
Parametric Optimization of Reconfigurable
Designs using Machine Learning

Maciej Kurek, Tobias Becker, and Wayne Luk

Department of Computing, Imperial College London

Abstract. This paper presents a novel technique that uses meta-heuristics
and machine learning to automate the optimization of design parameters
for reconfigurable designs. Traditionally, such an optimization involves
manual application analysis as well as model and parameter space explo-
ration tool creation. We develop a Machine Learning Optimizer (MLO)
to automate this process. From a number of benchmark executions, we
automatically derive the characteristics of the parameter space and create
a surrogate fitness function through regression and classification. Based
on this surrogate model, design parameters are optimized with meta-
heuristics. We evaluate our approach using two case studies, showing
that the number of benchmark evaluations can be reduced by up to 85%
compared to previously performed manual optimization.

Keywords: optimization, surrogate modeling, PSO, GP, SVM, FPGA

1 Introduction

Field programmable gate arrays (FPGAs) allow designs that are customized
to the requirement of the application. Reconfiguration is an additional benefit
which allows the designer to modify designs at run time, potentially increasing
performance and efficiency. Unfortunately, the optimization of reconfigurable
designs often requires substantial effort from designers who have to analyze the
application, create models and benchmarks and subsequently use them to optimize
the design. This process often involves adjusting multiple design parameters such
as numerical precision, degree of pipelining or number of cores. One could
proceed with automated optimization based on an exhaustive search through
design parameters which are derived from application benchmarks; however, this
is unrealistic since benchmark evaluations involve bitstream generation and code
execution which often takes hours of compute time.

It has been shown useful to construct surrogate models of fitness functions
representing design quality for computationally expensive optimization problems
in various fields [1–5]. As these models are orders of magnitude faster to evaluate
than the actual fitness function, they can substantially accelerate optimization
thus allowing for an automated approach. This is the motivation behind our
development of the MLO tool which we apply to the problem of reconfigurable
designs parameter optimization. In [6] we present initial concepts on optimizing
parameter configuration of reconfigurable designs using surrogate models. We



2 M. Kurek, T. Becker and W. Luk

now present the formalism and experimental evaluation for our approach. The
contributions of this paper are:

• A mathematical characterization of the parameter space for reconfigurable
designs as well as a definition of a fitness function based on application
benchmarks (Section 3).

• Generic surrogate models to approximate the fitness function using regression
and classification. We combine surrogate models with meta-heuristics to
provide a new MLO algorithm for automated optimization of reconfigurable
designs (Section 4).

• An evaluation of our MLO approach in two case studies: (a) execution time
of a run-time reconfigurable software-defined radio with varied degree of
parallelism, and (b) and a previously used [6] throughput of a quadrature
based financial application with varied precision (Section 5).

2 Background

When developing reconfigurable applications, designers are often confronted
with a very large parameter space. As a result the parameter space exploration
can take an immense amount of time. A number of researchers approach the
problem of high-cost fitness functions and large design spaces in various fields
[1–5] by having fitness functions combined with fast-to-compute surrogate models
provided by a Gaussian Process (GP) for decreasing evaluation time. However
most current surrogate models only consist of a regressor and do not take into
account possible invalid configurations within the design space. Furthermore, all
of them are evaluated using artificial benchmarks spanned by continuous Rn
spaces, while parameter spaces for reconfigurable applications usually also involve
discrete dimensions (e.g. number of cores). Surrogate models approximating
fitness functions by substituting lengthy evaluations with estimations based on
closeness in a design space have been investigated in reconfigurable computing
[7]. The work covers surrogate models for circuit synthesis from higher level
languages (HLL), rather than parameter optimization.

GP is a machine learning technology based on strict theoretical fundamentals
and Bayesian theory [8, 9]. GP does not require a predefined structure, can
approximate arbitrary function landscapes including discontinuities, and includes
a theoretical framework for obtaining the optimum hyper-parameters [4]. An
advantage of GP is that it provides a predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables, any finite set of which
have a joint Gaussian distribution. A Gaussian process is completely specified by
its mean function m(x) and the covariance (kernel) function k(x,x′):

f̂(x) ∼ GP(m(x), k(x,x′)) (1)

The k(x,x′) expresses the covariance between pairs of random variables, and
in regression analysis it expresses the relation between input-output pairs. This



Parametric Optimization with Machine Learning Optimizer 3

is based on a training set D of n observations, D = (xi, yi)|i = 1, ...n, where x
denotes an input vector, y denotes a scalar output. The column vector inputs
for all n cases are aggregated in the D × n design matrix X, and the outputs
are collected in the vector y. The goal of Bayesian forecasting is to compute the
distribution p(f̂ |x∗,y, X) of the function f̂ at unseen input x∗ given a set of
training points D. Using Bayes rule, the predictive posterior for the Gaussian
process f̂ and the predicted scalar outputs f̂(x∗) = y∗ can be obtained.

Support Vector Machine (SVM) is a maximum margin classifier, which con-
structs a hyperplane used for classification (or regression) [10]. SVMs use kernel
functions k(x,x′) to transform the original feature space to a different space
where a linear model is used for classification. SVMs are a class of decision
machines and so do not provide posterior probabilities. There is a training set
D of n observations, D = (xi, ti)|i = 1, ...n, where x denotes an input vector, t
denotes a target value. The column vector inputs for all n cases are aggregated
in the D × n design matrix X, and the targets in the vector t. The goal is to
classify an unseen input x∗ based on X and t by computing a decision boundary.

Particle Swarm Optimization (PSO) is a population-based meta-heuristic
based on the simulation of the social behavior of birds within a flock [11]. The
algorithm starts by randomly initializing N particles where each individual is
a point in the X = R × ... × R search space. The population is updated in
an iterative manner where each particle is displaced based on its velocity vid.
The criteria for termination of the PSO algorithm can vary, and usually are
determined by a time budget. The xid represents the dth coordinate of particle
i from the set X∗ of N particles, where particle is a point within X . In the
most basic form of PSO Eq. 2-3 govern movement of particles. r1 ∼ U(0, 1) and
r2 ∼ U(0, 1) are two independent uniformly distributed random numbers, c1 and
c2 are acceleration coefficients and pgd and pid are dth coordinates of the global
best and personal best positions. pgd is updated when a new global best fitness
is found and pid is updated when a particle improves over its best fitness.

vid = vid + c1r1(pid − xid) + c2r2(pgd − xid) (2)

xid = xid + vid (3)

3 Optimization Approach

Traditionally, optimization of reconfigurable applications is carried out by building
benchmarks and relevant tools, and the associated analytical models [12, 13].
This involves the following steps:

1. Build application and a benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Create analytical models for the design.



4 M. Kurek, T. Becker and W. Luk

4. Create tools to explore the parameter space.
5. Use the tools to find optimal configurations, guided by the models in step 3.
6. If result is not satisfactory, redesign.

In our approach the user supplies a benchmark along with constraints and
goals, and the MLO automatically carries out the optimization (Algorithm 1).
Our approach consists of the following steps:

1. Build application and benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Automatically optimize design with MLO.
4. If result is not satisfactory, redesign or revised time budget and search space.

Our idea of surrogate modeling is illustrated in Fig. 1. The MLO algorithm
explores the parameter space by evaluating different benchmark configurations
as presented in the left figure. The results obtained during evaluations are used
to build a surrogate model which provides a regression of the fitness function
and identifies invalid regions of the parameter space. A meta-heuristic (currently
PSO) guides the exploration of the parameter space using the surrogate model.

X

X X

X

X

X X

X

Invalid Region
(Classification)

D
es

ig
n

 Q
u

al
it

y

Parameter Space

Invalid Option

Benchmark Evaluation Surrogate Model Meta-Heuristic (PSO)

Fitness Function
(Regression)

Fig. 1: Benchmark evaluations, surrogate model and model guided search.

3.1 Parameter Space

The parameter space X of a reconfigurable design is spanned by discrete and
continuous parameters determining both the architecture and physical settings
of FPGA designs. A vector x represents a parameter configuration within the
parameter space X = X1 × ... × XD such that any Xd ⊆ R. If Xd ⊆ Z, its
discretization level is independent of other dimensions. Xd can be bounded with
upper and lower limits Ud, Ld such that for all xd, Ld ≤ xid ≤ Ud. An example of
a continuous parameter is core frequency and an example of a discrete parameter
is the number of compute cores. For all discrete dimensions the step size, which
we define as smallest distance between any two xid’s, can vary. We might only
be able to increase memory width in 16 bits increments.

A discrete parameter space has important implications on the PSO algorithm,
as the equations governing movements of particles Eq. 2-3 are defined for a



Parametric Optimization with Machine Learning Optimizer 5

continuous Rn space. In Eq. 2 both r1 and r2 are random real numbers, which
means that the resulting velocity component used to update position x cannot
be used if xd is discrete. To discretize the position value of a particle after
its movement, we round its value and randomize its rounding error (dithering)
presented in Eq. 4. By using dithering instead of truncation PSO particles
maintain their velocity component which results in a more thorough exploration.

xdi =

{
bxidc U(0, stepsize) < (xdi mod stepsize )

dxide U(0, stepsize) ≥ (xdi mod stepsize )
(4)

3.2 Fitness Function

Given a parameter setting x, the benchmark b(x) returns a fitness metric which
constitutes two values: y, the scalar metric of fitness and t, the exit code of
the application. Execution time and power consumption are examples of fitness
measures. There are be many possible exit codes t, with 0 indicating valid x’s.
The designer can choose to extend the benchmark to return additional exit codes
depending on the failure cause, such as configurations producing inaccurate
results or failing to build.

We distinguish three different types of exit codes. The first type is exit code
0 indicating a valid design. The second type of exit codes indicate configurations
that produce results yet fail at least one constraint making them undesirable.
The third type of exit codes is used for configurations that fail to produce any
results. The region of X that defines configurations x that produce y and satisfy
all constraints is defined as valid region V , regions with designs failing at least one
constraint yet producing y are part of failed region F , and the region with designs
failing to produce y is the invalid region I. If x∗ does not produce a valid result,
we assign a value that the designer assumes to be the most disadvantageous.
Depending on whether we face a minimization/maximization problem,s either a
high maxval or low minval value will be assigned.

f(x) =

{
y x ∈ V
maxval ∨minval otherwise

(5)

4 MLO Surrogate Model

We integrate a Bayesian regressor f̂ and a classifier to create a novel surrogate
model for a given fitness function f . As illustrated in Fig 1, the problem we
face is regression of f over V and F as well as classification of X . We make
use of Bayesian regressors to access the probability of prediction of f̂(x∗) of
non-examined parameter configurations x∗. We use classifiers to predict exit
codes of X∗ across X . Regressions are made using the training set obtained from
benchmark execution Dr, while classification is done using the training set Dc.



6 M. Kurek, T. Becker and W. Luk

We invoke regressor(Dr,x∗) for every particle in x∗ to obtain the regression y∗
and its probability p(y∗|x∗,Dr), which we denote as ρ for simplicity. Class label
t∗ of particle x∗ is predicted by the classifier classifier(Dc,x∗).

Algorithm 1 MLO

1: for x∗ ∈ X∗ do
2: x∗.fit← f(x∗) . Initialize with a uniformly randomized set X∗.
3: end for
4: repeat
5: for x∗ ∈ X∗ do
6: y∗, ρ← regressor(Dr,x∗)
7: t∗ ← classifier(Dc,x∗)
8: if ρ < minρ and t∗ = 0 then
9: x∗.fit← y∗

10: else
11: if t∗ = 0 then
12: x∗.fit← f(x∗)
13: else
14: x∗.fit← maxval or minval
15: end if
16: end if
17: end for
18: X∗ ←Meta(X∗) . Iteration of the meta-heuristic
19: until Termination Criteria Satisfied

We present our MLO in Algorithm 1. The algorithm’s main novelty with
respect to surrogate-based algorithms is the integration of a classifier to account
for invalid regions of X . We initialize the meta-heuristic of our choice with
N particles X∗ uniformly randomly scattered across X . Each particle has an
associated fitness x.fit and a position x. For all x∗ predicted to lie in V we
proceed as follows. Whenever ρ returned by the regressor is smaller than the
minimum required confidence minρ we use the y∗; otherwise we assume the
prediction to be inaccurate and evaluate f(x∗). The meta-heuristic will avoid I
and F regions as they are both assigned unfavorable maxval or minval values.
We construct the training sets Dc and Dr as described in Algorithm 2. Whenever
b(x∗) is evaluated, (x∗, t∗) is included within the classifier training set Dc. If exit
code is valid (t∗ = 0), then (x∗, y∗) is added to Dr.

Although the MLO will converge towards an optimum, it is limited by heuris-
tic search restrictions and as such it cannot guarantee to find the global optimum.
Hence, it is crucial to specify the termination criteria. Determining MLO ter-
mination criteria is based on the optimization scenario and we present three
possibilities where the user:

1. Has a limited compute time budget.
2. Requires only certain design quality.
3. Needs maximum performance, with a large budget.



Parametric Optimization with Machine Learning Optimizer 7

A user can have a limited compute time budget when optimizing an application
and the MLO can terminate once the budget has been reached. For example, we
could allocate a number of machines for a 24 hour period. Alternatively, if the user
only requires a certain performance, the MLO can be run until a configuration
x is found that meets the required performance, and the optimization can be
terminated. Lastly, if the MLO is used to maximize performance without a limited
compute time budget, the MLO will terminate when the best found solution does
not improve during a pre-defined amount of time.

Algorithm 2 f(x)

1: t, y ← b(x)
2: Dc ← (x, t) . Update the classifier’s training set
3: if t ∈ F or t ∈ V then
4: Dr ← (x, y) . Update the regressor’s training set
5: end if
6: if t ∈ V then
7: return y
8: else
9: return maxval or minval

10: end if

5 Evaluation

We use our approach to optimize two designs which are previously optimized
with custom analytical models. The first application is a run-time reconfigurable
software-defined radio with variable degree of parallelism [13]. The second is a
quadrature-based financial application with variable precision [12], for which we
show how known analytical models can be used to reduce the number of dimen-
sions that need to be explored. We use GPs utilizing an anisotropic exponential
kernel with additive Gaussian noise. We choose SVMs as our classifier with a
Radial Basis Function (RBF) kernel. Due to its simplicity and effectiveness we
use a velocity clamping version of PSO with c1 and c2 set to 2.0. All presented
results are averaged over 20 trials. To evaluate the MLO performance in our three
scenarios, we terminate when the global optimum is reached. We determine the
globally optimal configuration with analytic methods, run the MLO to achieve
the same value and then compare the complexity of both approaches.

As shown in Fig. 2 we create a surrogate model of the fitness function. We also
classify the design space using SVM as shown in the right figure. We see regions
of X with colour distinguishing different exit codes; dark gray for valid and light
gray for inaccurate designs. Black x marks drawn over the design space represent
configurations x which have been evaluated and used to build the surrogate
model. The design space includes white circles which represent positions of the
particles of the PSO algorithm during the iteration when the image was created.



8 M. Kurek, T. Becker and W. Luk

5.1 Reconfigurable Software-defined Radio

We construct a benchmark based on studies conducted in [13]. The designer
faces a trade-off between reconfiguration time and number of processing elements
p. Larger values of p correspond to designs with higher compute throughput;
however, the chip takes longer to reconfigure and our aim is to find the optimal
value of p. The reconfigurable radio can run at two different chip reconfiguration
bandwidths Φconfig of 5 MB/s or 300 MB/s.

Fig. 2: Reconfigurable radio f (Φconfig = 5 MB/s) and its surrogate model.

Fig. 3: Reconfigurable radio f (Φconfig = 300 MB/s) and its surrogate model.

Our parameters are p, Φconfig and core frequency freq. We define the design
space as X = {1− 112} × {5, 300} × {freqmin − 300}. We change X by varying
the minimum frequency freqmin. Although the problem is three-dimensional, due
to low discretization level of Φconfig we treat it as two separate two-dimensional
optimizations. For the I region constituting timing and FPGA resource over-
mapping regions, we mark the execution time as undesirable. MLO terminates
when x is evaluated within 2 MHz range of globally optimal solution.

In Fig. 2 we see how the SVM classifies a fraction of the parameter space as
V and how the surrogate model closely matches the fitness function. We also see
how particles collapse and explore the optimal region p ≈ 4 for Φconfig = 5 MB/s.
In Fig. 3 we observe a similar situation but for Φconfig = 300 MB/s with the



Parametric Optimization with Machine Learning Optimizer 9

Fig. 4: Optimization of f (Φconfig = 300 MB/s) after 13, 14 and 22 f evaluations.

optimal region p ≈ 20. Again, the surrogate model resembles the fitness function.
The collapse of particles is equivalent to the fine-tuning of the design parameters.
We present a visualization of the optimization in Fig. 4, each pair of figures
representing subsequent iterations. The top figures show the surrogate model,
while the bottom figures represent corresponding visualization of the design space
and its classification. During several initial iterations and f evaluations, the
particles (shown as white circles) are misled by the surrogate model to explore
p ≈ 4 region. In the last figure we see particles guided by an improved surrogate
model moving towards the optimum p ≈ 20 region.

We use the reconfigurable radio benchmark to determine the impact of design
space size on the convergence of the MLO algorithm. In Tab. 1 we see a tendency
of the number of f evaluations to decrease along with the design space size. We
trim design space by increasing the lower limit of admissible frequency freqmin.
This shows that the designer should select a small parameter range as small
design space improves MLO convergence. One outlier of f = 54 in the case
of Φconfig=300 MB/s and freqmin=200 MHz can be explained with the overall
small sample size. Manual optimization is replaced by MLO, which works with
nearly no manual input but for the initial design space specification.

Table 1: Average number of f evaluations - Reconfigurable radio optimization.

Φconfig freqmin 150 MHz 200 MHz 220 MHz
5 MB/s 44 37 31

300 MB/s 47 54 45



10 M. Kurek, T. Becker and W. Luk

5.2 Quadrature Method-based Application

In [12] the designer explores trade-off between accuracy and throughput in
an application with three parameters. The first two parameters are mantissa
width mw of the floating point operators and the number of computational cores
cores. Larger number of mw bits increases computation accuracy, but limits the
maximum number of cores that can be implemented on the chip due to the
increased size of the individual core. The third parameter is the density factor
df which specifies the density of quadratures used for integral estimation. It is a
software parameter and is independent of the generated bitstream. Density factor
df increases computation time per integration while improving the accuracy of
the results due to finer estimation of the integral.

Fig. 5: Quadrature-based application f and its surrogate model.

The optimization goal is to find the design offering the highest throughput
given a required minimum accuracy defined in terms of root mean square error
εrms. The error is defined with respect to results obtained by calculating a set
of reference integrals at the highest possible precision. The MLO terminates
when the globally optimal configuration for a given εrms is found. The F region
contains the inaccurate result class, as these benchmark evaluations can be reused
for regression. The design space X is defined as mw×cores×df : {11−53}×{1−
16}× {4− 32}. We can explore the whole X in a three-dimensional scheme or we
can reduce the three-dimensional problem into two dimensions using an analytical
resource usage estimation model. Resource usage is linearly related to cores, and
after generating a single core bitstream we can create a simple analytical resource
model which reduces the parameter space to two dimensions. Density factor df is
a software parameter while mw and cores affect the bitstream. Varying df only
involves software execution, as long as a bitstream for the given mw is already
generated. If we evaluate a design with mw (or mw, cores) that has not been
evaluated before, we generate a new bitstream.

We present a visualization of the two-dimensional optimization in Fig. 5,
where the εrms limit is set to a value of 0.1. The bottom-left corner of V contains
the global optimum which is difficult to determine without additional benchmark
evaluations, as the maximum number of possible cores and therefore throughput



Parametric Optimization with Machine Learning Optimizer 11

is limited by FPGA resources and as a result is chip dependent. Regions of space
with low df or mw are correctly predicted to offer low accuracy (light gray area).

Table 2: Average number of f evaluations - Quadrature application optimization.

cores εrms 0.1 0.01 0.001
three-dimensional 138 67 47
two-dimensional 71 43 28

To measure the algorithms convergence the MLO terminates when the design
with the highest throughput at the specified precision is found. The number of
required f evaluations is shown in Tab. 2. The previously suggested optimization
scheme [12] involves generating bitstreams for the full mw range. Using our MLO
combined with the analytical resource model, we reduce the number of bitstream
generations as we avoid exploring cores and thus decrease the design space.
Around 20-50% of f evaluations involve bitstream generation. The number has
a high variance between individual runs as the swarm either skips undesirable
configurations or thoroughly explore the whole design space.

The optimization scheme presented in [12] involves generating all possible
bitstreams with cores = 1, and a binary search of the df values. Once the optimal
(df ,mw) tuple is found, the number of cores can be determined. It also requires
the generation of bitstreams for all mw resulting in 53-11=42 distinct bitstreams.
Furthermore, the number of bitstreams is nearly doubled since after the first
generation, usually a second bitstream generation follows to adjust cores. Binary
search is performed on the df range of 32-4=28 distinct values per bitstream,
which yields on average 2×dlog2 (28)e = 10 benchmark evaluations per bitstream.

In comparison the MLO performance can be measured both in terms of f
evaluations and bitstream generations. Using the optimization approach from
[12] we perform a binary search on df range for all mw values resulting on
average 10× 42 = 420 f evaluations regardless of the εrms limit. As presented
in Tab. 2 for εrms = 0.1 the MLO requires 75 evaluations (85 % less) in the
two-dimensional scheme and 138 (67 % less) in the three-dimensional scheme.
The number becomes more favorable for the MLO when εrms is reduced as V is
decreased and the MLO needs to explore a smaller area, while average number of
f evaluations in their optimization approach stays constant. Not all f evaluations
involve bitstream generations: for εrms = 0.1, 50% of f evaluations involve two
bitstream generations resulting in 71 bitstreams compared to 82 bitstreams in [12].
In the three-dimensional scheme, MLO further decreases number of bitstream
generations, to an average of 69. Our automated approach clearly outperforms
manual design both in terms of f evaluations and bitstream generations, although
in the second case the results are less dominant.



12 M. Kurek, T. Becker and W. Luk

6 Conclusions and Future Work

We have proposed MLO, a novel tool which can determine optimized parameter
configuration of a reconfigurable FPGA design. The MLO can offer superior perfor-
mance, while reducing effort on analysis and application-specific tool development.
The main advantage of using the MLO is a shift from manual optimization to
automatic computation. The MLO requires multiple benchmarks for further
evaluation, and there are many opportunities for future work; an example is the
development of new surrogate models that would allow the reduction of required
benchmark samples and efficiently address high dimensional examples. There
are numerous cases where level of parallelism, timing and other parameters span
tens of dimensions and would benefit from an effective automated approach.

Acknowledgements This work is supported by the European Union Seventh
Framework Programme under grant agreement number 248976, 257906, 287804
and 318521, by UK EPSRC, by Maxeler University Programme, and by Xilinx.

References

1. Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary optimization
with approximate fitness functions,” IEEE Transactions on Evolutionary Computa-
tion, vol. 6, no. 5, pp. 481–494, 2002.

2. Y.S. Ong and et al., “Evolutionary optimization of computationally expensive
problems via surrogate modeling,” AIAA, vol. 41, no. 4, pp. 689–696, 2003.

3. G. Su, “Gaussian process assisted differential evolution algorithm for computation-
ally expensive optimization problems,” in PACIIA. IEEE Computer Society, 2008,
pp. 272–276.

4. S. Guoshao and J. Quan, “A cooperative optimization algorithm based on gaussian
process and particle swarm optimization for optimizing expensive problems,” in
CSO, vol. 2, 2009, pp. 929–933.

5. H.A.L. Thi, D.T. Pham, and N.V. Thoai, “Combination between global and local
methods for solving an optimization problem over the efficient set,” EJOR, vol.
142, no. 2, pp. 258–270, 2002.

6. M. Kurek and W. Luk, “Parametric Reconfigurable Designs with Machine Learning
Optimizer,” in FPT, 2012.

7. C. Pilato and et al., “Improving evolutionary exploration to area-time optimization
of FPGA designs,” J. Syst. Archit., vol. 54, no. 11, pp. 1046–1057, 2008.

8. M. Seeger, “Gaussian processes for machine learning,” International Journal of
Neural Systems, vol. 14, pp. 69–106, 2004.

9. C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT
Press, 2006.

10. C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
11. F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D. dissertation,

University of Pretoria, South Africa, 2002.
12. A.H.T. Tse and et al., “Optimising performance of quadrature methods with

reduced precisions,” in ARC. Springer, 2012, pp. 251–263.
13. T. Becker, W. Luk, and P. Y. Cheung, “Parametric design for reconfigurable

software-defined radio,” in ARC. Springer, 2009, pp. 15–26.


