
Parametric Design for Reconfigurable

Software-Defined Radio

Tobias Becker1, Wayne Luk1, and Peter Y.K. Cheung2

1 Department of Computing, Imperial College London, UK
2 Department of Electrical and Electronic Engineering, Imperial College London, UK

Abstract. Run-time reconfigurable FPGAs are powerful platforms for
realising software-defined radio systems. This paper introduces a para-
metric approach to designing such systems based on application and
device parameters. We analyse the potential for reconfiguration in sev-
eral software-defined radio components and demonstrate how the degree
of parallelism in a reconfigurable module influences reconfiguration time
and performance. In a case study with a reconfigurable FIR filter, our
method increases the performance by a factor of 2.4.

1 Introduction

Software-defined radio is an emerging technology that involves processing digital
radio signals by means of software techniques. Today’s mobile applications fea-
ture an abundance of radio standards with ever increasing bandwidth. This leads
to a demand in both increased design productivity and flexibility after device
deployment. Software techniques are seen as a solution to quickly design flexible
mobile applications. In this paper we consider the implementation of the phys-
ical radio interface on reconfigurable hardware devices, such as FPGAs, which
combine hardware-like performance and efficiency with software-like flexibility.

FPGAs are powerful computing devices that deliver performance through
parallelism and can be more efficient than DSPs or general-purpose processors.
Combining reprogrammability and performance, they are displacing ASICs in
telecom equipment such as mobile base stations. SRAM-based FPGAs can also
be reconfigured at run-time, a feature that has been subject to much research [1].
Run-time reconfiguration has also been proposed for software-defined radio ap-
plications [2] and successfully demonstrated [3].

This paper focuses on a structured design approach based on application and
device parameters. Most importantly, this includes analysing how the degree of
parallelism in a reconfigurable application affects reconfiguration time and global
performance. We further consider application data buffering and configuration
storage. Using an example of software-defined radio, we show how our method
can be used to explore the design space and optimise the reconfigurable system.

The rest of the paper is organised as follows. Section 2 explains the background
of software-defined radio and outlines four basic reconfiguration scenarios. In
section 3, we analyse the potential for reconfiguration in several components

J. Becker et al. (Eds.): ARC 2009, LNCS 5453, pp. 15–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

16 T. Becker, W. Luk, and P.Y.K. Cheung

of a digital receiver. In section 4, we introduce our parametric approach and
show that choosing between a serial or parallel implementation can be used to
optimise performance and area. In section 5, we illustrate our approach on the
example of a reconfigurable FIR filter. Finally, section 6 concludes the paper.

2 Background

Software-defined radio was first motivated by moving from analogue to digital
technology in radio systems [4]. Because of the exponential increase in perfor-
mance and productivity of digital technology compared to slow advances in ana-
logue circuits, digital technology will continue to move closer to the antenna and
replace much of the analogue front end.

Figure 1 shows a receiver where the signal is digitised directly after being
mixed to an intermediate frequency (IF). A digital radio however is not synony-
mous with a software-defined radio. In current mobile phones, digital baseband
processing is usually performed by inflexible but power-efficient ASICs. In order
to support multiple standards, multiple pieces of IP have to be assembled into
a complex system, that subsequently needs to be tested and manufactured. In
contrast, a software-defined radio performs the same task by employing software-
programmable and flexible DSPs or general-purpose processors in order to sup-
port multiple radio standards [5].

Fig. 1. Receiver architecture of a software-defined radio

However, classic software-programmable architectures such as DSPs or proces-
sors are often too inefficient to satisfy the power and performance constraints of
communication devices. FPGAs are considered as a solution to this because they
can deliver the flexibility of programmable architectures with power efficiency
and performance much closer to ASICs. But despite successful demonstration
of run-time reconfiguration for software-defined radios [3], we find a lack of sys-
tematic methodology in designing and optimising such systems. We therefore
propose a more structured approach. Table 1 identifies different opportunities
for reconfiguration in software-defined radio.

Although reconfigurability has promising aspects in all four scenarios, we
mainly consider the latter two because they are the most challenging to realise.

Parametric Design for Reconfigurable Software-Defined Radio 17

Table 1. Scenarios showing opportunities for reconfiguration in software-defined radio

1. Pre-deployment. The programmability of the target architecture is used to make
changes late in the design process before the device is deployed. Generic pro-
grammable devices also simplify the design by reducing the number of components
needed.

2. In-field upgrade. The device is updated to support a new standard or feature that
was not included at deployment. In this case, the device will be rebooted and
downtime during reconfiguration does not matter.

3. Reconfiguration per call or session. The device is reconfigured at the beginning of
a call or data transfer session e.g. to select the most efficient or cheapest service
available at the moment. In this case, the reconfiguration downtime has to be short,
preferably below the level of human perception but no data need to be buffered.

4. Reconfiguration during a call or session. The device is reconfigured during a call
or data session e.g. to hand over from one service to another. Reconfiguration
downtime time has to be very short and streaming data has to be buffered during
reconfiguration.

3 Software-Defined Radio

Table 2 gives an overview of some of the most important communication stan-
dards that are currently being employed. These standards vary widely in their
technical details and satisfy different needs. We now analyse how the components
of a digital receiver as illustrated in figure 1 can benefit from reconfiguration.

As the first digital processing step, the real signal is down-converted into a
complex baseband signal. This is done by multiplying the IF signal with sine
and cosine signals from a numerically controlled oscillator (NCO). One com-
mon method of generating sine and cosine functions in digital hardware is the

Table 2. Comparison of different mobile communication standards

GSM EDGE DECT UMTS TDD UMTS FDD Bluetooth

Frequency band 900, 1800, 900, 1800, 1.9 GHz 1.9, 2 GHz 1.9, 2.1 GHZ 2.4 GHz
1900 MHz 1900 MHz

Channel bandwidth 200 kHz 200 kHz 1728 kHz 1.6 or 5 MHz 5 MHz 1 MHz

Channel access FDMA/TDMA FDMA/TDMA FDMA/TDMA TD-CDMA DS-CDMA TDMA

Duplex FDD FDD TDD TDD FDD TDD

Modulation GMSK GMSK, 8-PSK GMSK QPSK QPSK GFSK

Pulse shaping Gauss Linear. Gaussian Gauss Root-raised cos Root-raised cos Gauss
(BT = 0.3) (BT = 0.5) (β = 0.22) (β = 0.22) (BT = 0.5)

Error correction convolutional, convolutional CRC convolutional, convolutional, -
CRC CRC turbo, CRC turbo, CRC

Slot duration 0.577 ms 0.577 ms 0.417 ms 0.667 ms 0.667 ms 0.625 ms

Bit or chip rate 270.83 kbit/s 270.83 kbit/s 1152 kbit/s 1.28 or 3.84 Mchip/s 1 Mbit/s
3.84 Mchip/s

Net bit rate 13 kbit/s up to 473.6 kbit/s 32 kbits/s up to 2 Mbit/s up to 2 Mbit/s 1Mbit/s

18 T. Becker, W. Luk, and P.Y.K. Cheung

CORDIC algorithm. Since CORDIC is an iterative algorithm, a pipelined ver-
sion would most likely be used to provide sufficient throughput. It is also possible
to use an optimised, reconfigurable CORDIC processor to achieve higher perfor-
mance and less area requirements [6]. The down-converter must be able to adapt
quickly to different frequencies in order to support a change of channel between
transmission slots (see table 2). This corresponds to scenario 4 in table 1.

Filters are applied atmultiple stages of the receiver. In order to select the channel
of interest, all other signals have to be removed. In practise, this is done by combin-
ing multiple stages of filtering and decimation. IIR filters are usually avoided due
to instability issues and their non-linear phase. FIR filters are used instead, but in
wideband architectures they can require a high order to filter narrowband-signal
at high sample rate. Filters can be reconfigured between changing communication
standards (scenario 3) or during a call or data session (scenario 4).

The last step in the receiver chain is decoding and error correction. Differ-
ent methods of cyclic redundancy checks (CRC), convolutional codes and turbo
codes are employed. GSM for example uses CRC for the most important bits
and a convolutional decoder for less important bits. UMTS also uses turbo codes
for error correction. Again, the reconfigurability can categorised as scenario 3 if
the error correction is changed between standards. However, it is also possible
to change an error correction to adapt to different channel conditions during a
call or data session [7]. This case corresponds to scenario 4.

Finally there could be an additional encryption scheme such as AES at the
end of the receiver chain. This is completely independent from any particular
radio standard and could be reconfigured during or between sessions.

4 Design Parameters in Software-Defined Radio

Many run-time reconfigurable systems are designed in an ad-hoc manner. During
the design process it is often unclear how the final implementation will perform.
We propose a structured design approach that identifies design parameters and
maps these onto the reconfigurable device. In the following, we consider three
implementation attributes: performance, area and storage. First, we identify
parameters of a reconfigurable module:

– Area requirement A
– Processing time tp for one packet or datum
– Reconfiguration time tr
– Configuration storage size Ψ
– The number of processing steps s in the algorithm
– The amount of parallelism p in the implementation

We can also identify parameters of the application that employs a reconfigurable
module:

– Required data throughput φapp

– The number of packets or items of data n that are processed between recon-
figurations

Parametric Design for Reconfigurable Software-Defined Radio 19

The reconfigurable device is characterised by the following parameters:

– The available area Amax

– The data throughput of the configuration interface φconfig

– The configuration size per resource or unit of area Θ

4.1 Storage Requirements and Reconfiguration Time

All designs on volatile FPGAs require external storage for the initial configu-
ration bitstream. Designs using partial run-time reconfiguration also need addi-
tional storage for the pre-compiled configuration bitstreams of the reconfigurable
modules. The partial bitstream size and storage requirement Ψ (in bytes) of a
reconfigurable module is directly related to its area A:

Ψ = A · Θ + h ≈ A · Θ (1)

A is the size of a reconfigurable module in FPGA tiles (e.g. CLBs) and Θ is a
device specific parameter that specifies the number of bytes required to configure
one tile. Configuration bitstreams often contain a header h. In most cases, this
can be neglected because the header size is very small.

The time overhead of run-time reconfiguration can consist of multiple compo-
nents, such as scheduling, context save and restore as well as the configuration
process itself. In our case there is no scheduling overhead as modules are loaded
directly as needed. There is also no context that needs to be saved or restored
since signal processing components do not contain a meaningful state once a
dataset has passed through. The reconfiguration time is proportional to the size
of the partial bitstream and can be calculated as follows:

tr =
Ψ

φconfig
≈ A · Θ

φconfig
(2)

φconfig is the configuration data rate and measured in bytes/s. This param-
eter not only depends on the native speed of the configuration interface but
also on the configuration controller and the data rate of the memory where the
configuration data are stored.

4.2 Buffering

As outlined in table 1, we can distinguish between run-time reconfigurable sce-
narios where data do not have to be buffered during reconfiguration, and sce-
narios where data buffering is needed during reconfiguration. For the latter case
we can calculate the buffer size B depending on reconfiguration time tr and the
application data throughput φapp:

B = φapp · tr =
φapp

φconfig
· Ψ (3)

Table 3 outlines the buffer size for several receiver functions and a range of
reconfiguration times. We can observe that the data rate is reduced through

20 T. Becker, W. Luk, and P.Y.K. Cheung

Table 3. Buffersize for various functions and reconfiguration times

function data throughput buffer size for a given
reconfiguration time

100 ms 10 ms 1 ms

down-conversion (16 bit) 800 Mbit/s 80 Mbit 8 Mbit 800 kbit

down-conversion (14 bit) 700 Mbit/s 70 Mbit 7 Mbit 700 kbit

demodulation UMTS 107.52 Mbit/s 10.75 Mbit 1.07 Mbit 107 kbit

demodulation GSM 7.58 Mbit/s 758 kbit 75.8 kbit 7.58 kbit

error correction UMTS 6 Mbit/s 600 kbit 60 kbit 6 kbit

error correction GSM 22.8 kbit/s 2.28 kbit 228 bit 22.8 bit

decryption UMTS 2 Mbits/s 200 kbit 20 kbit 2 kbit

decryption GSM 13 kbit/s 1.3 kbit 130 bit 13 bit

all stages of the receiver. Hence, a reconfiguration-during-call scenario becomes
easier to implement towards the end of the receiver chain. Obviously, the buffer
size also increases with the bandwidth of the communication standard and the
duration of the reconfiguration time.

A buffer can be implemented with on-chip or off-chip resources. Most modern
FPGAs provide fast, embedded RAM blocks that can be used to implement
FIFO buffers. For example, Xilinx Virtex-5 FPGAs contain between 1 to 10 Mbit
of RAM blocks [8]. Larger buffers have to be realised with off-chip memories.

4.3 Performance

The performance of a run-time reconfigurable system is dictated by the recon-
figuration downtime. If reconfigurable hardware is used as an accelerator for
software functions, overall performance is usually improved despite the configu-
ration overhead [9]. In our case we use reconfiguration to support multiple hard-
ware functions in order to improve flexibility and reduce area requirements. In
this case, the reconfigurable version of a design will have a performance penalty
over a design that does not use reconfiguration. The reconfiguration of hardware
usually takes much longer than a context switch on a processor. This is due to
the relatively large amount of configuration data that need to be loaded into the
device. Early research on run-time reconfiguration showed that a reconfigurable
design becomes more efficient the more data items n are processed between re-
configurations [10]. The efficiency I of a reconfigurable design compared to a
static design can be expressed as:

I =
tstatic

treconf
=

n · tp
n · tp + tr

=
n

n + tr

tp

(4)

Parametric Design for Reconfigurable Software-Defined Radio 21

Fig. 2. Different spatial and temporal mappings of an algorithm with s = 4 steps

The reconfigurable system becomes more efficient by processing more data
between configurations and by improving the ratio of configuration time to pro-
cessing time. We propose a more detailed analysis where we consider the effect
of parallelism on processing time and configuration time. Many applications can
be scaled between a small and slow serial implementation, and a large and fast
parallel or pipelined implementation. FIR filter, AES encryption or CORDIC
are examples of such algorithms.

Figure 2 illustrates the different spatial and temporal mappings of an algo-
rithm with regard to processing time, area and reconfiguration time. The pro-
cessing time per datum tp is inversely proportional to the degree of parallelism
p. It can be calculated based on tp,e, the basic processing time of one processing
element, s, the number of steps or iterations in the algorithm, and p, the degree
of parallelism:

tp =
tp,e · s

p
(5)

Parallelism speeds up the processing of data but slows down reconfiguration.
This is because a parallel implementation is larger than a sequential one, and the
reconfiguration time is directly proportional to the area as shown in equation 2.
The reconfiguration time tr is directly proportional to the degree of parallelism
p, where tr,e is the basic reconfiguration time for one processing element:

tr = tr,e · p (6)

We can now calculate the total processing time for a workload of n data items:

ttotal = n · tp + tr =
tp,e · s · n

p
+ tr,e · p (7)

Figure 3 illustrates how parallelism can affect the optimality of the processing
time. We consider an algorithm with s = 256 steps which is inspired by the
observation that filters can have orders of 200 or higher. The plots are normalised
to processing time per datum and we assume that the reconfiguration time tr,e of
one processing element is 5000 times the processing time tp,e of one processing
element. This value can vary depending on the application and target device
but we estimate that at least the order of magnitude is realistic for current

22 T. Becker, W. Luk, and P.Y.K. Cheung

Fig. 3. Normalised processing times for a range of workload sizes n and different levels
of parallelism p. The number of steps s is set to 256 and we assume tr,e = 5000tp,e.

devices. We can observe that fully sequential implementations are beneficial
for small workloads. In this case, the short configuration time outweighs the
longer processing time. However, the overall time is still high due to the large
influence of the configuration time. Large workloads benefit from a fully parallel
implementations since the processing time is more dominant than reconfiguration
time. In case of medium workloads, the degree of parallelism can be tuned to
optimise the processing time. An analysis of how different configuration speeds
can influence the optimal implementation is shown in section 5.

In order to find the optimal degree of parallelism, we calculate the partial
derivative of the function given in equation 7 with respect to p:

∂ttotal

∂p
= − tp,e · s · n

p2
+ tr,e (8)

To find the minimum, we set equation 8 to 0 and solve for p:

popt =

√
s · n · tp,e

tr,e
(9)

The result popt is usually a real number which is not a feasible value to specify
parallelism. In order to determine a practical value for p, popt can be interpreted
according to table 4.

After determining the optimal degree of parallelism that reduces the overall
processing time per workload and hence maximises performance, it is still nec-
essary to check if the implementation meets the throughput requirements of the
application Φapp:

n

t(p)total
= Φhw ≥ Φapp (10)

Parametric Design for Reconfigurable Software-Defined Radio 23

Table 4. Interpretatipn of popt to determine a practical value for p

0 < popt ≤ 1 fully serial implementation, p = 1

1 < popt < s choose p such that s/p ∈ Z and |popt − p| minimal

s ≤ popt fully parallel implementation, p = s

The resulting area requirement A also has to be feasible within the total available
area Amax. In summary, to implement an optimised design according to our
model, the following steps have to be carried out:

1. Derive Φapp, s and n from application.
2. Obtain Φconfig for target technology.
3. Develop one design and determine tp and A.
4. Calculate tr, tp,e and tr,e using equations 2, 5 and 6.
5. Find popt from equation 9 and find a feasible value according to table 4.
6. Calculate ttotal using equation 7 and verify throughput using equation 10.
7. Implement design with p from step 5 and verify if its actual throughput

satisfies the requirement.
8. Calculate buffer size B using equation 3 and check A ≤ Amax.

The above methodology can be adopted for a wide variety of applications and
target technologies; it will find the highest performing version of the design. In
order to find the smallest design that satisfies a given throughput requirement,
one can try smaller values for p while checking equation 10.

5 Case Study: Channelisation Filter for GSM

We now demonstrate our method on the example of a channelisation FIR filter
for GSM. As step 1, we determine the application parameters φapp, s and n.
The sample rate fs in our example is 2.167MHz which corresponds to 8 times
the baseband bit rate. This is a realistic scenario after a first round of filter-
ing and decimation. With 16-bit samples, the application throughput Φapp is
34.672MBit/s. We filter a 200 kHz wide GSM channel and suppresses neigh-
bouring channels with an attenuation of at least −80dB. The filter coefficients
are calculated with the MATLAB Simulink Digital Filter Design blockset. This
results in a filter with 112 coefficients. The number of processing steps s is there-
fore 112. We consider a scenario where the filter needs to be reconfigured between
GSM frames. One GSM frame has a duration of 4.615ms and produces 10, 000
samples at the given sample rate. Hence, the workload size n = 10, 000.

Step 2. We use a Xilinx Virtex-4 LX25 FPGA as target device for the imple-
mentation of our filter. Virtex-4 FPGAs provide an internal configuration access
port (ICAP) that is 32 bit wide and runs at 100MHz. This corresponds to a
theoretical maximal configuration throughput Φconfig = 400MB/s. However,
when using the HWICAP core [11] in combination with a MicroBlaze processor

24 T. Becker, W. Luk, and P.Y.K. Cheung

we only measure a throughput of 5MB/s. But Claus et.al. recently presented an
improved version with a throughput of approximately 300MB/s [12]. We there-
fore compare two scenarios of slow reconfiguration based on our measurement
with Φconfig = 5MB/s and fast reconfiguration based on Φconfig = 300MB/s.

Step 3. We first implement a fully parallel version of our filter as illustrated in
the first row of table 5. The filter is created with Xilinx CORE Generator and
implemented with ISE 9.2. The filter requires 6921 slices and is implemented in
an area A of 1792 CLBs. In Virtex-4 FPGAs, the configuration size per CLB
is 225.5bytes/CLB. Hence, its corresponding partial bitstream has a size of
Ψ = 404.1kB (note: we use 1kB = 1000 bytes).

Step 4. The processing time per datum tp is 4ns. Since this is a fully parallel
version, the processing time per element tp,e is also 4ns. With HWICAP, the
filter can be reconfigured in tr = 81ms and tr,e is 0.72ms. When using the fast
ICAP version we estimate that tr = 1.35ms and tr,e = 0.012ms.

Step 5. For slow configuration, the optimal value for popt = 2.49 and feasible
values are 2 and 4. With fast reconfiguration, popt = 19.3 and feasible values are
14 and 28.

Step 6. For slow reconfiguration we expect processing times of ttotal = 3.68ms
for p = 2 and ttotal = 4.01ms for p = 4 and for fast reconfiguration we expect
ttotal to be 0.49ms for p = 14 and 0.50ms for p = 28. All of these satisfy our
requirement of processing one frame in 4.615ms.

Step 7. Our previous results are projections based on a fully parallel version.
We now verify these results by comparing them to attributes of real implemen-
tations. Table 5 shows six different versions of the filter with p ranging from 112
to 4. Smaller, more serial versions could not be created with CORE Generator.
We observe that tp,e and tr,e are not constant as previously assumed. Especially
configuration size and reconfiguration time do not scale linearly with the de-
gree of parallelism. This is because serialising a design introduces an overhead
for the implementation. For p = 4 and with slow reconfiguration, the filter has
an actual ttotal of 6.8ms which violates our requirement. We therefore have to
consider that projections with low degrees of parallelism and operating close to
the limit of the application requirement can fail. With fast reconfiguration, our
projection is correct in finding the highest performing versions. The actual ttotal

is 0.57ms in both cases which is 2.4 times faster than the fully parallel version.
Step 8. The buffer size for p = 14 is 9.2kbit and the storage size is 79.4kB.

Since all versions with fast reconfiguration meet the application requirement of
ttotal < 4.615ms, we could also choose the smallest version with p = 4. The
buffer size for this version is 3.3kbit and the storage size is 28.9kB. All versions
of the filter fit into the device which provides Amax = 2688 CLBs.

Figure 4 illustrates the performance of our filters for different levels of par-
allelism based on the two different configuration speeds. We observe that slow
configuration speeds lead to more serial implementations. Slow processing car-
ries almost no weight compared to penalty of reconfiguration time. For faster
configuration speeds, the optimum is a solution with an intermediate degree of

Parametric Design for Reconfigurable Software-Defined Radio 25

Table 5. Parameters of the FIR filter with different degrees of parallelism p when
implemented on a Xilinx Virtex-4 LX25 FPGA

slow reconfiguration: fast reconfiguration:
HWICAP [11] ICAP by Claus et.al. [12]

p slices size fmax tp,e tp tr tr,e ttotal tr tr,e ttotal

[kB] [MHz] [ns] [ns] [ms] [ms] [ms] [ms] [ms] [ms]

112 6921 404.1 250 4.0 4.00 80.8 0.72 80.9 1.347 0.012 1.39

56 3719 216.5 251 3.99 7.97 43.3 0.77 43.4 0.722 0.013 0.80

28 2111 122.7 256 3.91 15.63 24.5 0.88 24.7 0.409 0.015 0.57

14 1326 79.4 260 3.85 30.77 15.9 1.13 16.2 0.265 0.019 0.57

8 873 50.5 264 3.79 53.03 10.1 1.26 10.6 0.168 0.021 0.70

4 462 28.9 263 3.80 106.56 5.8 1.44 6.8 0.096 0.024 1.16

Fig. 4. Total processing time of our reconfigurable FIR filter when processing 10,000
data items between reconfigurations

parallelism. Increasing configuration speeds shift the optimal solution to more
parallel implementations.

6 Conclusion and Future Work

This paper introduces a quantitative approach for developing run-time reconfig-
urable designs for software-defined radio applications. This approach is based on
a simple model relating application-oriented parameters such as desired through-
put, and implementation attributes such as area, processing time and reconfig-
uration time. It enables systematic development and optimisation of designs,
which is illustrated in a case study involving a channelisation filter for GSM.
Current and future work includes extending our approach to support a large va-
riety of software-defined radio applications, and developing tools that automate
our approach.

26 T. Becker, W. Luk, and P.Y.K. Cheung

Acknowledgement. The support of Xilinx and UK EPSRC is gratefully
acknowledged.

References

1. Compton, K., Hauck, S.: Reconfigurable computing: a survey of systems and soft-
ware. ACM Computing Surveys 34(2), 171–210 (2002)

2. Cummings, M., Haruyama, S.: FPGA in the software radio. Communications Mag-
azine 37(2), 108–112 (1999)

3. Uhm, M.: Software-defined radio: The new architectural paradigm. Xilinx DSP
Magazin, 40–42 (October 2005)

4. Mitola, J.: The software radio architecture. Communications Magazine 33(5), 26–
38 (1995)

5. Tuttlebee, W.: Software Defined Radio: Enabling Technologies. Wiley, Chichester
(2002)

6. Keller, E.: Dynamic circuit specialization of a CORDIC processor. In: Reconfig-
urable Technology: FPGAs for Computing and Applications II. SPIE. The Inter-
national Society for Optical Engineering, vol. 4212, pp. 134–141 (2000)

7. Tessier, R., Swaminathan, S., Ramaswamy, R., Goeckel, D., Burleson, W.: A re-
configurable, power-efficient adaptive Viterbi decoder. IEEE Transactions on VLSI
Systems 13(4), 484–488 (2005)

8. Xilinx Inc. Virtex-5 Family Platfrom Overview LX and LXT Platforms v2.2 (Jan-
uary 2007)

9. Seng, S., Luk, W., Cheung, P.Y.K.: Run-time adaptive flexible instruction proces-
sors. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp.
545–555. Springer, Heidelberg (2002)

10. Wirthlin, M., Hutchings, B.: Improving functional density using run-time circuit
reconfiguration. IEEE Transactions on VLSI Systems 6(2), 247–256 (1998)

11. Xilinx Inc. Xilinx Logic Core: OPB HWICAP v1.3 (March 2004)
12. Claus, C., Zhang, B., Stechele, W., Braun, L., Hübner, M., Becker, J.: A multi-

platform controller allowing for maximum dynamic partial reconfiguration through-
put. In: Field Programmable Logic and Applications, pp. 535–538. IEEE, Los
Alamitos (2008)

	Parametric Design for Reconfigurable Software-Defined Radio
	Introduction
	Background
	Software-Defined Radio
	Design Parameters in Software-Defined Radio
	Storage Requirements and Reconfiguration Time
	Buffering
	Performance

	Case Study: Channelisation Filter for GSM
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

