
banner above paper title

CLASE: Cursor Library for A Structured Editor
Functional Brick: Embracing Boilerplate for Yet Another Zipper Library

Tristan O.R. Allwood
Imperial College London

tora@doc.ic.ac.uk

Susan Eisenbach
Imperial College London

s.eisenbach@imperial.ac.uk

Abstract
The “zipper” is a well known design pattern for providing a cursor-
like interface to a data structure. However, the classic treatise by
Huet only scratches the surface of some of the potential applica-
tions of the zipper. In this paper we take inspiration from Huet, and
build a library suitable as an underpinning for a structured editor
for programming languages. We consider a zipper structure that is
suitable for traversing heterogeneous data types, encoding routes
to other places in the tree (for bookmark or quick-jump function-
ality), expressing lexically bound information using contexts, and
traversals for rendering a program indicating where the cursor is
currently focused in the whole.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data]: Data
Structures

General Terms language, context, cursor, zipper, GADT, con-
structor, bookmark, traversal, render

Keywords zipper, cursor, boilerplate, bookmarks, traversal, gen-
eralized algebraic data types,

1. Introduction
1.1 Motivation
The Zipper (1), and its variants (3), (6), (2), are well known in the
folklore as an appropriate pattern for providing a cursor-like inter-
face to a data structure. We have started developing an interactive
tool that visualises and manipulates FC (7) (the new GHC inter-
mediate language). As the manipulations are to be done in user-
selected focused areas of the tree, a cursor presentation indicating
the current focus was decided upon for presenting to the user. Nat-
urally we were drawn to a zipper-style of implementation for our
underlying representation.

During implementation we borrowed inspiration from the exist-
ing literature, but came across issues that do not seem to be previ-
ously addressed; Our expected underlying data type is a program-
ming language with a notion of binding, and we needed several
ways of traversing the data type that used both the bound informa-
tion (e.g. names of in-scope variables) and the location of the cur-
sor. We also wanted to support an arbitary number of bookmarks

[Copyright notice will appear here once ’preprint’ option is removed.]

(saved locations that the user can jump back to) into the program
tree that remain valid across changes to unrelated parts of the tree.

We present here a library that has been developed out of our
experiences. It is built around the ideas of the traditional Huet
Zipper, but extended with the following properties:

• A library component that is agnostic to the underlying data type
being traversed, and Template Haskell scripts that generate all
the boilerplate to link the underlying data type to the library.

• The ability to traverse heterogeneous data types.
• A way of expressing routes from the current focus to arbitary

places in the tree, with easy detection of whether local changes
will invalidate these routes, and the ability to move to them -
allowing easy creation of a “bookmark” facility.

• If a programming language with lexical binding is being held in
the zipper, the ability for the user to express the binding strategy
for the language once in an idiomatic way.

• A traversal that uses the binding specification to make avail-
able transparantly the current binding information for the local
context without traversing the entire tree.

• A second traversal that would be suitable for rendering a cursor
in an editor, that transparantly uses binding information, and
the current cursor location. The user code to use this traversal
is made very idiomatic due to some automatically generated
adapter code.

It is our intention that this library could aid in the develop-
ment of interactive visualisers or editors for small programming
languages that need a cursor presentation to the user.

The library and some screenshots are available online at (8). We
freely admit it is not a particularly small or elegant solution to our
problems; there is a considerable amount of mechanically derived
boilerplate involved and it requires a large number of extensions to
standard Haskell ’98 (GADTs, TypeFamilies, RankNTypes, Mul-
tiParamater type classes to name a few). We mitigate this by pro-
viding Template Haskell scripts to generate all the boilerplate. For
this reason we lovingly consider our work as a Functional Brick,
it may not look pretty, but it provides a core that works well as a
foundation for a larger application.

Our aim is for a user of our library to need to provide only the
data structures describing their language, the strategy for binding
in their language, and how to render each constructor and the
cursor position in their language. In return they get a cursor library
that allows generic movement and update throughout the tree, the
ability to easily create bookmarks in the tree, and ways to traverse
and render the cursor in the tree. One further advantage of our
approach is that the structure of the cursor is entirely done with
data. Although we have not exploited this here, it does mean the
structure is (in theory) persistable without too much difficulty.

short description of paper 1 2008/6/23

1.2 Outline
We proceed as follows; In 2.1 we briefly introduce GADTs, and a
utility data type that will be used in the paper. We introduce a small
language LAM in 2.2 that will be our running example of something
we wish to traverse. We explain the notion of 1 holed contexts for
LAM, and introduce the Path data type, which, when applied to
LAM’s contexts and paired with an appropriate value gives us a
simple cursor (2.3). Next (2.4) we introduce primitive movements
for our cursor.

We then abstract in 2.5, using type classes and associated data
type families to create a class of languages that our cursor is
parameterised over. We move away from desiging our library tied
to LAM and instead make LAM an instance of our new Language
class.

We extend our simple cursor with a notion of a route to an ar-
bitary place in the tree, and show how this can be used to encode
bookmarks that allow easy detection of whether local modifications
will invalidate them (2.6). In 2.7 we extend the definition of Lan-
guage to include some utilities that allow recovery of the traditional
zipper moveUp/moveLeft/moveRight/moveDown functions.

We then (2.8) use our context constructors to allow the user to
express a binding strategy (should they desire to), and introduce
a simple traversal to recover the names of of in scope variables
in LAM. Finally we implement a traversal for rendering a Lam
program, indicating where the cursor currently is, and reusing our
binding code (2.9).

We finish by discussing related work in 3, and some future
extensions we would like to make in 4.1.

2. Library
2.1 GADT Preliminaries
In this work we will be using a lot of extensions to Haskell that are
implemented in GHC. One of the most pervasive extensions we use
are Generalized Algebraic Data Types (GADTs). GADTs gener-
alise normal Haskell data types by allowing individual constructors
to refine (or specify) more specific types for the type parameters of
the type.

For example, we can use a GADT to create a simple reflection
scheme for a closed set of types with values:

data SimpleReflect t where
IntReflect :: Int → SimpleReflect Int
TwoBoolReflect :: Bool → Bool →

SimpleReflect (Bool ,Bool)

This introduces a new type SimpleReflect that is parame-
terised by a type t. This type has two constructors, IntReflect,
which carries a single Int, and TwoBoolReflect, which carries
two Bools.

However, both constructors refine the type t to more concrete
values. This makes it possible to implement a function to extract
the contents from either constructor:

extract :: SimpleReflect t → t
extract (IntReflect int) = int
extract (TwoBoolReflect b1 b2) = (b1 , b2)

When the compiler sees a pattern match that brings into scope
more information about the type, the extra type information is then
available for the programmer. E.g. in the first case the pattern match
on IntReflect refines the t to Int, and so the compiler can tell
the function is well typed.

One incredibly useful GADT, which we will make much use of
later, is one that witnesses type equality:

data TyEq a b where
Eq :: TyEq x x

A pattern match on the Eq type constructor will bring into scope
the knowledge that two type variables are actually the same type.
Using this it is easy to produce a simple “cast” like function:

simpleCast :: TyEq a b → a → b
simpleCast Eq = id

i.e. given a witness that types a and b are exactly the same type,
we can use the identity function to turn a value of type a into a
value of type b.

2.2 LAM Example Language

data Lam = Lam Exp

data Exp
= Abs String Type Exp
| App Exp Exp
| Var Integer

data Type
= Unit
| Arr Type Type

Figure 1. The LAM Language

In Figure 1 we present a small language, LAM, that we will use
as a concrete example for our techniques in this paper. The Lam
type marks the root of our program, and its sole constructor is a
simple wrapper over a LAM expression.

Expressions are either lambda abstractions, (Abs) which carry
a String name for their variable, a Type for their variable and
an expression (Exp) in which the variable is in scope. Application
expressions are the familiar application of two expressions to each
other. Variable expressions carry a de Bruijn index (9) indicating
which enclosing Abs binds the variable this Var refers to.

Types are either arrow types (Arr) or some notional unital type
(Unit).

For example, we would expect the following Lam program to
represent the term λx :: τ → τ.(x ◦ λy :: τ.(y ◦ x)):

Lam (Abs "x" (Unit ‘Arr ‘ Unit) $
(Var 0) ‘App‘ (Abs "y" Unit $ (Var 0) ‘App‘ (Var 1)))

It is our desire to allow a cursor to navigate between Exp, Type
and Lam types.

2.3 Towards a simple Cursor
In terms of cursor design, the first thing to notice about the LAM
language is that it is heterogeneous. At certain points in the design,
we may know that we are dealing with some type in the LAM lan-
guage (Lam, Exp or Type), but we don’t know which part. To deal
with these cases, we will need some form of reflection scheme to
allow us to get back to the current type. There are several libraries
that already exist to do this (for example Data.Typeable), how-
ever here we want a closed scheme that can only let us get back
into the LAM language. For this we use a (mechanically derived)
simple GADT, and type class:

data TypeRepI a where
ExpT :: TypeRepI Exp
LamT :: TypeRepI Lam
TypeT :: TypeRepI Type

class ReifyLam a where
reifyI :: a → TypeRepI a

short description of paper 2 2008/6/23

instance ReifyLam Exp where reifyI = ExpT

instance ReifyLam Lam where reifyI = LamT

instance ReifyLam Type where reifyI = TypeT

The core of a zipper library is the notion of a context. This
represents a constructor in the original language but with a hole in
it for the current item in focus. Contexts are then chained together
(usually by a ’moveUp’ field) to allow focus at an arbitary place in
the tree. Here, we have separated the contexts from the chaining,
so our contexts only represent a constructor with a hole in them.
Because our contexts can ’cross types’ (e.g. the cursor could be
focused on the Type inside an Abs constructor (of type Exp)), they
are GADTs that hold the type the Context goes from (what the type
of the hole is) and to (what the type of the constructor that has the
hole in it is).

The LAM language contexts are then (mechanically derivable):

data ContextI from to where
TypeToAbs :: String → Exp → ContextI Type Exp
ExpToAbs :: String → Type → ContextI Exp Exp
ExpToApp0 :: Exp → ContextI Exp Exp
ExpToApp1 :: Exp → ContextI Exp Exp
ExpToLam :: ContextI Exp Lam
TypeToArr0 :: Type → ContextI Type Type
TypeToArr1 :: Type → ContextI Type Type

Given a ContextI from to and an item of type from, we can
then build something of type to, vis:

buildOneI :: ContextI from to → from → to
buildOneI (TypeToAbs x0 x1) h = Abs x0 h x1
buildOneI (ExpToAbs x0 x1) h = Abs x0 x1 h
buildOneI (ExpToApp0 x0) h = App h x0
buildOneI (ExpToApp1 x0) h = App x0 h
buildOneI (ExpToLam) h = Lam h
buildOneI (TypeToArr0 x0) h = Arr h x0
buildOneI (TypeToArr1 x0) h = Arr x0 h

A single ContextI from to represents a constructor with a
hole in it, but to represent an arbitary place in the tree with a hole
in it, we need to chain the contexts together. If our contexts were
ordinary data types we could use a list, however we need to ensure
that the to parameter of our first ContextI matches up with the
from parameter of the next ContextI. To do this we use a new
data type called PathLam.

data PathLam ctr from to where
Stop :: PathLam ctr anywhere anywhere
Step :: (ReifyLam middle)⇒ ctr from middle →

PathLam ctr middle to → PathLam ctr from to

Stop is akin to the nil ([]) at the end of a list, and Step
is akin to cons (:). Since the intermediate location (middle) in
Step is existentially quantified, we need to provide a way of ex-
tracting it’s type at a later time, and hence the class constraint on
ReifyLam middle.

A simple cursor for the LAM language can now be given:

data CursorLam here = (ReifyLam here)⇒ Cursor{
it :: here,
ctx :: PathLam ContextI here Lam
}

The current point of focus is denoted by it, and the context we
are in (ctx) is a path from here up to the root of our language,
Lam.

2.4 Specific Movement
Our simple cursor is not currently very useful as we do not support
a way of moving around the tree. Movement in our library is based
upon primitive combinators that express a single movement from a
specific constructor to a type (for downward movements), or from
a type into a constructor (for upward movements). Later (in 2.7) we
will recover the more familiar generic move up / down / left / right
operations that zipper libraries traditionally provide.

Our combinators are provided as GADT constructors as we will
be able to re-use them later when talking about routes (bookmarks)
and generic traversals. Having constructors (as opposed to func-
tions) also gives us entities that can (in theory - not implemented
yet) be persisted and restored.

As already indicated the primitive movements can either be up-
ward or downward movements. Later we will wish to put con-
straints on which type of movement is used in some places, so we
model in the type system (using an empty data declaration and a
type family) the notion of up and down, and how to invert these
directions.

data Up
data Down

type family Invert d :: ∗
type instance Invert Up = Down
type instance Invert Down = Up

Movements in LAM follow the style of the one hole constru-
tors, they relate a constructor to a type. Down movements go from
a constructor to a type in that constructor. Since Up movements are
the exact opposite of a Down movement, we re-use our down move-
ments to create an up one.

data MovementI direction from to where
MUp :: MovementI Down to from →

MovementI Up from to
MAbsToType :: MovementI Down Exp Type
MAbsToExp :: MovementI Down Exp Exp
MAppToExp0 :: MovementI Down Exp Exp
MAppToExp1 :: MovementI Down Exp Exp
MLamToExp :: MovementI Down Lam Exp
MArrToType0 :: MovementI Down Type Type
MArrToType1 :: MovementI Down Type Type

We can also mechanically provide a simple combinator to invert
a movement, making use of our Invert type family.

invertMovementI :: MovementI d a b →
MovementI (Invert d) b a

invertMovementI (MUp dwn) = dwn
invertMovementI MAbsToType = MUp (MAbsToType)
invertMovementI MAbsToExp = MUp (MAbsToExp)
invertMovementI MAppToExp0 = MUp (MAppToExp0)
invertMovementI MAppToExp1 = MUp (MAppToExp1)
invertMovementI MLamToExp = MUp (MLamToExp)
invertMovementI MArrToType0 = MUp (MArrToType0)
invertMovementI MArrToType1 = MUp (MArrToType1)

Our aim for movements is to implement a function that takes a
MovementI d from to and a CursorLam from, and if the move-
ment is appropriate for the cursor, returns a new CursorLam to,
i.e.

applyMovement :: MovementI d from to →
CursorLam from → Maybe (CursorLam to)

We could implement this function mechanically in one big
boiler-plated mess. However we have instead split it into a small

short description of paper 3 2008/6/23

(fairly idiomatic) core that requires several simple boiler-plate
functions implementing. We will give an overview of how we
intend to implement this method, introducing the boilerplate de-
pendencies as they arise, before giving it’s implementation in those
terms.

Moving Up: In the case that applyMovement is applied to an Up
movement, we need to check that the intended Up movement co-
incides with the first ContextI in the CursorLam ctx path. If it
does, we can use buildOne to rebuild the item above us in the tree,
and unpeel the ContextI from the ctx path.

As already mentioned, there is a close correspondence between
ContextIs and MovementI Ups. We make this correspondence
clear by providing a function to extract the corresponding Up move-
ment from a ContextI:

ctxToMovementI :: ContextI a b → MovementI Up a b
ctxToMovementI (TypeToAbs) = MUp MAbsToType
ctxToMovementI (ExpToAbs) = MUp MAbsToExp
ctxToMovementI (ExpToApp0) = MUp MAppToExp0
ctxToMovementI (ExpToApp1) = MUp MAppToExp1
ctxToMovementI (ExpToLam) = MUp MLamToExp
ctxToMovementI (TypeToArr0) = MUp MArrToType0
ctxToMovementI (TypeToArr1) = MUp MArrToType1

If we then add a notion of equality between MovementIs that
checks whether two MovementIs start from and go to the same
places (and provides proofs of these equalities should they exist)

movEqI :: MovementI d x y → MovementI d a b →
Maybe (TyEq x a,TyEq y b)

movEqI (MUp a) (MUp b) = fmap (λ(x , y)→ (y , x)) $
movEqI a b

movEqI MAbsToType MAbsToType = Just (Eq ,Eq)
movEqI MAbsToExp MAbsToExp = Just (Eq ,Eq)
movEqI MAppToExp0 MAppToExp0 = Just (Eq ,Eq)
movEqI MAppToExp1 MAppToExp1 = Just (Eq ,Eq)
movEqI MLamToExp MLamToExp = Just (Eq ,Eq)
movEqI MArrToType0 MArrToType0 = Just (Eq ,Eq)
movEqI MArrToType1 MArrToType1 = Just (Eq ,Eq)
movEqI = Nothing

Checking the Up movement co-incides with the ContextI then
becomes as simple as:

contextMovementEqI :: ContextI a b →
MovementI Up a c → Maybe (TyEq b c)

contextMovementEqI ctx mov
= fmap snd ((ctxToMovementI ctx) ‘movEqI ‘ mov)

Moving down: In the case that applyMovement is applied to
a Down movement we essentially need to “unbuild” one layer,
providing a context based on the constructor at it in the cursor, and
a new value based for the new hole. This is the dual to buildOneI,
and is hence named unbuildOneI:

unbuildOneI :: MovementI Down a b →
a → Maybe (ContextI b a, b)

unbuildOneI mov here = case mov of
MAbsToType → case here of

(Abs x0 h x1)→ Just $ (TypeToAbs x0 x1 , h)
→ Nothing

MAbsToExp → case here of
(Abs x0 x1 h)→ Just $ (ExpToAbs x0 x1 , h)
→ Nothing

MAppToExp0 → case here of
(App h x0)→ Just $ (ExpToApp0 x0 , h)

→ Nothing
MAppToExp1 → case here of

(App x0 h)→ Just $ (ExpToApp1 x0 , h)
→ Nothing

MLamToExp → case here of
(Lam h)→ Just $ (ExpToLam, h)
→ Nothing

MArrToType0 → case here of
(Arr h x0)→ Just $ (TypeToArr0 x0 , h)
→ Nothing

MArrToType1 → case here of
(Arr x0 h)→ Just $ (TypeToArr1 x0 , h)
→ Nothing

All that is missing to implement applyMovement is a way
of checking whether we have an Up or Down movement. In a
similar way to the reflection scheme provided for LAM we use a
GADT and a projection function (reifyDirectionT) to aquire a
representation for whether we have an Up or Down movement.

data DirectionT a where
UpT :: DirectionT Up
DownT :: DirectionT Down

reifyDirectionI :: MovementI d a b → DirectionT d
reifyDirectionI d = case d of

(MUp)→ UpT
MAbsToType → DownT
MAbsToExp → DownT
MAppToExp0 → DownT
MAppToExp1 → DownT
MLamToExp → DownT
MArrToType0 → DownT
MArrToType1 → DownT

applyMovement is then implemented as follows. Notice that in
the UpT case we need the Eq type equality to prove to GHC that
the result location (to) indicated by the provided movement really
does intersect with the (up to that point) existentially bound middle
type variable from the variable up in the (Step up ups) pattern
match.

applyMovement :: MovementI d from to →
CursorLam from → Maybe (CursorLam to)

applyMovement mov (Cursor it ctx)
= case (reifyDirectionI mov) of

UpT → case ctx of
Step up ups →

case (up ‘contextMovementEqI ‘ mov) of
Just Eq → Just $ Cursor (buildOneI up it) ups
Nothing → Nothing

Stop → Nothing
DownT →

fmap (λ(ctx ′, it ′)→ Cursor it ′ (Step ctx ′ ctx))
(unbuildOneI mov it)

2.5 Generalizing LANGUAGE

Thus far we have created a cursor library specifically tied to our
LAM language. However the code presented so far falls into three
groups:

1. The description of LAM which comes from the user.

2. The data types that are derived directly from the structure
of LAM (ContextI, TypeRepI, MovementI) and the func-
tions that explicitly know about their implementation by pat-

short description of paper 4 2008/6/23

tern matching on them (e.g. buildOneI, invertMovementI,
movEqI).

3. Functions and data types that do not explictly need to use the
structure of the LAM language or the data types derived from it
(e.g. PathLam, CursorLam, applyMovement).

In theory, if the description of LAM from the user changes, we
should be able to mechanically re-derive the data and functions
in the group 2, and not need to change the functions in group 3.
Of course should the user change the name of the root type (Lam)
then group 3 would need to change slightly (PathLam would hardly
still be an appropriate name!). What we wish to do is capture that
change and make it a parameter of the items in 3; we can then
provide them as a generic library.

Our approach is to create a Haskell typeclass Language that
takes a single parameter (hereafter l) that represents the users
language. Since we have been working with the LAM language, it
is an instance of Language Lam that we shall use as our example.

Using associated data type families, we can model the need for
our Language to provide data types akin to TypeRepI, ContextI
and MovementI. We can also express the need to provide the func-
tions as mentioned in group 2 above as members of the Language
type class.

This gives us an initial model of a generic language:

class Language l where
data Context l :: ∗ → ∗ → ∗
data Movement l :: ∗ → ∗ → ∗ → ∗
data TypeRep l :: ∗ → ∗
buildOne :: Context l a b → a → b

unbuildOne :: Movement l Down a b →
a → Maybe (Context l b a, b)

invertMovement :: Movement l d a b →
Movement l (Invert d) b a

movEq :: Movement l d a b →
Movement l d a c → Maybe (TyEq b c)

reifyDirection :: Movement l d a b →
DirectionT d

ctxToMovement :: Context l a b → Movement l Up a b

We also need to provide a way of getting from an item in a
particular language to a TypeRep for that language, generalising
ReifyLam1.

class Reify l a where
reify :: a → TypeRep l a

Our notion of Paths can also be generalised to rely on our more
general Reify as opposed to the previous ReifyLam. PathLam
now becomes:

data Path l ctr from to where
Stop :: Path l ctr anywhere anywhere
Step :: (Reify l middle)⇒ ctr from middle →

Path l ctr middle to → Path l ctr from to

And this means our CursorLam can become more general,
using the more general Paths and Reify.

data Cursor l here = (Reify l here)⇒ Cursor{
it :: here,
ctx :: Path l (Context l) here l
}

1 The alert reader will realise that the generic data types up to now called
FooLam are being generalised to Foo l, which, when instantiated by Lam

will become Foo Lam

We also have to update two other functions to become more
general (contextMovementEqI and applyMovementI), that only
rely on our Language typeclass. The changes are trivial, and result
in functions with signatures:

applyMovement :: (Language l ,Reify l a,Reify l b)⇒
Movement l d a b → Cursor l a → Maybe (Cursor l b)

contextMovementEq :: (Language l)⇒ Context l a b →
Movement l Up a c → Maybe (TyEq b c)

We can also provide the instance for Language Lam using what
we have already written. Because (at the time of writing) GHC
data families do not support instances that are GADTs, we need
to make the data instances wrappers around the already written
data structures as opposed to giving the implementation directly.
E.g. our instance for Context Lam is a wrapper constructor around
ContextI called CW.

instance Language Lam where
data Context Lam from to = CW (ContextI from to)

data Movement Lam d from to
= MW (MovementI d from to)

data TypeRep Lam t = TW (TypeRepI t)

buildOne (CW x) = buildOneI x

unbuildOne (MW m) a
= fmap (first CW) (unbuildOneI m a)

invertMovement (MW x) = MW (invertMovementI x)

movEq (MW x) (MW y)
= fmap snd $ movEqI x y

reifyDirection (MW x) = reifyDirectionI x

ctxToMovement (CW x)
= MW (ctxToMovementI x)

We also need to provide instances for Reify Lam, these need
to wrap up the LAM specific TypeRepI value in the TypeRep Lam
wrapper TW:

instance Reify Lam Exp where
reify = const $ TW ExpT

instance Reify Lam Lam where
reify = const $ TW LamT

instance Reify Lam Type where
reify = const $ TW TypeT

2.6 Routes and Bookmarks
A Path Lam (Context Lam) here Lam will give a simple loca-
tion in a Lam tree, and a way of getting back to the root from it.

However, an editor using our data structure may want to keep
track of multiple locations in the tree (e.g. to provide bookmark or
quick-jump functionality). Ideally we would like these bookmarks
to be persistent across updates to the tree, and where this is not pos-
sible, for there to be some way of dealing with the now invalidated
bookmarks.

Any position in the tree can be reached from any other by a
series of Up movements, followed by a series of Down movements.
This can be made into a unique route by disallowing the last Up
movement to be the inverse of the first Down movement; vis

data Route l from to where
Route :: (Reify l mid)⇒

Path l (Movement l Up) from mid →
Path l (Movement l Down) mid to → Route l from to

short description of paper 5 2008/6/23

With the additional invariant that the following predicate always
holds:

route_invariant :: (Language l)⇒ Route l from to → Bool
route_invariant (Route (Step mup Stop) (Step mdown))

= (¬ ◦ isJust) res
where

res = (invertMovement mup ‘movEq ‘ mdown)
route_invariant (Route (Step ups) downs)

= route_invariant (Route ups downs)
route_invariant (Route Stop) = True

We can now add a Route to our cursor so that it can keep a path
back to some marked location. We provide an API for extending the
current route by a single movement, resetting it, joining two routes
together and making a cursor follow a route.

data Cursor l x a = (Reify l a)⇒ Cursor{
it :: a,
ctx :: Path l (Context l) a l ,
log :: Route l a x
}
updateRoute :: (Language l ,Reify l a,Reify l b)⇒

Movement l d a b → Route l a c → Route l b c

resetLog :: Cursor l x a → Cursor l a a

appendRoute :: (Language l ,Reify l a,
Reify l b,Reify l c)⇒

Route l a b → Route l b c → Route l a c

followRoute :: (Language l)⇒
Cursor l x a → Route l a c → Maybe (Cursor l x c)

We now have to modify the applyMovement function to also
use updateRoute to update the log as we navigate around the
tree.

This appendRoute function allows an application to keep a col-
lection of bookmarks into a tree. It does this by creating empty
routes at the appropriate places, and then as the cursor naviages
away, the bookmark (the route) is updated using appendRoute
with the new cursor’s log. This log is then reset until the next mo-
tion, when appendRoute can be used again to keep the bookmark
in sync.

Should a bookmark then wish to be jumped to, the appropriate
route is looked up, and the cursor moved to it using followRoute.

If a local change is to be made to a program, it is easy to check if
any Routes point inside the current cursor location, and may need
to be invalidated. If the up movement path of the Route is Stop
then the route points inside.

It is also worth pointing out that the type parameters on the cur-
sor and any user bookmark routes can be used to ensure bookmarks
stay in step with cursor movements. By holding them in a data
structure that requires the type parameters to be the same, we en-
force the user updates the bookmarks in step with cursor updates.
For example, the generic GUI application that comes with the li-
brary is based around the following GADT which holds a Cursor
and a set of bookmarks (map of bookmark id to a route from the
cursor to somewhere else).

data CursorHolder l where
CH :: (LanguageGUI l)⇒ Cursor l a a →

Map Int (ExistsR l (Route l a))→
CursorHolder l

Since we don’t know where the routes end up, we wrap them in
an existential wrapper that contains a Reify constraint:

data ExistsR l (r :: ∗ → ∗) where
ExistsR :: (Reify l a)⇒ r a → ExistsR l r

2.7 Recovering Generalized Motions

class Language l where
... as before ...

downMoves :: TypeRep l a →
[ExistsR l (Movement l Down a)]

moveLeft :: Movement l Down a x →
Maybe (ExistsR l (Movement l Down a))

moveRight :: Movement l Down a x →
Maybe (ExistsR l (Movement l Down a))

Figure 2. Additions to Language to support generlized motions

Thus far our cursor is only able to move if given an exact
Movement that precisely matches the structure of the local tree.
However, for general purpose navigation, four generic movement
operators (up, down, left and right) are more convinient. Here, we
make the move up / down functions take a Cursor and, if move-
ment in the direction requested is possible, return an existential
wrapper containing the new cursor and the movement that was ap-
plied: So

data CursorWithMovement l d x from where
CWM :: (Reify l to)⇒ Cursor l x to →

Movement l d from to →
CursorWithMovement l d x from

genericMoveUp :: (Language l)⇒ Cursor l x a →
Maybe (CursorWithMovement l Up x a)

genericMoveDown :: (Language l)⇒ Cursor l x a →
Maybe (CursorWithMovement l Down x a)

genericMoveUp is the simplest operation. We unpeel one con-
text from the context path in the cursor, and we use buildOne
to get what we are now looking at. However to update the route,
and to return in the CursorWithMovement we will need to convert
the Context into the Movement Up that it corresponds to using
ctxToMovement.

genericMoveUp (Cursor it (Step up ups) log)
= Just (CWM (Cursor (buildOne up it)

ups
(updateRoute upMov log)) upMov)

where
upMov = ctxToMovement up

genericMoveUp (Cursor Stop) = Nothing

To implement a generic, depth-first downward movement, we
require the language to provide (in a depth-first order) all possible
down movements for a given type in the language. We then simply
try applying all the down motions, appropriate for where the cursor
currently is, and take the first that succeeds.

genericMoveDown cursor@Cursor{ }
= msum ◦

map (λ(ExistsR c)→ fmap (flip CWM c) ◦
flip applyMovement cursor $ c) ◦
downMoves ◦ reify ◦ it $ cursor

Generally moving left or right are compound actions consist-
ing of an up movement followed by a down movement on the
sibling either directly left or right of the original location. Con-
ceptually, if you have a down movement, you should be able to
derive the movement to use to go down to the sibling left or
right of where the original movment would go (moveLeft and
moveRight). We then implement genericMove(Left/Right) by

short description of paper 6 2008/6/23

using a genericMoveUp to move upwards, invertMovement to
turn the up movement into a down one, move(Left/Right) to get
our left/right sibling and then applyMovement to use it.

genericMoveLeft = genericMoveSideways moveLeft

genericMoveRight = genericMoveSideways moveRight

genericMoveSideways :: ∀ l x a.(Language l)⇒
(∀ a z .Movement l Down a z →

Maybe (ExistsR l (Movement l Down a)))→
Cursor l x a → Maybe (ExistsR l (Cursor l x))

genericMoveSideways fn cursor = do
(CWM cursor ′ upmov)← genericMoveUp cursor
let downmov = invertMovement upmov
(ExistsR newDownMov)← fn downmov
cursor ′′ ← applyMovement newDownMov cursor ′

return $ ExistsR cursor ′′

One final generic motion we provide is the ability to move the
cursor up to the root of the tree. This just walks the path of contexts,
and uses our ctxToMovement function for updating the Route in a
similar way to genericMoveUp.

moveToRoot :: (Language l)⇒ Cursor l x a → Cursor l x l
moveToRoot cursor@(Cursor Stop) = cursor
moveToRoot (Cursor it (Step up ups) log)

= moveToRoot (Cursor (buildOne up it)
ups
(updateRoute (ctxToMovement up) log))

2.8 Binding
One of the major motivations for this library is to provide a cursor
library that supports languages requiring lexically bound informa-
tion for operations at the cursor point. For example in the LAM
language, the names of variables in scope are lexically bound by
the enclosing Abs constructors from the current location.

Abstractly, if we were performing some operations on a LAM
subterm, we may wish to do it in the context of a structure (e.g.
Monad) that provided an API for performing operations in the
presence of a new variable added to the most local scope, for
looking up the name of a variable given it’s deBruijn index, and
to get the map containing all the variables in scope:

class LamBinder c where
addBinding :: String → c a → c a
lookupBinding :: Integer → c (Maybe String)
getBindingMap :: c (Map Integer String)

In the simplest case, if we just want to compute a single value
of type a with this API, a simple implementation based on a
Data.Map Integer String -> a would suffice. We make good
use of the GeneralizedNewtypeDeriving extension to save us
from manually creating the instances of Functor, Applicative
and Monad.

newtype LamBinderImpl a
= LBI {fromLBI :: Map Integer String → a }
deriving (Functor ,Applicative,Monad)

instance LamBinder LamBinderImpl where
addBinding s (LBI f1) = (LBI f2)

where
f2 = f1 ◦Map.insert 0 s ◦

Map.mapKeysMonotonic succ

lookupBinding i = LBI (Map.lookup i)
getBindingMap = LBI id

Since we are using deBruijn indexes for variable references,
adding a new variable to the most local scope (addBinding) is
implemented by increasing the index (key) for all existing local
variables by one, and then adding our new binding at (the now
available) index 0.

The LamBinder type class, and the implementation
LamBinderImpl need to be provided by the user as the capabili-
ties required there are completely user-language dependent. Also
completley user language dependent is when in a traversal func-
tions like addBinding (the functions that do the binding of new
information) need to be used. However, for languages that are com-
pletely lexically bound, it is possible to express when the functions
like addBinding need to be called in a traversal without having to
inline their calls into all traversals.

The idea is to provide the user with a Context from their
language, and a value representing the result of the traversal up
to the hole in the context. The user then modifies the hole adding
any appropriate bound information. Concretely, we provide the
following class the user can implement:

class (Language l)⇒ BoundLanguage l t where

bindingHook :: Context l from to → t → t

In the case of LAM, the implementation binds a new variable
name in the Exp value inside any Abs constructors. If we arn’t
moving from an Exp into an Abs, then there is no extra binding
to add, and we can directly return the sub-value:

instance (LamBinder c)⇒ BoundLanguage Lam (c a)
where

bindingHook ctx hole = case ctx of
(CW (ExpToAbs str))→ addBinding str hole
→ hole

We can now use bindingHook to provide some binding-aware
generic traversals. In 2.9 we will build up a fairly complex traversal
suitable for rendering a language with binding information and
also indicating where the cursor is. First, we shall build a simple
function that allows the computation of a value at the current cursor
location, with all the necessary bound information in scope.

Our function takes a Cursor, and a function to compute some
result from the current focus:

inBindingScope :: (BoundLanguage l t)⇒
(a → t)→ Cursor l x a → t

inBindingScope fn (Cursor it ctx) = foldUp (fn it) ctx

The implementation is based upon a helper function that will
walk up the Path of Contexts in the Cursor, nesting the underly-
ing result value (fn it) in the appropriate bindingHook calls for
the cursor’s location.

foldUp :: (BoundLanguage l t)⇒
t → Path l (Context l) a b → t

foldUp t Stop = t
foldUp t (Step ctx nxt) = foldUp (bindingHook ctx t) nxt

For a LAM cursor, getting hold of the currently in scope vari-
ables is then as easy as asking for the binding map in the current
scope, unwrapping the LamBinderImpl, and calling the underly-
ing function with an empty Map.

varsInScope :: Cursor Lam x a → Map Integer String
varsInScope = ($Map.empty) ◦ fromLBI ◦

inBindingScope (const getBindingMap)

2.9 Rendering
Our final contribution is a traversal mechanism for our cursor that
computes a single result for the whole tree stored in our cursor.

short description of paper 7 2008/6/23

However this result can be dependant on where the cursor is and
any binding information present. The motivating example we pro-
vide for this traversal is the ability to render our cursor, so a struc-
tured editor application based on our library can present the pro-
gram being worked on with a marker indicating where the cursor
is.

Our library is going to expect the user to implement an API
that describes how to compute the resulting value from a complete
constructor in the tree (e.g. Abs, App, Var), or from a constructor
with a hole in it (i.e a Context). The user should also describe
how to modify the result when it is conceptually under the point of
the cursor. This is specified in a type class by the three functions
visitStep, visitPartial and cursor respectively:

class (BoundLanguage l t)⇒ Traversal l t where
visitStep :: (Reify l a)⇒ a →

(∀ b ◦ Reify l b ⇒ Movement l Down a b → t)→ t

visitPartial :: Context l a b → b → t →
(∀ c ◦ Reify l c ⇒ Movement l Down b c → t)→ t

cursor :: l → t → t

visitStep An implementation of visitStep will take a complete
part of the tree (e.g. an Abs constructor), and a function (which
we will name recurse) that provides the results of the traversal
from the navigable children of that constructor. recurse will also
ensure that bindingHook gets called before computing the results
from the children. In the rendering example, the idea is that an
implementation of visitStep will use recurse to generate the
text of the children, and then combine them together with some
connectives.

visitPartial An implementation of visitPartial will take a
Context, and the complete part of the tree that would be in the
place of the context should it be rebuilt (b), plus a value from the
traversal up to the “hole” in the context (the t). It also carries
a recurse function as in visitStep. As with visitStep the
intention (in the rendering example) is that the implementation
of visitPartial will use recurse to generate the text of it’s
children, but use the provided t for the text of it’s “hole”. The
reason for this t being passed separately is that it’s value will
have passed through a cursor function (since the path of Context
constructors will end in the value pointed at by the cursor, and the
result of the visitStep call to that value will be wrapped in a call
to cursor), whereas requesting the value from recurse will not
include this cursor wrapping.

cursor An implementation of cursorwill need to be non-strict in
it’s first argument (it is present to ensure that type-class resolution
of uses of the method works properly and is always passed the
value undefined), and then some result of the traversal. For the
rendering example, it is the intention that cursor modifies the
result to mark that the cursor is pointing here.

In order to concretize how an implementation of this type class
will look, we will give part of one for the LAM language. However,
we would not expect our user (the LAM implementor) to deal
directly with implementing Traversal, so we provide a Template
Haskell script to generate a class of adapters to make the interface
simpler. What we expect the LAM implementer to implement is a
set of type classes that specify how to combine values for each of
the constructor cases, and how to deal with the cursor position.

class LamTraversalAdapterExp t where
visitAbs :: Exp → t → t → t
visitApp :: Exp → t → t → t
visitVar :: Exp → t

class LamTraversalAdapterLam t where

visitLam :: Lam → t → t

class LamTraversalAdapterType t where
visitUnit :: Type → t
visitArr :: Type → t → t → t

class LamTraversalAdapterCursor t where
visitCursor :: Lam → t → t

For example, the visitAbs function is passed an Exp (which
is guaranteed by our implementation to be an Abs constructor) and
the results of recursively traversing (with binding hooks correctly
called) the traversable components in the Abs. It is then expected
to produce a new result, presumebly by combining the recursive
results together.

We automatically generate an instance of Traversal for the
user, given an instance of these four classes:

instance (LamTraversalAdapterLam t ,
LamTraversalAdapterExp t ,
LamTraversalAdapterType t ,
LamTraversalAdapterCursor t ,
BoundLanguage Lam t)⇒ Traversal Lam t

where

visitStep it recurse = case reify it of
TW x → visitStep′ x it recurse

visitPartial (CW ctx) = visitPartial ′ ctx

cursor = visitCursor

visitStep' case dispatches on the TypeRepI it is passed, and
the underlying value to call the appropriate adapter function, with
the recurse calls already made:

visitStep′ :: (LamTraversalAdapterExp t ,
LamTraversalAdapterLam t ,
LamTraversalAdapterType t)⇒

TypeRepI a → a →
(∀ b.Reify Lam b ⇒ Movement Lam Down a b → t)→
t

visitStep′ ExpT it recurse = case it of
Abs → visitAbs it (recurse (MW MAbsToType))

(recurse (MW MAbsToExp))
App → visitApp it (recurse (MW MAppToExp0))

(recurse (MW MAppToExp1))
Var → visitVar it

visitStep′ LamT it recurse = case it of
Lam → visitLam it (recurse (MW MLamToExp))

visitStep′ TypeT it recurse = case it of
Unit → visitUnit it
Arr → visitArr it (recurse (MW MArrToType0))

(recurse (MW MArrToType1))

visitPartial' instead case dispatches on the passed ContextI,
and again calls the correct adapter function, but uses the hole value
instead of recurse for the value from the context’s “hole”.

visitPartial ′ :: (LamTraversalAdapterLam t ,
LamTraversalAdapterExp t ,
LamTraversalAdapterType t)⇒

ContextI a b → b → t →
(∀ c ◦ Reify Lam c ⇒ Movement Lam Down b c → t)→
t

visitPartial ′ ctx it hole recurse = case ctx of
TypeToAbs →

visitAbs it hole (recurse (MW MAbsToExp))
ExpToAbs →

short description of paper 8 2008/6/23

visitAbs it (recurse (MW MAbsToType)) hole
ExpToApp0 →

visitApp it hole (recurse (MW MAppToExp1))
ExpToApp1 →

visitApp it (recurse (MW MAppToExp0)) hole
ExpToLam → visitLam it hole
TypeToArr0 →

visitArr it hole (recurse (MW MArrToType1))
TypeToArr1 →

visitArr it (recurse (MW MArrToType0)) hole

We now have a lot of machinery, and can now consider how it
is helpful. Our aim is to use it to implement a complete traversal
function over the entire tree given by a cursor.

completeTraversal :: ∀ l t x a.(Traversal l t)⇒
Cursor l x a → t

The implementation of this function will require two local
helper functions: hook, which is the template for the recurse
function passed to Traversal implementers; and foldUp, which
serves a similar role to the previous foldUp.

hook forms the backbone of the downward traversal into val-
ues that arn’t on the path of contexts between the cursors’ fo-
cal item and the root. Using unbuildOne it unpeels a value one
level, using the Context from unbuildOne as a parameter to
bindingHook, and then uses visitStep passing it the “hole”
value from unbuildOne as the item to visit, with hook curried with
the “hole” value as the function for recurse.

hook :: ∀ l t a b.(Traversal l t ,Reify l b)⇒
a → Movement l Down a b → t

hook here movement
= case unbuildOne movement here of

Just (ctx , b)→
let hook ′ :: ∀ c.Reify l c ⇒

Movement l Down b c → t
hook ′ = hook b

in bindingHook ctx (visitStep b hook ′)
Nothing → error "Bad movement in traversal!"

Note that in hook, if the unbuildOne call fails there is nothing
we can do and therefore call error to bail out. However, if the user
is using our generated adapter classes, that case is impossible to
reach.

foldUp walks up the path of contexts from the focal point to the
root, using bindingHook to propogate binding information, and
visitPartial (with a curried hook) to build up the result value
from the traversal. Since we also need the full constructor values
from the language, we use buildOne to rebuild the tree as we go
up too.

foldUp :: (Traversal l t)⇒
t → a → Path l (Context l) a b → t

foldUp t Stop = t
foldUp t here (Step ctx nxt)

= foldUp (bindingHook ctx
(visitPartial ctx next t

(hook next)))
next nxt

where
next = buildOne ctx here

A complete traversal then uses visitStep to calculate the
result from the current focus point, wraps that value in cursor to
mark the cursor’s location, and uses foldUp to build the remaining
results for the rest of the tree.

completeTraversal (Cursor it ctx)
= foldUp (cursor (⊥ :: l) (visitStep it hook ′)) it ctx
where

hook ′ :: ∀ b.Reify l b ⇒ Movement l Down a b → t
hook ′ = hook it

We will now finish our example, showing how to render LAM
code.

First we will need an API for composing text. Because ren-
dering LAM variables will require binding information, we base
the type we do rendering under on our LamBindingImpl and
LamBinder API.

Text rendering computations will take place under a TextRenderer
type. We pair the result of the computation with a String that rep-
resents the text thus-far rendered.

newtype TextRenderer x
= TR{fromTR :: (LamBinderImpl (String , x))}

We can make TextRenderer an instance of Functor, Applicative,
Monad, and LamBinder. We can then use the combinators and
methods these type classes make available in our rendering code.

instance Functor TextRenderer where
fmap f (TR x) = TR (fmap (fmap f) $ x)

instance Applicative TextRenderer where
(TR f)<∗> (TR l)

= TR (fmap (uncurry (<∗>)) (liftA2 (,) f l))
pure v = TR (pure (pure v))

instance Monad TextRenderer where
return = pure
(TR f)>>= fn = TR (f >>= fromTR ◦ fn ◦ snd)

instance LamBinder TextRenderer where
addBinding s (TR x) = TR (addBinding s x)
lookupBinding i = TR (fmap pure $ lookupBinding i)
getBindingMap = TR (fmap pure $ getBindingMap)

We take advantage of the Monoid a => Applicative ((,) a)
instance provided in the Control.Applicative library to deal
with creating initial empty Strings of rendered text, and concate-
nating Strings together. This means appending a string in our
library is just a case of making it the first value in the returned
tuple.

string :: String → TextRenderer ()
string s = TR (pure (s, ()))

space :: TextRenderer ()
space = string " "

We can now give the rendering code for all of the constructors.
We use an Applicative style of programming, where ∗> appends
results together.

instance LamTraversalAdapterLam (TextRenderer ())
where

visitLam hole = hole

instance LamTraversalAdapterExp (TextRenderer ())
where

visitAbs (Abs name) ty exp
= string ("λ " ++ name ++ "::") ∗>

ty ∗> space ∗> exp
visitApp l r = l ∗> string "◦" ∗> r
visitVar (Var i)

= (string ◦
fromMaybe "Free Variable!" =<< lookupBinding i) ∗>

(string ◦ subscript $ i)

short description of paper 9 2008/6/23

instance LamTraversalAdapterType (TextRenderer ())
where

visitUnit = string "τ"
visitArr lhs rhs = lhs ∗> string " → " ∗> rhs

instance LamTraversalAdapterCursor (TextRenderer ())
where

visitCursor child = string ">" ∗> child ∗> string "<"

subscript is a small helper that turns a number into a unicode
string of subscripted numbers.

subscript :: Integer → String
subscript = map (chr ◦ (+) (8320− (ord '0')) ◦ ord) ◦

show

So to actually get the rendered text of the cursor, we perform
a complete traversal, then unwrap the TextRenderer constructor
from the result, then unwrap the LamBinderImpl, pass in an empty
map to the now exposed function, and then extract the String
result from the resulting tuple:

render :: Cursor Lam x a → String
render = (λ(s, ())→ s) ◦ ($Map.empty) ◦

fromLBI ◦ fromTR ◦ completeTraversal

We can then hook all this code togehter into a UI, and, recalling
our example LAM program from the start of the paper, present a
small navigating cursor example using it: (The full UI example
program is included in our library).
> λ x :: τ → τ x0 ◦ λ y :: τ y0 ◦ x1 <
Move down twice (from Lam to Abs and then Abs to Arr).
λ x :: > τ → τ < x0 ◦ λ y :: τ y0 ◦ x1

Move right
λ x :: τ → τ > x0 ◦ λ y :: τ y0 ◦ x1 <
Move down
λ x :: τ → τ > x0 < ◦λ y :: τ y0 ◦ x1

Move right
λ x :: τ → τ x0◦ > λ y :: τ y0 ◦ x1 <
etc.

3. Related Work
There has been a lot of noise about zipper data structures in the
Haskell community recently. Practical, popular applications (5) and
general libraries (4) are emerging based on the underlying ideas of
the original paper (1). Like our library, these examples take the
general principles of contexts and a focal point, and tailor them
to specific domains (managing stacks of windows for a window
manager, or providing a usable interface for editing a large number
of related items, with the option of changing your mind). However,
we have taken our specific application (a structured editor for FC),
and generalised out a reusable library, and provided automated
generation of all the boilerplate.

There are existing reusable, zipper-based libraries in the litera-
ture. In (3) the authors consider a data structure that is parametric
over the type being traversed, and requires much less boilerplate to
implement. However their library does not consider traversals over
a heterogeneous data type and there does not appear to be a succinct
extension to the work that would allow such a traversal.

In (2) the author presents an elegant GADT based zipper library
that is able to traverse across heterogenous data types, and requires
no boilerplate to use. However we believe that it is not a practically
useful library without some additional boilerplate being written;
the implementation requires that at all use sites a lot of type in-
formation is available to allow up/left/right movements, and down
movements require the precise type of what is being moved into to
be available. In an application that is interactively allowing a user

to update the cursors position, it would require a complicated ex-
istential context with type classes or type witnessess being present
to allow these movements to happen. With our library, we provide
both the type specific movments, but have also provided the ad-
ditional boilerplate needed to recover the generic movements that
can move a cursor without any additional type constraints being
present.

An alternate approach to the cursor library was explored in (6).
Here, the zipper library is parameterised by a traversal function
and uses delimited continuations to move around the tree. The
authors also show how to support a statically known number of sub-
cursors, allowing something like our route/bookmark functions.
They however, are working in the context of filesystems and do
not need to consider lexically bound information in the interface
they present.

4. Conclusion
4.1 Future work
Unsurprisingly, there is always more functionality we could add to
our library. Some particular extensions we wish to explore include
persisting our cursors so the user’s context of work can be saved
and restored. We have also only looked so far at simple languages,
we have not considered cursors for languages that are themselves
parameterised by types, or languages with GADTs in them, both of
these could present interesting challenges.

Furthermore, the zipper datastructure was originally designed
around the idea of needing to perform local updates and edits, and
not necessarily global traversals; while we justify this by arguing
that in an editor context many local edits and changes may take
place between the global renders; we should perform some per-
formance and complexity analysis of our global traversals against
some alternative schemes.

There are some other issues; we are using some experimental
features of GHC (e.g. type families), which are not completely
implemented yet - when a complete implementation is released
we can neaten our library by, for example, not requiring the thin
wrappers on the Context type implementation. Currently (to our
knowledge) Template Haskell does not support the generation of
GADTs or type family instances and so our generation scripts
output the source code for compilation to new files; this is an ugly
indirection step that we would like to avoid in future.

4.2 Summary
We have outlined a cursor library based on ideas from Huet’s
original paper, but using GADTs to allow navigation around a
heterogeneous data type. We have abstracted away from a ground
example language and made a parameterisable library; this means
that tools can be developed which depend only on the library and
will be re-usable for any language.

The code presented has been split into three parts, that which the
user provides, that which forms a generic library, and that which we
automatically generate using Template Haskell. At no point has the
user been required to implement any boiler-plate code themselves.

We have shown how it is possible to encode routes in the tree
from the cursor that could be used for bookmarks in an application,
and shown how to use the context representation that we automat-
ically generate to allow the user to neatly express lexical binding
rules. Finally, we gave an example usage of the library, where the
user could render the tree with the location of the cursor and bind-
ing information. To do this we implemented a generic traversal API
and provided automatically generated adapters that make the users
interface to the traversal API idiomatic.

short description of paper 10 2008/6/23

5. References
References
[1] Huet, G. The zipper. Journal of Functional Programming, 7(5):549-554,

1997
[2] Adams, M. Functional Pearl: Scrap Your Zippers. Unpublished, 2007
[3] Hinze, R. and Jeuring, J. Functional Pearl: Weaving a Web in J. Func-

tional Programming, 11(6):681-689, November 2001.
[4] Yorgey, B. zipedit library (Online), 2008,

http://byorgey.wordpress.com/2008/06/21/zipedit/
[5] Stewart, D. Roll Your Own Window Manager: Tracking Focus with a

Zipper (Online), 2007, http://cgi.cse.unsw.edu.au/ dons/blog/2007/05/17
[6] Kiselyov, O. Tool demonstration: A zipper based file/operating system.

In Haskell Workshop. ACM Press, September 2005
[7] Sulzmann, M. and Chakravarty, M. M. T. and Jones, S. P. and Don-

nelly, K. System F with Type Equality Coercions, in The Third ACM
SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI’07), January 2007.

[8] Allwood, T. Clase library download and screenshots, (Online), 2008,
http://www.zonetora.co.uk/NonBlog/toral/lib/.

[9] de Bruijn, N. G. Lambda calculus notation with nameless dummies. a
tool for automatic formula manipulation with application to the church-
rosser theorem, in Indagationes Mathematicae (34) 381–392, 1972

short description of paper 11 2008/6/23

