
Improving Scheduling Techniques in Heterogeneous Systems with Dynamic,
On-Line Optimisations

Marcin Bogdański∗, Peter R. Lewis∗, Tobias Becker† and Xin Yao∗
∗ School of Computer Science

University of Birmingham, UK
{mxb039—p.r.lewis—x.yao}@cs.bham.ac.uk

† Department of Computing
Imperial College London, UK

tobias.becker04@imperial.ac.uk

Abstract—Computational performance increasingly depends
on parallelism, and many systems rely on heterogeneous
resources such as GPUs and FPGAs to accelerate computation-
ally intensive applications. However, implementations for such
heterogeneous systems are often hand-crafted and optimised to
one computation scenario, and it can be challenging to maintain
high performance when application parameters change. In
this paper, we demonstrate that machine learning can help to
dynamically choose parameters for task scheduling and load-
balancing based on changing characteristics of the incoming
workload. We use a financial option pricing application as a
case study. We propose a simulation of processing financial
tasks on a heterogeneous system with GPUs and FPGAs, and
show how dynamic, on-line optimisations could improve such a
system. We compare on-line and batch processing algorithms,
and we also consider cases with no dynamic optimisations.

Keywords-Scheduling, Heterogeneous System, Genetic Algo-
rithm, Artificial Neural Network, On-Line Learning, Dynamic
Optimisation, FPGA, GPU

I. INTRODUCTION

Graphics Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs) have become popular
for solving large-scale complex problems from science,
engineering, finance, etc. These devices can effectively
be used as accelerators in high-performance computing
applications which exhibit large amounts of parallelism.
One example may be financial option pricing [Tse et al.,
2010b], [Tse et al., 2010a], which we use as a case study
for introducing dynamic scheduling optimisations based on
an on-line learning approach.

Despite the rising popularity of GPUs and FPGAs, task
scheduling and resource allocation remain still challenging
problems in such heterogeneous, dynamic systems, where
evaluating real performance of a particular CPU/GPU/FPGA
is very difficult and will vary depending on the types of task
scheduled.

The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
n◦ 257906.

Such systems are commonly investigated using traditional
computational models and resolution methods, but schedul-
ing policies based on static performance evaluations can be
inefficient when computation parameters vary dynamically.
The other problem one has to consider is that there is a
significant initialisation overhead when sending tasks to
GPU/FPGA nodes, which is not accounted for in most
scheduling algorithms. On the other hand, if one can evaluate
performance of the underlying resources and the initialisa-
tion overhead for a specific architecture and computational
problem, traditional scheduling methods will be able to
return near-optimal solutions.

Using machine learning in scheduling has been considered
in previous research. [Aytug et al., 1994] and [Priore et al.,
2001] summarise different approaches including the use of
neural networks. In more recent work [Mahajan et al.,
2008] investigates use of a machine learning for branch
prediction in processor scheduling and [Vladusic et al.,
2009] and [Zhao et al.] apply machine learning strictly to
grid scheduling problem. However, these do not consider the
case when performance of the underlying resources is not
known a-priori, which is the focus of this paper.

The aim of this paper is to present a supervised on-line
learning approach for evaluating the performance of the un-
derlying hardware architecture for a specific computational
problem. In our model, the performance of the underlying
resources is measured in application throughput τ which is
not known a-priori. τ is the amount of data processed in a
certain time window. It can also change with time depending
on how a specific hardware architecture of the targeted
computational resource (GPU/FPGA) and the deployed com-
putational kernel is suitable for the currently computed tasks.
To deal with this problem, we introduce a Learning Module
(LM), which monitors the system in discrete time steps. The
LM can periodically schedule additional system checks to re-
evaluate performance in GPU/FPGA nodes for the currently
computed problem. These additional checks introduce a time
overhead, but they can deliver a better estimations of τ in
these nodes, which in turn can have positive effects on the

scheduling algorithm. The task of the LM is to learn when
it is beneficial to schedule an additional system check, and
when to rely on partial information. We call these checks
pilot programs.

The main research questions we pose here are:
1. Can an online-learning approach improve overall per-

formance of a scheduler, if it is operating in uncertain
conditions, where the exact hardware performance for a
specific task is volatile and not known a-priori

2. How does such an online-learning approach compare
with manually tuned periodical system checks and the case
when no additional checks are made

3. How do the approaches that are specified in 2. compare
when the underlying system is static in nature, or when some
system parameters change slowly

We evaluate the proposed model under the heterogeneity
of an CPU/GPU/FPGA system using the extended version
of the HyperSim-G simulator [Xhafa et al., 2007b]. We
integrated the main HyperSim-G framework with our online-
learning module, where an artificial neural network (ANN)
is used to learn and decide on additional system checks. We
test our model in multiple cases, including:

a) a scheduler based on traditional genetic algorithm and
Struggle Genetic Algorithm [Xhafa et al., 2008a], [Xhafa
et al., 2007], [Xhafa et al., 2008]

b) small/large batches of tasks
c) the use of online learning versus hand-crafted solutions
d) an environment that is static, slowly changing, or

quickly changing.
The rest of the paper is organized as follows: In Section

II we define the simulation environment, the scheduler and
introduce the learning algorithm. In Section III we explain
the details of learning algorithm, we define an error feedback
function and draw a schematic of the ANN. In Section IV we
present our method and the results obtained in a dynamic,
uncertain environment. We end the paper in Section V with
conclusions and plans for future work.

II. PRELIMINARIES

In this work we consider the independent job scheduling
problem [Xhafa et al., 2010], [Kołodziej et al., 2009],
[Kołodziej et al., 2010]. In the independent job scheduling
problem a number of tasks n is processed in the batch mode.
The scheduling module requires the number of machines
available and their estimated processing throughput τ as an
input. It also requires the workload for individual tasks. With
this information the scheduling module is able to generate
a matrix with the expected time to compute [Ali et al.,
2000], which is used to create a near-optimal schedule for
this particular problem.

To adapt the independent job scheduling model to our het-
erogeneous hardware architecture, we propose three changes
to this model. Firstly, we assume that the computational
parameters of the workload stay uniform over certain periods

initialisation

overhead
scheduled tasks

Figure 1. Pilot vs non-pilot scheduling. Top: estimation of τ accurate;
Middle: estimation not accurate; Bottom: running small batch as pilot
program.

of time. This is true for some financial applications like
financial option pricing methods that are optimised to some
real time market parameters. Hence, the estimated τ of a
machine will be only valid for a limited period of time.

Secondly, we assume that the data throughput τ for the
available machines is not known. The GPU and FPGA may
be loaded with different kernels optimised for different types
of tasks, and often it is not known how well a kernel will
perform for a new type of task. τ is also specific to a
particular application implementation and usually not known
a-priori. In this situation τ must be estimated based on
previous experiences.

Thirdly, contrary to a standard CPU, accessing
GPU/FPGA resources must follow strict procedures.
In a traditional cluster, information about the state of the
system, currently executing tasks, timing of task execution
etc. is readily available. In such a case, estimating τ based
on the execution time of an individual tasks would be
trivial. In the case of a GPU/FPGA it is more difficult to
measure execution times for individual tasks. As mentioned
in [Tse et al., 2010a], distributing tasks to the GPU/FPGA
one at a time results in large amount of message passing
overhead and latency. Because of this it is not practical
to continuously dispatch smaller workloads to the FPGA
in order to measure task performance. Instead, it is more
efficient to load a larger workload that corresponds to a
batch of tasks. τ is then estimated based on the execution
time for this task batch. To model the overhead for loading
new tasks to a resource, we introduce an initialisation
overhead, which is a time penalty added every time a task
or a batch of tasks is distributed to the GPU or FPGA.

At any point the scheduler may decide to split out a small
number of tasks from the batch and run a pilot program. The
purpose of pilot program is to determine τ for the current

a)

b)

c)

estimated

completion
real

completion

change happend

Figure 2. Scheduling multiple batches of tasks. During second batch type
of tasks change. a) With good τ ’ estimation scheduler works effectively. b)
change happen in the system, new type of tasks run slow on machine nb
2, real completion time is longer than estimation. c) pilot program is run
to accurately re-evaluate τ ′.

batch of tasks before scheduling the whole batch. Scheduling
a pilot program yields an additional initialisation overhead
penalty, but because of better τ estimation, the scheduler
should be able to distribute tasks more efficiently. Note
that the scheduler has access to the timing of the previous
batch, and it is able to update its estimations of τ with or
without running a pilot program. However without a pilot
program its estimations may be less accurate. Pilot vs non-
pilot execution is visualized in Fig. 1. As we can see in
figure 1, a pilot program may improva task allocation, but
the overall effect may be worse than without a pilot program.
This is the main question we pose in this paper: In which
situations it is beneficial to run a pilot program?

The main problem that we are considering, is if the LM
can learn from the stream of multiple batches of tasks
in which situations it is worth running an additional pilot
program. We want to balance the overhead of the pilot
program with the potential speed-ups that can be achieved
by using learning. For example if the system computes only
one type of tasks, then running many pilot programs will
have a negative impact on performance. On the other hand,
if multiple types of tasks are loaded over time, periodical
pilot programs will be necessary to avoid miscalculations of
schedules. This is ilustrated in Fig. 2

A. Input stream definition

We define an input stream of n task batches IS =
[tb1, . . . , tbn], where each task batch consists of m tasks
tb = [u1, . . . , um]. Each task batch arrives at time tn. After
task batch arrival the scheduler is initialized to distribute
tasks between machines. Each batch is also one learning
example. The batch size is generated by a Gaussian distri-

bution which is limited to the −3σ2 to 3σ2 range in order
to avoid negative batch sizes. We experimented with other
distributions as well, but we found that this did not have a
significant impact on the results of our experiments.

P (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(1)

We assume that the next batch is pooled from an external
source as soon as the current one finishes. Time span
between two scheduling events is defined as ∆tn−1 =
tn − tn−1.

The system consists of k computational nodes, and each
node is characterised be τk parameter, which is the compu-
tational performance of node k. Because τk may change as a
result of tasks changing over time, we define τk = fk(t), the
value of τk is updated continuously during the simulation,
not only at time when new batch of tasks arrives. Note,
that the task scheduler is not aware of the real value of
τk, it operates based on an estimation τ ′k. We also define a
load overhead lo, which is global and constant during one
simulation.

In particular we use sinusoidal (Eq. 3) and step (Eq. 2,4)
functions to model the dynamic nature of τk.It is important
to note that this is just simple, preliminary model. It would
be interesting to see how thel LM behaves when more
complex functions are used.

fk(t) =

n∑
i=0

αiχAi
(t) (2)

fk(t) = Ak sin(ωkt+ ϕk) (3)

where:

χAi
(t) =

{
1 if t ∈ A
0 if t /∈ A (4)

Where Ai is function interval.

B. HyperSim-G

To simulate the scheduling we use the HyperSim-G
framework [Xhafa et al., 2007b]. The HyperSim-G simulator
is based on a discrete event model; the behaviour of the
system is simulated by discrete events occurring in the
system. The sequence of events and the changes in the
state of the system capture the dynamic behaviour of the
system. The simulator provides a full simulation trace by
simply indicating a parameter for trace generation. This
functionality is useful for an easy implementation of the
Learning Module. The main concept of how the HyperSim-
G simulator and the Learning Module are connected to
each other is shown in Fig. 4. In a comparison with the
HyperSim-G framework there is a clear division between
real and estimated resources, which must be additionally
generated to define a scheduling event. The Learning Module

is designed for better estimation of τ and in this way it
supports the resolution methods used in the scheduler class
of the simulator. The output of the scheduler is a sub-optimal
schedule.

C. Scheduling problem definition

In this work, each learning step we consider is an sndepen-
dent job scheduling problem, in which tasks are processed
in the batch mode [Xhafa et al., 2010]. A total number of
m tasks are scheduled in each learning step n.

A schedule of the batch of tasks at the Grid site is defined
as a vector x = [x1, . . . , xn]T , in which xj ∈ [1, k] indicates
the number of the machine, to which task j is assigned (j =
1, . . . ,m) and k is number of machines.

The problem formulation in this approach is based on the
expected time to compute matrix model [Ali et al., 2000],
in which an instance is defined by:

(a) the computational loads of the tasks;
(b) the computing capacities of machines;
(c) the estimation of the prior load of each available

machine and
(d) the ETC matrix, which elements define estimations

of the time needed for task completion on machines in the
system.

In our problem task characteristics change from time to
time, and we take account of that by updating τ . Because we
handle changing task characteristics in τ , the workload of
each task is constant and does not change. By workload
we mean the amount of work any single task requires
to compute. It does not make sense to update workload,
as different machines may react differently to changes in
tasks characteristics. In our case we assume the workload is
constant and τ changes.

III. LEARNING MODULE

Our scheduling problem is defined on per-batch level, and
we now concentrate on the question: If it is beneficial to
execute a pilot program for a specific batch or not? The
LM is executed for each batch-scheduling event tbn, and
its task is to make the binary decision, if the pilot program
should be run (and initialization overhead penalty should be
taken), or not. To make this decision the LM has to evaluate
how good the current estimation of τ ′nk is. As an input, we
define two variables: the time that passed since last task
batch ∆tn−1 = tbn− tbn−1, and the error that was made in
last task batch. See Fig. 2.

τ ′nk =

∑
workload

completionnk
(5)

The error in learning step n for machine k is defined as
the difference between estimation and actual execution time.

errornk = abs(
completionnk −∆t

∆t
) (6)

re-evaluating machine performance

simulated execution with old data

real

simulated

real

simulated

a)

b)

initialisatiuon

overhead
task execution

task execution

(re-evaluated)

Figure 3. Comparison of real and simulated runs a) Simulating what if
pilot program were run b) Simulating what if pilot program were not run

If the error in learning step n − 1 is high and spanned
over a long period of time ∆t, then some change happened
in the system and it would be beneficial to run the pilot
program. If the error is small, and the time period since
scheduling last batch is short, then the change was probably
insignificant and the pilot program would probably take too
much initialization overhead to be beneficial. The task of
LM is to learn most efficient decision boundary.

But how do we know if LM decision was right or wrong?
How do we know if we should reinforce positively or
negatively? We cannot evaluate the LM right at the moment
it makes decision. At learning step n we can only evaluate
the past decision at learning step n − 1. To do this we
simulate what if a different decision was made situation.
Knowing estimated τ ′k,n−1, updated τ ′k,n and the estimated
completion time completionk,n−1 we can simulate the
scenario of executing task batch tbn−1 where pilot program
was or was not run. Of course we only need to simulate
scenario that did not happen. Depending on if the simulation
yields better performance or not, at learning step n we can
decide if the LM made a good decision at learning step n−1.
See Fig. 3

IV. EXPERIMENTAL ANALYSIS

In this section we present an experimental evaluation
of the Learning Module using our extended version of
HyperSim-G. In particular, we are considering two cases:
in the first case the dynamic nature of τk is defined as
sinusoidal, see Eq. 3. In second case we define τk as a step
function, see Eq. 2. We compare performance of three ap-
proaches: without the pilot program (DISABLED), with the
learning module (LEARN) and with pilot program executed
in each iteration (ALWAYS ON). We consider DISABLED
and ALWAYS-ON to be hand-crafted solutions. By this we
mean it is a pre-programmed solution by the user. Note that
the user may be right or wrong in choosing which solution
to use, which may result in well- or badly-crafted solution to

Figure 4. Structure of simulator and learning module, re-simulating what if situations not included

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

1.40E+008

ALWAYS−ON LEARN DISABLED

a) b) c) d)

M
a

k
e

s
p
a

n

Figure 5. Comparison of three scheduling algorithms, while resource
changes according to sine function. Vertical axis shows makespan, lower
is better; a) initialization overhead = 200, k = 8 b) initialization overhead
= 400, k = 8, c) initialization overhead = 200, k = 16, d) initialization
overhead = 400, k = 16

particular problem. On the other hand the LEARN approach
adapts to underlying system automatically. The computation
in this experiment is representative of an option pricing
application with slowly changing market parameters.

In addition we compare clusters of 8 and 16 computational
nodes. It may seem to be a small number of nodes, but usage
of GPU/FPGA accelerators are meant to decrease cluster
size. We also consider values of initialization overhead of
200ms and 400ms. All results are averaged over 30 runs.

Comparing ALWAYS-ON, LEARNING and DISABLED
we see that the LM approach achieved the best result in 3 out
of 8 cases. It is more important to note that in none of the
test cases it was the slowest. It is true that in 5 cases one of

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

1.40E+008

1.60E+008

ALWAYS−ON LEARN DISABLED

a) b) c) d)

M
a

k
e

s
p
a

n

Figure 6. Comparison of three scheduling algorithms, τk is defined
by step function. Vertical axis shows makespan, lower is better; a)
initialization overhead = 200, k = 8 b) initialization overhead = 400, k
= 8, c) initialization overhead = 200, k = 16, d) initialization overhead =
400, k = 16

hand-crafted solution was faster, but it is not easy to predict
in advance which solution will be better for particular test
case.

If we look closer at relative performance of different
methods, we can see that in the worst case (fig. 5.4) the
LM is about 20% slower than hand-crafted solution. On the
other hand figure 6.3 shows that a badly-crafted solution can
be twice as slow as the optimal solution (in this case LM).

Furthermore, we can compare plots 1-2 and 3-4 on
figure 6. As we see, changing the initialisation overhead
has significant impact on ALWAYS-ON policy, but the LM
does not suffer much in performance (it actually improves).
Although the LM is not always the best, it can achieve

solutions close to optimal.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an online-learning approach to
boost scheduler performance in cases when underlying com-
putational resources cannot be easily evaluated and changes
dynamically. Experimental analysis show that learning can
improve scheduler performance.

An important insight is that in all cases the LM approach
performs better than badly hand-tuned solutions and in
many cases better than what we considered good solutions
before running the LM. In the situation where the dynamics
of underlying system are not known, the LM approach
may therefore be proposed as a suitable alternative to pre-
programmed solutions, in cases when they are not feasible.
We showed that the LM will adapt automatically to under-
lying system and yield near-optimal solution even though
dynamics of the system are not known.

The other point to note is that in our research we only
change τ as function of time. What if initialisation overhead
and number of machines change with time as well? It is very
common for computational nodes to be attached or detached
from the cluster.

In current and future work we plan to introduce more
input variables to the Learning Module to make it more
aware of its environment, incoming tasks, hardware etc. We
also intend to investigate how our approach can scale up
to larger and more complex systems. We plan on extending
LM, so it doesn’t only make binary decision about a pilot
program, it should gradually tune multiple parameters of the
scheduler.

REFERENCES

[Ali et al., 2000] Ali, S., Siegel, H.J., Maheswaran, M., and Hens-
gen, D.: “Task execution time modeling for heterogeneous
computing systems”, Proceedings of Heterogeneous Comput-
ing Workshop, pp. 185–199, 2000.

[Kołodziej et al., 2009] Kołodziej, J., Xhafa, F., Kolanko, Ł.: “Hi-
erarchic Genetic Scheduler of Independent Jobs in Computa-
tional Grid Environment”, Proc. of 23rd ECMS, Madrid, 9-
12.06.2009, in J. Otamendi, A. Bargieła, J.L. Montes and L.M.
Doncel Pedrera eds., IEEE Press, Dudweiler, Germany, 2009,
pp. 108–115.

[Kołodziej et al., 2010] Kołodziej, J. and Xhafa, F.: “A Game-
Theoretic and Hybrid Genetic meta-heuristic Model for
Security-Assured Scheduling of Independent Jobs in Computa-
tional Grids”, Proc. of CISIS 2010, IEEE Press, , USA, 2010,
pp. 93–100.

[Michalewicz, 1992] Michalewicz, Z.: “Genetic Algorithms +
Data Structures = Evolution Programs”, Springer, 1992.

[Xhafa et al., 2007] Xhafa, F., Barolli, L. and Durresi, A.: “Batch
Mode Schedulers for Grid Systems”, International Journal of
Web and Grid Services, 3(1): 19–37, 2007.

[Xhafa et al., 2008] Xhafa, F., Barolli, L.,and Durresi, A.: “An
Experimental Study On Genetic Algorithms for Resource Allo-
cation On Grid Systems”, Journal of Interconnection Networks.
8(4): 427–443, 2008.

[Xhafa et al., 2008a] Xhafa, F., Duran, B., Abraham, A., and Da-
hal, K. P.: “Tuning Struggle Strategy in Genetic Algorithms for
Scheduling in Computational Grids”, Neural Network World,
18(3): pp. 209–225, 2008.

[Xhafa et al., 2010] Xhafa, F., Abraham, A.: “Computational
models and heuristic methods for Grid scheduling problems”,
Future Generation Computer Systems, 26 (2010), pp. 608–621.

[Xhafa et al., 2007b] F. Xhafa, J. Carretero, L. Barolli and A.
Durresi: “Requirements for an Event-Based Simulation Pack-
age for Grid Systems”, Journal of Interconnection Networks
vol.8, No.2, 163178, 2007, World Scientific Pub.

[Tse et al., 2010a] Tse, A. H. T., Thomas, D. B., Tsoi, K., and
Luk, W. (n.d.): “Dynamic Scheduling Monte-Carlo Framework
for Multi-Accelerator Heterogeneous Clusters.” IEEE Sympo-
sium on Field-Programmable Technology (FPT)

[Tse et al., 2010b] Anson H.T. Tse, David B. Thomas, K.H. Tsoi,
Wayne Luk: “Efficient Reconfigurable Design for Pricing
Asian Options” in Proceedings of the International Workshop
on Highly Efficient Accelerators and Reconfigurable Technolo-
gies (HEART)

[Haohuan et al., 2009] Haohuan Fu, Oskar Mencer, Wayne Luk:
“FPGA Designs with Optimized Logarithmic Arithmetic” Sub-
mitted to IEEE Transactions on CAS-I

[Aytug et al., 1994] Haldun Aytug, Siddhartha Bahattacharyya,
Garry J. Koehler, Jane L. Snowdon: “A Review of Machine
Learning in Scheduling” IEEE Transactions on Engineering
Management, vol. 41 (1994), no. 2

[Priore et al., 2001] Paolo Priore, David Dela Fuente, Alberto
Gomez, Javier Puente: “A Review of Machine Learning in
Dynamic Scheduling of Flexible Manufacturing Systems” AI
EDAM, 15 (2001), pp 251-263

[Mahajan et al., 2008] Anjali Mahajan, Ms Ali, Mamta Patil: “In-
struction Scheduling using Evolutionary Programming” Ap-
plied Computing Conference 2008

[Vladusic et al., 2009] Dainel Vladusic, Ales Cernivec, Bostjan
Slivnik: “Improving Job Schduling in GRID Environments
with Use of Simple Machine Learning Methods” Sixth Inter-
national Conference on Information Technology: New Gener-
ations (2009) pp.177-182

[Zhao et al.] Guopeng Zhao, Zhiqi Shen, Chunyan Miao: “ELM-
Based Intelligent Resource Selection for Grid Scheduling”
Machine Learning and Applications (2009) pp.398-403

