. If x:τ ∈ Γ, then Γ\x ⊢∩ λx.M1 : τ→A; otherwise Γ ⊢∩ λx.M1 : ⊤→A.

b) M′ ≡ xM1 · · ·Mn, (n ≥ 0). Then x:⊤→·· ·→⊤→A ⊢∩ xM1 · · ·Mn : A.

69

So there exists Γ, A such that Γ ⊢∩ M′ : A, and, by Corollary 8.9, we get Γ ⊢∩ M : A.

To prepare the characterisation of normalisability by assignable types, first we prove that

a term in λ⊥-normal form is typeable without ⊤, if and only if it does not contain ⊥. This

forms the basis for the result that all normalisable terms are typeable without ⊤.

* Lemma 8.24 i) If Γ ⊢∩ A : σ and Γ,σ are ⊤-free, then A is ⊥-free.

ii) If A is ⊥-free, then there are ⊤-free Γ and σ, such that Γ ⊢∩ A : σ.

Proof : By induction on the structure of terms in approximate normal form.

i) As before, only the part σ = A ∈ Ts is shown.

(A ≡ ⊥) : Impossible, since ⊥ is only typeable by ⊤.

(A ≡ λx.A′) : Then A = ρ→B, and Γ, x:ρ ⊢∩ A : B. Since Γ, A are ⊤-free, so are Γ, x:ρ and B,

so, by induction, A′ is ⊥-free, so also λx.A′ is ⊥-free.

(A ≡ xA1· · ·An) : Then, by (→E) and (Ax), there are σi,τi (1≤ i≤n),ψ, such that Γ ⊢∩ Ai :

σi for all 1≤ i≤n, x:τ1→·· ·→τn→ψ ∈ Γ, and τ1→·· ·→τn→ψ ≤ σ1→·· ·→σn→ψ. So,

especially, for every 1≤ i≤n, σi ≤ τi. By Lemma 8.7, also Γ ⊢∩ Ai : τi, for every 1≤ i≤n.

Since each τi occurs in Γ, all are ⊤-free, so by induction each Ai is ⊥-free. Then also

xA1 · · ·An is ⊥-free.

ii) (A ≡ λx.A′) : By induction there are Γ, B such that Γ ⊢∩ A′ : B and Γ, B are ⊤-free. If x

does not occur in Γ, take an ⊤-free σ ∈ T . Otherwise, there exist x:τ ∈ Γ, and τ is

⊤-free. In any case, Γ\x ⊢∩ λx.A′ : τ→B, and Γ\x and τ→B are ⊤-free.

(A ≡ xA1 · · ·An, with (n ≥ 0)) : By induction there are Γi,σi (1≤ i≤n) such that, for every

1≤ i≤n, Γi ⊢∩ Ai : σi, and Γi,σi are ⊤-free. Take any A strict, such that ⊤ does not occur

in A, and Γ = ∩nΓi ∩ {x:σ1→·· ·→σn→A}. Then Γ ⊢∩ xA1· · ·An : A, and Γ and A are

⊤-free.

By construction of the proof, in part (ii), the type constant ⊤ is not used at all in the

derivation.

Now it is possible to prove that we can characterise normalisation.

Theorem 8.25 (Normalisation) ∃Γ,σ (Γ ⊢∩ M : σ ∧ Γ,σ ⊤-free)⇐⇒ M has a normal form.

Proof :(⇒) : If Γ ⊢∩ M : σ, then, by Theorem 8.22, there exists A ∈ A (M) such that Γ ⊢∩ A : σ.

Then, by Lemma 8.24 (i), this A is ⊥-free. By Definition 1.15, there exists M′ =β M such

that A ⊑ M′. Since A is ⊥-free, we have A ≡ M′, so M′ itself is in normal form, so,

especially, M has a normal form.

(⇐) : If M′ is the normal form of M, then it is a ⊥-free approximate normal form. Then,

by Lemma 8.24 (ii), there are ⊤-free Γ,σ such that Γ ⊢∩ M′ : σ, and Γ ⊢∩ M : σ follows by

Theorem 8.9.

Using the technique of computability, we can also show:

Theorem 8.26 M is strongly normalisable, if and only if there are Γ and A such that Γ ⊢∩ M : A, and

in this derivation ⊤ is not used at all.

We would be needing a separate proof, in that this does not follow from the results shown

above.

We can now reason that the converse of Corollary 8.9 does not hold: terms that do not have

a head-normal form are all only typeable with ⊤, but these cannot all be converted to each

other.

70

8.7 Principal intersection pairs

It is possible to define a notion of principal pair for λ-terms using intersection types [51, 4, 5].

We can approach this problem in the traditional way, by defining an algorithm that con-

structs a pair of context and (strict) type for a term, but will walk a different path here.

Through the approximation result we know that every type for a term correspond to that of

one of its approximants, but is this true for the principal pair as well? Which approximant

will serve for the principal pair?

If the collection of approximants for a term M, A (M), is finite, that set contains a largest

element with respect to ⊑, AM, in the sense that for every A∈A (M) we can show that A ⊑ AM.

Then by Lemma 8.13, we can show that if Γ ⊢∩ A : B, and A ⊑ AM, then Γ ⊢∩ AM : B, so the

maximal approximant has all the type assignments we have for M. If A (M) is infinite, then

there is no maximal element, and we cannot choose one approximant as a representative that

has all types, but need to consider the whole set. We will see this come back in Definition 8.30.

We first define principal pairs first for terms in approximate normal forms.

Definition 8.27 (Principal Pairs) i) For A ∈A, we define pp(A), the principal pair of A, by:

a) pp(⊥) = 〈 ,⊤〉.

b) pp(x) = 〈{x:ϕ}, ϕ〉.

c) If A 6= ⊥, and pp(A) = 〈Π, P〉, then:

1) If x occurs free in A, and x:σ ∈ Π, then pp(λx.A) = 〈Π\x,σ→P〉.

2) Otherwise pp(λx.A) = 〈Π,⊤→P〉.

d) If for 1≤ i≤n, pp(Ai) = 〈Πi, Pi〉 (disjoint in pairs), then

pp(xA1· · ·An) = 〈∩nΠi ∩ {x:P1→·· ·→Pn→ϕ}, ϕ〉,

where ϕ is a type-variable that does not occur in pp(Ai), for 1≤ i≤n.

ii) P = {〈Π, P〉 | ∃A ∈A (pp(A) = 〈Π, P〉)}.

Since unification is not used in this definition, the following result is almost immediate:

Lemma 8.28 If pp(A) = 〈Π, P〉, then Π ⊢∩ A : P.

Proof : Easy.

Notice that this algorithm always returns a pair. This immediately implies:

Corollary 8.29 For every A ∈ A with A 6= ⊥ there exist Γ, B such that Γ ⊢∩ A : B.

We can now define a notion of principal pairs for arbitrary λ-terms:

Definition 8.30 (Principal intersection pairs) i) Let M be a term. We define P(M) as the

set of all principal pairs for all approximants of M: P(M) = {pp(A) | A ∈A(M)}.

ii) P(M) is an ideal6 in P , and therefore:

a) If P(M) is finite, then there exists a pair 〈Π, P〉 =
⊔

P(M), where 〈Π, P〉 ∈ P . This

pair is then called the principal pair of M.

b) If P(M) is infinite,
⊔

P(M) does not exist in P . The principal pair of M is then the

infinite set of pairs P(M).

6 A subset I of a partially ordered set (P,≤) is an ideal if the following conditions hold:

a) I is non-empty,

b) I is downwards closed: for every x ∈ I, y ∈ P: if y ≤ x then y ∈ I (I is a lower set), and

c) for all x,y ∈ I, there exists z ∈ I, such that x ≤ z and y ≤ z (I is a directed set)

71

In case P(M) is finite,
⊔

P(M) corresponds to the pp(Al), where Al is the largest approximant

of M.

The proof that this notion is well defined, i.e. defines a notion of principal pairs, is quite

involved and requires a notion of unification that deals with intersection types as well, and

needs more operations on types than just substitution of type variables. We will illustrate this

by having a look at how unification would have to operate.

Example 8.31 Assume we are trying to type ∆∆ = (λx.xx) (λx.xx). We have that pp(λx.xx) =

(ϕ1→ϕ2)∩ ϕ1→ ϕ2, so in order to type ∆∆ we need to call

unify (ϕ1→ϕ2)∩ ϕ1→ ϕ2 ((ϕ3→ϕ4)∩ ϕ3→ ϕ4)→ ϕ5.

This means that we will unify the arrow type (ϕ3→ϕ4)∩ ϕ3→ ϕ4 with the intersection type

(ϕ1→ϕ2)∩ ϕ1.

unify (ϕ1→ϕ2)∩ ϕ1 (ϕ3→ϕ4)∩ ϕ3→ ϕ4. (1)

To be able to do that, we need to copy the arrow type into two fresh copies (this operation is

called expansion) and unify each with a component of the intersection type. So we get

unify (ϕ1→ϕ2)∩ ϕ1 ((ϕ3→ϕ4)∩ ϕ3→ ϕ4) ∩ ((ϕ6→ϕ7)∩ ϕ6→ ϕ7)

which calls

S1 = unify ϕ1→ϕ2 (ϕ3→ϕ4)∩ ϕ3→ ϕ4

S2 = unify (S1 ϕ1) (S1 (ϕ6→ϕ7)∩ ϕ6→ ϕ7).

The first returns S1 = (ϕ1 7→ (ϕ3→ϕ4)∩ ϕ3, ϕ2 7→ ϕ4), so

S2 = unify (ϕ3→ϕ4)∩ ϕ3 (ϕ6→ϕ7)∩ ϕ6→ ϕ7

Notice that this is exactly the kind of unification we started with in (1); the unification loops

and never returns an answer. Of course this is correct: ∆∆ had only ⊥ as approximant, so can

only be typed with ⊤, and unification should not be successful.

A semi-algorithm that calculates principal intersection pairs for λ-terms is defined in [50].

It tries to type all sub-terms, and thereby only returns a result for strongly normalisable terms

- it loops on unification when dealing with terms that are not SN. Since stating that a term

has a principal pair corresponds to being able to say it is typeable, the former is, of course,

undecidable.

Exercises

Exercise 8.32 Show

i) ⊢∩ λxy.xy : (A→B)→(C∩ A)→B.

ii) ⊢∩ λxyz.xz(yz) : (A→B→C)→(D→B)→(A∩D)→C.

iii) ⊢∩ λxyz.xz(yz) : (A→⊤→C)→⊤→A→C

iv) ⊢∩ (λxyz.xz(yz)) (λab.a) : ⊤→A→A (use the previous result without repeating the whole

structure).

Exercise 8.33 Compare the principal types of the terms (λxyz.xz(yz))(λxy.x)(λx.x) and λx.x in the

Curry system and in the intersection system. Motivate your answer.

Exercise 8.34 Does λx.xx have a single principal intersection type? If yes, give a derivation that

derives that type; if no, explain why. Show that (⊤→ϕ)→ϕ is a type for λx.xx.

Exercise 8.35 Does λy.(λx.xx)y have a single principal intersection type? If yes, give a derivation

that derives that type; if no, explain why. Show that (⊤→ϕ)→ϕ is a type for λy.(λx.xx)y.

72

Exercise 8.36 Does λ f .(λx. f (xx))(λx. f (xx)) have a single principal intersection type? If yes, give a

derivation that derives that type; if no, explain why.

Show that (⊤→ϕ)→ϕ is a type for λ f .(λx. f (xx))(λx. f (xx)).

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional
Programming, 1(4):375–416, 1991.

[2] M. Abadi and M.P. Fiore. Syntactic Considerations on Recursive Types. In Proceedings 11th Annual
IEEE Symp. on Logic in Computer Science, LICS’96, New Brunswick, NJ, USA, 27–30 July 1996, pages
242–252. IEEE Computer Society Press, Los Alamitos, CA, 1996.

[3] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

[4] S. van Bakel. Principal type schemes for the Strict Type Assignment System. Journal of Logic and
Computation, 3(6):643–670, 1993.

[5] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[6] S. van Bakel. Rank 2 Intersection Type Assignment in Term Rewriting Systems. Fundamenta
Informaticae, 2(26):141–166, 1996.

[7] S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems. Information
and Computation, 2(133):73–116, 1997.

[8] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

[9] S. van Bakel, S. Smetsers, and S. Brock. Partial Type Assignment in Left Linear Applicative Term
Rewriting Systems. In J.-C. Raoult, editor, Proceedings of CAAP’92. 17th Colloquim on Trees in Algebra
and Programming, Rennes, France, volume 581 of Lecture Notes in Computer Science, pages 300–321.
Springer Verlag, 1992.

[10] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[11] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[12] R. Bloo and K.H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with
Explicit Substitution and Garbage Collection. In CSN’95 – Computer Science in the Netherlands,
pages 62–72, 1995.

[13] T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for Func-
tional Graph Rewriting. In Proceedings of the Third International Conference on Functional Program-
ming Languages and Computer Architecture, Portland, Oregon, USA, volume 274 of Lecture Notes in
Computer Science, pages 364–368. Springer Verlag, 1987.

[14] R.M. Burstall, D.B. MacQueen, and D.T. Sannella. Hope: An Experimental Applicative Language.
In Conference Record of the 1980 LISP Conference, pages 136–143. ACM Press, 1980.

[15] A. Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.

[16] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.

[17] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type structures and filter
lambda models. In G. Lolli, G. Longo, and A. Marcja, editors, Logic Colloquium 82, pages 241–262,
Amsterdam, the Netherlands, 1984. North-Holland.

[18] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus seman-
tics. In J.R. Hindley and J.P. Seldin, editors, To H.B. Curry, Essays in combinatory logic, lambda-calculus
and formalism, pages 535–560. Academic press, New York, 1980.

[19] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[20] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type Theories, Normal Forms and D∞-Lambda-
Models. Information and Computation, 72(2):85–116, 1987.

[21] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–536,
789–834, 1930.

73

[22] H.B. Curry. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci. U.S.A, volume 20, pages
584–590, 1934.

[23] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.

[24] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings 9th ACM
Symposium on Principles of Programming Languages, pages 207–212, 1982.

[25] L.M.M. Damas. Type Assignment in Programming Languages. PhD thesis, University of Edinburgh,
Department of Computer Science, Edinburgh, 1984. Thesis CST-33-85.

[26] M. Dezani-Ciancaglini and J.R. Hindley. Intersection types for combinatory logic. Theoretical
Computer Science, 100:303–324, 1992.

[27] F. Dupont. Langage fonctionnels et parallélisme. Une réalisation Pour le système CAML. PhD thesis,
École Polytechnique, Palaiseau, France, July 1990.

[28] V. Gapeyev, M.Y. Levin, and B.C. Pierce. Recursive subtyping revealed: functional pearl. In
M. Odersky and P. Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International Conference
On Functional Programming (ICFP ’00), Montreal, Canada, pages 221–231. ACM, September 18-21
2000.

[29] J.-Y. Girard. The System F of Variable Types, Fifteen years later. Theoretical Computer Science,
45:159–192, 1986.

[30] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 633–674. North-Holland, 1990.

[31] B Harper. Introduction to Standard ML. Technical report, ECS-LFCS-86-14, Laboratory for the
Foundation of Computer Science, Edinburgh University, 1986.

[32] J.R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969.

[33] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,
T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report on the Programming
Language Haskell. ACM SIGPLAN Notices, 27(5):1–64, 1992.

[34] A. Kfoury and J. Wells. Principality and decidable type inference for finite-rank intersection types.
In Proceedings of the 26th ACM Symposium on the Principles of Programming Languages (POPL ’99),
pages 161–174, 1999.

[35] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ML with an effective type-
assignment. In Proceedings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, San Diego, California, pages 58–69, 1988.

[36] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML Typability is Dexptime-Complete. In A. Arnold,
editor, Proceedings of CAAP’90. 15th Colloquim on Trees in Algebra and Programming, Copenhagen,
Denmark, volume 431 of Lecture Notes in Computer Science, pages 206–220. Springer Verlag, 1990.

[37] J.W. Klop. Term Rewriting Systems: a tutorial. EATCS Bulletin, 32:143–182, 1987.

[38] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon Press, 1992.

[39] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction
and survey. In M. Dezani-Ciancaglini, S. Ronchi Della Rocca, and M Venturini Zilli, editors, A
Collection of contributions in honour of Corrado Böhm, pages 279–308. Elsevier, 1993.

[40] J-L. Krivine. A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation,
20(3):199–207, 2007.

[41] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection
types for explicit substitutions. Information and Computation, 189(1):17–42, 2004.

[42] P. Lescanne. From λσ to λυ: a Journey Through Calculi of Explicit Substitutions. In POPL’94,
pages 60–69, 1994.

[43] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[44] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML. MIT Press, 1990.
Revised edition.

[45] A. Mycroft. Polymorphic type schemes and recursive definitions. In Proceedings of the International
Symposium on Programming, Toulouse, France, volume 167 of Lecture Notes in Computer Science,
pages 217–239. Springer Verlag, 1984.

[46] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Aanalysis. Springer Verlag, 1999.

74

[47] F. Pottier. A modern eye on ML type inference - Old techniques and recent Developments, Septem-
ber 2005.

[48] D. Remy and J. Vouillon. Objective ML: An Effective Object-Oriented Extension to ML. Theory and
Practice of Object Systems, 4(1):27–50, 1998.

[49] J.A. Robinson. A Machine-Oriented Logic Based on Resolution Principle. Journal of the ACM,
12(1):23–41, 1965.

[50] S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline.
Theoretical Computer Science, 59:181–209, 1988.

[51] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory. Theo-
retical Computer Science, 28:151–169, 1984.

[52] W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic,
32(2):198–212, 1967.

[53] D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Proceedings of
the conference on Functional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science, pages 1–16. Springer Verlag, 1985.

[54] C.P. Wadsworth. The Relation Between Computational and Denotational Properties for Scott’s
D∞-Models of the Lambda-Calculus. SIAM Journal on Computing, 5(3):488–521, 1976.

[55] J.B. Wells. Typeability and type checking in Second order λ-calculus are equal and undecidable.
In Proceedings of the ninth Annual IEEE Symposium on Logic in Computer Science, Paris, France, 1994.

[56] J.B. Wells. The essence of principal typings. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Pro-
ceedings of ICALP’92. 29th International Colloquium on Automata, Languages and Programming, volume
2380 of Lecture Notes in Computer Science, pages 913–925. Springer Verlag, 2002.

75

Appendix: Answers to exercises

Exercise 1.28 i) (λx.(λy.(λz.(((xz)y)z))))

ii) (λx.(λy.(λz.((xz) (yz)))))

iii) ((λx.(λy.x)) (λz.(wz)))

iv) λx1.(λx2.x1x2)x1x3

v) (λx1.(λx2.x1x2x1))x3

vi) (λxy.x)λz.za

Exercise 1.29 Proof : By induction on the definition of terms.

(M = x) : Then x [N/x] [L/y] = N[L/y] = x [L/y] [N [L/y]/x].

(M = y) : Then y [N/x] [L/y] = y[L/y] =(x 6∈ fv (L)) y [L/y] [N [L/y]/x].

(M = z) : Then z [N/x] [L/y] = z[L/y] = z [L/y] [N [L/y]/x].

(M = λz.P) : Then (λz.P) [N/x] [L/y] = λz.(P [N/x] [L/y]) = (IH) λz.(P [L/y] [N [L/y]/x]) =

(λz.P) [L/y] [N [L/y]/x]).

(M = PQ) : Then (PQ) [N/x] [L/y] = (P [N/x] [L/y]) (Q [N/x] [L/y]) = (IH)

(P [L/y] [N [L/y]/x]) (Q [L/y] [N [L/y]/x]) = (PQ) [L/y] [N [L/y]/x].

Exercise 1.30 We run head-reduction on all terms.

i) (λxyz.xz(yz)) (λab.a) →β λyz.(λab.a)z (yz) →β λyz.(λb.z) (yz) →β λyz.z

This is a head-normal form that is a normal form as well.

ii) (λ f .(λx. f (xx)) (λx. f (xx))) (λa.a) →β

(λx.(λa.a)(xx)) (λx.(λa.a)(xx)) = (with λx.(λa.a)(xx) = P)

PP →β (λa.a)(PP) →β PP etc

No head-normal form, so no normal form.

iii) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.a) →β

(λx.(λab.a)(xx)) (λx.(λab.a)(xx)) = (with λx.(λab.a)(xx) = P)

PP →β (λab.a)(PP) →β λb.PP etc →β λb.λb′ .PP etc

No head-normal form, so no normal form.

iv) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.b) →β

(λx.(λab.b)(xx)) (λx.(λab.b)(xx)) = (with λx.(λab.b)(xx) = P)

PP →β (λab.b)(PP) →β λb.b

Head-normal form, and normal form.

v) (λ f .(λx. f (xx)) (λx. f (xx))) (λab.ab) →β

(λx.(λab.ab)(xx)) (λx.(λab.ab)(xx)) = (with λx.(λab.ab)(xx) = P)

PP →β (λab.ab)(PP) →β λb.PPb →β λb.(λb′ .PPb′)b →β λb.PPb etc

No head-normal form, so no normal form.

Exercise 1.31 By induction on the definition of =β.

(M →∗
β N ⇒ M =β N) : Immediate.

(M =β N ⇒ N =β M) : By induction there exist M1, M2, . . . , Mn, Mn+1 such that M ≡ M1, N ≡

Mn+1, and, for all 1≤ i≤n, either Mi →
∗
β Mi+1, or Mi+1 →

∗
β Mi. This same sequence serves

for the reversed equation.

(M =β L ∧ L =β N ⇒ M =β N) : By induction there exist M1, M2, . . . , Mn, Mn+1 such that M ≡

M1, L ≡ Mn+1, and, for all 1≤ i≤n, either Mi →
∗
β Mi+1, or Mi+1 →

∗
β Mi, and there exist

L1, L2, . . . , Lm, Lm+1 such that L ≡ L1, N ≡ Ln+1, and, for all 1≤ i≤n, either Li →
∗
β Li+1, or

76

Li+1 →
∗
β Li. Then the sequence M ≡ M1, M2, . . . , Mn, Mn+1 ≡ L ≡ L1, L2, . . . , Lm, Lm+1 ≡ N

satisfies the criteria.

Exercise 1.32 We have

M ((λ f .(λx. f (xx)) (λx. f (xx)))M) →β M ((λx.M(xx)) (λx.M(xx)))

and

(λ f .(λx. f (xx)) (λx. f (xx)))M →β (λx.M(xx)) (λx.M(xx))

→β M ((λx.M(xx)) (λx.M(xx)))

so M ((λ f .(λx. f (xx)) (λx. f (xx)))M) =β (λ f .(λx. f (xx)) (λx. f (xx)))M .

Exercise 1.33 We have

(λxy.y(xxy))(λxy.y(xxy))M →β (λz.z((λxy.y(xxy)) (λxy.y(xxy))z))M

→β M ((λxy.y(xxy)) (λxy.y(xxy))M)

Exercise 1.34 By induction on the structure of terms in normal form.

(M ≡ xM1 · · ·Mn, with n ≥ 0 and each Mi in normal form) : Notice that each Mi is a λ-term, so

xM1· · ·Mn is in head-nomal form.

(M ≡ λx.N, with N in normal form) : Then, by induction, N is in head-normal form, so so is

λx.N.

Exercise 1.35 Assume M →∗
β N1 and M →∗

β N2, and both N1 and N2 are in normal form. Then,

by the Church-Rosser property, we know there exists Q such that N1 →∗
β Q and N2 →∗

β Q.

However, since both are in normal form, these are empty reductions and, in fact, we have

N1 ≡ Q ≡ N2. So the normal form of M, if it exists, is unique.

Exercise 1.36 i) If A ∈ A (xM1 · · ·Mn), then there exists M′
1, . . . , M′

n such that, for all 1≤ i≤n,

Mi →
∗
β M′

i and A ⊑ xM′
1 · · ·M

′
n. Since A 6= ⊥, there exists A1, . . . , An such that, for all

1≤ i≤n, Ai ⊑ M′
i , and A = xA1· · ·An. Since A′ ∈A (N), there exists N′ such that N →∗

β N′

and A′ ⊑ N′. But then xM1 · · ·MnN →∗
β xM′

1· · ·M
′
nN′, and xA1· · ·An A′ ⊑ xM′

1· · ·M
′
nN′,

so AA′ ∈A (xM1 · · ·MnN).

ii) Let A ∈A (Mz), then there exists N such that Mz →∗
β N and A ⊑ N. Now either:

– N = M′z (so the reductions took place inside M), and A = ⊥ or A = A′z with A′ ⊑

M′, so A′ ∈ A (M). Since z 6∈ M, we have z 6∈ M′, and since A′ matches M′, also

z 6∈ A′.

– During reduction of Mz towards N, M has run into an abstraction, M →∗
β λx.M′,

and (λx.M′)z →β M′[z/x]→∗
β N. Then A∈A (M′[z/x]), so λz.A∈A (λz.M′[z/x]) =

A (λx.M′) = A (M).

Exercise 1.37 i) By induction on the structure of approximants. If A ⊑ M and M →∗
β N, then

either:

(A = ⊥) : Then A ⊑ N.

(A = λx.A′, A′ 6= ⊥) : Then M = λx.M′ with A′ ⊑ M′, and λx.M′ →∗
β λx.N′ , so M′ →∗

β N′.

By induction, we have A′ ⊑ N′, so λx.A′ ⊑ λx.N′.

(A = xA1 · · ·An) : Then M = xM1 · · ·Mn, and, for every 1≤ i≤n, we have Ai ⊑ Mi. Since

M →∗
β N, there are N1, . . . , Nn such that N = xN1 · · ·Nn, and, for every 1≤ i≤n,

we have Mi →
∗
β Ni. Then, by induction, for every 1≤ i≤n, we have Ai ⊑ Ni, so

xA1 · · ·An ⊑ xN1 · · ·Nn.

ii) If A∈A (M), then there exists P such that M →∗
β P and A⊑ P. Since M →∗

β N and M →∗
β P

and reduction is confluent, there exists L such that N →∗
β L and P →∗

β L. By part (iii) we

77

have A ⊑ L, so also A ∈A (N).

iii) If A∈A (N), then there exists P such that N →∗
β P and A ⊑ P. Since M →∗

β N and N →∗
β P,

we have M →∗
β P, so A ∈A (M).

Exercise 1.38 By induction on the structure of approximants. If M1 ⊑ M, and M2 ⊑ M, then

either

(M1 = ⊥) : Notice that ⊥⊔M2 = M2, so we have ⊥ ⊑ M2, M2 ⊑ M2, and M2 ⊑ M.

(M2 = ⊥) : Similar.

(M1 = λx.M′
1) : Then M = λx.M′, M′

1 ⊑ M′, and either:

(M2 = ⊥) : Then M1⊔M2 = λx.M′
1, and λx.M′

1 ⊑ λx.M′
1, ⊥⊑ λx.M′

1, and λx.M′
1 ⊑ λx.M′.

(M2 = λx.M′
2) : Then M′

2 ⊑ M′, and by induction M′
1 ⊑ M′

1⊔M′
2, M′

2 ⊑ M′
1⊔M′

2, and

M′
1⊔M′

2 ⊑ M’. But then also λx.M′
1 ⊑ λx.M′

1⊔λx.M′
2, λx.M′

2 ⊑ λx.M′
1⊔λx.M′

2, and

λx.M′
1⊔λx.M′

2 ⊑ λx.M’.

(M1 = xM1
1 · · ·M

n
1) : Similar to the previous case.

Exercise 1.39 Cond True M N =∆ (λb t f .b t f) (λxy.x) M N →β (λxy.x) M N →β M

Cond False M N =∆ (λb t f .b t f) (λxy.y) M N →β (λxy.y) M N →β N

Exercise 1.40 First 〈M, N〉 =∆ (λp.p(λxy.x)) (λz.zMN) →β (λz.zMN) (λxy.x) →β

(λxy.x)MN →β M

Second 〈M, N〉 =∆ (λp.p(λxy.y)) (λz.zMN) →β (λz.zMN) (λxy.y) →β (λxy.y)MN →β N

Exercise 1.41 Pred (Succ k) =∆ (〈K,I〉) ((λnxy.yn)k) =∆ (λp.pKI) ((λnxy.yn)k) →β

(λnxy.yn) k K I) →∗
β I k =∆ (λx.x) k →β k

Succ (Pred k) =∆ (λnxy.yn) (〈K,I〉 k) →β λxy.y (〈K,I〉 k) =∆ λxy.y ((λp.pKI) k) =∆

λxy.y(kKI)

So no.

Exercise 2.17

(Ax)
x:A ⊢c x : A

(→I)
⊢c λx.x : A→A

(Ax)
x:A,y:B ⊢c x : A

(→I)
x:A ⊢c λy.x : B→A

(→I)
⊢c λxy.x : A→B→A

(Ax)
Γ ⊢c x : A→B→C

(Ax)
Γ ⊢c z : A

(→E)
Γ ⊢c xz : B→C

(Ax)
Γ ⊢c y : A→B

(Ax)
Γ ⊢c z : A

(→E)
Γ ⊢c yz : B

(→E)
Γ = x:A→B→C,y:A→B,z:A ⊢c xz(yz) : C

(→I)
x:A→B→C,y:A→B ⊢c λz.xz(yz) : A→C

(→I)
x:A→B→C ⊢c λyz.xz(yz) : (A→B)→A→C

(→I)
⊢c λxyz.xz(yz) : (A→B→C)→(A→B)→A→C

(Ax)
b:A, c:B ⊢c c : B

b:A ⊢c λc.c : B→B

⊢c λbc.c : A→B→B

(Ax)
Γ,y:A ⊢c c : B

(→I)
Γ ⊢c λy.c : A→B

(Ax)
Γ ⊢c b : B→A

(Ax)
Γ ⊢c c : B

(→E)
Γ ⊢c bc : A

(→E)
Γ = b:B→A, c:B ⊢c (λy.c) (bc) : B

(→I)
b:B→A ⊢c λc.(λy.c) (bc) : B→B

(→I)
⊢c λbc.(λy.c) (bc) : (B→A)→B→B

78

(Ax)
Γ, x:B,y:A ⊢c x : B

(→I)
Γ, x:B ⊢c λy.x : A→B

(→I)
Γ ⊢c λxy.x : B→A→B

(Ax)
Γ ⊢c c : B

(→I)
Γ ⊢c (λxy.x) c : A→B

(Ax)
Γ ⊢c b : B→A

(Ax)
Γ ⊢c c : B

(→E)
Γ ⊢c bc : A

(→E)
Γ = b:B→A, c:B ⊢c (λxy.x)c (bc) : B

(→I)
b:B→A ⊢c λc.((λxy.x) c (bc) : B→B

(→I)
⊢c λbc.(λxy.x) c (bc) : (B→A)→B→B

The last derivation is obtained from the third and the second, applying (→E) and taking

C = A.

Exercise 2.18 i) By induction on the structure of derivations.

(Ax) : Then M ≡ x and x:A ∈ Γ; since Γ′ ⊇ Γ, also x:A ∈ Γ′, by (Ax) also Γ′ ⊢c x : A .

(→I) : Then M ≡ λx.N, A = B→C, and Γ, x:B ⊢c N : C ; since Γ′ ⊇ Γ, also Γ′, x:B ⊇ Γ, x:B,

so by induction Γ′, x:B ⊢c N : C . Then Γ′ ⊢c λx.N : B→C follows by (→I).

(→E) : Straightforward by induction.

ii) By induction on the structure of derivations.

(Ax) : Then M ≡ x and x:A ∈ Γ; notice that {y:D ∈ Γ | y ∈ fv (M)} = {x:A}, and that by

(Ax) also x:A ⊢c x : A .

(→I) : Then M ≡ λx.N, A = B→C, and Γ, x:B ⊢c N : C ; let Γ′ = {y:D ∈ Γ | y ∈ fv (N)}

then by induction Γ′ ⊢c N : C . Now either:

(x ∈ fv(N)) : Then x appears in Γ′; since Γ ⊇ Γ′, in fact x:B ∈ Γ′; let Γ′′ = Γ′ x.

(x 6∈ fv (N)) : Then x does not appear in Γ′; by part (i), also Γ′, x:B ⊢c N : C ; let Γ′′ = Γ′.

In either case: Γ′′ ⊢c λx.N : B→C follows by (→I).

Also: Γ′′ = Γ′ x = {y:D ∈ Γ | y ∈ fv (N)} x = {y:D ∈ Γ | y ∈ fv (λx.N)}.

(→E) : Then M ≡ PQ and there exists B such that Γ ⊢c P : B→A and Γ ⊢c Q : B . let

Γ1 = {y:D ∈ Γ | y ∈ fv (P)} and Γ2 = {y:D ∈ Γ | y ∈ fv (Q)} then by induction Γ1 ⊢c P :

B→A and Γ2 ⊢c N : B . Since Γi ⊆ Γ for i = 1,2, also Γ1 ∪ Γ2 ⊆ Γ; moreover, Γi ⊆ Γ1 ∪ Γ2,

so by part (i) we have Γ1 ∪ Γ2 ⊢c P : B→A and Γ1 ∪ Γ2 ⊢c N : B , so by (→E) also

Γ1 ∪ Γ2 ⊢c PQ : A .

Also: Γ1 ∪ Γ2 = {y:D ∈ Γ | y ∈ fv (P)} ∪ {y:D ∈ Γ | y ∈ fv (Q)}

= {y:D ∈ Γ | y ∈ fv (P) ∨ y ∈ fv(Q)}

= {y:D ∈ Γ | y ∈ fv (PQ)}

iii) By induction on the structure of derivations.

(Ax) : Then M ≡ x and x:A ∈ Γ; notice that x ∈ fv(x).

(→I) : Then M ≡ λx.N, A = B→C, and Γ, x:B ⊢c N : C ; by induction, for every y ∈

fv(N) there exists D such that y:D ∈ Γ, x:B. Since fv (λx.N) = fv (N) x, for every

y ∈ fv ()Lx.(M) there exists D such that y:D ∈ Γ.

(→E) : Then M ≡ PQ and there exists B such that Γ ⊢c P : B→A and Γ ⊢c Q : B ; by

induction, for every y∈ fv (P) there exists D such that y:D∈ Γ and for every y∈ fv (Q)

there exists D such that y:D ∈ Γ. Since fv (PQ) = fv(P)∪ fv (Q), for every y ∈ fv (PQ)

there exists D such that y:D ∈ Γ.

Exercise 2.19 (S = (ϕ 7→ C)) : By Definition 2.10.

(S = S1◦S2) : Since S1◦S2(A→B) = S1(S2(A→B)) = (IH) S1(S2A→S2B) = (IH)

S1(S2 A)→S1(S2B) = S1◦S2(A)→S1◦S2(B).

79

Exercise 2.20 Proof : By induction on the structure of derivations.

(Ax) : Then M ≡ x, and x:A ∈ Γ. Notice that then x:S A ∈ S Γ, so, by rule (Ax), S Γ ⊢c x : S A .

(→I) : Then there are N, A,C such that M ≡ λx.N, A = C→D, and Γ, x:C ⊢c N : D . Since

this statement is derived in a sub-derivation, we know that S (Γ, x:C) ⊢c N : S D follows

by induction. Since S (Γ, x:C) = S Γ, x:S C, we also have S Γ, x:S C ⊢c N : S D . So there is

a derivation that shows this, to which we can apply rule (→I), to obtain S Γ ⊢c λx.N :

SC→S D . Since SC→S D = S(C→D) = S A, by definition of substitutions, we get S Γ ⊢c

λx.M′ : S A .

(→E) : Then there are P, Q, and B such that M ≡ PQ, Γ ⊢c P : B→A , and Γ ⊢c Q : B . Since

these two statements are derived in a sub-derivation, by induction both S Γ ⊢c P : S (B→A)

and S Γ ⊢c Q : S B . Since S(B→A) = S B→S A by definition of substitution, we also have

S Γ ⊢c P : S B→S A , and we can apply rule (→E) to obtain S Γ ⊢c PQ : S A .

Exercise 2.21 By induction on the structure of terms.

(M = x) : Then ppc x = 〈x:ϕ ; ϕ〉. Notice that we have

x:ϕ ⊢c x : ϕ

(M = λx.N) : Let ppc N = 〈Π ; P〉; then either:

(x ∈ Π) : Then there exists A such that Π = Π′, x:A, and by Definition 2.15, ppc λx.N =

〈Π′ ; A→P〉. By induction (there exist a derivation for) Π′, x:A ⊢c N : P . To this

derivation we can apply rule (→I) and obtain:

Π′, x:A ⊢c N : P
(→I)

Π′ ⊢c λx.N : A→P

(x 6∈ Π) : Take ϕ fresh; by Definition 2.15, ppc λx.N = 〈Π ; ϕ→P〉, and by induction Π ⊢c

N : P . Then by Lemma 2.6 also Π, x:ϕ ⊢c N : P . We can apply rule (→I) and obtain:

Π, x:ϕ ⊢c N : P
(→I)

Π ⊢c λx.N : ϕ→P

(M = M1M2) : Let 〈Π1 ; P1〉= ppc M1 and 〈Π2 ; P2〉= ppc M2, and ϕ fresh; by Definition 2.15,

ppc M1M2 = S2◦S1 〈Π1 ∪Π2 ; ϕ〉, where

ϕ = fresh

S1 = unify P1 P2→ϕ and

S2 = UnifyContexts (S1 Π1) (S1 Π2)

By induction we have both Π1 ⊢c M1 : P1 and Π2 ⊢c M2 : P2 ; by Lemma 2.11, also

S2◦S1 Π1 ⊢c M1 : S2◦S1 P1 and S2◦S1 Π2 ⊢c M2 : S2◦S1 P2 ,

and S2◦S1 P1 = S2◦S1 P2→ϕ = S2◦S1 P2→S2◦S1 ϕ. By Lemma 2.6 we also have

S2◦S1 Π1,S2◦S1 Π2 ⊢c M1 : S2◦S1 P1 and S2◦S1 Π1,S2◦S1 Π2 ⊢c M2 : S2◦S1 P2 ,

so also

S2◦S1 Π1,Π2 ⊢c M1 : S2◦S1 P1 and S2◦S1 Π1,Π2 ⊢c M2 : S2◦S1 P2 .

To these we can apply rule (→E) and obtain:

S2◦S1 Π1,Π2 ⊢c M1 : S2◦S1 P2 →S2◦S1 ϕ S2◦S1 Π1,Π2 ⊢c M2 : S2◦S1 P2
(→E)

S2◦S1 Π1,Π2 ⊢c M1 M2 : S2◦S1 ϕ

This completes the proof.

80

Exercise 2.22 ppc λxyz.xz(yz) = 〈 , (ϕ1→ ϕ2→ ϕ3)→(ϕ1→ ϕ2)→ ϕ1→ ϕ3〉,

ppc λxy.x = 〈 , ϕ4→ ϕ5→ ϕ4〉,

ppc λxy.xy = 〈 , (ϕ6→ ϕ7)→ ϕ6→ ϕ7〉,

ppc λx.x = 〈 , ϕ8→ ϕ8〉,

Let Γ = x:ϕ1→ ϕ2→ ϕ3,y:ϕ1→ ϕ2,z:ϕ1:

(Ax)
Γ ⊢c x : ϕ1→ϕ2→ϕ3

(Ax)
Γ ⊢c z : ϕ1

(→E)
Γ ⊢c xz : ϕ2→ ϕ3

(Ax)
Γ ⊢c y : ϕ1→ ϕ2

(Ax)
Γ ⊢c z : ϕ1

(→I)
Γ ⊢c yz : ϕ2

(→E)
Γ ⊢c xz(yz) : ϕ3

(→I)
x:ϕ1→ ϕ2→ ϕ3,y:ϕ1→ ϕ2 ⊢c λz.xz(yz) : ϕ1→ ϕ3

(→I)
x:ϕ1→ ϕ2→ ϕ3 ⊢c λyz.xz(yz) : (ϕ1→ ϕ2)→ ϕ1→ ϕ3

(→I)
⊢c λxyz.xz(yz) : (ϕ1→ ϕ2→ϕ3)→(ϕ1→ ϕ2)→ϕ1→ ϕ3

(Ax)
x:φ8 ⊢c x : φ8

(→I)
⊢c λx.x : φ8→φ8

(Ax)
x:φ4,y:φ5 ⊢c x : φ4

(→I)
x:φ4 ⊢c λy.x : φ5→φ4

(→I)
⊢c λxy.x : φ4→φ5→φ4

(Ax)
x:φ6→φ7,y:φ6 ⊢c x : φ6→φ7

(Ax)
x:φ6→φ7,y:φ6 ⊢c y : φ6

(→E)
x:φ4 ⊢c xy : φ7

(→I)
⊢c λy..xy : φ6→φ7

(→I)
⊢c λxy.xy : (φ6→φ7)→φ6→φ7

Using unify (ϕ1→ ϕ2→ ϕ3)→(ϕ1→ ϕ2)→ ϕ1→ ϕ3 (ϕ4→ ϕ5→ ϕ4)→ ϕ6

ppc (λxyz.xz(yz))(λxy.x) = 〈 , (ϕ1→ ϕ2)→ ϕ1→ ϕ1〉

so, using unify (ϕ1→ ϕ2)→ ϕ1→ ϕ1 (ϕ8→ ϕ8)→ ϕ9

ppc (λxyz.xz(yz))(λxy.x)(λx.x) = 〈 , ϕ1→ ϕ1〉

Also, using unify (ϕ6→ ϕ7)→ ϕ6→ ϕ7 (ϕ8→ ϕ8)→ ϕ10

ppc (λxy.xy)(λx.x) = 〈 , ϕ1→ ϕ1〉

So (λxyz.xz(yz))(λxy.x)(λx.x) and (λxy.xy)(λx.x) have the same principal types, so the

set of assignable types is the same.

Exercise 2.23 No. (λxyz.xz(yz))(λx.x)(λx.x)((λxyz.xz(yz))(λx.x)(λx.x))→

(λz.(λx.x)z((λx.x)z))(λz.(λx.x)z((λx.x)z))→

(λz.zz)(λz.zz) → (λz.zz)(λz.zz) → ·· ·
So the first term is not strongly normalising (in fact, it is unsolvable), and in Curry’s sys-

tem only the strongly normalisable terms receive a type. Also, the term λz.zz contains self-

application, which the type system cannot deal with.

Exercise 3.6 i) Take the environment and the substitutions

E I = 1→1,

EK = 1→2→1,

EB = (1→2)→(3→1)→3→2,

ES = (1→2→3)→(1→2)→1→3

S1 = 1 7→ (4→4)→5, 2 7→ 4→4, 3 7→ 5

S2 = 1 7→ 5, 2 7→ 5, 3 7→ 4→4

S3 = 1 7→ 5

S4 = 1 7→ 4→4, 2 7→ (4→4)→5

S5 = 1 7→ 4

then we can derive

(Call)
⊢ S : S1 (ES)

(Call)
⊢ B : S2 (EB)

(Call)
⊢ I : S3 (E I)

(→E)
⊢ B I : ((4→4)→5)→(4→4)→5

(→E)
⊢ S (B I) : (((4→4)→5)→4→4)→((4→4)→5)→5

(Call)
⊢ K : S4 (EK)

(Call)
⊢ I : S5 (E I)

(→E)
⊢ K I : ((4→4)→5)→4→4

(→E)
⊢ S (B I) (K I) : ((4→4)→5)→5

81

ii) S (B I) (K I) = (λxyz.xz(yz)) (B I) (K I) → λz.((B I) z) ((K I) z)

= λz.(λabc.a(bc)) I z (K I z) → λz.I (z (K I z))

= λz.(λc.c) (z (K I z)) → λz.z (K I z)

= λz.z ((λab.a) I z) → λz.z I.

iii) (Ax)
z:(4→4)→5 ⊢ z : (4→4)→5

(Call)
z:(4→4)→5 ⊢ I : 4→4

(→E)
z:(4→4)→5 ⊢ z I : 5

(→I)
⊢ λz.z I : ((4→4)→5)→5

Exercise 3.7 The problem is easy when considering just the rules that are part of the definition

of →β: they either follow immediately, or by induction. The only addition is the rule ‘name →

M, if name = M ∈ Defs’. Notice that 〈name〉λ = 〈M〉λ = M, and this step follows immediately,

since M →∗
β M.

Exercise 3.8 Since reduction is defined as an extension of →β, we can copy the proof of Theo-

rem 2.4, and add the case:

(name → M, if name = M ∈ Defs) : By rule (Call), A is a substitution instance of B, where

name:B ∈ E , so A = S B, for some substitution S. By rule (Defs), we have that ⊢c M : A ,

and by Lemma 2.11 also ⊢c M : S A . Since the derivation rules for ⊢c have a similar cor-

responding rule the system for ΛN, also ;E ⊢ M : S A, and by weakening Γ;E ⊢ M : S A.

Exercise 4.7 Take E = S : (ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3,

K : ϕ1→ϕ2→ϕ1,

I : ϕ1→ϕ1,

Y : (ϕ1→ϕ1)→ϕ1

and E ′ as E , but for rec Y : (ϕ1→ϕ1)→ϕ1.

We have (with Γ = x:1→2→3,y:1→2,z:1):

DS =

(Ax)
Γ; E ⊢ x : 1→2→3

(Ax)
Γ; E ⊢ z : 1

(→E)
Γ; E ⊢ xz : 2→3

(Ax)
Γ; E ⊢ y : 1→2

(Ax)
Γ; E ⊢ z : 1

(→E)
Γ; E ⊢ yz : 2

(→E)
Γ; E ⊢ xz(yz) : 3

(→I)
Γ z;E ⊢ λz.xz(yz) : 1→3

(→I)
Γ y,z; E ⊢ λyz.xz(yz) : (1→2)→1→3

(→I)
; E ⊢ λxyz.xz(yz) : (1→2→3)→(1→2)→1→3

DK =

(Ax)
x:1,y:2; E ⊢ x : 1

(→I)
x:1; E ⊢ λy.x : 2→1

(→I)
; E ⊢ λxy.x : 1→2→1

DY =
(Ax)

m:1→1; E ′ ⊢ m : 1→1

(Rec Call)
m:1→1; E ′ ⊢ Y : (1→1)→1

(Ax)
m:1→1; E ′ ⊢ m : 1→1

(→E)
m:1→1; E ′ ⊢ Ym : 1

..
(→E)

m:1→1; E ′ ⊢ m(Ym) : 1
(→I)

; E ′ ⊢ λm.m(Ym) : (1→1)→1

DI =
..

(Call)
; E ⊢ S : (1→(2→1)→1)→(1→2→1)→1→1

(Call)
; E ⊢ K : 1→(2→1)→1

(→E)
; E ⊢ SK : (1→2→1)→1→1 (Call)

; E ⊢ K : 1→2→1
(→E)

; E ⊢ SKK : 1→1

82

D =
(Call)

; E ⊢ Y : (ϕ→ϕ)→ϕ
(Call)

; E ⊢ I : ϕ→ϕ
(→E)

; E ⊢ YI : ϕ

Take A = (1→2→3)→(1→2)→1→3, B = 1→2→1, C = 1→1, and D = (1→1)→1, the types

derived above, then we can construct:

D′ =

(ǫ)
;E ⊢ ǫ : ♦

DS

;E ⊢ λxyz.xz(yz) : A
(Def)

;E ⊢ S = λxyz.xz(yz) : ♦

DK

;E ⊢ λxy.x : B
(Def)

;E ⊢ S = λxyz.xz(yz); K = λxy.x : ♦

DI

;E ⊢ SKK : C
(Def)

;E ⊢ S = λxyz.xz(yz); K = λxy.x; I = SKK : ♦

D′

;E ⊢ S = λxyz.xz(yz); K = λxy.x; I = SKK : ♦

DY

;E ′ ⊢ λm.m(Ym) : D
(Rec Def)

;E ⊢ S = λxyz.xz(yz); K = λxy.x; I = SKK; rec Y = λm.m(Ym) : ♦

D

;E ⊢ YI : ϕ
(Prog)

;E ⊢ S = λxyz.xz(yz); K = λxy.x; I = SKK; rec Y = λm.m(Ym) : YI : ϕ

As for the final part: Y I → (λm.m(Ym))I → I (Y I)

→ S K K (Y I) → (λxyz.xz(yz)) K K (Y I)

→∗ K (Y I) (K (Y I)) → (λxy.x) (Y I) (K (Y I)) →∗ Y I

Exercise 4.8 Take E = E : (ϕ1→ϕ2)→ϕ1→ϕ2 = E,

S : (ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3 = F,

Y : (ϕ1→ϕ1)→ϕ1 = G

and E ′ as E , but for rec Y : (ϕ1→ϕ1)→ϕ1. Take DY and DS as before, and

DE =

(Ax)
x:1→2,y:1;E ⊢ x : 1→2

(Ax)
x:1→2,y:1;E ⊢ y : 1

(→E)
x:1→2,y:2;E ⊢ xy : 2

(→I)
x:1→2;E ⊢ λy.xy : 1→2

(→I)
;E ⊢ λxy.xy : (1→2)→1→2

Take C = (A→A)→A, E = (1→2)→1→2, F = (1→2→3)→(1→2)→1→3, G = (1→1)→1,

and D =

(Call)
⊢ Y : (C→C)→C

(Call)
;E ⊢ S : ((A→A)→A→A)→C→C

(Call)
;E ⊢ E : ((A→A)→A→A)→(A→A)→A→A

(Call)
;E ⊢ E : (A→A)→A→A

(→E)
;E ⊢ E E : (A→A)→A→A

..
(→E)

;E ⊢ S (E E) : C→C
(→E)

;E ⊢ Y(S (E E)) : C

then we can construct:

.

.

..

(ǫ)
;E ⊢ ǫ : ♦

DE

;E ⊢ λxy.xy : E
(Def)

;E ⊢ E = λxy.xy : ♦

DS

;E ⊢ λxyz.xz(yz) : F
(Def)

;E ⊢ E = λxy.xy; S = λxyz.xz(yz) : ♦

DY

;E ′ ⊢ λm.m(Ym) : G
(Rec Def)

;E ⊢ E = λxy.xy; S = λxyz.xz(yz); rec Y = λm.m(Ym) : ♦
D

;E ⊢ Y(S (E E)) : C
(Prog)

;E ⊢ E = λxy.xy; S = λxyz.xz(yz); rec Y = λm.m(Ym) : Y(S (E E)) : C

83

Exercise 5.15 To show: If Γ ⊢ml E : ψ, then, for every substitution S, S Γ ⊢ml E : S ψ. We prove

this by induction on the structure of derivations:

(Ax) : Then E ≡ x, and x:ψ ∈ Γ. Then x:Sψ ∈ S Γ, so S Γ ⊢ml x : S ψ, by rule (Ax).

(→I) : Then E ≡ λx.E′, there are A, B ∈ Tc such that ψ = A→B, and Γ, x:A ⊢ml E′ : B. By

induction, S(Γ, x:A) ⊢ml E′ : S B. Since S(Γ, x:A) = S Γ, x:S A, also S Γ, x:S A ⊢ml E′ : S B.

Then, by rule (→I), we obtain S Γ ⊢ml λx.E′ : S A→S B. Since S A→S B = S (A→B), and

S(A→B) = Sψ, we get S Γ ⊢ml λx.E′ : S ψ.

(→E) : Then E ≡ E1E2, and there exists A∈Tc such that Γ ⊢ml E1 : A→ψ, and Γ ⊢ml E2 : A (also

ψ ∈ Tc). Then, by induction, S Γ ⊢ml E1 : S (A→ψ) and S Γ ⊢ml E2 : S A. Since S (A→ψ) =

S A→S ψ, so we also have S Γ ⊢ml E1 : S A→S ψ, and we can apply rule (→E) to obtain

S Γ ⊢ml E1E2 : S ψ.

(C) : Then E = c, and τ = ν c. By rule (C), Γ ⊢ml c : τ. Since τ has no free variables, substitution

does not affect that type.

(let) : Then E ≡ let x = E2 in E1,ψ ∈ Tc, and there exist χ such that Γ, x:χ ⊢ml E1 : ψ and Γ ⊢ml

E2 : χ. By induction, S (Γ, x:χ) ⊢ml E1 : Sψ and S Γ ⊢ml E2 : Sχ. As before, since S (Γ, x:χ) =

S Γ, x:S χ, also S Γ, x:Sχ ⊢ml E1 : S ψ. Then, by applying rule (let), S Γ ⊢ml let x = E2 in E1 : Sψ.

(fix) : Then E ≡ fixg .E, ψ ∈ Tc, and Γ, g:ψ ⊢ml E : ψ. Then S(Γ, g:ψ) ⊢ml E : Sψ by induction,

and since S (Γ, g:ψ) = S Γ, g:S ψ, we also have S Γ,S g:ψ ⊢ml E : S ψ. So, by rule (fix), also

S Γ ⊢ml fixg .E : Sψ.

(∀I) : Then ψ = ∀ϕ.χ, and Γ ⊢ml E : χ, provided ϕ does not occur free in Γ. By induction,

S Γ ⊢ml E : Sχ. Without loss of generality, we can assume that ϕ does not occur in the

range of S, so does not occur free in S Γ. So, by rule (∀I), S Γ ⊢ml E : ∀ϕ.S χ. Since

∀ϕ.Sχ = S(∀ϕ.χ) = Sψ, we get S Γ ⊢ml E : Sψ.

(∀E) : Then ψ = χ[A/ϕ], and Γ ⊢ml E : ∀ϕ.χ, and, by induction, S Γ ⊢ml E : S∀ϕ.χ. Then,

by rule (∀E), also S Γ ⊢ml E : (S χ)[(S A)/ϕ]. Without loss of generality, we can assume

that ϕ does not occur in the domain of S, so if it occurs in χ, then it occurs in S χ. So

(Sχ)[(S A)/ϕ] = S(χ[A/ϕ]) = S ψ, and we get S Γ ⊢ml E : S ψ.

Exercise 5.16 Again, this is an extension of Theorem 2.4. We only show the added cases; before

we come to this, however, we need to show:

Lemma If Γ, x:τ ⊢ml E1 : A and Γ ⊢ml E2 : τ, then Γ ⊢ml E2[E1/x] : A.

The added cases are:

(let x = E1 in E2 →ml E2[E1/x]) : Assume Γ ⊢ml let x = E1 in E2 : A, then by Lemma 5.8 there

exists B,τ such that Γ, x:τ ⊢ml E1 : B, and Γ ⊢ml E2 : τ, and B = ∀ϕi . A, with each ϕi not in

Γ. Then by Lemma 8, we get Γ ⊢ml E2[E1/x] : A, and by applying rule (∀I) repeatedly, we

get Γ ⊢ml E2[E1/x] : σ.

(fixg .E →ml E [(fixg .E)/g]) : Assume Γ ⊢ml fixg .E : σ, then by Lemma 5.8 there exists A such

that Γ, g:A ⊢ml E : A, and σ = ∀ϕi . A, with each ϕi not in Γ. Applying rule (fix) to Γ, g:A ⊢ml

E : A gives us a derivation for Γ ⊢ml fixg .E : A; so we have both Γ, g:A ⊢ml E : A and

Γ ⊢ml fixg .E : A, so by Lemma 8, we get Γ ⊢ml E[fix g .E/g] : A, and by applying rule (∀I)

repeatedly, we get Γ ⊢ml E[fix g .E/g] : σ

Exercise 5.17 Times = fix t .λnm.Cond(IsZero n) 0 (Add (t (MinusOne n) m) m)

Let Γ = t:I→I→I,n:I,m:I, C = Cond, and

84

D′ =
Γ ⊢ Add : I→I→I

Γ ⊢ t : I→I→I

Γ ⊢ MinusOne : I→I Γ ⊢ n : I

Γ ⊢ MinusOne n : I

Γ ⊢ t (MinusOne n) : I→I Γ ⊢ m : I

Γ ⊢ t (MinusOne n) m : I

Γ ⊢ Add (t (MinusOne n) m) : I→I Γ ⊢ m : I

Γ ⊢ Add (t (MinusOne n) m) m : I

.

D =

Γ ⊢ C : Bool→I→I→I

Γ ⊢ IsZero : I→Bool Γ ⊢ n : I

Γ ⊢ IsZero n : Bool

Γ ⊢ C (IsZero n) : I→I→I Γ ⊢ 0 : I

Γ ⊢ C (IsZero n) 0 : I→I

D′

Γ ⊢ Add (t (MinusOne n) m) m : I

Γ ⊢ C (IsZero n) 0 (Add (t (MinusOne n) m) m) : I

t:I→I→I,n:I ⊢ λm.C (IsZero n) 0 (Add (t (MinusOne n) m) m) : I→I

t:I→I→I ⊢ λnm.C (IsZero n) 0 (Add (t (MinusOne n) m) m) : I→I→I

⊢ fix t .λnm.C (IsZero n) 0 (Add (t (MinusOne n) m) m) : I→I→I

Exercise 5.18 Squares = (fixs .λn.Cons (Times n n) (s (Add n 1))) 1

Let Γ = s:I→[I],n:I,

Γ ⊢ C : I→[I]→[I]

D

Γ ⊢ Times : I→I→I Γ ⊢ n : I

Γ ⊢ Times n : I→I Γ ⊢ n : I

Γ ⊢ Times n n : I

Γ ⊢ C (Times n n) : [I]→[I]

Γ ⊢ s : I→[I]

Γ ⊢ Add : I→I→I Γ ⊢ n : I

Γ ⊢ Add n : I→I Γ ⊢ 1 : I

Γ ⊢ Add n 1 : I

Γ ⊢ s (Add n 1) : [I]

Γ ⊢ C (Times n n) (s (Add n 1)) : [I]

s:I→[I] ⊢ λn.C (Times n n) (s (Add n 1)) : I→[I]

⊢ fixs .λn.C (Times n n) (s (Add n 1)) : I→[I] ⊢ 1 : I

⊢ (fixs .λn.C (Times n n) (s (Add n 1))) 1 : [I]

Exercise 5.19 fix f n .Cond (IsZero n) then 1 else (Times n (f (MinusOne n))). Take Γ = f :I→I,n:I

Γ ⊢ =0 : I→Bool Γ ⊢ n : I

Γ ⊢ =0 n : Bool Γ ⊢ 1 : I

Γ ⊢ × : I→I→I Γ ⊢ n : I

Γ ⊢ × n : I→I

Γ ⊢ f : I→I

Γ ⊢ −1 : I→I Γ ⊢ n : I

Γ ⊢ −1 n : I

Γ ⊢ f (−1 n) : I

Γ ⊢ × n (f n) : I
..

Γ ⊢ Cond (=0 n) then 1 else (× n (f n)) : I

f :I→I ⊢ λn . Cond (=0 n) then 1 else (× n (f n)) : I→I

⊢ fix f . λn . Cond (=0 n) then 1 else (× n (f n)) : I→I

Exercise 5.20 Take Fac = fix f . λn . Cond (IsZero n) then 1 else (Times n (f (Pred n))).

Then let Facs = fixg.λn.Cons (Fac (Succn)) (g n) in Facs 0. Take Γ = g:I→[Int],n:I

85

Γ ⊢ Cons : I→[I]→[I]

Γ ⊢ Fac : I→I Γ ⊢ n : I

Γ ⊢ Fac n : I

Γ ⊢ Cons (Fac n) : [I]→[I]

Γ ⊢ g : I→[I]

Γ ⊢ Succ : I→I Γ ⊢ n : I

Γ ⊢ Succn : I

Γ ⊢ g (Succn) : [I]

Γ = g:I→[I],n:I ⊢ Cons (Fac n) (g (Succn)) : [I]

g:I→[I] ⊢ λn . Cons (Fac n) (g (Succn)) : I→[I]

⊢ fixg.λn.Cons (Fac n) (g (Succn)) : I→[I]

f :I→[I] ⊢ f : I→[I]

f :I→[I] ⊢ 0 : I

..

.

f :I→[I] ⊢ f 0 : [I]

⊢ let f = fixg.λn.Cons (Fac n) (g (Succn)) in f 0 : [I]

Exercise 5.21 Take A = ϕ4→ϕ5→ϕ4.

(Ax)
Γ ⊢ r : A→A→A

(Ax)
Γ ⊢ r : A→A→A

(Ax)
Γ ⊢ y : A

(→E)
Γ ⊢ r y : A→A

(Ax)
Γ, a:ϕ4,b:ϕ5 ⊢ a : ϕ4

(→I)
Γ, a:ϕ4 ⊢ λb.a : ϕ5→ϕ4

(→I)
Γ ⊢ λab.a : A

(→E)
Γ ⊢ r y (λab.a) : A

(→E)
Γ ⊢ r (r y (λab.a)) : A→A

(Ax)
Γ ⊢ x : A

(→E)
Γ = r:A→A→A, x:A,y:A ⊢ r (r y (λab.a))x : A

(→I)
r:A→A→A, x:A ⊢ λy.r (r y (λab.a))x : A→A

(→I)
r:A→A→A ⊢ λxy.r (r y (λab.a))x : A→A→A

(fix)
⊢ fixr .λxy.r (r y (λab.a))x : A→A→A

Exercise 6.27 i) We need to check that the principal pair for the left-hand side is a valid pair

for the right-hand side, whilst the defining occurrence is typed with its environment

type. For the first rule, we calculate pp S (K x) (K y) E and get 〈x:2→3,y:2 ; 1→3〉. Taking

Γ1 = x:2→3,y:2 we can derive

Γ1 ⊢ S : E S

Γ1 ⊢ K : (2→3)→1→2→3 Γ1 ⊢ x : 2→3

Γ1 ⊢ K x : 1→2→3

Γ1 ⊢ S (K x) : (1→2)→1→3

Γ1 ⊢ K : 2→1→2 Γ1 ⊢ y : 2

Γ1 ⊢ K y : 1→2

Γ1 ⊢ S (K x) (K y) : 1→3

Notice that S is typed with E S, and that the types for the two occurrences of K are

instances of E K. We can now type the right-hand side using Γ1 and 1→3:

Γ1 ⊢ K : 3→1→3

Γ1 ⊢ x : 2→3 Γ1 ⊢ y : 2

Γ1 ⊢ x y : 3

Γ1 ⊢ K (x y) : 1→3

so the rule is typeable.

For the second rule, pp S (K x) y E = 〈x:2→3; y:1→2,1→3〉; take Γ2 = x:2→3,y:1→2

Γ2 ⊢ S : E S

Γ2 ⊢ K : (2→3)→1→2→3 Γ2 ⊢ x : 2→3

Γ2 ⊢ K x : 1→2→3

Γ2 ⊢ S (K x) : (1→2)→1→3 Γ2 ⊢ y : 1→2

Γ2 ⊢ S (K x) y : 1→3

and for the right-hand side:

86

Γ1 ⊢ B : (2→3)→(1→2)→1→3 Γ1 ⊢ x : 2→3

Γ1 ⊢ B x : (1→2)→1→3 Γ1 ⊢ y : 1→2

Γ1 ⊢ B x y : 1→3

so the rule is typeable.

For the third rule, take Γ3 = x:1→2→3,y:2

Γ3 ⊢ S : E S Γ3 ⊢ x : 1→2→3

Γ3 ⊢ S x : (1→2)→1→3

Γ3 ⊢ K : 2→1→2 Γ3 ⊢ y : 2

Γ3 ⊢ K y : 1→2

Γ3 ⊢ S x (K y) : 1→3

and for the right-hand side

Γ3 ⊢ C : (1→2→3)→2→1→3 Γ3 ⊢ x : 1→2→3

Γ3 ⊢ C x : 2→1→3 Γ3 ⊢ y : 2

Γ3 ⊢ C x y : 1→3

so the rule is typeable.

ii) We would need to type the left-hand side using exactly the type E S, but that is not

possible: the second argument is I, which creates a problem when trying to type the

left-hand side as specified in Definition 6.13.

x:2→3 ⊢ S : E S

x:2→3 ⊢ K : (2→3)→1→2→3 x:2→3 ⊢ x : 2→3

x:2→3 ⊢ K x : 1→2→3

x:2→3 ⊢ S (K x) : (1→2)→1→3 x:2→3 ⊢ I : 4→4

x:2→3 ⊢ S (K x) I : ??

We can only type this if we change the environment type for S, making ϕ1 = ϕ2, thus

defining

E S = (1→1→3)→(1→1)→1→3

iii) Then we can only well-type applications of S when the second argument has an ’identity’

type, and this rules out an application like S x K z.

Exercise 6.28 Proof : By induction on the structure of derivations.

(Ax) : Then t = x, and x:A ∈ Γ; then also x:SA ∈ SΓ, so by rule (Ax), S Γ;E ⊢ x : S A.

(Call) : Then t = F, and there exists a substitution S′ such that S′(EF) = A; notice that S◦S′ is

also a substitution, so by rule (Call), S Γ;E ⊢ x : S A.

(→E) : Then t = t1t2, and there exists B such that Γ;E ⊢ t1 : B→A and Γ;E ⊢ t2 : B. By induc-

tion, we have both SΓ;E ⊢ t1 : S(B→A) and SΓ;E ⊢ t2 : S B; since S(B→A) = S B→S A, by

rule (→E) we get SΓ;E ⊢ t1t2 : S A.

Exercise 6.29 Proof : By induction on the definition of pp t E , using Lemma 6.11.

(pp x E = 〈x:ϕ ; ϕ〉) : Evidently x:ϕ;E ⊢ x : ϕ follows by rule (Ax).

(pp F E = 〈 ; FreshInstance (E F)〉) : Since FreshInstance is a substitution, we have that ;E ⊢

F : FreshInstance (E F) follows by rule (Call).

(pp t1t2 E = S〈Π1 ∪Π2 ; ϕ〉, with ϕ fresh, 〈Π1 ; P1〉 = pp t1, E〈Π2 ; P2〉 = pp t2 E , and S =

unify P1 P2→ϕ) : Then by induction we have Π1;E ⊢ t1 : P1 and Π2;E ⊢ t2 : P2. By Lemma 6.11,

also SΠ1;E ⊢ t1 : SP1 and SΠ2;E ⊢ t2 : SP2; by weakening we get that both S(Π1 ∪Π2);E ⊢

t1 : SP1 and S(Π1 ∪Π2);E ⊢ t2 : SP2. Since S = unify P1 P2→ϕ, in fact SP1 = S(P2→ϕ) =

SP2→Sϕ, so by rule (→E) we have S(Π1 ∪Π2);E ⊢ t1t2 : Sϕ.

87

Exercise 6.30 Take E 0 = I

E Succ = I→I

E Fac = I→I

E Times = I→I→I

i) Fac 0 → Succ 0

Fac (Succ n) → Times (Succ n) (Fac n)

Then (where I = Int)

⊢ Fac : I→I ⊢ 0 : I

⊢ Fac 0 : I

⊢ Succ : I→I ⊢ 0 : I

⊢ Succ 0 : I
n:I ⊢ Fac : I→I

n:I ⊢ Succ : I→I n:I ⊢ n : I

n:I ⊢ Succ n : I

n:I ⊢ Fac (Succ n) : I

n:I ⊢ Times : I→I→I

n:I ⊢ Succ : I→I n:I ⊢ n : I

n:I ⊢ Succ n : I

n:I ⊢ Times (Succ n) : I→I

n:I ⊢ Fac : I→I n:I ⊢ n : I

n:I ⊢ Fac n : I

n:I ⊢ Times (Succ n) (Fac n) : I

Notice that the first and third derivation are principal and use the environment type

for the defined symbol.

ii) E [] = [ϕ]

E Cons = ϕ→[ϕ]→[ϕ]

E Facs = I→[I]

Facs n → Cons (Fac n) (Facs (Succ n))

Facs 0

⊢ Facs : I→[I] n:I ⊢ n : I

⊢ Facs n : [I]

and

n:I ⊢ Cons : I→[I]→[I]

n:I ⊢ Fac : I→I n:I ⊢ n : I

n:I ⊢ Facn : I

n:I ⊢ Cons(Facn) : [I]→[I]

n:I ⊢ Facs : I→[I]

n:I ⊢ Succ : I→I n:I ⊢ n : I

n:I ⊢ Succ n : I

n:I ⊢ Facs (Succ n) : [I]

n:I ⊢ Cons(Facn) (Facs(Succ n)) : [I]

Exercise 6.31 E append = [ϕ]→[ϕ]→[ϕ]

E nil = [ϕ]

E cons = ϕ→[ϕ]→[ϕ]

E map = (ϕ1→ϕ2)→[ϕ1]→[ϕ2]

Let Γ = f :ϕ1→ϕ2,y:ϕ1, l:[ϕ1].

Γ ⊢ map : (1→2)→[1]→[2] Γ ⊢ f : 1→2

Γ ⊢ map f : [1]→[2]

Γ ⊢ cons : 1→[1]→[1] Γ ⊢ y : 1

Γ ⊢ cons y : [1]→[1] Γ ⊢ l : [1]

Γ ⊢ cons y l : [1]

Γ ⊢ map f (cons y l) : [2]

Γ ⊢ cons : 2→[2]→[2]

Γ ⊢ f : 1→2 Γ ⊢ y : 1

Γ ⊢ f y : 2

Γ ⊢ cons (f y) : [2]→[2]

Γ ⊢ map : (1→2)→[1]→[2] Γ ⊢ f : 1→2

Γ ⊢ map f : [1]→[2] Γ ⊢ l : [1]

Γ ⊢ map f l : [2]

Γ ⊢ cons (f y) (map f l) : [2]

88

Exercise 6.32 B : (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2

C : (ϕ1→ϕ2→ϕ3)→ϕ2→ϕ1→ϕ3

W : (ϕ1→ϕ1→ϕ2)→ϕ1→ϕ2

With Γ = x:1→2, y:3→1, z:3:

Γ ⊢ B : (1→2)→(3→1)→3→2 Γ ⊢ x : 1→2

Γ ⊢ B x y : (3→1)→3→2 Γ ⊢ y : 3→1

Γ ⊢ B x y : 3→2 Γ ⊢ z : 3

Γ ⊢ B x y z : 2

Γ ⊢ x : 1→2

Γ ⊢ y : 3→1 Γ ⊢ z : 3

Γ ⊢ y z : 1

Γ ⊢ x (y z) : 2

With Γ = x:1→2→3, y:2, z:1:

Γ ⊢ C : (1→2→3)→2→1→3 Γ ⊢ x : 1→2→3

Γ ⊢ C x y : 2→1→3 Γ ⊢ y : 2

Γ ⊢ C x y : 1→3 Γ ⊢ z : 1

Γ ⊢ C x y z : 3

Γ ⊢ x : 1→2→3 Γ ⊢ z : 1

Γ ⊢ x z : 2→3 Γ ⊢ y : 2

Γ ⊢ x z y : 3

With Γ = x:1→1→2, y:1:

Γ ⊢ C : (1→1→2)→1→2 Γ ⊢ x : 1→1→2

Γ ⊢ W x : 1→2 Γ ⊢ y : 1

Γ ⊢ W x y : 2

Γ ⊢ x : 1→1→2 Γ ⊢ y : 1

Γ ⊢ x y : 1→2 Γ ⊢ y : 1

Γ ⊢ x y y : 2

Exercise 6.33 We check that, for all four rules, supplying left and right-hand side with an extra

argument gives two reductions that lead to the same result:

S (K t1) (K t2) t3 → K t1 t3 (K t2 t3) → t1 (K t2 t3) → t1 t2 and K (t1 t2) t3 → t1 t2 .

S (K t1) I t3 → K t1 t3 (I t3) → t1 (I t3) → t1 t3 .

S (K t1) t2 t3 → K t1 t3 (t2 t3) → t1 (t2 t3) and B t1 t2 t3 → t1 (t2 t3) .

S t1 (K t2) t3 → t1 t3 (K t2 t3) → t1 t3 t2 and C t1 t2 t3 → t1 t3 t2 .

Exercise 6.34 i) By induction on the structure of terms.

(t = x, y 6= x) : Notice that then Fun y x = K x. Assume Γ,y:A ⊢ECL
x : B, then x:B ∈ Γ, and

we can construct:

(K)
Γ ⊢ K : B→A→B

(Ax)
Γ ⊢ x : B

(→E)
Γ ⊢ K x : B

(t = y) : Notice that then Fun y y = I. Assume Γ,y:A ⊢ECL
y : B, then A = B; we can con-

struct:

(I)
Γ ⊢ I : A→A

(t = t1t2) : Notice that Fun t1 t2 = S (Fun y t1) (Fun y t2). The derivation for Γ,y:A ⊢ECL

t1t2 : B is shaped as follows:

Γ,y:A ⊢ t1 : C→B Γ,y:A ⊢ t2 : C
(→E)

Γ,y:A ⊢ t1t2 : B

89

By induction, we have (derivations for) Γ ⊢ECL
Fun y t1 : A→C→B and Γ ⊢ECL

Fun y t2 :

A→C, and can construct:

(S)
Γ ⊢ S : (A→C→B)→(A→C)→A→B Γ ⊢ Fun y t1 : A→C→B

(→E)
Γ ⊢ S (Fun y t1) : A→C→B Γ ⊢ Fun y t2 : A→C

(→E)
Γ ⊢ S (Fun y t1) (Fun y t2) : A→B

ii) By induction on the structure of terms.

(M = x) : Then x:A ∈ Γ; ⌈⌈x⌋⌋cl = x, and we can construct:

(Ax)
Γ ⊢ x : A

(M = λx.N) : Then A = B→C, and Γ, x:B ⊢c N : C ; notice that ⌈⌈M⌋⌋
cl = ⌈⌈λx.N⌋⌋

cl =

Fun x N. By induction, we have Γ, x:B ⊢ECL
⌈⌈N⌋⌋

cl : C; by part (i) we get Γ ⊢ECL

Fun x N : B→C, so we have Γ ⊢ECL
⌈⌈M⌋⌋

cl : A.

(M = PQ) : Then there exists B such that Γ ⊢c P : B→A and Γ ⊢c Q : B . By induction,

we have both Γ ⊢ECL
⌈⌈P⌋⌋cl : B→A and Γ ⊢ECL

⌈⌈Q⌋⌋
cl : B; observing that ⌈⌈PQ⌋⌋

cl =
⌈⌈P⌋⌋cl

⌈⌈Q⌋⌋
cl, applying (→E) gives the desired result.

iii) This follows by straightforward induction.

Exercise 6.35 i) ⌈⌈λxy.xy⌋⌋cl = Fun x (Fun y (x y))

= Fun x (S(Fun y x) (Fun y y))

= Fun x (S (Kx) I)

= S (Fun x (S (Kx))) (Fun x I)

= S (S (Fun x S) (Fun x (Kx))) (KI)

= S (S (KS) (S (Fun x K) (Fun x x))) (KI)

= S (S (KS) (S (KK) I)) (KI)

ii) We can show this using the result in the notes, that states that 〈⌈⌈M⌋⌋
cl〉λ →∗

β M, for all

M. Otherwise, let S = 〈S〉λ,K = 〈K〉λ, and I = 〈I〉λ

〈⌈⌈λxy.xy⌋⌋cl〉λ = 〈S(S(KS)(S(KK)I))(KI)〉λ = S(S(KS)(S(KK)I))(KI)

= (λxyz.xz(yz)) (S(KS)(S(KK)I)) (KI) →∗
β λz.S (KS) (S(KK)I)z (KIz)

→∗
β λz.K S z (S(KK)Iz) (KIz) →∗

β λz.S (KKz(Iz)) I

→∗
β λz.S (Kz) I →∗

β λz.λc.K z c (Ic)

→∗
β λz.λc.zc =α λxy.xy

iii) Let Γ = x:A→B,y:A. Since ⌈⌈λxy.xy⌋⌋cl = S(S(KS)(S(KK)I))(KI),

Γ ⊢c x : A→B Γ ⊢c y : A

Γ ⊢c xy : B

x:A→B ⊢c λy.xy : A→B

⊢c λxy.xy : (A→B)→A→B

and, by a result in the notes, Γ ⊢c λxy.xy : A implies Γ ⊢ECL
⌈⌈λxy.xy⌋⌋cl : A.

Exercise 6.36 No, it is not. It contains a non-terminating sub-term

(S I I) (S I I) → I (S I I) (I (S I I)) → S I I (I (S I I)) → S I I (S I I) → . . .

and only strongly normalisable terms are typeable.

Exercise 7.16 Using this derivation (twice), we can even type non-terminating terms:

90

⊢ λx.xx : µX .X→ϕ
(µ)

⊢ λx.xx : (µX .X→ϕ)→ϕ ⊢ λx.xx : µX .X→ϕ

⊢ (λx.xx) (λx.xx) : ϕ

Exercise 7.17 Take Γ = x:µX.X→A, f :A→A; notice that µX.X→A =µ (µX.X→A)→A.

D :: Γ ⊢ f : A→A

Γ ⊢ x : µX.X→A

Γ ⊢ x : (µX.X→A)→A Γ ⊢ x : µX.X→A

Γ ⊢ xx : A

Γ ⊢ f (xx) : A

f :A→A ⊢ λx. f (xx) : (µX.X→A)→A

D

f :A→A ⊢ λx. f (xx) : (µX.X→A)→A

f :A→A ⊢ λx. f (xx) : ((µX.X→A)→A)→A

D

⊢ λx. f (xx) : (µX.X→A)→A

f :A→A ⊢ (λx. f (xx))(λx. f (xx)) : A

⊢ λ f .(λx. f (xx))(λx. f (xx)) : (A→A)→A

This is possible for any A.

Exercise 7.18 Take Γ = a:ϕ, b:[ϕ]; Γ′ = Γ, l:[φ], ll:[φ]→I; Γ′
x = Γ′, x:φ×[φ].

Let D =
Γ′

x ⊢+ : I→I→I Γ′
x ⊢ 1 : I

Γ′
x ⊢+ 1 : I→I

Γ′
x ⊢ ll : [φ]→I

Γx ⊢ x : φ×[φ]

Γ′
x ⊢ right (x) : [φ]

Γ′
x ⊢ ll(right (x)) : I

Γ′
x ⊢+ 1 (ll(right (x))) : I

Γ′ ⊢ λx.+ 1 (ll(right (x))) : (φ×[φ])→I

,

Γ′ ⊢ l : [φ]

Γ′ ⊢ unfold(l) : unit + φ×[φ]

Γ′, x:unit ⊢ 0 : I

Γ′ ⊢ λx.0 : unit→I

D

Γ′ ⊢ λx.+ 1 (ll(right (x))) : (φ×[φ])→I

..

..

Γ′ ⊢ case (unfold(l),λx.0,λx.+ 1 (ll(right (x)))) : I

Γ′ l ⊢ λ l.case (unfold(l),λx.0,λx.+ 1 (ll(right (x)))) : [φ]→I

Γ ⊢ fix ll .λ l.case (unfold(l),λx.0,λx.+ 1 (ll(right (x)))) : [φ]→I

Γ ⊢ a : ϕ Γ ⊢ b : [ϕ]

Γ ⊢ 〈a,b〉 : B × [B]

Γ ⊢ inj·r 〈a,b〉 : unit + (B × [B])

Γ ⊢ fold(inj·r 〈a,b〉) : [B]

Γ ⊢ (fix ll .λ l.case (unfold(l),λx.0,λx.+ 1 (ll(right (x))))) (fold(inj·r 〈a,b〉)) : I

Exercise 7.19 Take B = µX.X→(ϕ→ϕ)→ϕ (then B =µ B→(ϕ→ϕ)→ϕ), Γ = x:B,y:ϕ→ϕ.

D :: (Ax)
Γ ⊢ y : ϕ→ϕ

(Ax)
Γ ⊢ x : B

(µ)
Γ ⊢ x : B→(ϕ→ϕ)→ϕ

(Ax)
Γ ⊢ x : B

(→E)
Γ ⊢ xx : (ϕ→ϕ)→ϕ

(Ax)
Γ ⊢ y : ϕ→ϕ

(→E)
Γ ⊢ xxy : ϕ

(→E)
Γ ⊢ y(xxy) : ϕ

(→I)
x:µX.X→ϕ ⊢ λy.y(xxy) : (ϕ→ϕ)→ϕ

(→I)
⊢ λxy.y(xxy) : B→(ϕ→ϕ)→ϕ

91

D

⊢ λxy.y(xxy) : B→(ϕ→ϕ)→ϕ

D

⊢ λxy.y(xxy) : B→(ϕ→ϕ)→ϕ
(µ)

⊢ λxy.y(xxy) : B
(→E)

⊢ (λxy.y(xxy))(λxy.y(xxy)) : (ϕ→ϕ)→ϕ

Take T = (λxy.y((unfold x)xy))(fold (λxy.y((unfold x)xy)));

(λxy.y((unfold x)xy))(fold (λxy.y((unfold x)xy)))M →

(λy.y((unfold (fold(λxy.y((unfold x)xy))))(fold (λxy.y((unfold x)xy)))y))M →

M ((unfold (fold (λxy.y((unfold x)xy))))(fold (λxy.y((unfold x)xy)))M) →

M ((λxy.y((unfold x)xy))(fold (λxy.y((unfold x)xy)))M)

so TM → M(TM)

Exercise 8.32 i) Take Γ = x:A→B,y:C∩A.

Γ ⊢∩ x : A→B Γ ⊢∩ y : A

Γ ⊢∩ xy : B

Γ y ⊢∩ λy.xy : (C∩ A)→B

⊢∩ λxy.xy : (A→B)→(C∩A)→B

ii) Take Γ = x:A→B→C,y:D→B,z:A∩D.

Γ ⊢∩ x : A→B→C Γ ⊢∩ z : A

Γ ⊢∩ xz : B→C

Γ ⊢∩ y : D→B Γ ⊢∩ z : D

Γ ⊢∩ yz : B

Γ ⊢∩ xz(yz) : C

Γ z ⊢∩ λz.xz(yz) : (A∩D)→C

Γ y,z ⊢∩ λyz.xz(yz) : (D→B)→(A∩D)→C

⊢∩ λxyz.xz(yz) : (A→B→C)→(D→B)→(A∩D)→C

iii) Take Γ = x:A→⊤→C,y:⊤,z:A.

Γ ⊢∩ x : A→⊤→C Γ ⊢∩ z : A

Γ ⊢∩ xz : ⊤→C Γ ⊢∩ yz : ⊤

Γ ⊢∩ xz(yz) : C

Γ z ⊢∩ λz.xz(yz) : A→C

Γ y,z ⊢∩ λyz.xz(yz) : ⊤→A→C

⊢∩ λxyz.xz(yz) : (A→⊤→C)→⊤→A→C

iv) From the item above, we also have (taking C = A),

⊢∩ λxyz.xz(yz) : (A→⊤→A)→⊤→A→A

Since

a:A,b:⊤ ⊢∩ a : A

a:A ⊢∩ λb.a : ⊤→A

⊢∩ λab.a : A→⊤→A

by (→E) we get the desired result.

Exercise 8.33 For the intersection system they are the same, since the terms are β-equal:

(λxyz.xz(yz))(λxy.x)(λx.x) →∗
β λx.x and

(λxy.xy)(λx.x) →∗
β λx.x

92

The principal type in Curry’s system for (λxyz.xz(yz))(λxy.x) is (ϕ1→ϕ2)→ϕ1→ϕ1, that

for λx.x is ϕ3→ϕ3. Calculating the principal type for (λxyz.xz(yz))(λxy.x)(λx.x) will in-

volve unifying (ϕ1→ϕ2)→ϕ1→ϕ1 with (ϕ3→ϕ3)→ϕ4. This will succeed and return (ϕ4 7→

ϕ3→ϕ3) ϕ4 = ϕ3→ϕ3, so (λxyz.xz(yz))(λxy.x)(λx.x) and λx.x have the same principal types,

so the set of assignable types is the same.

Exercise 8.34 The derivation for the principal type is on the left; the second part of the question

is shown by the derivation on the right.

x:(1→2)∩1 ⊢ x : 1→2 x:(1→2)∩1 ⊢ x : 1

x:(1→2)∩1 ⊢ x x : 2

⊢ λx.xx : (1→2)∩1→2

x:⊤→ϕ ⊢ x : ⊤→ϕ x:⊤→ϕ ⊢ x : ⊤

x:⊤→ϕ ⊢ x x : ϕ

⊢ λx.xx : (⊤→ϕ)→ϕ

Exercise 8.35 Γ′ = y:(1→2)∩1, Γ = Γ′, x:(1→2)∩1:

x:(1→2)∩1 ⊢ x : 1→2 x:(1→2)∩1 ⊢ x : 1

Γ ⊢ x x : 2

Γ′ ⊢ λx.xx : (1→2)∩1→2

Γ′ ⊢ y : 1→2 Γ′ ⊢ y : 1

Γ′ ⊢ y : (1→2)∩1

Γ′ ⊢ (λx.xx) y : 2

Γ′ ⊢ λy.(λx.xx) y : (1→2)∩1→2

x:⊤→ϕ,y:⊤→ϕ ⊢ x : ⊤→ϕ x:⊤→ϕ,y:⊤→ϕ ⊢ x : ⊤

x:⊤→ϕ,y:⊤→ϕ ⊢ x x : ϕ

y:⊤→ϕ ⊢ λx.xx : (⊤→ϕ)→ϕ y:⊤→ϕ ⊢ y : ⊤→ϕ

y:⊤→ϕ ⊢ (λx.xx) y : ϕ

⊢ λy.(λx.xx) y : (⊤→ϕ)→ϕ

Exercise 8.36 No. Since the set of approximants of λ f .(λx. f (xx))(λx. f (xx)) is infinite, the set

of principal types is as well.

f :⊤→ϕ ⊢ f : ⊤→ϕ f :⊤→ϕ ⊢ xx : ⊤

f :⊤→ϕ ⊢ f (xx) : ϕ

f :⊤→ϕ ⊢ λx. f (xx) : ⊤→ϕ f :⊤→ϕ ⊢ λx. f (xx) : ⊤

f :⊤→ϕ ⊢ (λx. f (xx)) (λx. f (xx)) : ϕ

⊢ λ f .(λx. f (xx))(λx. f (xx)) : (⊤→ϕ)→ϕ

93

	The Lambda Calculus
	`l-terms
	`b and `a-conversion
	Approximation semantics
	Making substitution explicit
	Example: a numeral system

	The Curry type assignment system
	Curry type assignment
	Subject Reduction
	The principal type property

	Dealing with polymorphism
	The language N
	Type assignment for N

	Dealing with recursion
	The language NR
	Expressing recursion in the Lambda Calculus
	Type assignment and algorithms

	Milner's ml
	The ml Type Assignment System
	Milner's W
	Polymorphic recursion
	The difference between Milner's and Mycroft's system

	Pattern matching: term rewriting
	Term Rewriting Systems
	Type assignment for trs
	The principal pair for a term
	Subject reduction
	A type check algorithm for trss
	An example: Combinatory Logic
	The relation between cl and the Lambda Calculus
	Extending cl
	Type Assignment for cl

	Basic extensions to the type language
	Data structures
	Recursive types
	The equi-recursive approach
	The iso-recursive approach
	Recursive data types
	Algebraic datatypes

	The intersection type assignment system
	Intersection types
	Intersection type assignment
	Subject reduction and normalisation
	Rank 2 and ml
	Approximation results
	Characterisation of (head/strong) normalisation
	Principal intersection pairs

