
Benchmarking Reconfigurable Architectures in the Mobile Domain

P. Jamieson, T. Becker, W. Luk
Department of Computing, Imperial College

P. Y. K. Cheung
Department of EEE, Imperial College

T. Rissa
Nokia Devices R&D

T. Pitkänen
Tampere University of Technology

Abstract

In this paper, we introduce GroundHog 2009 bench-
marking suite that can be used to evaluate the power con-
sumption of reconfigurable technology implementing ap-
plications targeting the mobile computing domain. This
benchmark suite includes seven designs; one design targets
fine-grained FPGA fabrics, and six designs are specified at
a high level, which allows them to target a range of recon-
figurable technologies. Each of the six designs can be stim-
ulated with synthetically generated input stimuli created by
a tool included in the suite. Additionally, another tool can
help verify the correctness of each implemented design. Fi-
nally, we use our benchmark suite to evaluate the power
consumption of two modern FPGAs targeting the mobile
domain.

1 Introduction

Reconfigurable architectures would benefit the produc-
tion of mobile computation devices by allowing late design
changes, simplifying the logistics of creating these devices
around the world, and by reducing the creation of dedicated
ASICs for applications in these devices. At present, there
are proposed applications of this technology in the mobile
domain [10, 14] since reconfigurable architectures can meet
the speed requirements and provide possible power and per-
formance benefits. However, we are not aware of wide-
spread commercial adoption of reconfigurable architectures
for mobile applications, perhaps due to the absence of ap-
propriate benchmarks specifically developed for such archi-
tectures and applications.

GroundHog 2009 is a benchmark suite that has been cre-
ated to help motivate optimisations in and measure power
consumption of reconfigurable architectures for the mobile
domain. This benchmark suite includes 7 designs in which
one design provides a worst case fabric analysis of fine-
grain FPGAs and the other 6 are more general mobile ap-

plications. In addition to these designs, GroundHog 2009
includes two tools. The first tool helps create input stim-
uli for test-benches to evaluate each of the six applications
when mapped to a target architecture. The second tool helps
verify the correct operation of each implemented design.
Moreover, these tools can be extended to cover new bench-
marks.

The challenges with creating such a benchmark that we
address in Section 3.1 include:

• To provide design descriptions that allow targeting of
multiple architectures.

• To include input stimuli that represent execution in-
stances of the design used in a mobile computation
environment. This includes workload scenarios that
are not simply a full throughput mode, but include in-
stances when the input stimuli are dormant and the ar-
chitecture can enter low power modes.

• To select designs that represent potential applications
in a mobile device.

• To provide a methodology for measuring and reporting
results.

In this paper, we describe GroundHog 2009 Benchmark
suite based on these described challenges. Our approach has
made an extensive study of previous benchmark suites [4]
for computational devices. We use ideas from these previ-
ous efforts and create GroundHog 2009 using a combination
of these techniques and some of our own ideas.

GroundHog 2009 does not include all parts of what tra-
ditionally constitutes a benchmark suite, and instead, allows
these aspects to be defined externally. This paradigm shift
allows GroundHog 2009 to have the flexibility to target both
existing and future architectures and systems, which satis-
fies our ultimate goal of motivating and facilitating power
improvements in reconfigurable architectures so that they
will be adopted in the mobile market.

To demonstrate the benefits of this benchmark suite,
we experimentally show how two benchmarks from the

1



GroundHog 2009 can be mapped to existing FPGAs and
measured for power consumption for our defined input
stimuli. From these results, we illuminate where simple op-
timisations may be made in the future, and we show how
two different architectures can be preliminarily compared.

The remainder of this paper is organised as follow: Sec-
tion 2 reviews related work. Section 3 describes our bench-
mark suite in detail; this description includes the contents of
the benchmark suite, how designs are specified, how input
stimuli are created, and how the environment for a system is
described. Section 4 describes the concept of relationships
in benchmarking, and how GroundHog 2009 benchmark-
ing suite leverages this concept to make the suite flexible
for a wide variety of possibilities. Section 5 describes the
measurements we have made for two existing low power
FPGAs, and finally, Section 6 concludes the paper.

2 Related Work

Evaluating and benchmarking reconfigurable architec-
tures for power has been achieved by using existing bench-
marks, such as MCNC [21], or by modelling power con-
sumption using circuit models and in house designs. We,
briefly, discuss this previous work.

One area of research involves reconfiguration as a power
reduction technique. For example, Liang et. al. [11],
Noguera et. al. [13], and Burleson et. al. [7] build specific
instances of an application on a reconfigurable architecture
and optimise these implementations for power consump-
tion. In related work, Shang et. al. [16] show the dynamic
power consumption of a Xilinx Virtex-II FPGA [20] using
an internal benchmark. This internal benchmark includes
input stimuli, which they use to calculate the switching ac-
tivity of a real design. Tuan et. al. present a low-power
FPGA core with several optimisations such as voltage scal-
ing, leakage reduction of configuration memory cells and
power gating of tiles with preservation of state and configu-
ration [19].

The MCNC benchmark suite provides a range of simple
test circuits and is often used in power-aware research on re-
configurable architectures. Poon et. al. [15] use the MCNC
benchmark and add power models of a common FPGA ar-
chitecture exploration tool, VPR [6]. They use the MCNC
benchmark suite to find a transition density signal model to
estimate the activity within each logic cell of an FPGA. An-
derson et. al. [3] also use the MCNC benchmarks in their
work to estimate power consumption in FPGAs. Gayasen
et. al. propose a scheme with two programmable supply
voltages where the higher voltage is used for critical path
logic and the lower voltage for non-critical parts [8]. Us-
ing MCNC circuits, they achieve an average power sav-
ing of 61%. More recently, Tinmaung et. al. [18] opti-
mise for power on FPGAs during logic synthesis and use

the MCNC benchmarks to perform measurements of their
optimisations.

Much of the previous work allows for power measure-
ments on reconfigurable architectures, but they do not real-
istically model modern applications on these devices. This
is especially true for the mobile computation domain where
there is increasing computation demands and limited ad-
vances in battery capacity. Energy or average power are
relevant in the context of battery capacity, while peak power
has to be considered for thermal aspects. In addition, there
are no benchmark suites in existence that contain a set of
designs that would likely be implemented on reconfigurable
architectures in the mobile domain both in the near and far
future. As for benchmarks, such as MCNC, there are no
input stimuli and they are implemented in low level design
descriptions. For this reason, we have created GroundHog
2009 to fill this gap.

3 GroundHog Benchmarks and Tools

At present, most researchers agree that it will be chal-
lenging for reconfigurable architectures to be included in
mass-market mobile devices even with the benefits of flex-
ibility of design. The limiting factor for this adoption is
power consumption, cost, and lack of power mode support
(where power modes allow a device to go into low-power
states when not used).

GroundHog 2009 is a benchmarking suite that is meant
to target reconfigurable architectures in the mobile compu-
tation domain with the goal of providing the means to mea-
sure innovation in this field so that someday reconfigurable
architectures are adopted. There are a number of challenges
in creating this benchmark to meet the following goals:

• Collecting realistic (open access) designs that would
be used in mobile devices and future mobile devices
(discussed in Section 3.2).

• Allow the benchmarks to be mapped to the wide
range of reconfigurable architectures, which include
FPGAs, CPLDs, coarse-grain architectures, multi-core
systems, and even, microprocessors (discussed in Sec-
tion 3.2).

• Stimulate the designs with actions a system will likely
perform in present mobile devices and future mobile
devices (discussed in Section 3.3).

• Create a methodology in which the wide variety of
technologies in mobile devices can be described so that
architectures can be designed to target these specific
instances (discussed in Section 3.4 and 4).

• Prevent system or tool optimisations for a specific
benchmark, while still encouraging innovation (dis-
cussed in Section 4).

2



We have created GroundHog 2009 as a first attempt to
satisfy these challenges. There are four main elements of
the benchmark suite that, we believe, makeup this innova-
tive framework and satisfy many of the earlier challenges
described. They are:

1. Provide high-level design descriptions

2. Provide synthetically generated, parametrisable input
stimuli

3. Allow the environment to be uniquely specified

4. Allow early baseline fabric analysis of fine-grained
FPGAs

In this paper, we do not focus on item four, and we direct
the reader to our previous work [5]. However, note that fab-
ric analysis is included in the benchmark suite to allow our
community to quickly evaluate the power state of FPGAs as
they represent the most mature technology that potentially
would be included in mobile systems. The remaining three
items are described in Sections 3.2 to 3.4. First, we pro-
vide a description of what is contained in GroundHog 2009
benchmark suite.

3.1 GroundHog 2009 Benchmark Suite

GroundHog 2009 consists of seven designs and accom-
panying infrastructure that allows a benchmark user to cre-
ate input stimuli for these designs and to verify their imple-
mentations against a golden model.

The seven designs are:

• GH09.B.0 - Fabric analysis

• GH09.B.1 - Port expander and keypad controller

• GH09.B.2 - Glue logic

• GH09.B.3 - AES encryption cypher

• GH09.B.4 - Data compression using Lempel-Ziv

• GH09.B.5 - Bridge chip

• GH09.B.6 - 2D convolution

Excluding GH09.B.0, these are designs that could be im-
plemented on reconfigurable architectures as part of a mo-
bile system. These designs were selected because they are
simple, but represent design qualities of a range of possible
designs. For example, the 2D convolution design exercises
a technology’s ability to implement arithmetic operations,
and the data compression design exercises a technologies
memory capabilities with pseudo random access patterns.
In Section 3.2, we describe more details on how these de-
signs are specified.

In addition to the designs, we have also included soft-
ware tools to aid the benchmark users in building a mea-
surement framework for their implementations. The tools
allow benchmark users to create input stimuli to evaluate
their solutions. This stimuli can be created to model clas-
sic throughput like inputs as well as intermittent stimuli that
more closely models the on/off activity within a mobile de-
vice, and this is discussed in Section 3.3. We have made
these tools open-source so that it can be modified to output
the input stimuli in a format that can be leveraged to fit into
the benchmark user’s measurement framework. For exam-
ple, in our setup (described in Section 5.1 the input stimuli
are converted to a set of vectors and timestamps that are
then read by an external FPGA board. This FPGA board is
hooked up to the implementation of a design and feeds the
input stimuli to the design so that power measurements can
be made.

An included tool also provides a golden model simula-
tor to help benchmark users verify correctness of their im-
plementations. In this way, benchmark users can look at
the software emulation of each of the six designs and anal-
yse the behaviour of their implementation for a given input
stimuli. This helps in both understanding the expected be-
haviour of a benchmark design and verifying if the imple-
mented version on a reconfigurable architecture is perform-
ing correctly.

Finally, GroundHog 2009 includes sample environment
descriptions. These environment descriptions allow solu-
tions to target a range of mobile devices and this is discussed
in more detail in Section 3.4.

3.2 Design Descriptions

The designs in GroundHog 2009 are meant to target a
wide variety of reconfigurable architectures. These archi-
tectures include devices such as FPGAs, CPLDs, coarse-
grain architectures, multi-core systems, and microproces-
sors. This broad range of targets makes it difficult to de-
scribe designs in a form that is mapable to all these devices.
For example, a design written in a hardware description lan-
guage (HDL) does not map well to processors, and simi-
larly, a design written in a sequential language, such as C,
does not map well to hardware devices.

In addition to the challenge of mapping designs to a
range of devices, the choice of a specific design language
can result in design decisions. For example, if we chose to
use an HDL to describe our designs, then design decisions
are prematurely made that may map well to an FPGA but
not necessarily to a coarse-grain architecture. If a design
uses a multiply-accumulator (MAC) then should it be de-
scribed in terms of a high-level multiply-accumulate (which
doesn’t exist as a primitive in Verilog or VHDL), or is the
MAC better described as a combination of adder and multi-

3



plier? It is not clear what is the most appropriate design for
such a structure for a range of architectures, and therefore,
choosing a design language conflicts with our overall goal
of motivating innovation.

For the above reasons, designs within the GroundHog
2009 benchmark suite are described in a high-level format,
which is a similar approach taken by SLALOM [9] bench-
mark suites. Our high-level format design description in-
cludes a description of the design, a block diagram of the
logical view of the application, and a detailed description
of the application in the form of algorithmic descriptions,
protocol descriptions, signal descriptions, citations to stan-
dardised descriptions, written descriptions, or a mixture of
all five. For the sake of space, we have not included an
example here, but design specifications can be viewed by
downloading the benchmark suite.

The benefit of the high-level approach is benchmark
users can map the designs to any target architecture, but to
achieve this, the benchmark user needs to make a synthesis-
able version of each design. For this reason, the six designs
in GroundHog 2009 were picked based on how common
and simple these designs are.

The six designs have also been chosen as representative
designs for mobile applications based on a set of character-
istics that includes:

• Bit-width - The width of the operations varying be-
tween bit-level and word-level operations.

• Processing flow - This is the type of flow in the com-
putation where data dependency between present and
past data results in a varying delay in output is classi-
fied control flow as opposed to data flow.

• Memory usage - This characterises a design based on
how it uses memory. This can either be simple state
and shift registers or more complex random memory
accesses.

• Arithmetic complexity - This defines a design based
on the computation structures used where a design that
uses operations such as division, multiplication, and
more complex math functions would be considered
complex.

• Performance requirements - The expected speed at
which the outputs need to be generated at.

Table 1 shows each of the six benchmarks classified
based on the design characteristics. Column 1 contains the
benchmark name, and Columns 2 through 6 contain each
of the design characteristics. From this characterisation we
can see that the benchmarks have been chosen to differ in at
least one characteristic from each other. This does not cover
the complete set of possibilities, which may be covered in
later releases of the benchmark.

3.3 Input Stimuli

One of the missing aspects of existing benchmarks suite,
especially those that are to be used in benchmarking circuit
level designs, is the inclusion of input stimuli. Input stim-
uli are not needed for all experiments, but when targeting
power measurements in the mobile domain, input stimuli
are necessary for two reasons. The first reason is, though
there are existing methods to estimate power consumption,
the most realistic method is to measure power while a de-
vice is executing real input stimuli. The second reason is
that applications within a mobile system will execute at
varying rates. This means that an application ranges from
executing in full throttle mode to not executing at all, and
for this reason, power modes are used in mobile devices,
which puts parts of the system in different power consum-
ing states.

GroundHog 2009 benchmark suite includes a tool to syn-
thetically generate input stimuli. Based on a set of parame-
ters, we can generate a time-line of input stimuli for a par-
ticular design, and we call these time-line of events, work-
loads.

Event Burst

Tburst

Tperiod

Burst Variation

Period Variation

Figure 1. Parameters for the pulse wave

Event Burst

Tevent in burst

Per Burst 

Variation

Figure 2. Parameters for events in a burst

The workloads within the GroundHog 2009 benchmark
suite are created synthetically based on parameters that de-
scribe a pulse wave. These parameters are shown in Fig-
ure 1 and Figure 2, where an event burst Tburst is the burst
time wave in which events happen every Tevent in burst

time units. Each burst occurs within a period defined by
the parameter Tperiod.

4



Table 1. The characteristics of designs in our benchmark suite.
Design Name Bit-Width Processing Memory Arithmetic Performance

Flow Usage Complexity Requirements

GH09.B.1 - Port expander and keypad controller 90% bit-level Control Simple Simple Low
GH09.B.2 - Glue logic 90% bit-level Control Simple Simple Low and High
GH09.B.3 - AES encryption cypher 90% bit-level Data Simple Simple High
GH09.B.4 - Data compression using Lempel-Ziv 90% bit-level Control Random Access Simple High
GH09.B.5 - Bridge chip bits and bytes Data Simple Simple High
GH09.B.6 - 2d convolution 90% byte-level Data Simple Complex High

Randomly 

generated 

wave

Timeline
Time 0

Figure 3. Example of what a time-line of events would look like for a parametrised wave

Given these wave parameters, and parameters for ran-
dom deviations in the pulse wave, total time of workload ex-
ecution, and a random model for what input events happen,
we can generate a sequence of events. Figure 3 represents
a view of a synthetically generated wave and events on a
time-line. Based on this method of synthetically generating
workloads it is possible to create workloads representing a
range of design execution instances.

Workloads are created within the provided tool. Events
on the time-line represent input actions that are as simple
as an input signal changing to as complex as a packet of in-
formation being sent on a port. We output the workloads to
XML, but benchmark users are expected to use the tool to
create their own test-benches to stimulate their target archi-
tecture. The drawback with this approach is that the bench-
mark user must convert high-level descriptions of the input
stimuli into a form usable by their measurement setup.

To help benchmark users in this process, we provide a
synthetic workload generator as an open source tool. This
means that the workloads can be modified and outputted in a
form that compatible with their chosen setup. For example,
if the benchmark user is targeting an FPGA platform, then
the workload generation tool can be modified to output test
vectors directly or via another system to the FPGA under
test.

3.4 Environment Description

GroundHog 2009 benchmark suite is meant to push in-
novation of reconfigurable architectures in the mobile do-
main. The problem is this mobile domain includes a vast
array of devices where each device is built under a range
of constraints and technologies. For this reason, our bench-
mark suite includes a concept called environment specifi-

cation. This specification in the form of an environment
description file (EDF) allows institutions, external to the
benchmark specifiers and benchmark users, to describe mo-
bile devices. The goal of this description is to allow insti-
tutions to define the constraints under which reconfigurable
architectures can be benchmarked to satisfy the institution’s
needs.

In GroundHog 2009 there are two example EDFs that
describe a minimum set of parameters needed for a simple
benchmarking environment. These parameters include:

• minimum operating speed this parameter is defined
in terms of a time and specifies the operating speed of
the device. If interpreted as a clock speed, then the
frequency is 1/time. However, we have not made this
specification since the implementation could be asyn-
chronous.

• minimum sampling speed this parameter defines the
sampling rate of the device. This is also known as the
heartbeat of a device that is present to receive mes-
sages from the system. This can be thought of as the
sampling rate when the device goes into power saving
modes such as standby mode or other power saving
mode.

• minimum arrival rate on serial interfaces this param-
eter defines the rate of general serial interfaces.

• minimum arrival rate on parallel interfaces this pa-
rameter defines the rate of general parallel interfaces.

GroundHog 2009 includes EDF files that describe a 32MHz
clock and 32KHz heartbeat clock, and a 100MHz and
32KHz heartbeat clock for synchronous devices, which are
typical clocks for mobile devices. These files are distributed

5



in XML form, and the tools included with the suite can read
this EDF as it is used in creating workloads. There is a range
of possibilities for other items included in an EDF. For ex-
ample, the EDF may include items such as voltage rails, off-
chip resources and their interfaces, temperature constraints,
etc.

4 Relationships from Benchmarking

In the previous Section, we described the EDF files used
to facilitate the description of constraints for a mobile de-
vice. We feel this is necessary so that we can benchmark
a wide range of possibilities. This approach contrasts with
traditional processor benchmarking suites. The difference
is that in processor benchmarks, the tool flow (compiler)
and benchmarking environment include a restricted range
of choices.

The benefit of decoupling the environment from the
benchmark is that instead of providing a benchmark suite
that is simply used to compare solution A to solution B un-
der conditions C, we facilitate a broader comparison. For
example, solution A may be better than solution B under
conditions C, which is representative of one particular type
of mobile device, but solution B may be better than solu-
tion A under conditions D. Also, this approach avoids the
scenario where competitors use our benchmarks for mar-
keting claims that their devices are better. The reality, at
present, is that reconfigurable architectures are roughly an
order of magnitude away in power consumption and support
for power modes from being adopted in mainstream mobile
devices, and these simple technology comparisons are irrel-
evant at present.

GroundHog 2009 benchmark suite has an additional
layer of decoupling. Within the benchmark suite, there is
no specification of what rules need to be specifically fol-
lowed when using the suite. The reason for this is that these
rules, much like the environment, may only apply in certain
scenarios, and this would restrict the potential for innova-
tion. For example, a scenario might exists where solution
A needs to be benchmarked for a device, but on that de-
vice it will not be used for designs GH09.B.3, GH09.B.4, or
GH09.B.6. Under this scenario, the benchmark suite only
needs to be used for the designs it intends to cover, and the
unused designs could be left out.

Figure 4 illustrates how relationships exist with a bench-
mark suite. Decoupling benchmark providers from the
more relevant relationship between benchmark users and
environment providers is a better solution for our given sit-
uation and goals. This, we believe, is one of the strengths
of GroundHog 2009 benchmark suite.

Benchmark 

Providers

Benchmark 

Users

Environment

Such as: Altera, Xilinx, 

SiliconBlue, Xmos, Arm, 

uProcessor researchers, FPGA 

researchers, Reconfigurable 

Architecture researchers, etc.

Such as: Academia, Nokia, 

Philips, Nintendo, Palm, Nikon, 

Sony

Us

Figure 4. Relationships in benchmarking

5 Using the Benchmarks - Examples

In this Section, we illustrate how GroundHog 2009
benchmark suite can be used to benchmark reconfigurable
architectures in terms of power consumption. Our target ar-
chitectures are SiliconBlue’s iCE65L04 FPGA and Actel’s
Igloo AGL600 FPGA. For both of these target architectures,
we will map HDL versions of the designs GH09.B.1 and
GH09.B.2 to these FPGAs and measure power consump-
tion for a particular workload.

5.1 Architectures and experimental setup

The two FPGAs to be measured as systems under
test (SUT) are Actel’s AGL600 [1] and SiliconBlue’s
iCE65L04 [17]. Both of these devices are on the leading
edge of low power-consuming FPGA architectures for mo-
bile applications.

Table 2. Resources available on the FPGAs
FPGA System Gates RAM bits I/O Pins

AGL600 600k 108k 235
iCE65L04 200k 80k 176

Table 2 provides a brief overview of these two FPGAs.
In column one, the FPGAs are listed. Columns two, three,
and four show the number of gates, RAM bits, and I/O pins.
In terms of gates per FPGA chip, this number is very hard to
compare between different manufacturers. The main point
to draw is both of these architectures are small FPGAs.

The GroundHog 2009 designs GH09.B.1, a port ex-
pander and keypad controller, and GH09.B.2, a glue logic
design consisting of a state machine and three adders,
are implemented in HDL design and mapped to both of
these SUTs using provided tool flows corresponding to the
FPGA. Figure 5 shows how the FPGAs (SUTs) are included
in our measurement system. In this figure, a National Instru-
ments PXI-4130 [12] is the measuring instrument that sup-
plies the core voltage to a SUT and measures and records
the current supplied to these devices. Additionally, a DE2

6



System Under Test 

(AGL125 or 

iCE65L04)

M
A
P
P
P
IN
G
 T
O
 

D
E
V
IC
E

RTL Testbench 

based on workloads

Inputs
Outputs

Stimulus 

Generator

(DE2 Board)
Clock1

Clock2

RTL Design

Power Measurement System 

(NI PXI-4130)

Control 

Signals

Core 

Voltage

M
A
P
P
P
IN
G
 T
O
 

S
T
IM
U
L
U
S
 D
E
V
IC
E

GroundHog 2009

Workload Designs GH09.B.X

Figure 5. The measurement system

board with an Altera Cyclone FPGA [2] is used as a stim-
ulus generator, which sends the events in the workload to
stimulate the SUT. The stimuli generator reads the time-
stamp of the events in a workload and generates correspond-
ing vectors.

In the measurements below, we are measuring the core
FPGA power consumption, which does not include I/O
power consumption. We have chosen this power measure-
ment to alleviate some of the complications with board
power consumption due to the boards the FPGAs are
mounted on and I/O pin loads, which impact the power con-
sumption on the I/O pins. GroundHog 2009 can be used for
other types of power measurements.

5.1.1 GH09.B.1 Power Measurements

As described above, GH09.B.1 design is a port expander
and keypad controller. This design includes registers that
determine how the device is to operate including modes for
up to a 7x8 keypad controller, for 15 general purpose input
and output pins (GPIOs), and for a mixture of uses of the
two. For our experiments, we measure the power consump-
tion for two workloads where workload one stimulates the
device operating as a 7x8 keypad controller, and workload
two stimulates the device operating with 8 input pins and 8
output pins.

For the 7x8 keypad mode, the system is operated for two
system clocks (32 MHz and 150 kHz) for the Actel FPGA
and 32 MHz for the SiliconBlue FPGA. The keypad re-
sponse time is 50ms (which allows 20 key-presses a sec-
ond). The design when mapped to the Actel Igloo FPGA
uses 10% of the FPGA resources and on the SiliconBlue
iCE FPGA it uses 28% of the FPGA resources.

Table 3 shows the power measurements for the 7x8
keypad controller design for a workload that randomly
sends key-presses based on the workload parameters
Tevent in burst = 25ms, Tburst = 500ms, and Tperiod =
1000ms. Column 1 and 2 show the FPGA and operating

Table 3. Power consumption of 7x8 keypad
FPGA Operation VCC,avg(V ) Iavg(mA) Pavg(mW )

Frequency

AGL600 32MHz 1.5 3.751 5.628
AGL600 32MHz 1.2 2.951 3.541
AGL600 150KHz 1.5 0.091 0.137
AGL600 150KHz 1.2 0.059 0.071
iCE65L04 32MHz 1.5 1.949 2.924

frequency of the SUT. Column’s 3, 4, and 5 show the volt-
age, average current, and average power consumption over
5 minutes.

Table 4. Power consumption of GPIOs
FPGA Operation VCC,avg(V ) Iavg(mA) Pavg(mW )

Frequency

AGL600 32MHz 1.5 3.756 5.635
AGL600 32MHz 1.2 2.954 3.546
AGL600 150KHz 1.5 0.094 0.142
AGL600 150KHz 1.2 0.061 0.073
iCE65L04 32MHz 1.5 1.958 2.937

Table 4 shows the power measurements for the design
with 8 input and 8 output GPIO pins for a workload that ran-
domly updates the output pins or generates an input value
based on the workload parameters Tevent in burst = 1ms,
Tburst = 10ms, and Tperiod = 1000ms. This table has the
same structure as Table 3.

These results show that for both architectures there is
a slight increase in power consumption for workload two
compared to workload one. This is due to a slight increase
of activity of the SUT on the serial parallel interface for this
scenario.

5.1.2 GH09.B.2 Power Measurements

GH09.B.2 is a glue logic design consisting of a state ma-
chine and three adders. Each adder is either incrementing
with the slow clock, incrementing with the fast clock, or re-
maining constant in an idle state. These states are controlled
by the state machine which in turn is controlled by external
signals. Within the design the three adders are a 4-bit, 8-bit,
and 12-bit adder.

Table 5. Power consumption for GH09.B.2
FPGA Chip Operation VCC,avg Iavg Pavg

Utilisation Frequency (V) (mA) (mW)

AGL600 6% 32MHz 1.2 1.79 2.15
iCE65L04 4% 32MHz 1.2 1.46 1.75

Table 5 has the same structure as the previous two ta-
bles and shows the power measurements for the glue logic
design with random state changes defined by the workload
parameters Tevent in burst = 1ms, Tburst = 10ms, and

7



Tperiod = 1000ms. These results show that SiliconBlue’s
low power FPGA is better than Actel’s in this case, but note
that this comparison is preliminary and many design factors
have not been considered for a fair comparison. For exam-
ple, the AGL600 has an active phase locked loop compared
to no phase locked loop on the iCE65L04. The goal of this
comparison is to illustrate our benchmarks, and we have not
made an attempt to perform a fair comparison.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0
0
.4

0
.8

1
.2

1
.6 2

2
.4

2
.8

3
.2

3
.6 4

4
.4

4
.8

5
.2

5
.6 6

6
.4

6
.8

7
.2

7
.6 8

8
.4

8
.8

9
.2

9
.6

t [s]

P
 [
W
]

Figure 6. Power measurements of GH09.B.2

Figure 6 shows the power measurements for the first 9
seconds of this design on the Actel Igloo FPGA. The x-axis
shows time in seconds and the y-axis shows the power con-
sumption in watts. In this figure, we can see how the power
consumption increases as more or fewer adders are incre-
menting at the slower and higher clock frequencies due to
state changes. These step transitions suggest there is room
for improvement of the entire design’s power consumption.
For example, at the points where part of the device (a por-
tion of the adders) is in an idle state, a smart design maybe
able to reduce the power consumption of the overall chip.
The challenge, however, is that it is unknown when the idle
parts of the design will be reactivated, and some sort of
quick power on recovery solution needs to be created.

6 Conclusion

In this paper, we introduce the GroundHog 2009 Bench-
marking suite for reconfigurable architectures in the mobile
domain. We illustrate the composition of this benchmark
suite and describe how it differs from existing available
benchmarks, emphasising how the relationships in bench-
marking can be leveraged to create a flexible benchmark-
ing suite. Finally, we use this suite to measure the power
consumption of two designs from the suite (including input
stimuli) and show how these results can be used to compare
devices and identify potential power optimisations.

The benchmark can be found at http://cc.doc.
ic.ac.uk/projects/GROUNDHOG/.

References

[1] Actel. Igloo Handbook, Jan 2008.
[2] Altera. Cyclone II Device Handbook, 2007.
[3] J. Anderson and F. Najm. Power estimation techniques for

FPGAs. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 12(10):1015–1027, October 2004.

[4] T. Becker, P. Jamieson, W. Luk, P. Cheung, and T. Rissa. To-
wards Benchmarking Energy Efficiency of Reconfigurable
Architectures. In FPL, pages 691–694, 2008.

[5] T. Becker, P. Jamieson, W. Luk, P. Cheung, and T. Rissa.
Power characterisation for the fabric in fine-grain reconfig-
urable architectures. In SPL, pages 691–696, 2009.

[6] V. Betz and J. Rose. Directional Bias and Non-Uniformity
in FPGA Global Routing Architectures. In 14th IEEE/ACM
Int’l Conference on CAD, pages 652–659, 1996.

[7] W. Burleson, R. Tessier, D. Goeckel, S. Swaminathan,
P. Jain, J. Euh, S. Venkatraman, and V. Thyagarajan. Dy-
namically parameterized algorithms and architectures to ex-
ploit signal variations for improved performance and re-
duced power. In International Conference on Acoustics,
Speech, and Signal Processing, 2001.

[8] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Ir-
win, and T. Tuan. A dual-Vdd low power FPGA architec-
ture. In FPL, pages 145–157, 2004.

[9] J. Gustafson, D. Rover, S. Elbert, and M. Carter. The design
of a scalable, fixed-time computer benchmark. J. Parallel
Distrib. Comput., 12(4):388–401, 1991.

[10] P. Havinga, L. Smit, G. Smit, M. Bos, and P. Heysters. En-
ergy management for dynamically reconfigurable heteroge-
neous mobile systems. In IPDPS, pages 840–852, 2001.

[11] J. Liang, R. Tessier, and D. Goeckel. A dynamically-
reconfigurable, power-efficient turbo decoder. In FCCM,
pages 91–100, Washington, DC, USA, 2004.

[12] National Instruments. NI PXI-4130 - 20V 2A Source Mea-
sure Unit, 2008.

[13] J. Noguera and I. Kennedy. Power reduction in network
equipment through adaptive partial reconfiguration. In FPL,
pages 240–245, 2007.

[14] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner,
L. Thiele, and G. Trster. The case for reconfigurable hard-
ware in wearable computing. Personal and Ubiquitous Com-
puting, 7(5):299–308, 2003.

[15] K. Poon, A. Yan, and S. Wilton. A Flexible Power Model
for FPGAs. In FPL, pages 312–321, 2002.

[16] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power
consumption in Virtex&#8482;-II FPGA family. In FPGA,
pages 157–164, 2002.

[17] SiliconBlue. iCE DiCE: iCE65L04 Ultra Low-Power FPGA
Known Good Die, Sep 2008.

[18] K. O. Tinmaung, D. Howland, and R. Tessier. Power-aware
FPGA logic synthesis using binary decision diagrams. In
FPGA, pages 148–155, 2007.

[19] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A
90nm low-power FPGA for battery-powered applications. In
FPGA, pages 3–11, 2006.

[20] Xilinx. Virtex-II Pro Platform FPGAs: Functional Descrip-
tion, Oct 2003.

[21] S. Yang. Logic Synthesis and Optimization Benchmarks,
Version 3.0. 1991.

8


