
EPiCS: Engineering Proprioception in
Computing Systems

Tobias Becker, Imperial College London, UK
Andreas Agne, University of Paderborn, Germany

Peter R. Lewis, Rami Bahsoon and Funmilade Faniyi, CERCIA, University of Birmingham, UK
Lukas Esterle, Klagenfurt University, Austria

Ariane Keller, ETH Zürich, Switzerland
Arjun Chandra and Alexander Refsum Jensenius, fourMs, University of Oslo, Norway

Stephan C. Stilkerich, EADS Innovation Works, Germany

Abstract—Modern compute systems continue to evolve towards
increasingly complex, heterogeneous and distributed architec-
tures. At the same time, functionality and performance are
no longer the only aspects when developing applications for
such systems, and additional concerns such as flexibility, power
efficiency, resource usage, reliability and cost are becoming
increasingly important. This does not only raise the question of
how to efficiently develop applications for such systems, but also
how to cope with dynamic changes in the application behaviour
or the system environment.

The EPiCS Project aims to address these aspects through ex-
ploring self-awareness and self-expression. Self-awareness allows
systems and applications to gather and maintain information
about their current state and environment, and reason about
their behaviour. Self-expression enables systems to adapt their
behaviour autonomously to changing conditions. Innovations in
EPiCS are based on systematic integration of research in concepts
and foundations, customisable hardware/software platforms and
operating systems, and self-aware networking and middleware
infrastructure. The developed technologies are validated in three
application domains: computational finance, distributed smart
cameras and interactive mobile media systems.

I. INTRODUCTION

Designing and operating today’s computing systems is
becoming increasingly challenging for a multitude of rea-
sons. Compute nodes evolve towards parallel and heteroge-
neous architectures to deliver continued performance gains.
Distributed systems grow in size and complexity, and the
network topology and the available resources of the system
can vary during run time. Systems must be able to cope with
these increasing levels of dynamic behaviour. Finally, future
application domains have divergent requirements with respect
to functionality and flexibility, performance, power efficiency
and reliability, and these requirements may also change at
run time. Current static design paradigms do not scale with
requirements of developing applications for increasingly par-
allel, heterogeneous and distributed systems. Furthermore,
they are neither efficient in supporting the development of
increasingly dynamic systems and applications, nor are they
capable of managing changing requirements at run time. Novel
design and operating principles are necessary to address these
challenges.

Self-awareness

Self-expression

Learning

Action

selection

InfluenceFeedback

Sensor

information

Behaviour

Fig. 1. Self-awareness and self-expression in a compute node.

Self-awareness is an emerging field of research in comput-
ing that studies a novel class of systems that can reason about
their execution and adapt their behaviour if necessary. The
EPiCS project aims at laying the foundation for engineering
such self-aware and self-expressive computing systems. Self-
awareness is enabled by maintaining information about the
current state, observing oneself and the environment, and
reasoning about the current behaviour. This knowledge is
utilised for self-expression: the ability of a system to adapt its
behaviour to changing conditions and environments. The gen-
eral conceptual process of self-awareness and self-expression
is illustrated in figure 1.

In the EPiCS project, we denote the basic ability to col-
lect and maintain information about state and progress as
proprioception, referring to psychology where proprioception
(from Latin proprius, meaning ”one’s own”, and perception)
is defined as the sense of the relative position of neighbouring
parts of the body. Proprioception is the enabler for building
awareness and realising advanced autonomous behaviour. Pro-
prioception, self-awareness, and self-expression are concepts
mainly known from psychology, philosophy and medicine.



EPiCS aims to successfully transfer of these concepts to
computing and networking domains, enabling powerful and
versatile heterogeneous and distributed future systems and
applications. This approach has also been followed for other
nature-inspired computing paradigms, such as evolutionary
computing and swarm intelligence, which despite their success
often lack the assurances and guarantees required for the
construction of technological systems. Hence, EPiCS also
includes a thorough analysis of the limits of the approach and
studies its suitability for different application domains.

The EPiCS Project explores self-awareness and self-
expression through research in the following areas:

• General concepts and foundations for self-awareness and
self-expression in technical systems.

• Requirements and validation.
• Hardware/software platform and operating system for

self-awareness.
• Self-aware networking and middleware infrastructure.
• Three technology demonstrators that illustrate the devel-

oped technological innovations.
The EPiCS consortium consists of 8 institutions: University

of Paderborn (Germany), Imperial College London (UK),
University of Oslo (Norway), Klagenfurt University (Austria),
University of Birmingham (UK), EADS Innovation Works
(Germany), ETH Zürich (Switzerland), and AIT Austrian
Institute of Technology (Austria).

II. WORKING AREAS

A. Concepts and Foundations for Self-Awareness and Self-
Expression

In order to lay the foundations for novel systems that exhibit
self-awareness and self-expression, it is important to study the
fundamental concepts which support both these systems them-
selves and the principled development of them. We therefore
conduct foundational research firstly into what self-awareness
and self-expression concepts might mean for computing sys-
tems, including their benefits and limitations, and secondly
into novel techniques to implement self-awareness and self-
expression in systems characterised by decentralisation, het-
erogeneity, dynamism and self-organisation. A key hypothesis
investigated in the EPiCS project is as follows:

1) That systems which are aware of their own state, be-
haviour and performance can manage trade-offs between
goals at run-time, and

2) That this enables them to better meet their requirements
in uncertain and dynamic environments.

Our approach is to design systems as collectives of self-
aware, self-expressive nodes, which learn and interact in order
to self-adapt and self-organise. Online learning is used to en-
able run-time adaptation, reducing design-time overhead. Self-
aware and self-expressive nodes engage in online algorithm
selection, to better meet their own goals. Furthermore, node
interaction mechanisms drive global behaviour, leading to a
collective behaviour which provides the functionality of the
system.

Monitor / 
Controller

(Meta-self-awareness)

State and context

Proprioceptive node

Sensor

Sensor

Sensor

Private
self-awareness

Private
self-awareness

engine

Public
self-awareness

engine

Environment

Other nodes

Self-expression
engine

External actions

Goals
Values

Objectives
Constraints

Actuator

Actuator

Learnt
model(s)

Fig. 2. Reference architectural framework for a proprioceptive node.

In this context, we are interested in two key conceptual
questions. Firstly, are there benefits associated with increased
levels of self-awareness in computing systems, and if so, under
what conditions? Secondly, if this is the case, then how can
we design self-aware systems?

In order to understand the potential benefits of self-
awareness and self-expression for computing and engineering,
we have conducted a survey both of those concepts as un-
derstood in psychology and also of previous efforts to apply
them to computing [9]. A key finding of our survey is that the
term self-awareness has been used in a variety of ways within
computer science and engineering literature. Often however,
it refers to quite disparate ideas, for example to highlight
specific self-monitoring capabilities of a system, to indicate
an awareness by the system of the user or context, or that a
component has a conceptual knowledge of the wider system of
which it is part. The general concept of self-aware computing
covers but is not limited to all of these cases.

Therefore, our ongoing work is concerned with the trans-
lation of psychological concepts into a computing context,
thereby presenting a framework for self-aware computing. The
framework is based on three key concepts [9]: that computing
systems can possess public and private self-awareness, that the
extent of a system’s self-awareness capabilities can be char-
acterised by levels of self-awareness which describe increas-
ing capabilities, and that self-awareness can be an emergent
phenomenon in collective systems. Public and private self-
awareness are discussed in a computational context in [9], but
can be summarised as follows:

1) Private self-awareness: A node’s knowledge or percep-
tion of internal phenomena (e.g. internal state).

2) Public self-awareness: A node’s knowledge or percep-
tion of external phenomena (e.g. environment or interac-
tion with other nodes).

In order to structure the requirements for, and more widely
aid the design of self-aware, self-expressive nodes, a reference
architectural framework for proprioceptive nodes was devel-
oped, and is shown in figure 2. This reference architectural
framework builds on standard agent architectures [15], by
clearly identifying conceptual components responsible for self-
awareness and self-expression. The architecture deals with the



key concept of public and private self-awareness, by specifying
conceptual components for building knowledge from each
source of information.

One key challenge in realising self-awareness and self-
expression is the development and application of online
learning schemes, suitable for use in dynamic self-organising
systems. Online learning is applied primarily to achieve two
purposes within a self-aware and self-expressive system: at the
adaptation level and at the meta level. Briefly, online learning
is applied in these contexts as follows:

At the adaptation level, a self-aware node should be able to
learn to recognise and associate meaning with characteristics
present in the environment and interactions with it. Addition-
ally, to be self-expressive, it should be able to learn high
performing behavioural strategies. We find that a combination
of social, economic and nature-inspired techniques lend them-
selves particularly well to enabling online adaptation in the
presence of changing and uncertain scenarios (e.g [4], [10]).

At the meta level, a self-aware node recognises that a
trade-off exists between multiple objectives specified in the
node’s requirements, and that optimising this trade-off will
require different approaches in different situations [11]. A
particular approach used at the adaptation level will give rise
to a particular outcome in terms of this trade-off. The ability
to optimise the way in which the node adapts to unforeseen
scenarios and user preferences will require the ability to select
between adaptation approaches at run time.

However, in uncertain and dynamic environments, a trade-
off exists between the resources spent actually performing the
task at hand, given current knowledge (or awareness), and
learning to better perform the task specified by the require-
ments. A self-aware node should be able to intelligently weigh
up the cost and benefits of exploring new strategies and ap-
proaches, against an expectation of current performance. Ad-
ditionally, the learning process itself can consume resources,
and this should also be factored in. In the EPiCS project, we
study both existing and novel online learning approaches to
achieve capabilities at both the adaptation and meta levels.
Techniques have been studied in a novel abstract problem,
the relevant neighbourhood selection problem [11], which has
high relevance to the EPiCS application demonstrators.

A key finding of this study was that no single strategy out-
performed the others consistently across a range of scenarios.
Indeed, scenarios could easily be found where even the most
naive of strategies could outperform apparent state-of-the-
art techniques. This highlighted the need for meta-self-aware
strategy selection (the idea that a node is aware of and can
reason about its own self-awareness), which we demonstrated
[11] using the simple epsilon-greedy strategy. Here, meta-
self-awareness describes the ability to observe the node’s
own performance, and to switch between a set of strategies
at run-time. Though the meta-self-aware strategy performed
more consistently well than other base strategies, our results
strongly suggest that the benefits associated with meta-self-
awareness will be heavily dependent on the scope of the
adaptation being considered. In this case, when making claims

about proprioceptive systems, it appears crucial to include a
description of the scope of expected adaptation in any claim.

Finally, since proprioceptive systems are likely to exhibit
highly distributed and decentralised decision making, in col-
lectives of self-aware and self-expressive nodes with only local
knowledge, our work in EPiCS also considers interactions
between such nodes. Due to these characteristics, social and
economic-inspired mechanisms are highly applicable as meth-
ods for managing such interactions. We have demonstrated
the application of such techniques to object tracking handover
in distributed smart camera networks [4], to facilitate conflict
resolution in multi-user interactive mobile musical systems [3],
as well as in service provisioning in cloud computing [6].

B. Requirements and Validation

EPiCS defines a structured development process based on
Goal-Oriented Requirements Engineering (GORE) as well as
a systematic validation strategy to provide a feasible way
of engineering proprioceptive compute systems. We argue
that Goal-Oriented Requirements Engineering is a promising
approach for leveraging engineering requirements and cap-
turing their dynamics for proprioceptive systems. Goals are
prescriptive statements of intent whose satisfaction requires
the cooperation of different components (originally called
agents) in software and its environment [18]. Goals range
from high-level to fine-grained technical prescriptions that can
be assigned as responsibilities to single components. Goals
may capture functional or quality properties. A functional goal
captures a desired set of scenarios, which need to be realised
by the system. A quality goal captures behavioural require-
ments, which constrain the functional goals. GORE models
are organised in structures that can represent refinement and
abstraction, and they also support tracing of high-level goals
to corresponding architectural elements. A goal refinement
graph can capture relationships among goals using AND/OR
refinement links. AND refinements relate to goals that are
satisfied when all its subgoals are satisfied. OR refinements
require at least one of the subgoals to be satisfied.

Our use of GORE is motivated by the need for captur-
ing scenarios related to self-awareness and self-expression
based on three demonstrators (see section III). This activity
intertwines the initial requirements of each demonstrator,
the knowledge of the application domain and the use of
the reference architectural model (see section II-A) which
acts as a general blueprint for proprioceptive systems. Self-
aware scenarios and the corresponding goals are related to
various levels of self-awareness, design qualities (e.g. security,
availability, performance, etc.) and the associated utilities. The
interaction between various self-aware goals, their trade-offs,
their associated utilities and their satisfiability criteria are mod-
elled using in the AND/OR refinements, allowing traceability
to the reference architectural model. Another objective of
the modelling and refinement process is to make goals as
measurable as possible. Through refinement we link goals
to specific architectural components and mechanisms where
we can observe a measure behavioural impact. Treating goals



Fig. 3. Structured development and validation cycle.

which represent changes in functional nature is obviously less
demanding than goals of non-functional nature, as the latter
may cross-cut a set of architectural components.

Figure 3 depicts an extract of this process that starts with
defining high-level goals that reflect the core features of
the intended proprioceptive system. Based on these high-
level goals and knowledge about the application domain, an
initial set of requirements is derived. In the following, the
goals and requirements are applied to the reference architec-
ture framework, and the framework is refined accordingly.
Next, the refined architecture is implemented to match the
required functionality of the application. This proprioceptive
system implementation is benchmarked using pre-defined,
application-specific metrics. This allows us to verify that em-
ploying proprioception leads to actual improvements towards
the high-level goals. Finally, all insights and lessons learned
throughout this development process are fed back to first stage
in order to refine the initial goals and the overall approach.

C. Self-Aware Hardware Software Platform

Based on the concept and foundations of self-awareness,
we develop basic approaches and technologies for a self-
aware compute platform. This compute platform leverages
modern heterogeneous multi-core technology and uses a novel
operating system that extends multi-threaded programming
across the hardware/software boundary.

Autonomous compute node: A distinctive feature of EPiCS
is to exploit run-time reconfigurable hardware such as FPGAs
to enable self-expression within an autonomous compute node.
Run-time reconfiguration allows us to move threads across
the hardware/software boundary, a process we call vertical
function migration. As an architectural basis, we built on
the ReconOS [13] programming model and execution envi-
ronment. ReconOS employs the multi-threaded programming
model widely used in the software domain and extends it to the
realm of reconfigurable hardware. This allows us to take hard-

interconnect

CPU core

ReconOS

sw

thread

sw

thread

CPU core

ReconOS

sw

thread

sw

thread

CPU core

ReconOS

sw

thread

sw

thread

ReconOS

hw

thread

reconfigurable

hardware core

ReconOS

hw

thread

hw

thread

reconfigurable

hardware core

sw

thread

monitoring core

(senses internal

system state)

Fig. 4. Autonomous compute node with heterogeneous processors and
monitoring core

ware accelerators and integrate them into the system as fully
featured threads, that are able to share resources, communicate,
and synchronize with other threads running under the common
operating system. Our operating system builds on a current
version of the Linux kernel, which allows us to use a wide
spectrum of pre-existing libraries, applications, and operating
system resources such as virtual memory management [1].
Figure 4 gives an overview of the autonomous compute node’s
architecture.

A key characteristic of a proprioceptive system is the
system’s awareness of its internal state (i.e. private self-
awareness). The autonomous compute node achieves this by
instantiating monitoring cores in the reconfigurable hardware
that capture information about the system state, as for example
thread-level performance and cache usage statistics. We also
monitor the on-chip temperature distribution and use an adap-
tive temperature model [8] to predict future heat generation
and heat flow. This enables us to avoid thermal hot-spots by
proactive temperature-aware thread scheduling.

The self-expression capabilities of the autonomous compute
node manifest themselves in the system’s scheduling decisions.
Our vision is to create a self-aware scheduler that is aware of
its goals (e.g. thermal, performance, and fault tolerance con-
straints) and the system state as measured by the monitoring
cores, uses adaptive models to predict future changes in the
state, and bases its scheduling decisions (including the vertical
migration of threads) on these predictions.

Methods for self-optimisation: EPiCS also investigate basic
self-optimisation techniques to adapt specific functions of
applications to the various resources of heterogeneous systems.
These resources typically vary in their performance, efficiency
and the way how they perform computation. If the nature
of the computation changes, a heterogeneous system may
respond by relocation the function to a different resource,
adjusting the compute kernel on the current resource, or by
adjusting the computation within the kernel. It is important
that a self-optimisation process can take into account these
various options and characteristics in order to improve the
relevant metrics such as performance, power, resource usage,
etc. The key principles for such a self-optimisation process are



identifying application tuning parameters which are the basis
for optimisation, developing instrumentation to collect run-
time information, developing cost and performance models
for re-parametrisation, and finally, creating mechanisms for
executing re-parametrisation at run time.

We have identified hardware specialisation as one of the
potential approaches for application tuning on reconfigurable
hardware. Hardware specialisation refers to the concept of
identifying constant or slowly changing inputs to a compute
kernel [16]. The kernel can consequently be optimised for
these fixed inputs, resulting in a specialised circuit with higher
performance, lower area requirements and lower power con-
sumption. If the inputs that are used for circuit specialisation
change, the circuit will be reconfigured with a new specialised
version. However, the overhead that is associated with re-
placing or reconfiguring the kernel needs to be considered.
Hence, we have developed analytical performance models
that cover a range of aspects such as design size, numerical
precision, memory interfaces and reconfiguration overheads.
These models are useful for the design-time planning and
exploration of self-optimising systems, as well as the run-time
execution of such optimisations. Another type of application
tuning is to adjust the computation within a kernel based
on external constraints. One example of this is a self-aware
and self-expressive solar-powered compute unit [12]. The
architecture is customised with parallel compute units that can
be independently activated depending on the available power
budget. During run-time, a simple geometric program is run to
optimise the performance subject to the dynamically changing
power constraints.

EPiCS also investigates meta-heuristics and machine learn-
ing to automate the design-space exploration of reconfigurable,
self-aware applications. The previously mentioned analytical
models are powerful tools for exploration and planning; how-
ever, the disadvantage is that they need to be derived manually.
This can be addressed by automating the model generation
with machine learning techniques. Through executing appli-
cation benchmarks, we can construct a surrogate model which
describes quality of the design over the parameter space. The
model can also learn how design constraints are reflected
through valid and invalid regions of the parameter space.

Self-verification: Finally, we want to ensure correct op-
eration in self-aware and self-expressive systems. This is
addressed through developing methods and tools for self-
verification. Self-verification requires initial off-line verifica-
tion testing the proposed design transformations and optimi-
sation. This is followed by run-time verification and check-
ing which targets dynamic optimisations and transient faults.
We currently target verification of design transformations
through symbolic verification and equivalence checking. Self-
expression and optimisation is often facilitated by transform-
ing a design through application tuning as described above.
To evaluate whether correct functionality is maintained after
tuning, we use symbolic verification. This is in contrast to
numerical or logical simulation which would prove the correct-
ness by exhaustively testing all possible input combinations.

Symbolic simulation applies symbols rather than numbers or
logic values to the design (e.g. a and b), and the outputs
are functions of these symbolic inputs (e.g. a + b). In order
to distinguish between symbolically different but functionally
equivalent outputs (a+b and b+a) and incorrect outputs (a+c),
we use automatic equivalence checking. Another important
aspect is verification of the reconfiguration process. This is
done by modelling different configurations through virtual
multiplexers: a switch between configurations is treated similar
to switching with a real multiplexer. This allows us to cover
reconfiguration in our symbolic simulation approach.

D. Self-Aware Networking and Middleware

To support self-awareness and self-expression in distributed
computing systems, EPiCS investigates the application of these
concepts to computer networks. We create an autonomous
networking architecture that uses run-time reconfiguration to
adapt the networking functionality to the available resources
and the network traffic.

Especially for mobile devices, network characteristics
change over time. They are used in buildings, in streets, in
public transport systems and in the countryside. Those differ-
ent environments have different characteristics with respect to
throughput, reliability, required level of privacy, etc. Therefore,
in contrast to the Internet architecture where the protocol
stacks have to follow the strictly layered design, in the network
architecture developed within EPiCS, the network functional-
ity is split into building blocks that can be combined to provide
an optimal protocol stack. Furthermore, the protocol stack can
be adapted at run time and even while communicating.

In order to adapt the protocol stack, application goals, sensor
input and models are required. The actual adaptation algorithm
works in two rounds: first it determines the possible protocol
stacks on the local node and second, it negotiates the protocol
stack to be used with the destination node. Currently, the
adaptation algorithm is based on simple rules, but we work
on more complex algorithms that will be able to cope better
with a bigger variety of situations.

As a consequence from having such flexible protocol stacks,
a dynamic hardware architecture is needed, as the protocols
that will be used are not known at design time. Therefore,
we use the ReconOS architecture presented in section II-C as
the basic architecture. We work on developing an adaptation
algorithm that places network functionality optimally in either
hardware or software based on the current network traffic.

The adaptation of a) the network functionality, and b)
the mapping of network functionality between hardware and
software provides us with a well performing communication
infrastructure in terms of throughput, communication overhead
and available functionality.

III. APPLICATIONS AND DEMONSTRATORS

The technological development in EPiCS is validated in
three technology demonstrators. Throughout the project, these
demonstrators are also used to refine the general concepts and
technical approach.



A. Computational Finance on a Heterogeneous Compute
Cluster

The first demonstrator in EPiCS explores computational
finance through execution and management on a heteroge-
neous compute cluster. Computational finance is a field that is
concerned with mathematically analysing and computationally
solving problems in the financial markets. Usually, the goal is
to aid, facilitate or accelerate the decision-making process in
financial investment, trading or hedging. One simple example
is the pricing of an American option, a financial contract that
gives the owner the right but not the obligation to engage in a
future transaction with a pre-arranged price up to a certain time
of expiry. Determining the price of such a contract involves
solving partial differential equations (PDEs). In most cases,
these PDEs cannot be solved analytically and require computa-
tionally complex numerical solvers. Computational complexity
arises from a requirement to solve these problems repeatedly
for large portfolios with many underlying assets. It is usu-
ally desirable to run these computations as fast as possible,
requiring large computational systems. Such systems deliver
performance through parallelism, utilising hundreds of cores
and increasingly involving heterogeneous resources such as
GPUs or dedicated hardware accelerators. These systems often
face many challenges relating to overall scalability, complexity
and design entry. Power consumption is also an increasing
concern in modern high-performance compute systems. Theses
challenges in computational finance are also representative
for high-performance computing in other domains such as
scientific applications and engineering.

The goal of this demonstrator is to address these challenges
through using reconfigurable hardware as dedicated acceler-
ators and deploying self-adaptive implementations that can
automatically adjust to changing application environments. It
is well known that performance can be improved through
custom-accelerators. The downside to this approach is that
these accelerators often need to be hand-crafted which com-
plicates the design process. Having to repeatedly redesign the
accelerator when application parameters change exacerbates
the problem. EPiCS aims to address this issue by exploring
self-awareness and self-expression: this allows the application
to monitor its environment and automatically adapt to changes
without manual intervention. This concept is founded on the
systematic exploitation of application tuning parameters, a
concept that is being developed as part of the work described
in section II-C.

In this demonstrator we explore application tuning through
constant specialisation on reconfigurable hardware. In com-
putational finance we can apply constant specialisation to
slowly changing market parameters: compute kernels are
specialised to a set of parameters that are constant for a
certain amount of time depending on market conditions, and
they are reconfigured when the parameters change. This is
shown on the example of a financial option pricing application
that uses a explicit finite difference (EFD) solver. EFD is a
common method to approximate the derivative in PDEs and

S

t

∆S

M∆S

j∆S

i∆t∆t 2∆t N∆t

fi, j
fi+1, j

fi+1, j+1

fi+1, j-1

α

β
γ

Fig. 5. Calculations of values in a finite difference grid.

works by stepping through a grid of discrete values. Figure 5
illustrates a two-dimensional case for a second-order PDE.
Pricing one option requires calculating the entire gird which
often contains millions of values. We observe that the stencil
coefficients α, β and γ are constant throughout the entire gird,
and they could also be constant for longer periods depending
on market conditions. Hence, we can specialise the compute
kernel for these coefficients resulting in reduced area and
higher performance. The kernel is automatically reconfigured
whenever necessitated by changing input parameters. This
self-adaptive implementation results in a performance increase
of a factor of 4.7 [2].

Work on this demonstrator also includes developing an
automated power and temperature monitoring infrastructure
for compute nodes enabling power and temperature-aware
techniques [14].

B. Person Detection and Tracking with Distributed Smart
Cameras

The second demonstrator performs person tracking with a
distributed smart camera network. The demonstrator is built
mainly of available, COTS-based infrastructure. This allows
us to perform very early testing of our algorithms. In the
first version of this demonstrator, we use a homogeneous
setup of three cameras having overlapping fields of view. We
use commercially available cameras from SLR Engineering
that run a Linux operating system and are equipped with a
1.6 GHz Intel Atom processor. All cameras are connected
via their 100MBit Ethernet interface and have a CCD image
sensor with a native resolution of 1360x1024 to capture
videos. Nevertheless, we reduced the resolution to 640x480
to speed up the processing of each image. Even though our
application is distributed, we use a graphical user interface to
visualise the different video streams and the current status of
various components of the system such as the tracker and the
detector. This interface does not act as a central component
for coordination and only provides visualisation.

Our initial demonstrator is able to autonomously track a
single person within the three camera setup. To preserve
resources within the network, only a single camera is re-
sponsible for tracking the person at any time. To achieve
tracking in a distributed manner, we implemented a simple



handover algorithm as described in [4]. To initiate tracking, a
person or object needs to be selected by an operator, using
our user interface. Based on the initial selection, a model
of the person/object to be tracked is being generated. For
tracking and detection we use a background appearance model
to restrict the search space within the frame. In combination
with the model of the object/person to be tracked we are able to
reduce the amount of resources needed for tracking/detection
and still get sufficient results.

During our work on this demonstrator we also developed
a simulation environment to demonstrate the benefits of
our handover algorithm. Furthermore we were able identify
neighbourhood relationships between cameras exploiting in-
formation from the handovers between cameras. This topol-
ogy information can be further exploited to improve future
communication and handover between cameras. We used our
simulator to show a reduction of communication of 20-40%
depending on the scenario. In the next development phase we
plan to increase the number of cameras in the network and
extend our algorithm to learn spatial relations of cameras at
run time.

C. Musical Applications on an Interactive Mobile Media
System

In many musical cultures and genres there is often a large
gap between those who perform and those who perceive music.
In such ecosystems, the performers (musicians) create the
music, while the perceivers (audience) receive the music [17].
Even though perceivers may have some control of the music
creation in a concert situation, by means of cheering, shouting,
etc., this only indirectly changes the musical output. The
divide between performer and perceiver is even larger in the
context of recorded music, which is typically mediated through
some kind of playback device (CD, MP3 file, etc.). Here, the
perceiver is limited to controlling only the start/stop of the
playback of a pre-recorded song, and adjusting the volume of
the musical sound.

The divide between those who perform and those who
perceive music can be seen as a gap between an active and
a passive experience of music. This clear divide is currently
being challenged through various types of technologies that
allow for musical experiences lying on the continuum between
a traditional musician and those of a traditional listener,
what we call active music listening. Notable examples here
include karaoke machines, music keyboards with algorithmic
chord/melody sequences, and computer music games like
Guitar Hero and SingStar. They all allow for a certain degree
of control over the musical output, while other parts are ready-
made or generated algorithmically on the fly.

The development of interactive technologies and musical
concepts that can work with these technologies, is what the
third demonstrator relies on. This demonstrator will showcase
an active music experience based on self-aware and self-
expressive media device nodes, where self-awareness and self-
expression form part of this feedback loop. We use the term
active music node to describe one user, i.e. the human user

and the complete system for participation in the active music
environment. A device, human user, and a music engine should
together be seen as assembling one active music node, as
illustrated figure 6.

Fig. 6. Illustration of the active music demonstrator concept (one active
music node).

One of the most important characteristics of our demon-
strator is that humans are in the loop. A human contributes
motion and embeds the device by holding and controlling it,
thus becoming a part of the device itself. The device collects
sensor data which is important as input to the self-aware
system. Further, the music engine is the relevant component for
creating self-expression in the active music node. In a setting
with several active music nodes, all nodes operate in a global
context and share a global objective, e.g. being part of resultant
music that they might enjoy. This global objective is achieved
by the contribution of all nodes in a distributed manner, and
not by a master unit that controls everything like a conducted
orchestra. In such a setting, the amount of information flowing
between nodes also needs scaling in order to avoid hiccups or
clutter that affect the music in a negative manner. It is then
crucial that nodes are aware of certain characteristics about
their nearest neighbours to enable possible formation of groups
containing a subset of participating nodes, as necessary.

There are numerous challenges involved in creating such
an active music node, and indeed a system of such nodes.
At the musical level, this includes everything from low-level
micro-sonic control (timbre, texture), mid-level organisation
(tones, phrases, melodies) to large-scale compositional strate-
gies (form). In addition, there are challenges related to how
one or more participants can control all of these sonic/musical
parameters through mappings from various forms of human
input.

As part of the active music demonstrator, we have so far
worked on a scenario whereby multiple active music nodes
may want to have control of the same sonic/musical feature,
thus resulting in a conflict as to who might be in charge of



this feature at any point in time. We model this scenario as
a “band” whereby active music nodes “play” together as solo
artists, without there being a central controller of the music
that is being generated. One node plays their solo at a time
whilst holding an auction, in order to determine which node
could potentially take over the playing of the solo from it as
time progresses. More details on this can be found in [3].

D. Applicability Beyond EPiCS: Improved Service Provision-
ing in Cloud Systems

The problem of improving the quality of service offered to
users of cloud systems is used to demonstrate the applicabil-
ity of EPiCS’ concepts to other application domains. Cloud
providers in their bid to attract users promise ’elastic’ service
provisioning with near-infinite scalability. In reality, clouds,
just like datacentres, are resource constrained and prone to
failures at both node and network levels. However, in contrast
to conventional datacentres, cloud providers face the problem
of not being able to fully anticipate the workload patterns
imposed on their infrastructure a priori. These conditions make
it hard to promise high quality of services without incurring
significant cost.

To alleviate this problem, novel resource allocation tech-
niques which are more resilient to internal unexpected changes
(server or network failures) and flexible to dynamics caused
by external sources (e.g., spike or dwindle in workload) are
needed [5]. Ongoing research in this area has investigated the
use of market mechanisms engineered using the principles
of self-awareness to manage interaction of computing nodes
in cloud systems. Early results from simulation studies [6]
indicate that the novel resource allocation method derived
from this approach is more resilient to node failures in a
cloud resource market. Due to the inherent decentralisation
of the proposed market mechanism, it also offers capability to
manage resources at the scale of cloud federations [7].

IV. CONCLUSION

The EPiCS project targets the challenges of developing
and managing modern computing systems. Architectures are
becoming increasingly parallel, heterogeneous and distributed
while we also observe rising levels of dynamic behaviour
in applications and environments. In EPiCS, these challenges
are addressed through proprioception, self-awareness and self-
expression. These concepts allow systems to reason about
their state and environment, and to automatically adjust and
optimise themselves. EPiCS is focused on transferring these
abstract concepts from psychology to computing and commu-
nication systems. The overall approach is based on develop-
ing the theoretical concepts and foundations, and defining a
requirement-driven engineering cycle for development and val-
idation. We develop the necessary tools and infrastructure such
as self-aware platforms, operating systems, networking and
middleware, as well as general methods for self-optimisation
and verification. This is applied to three application areas
resulting in technology demonstrators that highlight how tech-
nological challenges can be practically addressed through self-

awareness and self-expression. Work continues in all areas
and the lessons learned from the technical approach and the
demonstrators will be used to refine the theoretical basis and
the overall approach throughout the project.

ACKNOWLEDGEMENT

Research under the EPiCS project has received funding from
the European Union 7th Framework Programme under grant
agreement no 257906.

REFERENCES

[1] A. Agne, M. Platzner, and E. Lubbers. Memory virtualization for multi-
threaded reconfigurable hardware. In Int. Conf. on Field Programmable
Logic and Applications (FPL), pages 185 –188, sept. 2011.

[2] T. Becker, Q. Jin, W. Luk, and S. Weston. Dynamic constant recon-
figuration for explicit finite difference option pricing. In Int. Conf. on
ReConFigurable Computing and FPGAs (ReConFig), pages 176–181.
IEEE Computer Society, 2011.

[3] A. Chandra, K. Nymoen, A. Voldsund, A. Jensenius, K. Glette, and
J. Torresen. Enabling participants to play rhythmic solos within a group
via auctions. In International Symposium on Computer Music Modeling
and Retrieval (CMMR), pages 674–789, 2012.

[4] L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, and X. Yao. A Socio-
Economic Approach to Online Vision Graph Generation and Handover
in Distributed Smart Camera Networks. In ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC), pages 1–8, 2011.

[5] F. Faniyi and R. Bahsoon. Engineering proprioception in sla manage-
ment for cloud architectures. In Software Architecture (WICSA), 2011
9th Working IEEE/IFIP Conference on, pages 336 –340, june 2011.

[6] F. Faniyi and R. Bahsoon. Self-managing sla compliance in cloud
architectures: a market-based approach. In Proceedings of the 3rd inter-
national ACM SIGSOFT symposium on Architecting Critical Systems,
ISARCS ’12, pages 61–70, New York, NY, USA, 2012. ACM.

[7] F. Faniyi, R. Bahsoon, and G. Theodoropoulos. A dynamic data-driven
simulation approach for preventing service level agreement violations in
cloud federation. Procedia Computer Science, 9(0):1167 – 1176, 2012.
International Conference on Computational Science, ICCS 2012.

[8] M. Happe, A. Agne, and C. Plessl. Measuring and predicting tem-
perature distributions on FPGAs at run-time. In Proc. Int. Conf.
on ReConFigurable Computing and FPGAs (ReConFig), pages 55–60.
IEEE Computer Society, Dec. 2011.

[9] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon,
J. Torresen, and X. Yao. A survey of self-awareness and its application in
computing systems. In Int. Conf. on Self-Adaptive and Self-Organizing
Systems (SASO 2011), pages 102–107. IEEE Comp. Soc. Press, 2011.

[10] P. R. Lewis, P. Marrow, and X. Yao. A diversity dilemma in evolutionary
markets. In Int. Conf. on Electronic Commerce (ICEC 2011), 2011.

[11] P. R. Lewis and X. Yao. Self-awareness, self-expression and meta-self-
awareness in the relevant neighbourhood selection problem. Technical
Report CSR-12-02, University of Birmingham, School of Computer
Science, September 2012.

[12] Q. Liu, T. Mak, J. Luo, W. Luk, and A. Yakovlev. Power adaptive
computing system design in energy harvesting environment. In Int.
Conf. on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS). IEEE, July 2011.

[13] E. Luebbers and M. Platzner. Reconos: Multithreaded programming for
reconfigurable computers. ACM Trans. Embed. Comput. Syst., 9(1):8:1–
8:33, Oct. 2009.

[14] X. Y. Niu, K. H. Tsoi, and W. Luk. Reconfiguring distributed applica-
tions in FPGA accelerated cluster with wireless networking. In Field
Program. Logic and Applications (FPL), pages 545–550. IEEE, 2011.

[15] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition, 2003.

[16] S. Singh, J. Hogg, and D. McAuley. Expressing dynamic reconfiguration
by partial evaluation. In Field-Programmable Custom Computing Ma-
chines (FCCM), pages 188–194. IEEE Computer Society Press, 1996.

[17] C. Small. Musicking: The Meanings of Performing and Listening.
Wesleyan University Press, Hanover, New Hampshire, 1998.

[18] A. van Lamsweerde. Requirements engineering in the year 00: A re-
search perspective. In Proc. 22nd International Conference on Software
Engineering, Limerick, Ireland, pages 5–19. ACM, 2000.


