
Automating Optimization of Reconfigurable Designs

Maciej Kurek, Tobias Becker, Thomas C.P. Chau and Wayne Luk

Department of Computing, Imperial College London

Abstract—We present Automatic Reconfigurable Design Ef-
ficient Global Optimization (ARDEGO), a new algorithm
based on the existing Efficient Global Optimization (EGO)
methodology for automating optimization of reconfigurable
designs targeting Field-Programmable Gate Array (FPGA)
technology. It is a potentially disruptive design approach:
instead of manually improving designs repeatedly but without
understanding the design space as a whole, ARDEGO users
follow a novel approach that: (a) automates the manual
optimization process, significantly reducing optimization time
and (b) does not require the user to calibrate or understand the
inner workings of the algorithm. We evaluate ARDEGO using
two case studies: financial option pricing and seismic imaging.

Field-Programmable Gate Arrays (FPGAs), and other

reconfigurable computing devices, can provide high com-

putational performance but their productive adoption has

been hampered due to the long hardware design cycle.

Furthermore, optimizing design parameters requires tremen-

dous effort in analyzing the application to create models

and benchmarks. Examples of such parameters are clock

frequency or numerical representation [1], [2], [3]. Ideally,

those design parameters would be automatically optimized

using an calibration free algorithm without manual setup or

tuning, such as exhaustive search or hill-climbing. However,

this is impractical as these schemes require hundreds of

data points, while even a single test design can take hours

to build. Some optimization techniques like mathematical

programming or gradient descent make assumptions about

the optimized system, like convexity or continuity of the

underlying problem, which have to be verified by the

designer, thus the calibration free principle does not hold. To

address these issues the Efficient Global Optimization (EGO)

algorithm [4] is used as the basis for our new methodology.

This approach does not require the designer to tune the

algorithm or to analytically study and model the underlying

effects. Our contributions are:

• A novel calibration free Automatic Reconfigurable

Design Efficient Global Optimization (ARDEGO) al-

gorithm that offers automatic optimization of reconfig-

urable designs. (Section I.)

• An evaluation of ARDEGO using two case studies: a

quadrature design for financial computation [1], and

a Reverse Time Migration (RTM) design for seismic

imaging with multiple parameters [3]. (Section II.)

The process of automatic optimization is illustrated in

Figure 1. The designer starts by describing the design and

writing benchmarks. Benchmarks evaluate the reconfigurable

design’s parameters, which is a time-consuming process and

often involves hardware generation and benchmark execution.

The output of a benchmark is a scalar performance measure

y called fitness: execution time, energy or any other target

quality. In the case of reconfigurable designs, the fitness
function f represents the benchmark, and the vector x
is the parameter setting within the design space x ∈ X
and D dimensions (parameters) with f(x) = y. Once the

benchmark’s code and the design description are ready, the

designer specifies the design space and the design constraints.

The space specifies the architecture and the physical settings

of the FPGA design. A design may build successfully or

violate one of several constraints, such as area or timing,

terminating with an appropriate exit code t [5]. This exit

code is used to determine whether a design is valid or not.

�
�
�
��
��
�
�
��
	

�

�
�
�
��

�

�������	�

������
����

����	����

�������������

��������
���

�
�����������

�����������

�
�����������

���
�����
�

����
�

����������

������

���������

�����������	

��	���

���
�����	 ������

����������

���

�� �

�
��
��
�
�

�
�
�
��
�

	��������

����������

����	�����

Figure 1: Optimization approach.

Using feedback from design evaluation a surrogate model
can be constructed and used by an automatic optimization

algorithm. A surrogate model is an approximation technique

that is used when the behaviour of the underlying problem

is not known or too expensive to measure, like in the

case of reconfigurable hardware designs. Speeding up time-

consuming high-level synthesis using surrogate modeling

based on fitness inheritance has been explored in [6]. Surro-
gate models are also used in a Machine Learning Optimizer

(MLO), developed to optimize parameters of reconfigurable

designs [5].
Gaussian Process (GP) is a supervised learning method

capable of regression [7], often used as basis of the surrogate
model. Regression is an approach to model dependency be-

tween variable changes and scalar output of a system. GPs are

often used when a predictive distribution is required instead

of a scalar estimate. The goal is to obtain the distribution

of the function f̂ at input x given a set of input vectors

X, the associated past observations f(X)=Y, and the kernel
function k(x,x′). Kernel functions are used to transform

the original space to a different space, possibly yielding

better predictive power. The standard deviation estimate σ(x)
is often interpreted as measure of the uncertainty of the

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.63

210

Figure 2: ARDEGO iteration with three worker nodes (P = 3), the algorithm starts with sampling (a) after which it moves into the infill
state. At first the surrogate model is constructed, with two designs being evaluated (b). With one worker node free, the current surrogate
model is used to search for infill design (c). In (d) a worker has finished evaluation and a new infill has to be found, the process repeats.

prediction at point x. For constrained optimization problems

surrogate models can include classifiers, particularly Support

Vector Machines (SVMs) [5], [8]. In such a case, besides

modeling the fitness function, the surrogate model determines

which, if any, constraints are likely to fail. The goal of

classification is to construct a decision function d allowing

prediction of a class label d(x) = t for an unseen input x.

The decision function is constructed based on the observed

data X,T and the kernel function k(x,x′). The target labels

associated with observations at X are denoted as T. Extension

of the surrogate model with a classifier allows for pruning

of the design space. This is crucial when the design space is

large and the designs take a long time to evaluate.

The Expected Improvement (EI) metric [4] tells how much

a design x is likely to improve over the best currently found

designs fitness fbest = min(Y). Given the mean estimate

f̂(x) and standard deviation σ(x) by the surrogate model
GP regression, improvement of x over fbest is defined as

I(x) and its expected value E[I(x)] is used as the EI metric.

This metric is used to repeatedly evaluate designs which are

expected to yield highest improvement over the current best

solution. The concept is used in the EGO algorithms [4], [8].

The EGO algorithm can be run in parallel on systems with P
worker nodes [4]. When developing automated optimization

techniques for reconfigurable designs, we face two challenges:

1) the algorithm should not require manual calibration and

2) the algorithm should be capable of constructing an initial

surrogate model even if the number of designs not violating

constraints is small relative to the design space.

I. ARDEGO APPROACH

The algorithm is designed to offer automatic calibration
free design optimization as outlined in Figure 1. It is based on

a surrogate model with an integrated SVM classifier. The key

steps of the ARDEGO algorithm are illustrated in Figure 2.

The algorithm starts to build the initial surrogate model
with sampling of the design space, generating hardware for

these design samples and evaluating their fitness. After the

initial surrogate model is constructed, an iterative process

follows where the model is refined with infill. The goal of

infill is to find the designs that are most likely to improve

over the currently best found design. Hardware is then built

for them, their fitness is evaluated and the surrogate model

updated accordingly. The two challenges mentioned earlier

are addressed by ARDEGO in the following ways:

1) ARDEGO is based on EGO and has no parameters of

its own that require calibration.

2) A novel adaptive sampling plan addresses the issue of

design spaces with a small number of valid designs.

The ARDEGO algorithm follows the pseudocode illus-

trated in Figure 3. The algorithm is based on parallel EGO

[4], constrained EGO [8] and the new adaptive sampling plan.

The optimization procedure itself is a sequential process that

is carried out by a control node. The control node invokes

P worker nodes which can build and evaluate designs in

parallel. Whenever a worker node finishes evaluation of a

design, the control node searches for new infill designs. At

any given time μ nodes are busy and λ are idle. The goal

during infill is to find the set of λ most promising designs

Xidle = [x1,x2, ..,xλ], with highest E[I(μ,λ)(Xidle)]. The

infill search on the control node does not block the optimiza-

tion on the worker nodes and multiple worker nodes can

finish evaluation at similar time. The termination condition

is checked during infill whenever a worker node finishes

evaluation: it is checked whether the time budget allocated

for optimization has been exceeded.

1 Evaluate the always valid design; // Adaptive
2 Sample designs using Latin hypercube; // Sampling
3 Sample random designs, do not evaluate designs which are

predicted to fail any constraints. After every sample update
the SVM model;

4 while not Termination condition do // Infill
5 [non blocking] Collect results of evaluated designs.

Update the surrogate model model. Update λ and μ;
6 Generate the next λ infill points by max

E[I(μ,λ)(Xidle)] using a global optimizer (e.g. CMA-ES
[9]). Send them to worker nodes for evaluation;

Figure 3: ARDEGO, based on parallel EGO [4].

The surrogate model consists of a GP regressor and an

SVM classifier. The GP assesses the standard deviation esti-

mate σ(x) and the fitness f̂(x) of parameter configurations

x that have not been evaluated. The SVMs predicts the exit

code t for such configurations (i.e. whether the design is valid

or not). Regression and classification are correspondingly

based on the results of previous hardware generations and

211

benchmark executions aggregated in X,Y and T. The GP

regressor uses the anisotropic Gaussian kernel function, which

allows learning of the impact of different parameters on the

design space [7]. The Gaussian kernel function is used for

the SVM as it has universal approximation properties [8].

A. Adaptive Sampling Plan

The algorithm involves a two-stage adaptive sampling
plan to allow good coverage of the valid space. Initially,

if available, an always valid design is evaluated. It is a

design representing the most basic configuration which the

designer is certain will generate successfully. This allows

ARDEGO to localize the region of space which does not

violate any constraints. This is especially important if the

region is relatively small. The sampling plan has two stages,

a Latin hypercube sampling of 5×D designs followed by

a random sampling of 5 × D designs. This gives a total

of 10 designs per dimension as recommended by [4], [8].

A Latin hypercube plan offers good space filling qualities

which improve performance of the optimization algorithm

[10] while the subsequent random sampling is mainly used

to sample more valid designs for the GP regression. This

sampling methodology allows for regression in cases when

the valid region is small relative to the design space.

Figure 4: Adaptive sampling plan, gray area indicates valid region.

A visualization of the adaptive sampling plan is presented

in Figure 4. Initially the always valid design is evaluated (a),

followed by a 5-design Latin hypercube sampling (b). The

subsequent random sampling plan (c) evaluates 5 randomly

chosen designs from the valid area, tuning its shape. Figure 5

illustrates the result of sampling and initial classification in

the three other sampling plans. Although the identified valid
areas have similar shape, the number of designs available

for regression is severely limited.

Figure 5: Grid, random and Latin Hypercube sampling plans.

B. Infill

This step consists of search over the design space for

λ designs that are most likely to improve fbest and of

their subsequent evaluation on the idle worker nodes. In the

meanwhile μ designs Xbusy = [xλ,xλ+1, ..,xλ+μ] are being

evaluated on the busy nodes. The E[I(μ,λ)] is used as the EI

metric, its estimation with sims simulations is presented

in Figure 6. It consists of estimation of the fitness and

uncertainty, which is subsequently used to calculate E[I(μ,λ)]
using Monte Carlo techniques. The Y(ω)(x) is a Gaussian

random number conditioned on the past observations X,Y i.e.

Y(ω)(x) ∼ N (f̂(x), σ(x)), the point distribution returned

by the GP regression. The classification is incorporated

by returning a Gaussian distribution with fbest mean and

standard deviation 0 for the designs which are predicted to

violate some constraints. Referring to Figure 6, for those

designs E[I(μ,λ)](X) = 0.

1 f̂(X), σ(X) = surr model pred(X);
2 sum=0;
3 for i ∈ [0, 1, .., sims] do
4 Yμ

(ω),Y
λ
(ω) ∼ N (f̂(X), σ(X));

5 sum += [min(fbest,Y
μ
(ω))−min(Yλ

(ω))]
+;

6 sum = sum÷ sims;

Figure 6: EMCI
(μ,λ)(Xidle). For notation purposes busy and idle

designs are aggregated in X = [x1,x2, ..,xλ+μ].

II. EVALUATION

Two application case studies are used to evaluate

ARDEGO optimization time. A quadrature-based financial

design with customizable precision [1] and a high perfor-

mance RTM design with seven parameters [3]. Both involve

complex design choices, and have non trivial constraints.

ARDEGO is compared with MLO [5] and hill climbing.

Hill climbing is a trivial optimization algorithm which can

deal with mixed continuous and discrete design spaces,

and makes no assumptions about the fitness function. To

make the optimization experiments repeatable, data on the

application case studies are collected prior to the experiments.

The total optimization time is measured, the results are

averaged over 5 experiments. The optimized application

designs target a Maxeler Max 3 system with a Xilinx Virtex-6

XC6VSX475T FPGA. The control and worker nodes consist

of high performance Intel Xeon x5650 (32 nm, 6 cores,

2.67GHz) CPUs.

1) Quadrature-based Financial Design: In [1] the au-

thors present a precision optimization methodology for a

quadrature-based numerical integration solver for financial

option pricing on reconfigurable devices. The design has

two benchmarks measuring the throughput and energy

consumption. The goal is to find the design offering the

highest throughput or the lowest energy consumption given

a required minimum accuracy εrms by optimizing three

parameters. The three parameters are mantissa width mw of

the floating point operators, the number of computational

cores cores, and the density factor df which specifies the

density of quadratures used for integral estimation. ARDEGO

is evaluated for three different εrms, which influence the

number of valid designs. The design space X spans 18,000

configurations, with an average hardware generation time

212

Table I: Total design optimization time given in hours. H.C. stands
for hill climbing. MLO follows [5]. Q. En. is abbreviation for
Quadrature-based Financial Design energy benchmark, Q. Th. is
the corresponding throughput benchmark.

Optimization Algorithm
Design MLO [5] ARDEGO P H.C.

1 2 4 6
Q. En. (εrms 0.01) 113 81 53 30 19 226
Q. En. (εrms 0.1) 139 120 54 35 27 273
Q. Th. (εrms 0.01) 122 109 43 30 26 328
Q. Th. (εrms 0.1) 174 131 72 41 39 502
RTM n/a 285 197 123 97 5350

of around 2 hours. The total optimization time using the

previous application specific optimization methodology [1],

including hardware generation and benchmark execution, is

198 hours. Depending on erms, the optimal design can be

between 10-100 times faster and up to 200 times more power

efficient than the most basic design.

As seen in Table I, in all of the cases P offers significant

speedup in optimization time, yet even in when P = 1
ARDEGO is substantially faster than MLO. The hill climbing

algorithm offers very poor performance, in the worst case it

takes more than twice as long as the manual approach (502

vs. 198 hours). The advantage of the manual approach is

certainty in finding the optimal design, although at a high

effort [1]. Although ARDEGO does not guarantee that the

optimal configuration is found, it can substantially reduce

the optimization time. As seen in Table I, the optimization

can be sped up by multiple nodes P, but the scalability

requires further investigation. The ARDEGO overhead time

(i.e. optimization time excluding hardware generation) is

around an hour for any εrms, including infill search and

surrogate model training.

2) Reverse Time Migration Design: In [3] the designer

faces a problem of optimizing seven parameters of a high

performance RTM design and there are nearly 27 million

possible parameter combinations. The RTM design is used

for seismic imaging to detect terrain images of geological

structures. The design involves stencil computation, and most

of the parameters are related to balancing communication

and computation ratios as well as controlling the internal

architectural settings such as parallelism and numerical

precision to find an optimal design. The parameters explored

are blocking ratios in x and y dimensions (α and β), bit-width

optimization ratio B, arithmetic operation transformation

ratio T , and kernel and dimension parallelism, Pdp, Pknl and

Pt. Hardware generation time takes up to 9 hours for a single

design. An analytical model has been developed to enable

optimization of the design involving memory architectures,

precision optimization, computation transformation, and

design scalability [3]. The optimized design is over 100

times faster than the basic configuration.

As observed in Table I, the hill climbing optimization

algorithm requires unrealistic amount of time to find the

optimal design. This is because of the dimensionality of the

problem where hundreds of designs have to be evaluated.

MLO is not capable of optimization of high dimensional

designs, even when upgraded with the adaptive sampling
plan. The MLO algorithm has an internal threshold parameter

which needs to be hand-tuned in order for the optimization

to succeed. This is contrary to the calibration free principle.

During ARDEGO optimization, around three quarters of the

evaluated designs violate resource constraints. The ARDEGO

overhead time is relatively insignificant, at around two hours.

III. CONCLUSIONS AND FUTURE WORK

We present ARDEGO, a calibration free algorithm for

automatic optimization of design parameters in reconfigurable

designs. ARDEGO is evaluated using two case studies, a

quadrature-based financial application and an RTM design

for seismic imaging. The quadrature design shows a clear

time saving when using ARDEGO over a manual approach,

hill climbing and the MLO optimization algorithm. In the

RTM design, we show that ARDEGO can optimize highly-

dimensional designs. Although the ARDEGO algorithm can

still take substantial amount of time to finish optimization, it

offers a clear advantage over manual approaches that require

extensive designer interaction to study and tweak the design.

Current and future work includes further evaluation of the

approach and acceleration of the most time-consuming parts

of the algorithm.
Acknowledgement. This work is supported by the European
Union Seventh FrameworkProgramme under grant agreement nuber
257906, 287804 and 318521, by UK ESPRC, by Maxeler University
Programme, by HiPEAC NoE, by Altera, and by Xlinx.

REFERENCES

[1] A. H. Tse et al., “Optimising performance of quadrature
methods with reduced precisions,” in ARC. Springer, 2012,
pp. 251–263.

[2] Q. Jin et al., “Optimising explicit finite difference option
pricing for dynamic constant reconfiguration,” in FPL, 2012,
pp. 165–172.

[3] X. Niu et al., “Exploiting run-time reconfiguration in stencil
computation,” in FPL, 2012, pp. 173–180.

[4] J. Janusevskis et al., “Expected improvements for the asyn-
chronous parallel global optimization of expensive functions:
Potentials and challenges,” in Learning and Intelligent Opti-
mization. Springer, 2012, pp. 413–418.

[5] M. Kurek, T. Becker, and W. Luk, “Parametric optimization
of reconfigurable designs using machine learning,” in ARC’13.
Springer, 2013, pp. 134–145.

[6] C. Pilato el. al, “Speeding-up expensive evaluations in high-
level synthesis using solution modeling and fitness inheritance,”
in Computational Intelligence in Expensive Optimization
Problems. Springer, 2010, vol. 2, pp. 701–723.

[7] C. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[8] A. Basudhar et al., “Constrained efficient global optimization
with support vector machines,” Struct. Multidiscip. Optim.,
vol. 46, no. 2, pp. 201–221, Aug. 2012.

[9] N. Hansen, “The CMA Evolution Strategy: A Comparing Re-
view,” in Towards a New Evolutionary Computation. Springer,
2006, vol. 192, pp. 75–102.

[10] M. D. Mckay et al., “A comparison of three methods for
selecting values of input variables in the analysis of output
from a computer code,” Technometrics, pp. 55–61, 2000.

213

