1 -- this is basically from ghc-2.01
    2 -- with some specialisations added
    3 
    4 
    5 
    6 
    7 
    8 
    9 
   10 
   11 
   12 
   13 
   14 
   15 
   16 module FiniteMap (
   17         FiniteMap,         -- abstract type
   18 
   19         emptyFM, unitFM, listToFM,
   20 
   21         addToFM,
   22         addToFM_C,
   23         addListToFM,
   24         addListToFM_C,
   25         delFromFM ,
   26         delListFromFM,
   27 
   28         plusFM,
   29         plusFM_C,
   30         minusFM,
   31         foldFM,
   32 
   33         intersectFM ,
   34         intersectFM_C ,
   35         mapFM , filterFM ,
   36 
   37         sizeFM, isEmptyFM, elemFM, lookupFM, lookupWithDefaultFM,
   38 
   39         fmToList, keysFM, eltsFM
   40 
   41 
   42     ) where
   43 
   44 import Maybes
   45 
   46 ------------------------------------------
   47 -- import TA
   48 -- import Set
   49 
   50 {- # SPECIALIZE lookupFM :: FiniteMap Int (Set (STerm Int)) -> Int -> Maybe (Set (STerm Int)) #-}
   51 {- # SPECIALIZE lookupFM :: FiniteMap (STerm Int) (Set Int) -> (STerm Int) -> Maybe (Set Int) #-}
   52 
   53 {- # SPECIALIZE lookupWithDefaultFM :: FiniteMap Int (Set (STerm Int)) -> Set (STerm Int) -> Int -> (Set (STerm Int)) #-}
   54 {- # SPECIALIZE lookupWithDefaultFM :: FiniteMap (STerm Int) (Set Int) -> (Set Int) -> (STerm Int) -> (Set Int) #-}
   55 
   56 
   57 
   58 
   59 
   60 
   61 -- SIGH: but we use unboxed "sizes"...
   62 
   63 
   64 
   65 
   66 --      BUILDING
   67 emptyFM         :: FiniteMap key elt
   68 unitFM   :: key -> elt -> FiniteMap key elt
   69 listToFM        :: (Ord key {--}) => [(key,elt)] -> FiniteMap key elt
   70                      -- In the case of duplicates, the last is taken
   71 
   72 
   73 --      ADDING AND DELETING
   74                   -- Throws away any previous binding
   75                   -- In the list case, the items are added starting with the
   76                   -- first one in the list
   77 addToFM         :: (Ord key {--}) => FiniteMap key elt -> key -> elt  -> FiniteMap key elt
   78 addListToFM     :: (Ord key {--}) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt
   79 
   80                   -- Combines with previous binding
   81 addToFM_C       :: (Ord key {--}) => (elt -> elt -> elt)
   82                         -> FiniteMap key elt -> key -> elt
   83                         -> FiniteMap key elt
   84 addListToFM_C   :: (Ord key {--}) => (elt -> elt -> elt)
   85                         -> FiniteMap key elt -> [(key,elt)]
   86                         -> FiniteMap key elt
   87 
   88                   -- Deletion doesn't complain if you try to delete something
   89                   -- which isn't there
   90 delFromFM       :: (Ord key {--}) => FiniteMap key elt -> key   -> FiniteMap key elt
   91 delListFromFM   :: (Ord key {--}) => FiniteMap key elt -> [key] -> FiniteMap key elt
   92 
   93 --      COMBINING
   94                   -- Bindings in right argument shadow those in the left
   95 plusFM   :: (Ord key {--}) => FiniteMap key elt -> FiniteMap key elt
   96                         -> FiniteMap key elt
   97 
   98                   -- Combines bindings for the same thing with the given function
   99 plusFM_C        :: (Ord key {--}) => (elt -> elt -> elt)
  100                         -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
  101 
  102 minusFM         :: (Ord key {--}) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
  103                   -- (minusFM a1 a2) deletes from a1 any bindings which are bound in a2
  104 
  105 intersectFM     :: (Ord key {--}) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
  106 intersectFM_C   :: (Ord key {--}) => (elt -> elt -> elt)
  107                         -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
  108 
  109 --      MAPPING, FOLDING, FILTERING
  110 foldFM   :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
  111 mapFM     :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2
  112 filterFM        :: (Ord key {--}) => (key -> elt -> Bool)
  113                         -> FiniteMap key elt -> FiniteMap key elt
  114 
  115 --      INTERROGATING
  116 sizeFM   :: FiniteMap key elt -> Int
  117 isEmptyFM       :: FiniteMap key elt -> Bool
  118 
  119 elemFM   :: (Ord key {--}) => key -> FiniteMap key elt -> Bool
  120 lookupFM        :: (Ord key {--}) => FiniteMap key elt -> key -> Maybe elt
  121 lookupWithDefaultFM
  122                :: (Ord key {--}) => FiniteMap key elt -> elt -> key -> elt
  123                -- lookupWithDefaultFM supplies a "default" elt
  124                -- to return for an unmapped key
  125 
  126 --      LISTIFYING
  127 fmToList        :: FiniteMap key elt -> [(key,elt)]
  128 keysFM   :: FiniteMap key elt -> [key]
  129 eltsFM   :: FiniteMap key elt -> [elt]
  130 
  131 data FiniteMap key elt
  132   = EmptyFM
  133   | Branch key elt           -- Key and elt stored here
  134     Int{-STRICT-}       -- Size >= 1
  135     (FiniteMap key elt)         -- Children
  136     (FiniteMap key elt)
  137 
  138 emptyFM = EmptyFM
  139 {-
  140 emptyFM
  141   = Branch bottom bottom 0 bottom bottom
  142   where
  143     bottom = panic "emptyFM"
  144 -}
  145 
  146 -- #define EmptyFM (Branch _ _ 0 _ _)
  147 
  148 unitFM key elt = Branch key elt 1 emptyFM emptyFM
  149 
  150 listToFM = addListToFM emptyFM
  151 
  152 
  153 
  154 addToFM fm key elt = addToFM_C (\ old new -> new) fm key elt
  155 
  156 addToFM_C combiner EmptyFM key elt = unitFM key elt
  157 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt
  158 
  159   | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r
  160   | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)
  161   | otherwise     = Branch new_key (combiner elt new_elt) size fm_l fm_r
  162 
  163 
  164 addListToFM fm key_elt_pairs = addListToFM_C (\ old new -> new) fm key_elt_pairs
  165 
  166 addListToFM_C combiner fm key_elt_pairs
  167   = foldl add fm key_elt_pairs  -- foldl adds from the left
  168   where
  169     add fmap (key,elt) = addToFM_C combiner fmap key elt
  170 
  171 delFromFM EmptyFM del_key = emptyFM
  172 delFromFM (Branch key elt size fm_l fm_r) del_key
  173 
  174   | del_key > key
  175   = mkBalBranch key elt fm_l (delFromFM fm_r del_key)
  176 
  177   | del_key < key
  178   = mkBalBranch key elt (delFromFM fm_l del_key) fm_r
  179 
  180   | key == del_key
  181   = glueBal fm_l fm_r
  182 
  183 
  184 delListFromFM fm keys = foldl delFromFM fm keys
  185 
  186 plusFM_C combiner EmptyFM fm2 = fm2
  187 plusFM_C combiner fm1 EmptyFM = fm1
  188 plusFM_C combiner fm1 (Branch split_key elt2 _ left right)
  189   = mkVBalBranch split_key new_elt
  190                  (plusFM_C combiner lts left)
  191                  (plusFM_C combiner gts right)
  192   where
  193     lts     = splitLT fm1 split_key
  194     gts     = splitGT fm1 split_key
  195     new_elt = case lookupFM fm1 split_key of
  196                 Nothing   -> elt2
  197                 Just elt1 -> combiner elt1 elt2
  198 
  199 -- It's worth doing plusFM specially, because we don't need
  200 -- to do the lookup in fm1.
  201 
  202 plusFM EmptyFM fm2 = fm2
  203 plusFM fm1 EmptyFM = fm1
  204 plusFM fm1 (Branch split_key elt1 _ left right)
  205   = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right)
  206   where
  207     lts     = splitLT fm1 split_key
  208     gts     = splitGT fm1 split_key
  209 
  210 minusFM EmptyFM fm2 = emptyFM
  211 minusFM fm1 EmptyFM = fm1
  212 minusFM fm1 (Branch split_key elt _ left right)
  213   = glueVBal (minusFM lts left) (minusFM gts right)
  214         -- The two can be way different, so we need glueVBal
  215   where
  216     lts = splitLT fm1 split_key         -- NB gt and lt, so the equal ones
  217     gts = splitGT fm1 split_key         -- are not in either.
  218 
  219 intersectFM fm1 fm2 = intersectFM_C (\ left right -> right) fm1 fm2
  220 
  221 intersectFM_C combiner fm1 EmptyFM = emptyFM
  222 intersectFM_C combiner EmptyFM fm2 = emptyFM
  223 intersectFM_C combiner fm1 (Branch split_key elt2 _ left right)
  224 
  225   | maybeToBool maybe_elt1      -- split_elt *is* in intersection
  226   = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left)
  227                                                 (intersectFM_C combiner gts right)
  228 
  229   | otherwise      -- split_elt is *not* in intersection
  230   = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right)
  231 
  232   where
  233     lts = splitLT fm1 split_key         -- NB gt and lt, so the equal ones
  234     gts = splitGT fm1 split_key         -- are not in either.
  235 
  236     maybe_elt1 = lookupFM fm1 split_key
  237     Just elt1  = maybe_elt1
  238 
  239 foldFM k z EmptyFM = z
  240 foldFM k z (Branch key elt _ fm_l fm_r)
  241   = foldFM k (k key elt (foldFM k z fm_r)) fm_l
  242 
  243 mapFM f EmptyFM = emptyFM
  244 mapFM f (Branch key elt size fm_l fm_r)
  245   = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r)
  246 
  247 filterFM p EmptyFM = emptyFM
  248 filterFM p (Branch key elt _ fm_l fm_r)
  249   | p key elt     -- Keep the item
  250   = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r)
  251 
  252   | otherwise     -- Drop the item
  253   = glueVBal (filterFM p fm_l) (filterFM p fm_r)
  254 
  255 --{-# INLINE sizeFM #-}
  256 sizeFM EmptyFM        = 0
  257 sizeFM (Branch _ _ size _ _) =  size
  258 
  259 isEmptyFM fm = sizeFM fm == 0
  260 
  261 lookupFM EmptyFM key = Nothing
  262 lookupFM (Branch key elt _ fm_l fm_r) key_to_find
  263 
  264   | key_to_find < key = lookupFM fm_l key_to_find
  265   | key_to_find > key = lookupFM fm_r key_to_find
  266   | otherwise     = Just elt
  267 
  268 
  269 key `elemFM` fm
  270   = case (lookupFM fm key) of { Nothing -> False; Just elt -> True }
  271 
  272 lookupWithDefaultFM fm deflt key
  273   = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt }
  274 
  275 fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm
  276 keysFM fm   = foldFM (\ key elt rest -> key : rest)       [] fm
  277 eltsFM fm   = foldFM (\ key elt rest -> elt : rest)       [] fm
  278 
  279 sIZE_RATIO :: Int
  280 sIZE_RATIO = 5
  281 
  282 mkBranch :: (Ord key {--})          -- Used for the assertion checking only
  283          => Int
  284          -> key -> elt
  285          -> FiniteMap key elt -> FiniteMap key elt
  286          -> FiniteMap key elt
  287 
  288 mkBranch which key elt fm_l fm_r
  289   = --{--}
  290 
  291     let
  292         result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r
  293     in
  294 --    if sizeFM result <= 8 then
  295         result
  296 --    else
  297 --      pprTrace ("mkBranch:"++(show which)) (ppr PprDebug result) (
  298 --      result
  299 --      )
  300   where
  301     left_ok  = case fm_l of
  302                 EmptyFM                      -> True
  303                 Branch left_key _ _ _ _  -> let
  304                                                 biggest_left_key = fst (findMax fm_l)
  305                                             in
  306                                             biggest_left_key < key
  307     right_ok = case fm_r of
  308                 EmptyFM                      -> True
  309                 Branch right_key _ _ _ _ -> let
  310                                                 smallest_right_key = fst (findMin fm_r)
  311                                             in
  312                                             key < smallest_right_key
  313     balance_ok = True -- sigh
  314 {- LATER:
  315     balance_ok
  316       = -- Both subtrees have one or no elements...
  317         (left_size + right_size <= 1)
  318 -- NO         || left_size == 0  -- ???
  319 -- NO         || right_size == 0 -- ???
  320         -- ... or the number of elements in a subtree does not exceed
  321         -- sIZE_RATIO times the number of elements in the other subtree
  322       || (left_size  * sIZE_RATIO >= right_size &&
  323           right_size * sIZE_RATIO >= left_size)
  324 -}
  325 
  326     left_size  = sizeFM fm_l
  327     right_size = sizeFM fm_r
  328 
  329 
  330     unbox :: Int -> Int
  331     unbox x = x
  332 
  333 
  334 mkBalBranch :: (Ord key {--})
  335             => key -> elt
  336             -> FiniteMap key elt -> FiniteMap key elt
  337             -> FiniteMap key elt
  338 
  339 mkBalBranch key elt fm_L fm_R
  340 
  341   | size_l + size_r < 2
  342   = mkBranch 1{-which-} key elt fm_L fm_R
  343 
  344   | size_r > sIZE_RATIO * size_l        -- Right tree too big
  345   = case fm_R of
  346         Branch _ _ _ fm_rl fm_rr
  347                 | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R
  348                 | otherwise                       -> double_L fm_L fm_R
  349         -- Other case impossible
  350 
  351   | size_l > sIZE_RATIO * size_r        -- Left tree too big
  352   = case fm_L of
  353         Branch _ _ _ fm_ll fm_lr
  354                 | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R
  355                 | otherwise               -> double_R fm_L fm_R
  356         -- Other case impossible
  357 
  358   | otherwise              -- No imbalance
  359   = mkBranch 2{-which-} key elt fm_L fm_R
  360 
  361   where
  362     size_l   = sizeFM fm_L
  363     size_r   = sizeFM fm_R
  364 
  365     single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr)
  366         = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr
  367 
  368     double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr)
  369         = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key   elt   fm_l   fm_rll)
  370                                  (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr)
  371 
  372     single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r
  373         = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r)
  374 
  375     double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r
  376         = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll  fm_lrl)
  377                                  (mkBranch 12{-which-} key   elt   fm_lrr fm_r)
  378 
  379 mkVBalBranch :: (Ord key {--})
  380              => key -> elt
  381              -> FiniteMap key elt -> FiniteMap key elt
  382              -> FiniteMap key elt
  383 
  384 -- Assert: in any call to (mkVBalBranch_C comb key elt l r),
  385 --         (a) all keys in l are < all keys in r
  386 --         (b) all keys in l are < key
  387 --         (c) all keys in r are > key
  388 
  389 mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt
  390 mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt
  391 
  392 mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
  393                      fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
  394   | sIZE_RATIO * size_l < size_r
  395   = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr
  396 
  397   | sIZE_RATIO * size_r < size_l
  398   = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r)
  399 
  400   | otherwise
  401   = mkBranch 13{-which-} key elt fm_l fm_r
  402 
  403   where
  404     size_l = sizeFM fm_l
  405     size_r = sizeFM fm_r
  406 
  407 glueBal :: (Ord key {--})
  408         => FiniteMap key elt -> FiniteMap key elt
  409         -> FiniteMap key elt
  410 
  411 glueBal EmptyFM fm2 = fm2
  412 glueBal fm1 EmptyFM = fm1
  413 glueBal fm1 fm2
  414         -- The case analysis here (absent in Adams' program) is really to deal
  415         -- with the case where fm2 is a singleton. Then deleting the minimum means
  416         -- we pass an empty tree to mkBalBranch, which breaks its invariant.
  417   | sizeFM fm2 > sizeFM fm1
  418   = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2)
  419 
  420   | otherwise
  421   = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2
  422   where
  423     (mid_key1, mid_elt1) = findMax fm1
  424     (mid_key2, mid_elt2) = findMin fm2
  425 
  426 glueVBal :: (Ord key {--})
  427          => FiniteMap key elt -> FiniteMap key elt
  428          -> FiniteMap key elt
  429 
  430 glueVBal EmptyFM fm2 = fm2
  431 glueVBal fm1 EmptyFM = fm1
  432 glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
  433          fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
  434   | sIZE_RATIO * size_l < size_r
  435   = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr
  436 
  437   | sIZE_RATIO * size_r < size_l
  438   = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r)
  439 
  440   | otherwise     -- We now need the same two cases as in glueBal above.
  441   = glueBal fm_l fm_r
  442   where
  443     (mid_key_l,mid_elt_l) = findMax fm_l
  444     (mid_key_r,mid_elt_r) = findMin fm_r
  445     size_l = sizeFM fm_l
  446     size_r = sizeFM fm_r
  447 
  448 splitLT, splitGT :: (Ord key {--}) => FiniteMap key elt -> key -> FiniteMap key elt
  449 
  450 -- splitLT fm split_key  =  fm restricted to keys <  split_key
  451 -- splitGT fm split_key  =  fm restricted to keys >  split_key
  452 
  453 splitLT EmptyFM split_key = emptyFM
  454 splitLT (Branch key elt _ fm_l fm_r) split_key
  455 
  456   | split_key < key = splitLT fm_l split_key
  457   | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key)
  458   | otherwise       = fm_l
  459 
  460 
  461 splitGT EmptyFM split_key = emptyFM
  462 splitGT (Branch key elt _ fm_l fm_r) split_key
  463 
  464   | split_key > key = splitGT fm_r split_key
  465   | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r
  466   | otherwise       = fm_r
  467 
  468 
  469 findMin :: FiniteMap key elt -> (key,elt)
  470 findMin (Branch key elt _ EmptyFM _) = (key,elt)
  471 findMin (Branch key elt _ fm_l    _) = findMin fm_l
  472 
  473 deleteMin :: (Ord key {--}) => FiniteMap key elt -> FiniteMap key elt
  474 deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r
  475 deleteMin (Branch key elt _ fm_l    fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r
  476 
  477 findMax :: FiniteMap key elt -> (key,elt)
  478 findMax (Branch key elt _ _ EmptyFM) = (key,elt)
  479 findMax (Branch key elt _ _    fm_r) = findMax fm_r
  480 
  481 deleteMax :: (Ord key {--}) => FiniteMap key elt -> FiniteMap key elt
  482 deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l
  483 deleteMax (Branch key elt _ fm_l    fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r)
  484 
  485 
  486 
  487 
  488 instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where
  489   fm_1 == fm_2 = (sizeFM   fm_1 == sizeFM   fm_2) &&   -- quick test
  490                  (fmToList fm_1 == fmToList fm_2)
  491 
  492 {- NO: not clear what The Right Thing to do is:
  493 instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where
  494   fm_1 <= fm_2 = (sizeFM   fm_1 <= sizeFM   fm_2) &&   -- quick test
  495                 (fmToList fm_1 <= fmToList fm_2)
  496 -}
  497 
  498 
  499 
  500 
  501 
  502 
  503 instance (Show a, Show b) => Show (FiniteMap a b) where
  504     showsPrec p fm =
  505         showsPrec p (fmToList fm)