
Introduction to Git for Groups: Lecture Notes
Dr Tristan Allwood
May 2014

Introduction

Git is a powerful version control tool.

Introduction to Git For Groups

For the lab exercises so far, you’ve used it to record changes to
a codebase, and to share those changes with others (the lab testing
system, your PPT/UTA, etc). However there is a lot more to git. In
this lecture, we are going to cover the following:

• Getting the changes made by others...

Getting the changes made by others

– when you work at different times

– when you work at the same time on different files

– when you work at the same time on the same files

• Viewing / getting back to old versions of your work.

Viewing old versions of your work

• Working on separate lines of development with your team mates.

Working on multiple lines of
development

As we work, we will be discussing a model of how git works,
and how the commands you run will change that model. We aren’t
going to talk precisley about how git stores files or creates hashes,
the model will be more abstract, but it should be a fairly good
intuition for what the commands are doing.

However, all I can do in this lecture is telegraph important com-
mands and ideas that you should be aware of. There is no way
you’ll suddenly know git from just this lecture, as with program-
ming, the only way to really truly learn it is to use it, to gain expe-
rience, to make mistakes and to figure out useful commands and
patterns that are helpful to you. Feel free to ask lots of questions
during the lectures, in the lab and on piazza!

A single person working

We’ll start with the process you’ve been following in the labs:

A single person working

gitlab

Your home directory

object store

revision
master

branch label

index

workspace

git clone https://gitlab.doc.ic.ac.uk/lab1314_summer/arm11_<group_no>.git

master

For each exercise, a skeleton repository has been provided for
you on the Gitlab server. This (usually) contains an object store con-
sisting of a single revision, i.e. a snapshot of some code and files in
a skeleton work, and a branch called master, which points at that
revision.

You get a local copy of the repository via:

git clone <url>

For example, to get your provided group repository for the
ARM11 assignment you run:

git clone https://gitlab.doc.ic.ac.uk/lab1314_summer/arm11_<group_no>.git

introduction to git for groups: lecture notes 2

This creates a local copy of the repository, and checks out the
snapshot of the files on the default branch (master in this case)
into the file system. The files you edit in this snapshot live in the
workspace, the object store, and a temporary working area (called the
index) are also created and live inside the .git directory inside the
workspace.

As you progress on your work, it is possible to use git to record
snapshots of your work in progress, in-order to send them to other
repositories, or to get back to them later. To do this, you add a set of
changes from the original workspace to the index, and then commit
a set of these changes to the object store in one go.

Adding changes to the index

git add

git rm

git mv

git status

git diff

git diff --cached

git add

git mv

<edit to add . inside>

git add

git rm

To add changes to the index, you use git add on a file that you
have created or edited. If the change is to delete a file, you can use
git rm. There is also git mv to move a file, but note that git will
detect when you move a file based on it’s content, even if you forget
to use git mv.

Git status, diff and
diff --cached

>git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: Added.txt
 modified: Hello.txt

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working
 directory)

 modified: Hello.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 NotAdded.txt

Git status, diff and
diff --cached

>git diff Hello.txt
diff --git a/Hello.txt b/Hello.txt
index a92b91b..0a7ef26 100644
--- a/Hello.txt
+++ b/Hello.txt
@@ -1,3 +1,5 @@
 Hello world!

 This is my brand new story that I've added...
+
+And this is something I've written in Hello.txt but not added.

>git diff --cached Hello.txt
diff --git a/Hello.txt b/Hello.txt
index cd08755..a92b91b 100644
--- a/Hello.txt
+++ b/Hello.txt
@@ -1 +1,3 @@
 Hello world!
+
+This is my brand new story that I've added...

As you are building up a set of changes, you can see what git’s
view of your repository and index are using git status. The
changes you’ve made that are unadded, or uncommitted can be
seen with git diff and git diff -cached.

Committing Changes

git add

git commit
master

Commiting and pushing

>git commit -m "Added Hello."
[master 68c9ae4] Added Hello.
 2 files changed, 3 insertions(+)
 create mode 100644 Added.txt

>git push origin master
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (7/7), 590 bytes | 0
bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To ../tmp_remote.git/
 * master -> master

When you have the new snapshot you want ready, you create it
using git commit. By default, git will open a text editor for you to
describe your change in a commit message.

You you create the commit, git will add the change and the new
workspace state to the object store. The commit will be associated
with a (globally) unique id, which is derived from using a SHA-
1 hash all of all the information that made that commit. Git also
knows that the active branch is called master (by default), and will
move that branch pointer along to the new commit.

Committing and pushing

After committing you can send any new commits you have cre-
ated back to the repository you cloned from using git push. As-
suming the new location of the master branch is a descendant of
the old master branch on the server, this will update the server’s
master branch pointer, and also the local origin/master pointer.

Two people working at separate times

Two people working at separate
times

This works fine if you’re just working on the lab machines, or on
your laptop. However if you’re working on both your laptop and
home machine, then you have to find a way to get your new revi-
sions to the other machines.

Working with yourself on another machine, or at another time,
by the way, is basically the same as working with another person.

Let’s try this again, but now two people clone, and then the first
makes a change, and adds, commits and pushes it.

The second person now wants to get the latest version of the
code. In git this happens in two stages:

• First the changes and revisions have to get into the second per-

introduction to git for groups: lecture notes 3

son’s object store.

• Then the workspace has to be updated to reflect the state of one
of the revisions.

Two people working at separate
times

git clone <url>

<edit>

git add <file>

git commit

git push origin master

git clone <url>
master

origin/master

mastermaster origin/master

master

origin/master
master
origin/master

master

master origin/masterAny changes and revisions can be simply copied across from one
repository to another, this can be achieved using:

git fetch

Two people working at separate
times

git merge origin/master

git fetch
master

master
origin/master

master
origin/master

After running a git fetch, it is useful to run gitk -all to visu-
alise exactly what you have pulled in, and what the state of your
local object store is. Here we can see that the location of master
locally is behind that on the server.

To update the workspace, we can request that our current workspace
is merged with the new one.

git merge origin/master

Git will notice that we are still on the original commit, and that
there’s a single way to get to the current origin/master, so it will
apply that change, and update the local master branch to point to
the same place.

This works the other way - person two could then make a series
of changes (using git add and git commit), and push them back,
for person one to git fetch and git merge.

Two people working at the same time

Two people working at the same
time (different files)

In reality, when two or more people work together, it’s likely that
they will end up working on the project at the same time.

We’ll first consider what happens when they work on different
files. For example, Person A creates file A, and Person B creates file
B. They both add and commit.

Two people working at the same
time (different files)

master

master
origin/master

git push origin master

git clone <url>
<edit file two>
git add
git commit

git clone <url>
<edit file one>
git add
git commit

Inside each of their local object stores, the commit will have
recorded a new change, and a new revision with the state of the
workspace. If Person A pushes (using git push origin master),
then Person B can get Person A’s change and revision into their
local object store using git fetch. Though the graph of changes
has now diverged. Person B has their (committed) change and
Person A’s change leads to a different state.

Two people working at the same
time (different files)

masterorigin/master

git fetch

git merge origin/master
master

origin/master

However what Person B wants is to see Person A’s new file in
their workspace. The two changes don’t (superficially) conflict in
any way (they don’t talk about the same files), and so it’s fairly
simple for git to combine the two changes together to create a new
revision.

Person B can now run

git merge origin/master

Two people working at the same
time (different files)

git push origin master

git fetch
git merge origin/master

and git will combine the committed changes together, building a
new revision with both files. git will also move the current branch

introduction to git for groups: lecture notes 4

(master) forward to this combined revision. Person B pushes this
change, so Person A can now fetch and merge, and will also see
both changes in their workspace.

Remember git won’t let Person B push, if the movement of the
master branch pointer would not be up the tree, but across it. Per-
son B would need to resolve the divergence (i.e. fetch and merge)
before git will let them push their change. Later we will see a way
of creating new branch labels, which is another way that Person B
would be able to push their work.

Two people working at the same
time (same files)

Of course, people don’t always work on separate files. Team
members may need to (or accidentally!) edit the same file at the
same time - for example while writing different sections of a report,
or to bugfix something that’s breaking for them in a file someone
else is working on. Git is very good at resolving these kinds of
conflicts in a way that makes textual sense.

Two people working at the same
time (same files)

>git merge origin/master
Auto-merging Hello.txt
CONFLICT (content): Merge conflict in Hello.txt
Automatic merge failed; fix conflicts and then
commit the result.

When git detects a conflict during a merge that it cannot resolve,
it looks at the two versions of the file you are trying to combine,
and it also looks at the common ancestor version to help figure out
the change.

Two people working at the same
time (same files)

Hello world!
This is the start of a
great program!!!

I like zebras.
Hello world!
This is the start of a
great program!!!

I like giraffes.

Hello world!
I hope you're listening.
This is the start of a
great program!!!

I like elephants.

Hello world!
I hope you're listening.
This is the start of a great
program!!!

<<<<<<< HEAD
I like elephants.
=======
I like giraffes.
>>>>>>> origin/master

Two people working at the same
time (same files)

Hello world!
I hope you're listening.
This is the start of a great
program!!!

<<<<<<< HEAD
I like elephants.
=======
I like giraffes.
>>>>>>> origin/master

Hello world!
I hope you're listening.
This is the start of a great
program!!!

I like elephants and giraffes.

<edit Hello.txt to resolve>
git add Hello.txt
git commit

It then annotates the conflicting file with information about the
different versions, which the user then needs to edit in order to
resolve. The annotation will have up to three parts, separated by
rows of <, = and > characters.

Two people working at the same
time (same files)

Merge remote-tracking branch 'origin/master'

Conflicts:
Hello.txt

#
It looks like you may be committing a merge.
If this is not correct, please remove the file
.git/MERGE_HEAD
and try again.

Please enter the commit message for your changes. Lines
starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit each, respectively.
(use "git pull" to merge the remote branch into yours)
#
All conflicts fixed but you are still merging.
#
Changes to be committed:
modified: Hello.txt
#

Edit the conflicted file to resolve as appropriate, and then add,
and commit the change. Git will prompt with a sensible default
commit message set up for you.

You might want to read up on and experiment with git mergetool,
as there are many editors (e.g. vim, xxdiff, meld) that can provide a
user interface to manage 3-way merges.

Viewing / browsing old versions of your work

Viewing / browsing old versions of
your work

gitk --all &

You can use informational tools to visualise the different states and
changes stored in the repository. Repository browsers, such as gitk

-all, gitg, or even the web pages on gitlab for a pushed repository
are great for exploring who has done what when.

Viewing / browsing old versions of
your work

commit ffba57269dcc1a12cfc929e3a4f6322931cf0f1c
Author: Dr. Tristan Allwood <tora@doc.ic.ac.uk>
Date: Tue May 20 12:31:59 2014 +0100

 More updates to the spec.

commit 93734d0101efaa6b0dfb347587284eea844b36bb
Author: Dr. Tristan Allwood <tora@doc.ic.ac.uk>
Date: Mon May 12 15:38:50 2014 +0100

 Spec pass up to working and submission.

commit e4d606286b3791b01c3636040f541502f9af196a
Merge: 1976787 1f0d7c6
Author: Dr. Tristan Allwood <tora@doc.ic.ac.uk>
Date: Mon May 12 11:08:18 2014 +0100

 Merge remote-tracking branch 'origin/master' into wip-2013

 Conflicts:
...

> git log spec/spec.tex

Viewing / browsing old versions of
your work

> git blame spec/spec.tex
61313227 (Dr. Tristan Allwood 2013-05-19 12:52:55 +0100 1) \documentclass[a4paper,twoside]{article}
cd6b4b2d (Will Jones 2012-05-14 12:09:02 +0100 2)
61313227 (Dr. Tristan Allwood 2013-05-19 12:52:55 +0100 3) \usepackage{fullpage}
c05c8bed (Will Jones 2012-04-18 17:36:15 +0100 4) \usepackage{bytefield}
dfe12a56 (Will Jones 2012-05-14 14:40:51 +0100 5) \usepackage{graphicx}
0155868c (Dr. Tristan Allwood 2012-05-17 19:04:45 +0100 6) \usepackage{hyperref}
5a27d821 (Will Jones 2012-05-18 12:18:02 +0100 7) \usepackage{alltt}
a3b7a457 (Dr. Tristan Allwood 2013-05-17 17:20:28 +0100 8) \usepackage{amsmath}
a3b7a457 (Dr. Tristan Allwood 2013-05-17 17:20:28 +0100 9) \usepackage{tabulary}
d87cdb9f (Maria 2013-05-13 17:42:20 +0100 10) \usepackage{float}
73bb5cc4 (Dr. Tristan Allwood 2013-05-19 19:34:44 +0100 11) \usepackage{comment}
d87cdb9f (Maria 2013-05-13 17:42:20 +0100 12) \restylefloat{table}
cd6b4b2d (Will Jones 2012-05-14 12:09:02 +0100 13)
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 14) \hypersetup{
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 15) colorlinks=true,
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 16) linkcolor=blue,
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 17) citecolor=blue,
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 18) filecolor=blue,
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 19) urlcolor=blue
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 20) }
07215a58 (Will Jones 2012-05-18 12:31:43 +0100 21)
cd6b4b2d (Will Jones 2012-05-14 12:09:02 +0100 22) % Macros for printing code and binary/hexadecimal numbers.
cd6b4b2d (Will Jones 2012-05-14 12:09:02 +0100 23)

On the command line it is also possible to use git diff to see
the difference between the current version of a file and previous
ones, or git log and git blame to see what the commits where
that affected a particular file or the individual lines of that file. git
show is also a good way on the command line to get access to a
particular snapshot of a file at a particular version.

introduction to git for groups: lecture notes 5

Multiple Branches of Development

Multiple Branches of Development

Multiple Branches of Development

As we have seen, git is a very powerful tool for recording, merging
and interrogating different versions of work by multiple people.
However there is one crucial ability of git’s that we have so-far
overlooked, which is the ability to easily and cheaply create and
manipulate new named branches of work in a repository.

We have seen branches in the revision graph already, when two
people create two different commits starting from the same revi-
sion. If git believes they are both on the same named branch (e.g.
master, it won’t let both push until the difference is somehow re-
solved (e.g. through a merge).

Multiple branches of development

master

origin/master
master

???

However they may be times when you want to share the di-
verged changes without merging them just yet, or possibly at all.
For example, you wish to work on and complete a new feature be-
fore merging in the features your team mates are working on, or
you may wish to try an experiment or idea out without wishing to
lose the place you started from in case it doesn’t pan out.

Multiple branches of development

master

origin/master
master

git checkout -b my_awesome_fire_truck
<work and commit on the fire truck branch>

my_awesome_fire_truck

To create a new named branch, you tell git to check you out onto
that branch, using git checkout -b <branch name>. In your object
store this creates a new branch label called <branch name> at the
commit you’re workspace is currently on, and sets your current
branch to be that new branch. Now when you commit, the new
branch label is moved forward.

You can explicitly push a particular branch using git push

origin <branch name>, so others can see it too. This will also create
an origin/<branch name> branch in the current repository, so git
can track when it’s local knowledge of a remote branches position
changes.

Multiple branches of development

master

origin/master
master

git checkout master

my_awesome_fire_truck

Multiple branches of development
git push origin my_awesome_fire_truck

git checkout my_awesome_fire_truck

git fetch

master

origin/master

master

origin/my_awesome_fire_truck

my_awesome_fire_truck

Of course, once you have created several named branches, you
want to be able to move your workspace between them. To move
the workspace and active branch to a different named branch, use
git checkout <branch name>.

Multiple branches of development
git checkout master

git merge my_awesome_firetruck
<merge conflict>
<put out fires>
git add
git commit

master

master

my_awesome_fire_truck

my_awesome_fire_truck

Do not forget to put out the fires!

You can create merges between the current active branch and any
remote branch using git merge <branch name>. This will move the
active branch forward, but leave <branch name> where it is.

Note that you can actually checkout any particular revision with
git checkout <revision>. If you do this, git will put you on into a
mode where there is no active branch, and will give you a warning
message. You can of course create a new branch at that revision
using git checkout -b <new branch>.

introduction to git for groups: lecture notes 6

Closing

Lots of things we've seen

git clone

git status

git add

git rm

git mv

git diff

git commit

git push

git fetch

git merge

git log

gitk –all

gitg

git blame

git checkout -b

git checkout

Lots of other things to investigate

git checkout

git cherry-pick

git rebase

git stash

git reset

git branch

git remote

git help <command>

Please bear in mind this is only scratching the surface of what git
can do for you. It has a lot of other very powerful features that are
incredibly useful in some cases (e.g. cherry picking – taking a single
commit from one branch and applying only it on another, rebasing
– rewriting a branch of history so that it looks like a straight line of
development, adding other remotes so you can push or fetch from
multiple different repositories, stashing – temporary branches man-
aged by git for storing short-lived work-in-progress changes), but
they can all be described in terms of the simple underlying model
of revisions, commits, branch labels, indexes and workspaces.

	Introduction
	A single person working
	Two people working at separate times
	Two people working at the same time
	Viewing / browsing old versions of your work
	Multiple Branches of Development
	Closing

