
Incremental Elaboration for Run-Time Reconfigurable
Hardware Designs

Arran Derbyshire, Tobias Becker and Wayne Luk
Department of Computing, Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
arad@doc.ic.ac.uk, tbecker@doc.ic.ac.uk, wl@doc.ic.ac.uk

ABSTRACT
We present a new technique for compiling run-time recon-
figurable hardware designs. Run-time reconfigurable embed-
ded systems can deliver promising benefits over implemen-
tations in application specific integrated circuits (ASICs) or
microprocessors. These systems can often provide substan-
tially more computational power than microprocessors and
support higher flexibility than ASICs. The compilation of
hardware during run time, however, can add significant run-
time overhead to these systems. We introduce a novel com-
pilation technique called incremental elaboration, which en-
ables circuits to be dynamically generated during run time.
We propose a set-based model for incremental elaboration,
and explain how it can be used in the hardware compila-
tion process. Our approach is illustrated by various designs,
particulary those for pattern matching and shape-adaptive
template matching.

Categories and Subject Descriptors
B.5.1 [Register-Transfer-Level Implementation]: De-
sign—Special-purpose

General Terms
Design, Theory

Keywords
Incremental elaboration, run-time reconfiguration, hard-
ware compilation

1. INTRODUCTION
Over the last ten years programmable logic devices, such

as Field Programmable Gate Arrays (FPGAs), have signif-
icantly increased in speed, size and density. This devel-
opment has shifted the application scope of FPGAs from
rapid prototyping and implementation of glue logic to the
integration of full embedded systems. Modern FPGAs usu-
ally consist of a grid of configurable logic blocks in a mesh

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

of configurable routing resources, which are controlled by
static memory. It has been shown that exploiting hardware
reconfigurability can significantly improve performance [16]
and reduce power consumption [18].

The FPGA architecture also has the potential of updating
the configuration during run time. Conceptually one part
of a system can remain operational while another part is
being reconfigured. Partial run-time reconfiguration can of-
ten increase the flexibility and performance of an embedded
system [20], while reducing the resources required [3].

However, run-time reconfiguration involves additional de-
sign efforts of having to generate multiple configurations.
These configurations can be generated either at design time
or at run time. In the first case all configurations are pre-
compiled and stored in a configuration database. At run
time, these configurations are used to update the function-
ality of the systems. However, if hundreds or thousands
of configuration files are required, the storage requirements
can become a significant overhead. In this case it can be ad-
vantageous to trade off the size of the configuration storage
against additional time overhead of generating configura-
tions at run time.

It is critical to system performance to maintain a low time
overhead for reconfiguration. One way to achieve this is to
ensure that efficient partial reconfiguration is used. How-
ever, designing an efficient partial reconfiguration system us-
ing conventional languages and tools requires a significant
increase in design effort over static design. In a reconfig-
urable system, the designer must provide both the structure
or functionality of the hardware design, as well as the func-
tionality to change the design at run time.

In order to reduce the design effort of creating reconfig-
urable systems, we introduce a new compilation scheme that
generates the functionality to change a design at run time
directly from a parametrised hardware description. Our ap-
proach is applicable to standard languages such as structural
VHDL or Verilog. The designer can decide which parame-
ters control the reconfiguration. This in turn has an im-
pact on the trade-offs between run-time storage and time
overheads, and the trade-offs between flexibility and perfor-
mance.

A key element of our proposed technique, incremental
elaboration, allows partial reconfiguration to be achieved
efficiently based on run-time changes to design parameters.
Overall, our approach enables a designer to create hardware
designs using conventional hardware descriptions, whilst pro-
viding flexibility to the hardware structure at run time.

93

The main contributions of this paper are:

1. A compilation scheme for run-time parametrisation
which contains a static and a dynamic stage, where
the static stage produces incremental elaboration func-
tions while the dynamic stage applies them (section 3).

2. A model, based on set theory, of incremental elabora-
tion showing how it can reduce run-time design gener-
ation compared with other methods (section 4).

3. A method for making use of incremental elaboration in
the hardware compilation process, using a conditional
and an iteration statement as examples (section 5).

4. An evaluation of our approach based on run-time re-
configurable hardware designs, particularly for pattern
matching and for shape-adaptive template matching
(section 6).

2. BACKGROUND AND RELATED WORK
Although run-time reconfiguration promises compelling

improvement in performance, it adds complexity to the de-
sign methods. Run-time reconfiguration requires tools to
create new configurations and mechanisms to manage and
load configurations at run time. In this work we shall focus
on methods for developing run-time reconfigurable designs.

Parameters are used in hardware description languages to
characterise the function and architecture of an implementa-
tion. A traditional use of parametrisation is the creation of
library block designs, in which the parameters allow a range
of functions and architectures to be generated from a single
library block design. Typically, parameters are set during
design time and remain static throughout run time. For
reconfigurable devices, run-time parametrisation has been
used to achieve dynamic specification [5].

Partial evaluation is an optimisation used in software com-
pilation that, given a program where some of its inputs are
known, yields a specialised program [7]. By applying partial
evaluation to hardware descriptions, known inputs can be
used to transform a hardware description into a specialised
design where these inputs are constant; this is also known as
constant folding. The specialised design requires fewer logic
resources and is potentially faster. Partial evaluation can be
used to support dynamic specialisation at run time [15].

The notion of incremental elaboration and incremental
compilation has been used in both software and hardware
applications. Software applications include C++ compila-
tion [8] and elaboration of scenario-based specifications [19].
Hardware applications include elaboration for VHDL simu-
lation [1], reconfiguration of multi-FPGA systems [9], and
compilation for parallel logic verification [17]. This paper
further extends this technique to support run-time reconfig-
urable hardware designs.

3. COMPILATION SCHEME FOR
RUN-TIME PARAMETRISATION

Our approach involves a compilation scheme that can
rapidly map a parametrised design to a target device at run
time based on a change in its parameters.

The proposed compilation scheme employs two main com-
pilation techniques for reducing the run time overhead. They
are: 1) staged compilation and 2) incremental elaboration.

Staged compilation is a compiler technique where the com-
pilation process, after a certain stage, is postponed until run
time. It is used in software compilers to perform run-time
optimisations of the compiled code. Staged compilation is
often split into two stages: 1) the static compilation stage
and 2) the dynamic compilation stage. We use staged com-
pilation to avoid redundantly executing compilation opera-
tions that only need to be executed once.

The main contribution of this work is the second tech-
nique, which we refer to as incremental elaboration. Our in-
cremental elaboration technique uses the difference between
the next values of parameters and the current values of pa-
rameters to determine the elaboration operations necessary
to achieve an incremental change in the configuration of a
design. It avoids the execution of operations that are redun-
dant between parameter changes.

Our compilation scheme compiles structural hardware de-
signs, which enables a fast compilation process. We use
the following approaches to minimise the time to place logic
components and route the connections between them.

• Fully-specified placement. The designer provides full
placement information at compile time and describes
the placement in terms of simple run-time parametrised
arithmetic expressions.

• Speed-optimised routing algorithms. Routing algo-
rithms are optimised for maximum speed of determin-
ing routes rather than minimising signal propagation
delays in the routes.

Figure 1 shows the main steps in our compilation scheme.
Steps 1-7 are performed in the static compilation stage and
steps 8-10 are performed in the dynamic compilation stage.
Steps 1-6 are the main steps typically performed in static
structural hardware compilation. Steps 1-3, lexical analysis,
parsing and type checking of the input source description,
need only be done once since the resulting abstract syn-
tax is not affected by a change in the parameters. Therefore
these steps can be performed in the static compilation stage.
Steps 4-6 are performed in the static compilation stage to
generate the initial configuration of the design. The ini-
tial configuration is the first configuration used by a design
at run time, which is subsequently modified incrementally
when the parameters are changed. The initial configura-
tion contains parts of a run-time parametrisable design that
remain static over its entire run time.

Step 7 generates the incremental elaboration function,
which is a function that elaborates a design incrementally
according to a change in parameters. Step 7 is the key step in
our compilation scheme. The incremental elaboration func-
tion is generated by syntax-directed translation which sub-
stitutes each of elaboration procedures of the input source
description statements with incremental elaboration proce-
dures. The result is a function consisting of the incremental
elaboration procedures specific to the input source descrip-
tion. The incremental elaboration function is executed in
the dynamic compilation stage.

Figure 2 shows the inputs and outputs of the elaboration
function. The value of parameters of the design can change
during its run time. The current parameter values are de-
fined as the parameter values before they change, and the
next parameter values are defined as the new values that
the parameters change to. Using the changing parameter

94

parse

type check

elaborate

place

route

Check for type errors.

Parse lexical tokens to generate
abstract syntax.

Place all logic components in the
design to generate the initial
configuration.

Route all connections between
logic components in the design to
generate the initial configuration.

Lex concrete HDL syntax of the
design to generate lexical tokens
for parse step.

2

3

4

generate incremental
elaboration function

Elaborate the design according
to the parameters to create a
complete initial netlist of the
design.

Place incremental logic
components.

Route incremental connections
between logic components.

Incrementally elaborate the
design according to the change
in parameters by executing the
incremental elaboration function.

Generate a function that can be
used to incrementally elaborate
the configuration of a design.

7

5

6

incrementally elaborate

place

route

8

9

10

lexically analyse1
st

at
ic

co
m

pi
la

tio
n

st
ag

e
dy

na
m

ic
co

m
pi

la
tio

n
st

ag
e

Figure 1: The key steps in our run-time parametri-
sation compilation scheme.

incremental
elaboration

function
next set of resourcescurrent set of resources

current parameter values

next parameter values

Figure 2: The inputs and outputs of the incremental
elaboration function.

values, the incremental elaboration function transforms the
set of resources of the design before the parameter change
into a new set that implements the design according to the
next values of the parameters. The set of resources of the
design are the logic and routing resources that implement
the design.

The incremental elaboration function is optimised by our
compiler for the current design. This optimisation includes
performing all incremental elaboration procedures specific
to the design that only need to be executed once. The opti-
misation is performed in the static compilation stage. Step 7
is described in detail in sections 4 and 5.

Steps 8-10 execute the incremental elaboration function,
and perform the placement and routing of the next set of re-
sources. Steps 8-10 form the dynamic compilation stage and
are repeated each time the parameters are changed. The
result of steps 8-10 is a partial configuration that is used

to update the configuration in the hardware, which imple-
ments the changes specified by the change in parameters.
Using our compilation scheme, the incremental elaboration
function and the associated place and route functions can
be generated from a standalone program. They could also
potentially be synthesised into hardware [23]. The result-
ing program, or hardware, can then be used in a run time
system. This prevents the need for a run-time system to
redundantly maintain the static stage of the compilation
scheme.

4. INCREMENTAL ELABORATION
MODEL

The generation of the incremental elaboration function is
the key step in our compilation scheme (see step 7 in fig-
ure 1). This section introduces a model, based on set the-
ory, of the elaboration of structural paramterised hardware
designs. We first describe three different models of elabora-
tion: backtrack elaboration, blank elaboration and incremen-
tal elaboration. We show that incremental elaboration has
the potential of being the most efficient.

In our model the elaboration process is given by a func-
tion that elaborates the design to its logic and routing re-
sources according to the parameters of the design. We refer
to this function as the elaboration function of the design.
Let fd(Xt) = Yt be the elaboration function of design d,
which maps the parameter set Xt with values given at time
t ∈ Z+, into a set of hardware resources Yt. The set of hard-
ware resources Yt represents unique logic resources in the
target architecture and unique routing connections between
the logic resources. We assume that there is a process that
maps the statements of the structural description of the de-
sign d to the elaboration function fd(Xt) and that there is
a place and route process that maps the resource set Yt to
a device configuration.

Consider the situation when parameters change at run
time. Here, let Yc be the ‘current’ resource set and let Yn be
the ‘next’ resource set. The current and next resource sets
are elaborated by:

fd(Xc) = Yc and fd(Xn) = Yn (1)

Let Hc be the current set of resources configured in the
hardware and Hn the next set of resources. The parameter
change can be achieved by removing the current resource set
Yc from the configuration and then adding the next resource
set Yn to the configuration. This can be expressed as:

Hn = (Hc − fd(Xc)) ∪ fd(Xn)
= (Hc − Yc) ∪ Yn (2)

The key characteristic of the process shown in equation 2
is that the design is completely elaborated each time the pa-
rameters are changed. Also, the current resources are com-
pletely removed from the current configuration: Hc − Yc.
Current resources must be removed from the current con-
figuration so that the resources they occupy in the target
architecture are free for use by the next resources.

We consider two techniques, backtrack elaboration and
blank elaboration, in which current resources can be removed.
In backtrack elaboration, the current resources are removed

95

by removing all the logic and routing resources according
to the elaboration process that generated them. So the pa-
rameter set Xc is fully evaluated to remove the resources
Yc from Hc. Then the next parameter set Xn is evaluated
and the new resources Yn are added to Hc − Yc. Backtrack
elaboration is complex because the elaboration function is
executed twice.

In blank elaboration, the current resources are removed
by a function that simply blanks an area in which the cur-
rent resources are situated. If the design is the only one in
the configuration or if it is located in an isolated area, then
it is possible to remove the configuration Yc by resetting
the hardware or deleting the reconfigurable area with a pre-
compiled empty configuration. The next configuration Hn

can then be produced by simply writing Yn to the blank area.
Blank elaboration is more efficient than backtrack elabora-
tion because the elaboration function is only executed once.
However, blank elaboration requires the run-time reconfig-
urable part to be spatially isolated from other resources.

In contrast to backtrack elaboration and blank elabora-
tion, incremental elaboration aims to generate the next con-
figuration Hn by reconfiguring only resources that change.
For some parameter changes, it is possible that the resources
are not completely changed and that the current and next
resource sets have common elements. For these parameter
changes, it may be possible to elaborate a design faster by
performing an incremental change provided that:

Yc ∩ Yn 6= ∅ (3)

Using a traditional compilation scheme, the resources Yc

would be removed from Hc and then the resources Yn added
to Hc. In some circumstances, it may require less operations
to remove the resources Yc − Yn from Hc and then add the
resources Yn − Yc to Hc. This would avoid any operations
that involve the resources Yc ∩ Yn and so an incremental
change potentially performs less operations because it reuses
resources that have been elaborated previously.

We refer to the process of elaborating the resources incre-
mentally from a change in parameters as incremental elab-
oration. We define the sets R = Yc − Yn and S = Yn − Yc,
and refer to them as the incremental sets. Incremental elab-
oration is illustrated by a Venn diagram in figure 3.

Y

S = Y – Y

n

cnR = Y – Ync

Yc

Figure 3: A change in resources from the current
resource set Yc to the next resource set Yn, from
a change in parameters Xc to Xn. The incremen-
tal sets R = Yc − Yn and S = Yn − Yc represent the
resources that are elaborated by incremental elabo-
ration in order to achieve the change in parameters
without needing to elaborate the resources Yc ∩ Yn.

This process is similar to the technique of finding a partial
configuration [14]; the distinction is that we are interested
in the source statements that elaborate to these sets. This is
because, if the source statements can be manipulated in such
a way so that parameter changes only elaborate to the in-
cremental sets, then it is possible to incrementally elaborate
a design. This gives the potential to be able to change the
resources of the design faster, since it usually takes longer
to elaborate a larger set.

We define an incremental elaboration function to be one
that elaborates the resources of design d incrementally:

gd(Xc, Xn, Hc) = Hn (4)

The incremental sets can be expressed as:

R = fd(Xc)−fd(Xn) and S = fd(Xn)−fd(Xc) (5)

Hn can now be produced by removing R from Hc and
adding S:

Hn = (Hc −R) ∪ S (6)

However, we do not want to determine the sets R and S
as described in equation 5 because this would require a com-
plete evaluation of fd(Xn) and fd(Xc). In this case no op-
eration would be saved compared to backtrack elaboration.
Instead, our objective is to compile the source statements
of a design to a function gd(Xc, Xn, Hc) such that for all
parameter changes:

1. the incremental elaboration function can improve the
speed of run-time elaboration: the time to execute
Hn = gd(Xc, Xn, Hc) is less than or equal to the time
to execute Hn = (Hc − fd(Xc)) ∪ fd(Xn),

2. operations that elaborate to the set Yc ∩ Yn are min-
imised,

3. the incremental sets are minimal; R ∩ S = ∅ is true,

4. the result is correct; gd(Xc, Xn, Hc) = [Hc−(fd(Xc)−
fd(Xn))] ∪ [fd(Xn)− fd(Xc)] is true.

For these given objectives, incremental elaboration should
always be more effective than backtrack elaboration because
it does not fully evaluate fd(Xn) and fd(Xc). In compar-
ison to blank elaboration, incremental elaboration has the
potential of being more efficient. However, the actual benefit
could vary depending on the number and type of operations
to be executed. We illustrate this in detail in section 6.

5. COMPILING INCREMENTAL
ELABORATION FUNCTIONS

Based on the model presented in the last section, we in-
troduce our compilation technique for compiling incremental
elaboration functions and describe how it satisfies our ob-
jectives. We show how the basic control statements of a
hardware description language can be compiled to an incre-
mental elaboration function. From the compilation of basic
control statements, general methods can be derived for com-
piling a hardware description to its incremental elaboration
function.

96

The incremental sets can be found by evaluating the dif-
ference between fd(Xc) and fd(Xn). The challenge is that
the values of the run-time parameters in Xc and Xn are
not known at compile time. One solution is to determine
how the parameters may change at run time, and for each
of these parameter changes, use this information to evaluate
the incremental sets. We show how this solution works for
two basic parametrisable control statements of a standard
hardware description language.

Consider the following design cond that consists only of
a single conditional statement. Figure 4 shows a schematic
description of the example. The example could also be easily
described in a structural hardware description.

(a) c = true

(b) c = false

n0

n1

n4

n3

n5

n6

n2

k

l

l

ji

n0

n1

n4
n5

n6

n2

k

i

Figure 4: Schematic description of the example cond

when (a) parameter c = true and when (b) parame-
ter c = false.

An appropriate elaboration function for this example is
shown in equation 7. The elaboration function is generated
from the design description by including an equivalent con-
ditional statement. To elaborate the design, the parameter
c is tested to see if it is true, if so then fcond returns the
set A otherwise it returns the set B. The set A represents
the instances i, j, k and l and the nets n0 - n6. The set
B represents the instances i, k and l and the nets n0 - n2
and n4 - n6. The set D is used as a temporary variable.
After the execution of fcond, the resulting set of resources
D would be mapped into hardware resources.

fcond(c) =
if (c) then

D := A
else

D := B
return D

(7)

At run time, each parameter can change in a number of
ways that is determined by the parameter type. Here, c
changes in two cases only, when 1) the current value is false
and the next value is true, and 2) the current value is true
and the next value is false. It is necessary to check for these

two conditions only, and then we can evaluate the incre-
mental sets. The key step for producing the incremental
elaboration function gcond is to add conditional statements
that check for these parameter changes.

We refer to these added conditional statements as
∆-conditionals. A ∆-conditional is defined as a statement
δ ∈ ∆, where ∆ is a set of conditional statements derived
from each control statement of the source description. The
∆-conditionals replace the definitions of R and S in gcond

for the example as shown in equation 8.

gcond(cc, cn, Hc) =
if (cc ∧ ¬cn) then

R := fcond(cc)− fcond(cn)
S := fcond(cn)− fcond(cc)

if (¬cc ∧ cn) then
R := fcond(cc)− fcond(cn)
S := fcond(cn)− fcond(cc)

return (Hc −R) ∪ S (8)

The next step is to evaluate the sets R and S. The param-
eter change conditions make this possible. If the condition
of a ∆-conditional is true, then the current and next values
of the parameters for the body of that ∆-conditional can
be determined. In the case of a conditional statement, the
exact parameter values can be determined from the Boolean
expressions of the conditions. Therefore, it is possible to ap-
ply the value within each condition and then evaluate each
occurrence of fcond according to equation 7.

gcond(cc, cn, Hc) =
if (cc ∧ ¬cn) then

R := A−B
S := B −A

if (¬cc ∧ cn) then
R := B −A
S := A−B

return (Hc −R) ∪ S (9)

Shown in equation 9 is a general result for a simple con-
ditional statement with two alternatives. The next step is
to find the difference between the sets A and B:

gcond(cc, cn, Hc) =
if (cc ∧ ¬cn) then

R := {j, (n2, {i, j, l}), (n3, {j, k})}
S := {(n2, {i, k, l})}

if (¬cc ∧ cn) then
R := {(n2, {i, k, l})}
S := {j, (n2, {i, j, l}), (n3, {j, k})}

return (Hc −R) ∪ S (10)

Note that net set elements are represented uniquely as a
tuple with their identifier and the instances they connect to.

The second basic control statement is a single iterative
statement. In the following we show how an iterative state-
ment with a parametrised upper bound and a fixed lower
bound can be compiled into an incremental elaboration func-
tion.

fiter(c) =
D := A× Ic

0

return D
(11)

97

The iterative statement is modelled by the Cartesian prod-
uct of A and the set I. The purpose of I is to provide a
unique element for each iteration of A in terms of the it-
eration index. The set I with a lower bound u and upper
bound v is defined as:

Iv
u = {i | i ∈ Z ∧ u ≤ i ≤ v} (12)

Now, the ∆-conditionals of the iterative statement with
the upper bound determined by c must be found. Again, the
aim is to evaluate the incremental sets R and S at compile
time, without elaborating the resources Yc∩Yn and without
knowing the exact values of cc and cn. Irrespective of its
value, c can: 1) increase, and 2) decrease. This leads to
the ∆-conditionals cn > cc and cn < cc. The incremental
evaluation function giter can then be expressed as shown in
equation 13.

giter(cc, cn, Hc) =
if (cn > cc) then

R := ∅
S := A× Icn

cc+1

if (cn < cc) then
R := A× Icc

cn+1

S := ∅
return (Hc −R) ∪ S (13)

The function can be explained in terms of the ways in
which the upper bound parameter changes. When c in-
creases, no resources are removed and the resources A, iter-
ated between cc + 1 and cn, are added. When c decreases,
the opposite results. The expressions show that it is not
necessary to recompile the whole iteration. Only the top
part of the iteration needs to be changed, which gives an
efficient way to compute the incremental sets.

For combined control statements, the ∆-conditionals have
to be nested with each other for all possible combinations of
parameter changes. With the two basic control statements
and combination of these, it is possible to cover the basic
features of a paramterised structural hardware description.
It is also straightforward to extend the model to cover other
language features, for example the parametrised placement
of instances or iterative statements with parametrised lower
bounds.

We propose a general method to produce gd(Xc, Xn, Hc)
by applying partial evaluation [7] to gd(Xc, Xn, Hc) using
the values of parameters determined by the conditions in
which they change. The key steps are:

1. generate ∆-conditionals

2. apply partial evaluation to the fd(Xc) and fd(Xn)
terms

3. evaluate the differences between sets

For the single conditional statement example in equa-
tion 7, step 1) corresponds to equation 8, step 2) to equa-
tion 9 and step 3) to equation 10.

Our compiler is based on the above steps. The com-
piler finds parameters and builds up the environments c
and n while generating the incremental elaboration func-
tion. For each parameter a new environment is created for
every ∆-conditional. The algorithm works recursively on the

list of source statements and produces a list of statements
that form the incremental elaboration function. The result-
ing function is then further reduced and optimised to reduce
function size and execution time for run-time configuration
generation.

6. EXPERIMENTAL RESULTS
To determine the effectiveness of our compilation method,

we compare measurements of the execution time of incre-
mental elaboration functions produced by our compiler with
the execution time of other elaboration approaches.

The performance improvement of incremental elaboration
in comparison to backtrack elaboration or blank elabora-
tion can depend on many possible parameter changes. Each
parameter change can involve the execution of three differ-
ent kind of operations: 1) elaborating control statements
that include conditional statements, ∆-conditional state-
ments and iterative statements, 2) elaborating the elements
in the logic resource sets and 3) elaborating the elements
in the routing resource sets. A complete analysis would
involve counting the number of operations for a given pa-
rameter change and applying cost factors according to the
complexity of each operation. For an abstract analysis it is
difficult to apply appropriate cost factors to abstract opera-
tions. However, it is safe to assume that routing operations
are most complex, independent from specific target architec-
tures. Hence, if a parameter change involves a reasonable
amount of routing operations, then the number of routing
operations can be used as an estimate for comparing the ef-
ficiency of different algorithms. We shall look at two designs
in detail, then we discuss design trade-offs that our compiler
can help to explore.

6.1 Pattern Matcher
The first case study is an architecture-independent anal-

ysis of a pattern matcher. This is a simple example to illus-
trate some of the types of specialisation that can be achieved
by run-time parametrisation. The design matches a vari-
able length sequence of bits, or ‘pattern’, against the bits
of a stream of data. A further sequence of bits, or ‘mask’,
determines which bits of the pattern are active in the match-
ing process. The mask allows different length patterns, and
separated fragments of patterns, to be matched.

0

1

EN

EN

0

1

EN

EN

0

1

EN

EN

0

1

EN

EN

datain

1

pattern

load
mask

match

Figure 5: Static implementation of the pattern
matcher.

Figure 5 shows a static implementation of the pattern
matcher design. This implementation has shift registers
that hold the pattern, mask and a section of the input data

98

stream. The logic compares the pattern with the data ac-
cording to the mask. By representing the pattern and mask
as parameters, it is possible to simplify the logic by treat-
ing the pattern and mask signals as constants and applying
Boolean simplifications.

The pattern matcher can be parametrised with the param-
eters m, pattern and mask, where m is the number of match
elements. A run-time parametrised version can be described
by an iterative statement with upper bound m to replicate
the match element. The parametrisation of the pattern and
mask can be described by nesting two conditional state-
ments within the iterative statement. Figure 6 shows an im-
plementation of the run-time parametrised pattern matcher
with the parameters m=4, pattern = [0, 1, x, 0] and
mask = [1, 1, 0, 1].

datain

1

pattern

match

mask

0

1

1

1

x

0

0

1

m

Figure 6: Run-time parametrisable implementation
of the pattern matcher.

The pattern matcher is implemented in RTPebble [3].
Pebble [10] is a structural hardware description language
and it features are subset of VHDL. RTPebble provides ex-
tensions to model run-time parameters. These extensions
can be applied to the industry standard languages VHDL
or Verilog. The parametrised RTPebble description of the
pattern matcher is implemented with our compiler tools.

In our case study we modify the parameter m to allow
different length patterns to be matched whilst maintaining
the minimum resource usage. Changing m involves adding
and removing both routing and logic resources. Figure 7
shows, for different previous values and decrements of the
parameter m, how the number of routing operations exe-
cuted by incremental elaboration compares to the number
executed by (a) backtrack elaboration and (b) blank elab-
oration. For both graphs in figure 7, the y axis shows the
number of routing operations that are saved by incremen-
tal elaboration over backtrack elaboration, the x axis shows
the amount by which the parameter is decreased, and the
z axis shows the previous parameter value. The greatest sav-
ing in routing operations occurs for large parameter values
and for a small parameter decrement. For the values shown
in figure 7(a), incremental elaboration always executes less
routing operations than backtrack elaboration to decrease
an iterative statement parameter value. The graphs suggest
that this trend would continue for higher parameter values
and it seems likely that incremental elaboration will, for all
parameter values, execute either an equal or lower number of
routing operations to backtrack elaboration with decreasing
parameter values.

In contrast to backtrack elaboration, it is clear from fig-
ure 7(b) that, for some of the previous parameter and decre-

ment value combinations, blank elaboration uses fewer op-
erations than incremental elaboration. These combinations
are shown on the graph where the number of routing oper-
ations has a negative value (the top of the bars are black
for negative values). Therefore, for the pattern matcher it
is possible to make a decision, depending on the change in
parameters, as to whether incremental elaboration or blank
elaboration should be used, in order to optimise the number
of routing operations.

(a)

(b)

0 2 4 6 8
10 12 14 16 18 2

6 10

14

18

0

50

100

150

200

250

300

ro
ut

in
g

op
er

at
io

ns

parameter
decrement

current
parameter value

0 2 4 6 8
10 12 14 16 18 2

6 10

14

18

-100

-50

0

50

100

150

ro
ut

in
g

op
er

at
io

ns

parameter
decrement

current
parameter value

Figure 7: Graphs showing the saving in routing op-
erations of the incremental elaboration function of
the pattern matcher design over (a) backtrack elab-
oration, and (b) blank elaboration, when the param-
eter m is decreased. Where the tops of the bars are
black, the bars have a negative value.

6.2 SA-TM Video Search Processor
The architecture specific case study is a Shape-Adaptive

Template Matching (SA-TM) video search processor. This
design is derived from the SA-TM method for retrieving ar-
bitrarily shaped objects from video streams [4]. The SA-TM
method is used to search for a template image within a video

99

stream by calculating the similarity between the template
pixels and the video image pixels. To enable the template
image to have an arbitrary shape, a mask image is used
to define the shape of the template image. The mask im-
age performs a similar function as the mask of the pattern
matcher described previously. In this analysis, the template
and mask parameters become run-time parameters. For ar-
bitrary template and mask images, it is impractical to pre-
compile all specialised configurations at design time because
of the exceedingly large number of possible combinations.
Thus, an SA-TM processor is an interesting case study for
run-time configuration generation.

The analysis is performed on a Xilinx Virtex XCV1000
FPGA on a Celoxica RC-1000 PCI card in a host PC. The
design description in RTPebble is compiled to a Java pro-
gram which consists of the elaboration and incremental elab-
oration functions with method calls to the JBits API [6].
The run-time controllers, including the incremental elabora-
tion functions, are written directly in Java and executed on
the host PC. To reconfigure the design, the current config-
uration is sent to the incremental elaboration function with
new parameter values to produce the next configuration.

The following describes the trade-offs between the peak
throughput and area of static and run-time parametrisable
SA-TM designs. Table 1 shows the peak throughput and
area trade-offs of the SA-TM designs with their configura-
tion update time. All designs have a template image of
12×12 pixels, a mask image of 12×12 pixels, and process
a search image of 100×100 pixels. In our experiments the
template image is limited to 12×12 pixels because a simple
layout is used which restricts the image size to the height
of the FPGA. Larger images can be supported simply by
changing the layout to use resources across the device, and
by using larger FPGAs now available.

For the static designs, the configuration update time is
the time to place and route the designs with the standard
Xilinx tools from a netlist that has already been mapped to
the Virtex device. For the run-time parametrisable designs,
the configuration update time is the time to generate a con-
figuration based on a change in the template and download
the configuration to the FPGA.

The static design using distributed RAM is a direct im-
plementation of the SA-TM algorithm. This design provides
the lowest throughput and requires the largest area. How-
ever, the static version of the design can be improved by us-
ing shift registers. This version has a higher peak through-
put while using less area. The run-time parameterisable
version of the design is 57% smaller and provides less per-
formance. With additional pipelining, the run-time param-
eterisable design is 41% smaller than the static version and
achieves higher peak throughput.

The configuration update time for a template change is
significantly lower compared to the standard place and route
tool. It can also be seen from table 1, that the incremen-
tal elaboration function compiled with both template and
mask as run-time parameters (a) takes longer to evaluate
a template parameter change than the incremental elabo-
ration function compiled for template as the only run-time
parameter (b). This is because the incremental elaboration
function is more complex for the combined control state-
ments of the two parameters. In case (b), the configuration
update time is almost the same as the time for downloading
a configuration from a database, which can be explained by

the fact that no routing performed for a template change,
only changes to logic look-up tables are performed. A mask
change, on the other hand, requires routing. Other experi-
ments show that for a 50% change to the mask, incremental
elaboration with routing takes around 2s, or 2000ms, and
for a 100% change to the mask takes around 4s, or 4000ms,
which is still faster than the complete blank elaboration by
the standard place and route tool.

The run-time system described above is intended for ex-
ploring and experimenting with design methods and tools,
and requires a host PC environment and the JBits API.
The incorporation of the Java Virtual Machine (JVM) in
our compilation process imposes addition overhead of time
and computational resources to generate new configurations.
Also to this date, there is no JBits support available for the
latest Virtex-4 architecture. For these reasons, we are mi-
grating the run-time system to a new database and onto the
FPGA itself. Recent work has shown a growing trend for
adaptive embedded systems employing run-time self-recon-
figuration [2], [12], [13].

It has been proposed that a run-time system can be di-
rectly implemented on the FPGA based on an embedded
processor and an internal configuration port [2]. Embedded
processors, such as the Xilinx MicroBlaze softcore [21] or
PowerPC hardcore processor [22], provide a capable means
of embedded processing for FPGAs. In combination with
the Internal Configuration Access Port (ICAP) [2], they
can form systems that quickly modify themselves. These
systems usually employ module-based reconfiguration that
loads pre-compiled configurations into a dedicated module
area on the FPGA. The old module is completely overwrit-
ten by the new configuration.

Recent work suggests a new method of merging configu-
rations without fully overwriting the target area [13], and
an algorithmic approach for run-time configuration gener-
ation [11]. However, the proposed designs often involve
special-purpose run-time systems, and are not capable of
compiling arbitrary configurations. We intend to develop
an embedded version of our run-time system that allows
efficient run-time compilation of parametrised hardware de-
scriptions. Even though it is conceivable to run the JVM
on an embedded processor, we seek to develop our run-time
system based on a more efficient and native representation
of the configuration database.

6.3 Design Trade-Offs
To provide an architecture independent measure of the

complexity of incremental elaboration functions, we quan-
tify how the parametrisation of different designs affects their
size. The size of an incremental elaboration function indi-
cates the design effort that is saved for the designer by using
our compiler over manually producing this function. The
size of the function also correlates directly to the memory
requirements of the reconfiguration controller. The number
of statements in the elaboration function is obtained from
the source code of the design. We compare this against the
number of statements in the incremental elaboration func-
tion which is the result of our compilation.

Table 2 shows the elaboration function sizes for the pat-
tern matcher in section 6.1 and the SA-TM design in sec-
tion 6.2. Column C gives the count of the control operations,
column L the count of the logic operations and R the routing
operations.

100

Peak Configuration
SA-TM Design Configuration Generation Throughput Area Update

(Mpixel/s) (slices) Time (ms)

static distributed RAM blank elaboration (Xilinx P&R) 25 4049 286000
shift register blank elaboration (Xilinx P&R) 44 3578 255000

(a) (b)
RTP shift register incremental elaboration 38 1539 42 0.75

shift register, pipelined incremental elaboration 59 2115 42 0.75

shift register configuration database 38 1539 0.73
shift register, pipelined configuration database 59 2115 0.73

Table 1: Speed, area and configuration update time trade-offs for SA-TM designs implemented in a Virtex
FPGA. The configuration update time is the time to generate a configuration from a change in the template
parameter and download the configuration to the FPGA. In (a) the incremental elaboration function is
compiled with both template and mask as run-time parameters, and in (b) the incremental elaboration
function is compiled with only template as a run-time parameter.

Case Parameters Elaboration Function Incremental Elaboration Function
Study Statements Statements

Static Dynamic C L R Total C L R Total

Pattern m pattern 2 8 14 24 3 4 0 7
Matcher m, pattern 2 8 14 24 18 24 28 70

m pattern, mask 3 10 19 32 10 16 20 46
m, pattern, mask 3 10 19 32 62 104 168 334

SA-TM w, h, c temp., mask 10 19 45 74 14 42 108 164
w, h c, temp., mask 10 19 45 74 68 200 536 804

c w, h, temp., mask 10 19 45 74 492 1602 4500 6594
w, h, c, temp., mask 10 19 45 74 1956 6140 17356 25452

Table 2: Size of elaboration and incremental elaboration functions for case studies.

It is obvious that the number of source statements is con-
stant over all of the static and dynamic parameter combina-
tions for each design. On the other hand, the number of in-
cremental elaboration function statements increases rapidly
to cover different combinations of configuration possibilities
as the number of dynamic parameters increases. This is
because the size of the incremental elaboration function de-
pends directly on the number of nested ∆-conditionals, given
by the number of dynamic parameters. However, incremen-
tal elaboration is much faster than full elaboration as shown
in section 6.2. This shows that we can trade off the degree of
dynamic parametrisation against the memory requirements
of the reconfiguration controller. Such trade-off can be ob-
tained rapidly by our compiler, which provides an effective
and easy means of exploring the design space of run-time
reconfigurable applications.

7. SUMMARY
This paper presents a novel compilation scheme for ef-

ficient generation of hardware configurations. It compares
three different elaboration methods, with special focus on in-
cremental elaboration which aims to generate new configura-
tions directly from parameter changes. We describe the com-
pilation process of incremental elaboration functions, and il-
lustrate a run-time system for rapid configuration generation
and its application in producing various designs. Current
and future work includes extending our incremental compi-

lation approach to cover systems with both hardware and
software components, and for a wide range of applications.

Acknowledgements
The support of Celoxica, Xilinx and the UK Engineering and
Physical Sciences Research Council is gratefully acknowl-
edged.

8. REFERENCES
[1] T. Ahn, K.H. Kim, S. Park, and K. Choi, “Incremental

Analysis and Elaboration of VHDL Description”. In
Proc. Third Asia Pacific Conf. on Hardware
Description Languages, pp. 128–131, 1996.

[2] B. Blodget, P. James-Roxby, E. Keller, S. McMillan,
and P. Sundararajan. “A Self-Reconfiguring Platform”.
In Field-Programmable Logic and Applications, LNCS
2778, pp. 565–574. Springer, 2003.

[3] A. Derbyshire and W. Luk. “Compiling Run-Time
Parametrisable Designs”. In Proc. IEEE Int. Conf. on
Field-Programmable Technology, pp. 44–51. IEEE, 2002.

[4] J. Gause, P.Y.K. Cheung, and W. Luk. “Reconfigurable
Shape-Adaptive Template Matching Architectures”. In
Proc. IEEE Int. Symp. on Field-Programmable Custom
Computing Machines, pp. 98–107. IEEE Computer
Society Press, 2002.

101

[5] S. Guccione and D. Levi. “Run-Time Parameterizable
Cores”. In Field-Programmable Logic and Applications,
LNCS 1673, pp. 215–222. Springer, 1999.

[6] S. Guccione, D. Levi, and P. Sundararajan. “JBits:
Java Based Interface for Reconfigurable Computing”.
In Proc. Second Annual Military and Aerospace
Applications of Programmable Devices and Technologies
Conference. The John Hopkins University, 1999.

[7] N. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall International, 1993.

[8] M. Karasick. “The Architecture of Montana: An Open
and Extensible Programming Environment with an
Incremental C++ Compiler”. ACM SIGSOFT Software
Engineering Notes, vol. 23, pp. 131–142, 1998.

[9] K.K. Lee and D.F. Wong. “Incremental
Reconfiguration of Multi-FPGA Systems”. Proc. ACM
Int. Symp. on Field Programmable Gate Arrays, ACM,
pp. 206–213, 2002.

[10] W. Luk and S. McKeever. “Pebble: A Language for
Parametrised and Reconfigurable Hardware Design”. In
Field-Programmable Logic and Applications, LNCS
1482, pp. 462–472. Springer, 1998.

[11] P. Lysaght and D. Levi. “Of Gates and Wires”. In
Proc. 18th International Parallel and Distributed
Processing Symposium, pp. 132–137. IEEE Computer
Society Press, 2004.

[12] P. Sedcole, P.Y.K. Cheung, G.A. Constantinides, and
W. Luk. “A Reconfigurable Platform for Real-Time
Embedded Video Image Processing”. In
Field-Programmable Logic and Applications, LNCS
2778, pp. 606–615. Springer, 2003.

[13] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and
P. Lysaght. “Module dynamic reconfiguration in Virtex
FPGAs”. IEE Proc. Computers and Digital Techniques,
153(3):157–164, 2006.

[14] N. Shirazi, W. Luk, and P.Y.K. Cheung. “Framework
and Tools for Run-Time Reconfigurable Designs”. IEE
Proc. Computers and Digital Techniques,
147(3):147–152, 2000.

[15] S. Singh, J. Hogg, and D. McAuley. “Expressing
Dynamic Reconfiguration By Partial Evaluation”. In
Field-Programmable Custom Computing Machines, pp.
188–194. IEEE Computer Society Press, 1996.

[16] H. Styles and W. Luk, “Compilation and management
of phase-optimized reconfigurable systems”. Proc. Int.
Conf. on Field Prog. Logic and Applications,
pp. 311–316, 2005.

[17] R. Tessier and S. Jana, “Incremental Compilation for
Parallel Logic Verification Systems”. IEEE Trans. on
VLSI Systems, 10(5):623–636, October 2002.

[18] R. Tessier, S. Swaminathan, R. Ramaswamy,
D. Goeckel, and W. Burleson. “A Reconfigurable,
Power-Efficient Adaptive Viterbi Decoder”. IEEE
Transactions on VLSI Systems, 13(4):484–488, April
2005.

[19] S. Uchitel, J. Kramer, and J. Magee. Incremental
Elaboration of Scenario-based Specifications and
Behavior Models using Implied Scenarios”. ACM
Trans. on Software Engineering and Methodology,
13(1):37–85, January 2004.

[20] M.J. Wirthlin and B.L. Hutchings, “Improving
Functional Density using Run-Time Circuit
Reconfiguration,” IEEE Trans. on VLSI Systems,
6(2):247–256, June 1998.

[21] Xilinx. MicroBlaze Microcontroller Reference Design
User Guide v1.5. September 12, 2005.

[22] Xilinx. PowerPC 405 Processor Block Reference
Guide. July 20, 2005.

[23] S. Young, P. Alfke, C. Fewer, S. McMillan,
B. Blodget, and D. Levi. “A High I/O Reconfigurable
Crossbar Switch”. In Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines,
pp. 3–10. IEEE Computer Society Press, 2003.

102

