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Abstract 
Xilinx Virtex FPGAs offer the possibility of dynamic 

and partial run-time reconfiguration. If a system uses this 
feature the designer has to take care, that no signal lines 
cross the border to other reconfigurable regions. 
Traditional solutions connecting modules on a dynamic 
and partial reconfigurable system use  TBUF elements for 
connection and separation of the functional blocks. While 
automalically placing and routing the design, the routing-
tool sometimes uses signal lines which cross the module 
border. The constraints given by the designer are ignored. 
To solve this problem we use slices instead of TBUF 
elements which leads to a benefit by using an automatic 
modular design flow. This paper gives an overview of the 
used technique and the complete system on a Xilinx 
XC2V3000 FPGA. 

Categories and Subject Descriptors 
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Interconnections (Subsystems) – Synchronous operation, 
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1. Introduction 
1. 1. 1. Tabellen 1. 

Xilinx Virtex FPGAs offer the possibility of dynamic 
and partial run-time reconfiguration. New approaches use 
this feature by outsourcing configuration data which 
makes it possible to use FPGAs with smaller 
configuration memory and consequently smaller chip 
size. Thus it is possible to save costs and reduce power 
consumption because not actually used modules of a 
complete system do not allocate configuration memory 
and corresponding power consuming hardware [1]. 
Nevertheless power dissipation during reconfiguration has 
to be considered [2]. [3] raise this issue with the main 
focus on energy saving and basis for new design 
methodology. The designer of a dynamic and partial 
reconfigurable system on an FPGA must be sure, that no 
signal lines of a module cross the border to another 
functional block. During reconfiguration such a signal 
line might cause a malfunction or a short-circuit, which 
destroys the FPGA. Because of this it is necessary to 
implement interfaces which are used as fixed routing 
resources. These interfaces, called BUS Macros, are 
placed in the same position for each functional block. 
Connecting the modules with signal lines on the same 
position grants the option, to substitute a module by 
another. Traditional techniques using TBUF elements as 
BUS Macro, are able to separate the modules and provide 
a resource for automatic routing. Unfortunately the 
autorouter of the Xilinx ISE design software ignores the 
constraints which disallow the use of routing resources 
across the border of a module area. This leads to a very 
time consuming and difficult manual debugging which is 
not acceptable. A more detailed schematic of the 
traditional TBUF interface is shown in figure 1.1. To send 
a signal from left to right, for example the LE(0) input of 
the Tristate gate is on enable level, while RE(0) switches 
the second gate into Tristate mode. The signal of LI(0) is 
now connected to the Output(0) line which connects the 
two sides. In the opposite direction communication is 
possible by changing the mode of the Tristate gates. For  
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Figure 1.1 Tristate gates of CLB interface  
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more information about the design section 0 describes the 
target hardware and gives an overview of the complete 
system. The following subchapters 2.1 to 2.3 contain the 
description of the used modules in detail. Section 3 shows 
the implementation of the complete system after place and 
route procedure. Real-Time aspects are described in 
section 0 and in section 5 the conclusion and a preview of 
future work is described. 

2. Target Hardware and Reconfiguration 
Techniques 

2. 2. 2. Tabellen Formelabsc

The method which is introduced in this paper was used on 
a dynamic and partial reconfigurable system implemented 
on a Xilinx Virtex-II FPGA (XC2V3000). To get an 
overview of the complete system, figure 2.1 shows the 
schematic picture with all used components.  

 

 

Figure 2.1 Dynamic reconfigurable system  
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As a controlling element, the Xilinx MicroBlaze [11] 

Soft-Core controller was used. The internal block RAM 
elements of the FPGA contains the run-time system which 
controls the activities inside the complete system. A 
detailed description of the run-time system and the tasks 
of the MicroBlaze controller can be found in [7]. Via an 
arbiter the controller is connected to the bus macro. The 
arbiter controls the dataflow for sending or receiving 
messages to or from the modules. The bus was designed 
for our test scenario for automotive control functions but 
it also can easily be adapted to other usage. To connect 
the modules to the FPGA bus system, an interface module 
called BUS-COM Module was designed. This module 

enables a unified connection to functional modules of 
other applications. Designers only have to adapt their 
implementations to the specifications. The BUS-COM 
Module receives signals from the arbiter to connect data 
and signal lines of the modules to the bus system. The 
BUS-COM module also contains the slot identification 
number which allows to assign a unique address for each 
module. This id number won’t be overwritten if 
reconfiguration occurs. The BUS-COM Module is used 
like a connector for multi-purpose applications which are 
designed in the slot-modules. 

The FPGA of the Virtex-II series grants the option to 
use the internal configuration access port (ICAP) [4] 
which allows a self-reconfiguration without demand of 
external wiring. The ICAP interface provides nearly the 
same features as the SelectMap interface for external 
usage. Figure 2.2 shows the schematic of the modules 
used for reconfiguration procedure. Partial bitstreams are 
stored in an external flash memory. The run-time system 
sends the start address and endadress to the decompressor 
module. Afterwards a start command enables the 
decompressor to read the compressed bitstream data from 
the flash, to decompress it and write it through the ICAP 
interface. While this process is running, the controller is 
able to work on further tasks. A signal from the 
decompressor reports the end of the configuration 
process. The complete system is connected via a CAN 
interface to its environment. The interface of the 
decompressor is designed in a way that it can easily be 
integrated into an FPGA based run-time system for partial 
reconfiguration. The decompressor consists of three parts: 
A controller, a RAM block and a module that changes the 
bit width of the output data. A detailed description of this 
decompressor system can be found in [5]. 

If more communication channels are needed it is 
possible to implement more CAN controllers or other 
interfaces to the FPGA. A detailed overview of the system 
can be found in [2]. 
 

 

Figure 2.2 Modules for reconfiguration using 
ICAP interface  
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2.1. BUS-COM Module 
To provide the stand-alone functionality of the 

modules on the bus, the BUS-COM module is necessary. 
The main task of this module is to buffer input data, 
signalize the arbiter the occurrence of new output data 
from the functional-modules and transmit the write enable 
signal from the arbiter. The BUS-COM module contains a 
module id input, which is connected to pre-programmed 
flip-flops. These flip-flops are not overwritten during the 
reconfiguration and thereby the modules have a unique 
address. If a module is addressed, the data word of the bus 
is wrapped and connected to the module’s input. This data 
is stored until the module is addressed again. If the output 
data of a module changes, the BUS-COM module enables 
the request output. The arbiter recognizes this request and 
enables the module to send data via the bus by addressing 
it. Afterwards the request signal is disabled. 

Additionally, the BUS-COM module contains a 
command decoder which allows a context save or load 
beside the normal bus communication. For that purpose a 
demultiplexer is switched to connect context in- or output 
signals to the bus system. This feature is used to store or 
load necessary data of the modules before substituting 
them by reconfiguration, or reload data after successful 
configuration on the slot. The commands for context load- 
or save are connected via special bus signals. 

2.2. Multifunctional Arbiter 
The arbiter is responsible for controlling the incoming 
bus. Outgoing module data is solely synchronized by a 
register. There are no control functions necessary to 
transmit both normal module data and context data.  

The main task of the arbiter is to execute the requests 
of the modules in a reasonable sequence and to transmit 
the received data to the run time system together with the 
module address. For that purpose the arbiter enables 
writing permission to the bus for the module which has 
been requesting. Hereupon the module data arrives two 
clock cycles later at the arbiter. The module address 
which has been delayed for two clock cycles is now 
joined together with the data word and transmitted to the 
run time system. If the run time system detects the need 
for a reconfiguration it sends an instruction word to the 
arbiter to interrupt the normal routine. Then the arbiter 
inquires which modules are busy by polling each one. By 
the time the state of each module is available the arbiter 
sends a status word to the run time system. The run time 

system is now able to choose an idle module for replacing 
it. Afterwards the arbiter returns to the normal routine. 
In order to save the context of a module the normal 
routine has to be interrupted as well. Thereupon the 
context data is transmitted cohesively to the run time 
system. After finishing the context save the arbiter returns 
to his normal task. 

2.3. Basics of Bus Macro 
Because of unsymmetry of the routing resources at the 

positions with block-ram elements, we designed a bus 
macro which connects all module slots on the 
reconfiguration area. Using a macro which is dedicated to 
only one module, leads to routing and placing problems 
because slots can be positioned and routed while 
containing block-ram elements. 

 

 

Figure 2.4 Bus Macro overview  
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In this case the unsymmetry causes a failure while 

routing. Figure 2.3 shows the macro with the connection 
to the arbiter in the position completely on the right. 

Each macro is able to transport 8 bits of data 
unidirectional. If more than 8 bits are needed, another 
macro can be placed above or below. To enable a 
bidirectional bus an input and output macro was designed. 
The disadvantages of using unidirectional bus macros and 
the need of an input and output channel are minor, versus 
the benefit of using an automatic designflow without a 
time consuming debugging and the search for signal lines 
crossing module borders. In our implementation an input 
bus with the width of 32 bit and an output bus with 16 bit 
were used. The difference of these buses in comparison to 
buses using TBUF elements is that macro external pins 
are placed on slices. Each macro uses 20 slices as 
resource. The utilization of resources within a slot and the 
arbiter is 4 slices. The complete bus consists of 6 macros. 
This means that 24 slices per module slot are occupied by 
the bus system. In [6] an approach using a serial 
connection as communication path is described. 

 
1 

Figure 2.3 Complete Bus Macro for all slots  
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Investigations in using serial protocols for communication 
have been done and will be adapted to the existing 
system. 

2.3.1. Input Communication Macro 
The macro consists of 20 slices whereas 4 slices are 

used for connection to each module respectively to the 
arbiter. The look up tables of the slices are pre-
programmed to route input signals through. The macro 
has the height of one CLB row and contains all the 
connection points for each module. As an example figure 
2.6 shows the usage of the slices. Figure 2.5 shows the 
schematic of the complete macro used for the input 
signals. The right slices are used to connect the arbiter to 
the bus. 8 signal lines are routed to every module and are 
connected via 4 slices to the BUS-COM module. 

 

Figure 2.5 Schematic of Input Macro  
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The bus macro has a delay of maximal 5.5 ns (measured 
from the arbiter to the last module). Thus the bus can be 
clocked with the maximum possible clock frequency of 
66 Mhz. 

 

Figure 2.6 Usage of slices for input macro  
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2.3.2. Output Communication Macro 
Similar to the input macro the output macro also uses 

20 slices. However the look up tables are initialized to 
realize a multiplexer (see figure 2.7). This is necessary to 
grant the option of writing to the bus system with more 
than one module. The output macro has a height of one 
CLB row and connects all modules. Also the output 
macro has a delay time of 5.5 ns. This makes it possible to 
use the full clock speed for the complete bus system. 
Figure 2.8 shows the schematic of the implemented 
output bus macro. The slices on the right are used to 
connect to the arbiter. If a module is allowed to write data 

on the bus, the select signal switches the multiplexer 
inputs to the module’s side. Now Predecessor modules are 
not able to use the bus. After the bus transfer of data the 
select signal switches the inputs to the predecessor 
module and the bus can now be used for other modules. 

 

Figure 2.7 Usage of slices for output macro  

CLB

Input 1

Input 2
Input 2  from

 M
odule

Select
Output 1

Output 2

Look-Up-Tables 
initialized as 
MultiplexerInput 1  from

 M
odule SelSel

4

4
4

4
4

4

From predecessor module To successor module  

 

Figure 2.8 Schematic of output macro  

to Arbiter

8

8888 8

Module 0 Module 1 Module 2 Module 3

ss
8

ss
8

ss
8

ss

Connection from the respective modulesConnection from the respective modules

3. System Integration 
3. 3. 3. Tabellen  

 

Figure 3.1 Complete system after placement and 
routing  
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By using the Xilinx design software ISE [9] and the 
tool EDK (Embedded Development Kit) [10] the 
complete system was implemented on the FPGA. Figure 
3.1 shows the complete system placed on a Xilinx Virtex-
II XC2V3000 FPGA. The modular designflow [12] was 
used to generate the partitioned design. Modular design 
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flow allows the creation of dynamic reconfigurable 
systems. Figure 3.1 shows the separation of the used 
modules in detail. For example one function on the left is 
implemented to show the first slot of the system. On the 
bottom the bus system with its signal lines connecting all 
modules is visible. In this system a width of 8 columns 
was used for the separated modules. Therefore a value of 
2048 slices can be utilized in each module slot. For the 
BUS-COM Module and the logic for the bus-macro only 
74 slices are utilized within the slot. 

4. Real-Time Application 
4. 4. 4. Tabellen 1. 

As described in sections 2.3.1 and 2.3.2 the bus can 
run at full clock speed of 66 Mhz. In our system it is 
possible to transfer 252 MByte/s with the input bus and 
125 MByte/s with the output bus. The used applications 
configured in the slots need to save maximal 20 words 
with counter states or actual states of internal finite state 
machines. Thus for a reconfiguration process the time of 
20 clock cycles (303 ns) is required for saving and 
loading the data. The time of about 606 ns is a fixed value 
for every context load or save process. Certainly 
additional time is needed for writing the configuration 
bitstream to the ICAP interface. In our case the amount of 
configuration data is about 118 Kb. With the speed 
capacity of 66 Mbyte/s it is possible to reconfigure one 
slot in 1.8 ms. This leads to a maximum reconfiguration 
frequency of about 555 Hz. Of course the time for 
reconfiguration depends of the chosen size of the slots. 
Timing measurements with the CAN-Simulation 
programme CANOE [8] shows, that response times 
shorter that 3 µs without reconfiguration are possible. If a 
slot has to be reconfigured, the response time is smaller 
than 10 ms. These results are sufficient for the automotive 
application we used for testing. Also the topology we 
designed with this bus structure is ideal for the real 
scenario of the test application. The bus topology and the 
possibility to use the run-time system as a central for 
managing the incoming and outgoing messages enables a 
fast and efficient transfer of data. 

5. Conclusions and Future Work 
5. 5. 5. Tabellen 1. 

This paper shows an implementation of a 
reconfigurable system using slices as connecting 
resources instead of TBUF elements. Using this design 
method an automatic design flow without manual 
debugging is possible. The system is implemented on a 
rapid prototyping system and runs at full clock speed of 
66 Mhz. The bus system can easily be adapted to other 
demands e.g. higher in- or output width. Using the 
universal BUS-COM modules makes it possible to design 
easy connectable functions and allows saving important 
data before functions are substituted by others. Also data 
can be reloaded after reconfiguring a function in order to 

start for example with identical counter states. The 
number of module slots can easily be adapted to the 
required amount by changing the bus macro. Flexibility 
was the main focus while designing this system. Further 
work will be to design a tool which allows implementing 
this design methodology into the ISE design flow. This 
grants the option for a fast design for a dynamic and 
partial reconfigurable system. Further on the bus system 
can be adapted to the demands of run-time in future. At 
the moment the topology and the width of the bus is 
adapted to the requirements of the system. This feature of 
a network on chip can help to save energy because it uses 
only necessary resources of the FPGA. A new possibility 
of reconfiguring rectangular shaped areas for a better 
utilization of the area will be developed on the basis of 
this work. This grants the option to configure smaller 
functions without wasting precious reconfiguration area. 
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