
Real-Time LUT-Based Network Topologies for Dynamic
and Partial FPGA Self-Reconfiguration

Michael Huebner, Tobias Becker, Juergen Becker
University Karlsruhe (TH), Germany

http://www.itiv.uni-karlsruhe.de/
{huebner, beckert, becker}@itiv.uni-karlsruhe.de

Abstract
Xilinx Virtex FPGAs offer the possibility of dynamic

and partial run-time reconfiguration. If a system uses this
feature the designer has to take care, that no signal lines
cross the border to other reconfigurable regions.
Traditional solutions connecting modules on a dynamic
and partial reconfigurable system use TBUF elements for
connection and separation of the functional blocks. While
automalically placing and routing the design, the routing-
tool sometimes uses signal lines which cross the module
border. The constraints given by the designer are ignored.
To solve this problem we use slices instead of TBUF
elements which leads to a benefit by using an automatic
modular design flow. This paper gives an overview of the
used technique and the complete system on a Xilinx
XC2V3000 FPGA.

Categories and Subject Descriptors
B.4.3 [Input/ Output and data communications]:
Interconnections (Subsystems) – Synchronous operation,
interfaces, physical structures, topology

General Terms
Design

Keywords
Dynamic partial reconfiguration, Virtex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI’04, September 7–11, 2004, Pernambuco, Brazil.
Copyright 2004 ACM 1-58113-947-0/04/0009...$5.00.

1. Introduction
1. 1. 1. Tabellen 1.

Xilinx Virtex FPGAs offer the possibility of dynamic
and partial run-time reconfiguration. New approaches use
this feature by outsourcing configuration data which
makes it possible to use FPGAs with smaller
configuration memory and consequently smaller chip
size. Thus it is possible to save costs and reduce power
consumption because not actually used modules of a
complete system do not allocate configuration memory
and corresponding power consuming hardware [1].
Nevertheless power dissipation during reconfiguration has
to be considered [2]. [3] raise this issue with the main
focus on energy saving and basis for new design
methodology. The designer of a dynamic and partial
reconfigurable system on an FPGA must be sure, that no
signal lines of a module cross the border to another
functional block. During reconfiguration such a signal
line might cause a malfunction or a short-circuit, which
destroys the FPGA. Because of this it is necessary to
implement interfaces which are used as fixed routing
resources. These interfaces, called BUS Macros, are
placed in the same position for each functional block.
Connecting the modules with signal lines on the same
position grants the option, to substitute a module by
another. Traditional techniques using TBUF elements as
BUS Macro, are able to separate the modules and provide
a resource for automatic routing. Unfortunately the
autorouter of the Xilinx ISE design software ignores the
constraints which disallow the use of routing resources
across the border of a module area. This leads to a very
time consuming and difficult manual debugging which is
not acceptable. A more detailed schematic of the
traditional TBUF interface is shown in figure 1.1. To send
a signal from left to right, for example the LE(0) input of
the Tristate gate is on enable level, while RE(0) switches
the second gate into Tristate mode. The signal of LI(0) is
now connected to the Output(0) line which connects the
two sides. In the opposite direction communication is
possible by changing the mode of the Tristate gates. For

28

Figure 1.1 Tristate gates of CLB interface

LE(0)

LI(0) LI(1) LI(2) LI(3) RI(0) RI(1) RI(2) RI(3)

LE(1) LE(2) LE(3) RE(0) RE(1) RE(2) RE(3)

Output(3)
Output(2)
Output(1)
Output(0)

Module left Module right

LE(0)

LI(0) LI(1) LI(2) LI(3) RI(0) RI(1) RI(2) RI(3)

LE(1) LE(2) LE(3) RE(0) RE(1) RE(2) RE(3)

Output(3)
Output(2)
Output(1)
Output(0)

Module left Module right

more information about the design section 0 describes the
target hardware and gives an overview of the complete
system. The following subchapters 2.1 to 2.3 contain the
description of the used modules in detail. Section 3 shows
the implementation of the complete system after place and
route procedure. Real-Time aspects are described in
section 0 and in section 5 the conclusion and a preview of
future work is described.

2. Target Hardware and Reconfiguration
Techniques

2. 2. 2. Tabellen Formelabsc

The method which is introduced in this paper was used on
a dynamic and partial reconfigurable system implemented
on a Xilinx Virtex-II FPGA (XC2V3000). To get an
overview of the complete system, figure 2.1 shows the
schematic picture with all used components.

Figure 2.1 Dynamic reconfigurable system

Bus-Macro

Arbiter

Bus-Macro

Arbiter
M

odule 1

Bus Com 1

ID 1

M
odule 1

Bus Com 1

ID 1
M

odule 2
Bus Com 2

ID 2
M

odule 2
Bus Com 2

ID 2

M
odule 0

Bus Com 0

ID 0

M
odule 0

Bus Com 0

ID 0

M
odule 3

Bus Com 3

ID 3

M
odule 3

Bus Com 3

ID 3

Run-time
Module

Controller

µController
(MicroBlaze)

Run-time
Module

Controller

µController
(MicroBlaze)

Flash-
memory

Boot-
CPLD

I/O (e.g. CAN)

Flash-
memory

Boot-
CPLD

I/O (e.g. CAN)

ICAP

Decompressor
Unit (LZSS)

ICAP

Decompressor
Unit (LZSS)

As a controlling element, the Xilinx MicroBlaze [11]

Soft-Core controller was used. The internal block RAM
elements of the FPGA contains the run-time system which
controls the activities inside the complete system. A
detailed description of the run-time system and the tasks
of the MicroBlaze controller can be found in [7]. Via an
arbiter the controller is connected to the bus macro. The
arbiter controls the dataflow for sending or receiving
messages to or from the modules. The bus was designed
for our test scenario for automotive control functions but
it also can easily be adapted to other usage. To connect
the modules to the FPGA bus system, an interface module
called BUS-COM Module was designed. This module

enables a unified connection to functional modules of
other applications. Designers only have to adapt their
implementations to the specifications. The BUS-COM
Module receives signals from the arbiter to connect data
and signal lines of the modules to the bus system. The
BUS-COM module also contains the slot identification
number which allows to assign a unique address for each
module. This id number won’t be overwritten if
reconfiguration occurs. The BUS-COM Module is used
like a connector for multi-purpose applications which are
designed in the slot-modules.

The FPGA of the Virtex-II series grants the option to
use the internal configuration access port (ICAP) [4]
which allows a self-reconfiguration without demand of
external wiring. The ICAP interface provides nearly the
same features as the SelectMap interface for external
usage. Figure 2.2 shows the schematic of the modules
used for reconfiguration procedure. Partial bitstreams are
stored in an external flash memory. The run-time system
sends the start address and endadress to the decompressor
module. Afterwards a start command enables the
decompressor to read the compressed bitstream data from
the flash, to decompress it and write it through the ICAP
interface. While this process is running, the controller is
able to work on further tasks. A signal from the
decompressor reports the end of the configuration
process. The complete system is connected via a CAN
interface to its environment. The interface of the
decompressor is designed in a way that it can easily be
integrated into an FPGA based run-time system for partial
reconfiguration. The decompressor consists of three parts:
A controller, a RAM block and a module that changes the
bit width of the output data. A detailed description of this
decompressor system can be found in [5].

If more communication channels are needed it is
possible to implement more CAN controllers or other
interfaces to the FPGA. A detailed overview of the system
can be found in [2].

Figure 2.2 Modules for reconfiguration using
ICAP interface

D e c o m p re s s o r

F la s h

C o n tro lle r
(M ic ro B la z e)

IC A P

R e fo n fig u ra tio n
s ys te m

29

2.1. BUS-COM Module
To provide the stand-alone functionality of the

modules on the bus, the BUS-COM module is necessary.
The main task of this module is to buffer input data,
signalize the arbiter the occurrence of new output data
from the functional-modules and transmit the write enable
signal from the arbiter. The BUS-COM module contains a
module id input, which is connected to pre-programmed
flip-flops. These flip-flops are not overwritten during the
reconfiguration and thereby the modules have a unique
address. If a module is addressed, the data word of the bus
is wrapped and connected to the module’s input. This data
is stored until the module is addressed again. If the output
data of a module changes, the BUS-COM module enables
the request output. The arbiter recognizes this request and
enables the module to send data via the bus by addressing
it. Afterwards the request signal is disabled.

Additionally, the BUS-COM module contains a
command decoder which allows a context save or load
beside the normal bus communication. For that purpose a
demultiplexer is switched to connect context in- or output
signals to the bus system. This feature is used to store or
load necessary data of the modules before substituting
them by reconfiguration, or reload data after successful
configuration on the slot. The commands for context load-
or save are connected via special bus signals.

2.2. Multifunctional Arbiter
The arbiter is responsible for controlling the incoming
bus. Outgoing module data is solely synchronized by a
register. There are no control functions necessary to
transmit both normal module data and context data.

The main task of the arbiter is to execute the requests
of the modules in a reasonable sequence and to transmit
the received data to the run time system together with the
module address. For that purpose the arbiter enables
writing permission to the bus for the module which has
been requesting. Hereupon the module data arrives two
clock cycles later at the arbiter. The module address
which has been delayed for two clock cycles is now
joined together with the data word and transmitted to the
run time system. If the run time system detects the need
for a reconfiguration it sends an instruction word to the
arbiter to interrupt the normal routine. Then the arbiter
inquires which modules are busy by polling each one. By
the time the state of each module is available the arbiter
sends a status word to the run time system. The run time

system is now able to choose an idle module for replacing
it. Afterwards the arbiter returns to the normal routine.
In order to save the context of a module the normal
routine has to be interrupted as well. Thereupon the
context data is transmitted cohesively to the run time
system. After finishing the context save the arbiter returns
to his normal task.

2.3. Basics of Bus Macro
Because of unsymmetry of the routing resources at the

positions with block-ram elements, we designed a bus
macro which connects all module slots on the
reconfiguration area. Using a macro which is dedicated to
only one module, leads to routing and placing problems
because slots can be positioned and routed while
containing block-ram elements.

Figure 2.4 Bus Macro overview

Bus Com 0 Bus Com 1 Bus Com 2 Bus Com 3

Arbiter

ID 0 ID 1 ID 2 ID 3

Bus-Macro

In this case the unsymmetry causes a failure while

routing. Figure 2.3 shows the macro with the connection
to the arbiter in the position completely on the right.

Each macro is able to transport 8 bits of data
unidirectional. If more than 8 bits are needed, another
macro can be placed above or below. To enable a
bidirectional bus an input and output macro was designed.
The disadvantages of using unidirectional bus macros and
the need of an input and output channel are minor, versus
the benefit of using an automatic designflow without a
time consuming debugging and the search for signal lines
crossing module borders. In our implementation an input
bus with the width of 32 bit and an output bus with 16 bit
were used. The difference of these buses in comparison to
buses using TBUF elements is that macro external pins
are placed on slices. Each macro uses 20 slices as
resource. The utilization of resources within a slot and the
arbiter is 4 slices. The complete bus consists of 6 macros.
This means that 24 slices per module slot are occupied by
the bus system. In [6] an approach using a serial
connection as communication path is described.

1

Figure 2.3 Complete Bus Macro for all slots

30

Investigations in using serial protocols for communication
have been done and will be adapted to the existing
system.

2.3.1. Input Communication Macro
The macro consists of 20 slices whereas 4 slices are

used for connection to each module respectively to the
arbiter. The look up tables of the slices are pre-
programmed to route input signals through. The macro
has the height of one CLB row and contains all the
connection points for each module. As an example figure
2.6 shows the usage of the slices. Figure 2.5 shows the
schematic of the complete macro used for the input
signals. The right slices are used to connect the arbiter to
the bus. 8 signal lines are routed to every module and are
connected via 4 slices to the BUS-COM module.

Figure 2.5 Schematic of Input Macro

Connection to the respective modulesConnection to the respective modules

Data/ Signals from Bus-Arbiter/ RT-MCData/ Signals from Bus-Arbiter/ RT-MC

8

88888

Module 0 Module 1 Module 2 Module 3

The bus macro has a delay of maximal 5.5 ns (measured
from the arbiter to the last module). Thus the bus can be
clocked with the maximum possible clock frequency of
66 Mhz.

Figure 2.6 Usage of slices for input macro

CLB

Input 1

Input 2

O
utput 1

O
utput 2

Look-Up-Tables
connect through

Input-Signal

4

4

4 4

2.3.2. Output Communication Macro
Similar to the input macro the output macro also uses

20 slices. However the look up tables are initialized to
realize a multiplexer (see figure 2.7). This is necessary to
grant the option of writing to the bus system with more
than one module. The output macro has a height of one
CLB row and connects all modules. Also the output
macro has a delay time of 5.5 ns. This makes it possible to
use the full clock speed for the complete bus system.
Figure 2.8 shows the schematic of the implemented
output bus macro. The slices on the right are used to
connect to the arbiter. If a module is allowed to write data

on the bus, the select signal switches the multiplexer
inputs to the module’s side. Now Predecessor modules are
not able to use the bus. After the bus transfer of data the
select signal switches the inputs to the predecessor
module and the bus can now be used for other modules.

Figure 2.7 Usage of slices for output macro

CLB

Input 1

Input 2
Input 2 from

 M
odule

Select
Output 1

Output 2

Look-Up-Tables
initialized as
MultiplexerInput 1 from

 M
odule SelSel

4

4
4

4
4

4

From predecessor module To successor module

Figure 2.8 Schematic of output macro

to Arbiter

8

8888 8

Module 0 Module 1 Module 2 Module 3

ss
8

ss
8

ss
8

ss

Connection from the respective modulesConnection from the respective modules

3. System Integration
3. 3. 3. Tabellen

Figure 3.1 Complete system after placement and
routing

Bus

Arbiter

MicroBlaze

ICAP-Module

CAN-Connection

Bus

Arbiter

MicroBlaze

ICAP-Module

CAN-Connection

By using the Xilinx design software ISE [9] and the
tool EDK (Embedded Development Kit) [10] the
complete system was implemented on the FPGA. Figure
3.1 shows the complete system placed on a Xilinx Virtex-
II XC2V3000 FPGA. The modular designflow [12] was
used to generate the partitioned design. Modular design

31

flow allows the creation of dynamic reconfigurable
systems. Figure 3.1 shows the separation of the used
modules in detail. For example one function on the left is
implemented to show the first slot of the system. On the
bottom the bus system with its signal lines connecting all
modules is visible. In this system a width of 8 columns
was used for the separated modules. Therefore a value of
2048 slices can be utilized in each module slot. For the
BUS-COM Module and the logic for the bus-macro only
74 slices are utilized within the slot.

4. Real-Time Application
4. 4. 4. Tabellen 1.

As described in sections 2.3.1 and 2.3.2 the bus can
run at full clock speed of 66 Mhz. In our system it is
possible to transfer 252 MByte/s with the input bus and
125 MByte/s with the output bus. The used applications
configured in the slots need to save maximal 20 words
with counter states or actual states of internal finite state
machines. Thus for a reconfiguration process the time of
20 clock cycles (303 ns) is required for saving and
loading the data. The time of about 606 ns is a fixed value
for every context load or save process. Certainly
additional time is needed for writing the configuration
bitstream to the ICAP interface. In our case the amount of
configuration data is about 118 Kb. With the speed
capacity of 66 Mbyte/s it is possible to reconfigure one
slot in 1.8 ms. This leads to a maximum reconfiguration
frequency of about 555 Hz. Of course the time for
reconfiguration depends of the chosen size of the slots.
Timing measurements with the CAN-Simulation
programme CANOE [8] shows, that response times
shorter that 3 µs without reconfiguration are possible. If a
slot has to be reconfigured, the response time is smaller
than 10 ms. These results are sufficient for the automotive
application we used for testing. Also the topology we
designed with this bus structure is ideal for the real
scenario of the test application. The bus topology and the
possibility to use the run-time system as a central for
managing the incoming and outgoing messages enables a
fast and efficient transfer of data.

5. Conclusions and Future Work
5. 5. 5. Tabellen 1.

This paper shows an implementation of a
reconfigurable system using slices as connecting
resources instead of TBUF elements. Using this design
method an automatic design flow without manual
debugging is possible. The system is implemented on a
rapid prototyping system and runs at full clock speed of
66 Mhz. The bus system can easily be adapted to other
demands e.g. higher in- or output width. Using the
universal BUS-COM modules makes it possible to design
easy connectable functions and allows saving important
data before functions are substituted by others. Also data
can be reloaded after reconfiguring a function in order to

start for example with identical counter states. The
number of module slots can easily be adapted to the
required amount by changing the bus macro. Flexibility
was the main focus while designing this system. Further
work will be to design a tool which allows implementing
this design methodology into the ISE design flow. This
grants the option for a fast design for a dynamic and
partial reconfigurable system. Further on the bus system
can be adapted to the demands of run-time in future. At
the moment the topology and the width of the bus is
adapted to the requirements of the system. This feature of
a network on chip can help to save energy because it uses
only necessary resources of the FPGA. A new possibility
of reconfiguring rectangular shaped areas for a better
utilization of the area will be developed on the basis of
this work. This grants the option to configure smaller
functions without wasting precious reconfiguration area.

6. References
6. 6. 6. Tabellen 2.

[1] J. Becker, M. Huebner, M. Ullmann: “Power Estimation
and Power Measurement of Xilinx Virtex FPGAs: Trade-
offs and Limitations”, SBCCI03, Sao Paulo, Sep. 03

[2] J. Becker, M. Huebner, M. Ullmann: “Real-Time
Dynamically Run-Time Reconfiguration for Power-/Cost-
optimized Virtex FPGA Realizations”, VLSI03, Darmstadt,
Sep. 03

[3] L. Benini, G. De Micheli: “Networks on Chip: A New
Paradigm for Systems on Chip Design”, Date 02, March
3~7, Paris France

[4] B. Blodget, S. McMillan: “A lightweight approach for
embedded reconfiguration of FPGAs”, Date03, Munich
Germany

[5] M. Huebner, M. Ullmann, F. Weissel, J. Becker: “Real-time
Configuration Code Decompression for Dynamic FPGA
Self-Reconfiguration”, RAW04, Santa Fee

[6] J.C. Palma, A. Vieira de Melo, F. G. Moraes, N. Calazans,
"Core Communication Interface for FPGAs", SBCCI02,
Porto Alegre BRAZIL

[7] M. Ullmann, M. Huebner, B. Grimm, J. Becker: “An
FPGA Run-Time System for Dynamical On-Demand
Reconfiguration”, RAW04, Santa Fee

[8] http://www.vector-cantech.com

[9] http://www.xilinx.com/ise/design_tools/

[10] http://www.xilinx.com/ise/embedded/edk.htm

[11] http://www.xilinx.com/ipcenter/processor_central/microbla
ze/literature.htm

[12] XAPP290: Two Flows for Partial Reconfiguration: Module
Based or Small Bit Manipulations

32

