
Imperial College London

Department of Computing

Finding The Lazy Programmer's Bugs

Tristan Oliver Richard Allwood

Submitted in part ful�lment of the requirements for the degree of
Doctor of Philosophy in Computing of the Imperial College London and

the Diploma of the Imperial College, 2011



Abstract

Traditionally developers and testers created huge numbers of explicit tests, enumerating interesting cases, per-

haps biased by what they believe to be the current boundary conditions of the function being tested. Or at

least, they were supposed to.

A major step forward was the development of property testing. Property testing requires the user to write a few

functional properties that are used to generate tests, and requires an external library or tool to create test data

for the tests. As such many thousands of tests can be created for a single property. For the purely functional

programming language Haskell there are several such libraries; for example QuickCheck [CH00], SmallCheck

and Lazy SmallCheck [RNL08].

Unfortunately, property testing still requires the user to write explicit tests. Fortunately, we note there are

already many implicit tests present in programs. Developers may throw assertion errors, or the compiler may

silently insert runtime exceptions for incomplete pattern matches.

We attempt to automate the testing process using these implicit tests. Our contributions are in four main

areas: (1) We have developed algorithms to automatically infer appropriate constructors and functions needed

to generate test data without requiring additional programmer work or annotations. (2) To combine the

constructors and functions into test expressions we take advantage of Haskell's lazy evaluation semantics by

applying the techniques of needed narrowing and lazy instantiation to guide generation. (3) We keep the type

of test data at its most general, in order to prevent committing too early to monomorphic types that cause

needless wasted tests. (4) We have developed novel ways of creating Haskell case expressions to inspect elements

inside returned data structures, in order to discover exceptions that may be hidden by laziness, and to make

our test data generation algorithm more expressive.

In order to validate our claims, we have implemented these techniques in Irulan, a fully automatic tool for

generating systematic black-box unit tests for Haskell library code. We have designed Irulan to generate high

coverage test suites and detect common programming errors in the process.
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Chapter 1

Introduction

A lot of software development is based around small units of code that integrate together existing libraries

to create new functionality. In addition, common combinators, code patterns, and data structures may be

abstracted into utility libraries. This separation of application and library means that developers do not need

to repeatedly solve the same problems in every project, which hopefully saves development time costs.

Unfortunately, where there is a problem with an application that includes library code, it may be quite di�cult

to debug the source of the problem. The error could be in the programmer code, a hidden bug in the library

itself, or due to the fact that the programmer has misunderstood (or is just not aware of) assumptions that the

library makes about its inputs and environment.

Debugging a programmer's application code is tricky in itself, but having the additional burden of libraries that

may not be under the programmer's control can make things especially di�cult. Determining the source of a

problem which uses libraries to which one may only have an API and not the source code can be extremely

challenging.

This work aims to provide support for such a scenario. Testing proceeds by creating expressions to test each of

the programmer's functions in isolation. Test expressions that are produced are small and should only feature

inputs that are needed to reproduce the bug. Should a bug (in our case, characterised by an uncaught exception)

be found, the generated test case can be used to establish the precise location of the fault.

One hopes that a corollary of this is that this technique is then applied to libraries before they are released

to be used by others. In this manner bugs present in the library can be �xed before they are discovered by

application programmers.

An overriding goal of this work is to enable testing without placing any extra burden on the programmer. In

practice this means we do not wish to modify the source code of the libraries being tested. We believe that a

programmer already states many implicit assumptions about their code through defensive programming checks

and compiler inserted error messages. These implicit assumptions are used to generate tests. We do not require

the programmer to provide an oracle to classify the test cases generated a priori, we assume that it is easier for
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the user to look at the test cases and the exceptions they throw and classify them after the fact. However, if

the user wishes to write oracles in the form of properties to check, our techniques are general enough to perform

property checking.

Such automation is desirable because writing enough tests to provide con�dence in a given piece of code is

di�cult and time consuming. The tests themselves have to be checked for accuracy, and validation needs to

take place to ensure they cover the intended parts of the code base. If the code is not trivial, it probably isn't

even possible to do this in a realistic time frame. This has led to a large body of work on automatically generating

test suites in the imperative programming community [MFS90, BKM02, CDE08, GLM08, VPK04, Kor96].

The Haskell programming language contains a variety of interesting language features, which present unusual

challenges and opportunities for automatic testing. These include a rich and expressive polymorphic static type

system, higher order programming using �rst class functions as values, and laziness.

The need for testing and debugging support in Haskell has been recognized already. The ��agship� Haskell

compiler, GHC, has built-in support for compiling Haskell programs with code-coverage instrumentation [GR07].

In addition, testing of functional properties is currently available and widely adopted through tools such as

QuickCheck [CH00] SmallCheck and Lazy SmallCheck [RNL08]. These tools require the programmer to make

source-level changes to their code and to express explicitly the properties they wish to check.

Although arguably a good discipline, adding explicit properties is extra work for programmers. Haskell programs

already contain many invariants and properties that must hold at runtime. For example, pattern matches may

ignore cases the programmer believes can never happen, leaving the compiler to silently insert calls to throw an

exception in the missing cases, or the programmer may explicitly throw an assertion exception if control �ow

reaches an unexpected program point. When packaged up as a releasable API, the programmer may wish to

ensure that a user of their API can't trigger these assertions and exceptions.

In this work, we present novel algorithms and data structures, realised as a usable tool, Irulan [ACE], that

can automatically detect such violations in Haskell programs. In addition, Irulan can automatically generate

test suites that achieve high coverage in the modules being tested.

The user of Irulan speci�es a module to test at which point Irulan will automatically generate a large number

of expressions that test functions exported by that module. Irulan then executes these expressions, reporting

to the user those that elicit runtime exceptions.

Irulan is designed to perform systematic black-box unit testing of Haskell libraries. It aims, through automatic

code generation and execution, to see if there are any possible uses of a library's API that cause uncaught

exceptions to be thrown. Irulan supports (and takes advantage of) the most important features of the Haskell

language, such as lazy evaluation and polymorphism. The large numbers of test expressions generated by

Irulan are also diverse; Irulan uses various exploration strategies to e�ectively explore the state space of the

programs being tested. Using the most successful strategy of iterative deepening, we evaluate Irulan on over 50

benchmarks from the no�b suite [Par93] and show that it can e�ectively �nd errors and generate high-coverage

test suites for the programs therein.
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1.1 Goals and Contributions

The goal of this thesis is to explore the space of automated, black-box testing in the context of Haskell. In

particular we wanted to take existing ideas and build upon them further. Our goals are to answer the following

questions, and our main contributions are our answers:

� Can we automatically infer good quality test data for use in testing functions?

Existing testing tools for Haskell all require some form of modi�cation to the original sources. These

changes are needed to inform the testing tool with recipes for creating test data.

However, Haskell programs contains lots of static type information; and using that we were able to

automatically infer (most of) the test data needed for testing functions. We show how we automatically

collect appropriate constructors and functions that can be used to build up arguments to functions. In

many cases this is all that is needed for testing, however when non-inductive values (such as integers or

characters) are required, we allow the user to specify them to extend the available test data.

� What kind of testing can you do without requiring the programmer to provide explicit

assertions?

Automated testing techniques require some way to evaluate if a test case has passed or failed. For Haskell,

popular testing libraries require the user to write the test themselves and assert if the test passed or

failed (unit testing), or to write a property function that accepts some test data and returns a boolean

indicating whether the test was passed using that test data (property testing). We wanted to explore

what, if anything, can be tested for free, without requiring the user to explicitly state tests or properties.

In this thesis we show that by applying functions that are in the user code to generated arguments and

monitoring their evaluation, we can discover several classes of programming error. For example, incomplete

implementations manifest through the catching of Non-exhaustive Patterns errors, and missing base cases

in recursive programs can cause in�nite loops that are caught by looking for high memory usage or an

excessive runtime.

We present an algorithm, based on the idea of needed narrowing (and similar in spirit to the one used

by Lazy SmallCheck), that can apply arbitrary Haskell functions to test data. However we go beyond

existing tools by allowing the testing of polymorphic functions, and consider the interaction of needed

narrowing with polymorphic variables.

� During testing, how important is it to ensure composite values are inspected deeply?

In Haskell, data values are lazy by default. This means that evaluating the root of a data structure will

not necessarily force the evaluation of its children. In theory this means that just because a function

returned a result successfully, does not mean that some part of the function didn't crash, because some

parts of its evaluation may not have happened yet.

As part of this thesis we investigated looking for errors inside returned data values. We demonstrate

that synthesising selectors using case expressions to destruct data is useful for testing a lazy functional
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language, and can substantially increase the test coverage of a library.

� How should we explore the search space for test cases?

Test cases are built from a root function to test, and some generated test data that is to be used for the

root function's arguments. There may be many, even in�nite number of ways to apply the function to

arguments.

In this thesis we present evidence supporting the notion that, when testing for a �xed amount of time,

iterative deepening is the most e�ective exploration strategy.

� Can we build a prototype, autonomous testing tool to realise these ideas?

In order to validate our claims of usefulness, we would need an implementation that could be used to

evaluate our ideas by testing real Haskell code.

In this thesis we present a tool, Irulan, and the algorithms and data structures that underpin it. We then

present several practical experiments performed with Irulan to look at the e�ectiveness of our techniques.

Our Irulan tool was designed to be an extensible platform, upon which we could explore some more

experimental ideas. One extension was to look at regression testing, and we present several case studies

using this extension that provided useful results in the real world.

1.2 Outline and Chapter Contributions

Chapter 2 outlines relevant related work, highlighting points of departure from existing techniques and those

we explore here.

Chapter 3 gives an overview of di�erent use cases of our Irulan tool, to motivate the underlying problems we

solved and applications of our ideas.

Chapter 4 outlines the implementation details of Irulan. Here we give novel algorithms for building, organising

and executing tests for Haskell functions in an autonomous manner. The main contributions of this chapter

are:

� The automatic inference of a Support Set. Irulan will need a set of identi�ers (the support set)

which it can use to create arguments for the functions being tested. This section will discuss how Irulan

can automatically infer this set of identi�ers.

� The TypeMap is a novel data structure that allows polymorphic types to be used as keys in a map.

Searching for a type in this map will �nd all values whose keys unify with the type being queried. This is

used for �nding functions that can be used to build arguments to the function currently being tested.

� The Constructor Graph is a data structure used to express (the possibly) in�nite paths through

constructors using case expressions, permitting the use of case expressions over composite data types in

order to produce test data for the function under test.
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� The Plan algorithm builds a lazy, tree like data structure that holds the current test expression to

run, and, based on the result of running the test expression, what test expressions to run after it. The

Plan encodes testing a function using a needed narrowing or lazy re�nement like strategy, but adds novel

features for building test data using case expressions and testing in the presence of polymorphic functions.

Chapter 5 contains our experimental evaluation. Our main experiments run Irulan on two large existing

benchmark suites. We then perform two smaller experiments to motivate con�guration choices made in the

larger benchmarks. The main contributions of this chapter are:

� no�b. We run Irulan on the spectral and real suites of the no�b benchmark, reporting code coverage

achieved on the programs contained therein and discussing the kinds of errors found by Irulan.

� Property Testing. We take the benchmark comparing QuickCheck, SmallCheck and Lazy SmallCheck

from [RNL08] and test Irulan with it, reporting comparative code coverage from all four tools.

� Runtime Caches. We hypothesise that referential transparency could provide some optimisation oppor-

tunities through the use of caches. However our experiment shows that the overheads of using caches are

in general higher than the savings we could achieve.

� Search Strategies. We look at the performance of di�erent search strategies, and introduce a strategy

�time split�, which is a variation of depth �rst search, that performs well for runs of a �xed length of time.

Chapter 6 concludes with a summary of the achievements of this thesis, and a discussion on possible future

directions for this work.

1.3 Statement of Originality

The implementation of Irulan and the algorithms presented in this thesis are my own work.

Professor Susan Eisenbach, Dr. Cristian Cadar and I co-authored draft papers on Irulan. Parts of these papers

have been worked into Chapter 1, Section 3.1, Chapter 4 and Sections 5.1 and 5.5. The technical contributions

of the papers are all my own.

Professor Eisenbach and I co-authored a paper on previous work describing test generation in the context of

Java [AE09]. This was presented at LDTA '08 and later published in ENTCS. Extracts from this paper are

included in Section 2.1.1.

Professor Sophia Drossopoulou gave suggestions for the formalisation of the lookup function in Section 4.1.3.

Professor Eisenbach has also proof read and contributed detailed suggestions throughout this thesis. Dr Tony

Field and William Jones also proof read and contributed suggestions towards Chapter 1 and Chapter 6. Any

mistakes remaining are my own.



Chapter 2

Background

In this chapter we give the background that led up to our work �2.1, discuss in detail relevant related work on

the subject of testing �2.2, before closing by putting our work in context with respect to the related work �2.3.

2.1 Origins

This thesis is about black box testing for Haskell programs, however this is not the problem that we started with.

We have spent some time looking into black box regression testing for Java compilers. This work enabled us to

gain experience with working with state space explosion that occurs when generating programs or expressions,

and the importance of pruning the search space as aggressively as possible. We also gained experience in using

code coverage as a means to evaluate black box testing techniques.

We then, under the direction of Professor Simon Peyton Jones, investigated adding a stack tracing mechanism

to the Glasgow Haskell Compiler, GHC. The work with GHC allowed us to understand the capability of GHC

to not only act as a compiler, but also a re�ection library to access the API of compiled Haskell code. Thinking

of applications in terms of testing, we were led to the black box work of Irulan which we present in the rest

of this thesis.

2.1.1 Tickling Java with a Feather

In earlier work [AE09], we investigated automated testing in the context of Java. We present here an abridged

version of the paper. The work was motivated around the following observation:

Many programming languages have been given a formal presentation; either in their entirety, or for

a semantically meaningful core subset. This formalism is used to prove desirable properties of the

semantics of the language, both static and dynamic. However, the language is only proved safe in

theory - we still rely on a correct implementation of the compiler of the language.

6
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Figure 2.1 Syntax of Featherweight Java

CL ::= class declarations:
class C extends C {C f; K M̄}

K ::= constructor declarations:
C(C f) {super(f); this.f=f;}

M ::= method declarations:
C m(C x){return t;}

t ::= terms:
x variable
t.f �eld access
t.m(t) method invocation
new C(t) object creation
(C) t cast

The work asked whether the formal presentation of the theory could also be used both as input to generate test

programs and to be an oracle for them. The test programs can then be executed by the implementation of the

full language to see if it conforms with the theory. We wanted to evaluate how useful these test programs would

be in practice.

To start answering the question, we presented an investigation into using the theory of Featherweight Java

[IPW99] to create tests for the type checker component of the OpenJDK Java compiler [Mic].

FJ is designed to be a minimal calculus for Java. The authors omitted as many features as possible while still

retaining the core Java typing rules. This included omitting assignment, making FJ a purely functional calculus.

FJ has its own syntax (Figure 2.1) which is a restricted subset of Java - all syntactically valid FJ programs are

syntactically valid Java programs.

We generated test Java programs that were instances of the FJ grammar. We instantiate the grammar by

walking it using a bounded, depth-�rst exploration algorithm. We use structural constraints limiting the

maximum number of classes, the number of �elds and methods per class, and the complexity (sum of all

production rules used) of expressions in each method and the number of variables used in a method, to ensure

the depth �rst exploration does not explore an in�nite space. However the grammar of FJ also makes reference

to potentially in�nite domains for class names (C), variable names (x), method names (m) and �eld names (f).

For the depth �rst exploration algorithm to function e�ectively, it requires a bounded domain for each of these

in�nite domains. The simple solution to this is to create constraints for the number (and names) of valid

class/method/�eld/arguments, and whenever (for example) a class name is required in a program, n copies of

the program are produced, each using a di�erent substitution from the n available class names.

This approach will specify many programs that are isomorphic or α-equivalent to each other. For example:

P1:

class C1 extends Object { C2 { super(); } }

class C2 extends Object { C1 { super(); } }

and
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P2:

class C2 extends Object { C1 { super(); } }

class C1 extends Object { C2 { super(); } }

If we can assume that the internal representation of names in the Java compiler doesn't try to inspect their

values (except to compare them to each other and some built-in values such as Object or this using library

methods), then we can prune away many of the isomorphic programs. To do this, we augmented FJ with a

notion of binding. Class, �eld and method declarations can be thought of declaration sites for new class, �eld,

method and argument names, and so for each site in the program, we invent new names that will be available.

Program generation now happens in two phases, the �rst generates a skeleton with the structure of the class,

�eld and method declarations, then the skeletons are instantiated with expressions and references to names that

the skeleton makes available.

The generated FJ programs by themselves are not very useful, as they are just programs. For them to become

tests, they need to be associated with an expected result for running the test against javac. The expected

result is provided by an oracle, in this case we have used an implementation of FJ's type checker [AE].

To help ensure our oracle is correct, we have used our generated test programs to check that it gives the same

outputs as another implementation of FJ. Given the Java compiler we have chosen to test, we also expect that

the implementation of javac is actually correct - so the oracle should agree with it in most cases (which it

does). However there are some cases where the FJ oracle and javac do not agree.

To be as exhaustive as possible, we want to generate both positive and negative test programs for javac; i.e.

tests that we expect to type check and tests we expect to be rejected. However we have had to be careful. FJ

type checking rules on FJ programs are sound w.r.t. Java. If FJ statically accepts a program, we expect Java

to accept it. However there are FJ programs that FJ statically rejects that Java will accept. For example, Java

supports covariant returns in overridden methods and does not require non-�nal instance �elds to be initialized

in constructors, whereas FJ would reject programs that contained these features. There are also some classes of

program where the reason FJ rejects the program is strong enough to say Java should reject it too. For example

creating cycles detected in the class hierarchy or trying to declare a class named Object are always errors in

both FJ and Java programs.

When applying the oracle to the test programs, we check whether the test program type checked or not. If it

failed to type check we only pass it to javac if it was rejected for a reason we would expect javac to reject it

for (e.g. there was a cycle in the class hierarchy). In this way, we are only testing javac (or, in the experiment

run here, collecting coverage on) with programs that we can check javac agrees with our expectations.

We generated several suites of test FJ programs, and ran them against code-coverage instrumented versions of

an FJ type checker and the OpenJDK javac compiler.

Using large numbers of very small and simple Featherweight Java programs, we can achieve a test coverage

of around 80% - 90% of an FJ type checker. Adding the programs that were �ltered out because they were
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possibly correct Java programs but incorrect FJ programs hardly increases the code coverage at all. This may

be because the constraints keeping the problem �small scope� and hence tractable are too limiting; for example

none of our tests create method calls featuring two arguments. Achieving a near-100% code coverage for FJ

type checking is a future goal, that requires a more structured approach to generating tests that doesn't have

the explosion in the state space we currently experience.

The same tests run on the OpenJDK javac correspond to exercising 25% - 30% of the code base of a full,

industrial strength Java implementation. The results indicate that the recursive nature of expressions, and

the associated recursive implementation in compilers, means that testing using lots of small expressions can be

e�ective. It is this feature that we decide was useful, and it became one of the underlying design decisions of

Irulan.

2.1.2 Finding the Needle: Stack Traces for GHC

We were fortunate to be able to undertake an internship at Microsoft Research Cambridge, under the instruction

of Simon Peyton Jones. During this time, we investigated adding the ability to get lexical call stack traces out

of Haskell programs. As this subject was not directly related to test generation we will refer the interested

reader to our Haskell Symposium paper [APJE09] for the details.

One lesson we learned from the stack traces work is that automation is a useful feature of a tool in practice.

If the programmer can run their application with or without stack traces by just toggling a compiler �ag, as

opposed to needing to change imports or re-write their code, it will make a big di�erence in practice to uptake

and ease of use. Enabling this kind of automation and still having a practical tool is then an interesting research

topic, and in the work presented in this thesis, we made it a goal to automate what we could during testing.

The stack traces work did enable us to gain an understanding of the internal workings of the Glasgow Haskell

Compiler, GHC. One insight quickly realised was the GHC can also be used as a powerful library, to enable a

Haskell program to introspect and access the exported identi�ers and re�ect on their types in compiled Haskell

code. We realised that this ability could be leveraged to enable the automated discovery of Haskell identi�ers

of certain types, and to enable the dynamic construction and execution of Haskell expressions, without needing

any source code modi�cations on the part of a normal programmer.

A motivating example for the stack trace work is identifying the cause of Prelude.head: empty list errors.

These are a common example of di�cult to debug errors that can arise in Haskell applications. They occur

when the Prelude function head (which extracts the �rst element from a list) is applied to an empty list. Since

it is not possible to extract an element from an empty list, the head function fails by throwing an exception.

However, since there is no lexical call stack maintained in a normal Haskell runtime, it is not possible to (easily)

ascertain which use of head caused the exception to be thrown. The stack traces work aimed to improve the

situation by rewriting the application to build up lexical call stacks at runtime.

However, we realised that there is another approach to identifying the causes of exceptions. If the application's

individual functions are tested under a range of inputs, should any inputs produce a Prelude.head: empty list
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exception, then the programmer has a concrete (and hopefully small) example to work forward through the

application to establish why the error was thrown. This approach could then be combined with a stack tracing

approach to work backwards to help narrow the cause even further. It also brought to the forefront the interesting

challenges (and potential for research) that lazy evaluation in Haskell provides, which we decided to explore

further in the context of test generation.

2.2 Related Work

Given our interest in black box testing of Java programs, and our newly discovered knowledge of a major Haskell

compiler, we decided to investigate automated testing in the existing research literature. We present some of

that work here.

We focus �rst on two key areas relevant for this thesis: how search spaces are explored in test generating

software �2.2.1, and how error conditions can be found automatically �2.2.2. We then consider some other

related techniques and tools that are useful once a bug has been found �2.2.3 as part of a debugging e�ort.

2.2.1 Exploring the Search Spaces of Testing

We are interested in automatic test case generation. When testing a program, or a property, we will want to

enumerate many test cases to see if we can �nd a test case that exhibits a fault, an erroneous computation or

a violation of an invariant. For example, in the context of testing functional properties (functions that take

arguments and return a Boolean), we would want to enumerate expressions representing invocations of that

function, to see if any of the enumerated arguments make the function return false.

We �rst consider existing work, and the di�erent approaches they take to enumerating these large and sometimes

in�nite spaces of expressions. Then we look at needed narrowing, an evaluation mechanism from functional

logic that suggests some optimisations for enumerating the space in the context of a lazy functional language,

and work related to it. Finally we look at an interesting approach to de�ning criterion for knowing when enough

testing has been performed.

Enumerating Search Spaces

QuickCheck

One of most popular testing libraries for Haskell is QuickCheck [CH00]. This is a very lightweight tool for

testing functional properties. At their core, properties are functions that take some arguments and return a

Boolean result; the aim of the library is to enumerate arguments to see if any will make the function return

false, and to then present such arguments as a counterexample to the property.
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QuickCheck relies on type classes to detail how to generate test data. The test data is generated randomly,

but the user has to declare how to generate the data for their own data types by implementing a type class

Arbitrary . When implementing Arbitrary users can specify the distributions that choose how to generate their

test data, and there is library of distributions and ways of making choices built into QuickCheck that make this

easy.

QuickCheck can then repeatedly generate random test data, typically until some limit on the number of test

cases to generate has been reached, or until it �nds a counterexample.

However this approach leads to some problems. The �rst is that many properties are implemented with an

implication at the root, meaning they have a precondition. If many test cases fail the precondition, then they

will be counted as a successful test even though no meaningful testing took place.

For example, consider a function insertSorted that inserts an element at the right place in a list to keep it

sorted. A typical implementation of a property to check for this could be:1

prop_insertSorted :: [Int ]→ Int → Bool

prop_insertSorted xs x

= sorted xs → sorted (insertSorted x xs)

where

True → b = b

False → b = True

Many inputs could be generated that do not satisfy sorted xs, and so the property will trivially be True. To

aid the user in understanding and better expressing their intent, QuickCheck adds a small domain speci�c

language, Property , that a property function can use, and features several useful combinators. For example,

the two argument combinator ==> takes a precondition and a real test, and captures the intent that should

the precondition fail, the input should not be considered a test at all. There are also combinators to label and

classify test data passing through the test, which QuickCheck can then report at the end of a test run. This

way, a user can visualise the distributions of data that has been generated, to sanity check that meaningful

testing is taking place.

For example, the above example can be rewritten to use ==> and also keep track of the length of the successfully

tested sorted lists:

prop_insertSorted :: [Int ]→ Int → Property

prop_insertSorted xs x

= sorted xs ==> collect (length xs) (ordered (insertSorted x xs))

Where the output from running this may produce:

OK, passed 100 tests.

1This and the following example are adapted from [CH00].
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49% 0.

32% 1.

12% 2.

4% 3.

2% 4.

1% 5.

Here 100 lists that pass the sorted precondition have been tested, however 49 of them were the empty list. In

this case, a more specialised random generator speci�cally for creating sorted lists may be more appropriate to

use, but would require extra work by the user of QuickCheck to implement.

One important feature of Haskell is the ability to perform higher order programming, such that functions can

accept other functions as arguments. Sometimes therefore, you may want test data that takes the form of a

function. QuickCheck supports creating higher order functions which accept arguments of a certain type if it is

provided with an instance of a type class for that type called Coarbitrary . The user is required to instantiate

a function that accepts the argument of the higher order function, a random generator for the result type,

and then return the random generator with its seed varied according to the value of the �rst argument. The

intention is that di�erent inputs to the higher order function seed the generator (and so the result value) in

di�erent ways.

QuickCheck's small and lightweight approach has helped it become a very popular and successful tool for

the Haskell community. With a focus on random testing, the authors have presented many useful primitives,

combinators and patterns for creating and debugging random test data generators. However there is still a

burden on the user of the library to specify these generators, and to understand what are appropriate random

generators to use.

SmallCheck

Other authors [RNL08] have also noted that knowing the appropriate random distribution for test data is a

�ne art. They also note that the small scope hypothesis [Jac06] states that if a bug exists in a program, then a

small test case will likely be able to expose it. They therefore present SmallCheck (and later Lazy SmallCheck

which we discuss below), which exhaustively enumerates and tests all values up to a given depth limit. The

depth bounded search can also be repeated at increasing depths to give an iterative deepening search.

The implementation uses a lightweight, type-class based approach, similar to QuickCheck. However instances

of SmallCheck's Serial type class (analogous to QuickCheck's Arbitrary) only need to provide a mapping from

a depth limit to a �nite list of all values of that type within the depth limit. By providing several useful

combinators, SmallCheck makes these instances straightforward to derive, and in many cases they could be

written mechanically.

Testing properties that use implication or have preconditions are also interesting in SmallCheck, but for a

di�erent reason than in QuickCheck. Consider another variant of our prop_insertSorted example again:
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prop_insertSorted :: [Int ]→ Int → Property

prop_insertSorted xs x

= sorted xs ==> ordered (insertSorted x xs)

SmallCheck also makes available a Property type and ==> combinator, but the behaviours are di�erent to

those in QuickCheck. SmallCheck uses Property to be able to maintain separate counts of tests that passed or

failed the precondition. However, SmallCheck will still enumerate all inputs within the depth limit for testing

the function. QuickCheck runs extra tests if some fail the precondition because it is running a user con�gurable

number of tests, whereas SmallCheck is testing all expressions within a depth limit.

However, there is still some subtlety to using ==>. In the above example, all combinations of xs and x will

be generated and tested, even though the precondition only depends on xs. In order to prevent the needless

replication of trivially failing tests, it would be better for the application programmer to specify that once valid

xs have been found, only then should x be generated. The user can specify this like so:

prop_insertSorted :: [Int ]→ Property

prop_insertSorted xs = sorted xs ==> λx → ordered (insertSorted x xs)

The Property DSL in SmallCheck can also be used to perform existential testing. To test an existential property

f , an argument x must be found within the depth limit that makes f x true. This now has an interesting e�ect

on the interpretation of the depth limit. If the depth limit is too low then the existential may not be found,

and so the only way to make the test pass is to increase the limit. This runs counter to the intuitive notion that

increasing the depth limit makes it more likely for a counterexample to be found and thus to fail the test. An

extra restriction o�ered by SmallCheck, that of requiring unique existential witnesses, can further complicate

what increasing the depth limit means for the soundness of a test. A property requiring a unique existential x

may fail if the depth limit is too low to �nd x , then pass at a sweet spot where only x is found, but as the depth

limit is increased further, fail again if a new example di�erent to x is found. SmallCheck does provide some

combinators in the DSL to allow the user to alter the depth limit when interacting with existential properties

to help solve these problems.

SmallCheck also has the ability to generate higher order functions if the user speci�es a (mechanically derivable)

coseries function in the Serial type class. As SmallCheck focuses on complete explorations of depth limited

search spaces, coseries will enumerate all functions of (input , output) pairs. As these functions are total and

enumerable, if suitable Show instances are available for both the inputs and the outputs, then SmallCheck can

print out what the mapping the function uses is as a counterexample if needed.

EasyCheck

Random and depth �rst iterative deepening aren't the only exploration strategies that have been considered for

enumerating search spaces of terms for testing. The authors of EasyCheck, [CF08], for example, put forward

three properties that they believe the ideal test case generation strategy should possess. Their ideal exploration
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strategy for a �nitely branching, but possibly in�nite in depth search space would be complete, advancing and

balanced:

� Complete: every node in the search tree is eventually visited. For example, breadth �rst search is complete,

but unbounded depth �rst search may get stuck in an in�nite branch, meaning some values will never be

generated.

� Advancing: each level n of the search tree is (at least partially) visited after p (n) other nodes, where p is

a polynomial. The authors argue that this avoids numerous trivial test cases, getting to larger test cases

faster. This seems to run counter to the small scope hypothesis (that in general bugs will be exposed

by small counterexamples), and means that test cases generated will also not be (necessarily) minimal.

Depth �rst search (on an in�nite search tree) is advancing (it explores the �rst node at depth n in n

steps), whereas breadth �rst search is not (it will enumerate all of the small test cases before larger ones,

requiring exponential time to reach a new level of the tree).

� Balanced: the order of values tested is independent of the order of child nodes in the search tree. If

breadth �rst search collected all of layer n + 1's children and shu�ed them before starting layer n + 1 it

would be balanced (the authors note that a normal breadth �rst search is nearly balanced). Depth �rst

search is not balanced.

The tool the authors present, EasyCheck, performs functional testing in the style of QuickCheck or SmallCheck,

for the functional logic programming language Curry. A feature of Curry is that expressions may have non-

deterministically many values, for example:

bool = False

bool = True

When evaluated, bool could be True or False. A primitive of the Curry system they use allows rei�cation of

the possible values a non-deterministic expression might take in the form of a SearchTree, vis:

searchTree :: a → SearchTree a

data SearchTree a = Value a | Or [SearchTree a ]

Given SearchTrees for the arguments of the property to be tested, the authors then present a search strategy,

level diagonalisation, and then extend it with random shu�ing, in an attempt to �nd a better search strategy

based on the tenets of being complete, advancing and balanced.

All the nodes in a search space can be represented by an in�nite list of lists, where each inner list represents

all nodes at a particular depth. Given one of these lists of lists, then di�erent search strategies can be thought

of as di�erent ways of transforming that list of lists into a single list, where the order of items in the single

list gives the order or examining each node. For example, simply concatenating all the inner lists gives rise to

breadth �rst search.
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Figure 2.2 Level Diagonalisation Strategy on an in�nite binary search space. Lines in black show the edges
traversed and nodes visited in the �rst 40 steps. The graph is cropped at depth 10.

The level diagonalisation approach performs a diagonal interleaving of the inner lists. In Figure 2.2 we show the

�rst 10 levels of a binary search space, and visualise in black the �rst 40 nodes / edges traversed. The approach

is complete and advancing, however it is biased towards the left hand branches of the tree, and is therefore not

balanced.

Figure 2.3 Randomised Level Diagonalisation Strategy on an in�nite binary search space. Lines in black show
the edges traversed and nodes visited in the �rst 40 steps. The graph is cropped at depth 10.

Figure 2.4 Four Randomised Level Diagonalisation Strategies interleaved on an in�nte binary search space.
Lines in black show the edges traversed and nodes visited in the �rst 160 steps. The graph is cropped at depth
10.

A re�nement to this strategy to try and make it balanced, is to shu�e the children of a node recursively before

attempting diagonalisation. Figure 2.3 shows the e�ect upon the exploration of the search space this shu�ing

has. While this makes the exploration balanced, it has the unfortunate property that the initially created larger

test cases are all similar, as they lie close to each other in the search space. The authors initial solution to this

is to interleave several randomised level diagonalisation traversals, as presented in Figure 2.4.

The authors do note, however, that generating many, �su�ciently di�erent large test cases early� is still open

future work.
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Evaluation Guided Enumeration

Needed Narrowing

In the existing tools for Haskell (QuickCheck and SmallCheck), we have seen that the testing library takes a

function to test, and searches for inputs to that function that make the test fail. This has an analogy with logic

programming languages, where a search to instantiate metavariables with values is used to make a function

de�nition succeed.

The di�erence, however, is that the existing tools are generating test data, and then seeing if that makes the

test pass, whereas the logic programming languages use some form of narrowing to evaluate the expression, and

then only instantiate the metavariables with as little structural value as necessary.

An e�ective narrowing strategy for functional logic is needed narrowing [AEH00], which is a sound, complete

and optimal evaluation strategy for a class of functional logic programming languages (inductively sequential)

which approximate the core features of functional languages such as Haskell.

The evaluation strategy that needed narrowing prescribes closely follows the lazy evaluation strategy used by

Haskell. However, needed narrowing also describes how to instantiate metavariables with just enough (but no

more than is necessary) concrete data to allow evaluation of a term to reach a head normal form. The analogy

with test generation is that if all the arguments to a function are variables, it speci�es test data for just the

parts of those variables that will be evaluated, leaving the rest unde�ned.

The needed narrowing algorithm processes rewrite rules expressed in a de�nitional tree consisting of branch,

rule and exempt nodes. These are analogous to Haskell's case statements, values and error calls respectively.

Our presentation of needed narrowing will maintain the Haskell analogy in order to avoid introducing a new

syntax, rather than the predicates and rewrite rules in their formalism.

For example consider the following de�nition of a Haskell-like less than or equals function, lte. Traditionally

it would be expressed as an ordered list of rewrite rules, or in the declarative equivalence syntax that Haskell

makes natural.

data Nat = Zero | Succ Nat

Zero ‘lte‘ x = True

(Succ x ) ‘lte‘ Zero = False

(Succ x ) ‘lte‘ (Succ y) = x ‘lte‘ y

Rewriting lte in a de�nitional tree style makes the pattern matches and precedence between the rewrite rules

explicit.

x1 ‘lte‘ x2 = case x1 of

Zero {-Zero `lte` x2 -} → True

Succ x3 {-Succ x3 `lte` x2 -} → case x2 of
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Zero {-Succ x3 `lte` Zero -} → False

Succ x4 {-Succ x3 `lte` Succ x4 -} → x3 ‘lte‘ x4

Figure 2.5 Graphical representation of the de�nitional tree for the lte function

x1 `lte` x2

Zero `lte` x2 (Succ x3) `lte` x2 

True (Succ x3) `lte` Zero (Succ x3) `lte` (Succ x4)

False x3 `lte` x4

In the comments next to the pattern matches we have stated explicitly what the top level term must have been

for the pattern match to succeed. In Figure 2.5 we give a graphical presentation of the de�nitional tree, in

the style used by the paper directly, which use the full terms at the roots of the branches (case statements)

and highlights the variable being discriminated upon. Undecorated edges connect case statements (i.e. connect

a de�nitional tree root to child de�nitional trees), whereas arrows connect a de�nitional tree to a �nal result

value.

The core of the needed narrowing strategy is de�ned by a function λ, which takes an expression rooted at an

operation, and the de�nitional tree for the operation. It outputs a single reduction step (consisting of a substi-

tution to apply to the free metavariables, the part of the expression to be reduced, and the transformation to be

applied to that part of the expression). In the case that no reduction can take place, the output transformation

is instead ?. There can be cases were several di�erent instantiations may lead to di�erent reduction steps. The

algorithm as presented will make a non-deterministic choice between them, however that choice can be seen to

give rise to a search space of all the di�erent ways of generating test data for the metavariables that lead to a

single reduction.

Following our Haskell analogy, the implementation of λ for the most part follows the rules for lazy evaluation.

However, when evaluating a case statement over a metavariable, the strategy has to know which branch to

follow in the case statement. At this point, a non-deterministic choice needs to be made where the metavariable

is instantiated to a constructor to make a branch followable. In de�nitional trees, branches must contain cases

for all constructors (those that would be incomplete can be followed by an exempt node, which in Haskell would

be a call to error), so this choice doesn't require knowledge of the de�nitional tree itself, only the type of the

metavariable concerned.

The Haskell runtime system already performs lazy evaluation, only evaluating variables when case statements

demand their values. If it were possible to observe when variables were scrutinised in case statements, and
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then replaced with one of their constructors, then needed narrowing could be performed in Haskell directly.

One potential bonus of being able to do this in Haskell would be to optimise some property tests that use

pre-conditions. For example, consider our earlier prop_insertSorted example. To make the exposition simpler,

we will test lists of inductively de�ned Nat as opposed to magical Int values.

prop_insertSorted :: [Nat ]→ Nat → Property

prop_insertSorted xs x

= sorted xs ==> ordered (insertSorted x xs)

Previously in SmallCheck we saw that this de�nition would repeatedly test sorted xs while needlessly varying

the value of x . However, if SmallCheck took a needed narrowing approach, a value for x wouldn't need to be

instantiated until after a suitable xs for sorted xs were found. In-fact, given sensible de�nitions for ordered and

insertSorted , in the case that xs is instantiated to [ ], x should also not need to be instantiated for the test to

pass (inserting anything into an empty list should always succeed, and a single element list is always ordered).

Lazy SmallCheck

In [RNL08], the authors discuss the above problem and ideal solution for properties with pre-conditions, and

then put forward an approach to make needed narrowing work in Haskell. The authors realised that to be able

to observe when a metavariable is reduced can be done simply by replacing the metavariable with an expression

that throws a unique exception when evaluated. Most modern Haskell systems feature a way of catching thrown

exceptions within an IO computation.

During evaluation of an expression, if a metavariable exception is caught, then the expression is rewritten to

feature a constructor applied to new metavariables (i.e. new exceptions) in place of the original metavariable,

and then re-executed.

For this to work requires the representation of expressions in Lazy SmallCheck to be rei�ed to a uniform

representation. As with SmallCheck and QuickCheck, the user has to implement a type class to specify how

to create test data of a certain type. However, as with SmallCheck, this type class is usually mechanically

derivable. The Lazy SmallCheck type class instances express both how to construct and how to re�ne test data

in a �universal� format.

Figure 2.6 The core datatypes underlying the implementation of Lazy SmallCheck

type Series a = Int → Cons a

data Cons a = Type :∗: [ [Term ]→ a ]

data Type = SumOfProd [[Type ]]

data Term = Hole Pos Type | Ctr Int [Term ]

type Pos = [Int ]

In Figure 2.6 we present the core types and datatypes underlying the implementation of Lazy SmallCheck. For

all test data of type a to be produced, a function of type Series a must be available (typically through a type

class method). Within the de�nition of Cons a, the Type argument represents the shape of type a. The outer
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list has length equal to the number of constructors of the type. For each constructor represented in the outer

list, its inner list represents the types of the arguments to that constructor.

In addition to knowing the structure of the type a, a Cons a also has to know how to create values of type a,

which is what the second component of the :∗: represents. There is a list of functions, where each function

builds one of the constructors for the type a. The argument [Term ] represent the list of arguments to the

constructor. These Terms either represent yet to be re�ned metavariables (Holes), or concrete constructors of

the argument type, with a list of Terms for their children.

Figure 2.7 Two example Cons implementations.

boolCons :: Cons Bool
boolCons = SumOfProd [[ ], [ ]] :∗: [(λ[ ]→ False), (λ[ ]→ True)]

maybeCons :: Cons a → Cons (Maybe a)
maybeCons (ty :∗: mk) = SumOfProd [[ ], [ty ]] :∗: [(λ[ ]→ Nothing)

, (λ[child ]→ Just case child of
Hole p → error ('\0' : map toEnum p)
Ctr i ts → ((mk !! i) ts)
)

]

In Figure 2.7 we give two example Cons values. Note that Lazy SmallCheck provides many helper combinators to

make production of these values much more straightforward, but we present here expressions morally equivalent

to what would be produced by Lazy SmallCheck to help show the relationship between the sum of products

relationships in the types, the functions to create terms, and how �holes� (metavariables) in values get converted

into errors.

Referring back to Figure 2.6, the Holes carry with them their position in the ultimate Term tree, encoded as a

Pos, which is a list of Ints. At runtime, Lazy SmallCheck will convert a Term to a value and execute it. The

result will either come back as a ground Bool value (we are testing properties), or an exception encoding the

path to a Hole term that needs re�ning. During re�nement it is simply a case of walking the path described by

the Ints and by replacing the Hole at that point to create a list of new possible terms from each Ctr available.

With this machinery in place, the authors implement implication / preconditions in properties in the natural

way. The authors do note, however, that still some care needs to be taken when writing properties as now the

evaluation order of conjunctions matter. For example in the expression:

p x = (f x ∧ g x ) ==> h x

Assuming both f and g are total functions, then the ordering of f and g matters and will a�ect the number of

test cases generated. If f is a strict function (i.e. it forces x to a normal form), but is permissive (in general

it returns True) and g does not force much of the structure of x to a normal form, but does return False very

frequently, then much more test data will be generated than is strictly necessary.

In order to help alleviate this problem, Lazy SmallCheck introduces a new combinator entitled parallel con-

junction, ∗&∗. The use of it forms part of the Property DSL for Lazy SmallCheck. When evaluating a parallel
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conjunction, a ∗&∗ b, if the evaluation of a causes a hole to be reached, then Lazy SmallCheck will try to

evaluate b, before going back to re�ne a. If either conjunct evaluates to False then the �nal result will be False

without having to complete the evaluation of the other conjunct.

Property Directed Generation of First-Order Test Data

Part of the trick underlying parallel conjunction is that if some evaluation could happen in parallel, then in a

sequential system it could be bene�cial to interleave instantiating some branches with executing others, in the

hopes that a di�erent branch may reach a result without requiring instantiations.

In [Lin07], the author investigates this idea by modelling a small functional programming language, similar to

the core of Haskell, but adding metavariables (analogous to Lazy SmallCheck's Hole), and a parallel evaluation

construct. In their system, the parallel conjunction operator can be expressed as:

x ∗&∗ y = select {case x of {True → y ; False → False };

case y of {True → x ; False → False }

}

Here, the select case expression means that the result may be chosen non-deterministically from the evaluation

of either case branch. During evaluation, there may now be several �blocking� metavariables, where re�ning

any of them could enable progress down one branch of a select case expression. If evaluation reaches a normal

form down any select case branch, then that normal form is used, otherwise the set of blocking metavariables

is returned. This set of variables gives rise to a search space for deciding the order to re�ne and retry them in.

This technique can be applied to property testing. If the result is not the desired one, then some backtracking

has to occur to �nd a di�erent metavariable to instantiate, or a di�erent value to instantiate the metavariable

with.

The author calls the technique lazy instantiation, and presents a prototype for a Haskell-like language. In his

evaluation he shows that lazy instantiation outperforms blind enumeration. Parallel evaluation may not always

perform better than the non parallel program with well chosen ordering of conjuncts, but it is not worse by

much, and it gains massively if the conjunct ordering is poorly chosen.

Summary

In these techniques for enumerating and exploring search spaces of property testing we have seen that there

are several choices for how to enumerate a search space. Existing literature has performed random, exhaustive,

diagonalised and randomised diagonalised searches. In addition, motivated by the problems caused by precon-

ditions in some property tests, research has looked at using meta variables and needed narrowing like techniques

in order to make testing focus on test cases that actually matter. However, the ordering of conjuncts in pre-

conditions can adversely a�ect these techniques, and so further work looking at parallel evaluation constructs

and reduction strategies has been investigated which mitigates some of these adverse e�ects.
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2.2.2 Automated discovery of errors

One of our objectives is the unaided, automated discovery of error conditions in software. This has been

investigated through several existing techniques, we consider two here: symbolic execution and static analysis.

Symbolic Execution

Symbolic execution [Kin76] is the interpretation or execution of a real program, however instead of specifying

all inputs, some are left as symbolic variables. In an imperative setting, later assignments of variables to values

that involve symbols will cause the variables to be assigned expressions. Branching points in the program

require the state of the program to be cloned, one clone for each branch that is possible to take. Following any

particular branch will build up a path condition in that branch, which expresses the extra constraints on the

symbolic values that must have been true for that branch to be selected. If execution reaches an erroneous state

or undesired location, the path conditions can be solved (usually by an SMT solver) to give example values for

the symbolic inputs. These example values correspond to a test case that will cause program execution to reach

the undesired location.

Figure 2.8 A simple C-like increment function

1 void inc(int x) {

2 int y = x + 1;

3 if ( y <= x ) {

4 throw "Impossible"

5 } else {

6 return y

7 }

8 }

For example, consider Figure 2.8. In line 1, x is to be treated as a symbolic variable. In line 2, y is assigned a

value based on an expression featuring a symbolic variable, so it gets a symbolic value, namely the expression

x + 1. In line 3 there are two choices possible choices:

� In choosing line 4, the path condition is y <= x, where y = x + 1. Line 4 also represents a crash, so if a

solution to x such that x + 1 <= x (by substituting the value of x + 1 for y) can be found then we have

an example bug.

Good SMT solvers will understand that programming language int's are signed, 32 bit, 2's complement

numbers. So if x has the maximum possible positive value (e.g. 2147483647), then adding 1 will make it

negative (-2147483648), and using this value as an argument to inc will cause the function to crash.

� In choosing line 6, the path condition is !(y <= x) which can be simpli�ed to (y > x). However the

return statement always succeeds, so there is no bug to be found through this path.

This is of course a simple example. Programs can contain loops and may not terminate (even symbolically), so

there has been research in choosing the most e�ective or promising branches to follow. Full symbolic checkers
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also have to take into account more complicated constraints such as arbitrary pointers into the heap, and

symbolic inputs from e.g. reading from a �le.

Pex

The symbolic execution tool Pex [TDH08] operates upon .NET bytecode, and can verify several di�erent lan-

guage paradigms within the .NET ecosystem (for example, C#, VB.NET and F#). The search strategy for

choosing branches to symbolically execute is based upon arc coverage. Pex remembers which arcs in the control

�ow graph it has visited previously, and prioritises those it hasn't when exploring new paths. To be able to

evaluate and solve path conditions and constraints, Pex makes use of the Z3 [DMB08] constraint solver.

KLEE

Another successful symbolic execution tool is KLEE [CDE08]. This interprets LLVM bytecodes, and has been

used to �nd real bugs in widely used suites of programs, such as GNU CoreUtils. Unlike Pex, KLEE uses

random selection when choosing branches in the program to explore. KLEE also features many optimisations

to enable it to explore and keep in memory many branches at the same time. It has optimised compact space

representations for path constraints, and makes use of copy on write data structures when cloning branches at

decision points.

What makes KLEE particularly interesting is its simpli�ed symbolic models for handling system calls. For

example, a symbolic �le system consists of a single directory with a user con�gurable number of symbolic �les

in it. System calls on non-symbolic �les proceed as normal.

Reach

Symbolic execution has also been explored in the context of lazy functional languages like Haskell. In [NR07]

the authors take a �rst order core functional language (which Haskell can be compiled to) and use symbolic

execution to see if interesting program locations can be reached (and what inputs cause the location to be

reached). A program location is interesting if it has been annotated with a target keyword by the user, or is

the cause of an exception or black hole2.

Since Reach can present example inputs that reach arbitrary program locations, it is straightforward to use

Reach to perform property testing. A simple combinator, refute is presented that can be used to wrap the

result of a Haskell prop_ property function.

refute True = True

refute False = target False

A test to see if (for example) an insert function maintains an ordering is then expressed as:

prop_insert :: Int → [Int ]→ Bool

2A black hole is a detectable form of in�nite loop where evaluation of a value depends on evaluation of itself, for example
let x = x in x .
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main :: Int → [Int ]→ Bool

main x xs = refute (prop_insert x xs)

The symbolic executor uses a lazy reduction semantics to respect the laziness of (the transformed) Haskell.

Inputs to the program (for example the x and xs argument in the main program above) are represented as

unbounded variables. When the executor reaches a case expression over an unbounded variable then conceptually

execution splits, with each pattern in the case expression being followed independently. Following a pattern will

then re�ne the unbounded variable to a more concrete form.

In order to prevent the symbolic executor getting stuck on a single path in e.g. a highly recursive or even in�nite

loop, there is a bound on how far it can explore a single path. In addition, the splitting of execution at case

statements is implemented through backtracking once a bound has expired.

The authors explore two di�erent bounds: the maximum tree depth of input data created through re�nement;

and the maximum recursion depth of function calls. The input space of the �rst strategy is very intuitive; it

is easy for a user of Reach to understand what input values will and won't have been created within a certain

depth. In contrast the second strategy does not correspond to an intuitive space of input values, but it does

guarantee termination. The authors have examples where each strategy outperforms the other in �nding target

locations and observe that work is necessary to establish an intuition for when to use which type of bound.

However there are some limitations in the implementation of Reach. One interesting restriction is that Reach

can not synthesise functions as top level inputs, although the authors state that this is further work they hope to

explore. Another restriction is that Reach cannot synthesise primitive built in types. However for the purposes

of running experiments, they used a Peano representation of integers.

The authors also put forward some ideas for optimisations within the symbolic executor. For example, some

expressions will never reduce to a target expression and could be ignored by the executor. However Reach

could then return results that crash in the ignored parts before the target was reached. As an alternative, such

expressions could be delayed until after a target expression had been reached to ensure it is known if they crash

or not.

Another approach is to use a backwards analysis that moves the target expressions up through the program

to the root, gathering equational constraints during the lifting. Symbolic evaluation can be used to solve the

constraints, resulting in only the parts of the program that directly a�ect reaching a target expression being

considered.

Static Checking

Symbolic execution cannot always guarantee that programs are devoid of reachable error conditions; loops and

recursive calls may require large amounts of time to be executed, and, by appealing to the halting problem, it

is impossible to know in general if all possible followable branches in the program have been followed.
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Another approach, in static analysis, aims to prove that error conditions are not reachable. We consider two

approaches here, focused on proving certain properties of Haskell.

Not All Patterns, But Enough

While programming in Haskell, a programmer may deliberately create partial functions, i.e. a function that

does not have an implementation for all possible values its arguments may take. The most common example of

this is the head function which returns the �rst element of a list, and throws an exception if the list is empty.

In [MR08], the authors present a static technique (implemented in a tool called Catch) that proves that partial

pattern matches in a program are safe, i.e. there is no dynamic path that can lead to an unimplemented case

being reached.

The technique operates upon a �rst order language, however the tool can work upon full Haskell '98 programs

by �rst transforming them into a �rst order language; In order to reason about non-algebraic data types (such

as Ints and Chars) they are converted into algebraic data types representing an abstracted value. For example:

data Int = Neg | Zero | One | Pos

data Char = Char

Additionally, in order to reason about functions that return IO values, it is assumed that any value of the

returned type could be returned.

The technique used by Catch is to calculate preconditions on the arguments on functions, and, assuming those

preconditions hold, some guarantees on the return values of the functions. The preconditions are expressed by

constraints on the shape that the arguments may take. In the paper, the authors put forwards three di�erent

types of constraint, and explain their positive and negative attributes.

For example, basic constraints say a value can take any shape, or must be rooted at a particular constructor,

with a list of recursive constraints for the arguments to that constructor:

data Constraint = Any | Con CtorName [Constraint ]

All preconditions to functions are initially assumed to be true, apart from the one for the error function

(which is false and used to represent partial pattern matches). The algorithm used by Catch iterates building

preconditions by conjoining old preconditions with newly constructed ones. While this means constraints get

more restrictive, the basic constraints presented have an in�nite space (data types can be in�nite in space).

This therefore means the algorithm may not terminate.

In order to guarantee termination, two other forms of constraint are presented:

� Regular expression constraints represent a path through a value and a set of constructors that the value

at the end of the path must be in the form of. The regular expression language is restricted so that

for a particular value, there are a �nite number of possible regular expression constraints that could be

generated for it.
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� Multipattern constraints consist of two constraints, p1 ? p2. A value satis�es this multipattern constraint

if the root satis�es p1, and all values recursively reachable from the root satisfy p2.

Catch has been able to analyse real programs, and the evaluation section of the paper makes clear the strengths

and weaknesses of the static analysis approach. For example, several programs within the no�b benchmark

suite needed to have some small source modi�cations before Catch could perform meaningful testing on them.

However the approach is useful, and found real bugs within the Haskell applications HsColour and XMonad.

Extended Static Checking for Haskell

An alternative approach to property testing checking is to allow the user to state explicit pre and post conditions

on their functions, and then use static checking to ensure the pre and post conditions hold. In [Xu06] the

authors outline such an approach for Haskell. The technique puts forwards transformation rules to turn a

function with pre and post conditions into a functional programming expression. The authors then explore using

supercompilation (a combination of static inlining, simpli�cation and other aggressive compiler optimisation

techniques) to simplify the resulting expression. The methodology arranges it so that the originally transformed

expression contains BAD terms that supercompilation should only be able to remove if they are not reachable

(i.e. they are guarded by a pre-condition that ensures they are not reachable). If the expression can be simpli�ed

so that no BAD terms are reachable, then, assuming the preconditions to the function hold, the function is

error free and cannot crash (modulo non-termination).

In order to make their technique scalable, functions are analysed in isolation, and the pre and post conditions of

referenced functions are assumed to hold when used. This requires that pre and post conditions of all referenced

functions are precise enough to specify the correct behaviours needed for the function being analysed.

One other feature of this technique is counterexample guided unrolling, which means that the supercompilation

will unroll some functions towards removing BAD expressions. If ever a state is reached were there are no

function calls between the root of the function and a BAD , then a program slicing technique can be used to

generate a concrete example argument that leads to the error or post-condition violation.

Discussion

Symbolic evaluation is related to some of the functional logic techniques shown earlier. The splitting of the

search space for di�erent instantiations of metavariables in a functional logic system is related to the branching

and path constraints built up during symbolic execution. Some of the techniques adopted by the symbolic

execution community, particularly the use of SMT solvers for working with more primitives types could be

applied in the functional logic world.

Recent advances in the Haskell ecosystem means that symbolic evaluation could also be explored more directly

for Haskell. The KLEE tool, for example, performs symbolic execution upon LLVM bytecodes. Recently the

Glasgow Haskell Compiler has added a new back end for outputting LLVM bytecode, and thus compiling via

LLVM. It could be an interesting experiment try symbolic evaluation on Haskell in that manner.
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One interesting aspect drawn out of these techniques is the approach to dealing with IO operations. In the

static analysis world, Catch assumes that an IO value could take on any value. KLEE however allows the user

to decide how to abstract some IO operations. However, other IO operations are allowed to execute directly.

This obviously requires care during testing to ensure that adverse operations do not destroy the very system

being run.

2.2.3 Debugging Tools

Code Coverage

One measure of the e�ectiveness of a testing technique is to look at the coverage of the code being tested that it

achieves. In the context of Haskell this can mean looking at the number of source expressions and subexpressions

in the program that actually get executed at runtime. The Glasgow Haskell Compiler, GHC, has built into it

a code coverage mechanism entitled Haskell Program Coverage (HPC) [GR07].

The GHC integration of HPC works by rewriting GHC's intermediate Core language so that every expression

and subexpression entered executes some code to update an array of counts. Each element of the array represents

one subexpression in the original program. Upon the completion of execution of a rewritten program, a �tix�

�le is output which contains a serialisation of these arrays. During the rewriting and compilation phase, �mix�

�les are generated that describe the link between the arrays and the original source code. HPC has a suite of

tools for calculating the union, di�erence, etc. of multiple tix �les, and pretty printing them to output numbers

of expressions, conditional branches, top level functions and various other statistics.

One other interesting feature of HPC is the ability to access the tix arrays at runtime. This allows a program

to reset or re�ect upon the code coverage currently obtained so far during the run of the program.

HPC has been designed to work in large systems. It is possible for Haskell modules that have not been rewritten

to be compiled with modules that have, and for the resulting system to work seamlessly. To achieve this, HPC

maintains one tix array per module. Modules that have been rewritten write their coverage information into

that modules tix array. Modules that haven't been rewritten won't have a tix array, and do not have to worry.

While HPC is a mature and well integrated tool, there are also other possible approaches to code coverage that

could be taken. In the context of test generation, the authors of [FK07] investigate two alternative notions of

code coverage from simple expression and subexpression coverage. They note that lazy declarative languages

frequently have complicated control �ow, and so control �ow graphs are hard to represent. They then argue that

imperative notions of code coverage do not easily map to declarative languages. In the context of the functional

logic programming language Curry, the authors present a rewriting system to transform Curry programs into

ones that can record their own coverage. They present two coverage criteria, and they evaluate using them as

criteria for when to stop testing:

� Global Branch Coverage: all alternatives in case expressions inside function de�nitions are labelled di�er-

ently. Testing stops when all labelled branches are reached in functions directly or indirectly called from
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the function being tested.

� Function Coverage: In addition to achieving Global Branch Coverage, all recursive calls to the function

being tested must achieve full coverage of all branches inside the recursive call.

The authors evaluate their strategies, and show that using Function Coverage as a stopping criteria will expose

bugs that Global Branch Coverage would otherwise miss.

Debugging Haskell Programs

There is active research into testing and debugging Haskell programs, and there are several other tools available

to help the Haskell programmer in doing this. In this work we have focused our e�orts on helping a Haskell

programmer debug their programs by �nding techniques to automatically produce small expressions that expose

bugs. The programmer then has to reason through what their application does when given the expression as

an input, hopefully �nding and �xing the bug in the process.

When debugging an application, a programmer tries to �nd some way to visualise the internal states of their

program at runtime, to try and �nd out where their model of what the program should be doing, and what it

is actually doing di�ers. By narrowing down on the part of the program that causes the discrepancy between

model and actual states, the programmer should hopefully be able to identify and �x the bug.

Very simple forms of this debugging are available in Haskell through Debug .Trace from the base libraries, that

allows for an arbitrary string message to be printed to standard error when an expression is evaluated. This

is analogous to debugging through printf statements in imperative languages like C. In Haskell this kind of

debugging can easily be misleading due to the subtle e�ects of lazy evaluation. The very act of printing some

data may force it to a normal form earlier than normal, possibly hiding the bug, possibly causing it to manifest

in di�erent ways. There is also the issue that the evaluation order using lazy evaluation means that the order

of print statements may not be one that users intuitively expect.

An alternative approach to visualising data to aid in debugging is o�ered through the Haskell Object Obser-

vational Debugger (Hood) [Gil01]. This is a library that allows a user to tag certain computations to enable

observation of the concrete values they evaluate to at runtime. This tagging is enabled by wrapping the com-

putation in a function from the library, observe :: (Observable a) ⇒ String → a → a. The String is used to

describe the value when it is output.

The library is implemented in such a way as not to alter the strictness properties of the data. If only the �rst

element of an observed list value is evaluated, then only that element will be visualised, with a sentinel � � used

in place of the unevaluated tail.

Hood can also visualise functions. It will observe both the evaluated parts of the inputs to the function, and

the evaluated results returned by it. The visualisation of functions is by presenting a list of (input, output)

pairs. However, because of nested lexical scopes, the output of a function may also depend on values that are
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in scope, but not an explicit argument to that function. Hood has no mechanism to detect and display these,

so there may be cases when a visualised function has multiple (input, output) pairs with the same input but

di�erent output.

The downside is that Hood requires some changes to the programmer's application to be able to use it, custom

data types to be observed need to be made an instance of its type class Observable, and the observe function

needs to be imported and placed in the programmer's source code. Additionally the programmer has to alter

the entry point to their program to enable Hood to record observation data and print it at the end of execution.

Hood also su�ers from a problem that the user of Debug .Trace also faces, knowing which values are the correct

ones to focus on in the �rst place.

An alternative to editing source code for printing values is to use an actual debugger application. GHC ships

with one, [MIPG07], integrated into its interactive environment, GHCi. GHCi can load both interpreted and

compiled code, however only interpreted code can be fully understood by the debugger. It has many features,

such as the ability to set breakpoints at arbitrary points, single step reductions, safe visualisation (and optional

forcing) of available bindings in scope, and to record a trace (and stepping through the history) of the execution

of an expression. These traces represent the evaluation order followed by lazy evaluation, and so, again, may

not always be straightforward for a user to understand. However the ability to set breakpoints and inspect the

local environment can be a massive gain for a programmer trying to understand what their code is doing.

The problem of understanding program execution traces in Haskell has also been looked into, and several tools

addressing the problem have been produced for example Freja [Nil98] and Hat [WCBR01].

Freja does not support full Haskell 98, however it does suggest an interesting debugging technique. It runs the

application, recording a trace of all reductions that took place during evaluation. It presents the user with an

expression and the value it reduces to, and then asks the user if this reduction was correct. Initially it will

start at the top level of the program or function of interest. As the user speci�es if a reduction was correct or

incorrect, Freja will then search for the reduction sequences that caused the parent behaviour, and interactively

ask the user if their behaviour was correct or not. Continuing this search, Freja will search to �nd the faulty

reduction sequence that comes from the program de�nition and state this to the user.

Hat also runs the application and records a trace of all reductions that took place. However instead of starting

at the top level, it presents the user with the result of running the program (which could be a value or an

exception). The user can then browse the parent redexes that caused the �nal result, working backwards from

the �nal result, in an e�ort to try and locate the bug in their code.

A more thorough description and comparison of Hood, Freja and Hat, which also features feedback based on

experience of using all three tools is available in [CRW01].

Algorithmic Debugging

Freja and Hat both support a general line of research known as Algorithmic Debugging, a detailed summary

of which can be found in [Sil07]. Algorithmic debugging is concerned with taking a program's execution trace
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that features a fault, and locating the cause of the fault. In order to do this an oracle (usually the programmer

answering yes or no questions) is asked whether the results of sub-computations from within the trace are

correct, and the algorithmic debugging strategy then uses these answers to determine the next sub computation

to ask about, or to present the source of the bug.

For functional programming languages, an execution trace is a tree representing the reductions that took place

during execution. Each node of the tree corresponds to a function applied to arguments, along with the result

of that application. Child nodes correspond to each function application in the de�nition of the function

application in the parent node.

If a function applied to arguments gives the wrong result, then the bug could be in the de�nition of the function

when applied to those arguments. Alternatively, the bug could be in the de�nition of one of the child functions

that are called in the de�nition of the parent function. In this case, the bug will also be present in a child of

the current node of the execution trace.

An interactive search for bugs proceeds by considering whether the nodes of the execution trace are known to be

bug free, or suspicious, i.e. it is unknown whether they contain a bug. Initially, every node in the execution trace

can be considered suspicious. The strategy then presents nodes to the user, and asks the user if the function

application and result in the node are correct. The user's response will then remove some nodes from suspicion.

When a single suspicious node is left, the de�nition of the function that corresponds to the application and

result in the node can be identi�ed as buggy.

When the user classi�es a node as being correct or not, the suspicion in the execution trace is updated as follows:

� The node is not correct: the bug is either in the current node, or one of its descendants. All other nodes

can be removed from suspicion.

� The node is correct: then this node and all of its descendants can be removed from suspicion.

The research literature features many di�erent strategies for exploring the execution trace in order to �nd bugs.

To motivate the main issues that should be factored in when exploring, consider two of the simplest strategies:

post-order traversal, and pre-order traversal.

With a post-order traversal, the �rst node a user identi�es as buggy will be the source of the bug. However

in the worst case this strategy will ask the user to classify every single node in the execution trace. There is

also another, more human issue with this traversal scheme. Since the nodes will be visited in a bottom up

order, it will require the user to reorient themselves with what the program is (meant to be) doing at almost

every question; there will be no continuity between questions and the user would �nd it hard to anticipate what

questions could come next as they would be going backwards through the control �ow (and then occasionally

jumping back down very deep to the bottom).

A pre-order traversal however can perform much better. This traversal strategy allows for pruning of the

execution trace. Identifying a node as correct means the current subtree can be entirely pruned, and identifying
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a node as incorrect means the traversal can move down a layer in the search. In addition, the downward

movements may make it more natural for a programmer to think about the nodes they are being presented,

although movements between siblings can still be complicated to think about.

The naive pre-order traversal can still be improved, for example by looking at the size of the subtrees when

moving down, and ordering the children according to size. However, because of the human element (requiring

a user to classify nodes as buggy or not), it is important to trade o� a predictable exploration, with one that

minimizes the number of nodes looked at.

The order in which the children of a suspicious node are explored can have a further e�ect. In situations where

there are multiple bugs contained in the execution trace, the order in which the children of a suspicious node

are explored will a�ect which bug is found. If a user determines that the bug they �nd following a particular

strategy is not the one they are interested in, then it is useful if they can restart and request a di�erent ordering

for the exploration of child nodes as they move down the tree.

Algorithmic debugging is a powerful tool, however it does require a user to act as an oracle. On the other

hand, it can be seen as a way to force the user through a structured debugging process, and as such, provide

mechanisation to an otherwise manual process. The requirement on gathering an execution trace may make the

approach di�cult to use for large programs, however when combined with a technology that �nds small test

cases for bugs, it could be very useful.

2.3 Context

We now draw together the related work above, and place the contributions of this thesis in context with existing

research. Table 2.1 summarises the key di�erent techniques, their examples and salient features.

The �rst component of Table 2.1 highlights di�erent libraries written to enable Property Testing. The Haskell

based implementations (Quick, Small and Lazy Small Check) do require two things from the user of the testing

library; the properties to be tested need to be explicitly written, and some declarative description of how test

data is made needs to be speci�ed. It is not always the case that they way of generating test data needs to

be speci�ed, for example the EasyCheck tool is implemented in the Curry programming language, which the

required form of re�ection in a �rst class way), and for the most part Small and Lazy SmallCheck's descriptions

could be mechanically derived.

In Irulan we decided to focus on automating as much of the test data discovery as possible, but do allow the

user to specify extra test data. However there are advantages in allowing the user to specify how test data

is to be used. For SmallCheck and Lazy SmallCheck, power users can specify precisely how the depth cost of

testing changes across di�erent constructions. For QuickCheck, it is essential that good speci�cations of the

distributions to draw test data from are given, otherwise testing may be probabilistically con�ned to a small

region of argument space. In the case of Quick Check this requirement for good speci�cations is a disadvantage

for the novice programmer, as they may otherwise gain a false sense of security in their tests.
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Table 2.1 Summary of di�erent testing techniques and their examples

Property Testing
Tool Exploration Strategy Advantage Disadvantage
QuickCheck Random Produces varied,

larger test cases
Requires good gen-
erators for data

SmallCheck Depth Limited Enumeration Enumerates all
inputs within a
bound

Creates many test
cases where test
data isn't looked at

EasyCheck Randomised Level Diagonalisation Creates small and
large test cases

Larger test cases
are similar

Lazy SmallCheck Needed Narrowing Prunes data that is
never evaluated

No support for syn-
thesising higher or-
der functions

Crash Testing
Tool Strategy Advantage Disadvantage
Irulan Dynamic Test Case Generation Automatic, Real

code execution
Re�ective over-
heads

Pex Symbolic Execution (.NET bytecode) Arc coverage based
exploration

-

KLEE Symbolic Execution (LLVM bytecode) Symbolic model for
system calls

-

Reach Symbolic Execution (Functional core) User con�gurable
targets (not just
errors or property
violations)

No support for syn-
thesising higher or-
der functions

Catch Static Analysis Guarantees of free-
dom from pattern
match failure

Requires source
code changes.

ESC/Haskell Static Analysis (Contracts) Flexible and pow-
erful pre and post
condition expres-
sion and checking

No available imple-
mentation

Debugging Tools
Tool Strategy Advantage Disadvantage
HPC Code coverage tool Low overhead Can only identify

executed and unex-
ecuted code

Freja Tracer and interactive debugger Guide programmer
through what hap-
pened

Requires trace of
execution

Hat Tracer and trace visualiser Allow exploration
of everything that
happened

Requires trace of
execution

Hood Debugging Library Low impact, precise
information

User needs to know
precisely what to
investigate
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For Haskell speci�cally, requiring the user to explicitly state how to produce test data also confers a performance

bene�t, as the high costs of re�ection and dynamic linking (which are incurred by Irulan) do not need to be

paid.

However the key di�erence between these tools, as highlighted in the table, is the way they explore the space

of possible test data. Random testing (QuickCheck), as noted above, requires programmer input to specify the

underlying distributions of test data. However when used well it can explore many larger, more varied tests.

The level diagonalised approach of EasyCheck attempts to achieve this property in a more structured way,

however it su�ers the problem of the larger tests being similar to each other. The authors of SmallCheck and

Lazy SmallCheck argue that when counter examples to a property are found, it is almost always the case that

a small counter example will highlight the problem. This argument is drawn from the small scope hypothesis

that underpins the theory behind model checking tools. SmallCheck simply enumerates all inputs up to a �nite

depth bound (which can be iteratively deepened), however this approach highlights some potential optimisations

across implications in properties which are taken advantage of by Lazy SmallCheck, using a needed narrowing

approach.

For Irulan we felt that exploring Haskell's laziness in the context of general testing was interesting, and since

the needed narrowing like approach of Lazy SmallCheck could work autonomously, we decided to adopt that as

our base approach to generating test data.

The second component of Table 2.1 highlights the di�erent automated crash testing tools discussed, with the

strategy each tool uses to �nd errors. The tools have been sorted according to how static or dynamic their

approaches are.

Irulan does not statically analyse programs, but instead builds test cases dynamically and executes them,

looking to see if errors are thrown at runtime. This has the advantage of being fast (the testing is running

native code), whereas the symbolic execution based tools (Pex, KLEE and Reach) have to embed interpreters

for the respective bytecodes of the languages they test. However the symbolic execution tools do have the

advantage that they can abstract away from concrete testing data and avoid re-execution of identical code

paths with di�erent data. However if the program does not allow for abstraction of the data, or is (for example)

heavily numeric then there can be higher costs incurred as the original program essentially becomes interpreted,

as opposed to executed.

Employing further abstraction gives rise to static analysis tools. The trade o� here is memory and time, versus

guarantees. In the examples presented, if the static analysis tool tells you the program is bug free, then it

is guaranteed to be so. Dynamic test generation (such as used by Irulan) and symbolic execution can only

provide partial guarantees about correctness with respect to the inputs and bounds that have been speci�ed.

However static analysis tools can not always provide a binary yes there is a bug, or no there isn't; there will

necessarily always be a range of programs they cannot successfully analyse.

We have also discussed debugging tools. While Irulan and the other technologies mentioned so far aim to

locate bugs and provide test cases to trigger them, it is also important to think about how the user then
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identi�es the cause of, and hopefully the �x for the bug. Many of the tools listed so far will produce small if

not minimal test cases, which should narrow the potential source code at fault, however other techniques can

narrow this further. The third part of Table 2.1 lists some of these tools for Haskell. The four tools cover four

di�erent ideas, HPC allows the user to identify exactly which subexpressions were and were not executed during

a particular run. Freja and Hat both record an execution trace, and then allow the user to either interactively

explore what happened, or use an algorithmic debugging strategy to try and identify the bug. Finally Hood is

a lightweight debugging library that allows the user to annotate their code to see information about only some

function calls. The trade o� here depends on how much the user knows a priori before debugging. HPC will

quickly allow the user to discard some parts of the source code from suspicion. Freja will hopefully interactively

guide the user towards �nding the bug, but will require them to consider many reductions. Hat, as a visualiser,

will allow a user who has a rough idea where their bug is to focus on that area and see exactly what happened.

The size of the execution traces considered by Freja and Hat can be reduced by specifying that some modules

are trusted and that reductions of their functions need not be traced. Hood then requires the most knowledge,

but will then give very focused output to the user.



Chapter 3

Overview of Irulan

Irulan is designed to aid in the development of Haskell libraries. There are three main ways to use Irulan,

incrementally during development to see if there are ways to crash exposed functions; before and after refactoring

or optimising a library to see if its behaviour has changed; and to perform property testing. In general, Irulan

is invoked with an option to set the mode of behaviour, the name of a module (source or compiled) to test, and

optionally some con�guration �ags that alter how Irulan �nds and creates test expressions.

In Section 3.1 we develop example library functions and demonstrate using Irulan to �nd inputs that cause

crashes. Irulan can also identify changes in behaviour between di�erent implementations of the same API,

and we build up an example of this use in Section 3.2. The third major application of Irulan is to perform

property testing, which is discussed in Section 3.3. Irulan was designed to be an experimental platform, and

in Section 3.4 and Section 3.5 we discuss some small advanced features of Irulan and some potential future

uses, before concluding in Section 3.6.

3.1 General error Finding

Irulan is able to use its automatic expression generation technique to �nd arbitrary error conditions in Haskell

functions. In this section we demonstrate this through a simple example.

Consider the beginnings of a sorted binary tree implementation, as shown in Figure 3.1. The IntTree data type

has two constructors: Leaf and Branch. Leaf takes no arguments, representing the empty leaf nodes of the

tree, while Branch represents splits in the tree, with two IntTrees for its left and right children, and an Int for

the value of the new root node.

The insert function is used to add an Int into the tree, building a Branch for the value when inserting into a

Leaf , and navigating left or right down the tree whenever inserting into a Branch, in order to keep the values

in the tree in order.

34
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Figure 3.1 Simple Haskell IntTreeExample module.

module IntTreeExample where

data IntTree
= Leaf
| Branch IntTree Int IntTree

insert :: Int → IntTree → IntTree
insert n Leaf = Branch Leaf n Leaf
insert n (Branch left x right)
| n < x = Branch (insert n left) x right
| n > x = Branch left x (insert n right)

Figure 3.2 Part of the output from running Irulan on the IntTreeExample with Ints 0 and 1, with case
statements enabled, in iterative deepening mode (-a) for 1 second (output cut and neatened).

$irulan --ints='[0,1]' --enable-case-statements -a --maximumRuntime=1 source IntTreeExample

...

insert 1 (Branch ? 1 ?1) ==> !

IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

insert 0 (Branch ? 0 ?1) ==> !

IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

case insert 0 (Branch (Branch ? 0 ?1) 1 ?2) of

Branch x _ _ -> x ==> !

IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

case case insert 0 (Branch (Branch (Branch ? 0 ?1) 1 ?2) 1 ?3) of

Branch x _ _ -> x of

Branch x _ _ -> x ==> !

IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

...

Unfortunately we have forgotten to implement the case when the value we are inserting, n, is already in the

tree. Luckily, the Haskell compiler will implement that case for us by throwing a Non − exhaustive patterns

exception that would normally terminate the program. If Irulan runs an expression and catches an otherwise

uncaught exception, it will report that expression as a potential bug.

Note that although Figure 3.1 includes the implementation of the insert function, Irulan is in fact a lightweight

black-box tool that does not look at the actual implementation of Haskell modules. To construct test cases,

Irulan only makes use of the signatures of exported data types and functions, and a set of prede�ned constants.

In our example, Irulan generates IntTree instances by using IntTree's two constructors, Leaf and Branch,

together with two integer constants, 0 and 1, which are set explicitly on the Irulan command line, as shown

in the example trace in Figure 3.2.

In the trace, we have set Irulan to run for a second, using an iterative deepening scheme (so it tries progressively

larger inputs, but restarts from the beginning increasing the depth after a previous depth has been explored).

We have picked out four example invocations that it �nds to cause the Non-exhaustive patterns errors.

Irulan's output usually consists of expression ==> result lines, where when expression is executed, result
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Figure 3.3 Part of the output from running Irulan in trace mode on the IntTreeExample with Ints 0 and 1,
with case statements enabled, in depth bounded mode to depth 15 (-d --depth=15) (output cut and neatened).

$ irulan --ints='[0,1]' --enable-case-statements --trace -d --depth=15 source IntTreeExample

IntTreeExample:

Results:

1 insert ==> .

2 insert ? ==> .

3 insert ? ?1 ==> ?1

4 insert ? (Branch ?1 ?2 ?3) ==> ?

5 insert 1 (Branch ? ?1 ?2) ==> ?1

6 insert 1 (Branch ? 0 ?1) ==> .

7 insert 1 (Branch ? 1 ?1) ==> !

8 IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

9 ...

10 insert 0 (Branch ? ?1 ?2) ==> ?1

11 insert 0 (Branch ? 0 ?1) ==> !

12 IntTreeExample.hs:(8,0)-(11,41): Non-exhaustive patterns in function insert

13 insert 0 (Branch ? 1 ?1) ==> .

14 ...

15 insert ? Leaf ==> .

16 case insert ? Leaf of Branch x _ _ -> x ==> .

17 case insert ? Leaf of Branch _ _ x -> x ==> .

18 case insert ? Leaf of Branch _ x _ -> x ==> ?

19 case insert 0 Leaf of Branch _ x _ -> x ==> .

20 case insert 1 Leaf of Branch _ x _ -> x ==> .

...

occurs. By default Irulan will only present expressions that cause errors to be thrown, indicated by the

leading ` !' in the four shown results.

Irulan's expressions are close to normal Haskell expressions. However Irulan uses an incremental approach

to testing, using a form of needed narrowing [AEH00] or lazy instantiation [Lin07]. Unde�ned arguments are

passed to functions and only re�ned to values if they are needed. These unde�ned arguments can sometimes

appear in expressions, and are represented as `?' arguments. These can safely be replaced by ⊥ by the Haskell

programmer. So, for example, the expression insert 1 (Branch ⊥ 1 ⊥) entered in an interactive Haskell

environment would yield the �rst error in the trace.

By enabling case statements (--enable-case-statements) Irulan will also generate selector case expressions

over result values in order to peek inside them. For example, the third test case shown uses a case selector to

reach inside the returned Branch constructor to force the evaluation of the unimplemented pattern.

It is important to note that as iterative deepening has been used, Irulan will often output multiple identical

test cases as it rediscovers them as the depth increases. However it is easy to post-process the results with

unix tools such as sort, uniq, awk and grep to remove duplicates. The indenting and linebreaks in the traces

presented have been manually inserted to make reading the examples easier, but are normally not present to

make interaction with these tools easier.

In order to gain some intuition into how Irulan is �nding these test cases, we can ask Irulan to present a full

trace of all expressions it executes, shown in Figure 3.3.
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As we have mentioned, in its output, Irulan presents the expressions (on the left hand side of the arrow) it

has run followed by a result (on the right hand side of the arrow); there are three main forms of possible result

shown in a full trace; which are:

� Success: expression ==> . This means that expression successfully ran to a W eak Head Normal

Form (WHNF) [Pey87].

An expression runs to WHNF if it cannot be simpli�ed further without being taken apart by pattern

matching, or applied to arguments. Values in WHNF are therefore either constructors (possibly applied

to some arguments) or functions expecting explicit arguments.

For example, line 15 contains the test case insert ? Leaf ==> . because inserting any number into a

Leaf tree always succeeds by returning a tree of the form (Branch Leaf n Leaf ). The number inserted (?)

won't be evaluated unless some later code inspects it.

� Re�nement: expression ==> ?k. This outcome occurs when the evaluation of expression requires the

evaluation of its k th argument. For example, line 4 contains the test case insert ? (Branch ?1 ?2 ?3)

==> ? meaning that in order to insert the value ? into a non-empty tree, insert needs to evaluate it (to

compare it to the Int inside the Branch).

?k arguments are implemented as values that throw exceptions that carry which k they are. Irulan then

catches these exceptions, recognises them and then carries on to build real values to use in their place.

� Failure: expression ==> ! Error. This is reported if the evaluation of expression raises an uncaught

exception (other than the argument exception mentioned above). For example, on line 7, insert 1

(Branch ? 1 ?1) causes the non implemented case of insert to be tripped as we try to insert 1 into a

branch that already features a 1.

For normal use, a user of Irulan is only interested in the failure case, and by default Irulan hides success and

re�nement evaluations.

Looking in detail at Figure 3.3 we see that Irulan �nds the one exported function from the module, insert ,

and begins (on line 1) by testing it with no arguments. This is to see if the function is de�ned. Since it is

de�ned (and is not e.g. insert = error "TODO: implement insert"), the test reports success with a �.�.

On line 2 Irulan then checks to see if insert is strict by passing in a ? argument, which is a value that

throws a special exception when it is evaluated. This is done so that arguments that are not evaluated due

to Haskell's lazy evaluation scheme do not waste computation by having real expressions computed for them.

In this case, evaluation completes successfully again, and Irulan can then add a second argument to insert

in line 3. However, since the evaluation on line 3 causes the ?1 exception to be thrown, Irulan then goes in

search of real values to use for that ?1 argument. The ?1 argument can be re�ned in two ways, either to a

Branch ?1 ?2 ?3 (line 4), or a Leaf (line 15).

With the original ?1 argument re�ned to a Branch-constructed value, evaluation proceeds on line 4 and Irulan
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Figure 3.4 Haskell IntTreeExample module, with insert corrected and extended with a delete function.

module IntTreeExample where

data IntTree
= Leaf
| Branch IntTree Int IntTree

insert :: Int → IntTree → IntTree
insert n Leaf = Branch Leaf n Leaf
insert n (Branch left x right)
| n < x = Branch (insert n left) x right
| n > x = Branch left x (insert n right)
| n ≡ x = Branch left x right

delete :: Int → IntTree → IntTree
delete n Leaf = Leaf
delete n (Branch left x right)
| n < x = Branch (delete n left) x right
| n > x = Branch left x (delete n right)
| n ≡ x = attachRight left right

attachRight :: IntTree → IntTree → IntTree
attachRight Leaf t = t
attachRight (Branch left x right) Leaf

= Branch left x right
attachRight (Branch left x right) t@(Branch x ′ )
| x > x ′ = error "Precondition failure: x >= x'"

| x < x ′ = Branch left x (attachRight right t)

discovers that insert now needs to re�ne its �rst argument (the Int). The possible choices for primitive values

come from Irulan's speci�ed constant pool, and so the ? argument is re�ned to either 1 (line 5) or 0 (line 10).

The process of re�nement continues until the bugs are found (lines 7, 11), or the insert function is successfully

executed (line 6, 13, 15). However, since the user has enabled case expressions, after the successful executions in

lines 6, 13 and 15 (and other elided places), Irulan will continue testing by inspecting the �elds (if any) of the

returned values, as can be seen on lines 16 - 18. Notice on line 18 this inspection causes the �rst argument of

insert to be demanded, which causes it to be re�ned under the selector (lines 19 and 20). Through this process

in the Branch case (the elided results in lines 9 and 14) the test cases involving case expressions in Figure 3.2

that cause crashes will also be found.

The bug can be �xed by add adding the following guard to the end of the insert function, and Irulan will not

report any test cases that cause crashes.

| n ≡ x = Branch left x right

Carrying on development of our example, we have added a delete function, as shown in Figure 3.4. When the

value to be deleted is found, the attachRight helper function is used to replace the rightmost Leaf in the left

hand tree with the right hand tree. This maintains the implicit ordered invariant of the tree. Since it's also

fairly easy to check part of that invariant while traversing in attachOnRight , we have added an explicit check

for it.
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Figure 3.5 Part of the output from running Irulan in trace mode on the IntTreeExample with correct insert
and new delete function. (output examples run through unix sort and uniq).

$ irulan --ints='[0,1]' -a --maximumRuntime=1 source IntTreeExample

IntTreeExample:

Results:

attachRight (Branch ? 0 ?1) (Branch ?2 0 ?3) ==> ! Precondition failure: x >= x'

attachRight (Branch ? 1 ?1) (Branch ?2 0 ?3) ==> ! Precondition failure: x >= x'

attachRight (Branch ? 1 ?1) (Branch ?2 1 ?3) ==> ! Precondition failure: x >= x'

delete 0 (Branch (Branch ? 0 ?1) 0 (Branch ?2 0 ?3)) ==> ! Precondition failure: x >= x'

delete 0 (Branch (Branch ? 1 ?1) 0 (Branch ?2 0 ?3)) ==> ! Precondition failure: x >= x'

delete 0 (Branch (Branch ? 1 ?1) 0 (Branch ?2 1 ?3)) ==> ! Precondition failure: x >= x'

delete 1 (Branch (Branch ? 0 ?1) 1 (Branch ?2 0 ?3)) ==> ! Precondition failure: x >= x'

delete 1 (Branch (Branch ? 1 ?1) 1 (Branch ?2 0 ?3)) ==> ! Precondition failure: x >= x'

delete 1 (Branch (Branch ? 1 ?1) 1 (Branch ?2 1 ?3)) ==> ! Precondition failure: x >= x'

However, when Irulan is run on this several counter examples are found, as shown in Figure 3.5. What has

happened is that we have exposed enough internal structure to mean that users of the IntTree API could violate

the implicit invariant. For a start, attachOnRight is an internal helper function and shouldn't be exported, in

addition, ideally, all IntTrees should be build using insert and delete, from an original Leaf . Adding an explicit

export list would make this clear to other programmers, and also Irulan. In addition an empty function can

be exported to produce an empty tree:

module IntTreeExample (empty , insert , delete, IntTree) where

empty :: IntTree

empty = Leaf

...

With this, Irulan will see that the constructors for IntTree are not exported, and will automatically proceed

to test by using empty , insert and delete to build IntTree values to test the insert and delete functions. With

this change, rerunning Irulan reports no errors.

3.2 Regression Testing

The next part of our example is going to add a simple balancing operation to the tree. It would be nice

to precisely see what changes in behaviour this does. To do this, we will use Irulan's regression testing

functionality. When using Irulan's regression testing functionality, a new form of success is added to Irulan's

output:

� Regression Testing: To enable regression testing (�3.2) the right hand side of an ==> may also be an

arbitrary Haskell String drawn from the show function of the result.

Before making the change, we can make a snapshot of (input,output) pairs on the module. In order to get

meaningful test data for output pairs, we have to make the IntTree renderable to a String using Haskell's built
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in Show type class:

data IntTree

= Leaf

| Branch IntTree Int IntTree

deriving Show

Next, we run Irulan specifying a location to create a test suite (a compressed log of (input,output) pairs).

This �le can be thought of as containing a snapshot of the behaviour of the module. In this case, we increased

the number of Int values available, and up the runtime allocated to the iterative deepening exploration to 60

seconds.

$ irulan --int-range='(0,5)' -a --maximumRuntime=60 --full-testsuite=beforeBalance.tst

source IntTreeExample

Irulan can be used to print out the compressed test suite by passing it as a single argument in its test suite

analyser mode (tsa):

$ irulan tsa beforeBalance.tst

...

A# delete 0 (delete 0 (insert 1 empty)) ==> Branch Leaf 1 Leaf

A# delete 0 (delete 0 (insert 1 (insert 0 empty))) ==> Branch Leaf 1 Leaf

A# delete 0 (delete 0 (insert 1 (insert 1 empty))) ==> Branch Leaf 1 Leaf

A# delete 0 (delete 0 (insert 1 (insert 2 empty))) ==> Branch (Branch Leaf 1 Leaf) 2 Leaf

A# delete 0 (delete 0 (insert 1 (insert 3 empty))) ==> Branch (Branch Leaf 1 Leaf) 3 Leaf

A# delete 0 (delete 0 (insert 1 (insert 4 empty))) ==> Branch (Branch Leaf 1 Leaf) 4 Leaf

A# delete 0 (delete 0 (insert 1 (insert 5 empty))) ==> Branch (Branch Leaf 1 Leaf) 5 Leaf

A# delete 0 (delete 0 (insert 2 (delete ? (delete ?1 empty)))) ==> Branch Leaf 2 Leaf

A# delete 0 (delete 0 (insert 2 (delete ? empty))) ==> Branch Leaf 2 Leaf

A# delete 0 (delete 0 (insert 2 empty)) ==> Branch Leaf 2 Leaf

...

In this case, there are 13,959 unique test cases stored in a 68k �le.

In Figure 3.6 we add a balance function which attempts to balance the tree by rotating subtrees left and right

as necessary. The previous insert and delete functions (and their recursive calls) are renamed to insert ′ and

delete ′, and new insert and delete functions are created that balance the results of their helper functions.

Again, Irulan can be used to create a test suite of this new version:

>irulan --int-range='(0,5)' -a --maximumRuntime=60 --full-testsuite=afterBalance.tst

source IntTreeExample



3.2. Regression Testing 41

Figure 3.6 Haskell IntTreeExample module, with rebalancing after insert or delete.

module IntTreeExample (empty , insert , delete, IntTree) where

data IntTree
= Leaf
| Branch IntTree Int IntTree
deriving Show

empty :: IntTree
empty = Leaf

insert :: Int → IntTree → IntTree
insert x t = balance $ insert ′ x t

insert ′ :: Int → IntTree → IntTree
...

delete :: Int → IntTree → IntTree
delete x t = balance $ delete ′ x t

delete ′ :: Int → IntTree → IntTree
...

depth :: IntTree → Int
depth Leaf = 0
depth (Branch left right) = 1 + max (depth left) (depth right)

balance :: IntTree → IntTree
balance Leaf = Leaf
balance (Branch left x right)

= doRotate ldepth rdepth left ′ x right ′

where
left ′ = balance left
right ′ = balance right

ldepth = depth left ′

rdepth = depth right ′

doRotate :: Int → Int → IntTree → Int → IntTree → IntTree
doRotate lDepth rDepth (Branch ll l lr) x rt
| lDepth > (rDepth + 1) = doRotate (lDepth − 1) (rDepth + 1) ll l (Branch lr x rt)

doRotate lDepth rDepth lt x (Branch rl r rr)
| rDepth > (lDepth + 1) = doRotate (lDepth + 1) (rDepth − 1) (Branch lt x rl) r rr

doRotate lDepth rDepth lt x rt = Branch lt x rt

Irulan can then be used to compare two test suites, and identify where changes in behaviour or strictness have

occurred. To do this, Irulan matches up equivalent inputs from the test suites, and sees if the outputs are

the same or di�erent. It then prints out the matched up inputs and outputs, pre�xed by a symbol to indicate

status:

� : - The inputs give the same output.

� ~ - The inputs give di�erent output.

� # - There is no corresponding input in the other test suite (or in the one test suite case, there is no other

test suite).

In Figure 3.7 we present a few of the matched inputs and outputs from Irulan's test suite; many test cases

have not changed behaviour (e.g. empty or simple deletes), however the rebalancing operation has altered the



3.3. Property Testing 42

shape of the tree in some of the more nested insert and delete cases.

There is an interesting edge case to consider, which is when the strictness of a function has changed. For

example, imagine if a new insert function was faulty, ignoring the Int argument and always inserting 0. The

test cases produced for such a function could look like:

insert ? empty ==> Branch Leaf 0 Leaf

insert ? (insert ?1 empty) ==> Branch Leaf 0 (Branch Leaf 0 Leaf)

The test expression insert ? empty is more general than the test expression insert 1 empty or insert 2 empty .

When Irulan matches up test expressions, it groups together more general ones with their more speci�c

counterparts from the other test suite. For example, a test suite analysis including the faulty insert function

may report:

A: Original.tst

B: Faulty.tst

...

A: insert 0 empty ==> Branch Leaf 0 Leaf

A~ insert 1 empty ==> Branch Leaf 1 Leaf

A~ insert 2 empty ==> Branch Leaf 2 Leaf

B~ insert ? empty ==> Branch Leaf 0 Leaf

...

Here we see that Irulan has grouped the three more speci�c inputs in the original test suite together with the

one more general input in the faulty test suite. When deciding correctness, Irulan will mark a more speci�c

input correct (with a :) if it has the same output as the more general input, however the more general test case

will only be correct if all of the more speci�c examples agree with it (in this case they don't, so the B input is

marked faulty with a ~).

3.3 Property Testing

In addition to just checking for runtime exceptions, Irulan can also perform property testing. If Irulan

encounters a property function (one that starts with the pre�x prop_ and has a Bool result type), it will check

whether the resulting Bool is True or False, and report test cases that produce False as errors. Property testing

adds new forms of success and failure output to Irulan:

� Property Testing: expression ==> True, expression ==> False. These are two specialisations of

expression ==> . which denote that expression represents the testing of a Haskell property (a function

with the pre�x prop_ and ultimate result type Bool), and that the test returned True or False respectively.

From the point of view of testing, expression ==> False is considered a failure.
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Figure 3.7 Running Irulan's test suite analyser on the test suites created before and after adding the balance
function (output cut)

$ irulan tsa beforeBalance.tst afterBalance.tst

A: beforeBalance.tst

B: afterBalance.tst

...

A: empty ==> Leaf

B: empty ==> Leaf

A: delete ? empty ==> Leaf

B: delete ? empty ==> Leaf

...

A~ insert 0 (insert 1 (insert 2 empty)) ==> Branch (Branch (Branch Leaf 0 Leaf) 1 Leaf) 2 Leaf

B~ insert 0 (insert 1 (insert 2 empty)) ==> Branch (Branch Leaf 0 Leaf) 1 (Branch Leaf 2 Leaf)

...

A~ delete 0 (insert 1 (insert 4 (insert 5 empty))) ==> Branch (Branch (Branch Leaf 1 Leaf) 4 Leaf) 5 Leaf

B~ delete 0 (insert 1 (insert 4 (insert 5 empty))) ==> Branch (Branch Leaf 1 Leaf) 4 (Branch Leaf 5 Leaf)

...

Figure 3.8 Haskell IntTreeExample module, with a flatten function.

module IntTreeExample (empty , insert , delete,flatten, IntTree) where

...

flatten :: IntTree → [Int ]
flatten Leaf = [ ]
flatten (Branch left x right) = flatten left ++ [x ] ++ flatten right

Figure 3.9 Haskell IntTreeSort module, with a faulty property to test the IntTreeExample.

module IntTreeSort where

import Data.List hiding (insert)
import IntTreeExample

prop_sort :: [Int ]→ Bool
prop_sort xs = sort xs ≡ (flatten ◦ build $ xs)

build :: [Int ]→ IntTree
build = foldr insert empty

Figure 3.10 Running Irulan in property checking mode (-p) for 1 second of iterative deepening on the
IntTreeSort module.

$ irulan --int-range='(0,5)' -a --maximumRuntime=1 -p source IntTreeSort

IntTreeSort:

Results:

prop_sort (: 0 (: 0 ([]))) ==> False

prop_sort (: 1 (: 1 ([]))) ==> False

prop_sort (: 2 (: 2 ([]))) ==> False

prop_sort (: 3 (: 3 ([]))) ==> False

prop_sort (: 4 (: 4 ([]))) ==> False

prop_sort (: 5 (: 5 ([]))) ==> False

prop_sort (: 0 (: 0 (: 0 ([])))) ==> False

prop_sort (: 0 (: 0 (: 1 ([])))) ==> False

prop_sort (: 0 (: 0 (: 2 ([])))) ==> False

...
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One possible use for the IntTreeExample module we have been developing is to sort a list of numbers. To enable

this, we need a flatten function to turn an IntTree into a list by performing a pre-order traversal (Figure 3.8),

and a way to build an IntTree from a list by repeated calls to insert . In Figure 3.9 we show a new module,

IntTreeSort which contains such a function, build , and also the property (prop_sort) expressing that normal

list sort should be equivalent to flatten ◦ build .

With no further work, Irulan can be used to check the property, as shown in Figure 3.10. The -p switch puts

Irulan in property testing mode, which tells it to only test property functions (so it won't try and test the

build function).

Irulan identi�es many inputs that show the property fails when there are duplicate items in the list. This

is because the IntTree actually discards duplicates and our prop_sort property is faulty. The fault can be

corrected by changing the property to:

prop_sort xs = sort (nub xs) ≡ (flatten ◦ build $ xs)

And rerunning Irulan will not �nd any counter examples.

3.4 Minimized Test Suite Generation

Irulan integrates with the Haskell Program Coverage (HPC, [GR07]) extension to GHC. During compilation,

HPC instruments all subexpressions in the modules being compiled. The instrumentation records which subex-

pressions are entered during program execution. Typically at the end of a program's run this code coverage

information is serialised to disk and can then be analysed to present to the user statistics and marked up source

code showing which expressions were and were not executed. This mode of execution works with Irulan, so

we can see how e�ective Irulan is at covering the expressions in the source code, a feature we will use during

our experimental analysis in Chapter 5.

However, it is also possible to reify and alter this code coverage information at runtime. By resetting the coverage

information so no subexpression thinks it has been executed, and then running a single test expression, Irulan

can ascertain precisely the coverage footprint of each test expression. These footprints can then be used to

build a minimized test suite that achieves the same amount of code coverage as the full suite of expressions

Irulan has tried, but with many fewer expressions. The idea is that as Irulan executes, it keeps track of the

current minimized test suite. If a newly executed test expression has a footprint that covers subexpressions that

have not yet been executed, it is added to the test suite. In addition, test expressions that subsume other test

expressions are added (and the subsumed test expressions in both cases are removed). At the end of execution,

Irulan can then report the surviving test suite.

For example, running on our latest IntTreeExample, with HPC code coverage (-fhpc) and test suite generation

(--enable-testsuite) enabled yields the trace in Figure 3.11. Many, many simple expressions (such as empty

or insert 0 empty) have been pruned as their behaviour is also covered by these larger examples. The potential

applications of this technology are still to be explored, but we present this as an interesting �rst step.



3.5. Code Coverage and Advanced Features 45

Figure 3.11 Running Irulan on the IntTreeExample to generate a minimized testsuite

$ irulan --ints='[0,1]' --hpc-testsuite -a --maximumRuntime=5 --disable-show-results

--enable-case-statements source --ghc-options='-fforce-recomp -fhpc' IntTreeExample

IntTreeExample:

Results:

Test Suite:

insert 0 (delete 1 (insert 0 (insert 1 empty))) ==> .

delete 1 (insert 1 (insert 0 empty)) ==> .

delete 0 (insert 0 (insert 1 empty)) ==> .

insert 0 (delete 1 (insert 0 empty)) ==> .

insert 0 (delete 0 (insert 1 empty)) ==> .

insert 1 (insert 1 (insert 0 empty)) ==> .

insert 0 (insert 0 (insert 0 empty)) ==> .

case flatten (insert ? empty) of _ : x -> x ==> .

case flatten (insert 0 empty) of x : _ -> x ==> .

3.5 Code Coverage and Advanced Features

We now present a couple of more advanced features of Irulan through a �nal evolution of example. We

show that Irulan can instantiate and test polymorphic functions, that it has some support for automatically

satisfying type class constraints, and that it can interact with HPC to produce standard code coverage output.

Figure 3.12 Haskell TreeSort module, with a property to test the TreeExample.

module TreeSort where

import Data.List hiding (insert)
import TreeExample

prop_sort :: (Ord a)⇒ [a ]→ Bool
prop_sort xs = sort (nub xs) ≡ (flatten ◦ build $ xs)

build :: Ord a ⇒ [a ]→ Tree a
build = foldr insert empty

Figure 3.13 Haskell Nat module, with a de�nition of peano naturals.

module Nat where

data Nat
= Zero
| Succ Nat
deriving (Eq ,Ord)

In Figure 3.14 we have generalised our IntTree implementation to work on more general Trees. The Tree data

type is parameterised by a type a which is the type of the elements in the tree. New, empty trees are built

by empty , insert and delete as before, however insert and delete require that the elements in the tree are

comparable using the Ord type class.

We have also updated the IntTreeSort to work with the new Tree type, as shown in Figure 3.12. In addition,
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we have implemented a small peano natural data type which implements Ord , and placed that in a new module

Nat , shown in Figure 3.13.

Irulan is able to test the prop_sort property even though it has a polymorphic type. If an argument with

a polymorphic type is re�ned, Irulan will attempt to �nd values that will safely unify with that type. If for

example we run Irulan and explicitly add the Nat module to Irulan's set of support (but no Ints), we will

may see output such as the below:

$ irulan -p -a -iNat --maximumRuntime=10 --trace source --ghc-options='-fhpc -fforce-recomp' TreeSort

...

prop_sort $fOrdNat (: (Succ Zero) (: Zero ([]))) ==> True

...

A small limitation is that Irulan will make explicit the type class argument to the polymorphic function, and

state the instance that has been used, e.g. in the above example the $fOrdNat parameter indicates the Ord

instance for Nat is being used.

By also enabling HPC (--ghc-options='-fhpc'), Irulan will create an irulan.tix �le that can be processed

by the HPC toolchain:

$ hpc report --per-module irulan.tix

-----<module Nat>-----

100% expressions used (0/0)

100% boolean coverage (0/0)

100% guards (0/0)

100% 'if' conditions (0/0)

100% qualifiers (0/0)

100% alternatives used (0/0)

100% local declarations used (1/1)

66% top-level declarations used (2/3)

-----<module TreeExample>-----

68% expressions used (107/156)

40% boolean coverage (4/10)

40% guards (4/10), 1 always True, 5 unevaluated

100% 'if' conditions (0/0)

100% qualifiers (0/0)

61% alternatives used (13/21)

100% local declarations used (4/4)

58% top-level declarations used (7/12)

-----<module TreeSort>-----

100% expressions used (12/12)

100% boolean coverage (0/0)

100% guards (0/0)
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100% 'if' conditions (0/0)

100% qualifiers (0/0)

100% alternatives used (0/0)

100% local declarations used (0/0)

100% top-level declarations used (2/2)

From the above run, we can see that the prop_sort property and Irulan have tested most of the TreeExample

module but not all. In fact, prop_sort does not test the delete and delete ′ functions or the Show instance for

Tree, which accounts for the missing code coverage.

3.6 Discussion

In this chapter we have looked at several use cases of Irulan through a growing example. We started by using

Irulan as a quick and easy way to see if there are inputs that cause a library to crash. The ideas used to

make this happen (automatic inference of identi�ers, enumerating values of the appropriate type to pass in as

arguments to a function, using needed narrowing to avoid generating test data that isn't evaluated) are all used

by existing tools, but we believe this is the �rst work to integrate them together to search for arbitrary error

conditions in Haskell programs.

In addition, we have shown some novel features for Haskell testing tools. Irulan can synthesise selectors using

case expressions, which allows it to explore within returned values. This exploration can uncover errors that

would otherwise be hidden by laziness, and the case expression will precisely identify which �eld of the returned

value was hiding the error. Of course, this technology isn't needed by property testing tools, as the resulting

value is always a Bool , however Irulan's case expression synthesis can also be used to generate test data to be

used as arguments to functions, by picking apart more complicated data structures (such as tuples or lists) to

extract useful test data that may be held within.

Also, unlike many of the existing Haskell library based testing approaches to testing, Irulan is able to perform

error �nding (and thus property) testing on polymorphic functions, where it instantiates values that would be

polymorphic by unifying them with possible values from the inferred data set.

The regression testing demonstration is a demonstration that the ideas within Irulan (automatically generating

input and output pairs) can be put to other uses than just error �nding. In Section 5.5 we talk in detail about

some small case studies where we managed to apply the regression testing work; this looks to be a fruitful line

of research we hope to develop further.

One important consideration when looking at any testing tool is ensuring that the user is really sure about what

has and has not been tested. A common problem when using random or iterative deepening testing tools is that

a huge number of tests may be reported, but many may be identical. For example, a naive random generator

for lists would make 50% of all tests the empty list.



3.6. Discussion 48

One way to quickly ascertain what is not being tested is to see what a code coverage tool reports as not being

explored. For this reason we have made sure that Irulan can interoperate well with Haskell Program Coverage.

The ability to quantitatively measure the code coverage achieved by Irulan on arbitrary source code modules

is made use of throughout our evaluation in Chapter 5.

Using HPC, we also hinted at some experimental open work with Irulan. By being able to reify code coverage

results, we are able to generate a minimized test suite of expressions. This could have potential applications in

several areas, for example for quick regression testing or helping to classify the expressions that cause errors.

However, it is important to stress that this is a minimized, not a minimal test suite. The order of execution of

test cases can a�ect what test suite is reported. To generate a fully minimized test suite would reduce to the

set covering problem, which is NP-complete.

We have also showed that Irulan can interact with some of Haskell's more advanced language features, such as

type classes. Internally Irulan sees a type class constraint as an extra parameter to the function that accepts

a value witnessing the instance of the type class for that particular type. A limitation of Irulan is that it

currently makes these extra parameters and witnesses visible to the user in its expressions, although it should

be possible with some further work to hide this. Irulan currently does not support testing type class instance

declarations directly, and while this should be possible to do in theory, it is an aspect of implementation we

have not yet explored.

One very visible di�erence between Irulan and the existing testing tools such as SmallCheck is how the depth

of a test is measured. As we will discuss in Section 4.4, Irulan's default depth metric is not as intuitive; for

that reason we recommend Irulan be used in an iterative deepening fashion. The use of iterative deepening

does mean that at times Irulan can report duplicate test cases that cause errors, however Irulan's output

has been designed to operate well with standard �ltering tools (such as Unix sort and uniq), so this is not a

real problem in practice.

Another di�erence with the library based techniques for property testing is that their raw performance (in terms

of speed of expression generation) is much higher than that of Irulan, a point we will discuss in Section 5.2.1.

For property testing it is then a trade-o� for the user between faster testing and automatic inference of test

data and the ability to test polymorphic functions. It would be interesting future work to integrate Irulan's

automatic discovery of test data with a type class based testing routine (such as used by Lazy SmallCheck) to

gain performance in the property testing case.
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Figure 3.14 Haskell TreeSort module, a polymorphic, more generalised version of the IntTreeExample.

module TreeExample (empty , insert , delete,flatten,Tree) where

data Tree a
= Leaf
| Branch (Tree a) a (Tree a)
deriving Show

empty :: Tree a
empty = Leaf

insert :: (Ord a)⇒ a → Tree a → Tree a
insert x t = balance $ insert ′ x t

insert ′ :: (Ord a)⇒ a → Tree a → Tree a
insert ′ n Leaf = Branch Leaf n Leaf
insert ′ n (Branch left x right)
| n < x = Branch (insert ′ n left) x right
| n > x = Branch left x (insert ′ n right)
| n ≡ x = Branch left x right

delete :: (Ord a)⇒ a → Tree a → Tree a
delete x t = balance $ delete ′ x t

delete ′ :: (Ord a)⇒ a → Tree a → Tree a
delete ′ n Leaf = Leaf
delete ′ n (Branch left x right)
| n < x = Branch (delete ′ n left) x right
| n > x = Branch left x (delete ′ n right)
| n ≡ x = attachRight left right

attachRight :: (Ord a)⇒ Tree a → Tree a → Tree a
attachRight Leaf t = t
attachRight (Branch left x right) Leaf

= Branch left x right
attachRight (Branch left x right) t@(Branch x ′ )
| x > x ′ = error "Precondition failure: x >= x'"

| x < x ′ = Branch left x (attachRight right t)

depth :: Tree a → Int
depth Leaf = 0
depth (Branch left right) = 1 + max (depth left) (depth right)

balance :: Tree a → Tree a
balance Leaf = Leaf
balance (Branch left x right) = doRotate ldepth rdepth left ′ x right ′

where
left ′ = balance left
right ′ = balance right

ldepth = depth left ′

rdepth = depth right ′

doRotate :: Int → Int → Tree a → a → Tree a → Tree a
doRotate lDepth rDepth (Branch ll l lr) x rt
| lDepth > (rDepth + 1) = doRotate (lDepth − 1) (rDepth + 1) ll l (Branch lr x rt)

doRotate lDepth rDepth lt x (Branch rl r rr)
| rDepth > (lDepth + 1) = doRotate (lDepth + 1) (rDepth − 1) (Branch lt x rl) r rr

doRotate lDepth rDepth lt x rt
= Branch lt x rt

flatten :: Tree a → [a ]
flatten Leaf = [ ]
flatten (Branch left x right) = flatten left ++ [x ] ++ flatten right



Chapter 4

Implementation of Irulan

In the previous chapter, we saw how a user would typically interact with Irulan, and showed some of the

parameters that can be used to change its internal behaviour. In general, the user asks Irulan to load some

Haskell modules (using GHC to pre-compile them if necessary), and then Irulan will automatically generate

expressions to test the functions exported from those modules. In order to construct the expressions, Irulan

will have to �nd functions in imported modules, and may need to be provided with constants by the user. The

order and number of test expressions that Irulan generates is controlled by an exploration strategy (such as

depth �rst or random search), which the user can also specify and parametrise.

In this chapter we discuss the core concepts, algorithms and data structures that underpin the implementation

of Irulan to make the above happen. Figure 4.1 presents these concepts graphically.

Figure 4.1 An overview of the main components of Irulan
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The core of Irulan has three inputs; a function to test, a set of Haskell modules and a set of primitive constants.

The set of modules is inferred by looking at the dependencies of the function to test, i.e. which modules declared

the argument and result types of the test function. As Haskell has some built in values (e.g. Int , Double etc.)

that do not have a data constructor representation, Irulan requires that values of these types that it should

use be stated explicitly. From these inputs, Irulan automatically tests the given function, using the functions

and data constructors exported from the support modules, and constants provided.

Irulan �rst uses the modules and constants provided to build a support set. The support set is Irulan's own

database of identi�ers, constructors and constants that can be used to generate test data. The identi�ers are

extracted from modules using a re�ection-like mechanism presented by the GHC API. When concrete test data

is needed as an argument to the function being tested, the support set will be queried to provide values of the

type of that argument. There are two query functions provided by the support set; one provides identi�ers that

can be applied to arguments to get the type required, the other builds a state machine that expresses sequences

of case expressions that can extract a value of the desired type out of a more complicated value.

Irulan's discovery and representation of a support set di�ers from comparable Haskell techniques in several

ways. Constructors and functions that can be used to build test data are discovered by loading compiled

or source Haskell modules into GHC and then using the GHC API as a re�ection library to introspect their

exported APIs. Irulan then extracts identi�ers as appropriate from GHC and uses two novel data structures

and associated algorithms to implement the query functions that the support set provides.

Irulan uses the support set to generate test expressions, which are Haskell expressions to be executed under

observation to see if they crash. The test expressions are built in a Plan. This is a lazy, tree-like data structure

that encodes what test expressions to execute, and, based on the result of running a test expression, which test

expressions should be run next. The Plan has many features; it takes advantage of lazy evaluation to only create

test expressions for arguments when needed (hence the Plan box being half in and half out of the Runtime in

Figure 4.1), it is novel in that it can build expressions using Haskell's case expressions to uncover bugs that may

be hidden by laziness and to create extra test data, and another novel feature is that it can test polymorphic

functions without requiring them to have an up front fully monomorphic type. Irulan di�ers from existing

techniques in that it makes the Plan an explicit structure, as opposed to implicit in the execution routines of

other tools. This allows for easy experimentation, for example di�erent ways of traversing the Plan can be

expressed abstractly without worrying about how it is produced. In addition it allows for easy visualisation.

The Plan is used by Irulan's runtime. Since the Plan is potentially in�nite in size with a high branching

factor, the way it is explored and the order of the execution of test expressions from it will a�ect ultimate

testing coverage. We have implemented several di�erent strategies in Irulan for exploring the Plan. All of

these strategies use the Runtime to execute test expressions and interrogate them to �nd out their results.

The Runtime also di�ers from existing tools. It is unique amongst existing Haskell tools in that it monitors the

expressions it executes to safeguard itself from excessively long running or high allocating expressions. We also

investigated adding caches in at the runtime layer, looking at the actual values returned and pruning executing

expressions to see if there could be any potential bene�ts to be gained.
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Figure 4.2 The syntax of types that Irulan uses

Type ::= forall tyVar . Type [ Parameterised type ]

| RawType [ Raw Type ]

RawType ::= tyvar [ Type variable ]

| TyCon [ Type constructor ]

| RawType RawType [ Type application ]

As a practical matter, the user of Irulan will usually specify a module to test, and Irulan will then test all

of the exported functions in that module. Although the presentation will focus on just a single function being

tested (as that is conceptually simpler), we will detail how each component moves from working with a single

function to test to a module's worth.

4.1 Support Set

In order to test a function, Irulan will need to generate concrete test data to pass to it as arguments. To build

this test data, Irulan �rst needs to establish a support set. This will be a set of constants, constructors, type

class instances and functions that can be used to build arguments for the function being tested.

Irulan uses type information to incrementally build up its support set (�4.1.1). During construction of the

support set (�4.1.2), two novel data structures are built; a TypeMap (�4.1.3), which maps wanted types to the

functions that can provide them; and a Constructor Graph (�4.1.4), which links data type constructors to the

types they can provide via case expressions.

In order to test all the functions in a module, it would be possible to build a support set for each individual

function. However, it is simpler to just build a single support set which is the union of the support sets for each

individual function.

4.1.1 Types

The construction of the support set is driven by the static type information attached to the functions to be

tested. Irulan assumes a simple subset of GHC's Core [SCJD07] model of types, which can represent the types

seen in a Haskell '98 program. A syntax corresponding to these types is given in Figure 4.2.

Types explicitly declare their free type variables with foralls at the top level, restricting all types to be rank

one. Raw types can then be the ground type constructors (TyCons), type variables (tyvar) that were introduced

in the root forall. , or the application of one raw type to another.

Function types are constructed using the type constructor (->). In many cases we will discuss the argument

types and return type of a function. Since functions in Haskell are usually Curried, we will assume that a

function of the form T1 → T2 → . .Tn → Tr will have argument types T1 ,T2 . .Tn and result type Tr .
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However, there may be cases where we are discussing higher order functions as test data. In relation to this, we

have a notion of the provided result types of an identi�er. Since functions can be used as values, these provided

types are all the types the identi�er (when applied to some arguments) could be used as a value of. For example,

consider an identi�er foo :: A→ B → C → D . Its normal argument types are A, B , and C , and its result type

is D . Its provided types are D , C → D , B → C → D and A→ B → C → D

Since Irulan operates on GHC's internal representation of data and types, there are some features of Haskell

syntax that Irulan does not need to deal with directly. For example, type classes are compiled by GHC

using the dictionary passing transform [JW91, HHPJW96]. Here, type class declarations are turned into data

declarations, type class instances are identi�ers that return a value of the data type, and type class contexts on

functions are turned into extra arguments to the function of the appropriate data type.

4.1.2 Construction Algorithm

The construction of the support set happens in two phases. In the �rst phase the given module to test is traversed

and Irulan infers useful constructors and functions from that module and the modules it may (transitively)

depend upon. In the second phase, any command-line speci�ed constants, and the functions/constructors

exported by command-line speci�ed modules are included.

The module to be tested is examined to �nd the set of functions to be tested. Normally this would consist of

all of the exported function symbols from that module, however if property checking mode is enabled only the

property functions (those that are pre�xed with prop and return a Bool) will be selected. The types of the

arguments of each test function are used to guide discovery of identi�ers that will be useful for testing.

In the �rst step, Irulan examines the type of each argument of the test function. i.e. it splits a function

type T1 → T2 → . .Tn → TR to produce a list of argument types T1 . .Tn and a result type TR. Then, for

each argument type Ti , Irulan extracts the type constructors mentioned within the type. For each of these

type constructors Tc, Irulan inspects the APIs of the module declaring Tc, and adds all the constructors and

functions declared in that module that return expressions where Tc is applied to type arguments. This process

then continues recursively on any newly added support functions.

This means that if the argument type T consists of an application of a type constructor to some argument types

(i.e. is of the form Tc T1 T2 , e.g. Maybe Bool) then Irulan will recursively search both the type constructor's

declaring module, and the declaring modules of the argument types. This is useful for capturing all the types

an instantiated data type argument will need to create instances of that data type.

For example, when processing the test function isJustTrue :: Maybe Bool → Bool , Irulan will look at the

argument of type Maybe Bool . If Irulan only added ways of making Maybe to its support set (i.e. Nothing ::

Maybe a and Just :: a → Maybe a) then there would be no way to create values of type Maybe Bool as Bool had

not been added. In general, parameterised data types of the form T a will have functions a → T a to produce

them (e.g. Just for Maybe or (:) for lists). In the cases where they don't (perhaps the T in T T1 is abstract
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and a function mkT :: T T1 is exported) Irulan may have conservatively added de�nitions for constructing

values of type T1 , but this will not adversely a�ect the construction of tests.

Visible Constructor Optimisation

The size of the state space that Irulan needs to explore increases exponentially with the number of elements in

the support set for a given type. To avoid an exponential blow-up of the state space, Irulan uses the following

important heuristic: if all the constructors of a type constructor Tc are exported by a module, then Irulan

only adds them to the support set, ignoring any functions that return expressions of type Tc. The insight here

is that when all of Tc's constructors are available, we can (almost always) generate all expressions of a saturated

Tc1. Only when a module does not make Tc's constructors available do we need to use functions that return

expressions of type Tc.

There are frequently cases where Irulan will see a type constructor that it has previously processed during

support set construction. To prevent Irulan repeating work, and potentially going into an in�nite loop, Irulan

keeps track of all type constructors it has seen, and does not attempt to process a type constructor if it has

already done so.

4.1.3 The TypeMap

When Irulan runs, it will query the support set to �nd functions or constructors that can provide values of a

type that are needed for a test functions' argument. In order to facilitate this, a generalized trie [CM95], called

the TypeMap, maps Types to sets of Identi�ers that provide them. We use a custom data type to support this

query, as opposed to reusing an existing map library, as we wish to provide a lookup function that can return

values whose keys unify with the type being queried for. In this section, we will construct in Haskell a simpli�ed

form of the TypeMap that underpins the implementation of Irulan.

We will need a Haskell-equivalent form of the types from Section 4.1.1. These are shown in Figure 4.3, along with

an assumed API for Sets and normal key-value Maps that will be needed during development of the TypeMap.

The representation of Types and RawTypes follows directly from the abstract syntax in Figure 4.2. The assumed

Map API expects Monoid values, to make usage slightly more natural. The mappend operator from Monoid is

used to combine values during mapInsert if an existing value exists, and mempty is used to provide a default

value should mapLookup fail. The Monoid instance for Map also uses the mappend operator from the value

to combine them in a similar manner to mapInsert . The Monoid instance for Sets is standard, with mempty

being the empty set, and mappend as union. We also include an API for managing explicit substitutions

(mappings from TyVars to RawTypes). The identity Subst itution is mempty from its Monoid instance, and

two substitutions can be unioned using mappend . Subst itutions are built from a successful uni�cation of two

RawTypes, and a Subst itution can be applied to a RawType.

1The exception being when a publicly exported constructor makes use of an abstract type that has no public way of being made,
a rare situation that we haven't seen in practice.
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Figure 4.3 The Haskell form of Types, and an API for the exposition.

data Type
= Forall TyVar Type
| RawType RawType

data RawType
= TV TyVar
| TC TyCon
| RawType ‘TA‘ RawType

newtype TyVar
newtype TyCon

newtype Map k v
instance (Eq k ,Monoid a)⇒ Monoid (Map k a)
mapInsert :: (Eq k ,Monoid a)⇒ k → a → Map k a → Map k a
mapSingleton :: (Eq k ,Monoid a)⇒ k → a → Map k a
mapLookup :: (Eq k ,Monoid a)⇒ k → Map k a → a
mapHasKey :: (Eq k)⇒ k → Map k a → Bool
mapElems :: Map k a → [(k , a)]

newtype Set a
instance (Eq a)⇒ Monoid (Set a)
setInsert :: Eq a ⇒ a → Set a → Set a
setSingleton :: Eq a ⇒ a → Set a
setNotElem :: Eq a ⇒ a → Set a → Bool

newtype Subst
instance Monoid Subst
unify :: RawType → RawType → Maybe Subst
applySubst :: Subst → RawType → RawType

newtype Id
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The generalized trie structure that corresponds to RawType can be derived:

data TypeMap a

= Empty

| Split {tyVars :: Map TyVar a

, tyCons :: Map TyCon a

, appTys :: TypeMap (TypeMap a)

}

The intuition is that a TypeMap a maps a given RawType to some value a. The value corresponding to a TyVar

type and a TyCon type can be looked up in the tyVars and tyCons maps respectively. For type applications,

we have to look up a value based on both the left and right type children of the type application. To facilitate

this, appTys uses a TypeMap to map the left child type to a map for the right child, and the nested map maps

to the ultimate value.

TypeMap has a straightforward Monoid instance, with mempty being the empty map, and mappend the union

of keys and values:

instance (Monoid a)⇒ Monoid (TypeMap a) where

mempty = Empty

Empty ‘mappend ‘ x = x

x ‘mappend ‘ Empty = x

(Split tvl tcl atl) ‘mappend ‘ (Split tvr tcr atr)

= Split {tyVars = tvl ‘mappend ‘ tvr

, tyCons = tcl ‘mappend ‘ tcr

, appTys = atl ‘mappend ‘ atr

}

To make the TypeMap useful, we need to be able to insert RawType to value mappings into it.

tmInsert :: (Monoid a)⇒ RawType → a → TypeMap a → TypeMap a

Inserting a value into an Empty typemap �rst builds a Split with empty children, and then recursively calls

tmInsert on that:

tmInsert ty it Empty = tmInsert ty it emptySplit

where

emptySplit :: Monoid a ⇒ TypeMap a

emptySplit = Split {tyVars = mempty

, tyCons = mempty

, appTys = mempty

}
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Inserting a value at a type variable or a type constructor is then just a case of updating the appropriate map

in the Split :

tmInsert (TV tyVar) it s@(Split {tyVars }) = s {tyVars = mapInsert tyVar it tyVars }

tmInsert (TC tyCon) it s@(Split {tyCons }) = s {tyCons = mapInsert tyCon it tyCons }

Inserting a type application happens in two parts. The appTys TypeMap needs to be updated to include a

mapping for the left sub-type that maps to a map mapping the right sub-type to the desired value:

tmInsert (TA tyl tyr) it s@(Split {appTys }) = s {appTys = tmInsert tyl part2 appTys }

where

part2 = tmInsert tyr it emptySplit

With the implementation of tmInsert , we can build an example TypeMap. In Figure 4.4 and Figure 4.5 we

show an example support set and the TypeMap it induces. The nodes (solid dots) represent TypeMaps or Maps,

depending on the type of edges leaving them. Solid edges specify the node was a TypeMap's Split , and the edge

is labelled by the constructor of RawType we are looking up in a Split ; TV goes into tyVars, TC goes into

tyCons and TA goes into appTys. Dashed edges specify the node was a Map, and the edge is labelled by a key

in the map.

mkFilling and mkPie have been inserted twice, as these are functions that can provide values of two types. For

example mkPie can provide test data of type Filling a → Pie a, but if it is applied to an argument, it can also

provide test data of type Pie a. During our experimental evaluation, we have seen TypeMaps need to store up

to 229 identi�ers. However the size of that particular TypeMap was 1031, i.e. each identi�er provided 4.5 types

on average.

If the TypeMap were treated as a normal trie structure then the lookup function, which �nds identi�ers that

can provide test data of a certain type, would be achieved by navigating through the structure of the trie based

on the type wanted, and returning the set of identi�ers at the end (if any). However polymorphism complicates

this story as other types beyond the syntactical matches could be appropriate. For example, imagine we need

test data of (i.e. we want to lookup identi�ers that can provide) type Pie Apple. In our example support set

there are no functions that provide that type directly, but mkPie would be suitable if a is instantiated to Apple.

Possibly counter-intuitively, the instantiations can also work in the other direction. If a function needs test data

with a type variable in it, for example of type Pie a, then that means the function being instantiated could be,

for example ::Pie a → Box → Present a. We could use a test value of type Pie Apple, unifying a to Apple, and

test the function at type Pie Apple → Box → Present Apple.

Before presenting the Haskell implementation of lookup in TypeMaps, we will �rst outline how lookup works.

This will require being explicit about the uni�cations and substitutions that allow �nding the two examples

above. We begin by de�ning abstractly a TypeMap that is either Empty or a triple of mappings for type variables,

type constructors, and type applications:
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Figure 4.4 An example set of functions to include in a support set

apple :: Apple
mkFilling :: a → Filling a
mkPie :: Filling a → Pie a

Figure 4.5 The TypeMap induced by the support set in Figure 4.4. Solid arcs are TypeMap lookups, dashed
arcs are Map lookups
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TyVarsα ∈ P(TyVar× α) (4.1)

TyConsα ∈ P(TyCon× α) (4.2)

AppTysα ∈ TypeMapTypeMapα
(4.3)

TypeMapα ∈ Empty + TyVarsα × TyConsα × AppTysα (4.4)

As a syntactical nicety, we will also de�ne element inclusion (∈) for TypeMaps, based on inclusion from �attening

the TypeMap. We will use this de�nition during the speci�cation of lookup.

x ∈ (tyVars× tyCons× appTys)↔ x ∈ tyVars ∪ tyCons ∪ {(t1 t2, v)|(t1,m) ∈ appTys ∧ (t2, v) ∈ m} (4.5)

Lookup (') will take a RawType to extract values from a TypeMap, where the value's key uni�es with the

RawType. Since a uni�cation has taken place, the returned values are paired with the substitution created by

the uni�cation.

RawType ' TypeMapα ∈ P(σ × α) (4.6)

t ' Empty =∅ (4.7)

α ' (tyVars, tyCons, appTys) ={(α/β, v)|(β, v) ∈ tyVars}

∪ {(α/C, v)|(C, v) ∈ tyCons}

∪ {(α/t, v)|(t, v) ∈ appTys} (4.8)

C ' (tyVars, tyCons, appTys) ={(α/C, v)|(α, v) ∈ tyVars}

∪ {(∅, v)|(C, v) ∈ tyCons} (4.9)

t1 t2 ' (tyVars, tyCons, appTys) ={(α/t1 t2, v)|(α, v) ∈ tyVars}

∪ {(σ′ ∪ σ, v)|(σ,m) ∈ (t1 ' appTys) ∧ (σ′, v) ∈ (σ(t2) ' σ(m))} (4.10)

In de�nition 4.10, it is syntactically convenient to apply the �rst substitution, σ to both the raw type t2 and

the TypeMap m. In the Haskell implementation, instead of substituting the entire TypeMap and then matching

it, we explicitly only substitute through what we need to.2. We achieve this by passing into the lookup function

a substitution to be applied to type variables in the TypeMap before trying to match them. The type signature

2In Irulan the TypeMap is a strict data type for performance reasons, so a lazily evaluated substitution would not work



4.1. Support Set 60

and default case for the empty TypeMap are therefore:

tmLookup :: (Monoid a)⇒ RawType → Subst → TypeMap a → [(Subst , a)]

tmLookup Empty = [ ]

Looking up a type variable requires �nding all elements (RawType, value pairs) in the TypeMap, where the

inclusion relation (∈) is implemented as the descriptive flattenTypeMap (that also has to take a substitution to

apply to type variables). Then each type ty found in the TypeMap is uni�ed with the original type t (the type

variable tv):

tmLookup t@(TV tv) s tm = [(s ‘mappend ‘ subst , a)

| (ty , a)← flattenTypeMap tm s

, let Just subst = unify t ty

]

The other two cases for tmLookup (looking up a type constructor or a type application) share having to look

up possible values in the tyVars �eld of the TypeMap, we factor this common code into possiblesInTyVars,

implemented later.

In the case of looking up a type constructor tc , we check that the tyCons map does actually have tc as a key

before returning the substitution passed into us and the value it maps to.

tmLookup t@(TC tc) s tm = [(s,mapLookup tc (tyCons tm))

| True ← [mapHasKey tc (tyCons tm)]

] ++ possiblesInTyVars t s (tyVars tm)

Finally, looking up a type application requires threading through the incoming substitution s to make sure it

is applied to the left hand side (tl), and then taking the modi�ed substitution s1 and threading that through

the right hand side (tr) before returning it and any resulting value.

tmLookup t@(TA tl tr) s tm = [(s2 , a2 )

| (s1 , a1 )← tmLookup tl s (appTys tm)

, (s2 , a2 )← tmLookup (applySubst s1 tr) s1 a1

] ++ possiblesInTyVars t s (tyVars tm)

For completeness, we de�ne the flattenTypeMap and possiblesInTyVars to complete our TypeMap de�nition.

flattenTypeMap :: TypeMap a → Subst → [(RawType, a)]

flattenTypeMap Empty = [ ]

flattenTypeMap Split {tyVars, tyCons, appTys } subst

= tyVars ′ ++ tyCons ′ ++ appTys ′

where
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tyVars ′ = [(applySubst subst (TV tv), v) | (tv , v)← mapElems tyVars ]

tyCons ′ = [(TC tc, v) | (tc, v)← mapElems tyCons ]

appTys ′ = [(TA l r , a) | (l ,next)← flattenTypeMap appTys subst

, (r , a)← flattenTypeMap next subst

]

possiblesInTyVars :: (Monoid a)⇒ RawType → Subst → Map TyVar a → [(Subst , a)]

possiblesInTyVars t s tyVars

= [(s ‘mappend ‘ subst , a)

| (tv , a)← mapElems tyVars

, let Just subst = unify t (applySubst s (TV tv))

]

4.1.4 The Constructor Graph

As part of the support set discovery phase, Irulan builds a Constructor Graph, which represents the graph

of reachable types through the use of case statements on data constructors. The graph is used during the

planning phase to guide expression generation to include case expressions. A ConstructorGraph can be queried

for a type, and it returns identi�ers paired with a subset of the constructor graph in non-deterministic �nite

automata (NFA) form. The NFA edges express a case statement pattern to apply to a previous expression based

on the value returned by executing the previous expression. The NFA accepting states represent expressions of

the type that was originally looked up.

For example, in Figure 4.6a we present a small module for exploring the states of a Board game, Figure 4.6b

shows the constructor graph for Program 4.6a.

The roots of this graph are the functions in the support set, in our case start , step and searchForBest . Each root

points to nodes representing the ultimate type returned by applying the respective function all of its arguments.

An arc between two types T1 and T2 is labelled by a constructor pattern match that can be used to obtain

a value of type T2 from one of type T1 . For example, the arc between [Board ] and Board is annotated by

(x : ) → x which represents the case statement that takes the head element out of a list of Boards built by a

cons (:) constructor.

Note, the roots of the graph do not include data constructors, only functions. This is because the graph encodes

case expressions over values built up from the roots of the graph. To build a case statement rooted over a data

constructor would be wasteful (e.g. there is no point constructing case (foo : bar) of (x : _)→ x , as this is the

same as foo).

Table 4.1 shows some example expressions built using the constructor graph in Figure 4.6b. Imagine we wanted

to use case expressions to build an expression of type Board . We could start from the identi�er step. Assuming
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Figure 4.6 A case statement example
(a) A module that needs case
statements to test its functions.

module Board
(start , step, searchForBest ,Board
) where
data Board = . .
start :: Board
step :: Board → [Board ]
searchForBest :: Board →

([Board ],Either Board String)

(b) Constructor Graph for the Board module

start

Board

step

[Board]

searchForBest

([Board], Either Board String)

(x,_) -> x

Either Board String

(_,x) -> x

(_ : x) -> x

(x : _) -> x Left x -> x

String

Right x -> x

(_ : x) -> x

Char

(x : _) -> x

we have another algorithm (for Irulan this is the Plan algorithm, discussed in Section 4.2) that can apply step

to enough arguments, we can start with an expression of type [Board ], e.g by building the expression step start

as shown in the �rst line of Table 4.1.

If step start is successfully evaluated to a WHNF, it could either return an empty list [ ] or a cons cell (:). In our

constructor graph, there are no arcs from [Board ] corresponding to the [ ] case (there are no case expressions

over [ ] that yield sub values), so in that situation we have to stop, as shown in the second line of Table 4.1.

The third and fourth lines of Table 4.1 are for when start step builds a list with at least one element. Here

there is a choice of arc to follow in the graph, either taking the head element of the list (line 3) or the tail (line

4). When taking the head element (via case (step start) of (x : _) → x ), the resulting type is Board which is

what we want. Note that the case statement generated for the next expression is not exhaustive, i.e. there is

no alternative for the [ ] case. This is because we have already analysed the root constructor of step start and

know that it returns a (:) cell before choosing one of the (:) based arcs in the graph.

If we follow the tail case statement in line 4, then we can execute the resulting case statement, and possibly
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Table 4.1 Examples of test expressions with their types and a possible runtime (RT) value. Then based on
the type and runtime value, one arc from Figure 4.6b to follow is given (Arc / Id Followed), and what the next
expression based on the arc followed would be.

Expression Type RT Value Arc / Id Followed Next Expression Next Type

- - - step step start [Board ]
step start [Board ] [] - - -
step start [Board ] (:) (x : _)→ x case (step start)

of (x : _)→ x
Board

step start [Board ] (:) ( : x )→ x case (step start)
of ( : x )→ x

[Board ]

case (step start)
of ( :x )→ x

[Board ] (:) (x : _)→ x case (case (step start)
of ( : x )→ x )

of (x : _)→ x

Board

case (step start)
of ( :x )→ x

[Board ] (:) ( : x )→ x case (case (step start)
of ( : x )→ x )

of ( : x )→ x

[Board ]

build a larger case statement if it returns a (:)-based value, as shown in lines 5 and 6.

Thus far, we have assumed that the root identi�er(s) chosen and the arcs followed will always lead to useful case

expressions. We have not yet made precise how we ensure that only suitable root identi�ers, and suitable arcs

are followed. For example when trying to generate expressions of type Board , if we started from the identi�er

searchForBest and built up an expression of type Either Board String that returned a value Right x , it would

be wasteful to follow that arc, as the reachable types from that arc (String and Char) do not include Board .

During the planning phase (�4.2), Irulan will query the constructor graph when it wants to use case expressions

in expressions. The constructor graph uses a TypeMap (�4.1.3) to map queried types to nodes in the graph

that could be suitable. For example, querying for a type [a ] would return the [Board ] node with a substitution

a/Board, and the String node with the substitution a/String. For each of the suitable (target) nodes, the

constructor graph will then extract a subset of itself as an NFA where the accepting state is the target node.

The subset has the rule that the target node is always reachable from any other node in the graph.

To build this subset, the constructor graph �rst inverts all arrows in the graph, and �nds all reachable nodes

from the target node (e.g. in Figure 4.7a the target/accepting node is Board). Only the reachable nodes are

kept and the arrows are re-reversed (Figure 4.7b). These NFAs are then traversed by the Plan (�4.2) to build

up case expressions of a particular type.

4.2 The Plan

4.2.1 Test Expressions

Using a function to test from the module to be tested as a starting identi�er, and the support set as a source

of identi�ers and constants, Irulan then generates and executes test expressions.
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Figure 4.7 Turning a Constructor Graph into a NFA to build case expressions
(a) Selecting Board as the target node,
and reversing all arrows to �nd inversely-reachable states
(dashed nodes/arrows are unreachable)

start

Board

step

[Board]

searchForBest

([Board], Either Board String)

(x,_) -> x

Either Board String

(_,x) -> x

(_ : x) -> x

(x : _) -> x Left x -> x

String

Right x -> x

(_ : x) -> x

Char

(x : _) -> x

(b) Keeping only the reachable states, and then re-reversing the arrows to build
the NFA for Board

start

Board

step

[Board]

searchForBest

([Board], Either Board String)

(x,_) -> x

Either Board String

(_,x) -> x

(_ : x) -> x

(x : _) -> x Left x -> x
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Figure 4.8 The syntax of Irulan's test expressions

expr ::= root arg* subst

root ::= identifier

| constant

| case expr of Ctr _* x _* -> (x :: type)

arg ::= expr

| ?i :: type

| '*' :: tyvar

constant ::= int | char | float | double | integer

Irulan's test expressions (shown in Figure 4.8) are an explicitly typed subset of Haskell expressions, although

the type information is usually elided when presenting test expressions to the user. All test expressions, expr,

start with some root applied to zero or more arguments, arg. The test expressions also have a substitution,

subst, that maps free type variables to their instantiated value (if they have one).

The roots are either Haskell identi�ers (which carry their own type information internally), constants (Ints,

Doubles, Chars, etc) or case expressions. case expressions always look for a single element in exactly one single

constructor, returning that and recording the (instantiated) type of the resulting variable.

Test expression arguments can recursively be expressions, to-be-re�ned ? arguments that carry their index (i)

and type, or an unconstrained variable (*), which we discuss further in the Polymorphism part of Section 4.2.3

below.

Table 4.2 Some example expressions and their Haskell representation

Test Expression Type As Haskell

(False :: Bool) ∅ Bool False
(id :: a -> a) (False :: Bool ∅) a/Bool Bool id False
case (foo :: Maybe Int ∅ ) of

Just x -> (x :: Int) ∅
Int case foo of Just x → x

(fromJust :: Maybe a -> a)

((snd :: (b,c) -> c)

(foo :: (Int,Maybe Bool) ∅ )
b/Int, c/Maybe Bool )

a/Bool

Bool fromJust (snd foo)

When presenting test expressions we may elide type information, as Irulan does to create presented test

expressions that are (nearly always) Haskell expressions. Since we assume a rank one type system, Haskell's

type inference will be powerful enough to understand applications of identi�ers to other sub expressions. The

two constructs that do not coincide directly with Haskell are the ?i argument form (which can be replaced by

⊥ or error i), and * (which can be replaced by ()). As a practical issue, occasionally GHC's internal type class

dictionaries will manifest themselves as identi�ers used by Irulan, which could also be elided. We show the

relationship between some full test expressions and their elided form in Table 4.2.

The grammar for test expressions is designed to make some meaningless expressions impossible to write.
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Figure 4.9 The Plan data structure

data Plan
= Step {testExpression :: Expr

, onOk :: Plan
, onDataCon :: Map DataCon Plan
, onBottom :: Map BottomId Plan }

| Split {children :: [Plan ]}

For example, expressions cannot start with a ?i at their root, and a case statement cannot be of the form

case ?i of ... because the evaluation of such expressions would �rst force the ?i (and require it to be re�ned

into a more meaningful expression) before anything else.

4.2.2 The Plan

With a support set in place, Irulan then builds a Plan, a novel, lazy data structure that represents the (possibly

in�nite) number of ways in which Irulan could build expressions to test the functions to be tested. Figure 4.9

gives a simpli�ed presentation of the Plan data type.

The Step constructor speci�es a test expression to run, and subsequent Plans to follow based on the result of

evaluating the testExpression to WHNF. The Split constructor represents explicitly non-deterministic choice in

the Plan (and gives rise to a search space). We will consider both cases by looking at an example Plan. Split

with no children is used to encode a Plan that cannot continue as it has no descendants.

We will often talk of a single function being tested, and our Plans will start with a Step rooted in testing that

function / identi�er (initially with no arguments as our algorithm will describe). To test all the functions in a

module, the Plan for each is made, and then a Split is used to combine the list of Plans (one for each function)

into a single Plan for use later in Irulan.

Figure 4.11 shows part of the Plan dynamically generated by Irulan while testing the insert function in

Figure 4.10 (which is the same as Program 3.1 from the overview). The Plan consists of a series of Steps: each

Step is denoted by an oval containing the expression to be evaluated. Where there are several ways to generate

test data, a diamond is used to represent Splits in the Plan. The arrows linking the steps are annotated with

the outcome when evaluating the expression in that step. There are four cases to consider when testing an

expression e in the context of a function under test f :

1. onOk: This is followed when Irulan discovers that e successfully ran to WHNF. When this happens,

Irulan is given a Plan to follow unconditionally. This new Plan either increases the number of arguments

passed to e, or, if e is used to build an argument to f , it instantiates that argument to e and continues

f 's evaluation.

2. onDataCon: This case is followed when Irulan applies a function f to all of its arguments, and f suc-

cessfully returns a data constructor d without generating an error -thrown exception. In this case, if d is
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Figure 4.10 Simple Haskell IntTreeExample module.

module IntTreeExample where

data IntTree
= Leaf
| Branch IntTree Int IntTree

insert :: Int → IntTree → IntTree
insert n Leaf = Branch Leaf n Leaf
insert n (Branch left x right)
| n < x = Branch (insert n left) x right
| n > x = Branch left x (insert n right)

Figure 4.11 Part of the Plan followed by Irulan while testing the insert function in Program 4.10, which
illustrates the onOk and onBottom cases.

insert

insert ?1

 onOk

insert ?1 ?2

 onOk

 onBottom: ?2

insert ?1 Leaf insert ?1 (Branch ?2 ?3 ?4)

 onBottom: ?1

insert 0 (Branch ?1 ?2 ?3) insert 1 (Branch ?1 ?2 ?3)
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publicly exported, Irulan will go on to inspect (using case expressions) the arguments passed to d by f .

To do so, the Plan for inspecting each argument can be retrieved by looking up d in the map from data

constructors to Plans.

Since both onOk and onDataCon can be triggered due to an expression running to WHNF, a non-

deterministic choice by a search strategy (�4.4) is used to choose which is followed �rst.

3. onBottom: This case is followed when e requires the evaluation of one of its ? arguments, which is looked

up in the map to �nd the Plan detailing possible ways of instantiating that argument.

4. If the evaluation of e generates an error -thrown exception, Irulan reports the error and stops following

this Plan.

The �rst Step in the plan of Figure 4.11 tests whether insert accepts any of its arguments. This triggers the

onOk case, because running insert with no arguments returns successfully. Following onOk means Irulan next

tries to apply insert to one argument. This again returns successfully, so in the third step Irulan applies insert

to two arguments.

The application of insert to two arguments requires the evaluation of the second argument, which triggers the

onBottom case. At this point, Irulan returns a Plan with a non-deterministic choice (denoted in Figure 4.11

by a diamond): in the next step it must either use the Empty data constructor to create the ?2 argument, or

use the Branch constructor.

When the Branch constructor is used, the new expression requires the evaluation of its �rst argument of type

Int , so the onBottom case is again triggered. In the context of the example there are two ways of making an

Int value, by using the constants 0 and 1, so Irulan returns again a Plan with a non-deterministic choice of

using either the constant 0 to create the Int argument, or the constant 1. These are used to instantiates the

�rst argument of (insert ?1 (Branch ?2 ?3 ?4)) with the respective Int constant.

Note that the existence of non-deterministic choice points in the Plans generated by Irulan gives rise to di�erent

exploration strategies (e.g. depth �rst search, iterative deepening), which we will discuss in Section 4.4.

4.2.3 The Plan Algorithm

The core algorithm for generating a Plan is fairly simple. We have then built upon this core algorithm to add

more features to Irulan. We proceed as follows:

After introducing and explaining the basic algorithm, we are going to add case statements to destruct a �nal

result. This will enable us to see if the lazy computations inside returned data constructors are hiding exceptions

that would otherwise be unobserved. We will then show that some duplicate test expressions can be generated

by Irulan, and how carefully threading a cache through the Plan can prevent some of these being generated.

Finally we make use of the constructor graph from Section 4.1.4 to provide extra ways of creating arguments

to test functions.
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The Basic Algorithm

In Figure 4.12 we give a Haskell-like pseudo code for creating a simple Plan data structure, ignoring case

expressions, and assuming polymorphic substitution is handled correctly by the helper functions.

Figure 4.12 Pseudo Code for creating a simple plan data type

type Instantiate = Expr → Plan

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate

= Step {testExpression = e
, onOk = onOk
, onBottom = onBottom
}

where
onOk
| typeOf e ‘unifiesWith‘ targetType = instantiate e
| otherwise = gen (addBottomArgumentTo e) targetType instantiate

onBottom = [?i 7→ Split [gen providerId (typeOf ?i)
(λe ′ → gen ([e ′/?i ] e) targetType instantiate)
| providerId ← querySSIdForType (typeOf ?i)
]

|?i← getBottomArguments e
]

createPlan :: Identifier → Plan
createPlan x = gen x (resultType x ) (\_→ Split [ ])

The core generation of the plan takes place in the function gen. This function is responsible for making a plan

Step for a given test expression e. The eventual aim is to create Steps that build up an expression of type

targetType, which will be reached by successfully applying e to zero or more arguments. Once e has been built

up to that type a continuation Plan is provided through the instantiate argument.

The use of the targetType means that gen can generate higher order functions as test data if necessary, by

specifying the higher order type (e.g. Int → Bool) in targetType. Without some way of expressing how many

arguments to apply e to, the algorithm could only saturate e, which may not always be desired.

The two helper functions onOk and onBottom that are used in the constructed Step contain the logic for the

respective following plans.

� In onOk we can assume that the original e has successfully run to WHNF. The �rst guard checks whether

e has reached the targetType, if so it uses the instantiate argument to get the continuing Plan. Otherwise,

we apply e to a new ? argument, and recurse into gen.

� In onBottom, we can assume that e has been run and required the evaluation of a ? argument. onBottom

therefore returns a map, where the keys are the ? arguments in e, and the values are the possible Plans

for instantiating that ? with a more concrete expression. Identi�ers that can provide expressions with the

same type as the ? argument are queried from the support set (querySSIdsForType :: Type → [Id ]) and for

each of them, gen is used to recursively build an expression with the type of the respective ? argument.
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Figure 4.13 Part of the Plan followed by Irulan while testing the insert function in Program 4.10, illustrating
the onDataCon case.

insert ?1 Leaf

 onDataCon: Branch

insert ?1 (Branch ?2 ?3 ?4)

case insert ?1 Leaf of 
 Branch x _ _ -> x

case insert ?1 Leaf of 
 Branch _ x _ -> x

case insert ?1 Leaf of 
 Branch _ _ x -> x

The instantiate argument to gen is used to replace the ? argument with the recursively built expression

e ′, which is then passed back into gen to test the newly substituted expression.

In order to create a simple plan to test some arbitrary identi�er, as in createPlan, we use gen with the identi�er

as the initial expression. The targetType is the result type of the identi�er, so that any arguments needed to

make the identi�er return the required result type will be created. If the Plan can successfully execute the

identi�er then there is nothing further to do, hence the empty continuation.

Destructing Returned Values

The �rst extension to the above scheme is a change that enables case statements to be used to force the resulting

value at the end of testing, which can �nd errors that may otherwise be hidden due to laziness. For example,

when testing the insert function from Figure 4.10, the Plan created by createPlan on insert would stop after

successfully executing insert ?1 Empty to a WHNF. However we would like the Plan to continue in the manner

shown in Figure 4.13; i.e. that if insert ?1 Empty returns a value created by a Branch constructor, there are 3

ways to continue testing, by looking at the three children of that Branch constructor.

In Figure 4.14 we detail an extended version of the algorithm that will use case expressions where possi-

ble to destruct the �nal value at the end of testing. The new functionality to support this is mostly con-

�ned to createDestructPlan which is the top level interface, that uses a new Instantiate continuation called

tryToDestructPlan to actually generate the case expressions. However in order to support this new functional-

ity the type of Instantiate has had to change which has altered several other parts of the original algorithm.

In the basic algorithm (Figure 4.12), the Instantiate type was used to represent the continuation for when an

expression successfully ran to WHNF. The Plan returned by Instantiate would end up in the onOk �eld of some

Step. However now we need to use case expressions, which means that when an expression runs to WHNF we
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Figure 4.14 Pseudo Code for creating a simple plan data type that can destruct values

type Instantiate = Expr → (Plan,Map DataCon Plan)

emptyPlan = Split [ ]

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate

= Step {testExpression = e
, onOk = onOk
, onBottom = onBottom
, onDataCon = onDataCon
}

where
(onOk , onDataCon)
| typeOf e ‘unifiesWith‘ targetType = instantiate e
| otherwise = (gen (addBottomArgumentTo e) targetType instantiate, emptyMap)

onBottom
= [?i 7→ Split [gen providerId (typeOf ?i)

(λe ′ → (gen ([e ′/?i] e) targetType instantiate, emptyMap))
| providerId ← querySSIdForType (typeOf ?i)
]

|?i← getBottomArguments e
]

createPlan :: Identifier → Plan
createPlan x = gen x (resultType x ) (\_→ (emptyPlan, emptyMap))

createDestructPlan :: Identifier → Plan
createDestructPlan x = gen x (resultType x ) tryToDestruct

tryToDestruct :: Instantiate
tryToDestruct e
| Just dataCons ← querySSForPublicDataCons (typeOf e)
= (emptyPlan, [dataCon 7→ Split [gen (case e of dataCon x0 . . xn → xi) childType tryToDestruct

| (i , childType)← children dataCon
]

| dataCon ← dataCons
, let n = maxChildIndex dataCon
]

)

| hasFunctionType e = (gen e (resultType e) tryToDestruct , emptyMap)
| otherwise = (emptyPlan, emptyMap)
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may want to continue with some plan unconditionally (through onOk) or we will want to use a case expression

over its constructor (through onDataCon). Later, when we can use case expressions to produce arguments, it

is possible we will want to do both. The changes to the original algorithm to facilitate this are as follows:

� Instantiate's type now returns both a Plan intended for the onOk �eld of a Step, and also a Map DataCon Plan

for the onDataCon �eld of the same Step.

� To make implementing the rest of this change easier, we have aliased the plan with no elements (Step [ ])

to emptyStep.

� In gen, both onOk and onDataCon come from instantiate when e has been applied to the right number

of arguments. When an extra ? argument needs adding to e, the onOk case stays the same as before, and,

since there will be no data constructors to consider (as e would have been of function type), an empty

map is used for the onDataCon map.

� In onBottom, the emptyMap returned in response to a sub expression e ′ being found is due to us not (yet)

considering how to re�ne missing arguments with case expressions.

As mentioned above, the actual destruction of result values with case expressions happens in tryToDestruct ,

which is used by createDestructPlan.

The behaviour of tryToDestruct is determined by the type of the incoming expression e.

� It is a possibly destructible value (non-function, non-constant) type: The �rst guard of tryToDestruct

encodes this check, querySSForPublicDataCons ::Type → Maybe [DataCon ] will return Nothing if the type

cannot possibly have any associated data constructors, and Just dataCons, where dataCons will be a col-

lection of the publicly exported data constructors for the queried type.

For each of the dataCons, we build a Split plan, where each element in the plan carries on testing a

di�erent element in the respective dataCon.

� It is a function type: The second guard of tryToDestruct would be reachable if a previous case expression

extracted a child that had a function type. Since gen is designed to add new arguments to expressions,

we use gen to add the requisite number of arguments before trying to destruct again.

� It is a type variable, application of type variables, or a constant: In this case there is nothing

we are able to do. Note that it shouldn't be possible to reach this case with a type variable as the type,

as it would imply that there is a non-error value with type a for any a.

Removing redundant test expressions

For a particular Plan, it is possible that some test expressions may be constructed more than once in di�erent

places. Within the Plan generation algorithm, it is possible to remove some of this duplication by remembering
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Figure 4.15 An example to motivate removing redundant test expressions
(a) An example library

f :: X → X → A
mkX :: B → X
b :: B

(b) A Plan for the example library

f ?1 ?2

 onBottom ?1

mkX

mkX b

f (mkX b) ?2

 onOk

 onBottom ?2

mkX

mkX b

f (mkX b) (mkX b)

 onOk
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which expressions have already been generated between the current location and the root, and what branch was

followed (i.e. what the result of the expression was) that led to the current location.

For example, consider the excerpt of a module shown in Figure 4.15a, and part of the Plan for testing it in

Figure 4.15b. During the testing of function f the expression mkX b could be used to produce test data for f 's

�rst argument. After following the onOk arc, it is known that mkX b will evaluate to a WHNF. Later, while

generating test data for f 's second argument, the expression mkX b will be re-executed, even though we know

that its evaluation will result in a WHNF.

Note that this knowledge only propagates down through the Plan, so only descendants of a Step know what

the outcome of that Step was.

To take advantage of this knowledge, a cache mapping expressions to outcomes can be threaded through the

algorithm; so for example gen and Instantiate now accept this cache as an argument. Recursive calls to gen or

an Instantiate argument in onOk and onBottom add knowledge of the test expression's outcome (reducing to

WHNF in onOk , or the particular ? argument in onBottom) to the cache. Before gen creates a new Step for a

given test expression e, it consults the cache and if it �nds e is already in it, it returns the Plan that would be

followed given e's known result (e.g returning the Plan built by onOk as opposed to the Step with e in it).

Using case expressions for arguments

The �nal addition to the basic Plan algorithm is the ability to use case expressions in order to generate arguments

for functions that need them.

Figure 4.16 The API the Constructor Graph (�4.1.4) presents to the Plan

queryConstructorGraph :: Type → [(Id ,NFAState)]

data NFAState = NFAState {accepting :: Bool
,nextSteps :: Map DataCon (Map Int NFAState)
}

We make use of the Constructor Graph (�4.1.4), through the abstract interface presented in Figure 4.16. The

queryConstructorGraph function returns a list of Identi�ers that (once saturated with arguments) may be

wrapped in case expressions to provide the Type queried. The associated NFAState with each Id represents a

state in the Constructor Graph. Each state implicitly represents a type and is associated with a test expression;

for example the initial states will represent the types of their associated Ids saturated with arguments. Accepting

states are ones that represent the originally queried type. The transitions between states are in the nextSteps

�eld. In order to transition from one state to another, the runtime value of the states' associated expression must

be looked up in the DataCon part of the nextSteps �eld. The resulting Int map gives possible continuations.

The Ints are the indexes of children in the DataCon, and thus each Int in that map encodes a case expression

over the state's expression that leads to a new state.

In Figure 4.17 we show part of a Plan that uses case expressions to produce test arguments. The Plan is for
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Figure 4.17 Part of a Plan that uses case expressions to produce arguments. Based on the Constructor Graph
in Figure 4.6b.

foo ?1

 onBottom ?1

step

step start

 onDataCon (:)

case (step start) of 
 (x:_) -> x

case (stop start) of 
 (_:x) -> x

foo (case (step start) of 
 (x:_) -> x)

 onOk  onDataCon (:)

case (case (step start) of 
 (_:x) -> x) of 

 (_:x) -> x

case (case (step start) of 
 (_:x) -> x) of 

 (x:_) -> x

 onDataCon (:)

foo (case (case (step start) of 
 (_:x) -> x) of 

 (x:_) -> x)

 onOk
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testing a function foo :: Board → Bool , and uses the constructor graph from Figure 4.6b. The plan shown for

instantiating foo's ?1 argument is rooted at step, which is one of the roots of the constructor graph. Once step

has been saturated with arguments producing the test expression step start , the edges in the constructor graph

NFA guide onDataCon continuations. In this case, the (:) data constructor leads to two new states, either

taking the head element of step start 's list (through the case (step start) of (x : _)→ x ), or taking the tail of

the list (through the case (step start) of ( : x )→ x ).

In the former case, the resulting case expression is of type Board , so if it evaluates to a WHNF then the onOk

Plan can be followed, which instantiates foo's ?1 argument to the case expression.

In the latter case, the resulting case expression is of type [Board ], so if it is a value with a (:) data constructor

at the root, then the same choice between taking the head or tail of that list can be made.

Figure 4.18 The additions to the Plan algorithm to allow case expressions to produce test arguments

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate
...
where

onBottom
= [?i 7→ Split ([...as before...] ++

[gen x (resultType x ) (caseGen nfa instantiate)
| (x ,nfa)← queryConstructorGraph (typeOf ?i)
])

|?i← getBottomArguments e
]

caseGen :: NFAState → Instantiate → Instantiate
caseGen nfa instantiate e

= (accOk , accDC ‘mapUnion‘ stepDC )
where

(accOk , accDC )
| accepting nfa = instantiate e
| otherwise = (emptyPlan, emptyMap)

stepDC = [dc 7→ Split [gen e ′ (resultType e ′) (caseGen nfa ′ instantiate)
| (i ,nfa ′)← dcArgs
, let e ′ = J case e of dc x0 . . xn → xiK
]

| (dc, dcArg)← nextSteps nfa
, let n = maxChildIndex dc
]

In Figure 4.18 we detail the changes to the Plan algorithm (as of Figure 4.14) needed to enable case expressions

as arguments to functions. We do not consider the threading through of the cache to remove locally duplicate

expressions as it adds noise to the presentation.

The �rst observation is that the need to construct case expression based arguments is triggered by the need to

re�ne a ? argument to a value. This re�nement happens in the onBottom helper of gen, which is where the �rst

changes are made. Here we extend the possible Plans inside the Split with ones that try to use case expressions.

The call to queryConstructorGraph will return root identi�ers, x and NFAStates, nfa that can be used to
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generate these case expressions. In Figure 4.17, one such x would be the step inside the �rst Split . The actual

Plan to use case expressions is initially generated by gen, in order to saturate the x to the right number of

arguments. In Figure 4.17, the dotted line between step and step start indicates the work done by gen.

The continuation to gen to use once x has been saturated is a new helper function caseGen, which uses the nfa

to build appropriate case expressions, and the original instantiate for when it reaches accepting states in the

nfa.

The caseGen function has to take two pieces of information into account when creating the onOk and onDataCon

tuple that it returns. The �rst is whether the current nfa state is an accepting state, the second is the outgoing

edges from the current nfa state.

The accOk :: Plan and accDC :: Map DataCon Plan helper variables are based on the accepting state of the

nfa. When the nfa is accepting, they are the result of calling the instantiate that uses the case expression built

up as an argument. For example in Figure 4.17, the two onOk arcs would have passed through accOk . In

these cases, the accDC map would be empty. However if a case expression itself forced the evaluation of a ?

argument then accDC would have elements. Consider case (True:?1) of ( : x ) → x as a contrived example,

then the continuation after instantiating ?1 would have onDataCon (and thus accDC ) mappings for the (:) that

the instantiated expression could return. When the nfa state is not accepting, these are empty.

The outgoing edges from the current nfa state provide entries for the onDataCon part of caseGen; these are

built up in stepDC . Each DataCon, dc, that comes from nextSteps nfa may give rise to several Plans, where

each of these Plans extracts a di�erent child from dc using a case expression. The children to extract (the is)

are speci�ed by the keys in dcArg :: Map Int NFAState. Each child also gives rise to a new NFAState, nfa ′,

which is used in the recursive use of gen with caseGen to carry on generating case expressions until the correct

type is reached.

One subtlety in the implementation of caseGen is that the returned Map DataCon Plan in the tuple has to

combine both accDC and stepDC . When both Maps contain the same key, this means their values (i.e. the

Plans) must be combined in a meaning-preserving way. For simplicity this can be done by creating a new Split

with both sub-Plans as elements.

Polymorphism

The presentation so far has assumed that polymorphic functions are processed correctly. We now attempt to

make this notion more precise, and outline some further changes to the algorithm presented that are needed to

make this work.

When the support set is queried for (non constructor) identi�ers that can provide a type, a lookup backed by

a TypeMap (�4.1.3) occurs. This lookup will return Identi�ers, and also a substitution. This substitution can

easily be applied to the identi�ers returned by the lookup through the subst mapping in the raw syntax for

test expressions (Figure 4.8).
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However the algorithm presented can lose some substitutions. This is due to the Instantiate parameter being

used to allow programming in a continuation passing style. In gen, the uni�cation between e and the targetType

(thus far presented as the function unifiesWith which returns a Bool) should also return a substitution that

explains how the two unify. This substitution should then be passed through instantiate with e, so that any

new constraints can be applied to the expression instantiate builds by replacing a ? argument with e.

Figure 4.19 A module describing simple Formatters, to motivate some polymorphic issues

data Format a = ...
formatInt :: Format Int
formatBool :: Format Bool
formatList :: Format a → Format [a ]
format :: a → Format a → String

For an example of one of these new constraints, consider Figure 4.19, which contains a small module for

describing Formatters. There are two primitive Formatters, for formatting Ints and Bools, and a composite

Formatter that given a primitive Formatter, can format a list of that primitive. Finally, the function format

takes a Formatter of some type, and a value of that type, and returns the formatted String for the value using

the formatter provided.

Figure 4.20 An example Plan where substitutions should be propagated across Instantiate

format (?1 :: a) (?2 :: Format a)

 onBottom ?2

formatList (?1 :: Format b)

 onBottom ?1

formatBool formatInt

formatList formatBool

 onOk

formatList formatInt

 onOk

format (?1 :: [Bool]) (formatList formatBool)

 onOk

format (?1 :: [Int])  (formatList formatInt)

 onOk

In Figure 4.20 we detail some parts of the Plan from testing the format function. We have made explicit the



4.2. The Plan 79

type of some of the ? arguments in this Plan. Both the left and right branches (formatInt or formatBool)

represent two recursive calls to gen, followed by two successive uses of the instantiate argument when following

the onOk arcs in each branch.

What is important to note is that both recursive calls to gen in any branch constrain further the type of format 's

?1 argument, even though gen is being used to generate test data for the ?2 argument. The �rst call, which

produces formatList should re�ne the ?1 :: a to ?1 :: [b]. The second calls, which produce formatBool

and formatInt must ground format 's argument to ?1 :: [Bool] and ?1 :: [Int], respectively.

Figure 4.21 The alterations to the Plan algorithm to allow substitutions of type variables to bubble up through
Instantiate callbacks

type Instantiate = Expr → Subst → (Plan,Map DataCon Plan)

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate

...
where

(onOk , onDataCon)
| Just σ ← typeOf e ‘unify ‘ targetType = instantiate e σ
...

onBottom
= [?i 7→ Split [gen providerId (typeOf ?i)

(λe ′ σ → (gen (σ ([e ′/?i ] e)) targetType instantiate, emptyMap))
| providerId ← querySSIdForType (typeOf ?i)
] ++ ...

|?i← getBottomArguments e
]

tryToDestruct :: Instantiate
tryToDestruct e ′ σ

...
where

e = σ (e ′)

caseGen :: NFAState → Instantiate → Instantiate
caseGen nfa instantiate e σ

...
where

(accOk , accDC )
| accepting nfa = instantiate e σ
...

A solution to this problem, as shown in Figure 4.21, is to make Instantiate also accept the substitution that

the uni�cation in onOk should generate, and then apply it to the replaced expression before continuing. There

is also a small modi�cation made to tryToDestruct and caseGen to make them match up with the new type of

Instantiate.

There is also an optimisation to do with polymorphism that can, in a pathological case, prevent a needless

explosion in the branching of the Plan.

In Figure 4.22 we show a di�erent part of the Plan for the support set from Figure 4.19. We now consider

the case when format is strict in its �rst argument before it is strict in its second. This is unusual because the
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Figure 4.22 A Plan that introduces unconstrained polymorphic values

format (?1 :: a) (?2 :: Format a)

format (* :: a) (?1 :: Format a)

 onBottom ?1

 onBottom ?1

formatBool

format (?1 :: Bool) formatBool

 onBottom ?1

 onOk

format True formatBool format False formatBool
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�rst argument has type forall a . a, i.e. it could be a value of any type. If the support set were queried

for identi�ers that could provide such a type, it would return all of them. However, the only meaningful thing

a function can do with a value of any type is force it to WHNF via seq . Because of this, we have added an

`unconstrained type variable' form, *, to the syntax of our expressions that represents a ? argument of a type

variable type that has been forced to WHNF. At runtime, the * can be replaced by any value that has a WHNF

(Irulan uses unit, ()).

When substitutions are applied and the type of a * should change from a type variable to something else (e.g.

after the onOk arc in Figure 4.22), then the substitution replaces the * with a ? argument of the new type. This

will then cause the ? argument to be evaluated to WHNF and require instantiating (the threaded cache scheme

described above should prune this out). However it will now have a more re�ned type that is appropriate for

using to generate test data.

Figure 4.23 The changes to the algorithm to enable the unconstrained variables (*) optimisation

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate

...
where

onBottom
= [?i 7→ mkBottomArgument ?i

|?i← getBottomArguments e
]

where
mkBottomArgument ?i
| isTyVar (typeOf ?i) = gen ([∗/?i ] e) targetType instantiate
| otherwise = Split ([...] ++ [ ...])

The changes in the algorithm required to enable this optimisation are small, and shown in Figure 4.23. onBottom

now checks whether the type of the ? argument it is creating a Plan for is a type variable or not. If it is, it

replaces that ? argument with a *, otherwise it builds the Split Plan it would have before. The removal of *

arguments happens as part of applying a substitution σ:

σ (∗ :: a)

| (σ a) 6≡ a = ? :: (σ a)

| otherwise = (∗ :: a)

The complete algorithm (excluding threading of the cache) is shown in Figure 4.24.

4.3 Runtime Execution Engine

The actual execution of test expressions in Irulan is handled by an execution Engine. The Engine is responsible

for converting Irulan test expressions into runtime values, evaluating them, and then inspecting the result to

see if it is an error, a ?i argument, or a WHNF value.
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Figure 4.24 The Complete Algorithm

type Instantiate = Expr → Subst → (Plan,Map DataCon Plan)

emptyPlan = Split [ ]

gen :: Expr → Type → Instantiate → Plan
gen e targetType instantiate

= Step {testExpression = e
, onOk = onOk
, onBottom = onBottom
, onDataCon = onDataCon
}

where
(onOk , onDataCon)
| Just σ ← typeOf e ‘unify ‘ targetType = instantiate e σ
| otherwise = (gen (addBottomArgumentTo e) targetType instantiate, emptyMap)

onBottom
= [?i 7→ mkBottomArgument ?i
|?i← getBottomArguments e
]

where
mkQArgument ?i
| isTyVar (typeOf ?i) = gen ([∗/?i] e) targetType instantiate
| otherwise = Split [gen providerId (typeOf ?i)

(λe ′ σ → (gen (σ ([e ′/?i ] e)) targetType instantiate, emptyMap))
| providerId ← querySSIdForType (typeOf ?i)
] ++
[gen x (resultType x ) (caseGen nfa instantiate)
| (x ,nfa)← queryConstructorGraph (typeOf ?i)
]

createPlan :: Identifier → Plan
createPlan x = gen x (resultType x ) (\_→ (emptyPlan, emptyMap))

createDestructPlan :: Identifier → Plan
createDestructPlan x = gen x (resultType x ) tryToDestruct

tryToDestruct :: Instantiate
tryToDestruct e ′ σ
| Just dataCons ← querySSForPublicDataCons (typeOf e)
= (emptyPlan, [dataCon 7→ Split [gen (case e of dataCon x0 . . xn → xi) childType tryToDestruct

| (i , childType)← children dataCon
]

| dataCon ← dataCons
, let n = maxChildIndex dataCon
]

)

| hasFunctionType e = (gen e (resultType e) tryToDestruct , emptyMap)
| otherwise = (emptyPlan, emptyMap)
where

e = σ (e ′)

caseGen :: NFAState → Instantiate → Instantiate
caseGen nfa instantiate e σ

= (accOk , accDC ‘mapUnion‘ stepDC )
where

(accOk , accDC )
| accepting nfa = instantiate e σ
| otherwise = (emptyPlan, emptyMap)

stepDC = [dc 7→ Split [gen e ′ (resultType e ′) (caseGen nfa ′ instantiate)
| (i ,nfa ′)← dcArgs
, let e ′ = J case e of dc x0 . . xn → xiK
]

| (dc, dcArg)← nextSteps nfa
, let n = maxChildIndex dc
]
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Irulan pre-compiles test modules to binary form using GHC, so that execution of tests happens on compiled

and not interpreted code. Test expressions are built by using GHC to look up identi�er symbols as dynamic

HValues, and coercing them to be functions to apply them to each other or exceptions where necessary. case

expressions are implemented by explicitly inspecting the representation of a HValue in the heap, and returning

the appropriate child directly. ?i arguments are compiled by making them throw a custom error that speci�es

which i the ?i argument was.

Once an expression has been converted into an executable entity (which will have type HValue), it is evaluated

to WHNF using the built-in function seq ; this has several possible outcomes:

� Evaluation terminates normally: This case occurs if the test expression evaluates to some WHNF.

If the exploration strategy (�4.4) wants to follow a Plan in the onDataCon map then the data constructor

at the root of the WHNF will be required. The Engine can �nd this by directly inspecting the closure in

the heap, in a similar way to the way case expressions are built.

� An exception is thrown: This could be due either to the evaluation of a ? argument, or a general user

exception. To distinguish between the two cases, Irulan inspects the caught exception.

However, special care must be taken with nested exceptions. For example, we found that the following

was a fairly common pattern in some of our benchmarks:

panic :: String → a

panic x = error ("Panic!: " ++ x ++ " - please report this bug!")

If a test expression such as panic ?1 is evaluated, the act of printing out the "Panic!: " error message

from the �rst exception will cause the strict argument exception (?1) to be thrown. To avoid this, the

Engine will force the full string representation of the error message, and if a nested exception is found,

replaces it with "<nested exception thrown>".

� A time-out is reached: Some test expressions may not terminate, or may take a very long time

to complete. To avoid becoming blocked on such expressions, a time-out mechanism is used to abort

execution after a user-con�gurable time limit has expired.

� Evaluation allocates too much memory: If a test expression uses up large amounts of memory, it

could cause the Irulan process to start thrashing, signi�cantly degrading performance. To guard against

this, Irulan monitors the allocations performed by test expressions, and kills any test expression that

allocates more than a user-con�gurable amount of memory.

Unfortunately the allocations check is overly conservative and does not take into account deallocations

due to the garbage collector (there is no mechanism for seeing actual memory usage), as it is possible for

an expression to allocate and have the garbage collector chase it, so the net allocations are not increasing.

In practice this hasn't been an issue.
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4.4 Exploration Strategies

As discussed in Section 4.2, the Plan has a series of non-deterministic choice points. The choices are between

following an onOk or onDataCon Plan when an experiment reaches a WHNF, or which child Plan to follow

inside a Split . These choice points naturally give rise to a search space, where some paths through the space

will �nd errors, and others may continue inde�nitely without raising any. The choice of how to explore this

space therefore is important.

In order to experiment with di�erent types of search strategy, Irulan uses Haskell's lazy evaluation to decouple

exploration of the Plan from its construction. Actual execution (or looking up in caches) of test expressions for

their runtime results is also abstracted into an API provided by Irulan which means it is easy to use di�erent

search strategies with Irulan. We discuss this API further in Section 4.5

We have experimented with several kinds of exploration strategies in Irulan. Most of these strategies require

a bound to limit exploration, to e.g. stop the search getting stuck going down a single path.

The natural bound would be the number of Step or Splits that have been traversed from the root of the Plan.

There can be pathological Plans that have in�nite chains of Splits in them so at least one bound must take into

account the number of Splits seen. However, this type of depth bound is not intuitive. Predicting the �depth�

at which certain test expressions will appear is not straightforward, and can be complicated by optimisations

(e.g. the threaded through cache).

Standard bounds used in comparable work ([CH00], [RNL08]) are based on the syntactic structure of test

expressions; commonly a function of the expression size (e.g. number of terminals or the sum of the terminals

and non-terminals in the expression), or the nesting depth of the expression (e.g. the maximum number of

non-terminals between the root of the expression and any non-terminal).

In order to allow comparison with related work, some of the search strategies in Irulan can be parameterised

with some of these syntactic properties. The natural depth bound still needs to be used, but if a test expression

is seen that exceeds the extra speci�ed bounds then the strategies can prune that particular branch.

We implemented 4 search strategies in Irulan:

� Depth First. Requires a depth bound to place a limit on the number of Plan Steps and Splits visited

down any branch. This plan can also use the syntactic properties to prune branches early.

The example in Trace 3.2 uses this strategy.

The main advantage of this strategy is that it keeps memory consumption low, linear in the depth of the

exploration tree. However, for a �xed amount of time, DFS will require a depth bound that is �nely tuned.

If the depth bound speci�ed is too low then not all of the search space that could be covered will be as

it will �nish early and spare time will be left; if it is too large then the search space will not be evenly

covered (only an early part will be), and there will not be enough time to reach later parts of the space.
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Figure 4.25 An example search space using the Depth First, Time Split search strategy.
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� Iterative Deepening Depth First.

This strategy explores using repeated use of the depth �rst strategy. The underlying DFS is �rst invoked

with a depth of 1, and then this depth is iteratively increased in increments of 3. Other, syntactic bounds

can also be used, but they are not incremented. This strategy can be told to run for a user-speci�ed

amount of time.

After experimentation (discussed in Section 5.4), we have determined that the iterative deepening strategy

appears to be the most e�ective strategy for Irulan and so is the strategy used in our evaluation.

� Depth First, Time Split.

This is a variation on the depth �rst strategy. In addition to the depth and syntactic bounds placed, this

strategy also requires a �xed amount of time to run for. Each node in the tree is allocated an amount of

time it is allowed to run for, where the immediate children of a node are allocated an equal share of their

parents time. If any node is visited after their allocated time is expired then that branch is pruned.

For an example of this strategy, consider the annotated, abstract search space presented in Figure 4.25.

Here nodes represent some computation (e.g. executing an expression) that (for the sake of illustration)

takes 1 second to compute. Nodes are annotated with the time by which they must be completed. The

algorithm is initialised to run for 10 seconds, and starts at t = 0 seconds. All solid nodes are executed

at some point in the run, but dashed nodes represent branches that are pruned and not explored due to

the time limit for that node being expired. The node edges are annotated with the time at which the

algorithm explores that edge, by following the increasing edge times it should be possible to see that the

algorithm proceeds in a left-to-right depth �rst manner. One interesting thing to note is that any "spare"

time means yet to be explored branches get more time to be explored (biasing against branches that

have already been visited). For example, the middle �rst child (labelled to �nish by 7 seconds) actually

�nishes being fully explored at t = 5 seconds as it has no children. The third child of the root then gets

its allocated 3 seconds, plus the left over 2 seconds from the middle, while the �rst child of the root has
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already been explored and gains no extra time.

The ideas behind this technique are not novel (time is being used here as a fuel to limit execution down

some branches, as an alternative measurement of depth [CGH00]), however it is an idea held in the folklore

of the speculative and model checking programming communities and not deliberately described in the

research literature.

� Random Restarting this is a random strategy that starts at the root of the Plan and follows a random

path down as far as it can go (or until it hits a bound). It then restarts back at the root, but the Plan

is reset �rst so it is possible (but unlikely) that it will follow the same route through the Plan again.

The resetting is done to stop the strategy forcing the entire Plan, which would require large amounts of

memory for any large search space.

We compare the e�ectiveness of the di�erent search strategies in Section 5.4.

4.5 Caching

One important feature of a purely functional programming language like Haskell is that given the same argu-

ments, a function should always return the same result. This property means that executing the same test

expression (which consist of a root function applied to some arguments) multiple times should always do the

same thing.

We have already seen one application of applying this optimisation in-line in the branches of the Plan, using

a threaded cache to skip execution of expressions when their result will already have been known. However,

Irulan will often generate the same test expressions in multiple di�erent branches. The Plan itself cannot

optimise away this case, as the search strategy will dictate which branch is explored �rst, and thus which test

expression will be a duplicate of another.

However, at runtime, (GHC) Haskell's implementation does not really use expressions, but values, where multiple

di�erent expressions can map to the same value. This means that test data created using two di�erent test

expressions could yield identical values and thus the function being tested using the test data would be tested

in an identical way twice.

For a contrived example of this, consider Figure 4.26, which contains a simple model of people with names.

processName is the function we want to test. Assume that processName is strict in its �rst argument, i.e. we

need to generate test data of type Name. We could use johnsName, and then test processName johnsName.

We could also use getName john and then test processName (getName john). However both getName john and

johnsName would have exactly the same runtime value, so the two tests of processName will behave identically.

It is possible to see whether two values are the same by seeing if both values are pointers to the same closure

in the runtime heap, which is a feature encapsulated by GHCs StableName API.
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Figure 4.26 Caching example

module Person where
data Name = ...
data Person = Person Name

getName :: Person → Name
getName (Person n) = n

johnsName :: Name

john :: Person
john = Person johnsName

processName :: Name → String

This suggests an optimisation such that if johnsName has been executed, and when getName john is executed

we detect it has the same runtime value as johnsName, we can then prune the entire branch after johnsName,

as it will behave identically to the branch following johnsName.

We experimented with adding a cache to the runtime API. The cache is tied to the function that actually runs

a test expression, to keep it apart from the traversal scheme in use. In Figure 4.27 we present a Haskell-like

pseudo code of the runtime component.

There is a primitive for actually evaluating (compiling and executing) an expression, evalExpression, which

either returns EvalOk if the expression has a WHNF, or EvalException (with the exception) if the expression

throws an exception. If the expression reaches a ? argument then the exception will re�ect that, similarly the

exception will also encode out of time or exceeded allocation limits. In the EvalOk case, the RuntimeValue

contains both the dynamic value created (the HValue), and a means of doing a pointer equality check with

other HValues via the StableName.

The function that interacts with the cache and uses evalExpression is runExpression. It converts an Expression

into one that has been run at some point (either immediately or, if found in the cache, at some time in the

past). Both immediately run (NewResults) or previously run (CachedResult) have the result of running the

experiment, and, if the experiment had a WHNF the RuntimeValue corresponding to the result.

The result of running an expression is richer than the simple EvalResult . The Ok case is for a successful WHNF,

Errors for when a runtime error (or time-out / memory allocation limit) has occurred and Bottoms for when a

? argument was reached. Property is for when the test expression represents a Haskell property that evaluated

to a Bool . The Bool argument is whether the property returned True or False (passed or failed respectively).

The other case, Redundant is for use with the cache. If the runtime value of the expression is (or was) detected

to be the same value as that of some other expressions, then the result is Redundant , and the known list of

expressions it was equivalent to is returned.

We assume the cache itself is accessible through the following abstract interface:

lookupExpressionResult :: Expression → IO (Maybe (ExpressionResult ,Maybe RuntimeValue))

storeExpressionResult :: Expression → ExpressionResult → IO ()

storeExpressionHValue :: Expression → RuntimeValue → IO (Maybe [Expression ])
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Figure 4.27 Outline of the use of the cache in the Runtime API

evalExpression :: Expression → IO EvalResult

data EvalResult
= EvalOk RuntimeValue
| EvalException SomeException

data RuntimeValue = RV {toHValue :: HValue
, toStableName :: (StableName HValue)
}

runExpression :: Expression → IO RanExpression

data RanExpression
= NewResult {getExpressionResult :: ExpressionResult

, expressionRTValue :: (Maybe RuntimeValue)
}

| CachedResult {getExpressionResult :: ExpressionResult
, expressionRTValue :: (Maybe RuntimeValue)
}

data ExpressionResult
= Redundant [Expression ]
| Ok
| Errors SomeException
| Bottoms BottomId
| Property Bool

runExpression expression = do
mExistingResult ← lookupExpressionResult expression

case mExistingResult of
Just (existingResult , existingRTV )→ do

return $ CachedResult existingResult existingRTV
Nothing → do

evalResult ← evalExpression expression

let storeAndReturn expResult mRtVal = do
storeExpressionResult expression expResult
return (NewResult expResult mRtVal)

case evalResult of
EvalException (asBottomArgument → Just i)→ storeAndReturn (Bottoms i) Nothing
EvalException e → storeAndReturn (Errors e) Nothing
EvalOk rtVal → do
if expressionIsProperty expression
then storeAndReturn (Property (cast (toHValue rtVal))) (Just rtVal)
else do

mEquivalent ← storeExpressionHValue expression rtVal
case mEquivalent of

Just equivExprs → return (NewResult (Redundant equivExprs) (Just rtVal))
Nothing → return (NewResult Ok (Just rtVal))
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lookupExpressionResult takes an Expression and, if the Expression is already in the cache then its result (and

if it had a WHNF, its runtime value) is returned, otherwise Nothing is returned. There are two ways of

storing a result, depending on whether the expression has a useful runtime value or not. Those that don't

(errors, ? arguments or properties that returned either True or False) just associate the expression with its

result in the cache (storeExpressionResult). However those expressions that do have a runtime value (i.e. the

ExpressionResult for them is Ok) can attempt to associate the expression with Ok and its RuntimeValue using

storeExpressionHValue. storeExpressionHValue also checks to see if other expressions have got the same runtime

value, and if they do, it associates that expression with the others, and returns Just the other expressions that

also gave that value.

Returning to Figure 4.27, the implementation of runExpression �rst sees if the expression is known to the

cache. If it is, then a CachedResult can just be returned. Otherwise, the expression needs to be executed

using evalExpression. The result of evaluating the expression, evalResult , will need to be turned into the

richer ExpressionResult . In addition, the cache will need updating with the new mapping from expression to

the ExpressionResult . Since many cases of this conversion will involve the same logic of updating the cache

(without storing a WHNF value) and returning a NewResult , we encapsulate this into the helper function

storeAndReturn.

The analysis of evalResult then establishes if an exception thrown represented a ? argument (via asBottomArgument),

or was a general exception. If the expression did evaluate to a WHNF, then we check if it represents testing a

property and storeAndReturn if so in that case. We do not worry about storing the value True or False as test

expressions of type Bool will always be formed using their constructors. Finally, if the evaluation of expression

led to a WHNF that didn't represent a property being tested, then we are in the interesting case. We attempt

to associate the expression with its runtime value in the cache, and see if any equivalent expressions are known

for that value. If there are, then the test expression is Redundant , otherwise it is Ok .

Irulan provides three di�erent cache implementations.

� No Cache This implementation has no cache at all, so all lookups return Nothing and storing is a no-op.

� Unlimited Cache This implementation is based around three maps. The �rst uses a trie structure to map

expressions that don't have an associated value to their ExpressionResults. The second uses a trie to map

expressions that do have an associated value to their RuntimeValues. The third maps RuntimeValues

to the list of Expressions that share that value. lookupExpressionResult consults the �rst and second

maps to see if the expression is known (expressions that have an associated value are implicitly Ok and

don't need to be stored in the �rst map). storeExpressionResult only needs to update the �rst map.

storeExpressionHValue has to perform a lookup in the third map, and possibly update the second and

third map. There are no limits imposed on the sizes of the maps, so this cache will consume memory as

testing proceeds.

� FIFO Cache This implementation is a variation of the unlimited cache that also stores a queue of

expressions that have been stored in the cache. Once the queue reaches a certain size, expressions at the
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start of the queue are popped o� and removed as new ones are stored and pushed on, keeping the number

of expressions in the cache a �xed constant number.

There is another optimisation that a cache of runtime values enables. The Plan algorithm will evaluate an

argument of a function to a WHNF before applying it to the function. The Plan arranges this by running the

expression e to a WHNF, and then applies e to some function f , building the and executing the composite

expression f e. If e was successfully executed and stored in the cache, then during the compilation and execution

of f e, instead of compiling the expression e, Irulan can bind the runtime value of e to a variable, x , and

compile and run f x .

In practice, we found that in general the overheads of looking up and storing expressions in a cache outweigh the

cost of just executing them again. We discuss this point further in our evaluation of the cache in Section 5.3.

4.6 Discussion

In this chapter we have outlined the core algorithms and data structures that underpin the implementation

of Irulan. Many of these algorithms have gone through several iterations and evolutions as the work has

progressed, and there are alternative approaches to some of the problems we have tackled in the existing

research literature.

The early iterations of this work did not consider case expressions in test expressions and assumed the type

system was monomorphic, and so the support set was principally about building up a database of functions

and providing a query function that could �nd all those in the database that matched with the target type.

This database was originally implemented as a list of identi�ers, which meant that lookup took time linear in

the length of the list (as each identi�er would have all the types it provided checked to see if any matched with

the queried type). We implemented the TypeMap in order to improve the complexity of the lookup function to

something that was hopefully parameterised by the size of the type being looked up instead of the size of the

search space.

Irulan's decision to build a polymorphic support set, and then test with polymorphic data, (only instantiating

types to monomorphic ones when necessary) is a novelty over the existing Haskell testing tools. The decision

to support this �exibility led to the invention of the specialised lookup algorithm for the TypeMap.

The algorithm the TypeMap represents is a very special case of a more general line of research ([AP98], [Rit89],

[RT89]) into algorithms for looking up functions similar to a particular type (for e.g. documentation assistants

for libraries such as the Haskell API search engine Hoogle [Mit08]). In [Rit89] the author is interested in �nding

functions that have a type that is isomorphic (up to Currying and argument swapping) to the one queried. For

example, you may want a combinator to fold over a list, and know that it should have a type like ((a, b) →

b) → [a ] → b → b3. Querying that type should �nd, for example foldl :: (b → a → b) → b → [a ] → b. The

3The author of [Rit89] notes that in 5 di�erent functional languages, there are 10 di�erent names for fold functions, and �ve
di�erent (but isomorphic) types given to them.
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approach to tackle this is to rewrite types to a normal form, where types with equal normal forms are isomorphic

up to Currying and argument swapping. However the approach outlined does not deal with polymorphic type

variables e�ciently, and so the authors resulting query function is implemented as a linear scan over the database

of normalised types. We note that it could be interesting to add a preprocessing step to Irulan to normalise

types before they are added to the TypeMap, and to then use the trie lookup algorithm to �nd unifying types.

This means that a little bit of extra work would be needed to make the APIs of requested and found types

match up (e.g. if Irulan queries for a type Int → Bool → Char to use as a higher order function, and lookup

returns an identi�er of type (Int ,Bool) → Char , then that identi�er would need to be wrapped in curry to

make it usable as a result of the query).

It would also be interesting to look quantitatively at the support sets, and the types of queries that happen

against the TypeMap in practice, in order to guide other optimisations. In [RT89], the authors suggest several

ideas for this more general type of query, and quantitatively look at a corpus of identi�ers and their types to

see what kind of optimisations make the most sense given the properties of the corpus.

To the best of our knowledge, making use of case expressions in Haskell to generate test data is novel to this

work. The state machine representation for generating case expressions in the constructor graph is analogous

(and was inspired by) the path graphs representation used in [CGE08]. The authors use their path graphs to

represent a potentially in�nite set of �eld access expressions in an object oriented setting (in order to infer locks

to protect them). Our use is similar, the state machine represents the potentially in�nite set of case expressions

(which are similar to �eld accesses) that can build expressions of certain types. We believe we are the �rst to

apply this idea in a functional setting for generating test data.

There are also some optimisation opportunities that would be interesting to explore in the constructor graph,

particularly if there is a depth bound being followed by the search strategy using it. For example, consider the

traversal of the reversed constructor graph to �nd all reachable identi�ers. During that traversal, some paths

from the target type to a root identi�er may have a length longer than the current depth bound used by the

search strategy. If the depth information was available, these paths (and thus some test expressions) could be

pruned. Also, if edges in the returned NFA also remembered the shortest length between them and the target

node, search strategies would know not to follow certain edges as they create expressions that will never be used

for their intended purpose.

The decision to implement the Plan as a lazy data structure is one that has created several bene�ts, but also

several problems. Laziness allows the Plan building algorithm to just express the search space naturally in the

data structure, and not have to worry about callbacks to another library or threading of the current expression

state through, which would have been alternative implementation approaches. The full implementation in

Irulan is essentially the algorithm presented, but the type of functions like gen uses a Reader monad to pass

around the support set (which we assumed was a static constant during the presentation) and thread through

the expression removing cache.

The laziness of the Plan did cause some issues. The search strategies have to be careful to not hold onto the

absolute root of the current Plan for the duration of their run, otherwise the garbage collector would not be
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able to collect visited nodes (as they would still be reachable from the root), and the explored structure would

quickly consume all memory. For depth �rst search (and time split), this is straightforward to arrange, after

a test expression has been run, the possible children that follow are pushed onto a work queue. This means

the current Step can be forgotten and reclaimed by the garbage collector. The next Plan to look at is then

popped o� the work queue. However, the iterative deepening and random strategies require being able to restart

exploration from the root of the Plan. At the implementation level, this required some rather awkward code

to give these strategies a function that could produce new (identical) Plans when applied to an argument. It

was awkward as GHC would often optimise this function to remember the Plan if there wasn't an arti�cial

dependency on the argument introduced to produce it.

Comparable tools, such as QuickCheck [CH00], SmallCheck, Lazy SmallCheck [RNL08] tie the search strategy

into the generation of test data and execution. For example, in QuickCheck the speci�cation of test data includes

direction about the relative distribution of data to use, and evaluating the generator yields the test data in the

appropriate random order. SmallCheck and Lazy SmallCheck are implemented using a depth �rst traversal,

and iterative deepening comes from re-invoking the main algorithm with increasing limits. EasyCheck [CF08],

a lightweight testing application for the functional logic programming language Curry does make the space of

test data explicit, through the use of a primitive in the language that lazily rei�es all the possible values a value

could take in the tree. This abstraction means the authors can explore two variations of search strategy, using

level diagonalisation and branch randomisation.

Irulan did brie�y contain two other search strategies; a breadth �rst traversal and a random strategy that

remembered test expressions it had executed and thus didn't need to execute them again. Both strategies

would quickly exhaust the available heap memory as they fully explored the search space, remembering so

many expressions and their results, and thus were not practical.

During implementation of the Plan, there were some design decisions made in Irulan that, while independent

of the core algorithm, did have some impact on the implementation. For example, the ? arguments in Irulan

are implemented as thrown exceptions that contain a unique id. In Lazy SmallCheck a similar approach is used,

and the unique identi�er corresponds to a path through the expression that is used to identify the ? and re�ne

it. This means that, in Lazy SmallCheck, ? arguments in the original expression do not need to be renamed,

and new ? arguments in the term being substituted in have to have the old path as a pre�x. In Irulan, there

is a supply of ? argument identi�ers for each branch of the Plan that gets incremented whenever a new ?

argument is created (as part of addBottomArgument). Substituting a new sub-expression for a ? argument in

an old term does require traversing the old term to �nd the instance of the ? argument, but the relative size of

these terms is small. For presentation purposes, we normalise the ? arguments shown to always start at index

0. The structural path approach adopted by Lazy SmallCheck would be complicated by our approach of testing

the instantiation for the ? value explicitly before substituting it in, as the paths would change depending on

the context of the parent expression.

There is a small optimisation that Irulan makes (but we have not made explicit here) with respect to ?

arguments, in that constructors e.g. Branch :: IntTree → Int → IntTree → IntTree are known to be lazy in their



4.6. Discussion 93

arguments, so there is no point testing the chain of Branch, Branch ?1 and Branch ?1 ?2, as they will always

retrun a WHNF. So we can (if we want to make test data of type IntTree) just jump straight to Branch ?1 ?2

?3. However, for arbitrary functions, the decision not to saturate them with ? arguments means we retain a

tiny amount of extra precision when reporting the causes of errors.

The implementation of Irulan is around 6000 lines of Haskell (including comments and white space) spread

between 41 modules. There are roughly a further 4000 lines of unit and integration tests to ensure the correctness

of Irulan. This does not include size of the packages from the wider Haskell community that Irulan makes

use of, but that were critical for ease of development.

The code base may seem surprisingly large given the modest several hundred lines of code used to implement

the Check family of tools. However Irulan has made explicit many data structures (for example the Plan)

which other tools leave implicit, to allow di�erent exploration strategies to be easily implemented. In addition,

there are many experiments within Irulan, for example caching (again with di�erent strategies) that can be

enabled and disabled, which all require extra code to manage. Irulan has primarily been a research platform,

and while it is a completely usable tool, it would certainly be possible to streamline some of the implementation

to make it more modest in size.



Chapter 5

Experimental Evaluation

In this chapter, we evaluate Irulan's e�ectiveness by running it on various benchmarks.

We start with two large experiments. The �rst looks at the no�b benchmark suite, and shows what kind of

errors Irulan can �nd �for free�. The second experiment compares Irulan with the existing property checking

tools Lazy SmallCheck, SmallCheck and QuickCheck using the benchmark from [RNL08].

Following the large experiments are two smaller tests to explain and justify some of the con�guration choices

made in the larger ones. The �rst focuses on the performance of Irulan's cache, to motivate why it is by default

disabled. We then compare the di�erent search strategies, showing how important depth bound selection can

be for depth �rst search, and motivate why we selected iterative deepening as our search strategy for the larger

experiments.

Finally we discuss some case studies drawn from using Irulan's regression testing functionality and show that

Irulan has been used to �nd real bugs in third party libraries.

5.1 No�b

Haskell has an established set of benchmarking programs, called no�b [Par93]. no�b consists of three suites of

increasing complexity: imaginary, spectral and real :

� The imaginary suite consists of Haskell programs that represent pathological cases designed to stress

compilers (and their writers). These are mostly tiny Haskell programs with only a main function exported.

� The spectral suite, consisting of the algorithmic cores of real programs, such as a chess end-game solver

and a minimal expert system implementation.

� The real suite, consisting of real Haskell programs. This includes implementations of a Prolog interpreter,

a grep utility and an LZW compression tool.

94
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Table 5.1 Code size (in number of expressions, as reported by HPC) of the benchmark programs from the real
and spectral suites

# Expressions Real Spectral
0 - 100: 0 2

100 - 1000: 6 17
1000 - 10000: 19 4
10000 - 100000: 2 1

Irulan is designed to test the API of pure library code. However, some of the no�b benchmark programs

export only a main function of type IO() (i.e., they are programs with no library component). Irulan cannot

perform any useful testing on these programs, as values of type IO () do not have a WHNF that (typically)

involves any real computation taking place. We have excluded these programs from our experiments. These

programs include the entire imaginary suite (which consists entirely of tiny programs exporting only a main

function), 23 programs from the spectral suite, and 3 programs from the real suite. In addition, we have created

and use �ltered versions of the real and spectral suites that do not include modules which only export a main

:: IO().

While it would have been possible to alter the source programs to export their library component as-well as

main, we wanted to investigate Irulan running on �real sources� as much as possible. Our simple �ltering rule

means we can hopefully focus more on library than application code. Unfortunately, as we will discuss, there

are some cases where programs export main and its helper functions that are also of an IO () type. Another

limitation that a�ects coverage is Irulan's inability to test type class instance declarations. Many modules

declare, for example, Eq instances for their data types. Some of these declarations may get exercised during

execution as they are relied upon by the library code, however some do not. While we could have edited out

such unused instances, again we wanted to see how Irulan performs on �real� code.

After this �ltering, we are left with a total of 51 programs, 24 in the spectral suite and 27 in the real suite. To

work around some bugs in the HPC tool chain which we use to report code coverage information, we had to

convert the no�b .lhs �les to .hs �les, and remove some non-Unicode encoded comments from some �les. We

made no other changes to the source code of the no�b programs beyond this.

Table 5.1 shows the approximate sizes of the 51 programs tested in these suites�in terms of number of expres-

sions, as reported by HPC [GR07]�after �ltering out the modules that only export a main :: IO() function. 1

In Section 5.1.1, we report coverage results for these programs in terms of percentage of expressions executed.

We ran Irulan with various con�guration options on all the functions exported by the modules in these

programs. In total we tested 4,030 di�erent functions in 403 modules. For all runs, we con�gured Irulan to

use the constants 0, 1, and −1 of type Int and Integer , −1, 0, 0.5 and 1 of types Double and Float , and 'a',

'0', and '\NUL' of type Char , for a total of 17 constants. All experiments were run on a heterogeneous cluster

of 64-bit Linux machines, most of which have dual core Intel CoreTM2 CPUs at 2-3 GHz, with 2 GB of RAM.

1The modules we removed were determined by the following simple rule: if a module is called Main and only exports a function
main :: IO () we removed it from our tests; if that Main was the only module in the benchmark program, we removed the program.
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For both suites we ran with the use of case expressions enabled and disabled, where each module in each program

was run for 1, 10, 60, and 300 seconds. We focus on just a few of these runs here, but present the full graphs

of these results in Appendix A.

5.1.1 Coverage Results

Figure 5.1 Code coverage as a percentage of expressions executed for the spectral suite, showing the e�ect of
case expressions
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Figure 5.1 gives the code coverage for the spectral suite, where each module in each program was tested for 5

minutes using iterative deepening. The average coverage per program achieved by Irulan is 70.83%, with a

minimum of 18.48% (for awards) and a maximum of 97.86% (for minimax).

The reason why Irulan achieves such high coverage for fft2 (a Fourier transform library and application) is

that fft2 is mostly a numeric library that takes Int arguments, where our constants (−1, 0 and 1) are enough

to trigger the di�erent conditional cases. Irulan completely explores every exported function in fft2, the only

unexecuted code being an unexported and unreachable function that could be removed as dead code.

There are also cases where Irulan does not achieve such high coverage. For example, the awards benchmark

features a quicksort library that needs polymorphic values of type a with either an Ord a type class instance

or higher order function of type a → a → Bool to achieve better coverage. Unfortunately in this case Irulan's

support set does not contain any such values. Although Irulan's support set was pre-seeded with suitable

constants to use as the value a, (e.g. Ints) by default it does not include any type class instances for these

constants. Currently for Irulan to �nd the type class instance, the algorithm building up the support set

would need to explore the module declaring it as part of chasing some other constraint. The same applies for

�nding the higher order function. Note that the user could explicitly add to Irulan's command line a module

that contains suitable identi�ers, however for this experiment we wanted to see what Irulan could do without
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tuning it on a per-program basis.

Figure 5.1 also shows the e�ect that generating case expressions has on coverage. With case expressions

disabled, the average coverage decreases from 70.83% to only 48.35%. We achieve similar results for real, with

code coverage decreasing from 59.78% to 34.38%. In some extreme cases, the inability to use case expressions

prevents testing almost entirely: e.g., for hartel Irulan achieves only 0.09% coverage, compared to 77.64%

when case expressions are used. This is due to hartel consisting of constant de�nitions which include large data

structures containing lists of values. Without case expressions, none of these composite values are decomposed.

In addition, the increase in code coverage due to using case expressions is also matched by the discovery of more

errors, as we will discuss in Section 5.1.2.

Figure 5.2 Code coverage as a percentage of expressions executed for the real suite, showing the e�ect of a
longer runtime
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Figure 5.2 gives the code coverage for the real suite after 1 second and 5 minutes of testing of each module in each

program. The average coverage per program achieved by Irulan after 5 minutes is 59.78%, with a minimum

of 10.65% (for maillist) and maximum of 93.91% (for cacheprof). The maillist program (a mailing list

generator) achieves such low coverage because it consists solely of a Main module that exports lots of functions

that have an IO() result type. The few constants and non-IO functions in the module are tested thoroughly by

Irulan, but they represent a very small amount of the application's code.

It is worth noting that testing each module for just one second achieves useful results, getting two thirds the

coverage achieved after �ve minutes (40.62%). After one minute of testing each module, the average coverage is

much closer to the �ve minute result, reaching 57.10%. This indicates that the coverage results are converging,

and smaller gains will be achieved from even longer runs. In general it would not be possible to gain 100%

coverage on these suites, as there are some language artefacts Irulan cannot explore. For example unexported

and unreferenced functions that should be removed as dead code, type class instances that are exported but

not used and IO based helper functions.
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5.1.2 Errors Found

In this section, we present the main types of errors found by Irulan in the nofib benchmarks. When run for

5 minutes per module, Irulan reported 880,345 unique expressions that caused errors, spanning 47 di�erent

programs.

Given the large number of error expressions generated by Irulan, the �rst step is to try to group them into

clusters of unique errors. First, we group error expressions based on the type of exception thrown, e.g., Non-

exhaustive patterns or Prelude.head exceptions. Then, for those error types that include the location of the error,

we group expression based on the source location. For example, of the 191,388 error expressions generated for

the spectral suite, 95,200 include source locations, which correspond to 37 unique program locations. (This is

of course a rather crude method of grouping errors, as Haskell error messages do not contain the equivalent of

stack traces [APJE09]; looking for more precise ways of identifying errors would be interesting future work.)

The use of case expressions allows Irulan to discover errors that would otherwise be left undetected. Of the 37

unique locations mentioned above, 7 of them were identi�ed only by expressions with case expressions in them.

We next give examples of some errors found by Irulan:

Non-exhaustive pattern errors: these are errors in which the pattern matching of an expression reaches a

case that the programmer has not considered.

While some of the non-exhaustive pattern errors found involve relatively simple cases, Irulan was also able

to generate more complicated expressions that led to a non-exhaustive pattern error in a function that is not

mentioned in the expression. For example when testing Game.hs in minimax in spectral, Irulan discovers the

following:

case searchTree ?1 ([]) of

Branch _ x -> x ==> ! Board.hs:(34,0)-(36,35): Non-exhaustive patterns in function empty

The second argument to searchTree (the []) represents a Board , which as a precondition is expected to have

three elements in it. However searchTree does not check the precondition and happily returns a Branch value.

It is only when that Branch is unpacked and the second argument to the branch inspected that the precondition

violation results in an exception being thrown. While this error does involve a precondition violation, it also

demonstrates a di�culty with working with Haskell, where laziness often causes errors to manifest themselves

far away from their root cause. Note that the error message references a function (empty) that is not mentioned

in the test expression and comes from a di�erent source �le to the one being tested. If searchTree did check its

precondition and throw an exception, Irulan would still report it. However in this case, it would be easy to

see if the exception accurately and helpfully described what went wrong and to �lter it out of future reports.

Prelude.head: empty list errors: these are errors where the program tries to access an element from an

empty list.
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For example, Irulan discovered such an error in the max_list function of the simple program from the spectral

suite. The function extracts the �rst element of the given list without checking that the list is not empty:

max_list :: [Double ]→ Double

max_list list

= reduce_list max (head (list :: [Double ])) list

As an additional more complicated example, Irulan found a similar error in the expert program from the

spectral suite:

data Phrase = Term String [Phrase ] | ...

goal ws | ... = relation ws

relation ws = split ws noun verb noun

where verb = head [w | w ← ws, ...]

split ws f op g = Term op [f lhs, g rhs ]

If the goal function is invoked with an empty list as an argument, it will eventually produce a Term value where

the String in the Term will be a Prelude.head: empty list error. In relation, the de�nition of verb uses a

call to head which is the cause of the error when ws is an empty list [ ]. verb then gets passed to split as its

third argument (op) which becomes the �rst argument in the returned Term. Irulan reports the following

error expression, which requires the use of case expressions to take apart the resulting data constructor:

case goal ([]) of

Term x _ -> x ==> ! Prelude.head: empty list

In�nite loops, memory and stack over�ow errors: While Irulan cannot detect in�nite loops per se,

cases in which the evaluation of an expression exceeds the resources allocated by Irulan are often indicative

of pathological cases caused by bugs in the program.

In our experiments, the execution limits were set to 1 second and 128 MB of memory allocation per expression

evaluation. These limits were exceeded 4,265 times: 143 times for the 1 second time-out, and 4,122 times for

the 128 MB allocation limit. A related error was also the discovery of Haskell stack overflow exceptions, of

which there were 145. On further examination, we found that these events were often caused by missing base

cases in the functions under test.

For example, consider the following code in the primetest program of the spectral suite:

log2 :: Integer → Integer

log2 = genericLength ◦ chop 2

chop :: Integer → Integer → [Integer ]

chop b = chop′ [ ]

where chop′ a n = if n ≡ 0 then a
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else chop′ (r : a) q

where (q , r) = n ‘divMod ‘ b

Irulan generates the expression log2 (-1) whose evaluation exceeds the allocation limit, and which in fact

causes the code to loop inde�nitely. The problem here is that the helper function chop′ misses the base case for

negative numbers.

5.1.3 Discussion

At a �rst glance, it may appear that many of the errors that Irulan has found in the no�b suite can be stated

as implicit precondition errors. For example, it is perfectly reasonable that taking the maximum of an empty

list is an error, and that log base 2 is unde�ned for negative numbers.

However, the library writer has made these preconditions implicit, and, as Irulan shows, the error messages

they provide (assuming the function doesn't just crash) are not necessarily descriptive of the fault made by the

library user. If these exceptions were thrown as part of a larger code base, then the debugging process has to

start with a cryptic error message in a library before being traced backwards up into user code. If violations

of the implicit precondition threw descriptive error messages, then some of this debugging process would be

alleviated.

In addition, throwing descriptive error messages would document in the library that the failing behaviour was

deliberate. The programmer who faces a Prelude.head exception in an external library and has to establish if

it's his input violating a precondition, or a fault in the library itself is not in an enviable position (particularly

if they have not established a minimal test case).

Irulan however provides small test cases that precisely identify the error conditions. Given the small test cases

it can be straightforward to see what the cause of the error was. Anecdotally, it was very easy to take any of the

test cases presented above and establish why the functions in question failed on them, because the expressions

in error only contain inputs relevant to tripping the exception.

Of course, because Irulan has no explicitly stated preconditions attached to functions, it will report false

positives. If the programmer adds defensive checks and throws descriptive error messages, Irulan will still

report these. As noted, when using the iterative deepening scheme, many, many error causing expressions may

be found and shown to the user, however using a �lter program (such as sort / uniq) can remove the trivially

duplicate cases. We do not believe Irulan should be used standalone, but as part of a system that allows the

user to work through Irulan's output and have the system remember expressions that are acceptable and those

that are genuine errors. Later runs can then hide the accepted test expressions if they appear again, and only

highlight the remaining genuine errors. Although this may seem like a lot of work (and would provide a lot

of initial work if applied to an established project), if such a system was used incrementally from the start of

development, it would be manageable, and provide another layer of checking at each milestone in development.
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A rudimentary form of this strategy has been used for the integration tests of Irulan itself. For each integration

test, a Haskell module to be executed by Irulan was written. The integration test framework would then run

Irulan in full trace mode on the module and record its output. This output was (the �rst time) manually

inspected, to see if Irulan had behaved as expected. If it was accepted (i.e. the output was as desired), it

was saved alongside the test module to be picked up by the test framework. Future runs of the test would

di� Irulan's output with the already accepted version and bring attention to only the new test cases or any

changes in behaviour that were noticed. Sometimes the accepted version of the output would need to be revised

due to changes in Irulan's behaviour, in others bugs had been introduced in Irulan so the accepted version

was providing a correct reference point to know when the bugs had been �xed.

If this technique were adopted by a user of Irulan, it would be the modules in test framework (as opposed to

Irulan itself) that would be evolving, and the framework, through its use of Irulan and di� would be able

to highlight automatically any changes in behaviour (in terms of errors thrown). A user would likely also wish

to run Irulan's output through a �lter (e.g. sort) before sending it to di�, so that similar error conditions

(e.g. relating to the same root function) were grouped together, as the iterative deepening exploration strategy

would make them appear separately otherwise. There would be some extra work needed to be undertaken by

the programmer to validate the initial outputs, but in an incremental setting where this strategy is employed

from the outset, the programmer will only ever be validating new or changed input-output pairs, and never

looking at the same expression more than once (if it is correct).

This form of testing, where Irulan displays both the input to the function you've written, and its current

output (in the form of the exception it throws) is interesting. These techniques have since been generalised

to not just showing expressions and the exceptions they throw, but to showing expressions and the value they

produce by using the show function, allowing Irulan to perform regression testing. This strategy is in contrast

to unit testing, where the user has to explicitly state the inputs and the expected output. Here the user is

presented input and output pairs, and just has to check (ideally once) that they match. Property testing falls

somewhere in the middle of this continuum, as the user has to state explicitly the general property that holds,

but it is up to the testing tool to provide the inputs and then show the inputs that don't obey the property.

5.2 Property Testing Comparison

In this section we evaluate the performance of Irulan as a property testing tool, by comparing it to some

of the existing established Haskell testing tools, QuickCheck, Smallcheck and Lazy SmallCheck. We use as

our benchmark the same set of programs used to previously compare SmallCheck and LazySmallcheck, from

[RNL08].

This benchmark consists of 16 properties based on the 10 following programs:

� Okasaki's Red-Black tree implementation (with fault injected)

� Bird's Hu�man codec
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� Turner's abstraction algorithm

� Cryptarithmetic solver (Claessen et al. AFP 2003)

� Hutton's Countdown solver

� Mitchell's Catch lemma

� Runciman's Mate-in-N �nder

� Set as ordered list

� SAD circuit

� Mux circuit

One problem that immediately strikes us is how to con�gure the tools, and what a meaningful comparison is.

QuickCheck's random technique can be con�gured to terminate after a number of tests have run, SmallCheck

and Lazy SmallCheck work on a notion of depth, that while shared between the two tools is markedly di�erent

to the default notion of depth in Irulan.

However, the quantity of code coverage each tool achieves on a particular benchmark, whether the tool �nds

the bugs in the erroneous benchmarks, and how much wall-clock time they spend searching are reasonable

comparisons to make. So in order to compare them we set each to use an iterative deepening traversal scheme.

For Quickcheck, we iterate using a similar formula to the one used in the original benchmark, this means running

n batches of 1000 successful tests with QuickCheck's maximum expression size bound parameter set to n ∗ 2 / 3,

for increasing values of n.

Each tool was run on each property for increasing amounts of time (1, 2, 5, 10 and 60 seconds) and the expression

code coverage (as reported by HPC) recorded at the end. For each time and tool, the runs were repeated four

times and the results averaged. We used a quad-core, 2.66Ghz Intel Core 2, Debian Linux, 2.6.32, 64 bit kernel

with 4 GB RAM for the experiments.

Figure 5.3 presents the code coverage results for the di�erent properties. It is important to note that absolute

coverage is not important (in many cases the properties tested simply do not aim to cover 100% of the code),

but the relative coverage between the tools is what is interesting.

For example, looking at the Catch property, we can see that in 1 second Irulan managed to obtain 45%

coverage, at 2 seconds this had improved to 65%. Running Irulan for 5 seconds didn't make any further

improvements, however after 10 seconds the coverage had increased again to 79%, and after a minute covered

up to 87%. In comparison, Lazy SmallCheck achieved 96% coverage in under a second, and didn't improve with

a longer runtime.

The coverage obtained by QuickCheck did not always increase as the runtime increased, this is due to QuickCheck's

random exploration scheme sometimes getting �lucky� during the shorter runs. When plotting the results, we

made the results at higher times be the maximum of the result at lower times and the current result.
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Figure 5.3 Property testing, comparison of code coverage achieved by di�erent tools on di�erent benchmark
properties
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Some of the benchmarks require built in values (e.g. Ints or Chars) as part of testing. While the other tools

all have ways of relating the current depth to the range of values to enumerate, Irulan explicitly requires the

primitive constants to be added to its command line. With the exception of Mate and RedBlack as discussed

below, properties that needed Int values (Countdown1,2,3,4) had −1, 0, 1 and 2 added, and properties that

needed Chars (Huffman1,2 and SumPuz) had 'a', 'b' and 'c' added.

The graph shows some general trends, for example on half of the properties tried, all tools eventually achieve

equal coverage, and SmallCheck or Lazy SmallCheck are always one of the best performers in these tests.

As described in [RNL08], the RedBlack and Mate properties do have counterexamples available to be found.

Usually the Check tools will terminate when a counterexample is found, so in order to accurately measure code

coverage for the entire run, we modi�ed them to carry on executing after reporting the counterexample.

The RedBlack property (a test of a Red-Black tree backed implementation of set) tests code with a deliberate

fault injected. Lazy SmallCheck is the only tool that �nds the counterexample within 60 seconds on our test.

(It �nds a counterexample within 1 second). Irulan, when given constants −2,−1, 0 and left to run in iterative

deepening mode, will not �nd the counterexample within 20 minutes of testing. This is due to a mixture of the

di�erence in the search spaces explored by Irulan and Lazy SmallCheck (for example LSC does not consider

tuples to increase the notion of depth whereas Irulan does, which makes some di�erence), but also due to the

overheads Irulan has with having to compute and compile arguments. It is possible to constrain Irulan's

search space beyond just a depth bound (e.g. by pruning the search when the number of non-terminals and

terminals in any expression exceeds some limit), and with that constraint and a tuned depth limit (i.e. not

iterative deepening), Irulan can �nd a counterexample in under 3 minutes.

The Mate property (a test of a mate-in-N chess problem solver) also features a deliberately injected bug, however

only Lazy SmallCheck �nds a counterexample (within 60 seconds in our test).

The Turner program and property was the most interesting in the benchmark suite. The program compiles

and optimises lambda expressions using Turner's combinators [Tur79]. The implementation is based on the

description from Chapter 16 of [Pey87]. The core property comes from [Tur79], that using the combinators to

abstract a variable from an expression, and then applying (using :@) the variable to the result should yield the

original expression; i.e.

prop_abstr (v , e) = simplify (abstr v e :@V v) ≡ e

Where variables (v), expressions and combinators are de�ned thus:

data Var = V0 | V1

data Exp = Exp :@Exp | L Var Exp | V Var | F Comb

data Comb = I | K | B | C | S | C ′ | B ′ | S ′

When Irulan was run on this module, it immediately found counterexamples, such as:

prop_abstr (?, ((F I ) :@(F?)))
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while the other tools found nothing.

The F constructor in Exp wraps the target combinators. If the original expression being abstracted and

simpli�ed contains combinators (i.e. uses the F constructor) then the property doesn't necessarily hold. This

is because the original expression may not be in some normal form (i.e. simplify e 6≡ e), so the simplify after

re-abstracting may end up with a simpler expression than was started with. This inequality between before and

after expressions would then cause the test to fail.

The instances for Serial and Arbitrary used by the Check tools (presumably) deliberately omitted the F con-

structor, so that no expressions with combinators in them would be generated. Irulan however just saw the

publicly exported constructors attempted to use all and thus found the counterexamples. In e�ect, Irulan dis-

covered an invariant of the original property that was encoded (but not explicitly documented) in the generation

instances for the Check tools.

There are two possible �xes, one is to add an explicit export list to the module to make sure the F constructor

can't be used (and thus stop Irulan from trying to use it), or to weaken the property and make the Check

instances use all the data constructors. We chose the latter, and altered the property to the weaker:

prop_abstr (v , e) = simplify (abstr v e :@V v) ≡ simplify e

The results shown are for running against this version. No tools found any counter examples.

With the exception noted above for the Turner benchmark, Irulan required no changes making to the tests,

and did not require any specialised export lists to enable property testing. The other tools do of course require

the instances for Arbitrary or Serial providing, although we note that using the re�ection technology that

Irulan uses it could be fairly straightforward to automatically generate such instances without requiring the

user to write any boilerplate code.

5.2.1 Performance Comparison

We have also looked in detail at the relative performance of Lazy SmallCheck and Irulan on the TestListSet1

benchmark. This benchmark features a set implementation backed by an ordered list, and the property checks

that the insert function maintains set ordering:

type Set a = [a ]

prop_insertSet :: (Char ,Set Char)→ Bool

prop_insertSet (c, s) = ordered s −→ ordered (insert c s)

Lazy SmallCheck and Irulan will be required to enumerate lists of Chars as the second (uncurried) argument

to the function. Due to laziness, many of these lists which are not ordered will not require their tails being

generated.
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For this performance comparison, we modi�ed Lazy SmallCheck to print out each test argument as it is tested.

If an unre�ned value is part of the expression being tested (analogous to an Irulan ? argument), then Lazy

SmallCheck will instantiate it with the �rst value from the possible instantiations before printing it out.

A typical run of this property for 60 seconds using iterative deepening caused 10,202,802 expressions to be

executed, which corresponded to 4,824,357 unique expressions being tested. Irulan by comparison executed

102,058 expressions, which corresponded to 13,775 unique expressions. This indicates that Lazy SmallCheck

is at least two orders of magnitude faster than Irulan at building and executing test expressions. Of course

this includes the overheads of converting each expression to a string and printing it out, without which Lazy

SmallCheck is likely even faster.

However it is important to note that the two tools managed to explore di�erent search spaces for these properties

during the 60 seconds of iterative deepening. In-fact, neither tool subsumes the other in the test expressions

generated. Irulan managed to produce some larger test inputs, for example: ('a', "aaaaaaaaaaaaaaaaaaa")

(these accounted for 3,946 extra unique cases Lazy SmallCheck didn't reach). On the other hand, Lazy Small-

Check expands the range of Char constants it will use as the depth increases, unlike Irulan which uses a �xed

set ('a', 'b', 'c' in this case) speci�ed on the command line. This means Lazy SmallCheck produces many

test cases (e.g. ('c', "bllll")), that Irulan never will. In this example, Lazy SmallCheck produces 4,819,694

unique test cases that Irulan did not.

In order to better understand the two orders of magnitude performance di�erence between the two tools, we

undertook to pro�le Lazy SmallCheck and Irulan. We used GHC's built in pro�ling support [SPJ95] to

analyze Lazy SmallCheck running on the TestListSet1 benchmark. Unfortunately Irulan's use of the GHC

API to construct bytecode backed expressions means that Irulan cannot be successfully pro�led using GHC's

native pro�ling tools. We instead integrated a simple pro�ling mechanism into Irulan that allows us to record

the execution time for certain expressions (taking into account the execution time for their children). Although

this shouldn't be relied on for authoritative information, it does clearly indicate that handling ? errors in the

Plan, and building the expressions to execute are the most time consuming parts of Irulan's runtime.

Pro�ling was performed against a 60 seconds iterative deepening run of both tools. In both cases, relatively

little runtime was devoted to actually running the property; for Lazy SmallCheck ordered and insert accounted

for only 3.3% (1.98s) of the total runtime. Irulan only spent approximately 2.5 seconds actually executing test

expressions (but this includes the overheads of setting up threads and communication via MVars to watch for

excessive allocations and time usage).

Most of the execution time of Lazy SmallCheck was spent in the children of the two functions refute (30.72s)

and run (26.34%). refute contains the logic to apply the test function to its arguments, performing re�nement

if necessary; run constructs the test function and arguments that are passed to refute. The most expensive

single site is the function total , which took 13.91 seconds. total is used to turn partial values into total ones,

and has been heavily used as we were printing out every expression tested during the run.

Irulan's biggest hotspot was the control logic for establishing what Plan step to execute following a ? argument,
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where approximately 16 of the 60 seconds were spent. The second largest hotspot (13 seconds) was in the

construction of the runtime values from abstract test expressions.

5.2.2 Discussion

This benchmark, despite at no point showing Irulan to be the best tool for a particular property, does validate

that Irulan is a usable property testing tool that does explore a similar search space to the other tools.

Unfortunately, the cost of re�ecting, building, executing and analysing test expressions does a�ect Irulan's

performance and means it can take longer to explore the same space as the other tools. In this benchmark,

Irulan's overheads compared to the other tools for building and testing a single test expression are particularly

exaggerated, as all of the test data is built by the simple application of data constructors to one another. This

means that while the other tools build a value out of the constructors and can use the Show instance of those

constructors to natively format them to show the user what test expression was just executed, Irulan maintains

its own meta representation of the expressions it is executing to show the user, as well as building the value out

of data constructors to pass to the property function being tested.

Irulan has these overheads because it has been designed for a more general automatic test expression generation.

For the user of a property testing application, some of these features could provide bene�ts that are not witnessed

in this benchmark. For example, Irulan's ability to take test data from its support set and use it to test a

polymorphic function through uni�cation means that testing a polymorphic property at various types can be

slightly more naturally expressed than creating copies or aliases of the property with the explicitly monomorphic

types.

Irulan's ability to build and remember the test expressions associated with a test value can also be useful in

some cases. For example if a data type is not publicly exported, but instead only exports smart constructors

(i.e. functions) then it is likely that the show instance for that data type will abstract away from the order

of calls to the smart constructors. For example, popular Set libraries for Haskell may build up a Set using a

combination of insert and delete calls (e.g. insert 3 ◦ delete 4 ◦ insert 2 ◦ insert 4 $ empty), but will render the

structure as fromList [2, 3]. Even if the Check tools are told to use the smart constructors insert and empty ,

they will report test data using fromList , as that is what the Show instance uses. If there was a fault in insert

then some extra work must be done to track the chain of calls that occured.

In conclusion, Irulan can make testing some kinds of properties easier for a developer due to its automatic

inference schemes and remembering of the expression generated as a test argument. However, if you can

express and maintain the test generation code in a way supported by the Check library approaches, then your

performance is likely to be better due to the much lower overheads these libraries enjoy.
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5.3 Evaluating the Cache

The runtime cache, described in Section 4.5 was assumed to provide bene�ts by requiring fewer duplicate

expressions to be run, and pruning large duplicate branches, at the expense of more memory usage. However,

the bene�ts of the cache also have to outweigh the overheads of insertions and lookups into it.

During early experimentation and development with Irulan, we noticed that the overheads were only sometimes

amortized by the cache. However, at that time, Irulan executed test expressions by building GHC core

expressions, and then getting GHC to compile and link them before running them. We then realised that

Irulan could look up identi�ers directly from the linker and cast (unsafeCoerce) them to apply them, as it

does now. By cutting out the GHC core compilation step, compilation and execution times became signi�cantly

smaller and the cache overheads became more noticeable.

As an informal evaluation of the cache in the latest version of Irulan, we ran Irulan in several con�gurations

on two programs from the spectral suite of the no�b benchmark. The programs were chosen arbitrarily from the

set of programs that have a long (greater than 1 minute) runtime for DFS at depth 25. mandel2 is a Mandelbrot

set generator, and simple is a numerical application looking at energy in a �uid simulation.

These experiments were run on a Intel(R) Core(TM) i5 CPU 650, 3.20GHz (dual-core with 2 hyper threads per

core), Linux 2.6.35.6 #2 SMP x86_64 GNU/Linux, 8GB RAM. We con�gured Irulan to use the constants 0,

1, and −1 of type Int and Integer , −1, 0, 0.5 and 1 of types Double and Float , and 'a', '0', and '\NUL' of

type Char , for a total of 17 constants. Irulan was run against these two programs using DFS with depth limits

of 20 and 25. At both depths for both programs, we ran Irulan with various runtime cache con�gurations:

� FIFO Cache, with a maximum size of 10 expressions

� FIFO Cache, with a maximum size of 100 expressions

� FIFO Cache, with a maximum size of 1000 expressions

� Caching Disabled

� Unlimited Cache

In Figure 5.4 we show graphically how long Irulan took to cover the respective search space for each of these

experiments. In both programs at the higher depth (that required a longer runtime), the overheads of the cache

in any form is clearly in excess of the bene�ts it brings.

In Table 5.2 and Table 5.3 we present some statistics about the outcomes of expressions executed during the

runs at depth 25. For each con�guration we give the number of test expressions that were:

� cached - These test expressions had previously been run by Irulan, and the result for the expression

was found in the cache, so it wasn't necessary to execute it again.
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Figure 5.4 A Cache experiment example
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Table 5.2 simple execution at depth 25

Con�guration # cached # executed # redundant # pruned
FIFO 10 212 97316 224 30
FIFO 100 571 96739 229 248
FIFO 1000 571 96739 234 248
Unlimited 571 96739 241 248
No Cache - 97558 - -

Table 5.3 mandel2 execution at depth 25

Con�guration # cached # executed # redundant # pruned
FIFO 10 0 150735 2516 0
FIFO 100 0 150735 3550 0
FIFO 1000 0 150735 3616 0
Unlimited 0 150735 3623 0
No Cache - 150735 - -
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� executed - These test expressions did not have an entry in the cache, so they had to be executed.

� redundant - These are test expressions that were executed, but their runtime value was discovered to

be the same to some previous expression's value, and so the branch following this expression would have

been pruned.

� pruned - This is the number of test expressions that didn't need to be considered at all due to the pruning

following redundant expressions. This number is derived by subtracting the number of cached and number

of executed expressions from the number of executed expressions in the No Cache con�guration.

From Table 5.2, we see that for simple, less than 1% of all expressions are found in the cache. There are also

redundant expressions that lead to some pruning of the tree, but the amount of pruning achieved is (relatively)

minuscule and, as Figure 5.4 shows, provides no overall bene�t.

mandel2, in Table 5.3 is the canonical worst case - there are no cache hits at all in any con�guration. There

are, however, many redundant expressions discovered (about 2% of all expressions have a runtime value that

has been seen before), and as the cache grows in size, more of these are detected. However, their detection does

not cause any expressions to be pruned. This means the redundant expressions were detected at the natural

end of a plan, where the value being generated is not going to be reused later. The lookups and stores in this

case are simply extra overheads that have not provided any bene�t.

In general we have found the overheads of using the cache (extra time for lookups and insertions) and memory

use, plus the added variable of the size of the cache to use (for longer runs of Irulan, the unlimited cache

will quickly exhaust system resources) mean that for most cases, the cache is not useful. In future, it may be

interesting to see if it could be optimised (perhaps with some extra information from the search strategy and

the Plan).

There may be other programs for which Irulan would bene�t from the current cache , but this will require

test expressions that take consistently longer to execute than we have found in our experimental benchmarks.

5.4 Evaluating the Search Strategies

When running Irulan, the user has a choice of several search strategies. For our larger benchmarks we have

used the iterative deepening strategy, and we attempt to motivate that choice here. The underlying idea behind

this experiment is that when selecting a search strategy, the user won't necessarily know which one to use

in general. Then, once the user has selected a search strategy to use, many of the strategies need a depth

parameter, expressing a limit of how deep into the Plan they should explore. A user however is likely to only

know one piece of information; how long they are willing to wait for some preliminary information. Given just

the constraint of how long they should wait, what search strategy is most e�ective?

We present the results from running Irulan on three programs from the spectral suit of the no�b benchmark.

These programs were chosen arbitrarily from the set of programs that kept increasing code coverage due to longer
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runtime in our initial no�b experiment. This means that the choice and parametrisation of the search strategy

used to explore these programs is important, as for the �xed amount of time presented there is a genuine range

of code coverage that could be achieved. boyer2 is a Haskell implementation of the Boyer program from the

Gabriel Lisp benchmarks ([Gab85]). The original Boyer program performs rule-directed rewriting. The Haskell

re-implementation features a module that has a data structure to represent Lisp expressions, and combinators

to bridge between normal Haskell expressions and Lisp ones (as the comment in the module claims �Lisp-like

functions which allow easy hand translation from Lisp to Hope+�). mate is a checkmate-in-n solving application

and minimax is a solver for tic-tac-toe based on the mini-max algorithm.

These experiments were run on a Intel(R) Core(TM) i5 CPU 650, 3.20GHz (dual-core with 2 hyper threads per

core), Linux 2.6.35.6 #2 SMP x86_64 GNU/Linux, 8GB RAM. We con�gured Irulan to use the constants 0,

1, and −1 of type Int and Integer , −1, 0, 0.5 and 1 of types Double and Float , and 'a', '0', and '\NUL' of

type Char , for a total of 17 constants. Irulan was run against each module in these three programs with the

cache disabled, with a time limit of 60 seconds per module.

With this con�guration, we varied the search strategy used to explore the Plan. We tested DFS in four

variations, each running to a di�erent depth. The depth limits used were 30, 35, 40 and 45. If the 60 seconds

of testing time for the module �nished before the search space was fully explored, then Irulan would stop and

record the code coverage achieved thus-far. We also ran our time split variation on DFS, our random restarting

strategy and iterative deepening.

A slight wart in the implementation of Irulan means that the time split and random strategies do require a

depth bound to be set. In this experiment we used a bound of 100, which should be large enough to be as

though no limit was set. All the strategies could have had extra bounds placed based to prune their searches

based on syntactic properties of the test expressions seen. However we assume a user would not want to use

these in the �rst instance, only if they were interesting in shaping the search space in a very speci�c way.

In Figure 5.5 we show graphically the code coverage achieved for each con�guration for each program.

The �rst four grey bars for each program are the DFS runs. The boyer2 and mate graphs show how important

the right choice of depth limit for DFS is if there is only a �xed amount of time permitted for a run. Between

depths 40 and 45 for these two programs the code coverage suddenly drops, demonstrating that at depth 45

the search space was not fully explored, and a large proportion of branches that would have been explored at a

lower depth were just not reached in time.

The next three darker bars are for (in order left to right) time split, random and iterative deepening. Random

search (the middle bar of the three) for a given amount of time can either be lucky (e.g. in mate where it

performs best) or unlucky (e.g. in boyer2 where it performs worse than DFS). Time split performs consistently

well, outperforming DFS, but can still be unlucky with the branches that it has to prune due to time constraints,

which cost it a lot of potential code coverage in boyer2. Iterative deepening also performs consistently well. In

boyer2 it managed to iterate up to a sweet spot of depth between 40 and 45 that meant it was able to gain

more coverage than the other traversal schemes.
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Figure 5.5 Code coverage achieved for the di�erent search strategy con�gurations
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However in mate we see iterative deepening achieve less coverage than DFS (at depth 40). This is an example

where choosing the highest depth bound possible to reach in the time allocated and just exploring that (as DFS

does) will likely outperform iterative deepening (which will have to iterate up to that depth). Of course, this

requires an oracle to know what the right depth was (if the oracle chooses too high or too low, as per the other

DFS runs in mate, and iterative deepening is a superior choice again).

In Figure 5.6 we show how the code coverage changed as time proceeded during the testing of one module.

We chose the Lisplikefns module from boyer2 (the module of Haskell to Lisp combinators described above).

Iterative Deepening and Random very quickly reach the ceiling of the code coverage they can achieve, indicating

that (in this case) the user could have run for 10 or 20 seconds as opposed to the full 60. Time split (the dotted

line increasing throughout the entire minute) explores the search space evenly across the time allotted, and thus

takes longer to reach its ceiling. DFS 40, which in this case explores its search space in just under 60 seconds

behaves similarly to time split. Finally, the higher DFS 45 gets stuck in an early branch and �at lines at about

15% code coverage for the entire 60 seconds.

5.5 Regression Testing

A small modi�cation to Irulan has allowed us to �nd high-level regression bugs by cross-checking di�erent

versions of the same application. To compare two di�erent versions, we use Irulan to generate a test suite

for each, and then compare the two test suites to detect changes in behaviour. Such changes are either made

intentionally (in which case the test case generated by Irulan can act as an illustrative example), or can

indicate a bug introduced in the newer release.

In order to build a test suite, it is necessary to build a set of input, output pairs which cover a fragment of the
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Figure 5.6 A breakdown of code coverage against time for the Lisplikefns module in boyer2
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behaviour of the function under test. Thus far, we have seen how Irulan can generate inputs for a function

during its testing routine. However, Irulan observes only whether a test reduced to WHNF successfully, or

the contents of the error produced if not. For regression testing, a richer form of test output expectation was

necessary.

Frequently a programmer will want to be able to visualise values, for example by printing them to a console. In

Haskell values of a particular type can be converted into Strings for printing to the console or serialising to disk

through the type class Show . Conventionally, programmers will instruct the compiler to automatically derive

the instance of Show for them. We extended Irulan with the ability to use this type class when available to

present the actual value produced during testing, instead of simply �.�. These String result values now provide

test cases with richer expected outputs than previously. When Irulan is run on a module, it can save a set of

test cases that produce either exceptions or string values; building up a test suite specifying the behaviour of

that module.

When run on a di�erent implementation of the same module, another test suite can be built. We investigated

how these two test suites could be compared, to show how the behaviour of a module has changed between two

implementations.

Given two test suites, T1 and T2 , we try to match input-output pairs in T1 with corresponding pairs from

T2 . Considering a pair (i1 , o1 ) from T1 we would want to present the corresponding test inputs and outputs

from T2 , and check that the behaviour of the implementation hasn't changed. However, due to laziness made

explicit through the use of ? arguments, There are several cases to consider:

1. There is exactly one test case (i2 , o2 ) in T2 where i2 is identical to i1 . We then report a change in

behaviour if o1 and o2 di�er.
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2. If i1 contains ?s, then there may be many test cases (i2 , o2 ) in T2 such that i1 is more general than i2 .

By more general, we mean that i1 is identical to i2 , except that where i1 features a ?, i2 may feature

any subexpression. In general, this case shows a change in strictness of a function, which is indicative of

an algorithm performing more work in T2 than in T1 .

We match the single more general test expression i1 with all of its more speci�c instances in the second

suite. We report an error if any of the speci�c output instances o2 have a di�erent result value from the

output o1 .

3. The symmetric case, where i1 is one of several test inputs in T1 that are more speci�c than a single test

input i2 in T2 has also to be considered.

4. i1 may have no corresponding test input in the other suite, i.e. there are no test inputs i2 in T2 such

that i2 is more general, equal to or more speci�c than i1 . We report i1 as unmatched by the other test

suite. This is not necessarily an error, but should be brought to the attention of the programmer.

This case can arise due to a complete change in strictness of the implementation of the function being

tested e.g. foo ? X ==> True in T1 , but foo Y ? ==>False in T2 . This could also occur if Irulan was

exploring a di�erent search space (perhaps iterative deepening was used and the implementation managed

to get further into the search space in one implementation than another).

To ensure only one of the above cases is true, our test suites must obey the following invariant: If a test suite

T features a test case with input i , then all other test inputs i ′ in T will be disjoint from i . That is, i will

not equal, be more general or be less general than i ′. We guarantee this by only including a set of test cases

that successfully throw an error (not including ? argument errors) or return values that can be pretty printed

to String values via Haskell's show convention.

We applied this automated regression testing technique in two di�erent contexts: an undergraduate Haskell

programming exam , and several libraries that had been uploaded to the Hackage library database.

Undergraduate Programming Exam

The �rst year undergraduate Computing students at Imperial sit a 3 hour practical Haskell programming exam

during the Spring term. Students are given a written description of the algorithm to implement, broken down

into functions to be implemented. With the task description, the students are given a skeleton Haskell module

which features stubs for functions that the students must implement, and some test cases that can be used by

the students to check they are doing the right thing. A sample answer is also produced, to aid in creating a

mark scheme and for the manual creation of a test suite by a teaching associate for automated testing of the

student's solutions.

The 2011 exam problem was to implement a type inference and checking algorithm for a small core functional

language. This involved implementing a function for unifying two types, and polymorphic type inference for

each of the constructs in the language.
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Before being given to the students, the exam was trialled on two PhD students in the department. Both of the

PhD student implementations fully passed the test suite in the skeleton �le. However running Irulan on one of

the PhD student solutions revealed immediately an in�nite loop condition in the implementation of uni�cation

that hadn't been spotted2.

Once this bug had been �xed, test suites corresponding to the PhD student implementations and the sample

answer were created using Irulan, and then pairwise compared. The comparison highlighted several subtle

di�erences in behaviour between the model answer and both PhD student solutions. Upon closer inspection,

these revealed some subtle bugs to do with the propagation of type errors through recursive calls during the

type inference implementation in the model answer. Neither the small built in test suite, nor the later larger

teaching associate test suite highlighted this bug.

Hackage libraries

Hackage3 is a public collection of released Haskell libraries and applications. Authors can upload their Haskell

source to the Hackage database, and there is an established tool chain for users to download and install software

uploaded to Hackage. Hackage retains snapshots of all previous versions of released software, and it also allows

authors to provide links to home pages and version control repositories for the latest development versions of

the libraries.

We took a selection of libraries from the Data Structures and Algorithms sections of Hackage, and built test

suites for each exported module in their released versions. In addition, we also built test suites for the current

development version, if available.

In the Containers and Di� libraries Irulan automatically highlights changes in behaviour that were intentional;

the �rst being an optimisation, and the second a bug�x. In the TreeStructures library Irulan identi�ed a change

in behaviour that indicates a bug, and the test cases made it easy for us to locate the change which introduced

the bug (a contributed patch not by the original author). Finally in Presburger Irulan identi�ed several

bugs introduced in the unreleased version control head, as well as changes in behaviour. Also, even without

performing regression testing Irulan's normal error �nding behaviour found newly introduced bugs in the

unreleased library version.

Irulan was con�gured to run for 60 seconds per module with an iterative deepening exploration scheme. In

addition we explicitly added the Int constants 0, 1, 2, 3. However for Presburger we used a di�erent pool of

constants: −1, 0, 1, 2, 101. We originally tested Presburger in the original con�guration, and discovered some

errors and changes in behaviour (due to the 0 constant being in that con�guration). We then looked over the

documentation to the library and inferred that −1 might also be a useful value to test, which then revealed

more errors. So without a deep knowledge of the source code of the library, our Irulan based testing was able

to inform further, useful Irulan based testing.

2Full disclosure: we were one of these PhD students, and, embarrassingly, the bug was found in our implementation.
3http://www.hackage.haskell.org
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We present our �ndings from some of these libraries.

Containers

The Containers library features e�cient implementations of many general purpose container data types4. Iru-

lan was able to detect a change in behaviour between versions 0.2.0.0 and 0.3.0.0 of Data.IntSet (an e�cient

set for Ints):

Test case: fromAscList [0,0,0,1,0]

v 0.2.0.0: fromList [0,1]

v 0.3.0.0: fromList [0,0,1]

The input list, [0, 0, 0, 1, 0] is not an ascending list and therefore fails the precondition of fromAscList . The

test case produced by Irulan shows that previously that precondition wasn't assumed, whereas version 0.3.0.0

of the library assumes the precondition (presumably to provide a more e�cient implementation). It should

be noted that the documentation of the library was also changed between the two versions to state that the

precondition is now not checked.

Di�

The Di� library provides an implementation of the standard di� algorithm5. Regression testing of released

versions 0.1 and 0.1.1 of the Di� package highlighted a change in behaviour. Looking at the examples provided

by Irulan it is easy to see that a bug had been �xed.

Consider the following test case produced by Irulan (neatened for presentation):

Test case: getDiff [0,1] [1,3]

v 0.1: [(S,1),(S,3),(F,0),(F,1)]

v 0.1.1: [(F,0),(B,1),(S,3)]

It demonstrates that calculating the di�erence of two lists with a shared element (the element 1 in both argu-

ments) previously would not identify the element as coming from both (B), and instead duplicate it by saying

it came from the second list (S ) and then from the �rst (F ).

Given the precise test cases it was easy to then look at the source code and discover the change that had �xed

the bug, which was a tiny change of two characters in a single line of the code. We contacted the author of the

Di� library to con�rm we had found a �xed bug, and to enquire about the testing methodology used to �nd

and �x it, and received the following reply:

I haven't touched this library in years, but that was indeed a bug that was �xed. Di� was one

of my �rst Haskell projects, and I remember very little about it. I think I found the bug because

4http://hackage.haskell.org/package/containers
5http://hackage.haskell.org/package/Diff
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somebody pointed it out to me on IRC, since I remember it being pointed out, and a search in my

archives doesn't reveal an email about it. At the time I wasn't yet conversant with quickcheck & co,

otherwise I would have been able to catch it using them. Sorry I don't have more to add.

TreeStructures: The TreeStructures library provides implementations of various heap and tree data struc-

tures6.

The comparison of the test suites revealed that the building of a binary heap from a list of elements had changed

between the two released versions. Upon closer inspection, the example inputs and outputs showed that the

new implementation was not building balanced trees; and that this incorrect behaviour remained between the

second release and the development version.

Using the version control history, we were able to work backwards from the example inputs and establish the

commit that caused the bug to manifest, which was due to a contributed patch with the commit message

Changed de�nition of fromList (get rid of ugly lambda). Fixed heap. Contacting the library author with the

relevant examples yielded the following reply:

I'm a bit embarrassed that I let that bug slip in! When I incorporated [redacted]'s patch, I didn't

look too closely, kicked o� the (minimal) QuickCheck tests and applied it. I haven't had a chance

to look further than your examples and the patch, but it does indeed look like it's building a linked

list, rather than a well formed heap.

Testing the TreeStructures module also revealed a weakness in Irulan's automatic matching up of test inputs.

Between the two released implementations, the argument order to several functions changed. This meant that

we could not automatically compare test inputs involving these changed functions; improving matching to detect

such changes would be a useful future work.

Presburger: The Presburger library provides an implementation of a decision procedure for Presburger arith-

metic. The released versions on Hackage are drawn from a published algorithm [Coo72], however the latest

development version has switched to an alternative approach. Irulan identi�ed several base cases to do with

checking for the existence of numbers that divide by 0 or -1, where behaviour had changed: in particular,

certain test cases which were returning a value in previous versions, now throw a divide by zero exception. In

addition Irulan identi�ed that the evaluation order of arguments across implication had changed between the

two versions. According to the author of the library:

it's been a while since a looked at this code, but I think what happened is that I was trying to

implement some additional optimizations and then I broke something and never got around to

�xing it. Ah, open source development :-) Based on your examples, these look very much like real

bugs, so I should certainly take a look at the code again. At this stage of the project, I am a lot

less concerned with the lazyness issues because there is a lot one can do to improve the performance

6http://hackage.haskell.org/package/TreeStructures
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(both by making things more strict to avoid memory leaks, and more lazy, to avoid unnecessary

checks). In general, being able to spot these di�erence seems like useful functionality though.

Is your tool available to try out somewhere? It certainly seems quite useful!

5.5.1 Discussion

This experiment, applying the test generation algorithms presented so far to regression testing (as opposed to

error �nding or property testing), has proven successful and suggests some interesting avenues for further work.

The most immediate issue, as highlighted by the TreeStructures library, is that changes in an API, such as an

argument reordering (or a function rename) would break our simplistic matching algorithm. This then makes

it hard to automatically present the input, output pairs where behaviours have changed. There are several

solutions to this problem, from the fully manual: requiring the programmer specify the mapping between old

inputs and new inputs, to more automated (perhaps using edit-distance like algorithms and type information

to work out the most likely candidate for rename or argument swapped APIs).

One possible weakness of this approach is that it relies on Show instances to be available for the result values

of the functions being tested. Further than that, the approach also relies on the Show instance accurately

representing the internal state of the value, and that string inequality between shown values means the values

are meaningfully di�erent. In general, (and for the examples we have tried) this has been the case, but this

experiment is still early work and so it may be that in larger systems these assumptions are not safe to make.

Of course we could have generated one test suite for one implementation and run it on the second implementation.

However, this would lose information about new functions in the second implementation and, due to subtleties

introduced by Haskell's laziness, would not provide the rich information that cross-checking the test suites

provides.



Chapter 6

Conclusion

In this thesis we have shown that:

� Appropriate sets of identi�ers to use to create test data can be obtained automatically by only inspecting

the types of the functions to test. Our algorithm, based on looking in the module declaring the type of

interest, works well in practice. In addition, our visible constructor optimisation means that when a data

type is not opaque, we keep the number of identi�ers in our sets low by not including functions that can

also build that type.

� The black box generation of Haskell expressions can yield test suites that achieve high code coverage for

Haskell applications. By only relying on the API of the library being tested, and not its full source code,

we have developed a testing strategy that can work with arbitrary libraries, be they transparent user

developed or closed external binaries.

� Greater code coverage can be achieved by adding case expressions to the syntax of expressions generated.

Many Haskell functions return composite data structures such as lists or tuples. Using case expressions

to peek inside them, we can check that these lazy data structures don't hide bugs. In addition, case

expressions provide extra ways to generate test data, by allowing the extraction of wrapped values from

composite data structures.

� Control �ow that leads to exceptions being thrown can be triggered by our black box testing technique,

and the expressions that trigger exceptions can aid in understanding the bug. Our implementation will

check what the runtime value of an expression is, and will report to the user if an exception was thrown

(or if it took longer than a limit to execute), along with the expression. We have found that understanding

why a particular expression caused an exception is generally straightforward, as the expression usually

represents a minimal test case for the bug.

� When testing is for a �xed amount of time, iterative deepening is the most e�ective strategy for exploring

the huge search space of expressions that could be generated. An experimental alternative approach, time
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split, also appears to be promising. If the user knows the depth to which they wish to explore the search

space, then depth bounded is the most e�cient, but may take an arbitrary amount of time.

� The overheads of using a cache to prevent execution of duplicate expressions and to prune some control

�ow branches outweighs just re-executing Haskell expressions, at the moment.

� It is possible to test meaningfully a user's library for erroneous edge cases without requiring them to make

any source level changes to their Haskell application. In addition, if a user has written property predicates

it is possible to test them without requiring any further source level changes, only provision of a small set

of constants and time for an iterative deepening exploration to work. We believe that ideal tools work for

a user, and not require the user to make extra changes to their application, tying it to the tool.

6.1 Summary of Technical Achievements

In this work we have explored one facet of automated black box testing in the context of Haskell. Our exploration

has detailed several algorithms and data structures that have been useful for our goals. These have then been

realised in a tool, Irulan, which we have evaluated to demonstrate the e�ectiveness of our ideas. We now

brie�y summarise the achievements of our work, highlighting the di�erent algorithms, and subsequent evaluation

performed.

� The automatic inference of a Support Set. We have explained how we automatically infer appropriate

identi�ers and constructors from the functions to be tested. The user can also augment this support set

with primitive constants and identi�ers from other modules.

As part of the support set we also discussed:

� The TypeMap which allows lookup of values keyed by types that unify with a queried type.

� The Constructor Graph which allows construction of NFAs that outline how to use case expres-

sions to build an expression of a certain type.

� The Plan algorithm. We have given a pseudo-code implementation of the creation of a data structure

that encodes testing Haskell functions. It is based on a needed narrowing or lazy instantiation approach,

and extended with the ability to use case expressions to build expressions.

It also featured:

� A threaded cache which removes some redundant expressions from being considered for testing.

� Polymorphism handled by keeping types at their most general for as long as possible to prevent

premature commitment and thus unnecessary expansion of the search space.

� no�b. We ran Irulan against programs from the no�b benchmark suite, and showed the code coverage

that it can automatically achieve and presented some of the errors that it found.
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� Property Testing. We compared Irulan with the existing Haskell property testing tools QuickCheck,

SmallCheck and Lazy SmallCheck and showed that it is usable as a property testing tool.

� Runtime Caches. We hypothesised that referential transparency meant that caches could prevent some

duplicate test expressions being executed, and allow the pruning of some branches. Unfortunately some

experimental evaluation showed that the cache overheads were too great to be useful in general.

� Search Strategies. We explored several di�erent search strategies (DFS, random, time split and iterative

deepening) over the Plan structure and provide evidence for iterative deepening and time split being the

most e�ective for testing within a �xed time budget.

6.2 What Irulan adds to a Haskell Programmer's Toolbox

Haskell programmers have many tools in their toolbox. As we discussed in Chapter 2, there are a variety of

specialised tools designed to test programs, from the ubiquitous trio of property testing libraries (QuickCheck,

SmallCheck and Lazy SmallCheck), to the symbolic executor Reach, and static analysis tools such as Catch

and ESC/Haskell.

The property testing tools generate test data to apply to property functions to see if they can be made to return

false. Irulan generalises this idea to arbitrary functions, to see if they can be made to throw exceptions. In

order to generate test data, Irulan favours automation in the discovery of data sources (with the exception of

constants) over the manual speci�cation of test data generators required by QuickCheck or type-class expressed

generators of SmallCheck and Lazy SmallCheck. While more sophisticated users can bene�t from the ability to

manually specify test data generators in the Check tools (e.g. the depth of test expressions can be controlled at

a very �ne grained level, or generation can be guided to e.g. only include sorted lists for a sorted list property),

automatically inferring test data like Irulan does is an advantage for the user in terms of ease of use for less

sophisticated users, and imposes a lower cost for the testing of existing code. In the future it would be great

to have a �best of both worlds� tool for dynamic crash testing and property checking that can use automatic

inference, but also be �ne tuned if necessary.

Irulan also presents a new twist on more traditional unit testing tools through its regression testing extension.

We have not seen any existing tools for Haskell that attempt to automatically snapshot the functionality of a

library and then provide a way to automatically compare snapshots. Irulan's way of doing this is particularly

interesting as di�erent snapshots can present inputs to a function that generalise each other (due to lazy

evaluation). This form of testing moves beyond looking at a piece of code in isolation, but rather checking

behaviour as the code evolves. It would be exciting to see other tools take this idea further.

Side e�ecting functions that have the IO type are e�ectively not tested by Irulan, as reducing them to WHNF

does not cause the side e�ect to happen. In contrast, the static analysis performed by Catch can handle IO by

conservatively assuming an IO based function can return any value of its type. However there is a di�erence

in philosophy between Catch and Irulan: Irulan attempts to see if there is a way in which the exported
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functions from a library could be called that causes an error, Catch attempts to see if there is an input that

could be provided to a program (through IO function return values) that create an exception.

Another tool with a di�erent testing philosophy to Irulan is ESC/Haskell. Here, if the user speci�es pre

and post conditions on their Haskell functions, then the tool will check for each function that, assuming the

precondition of a function is met, that it meets the obligations of the preconditions of the functions it calls, and

assuming those functions' post conditions hold that the current function satis�es its own postcondition. Irulan

does not feature a speci�c way to specify pre or post conditions, and so will likely generate test inputs that

violate any implicit preconditions a function may have. However if the user decides to make these preconditions

explicit through checks in the code that throw known exceptions, then they can make �ltering out precondition

failures easier by just discarding those counter-examples. This has the advantage that in regression testing

mode those counter-examples can still be kept and if any change in behaviour occurs (e.g. test cases now hit

precondition failures when they previously returned results) then Irulan can highlight that as something for

the programmer to be aware of.

6.3 Applications and Future Work

6.3.1 More Tools for Haskell Programmers

The core algorithms in Irulan could be extended in many ways to make useful tools for Haskell programmers.

At its core, Irulan is a test expression generator, and as we have shown, this has applications beyond error

�nding to regression testing. Another application would be to use Irulan as a unit test generator. Presenting

users with inputs and what their function currently outputs, the user could lock the outputs that are correct

(to be checked they are still the same in future runs) and then work on making the function do the right thing

for inputs that are currently incorrect.

The ability to index a map by unifying types, as per the TypeMap could also provide useful functionality for

Haskell IDEs. For example, when presenting context-sensitive completions, a TypeMap could be used, pretty

much as it is now in Irulan, to provide a list of suggestions of identi�ers that can provide the current context's

type.

The automatic inference of a support set in Irulan could also have other applications. For example, several

Haskell libraries require boiler-plate type class instances to be written to apply them to several types. Concretely,

Irulan's inferred support set could be used as another way to generate the Arbitrary and Serial type class

instances needed by the Check family of tools.

6.3.2 Code Coverage

In the overview we outlined an experimental feature that records HPC statistics after each test expression

is executed, and establishes a minimized set of test expressions that achieves the same coverage as the full
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suite. This technique could potentially prune many redundant test expressions and give the user just the

important cases to consider. It could also be used to group and inform �ltering of expressions that cause errors.

Unfortunately this approach currently has some limitations. For example, HPC information is only available

for modules that are compiled with HPC enabled, so di�erent control �ow branches in dependant libraries may

not get exercised. Whether this is or is not important is unknown, so devising an experiment to explore this

space would be a good next step.

Taking the code coverage further, it would be interesting to explore the opportunities for improvement if code

coverage information was used as part of the exploration strategy. This would mean moving from black box to

grey box testing (analysing code coverage in the testing loop gives some information as to the implementation of

functions, but not full source details). Of course, moving to full white box testing with knowledge of expression

structure would give further opportunities for more precise testing.

6.3.3 Evaluation Metrics

During the evaluation section we have used Haskell Program Coverage (i.e. subexpression based code coverage)

as a quanti�able evaluation point. While we have also used other metrics (such as number and types of errors

found and how long and if counterexamples were found in the property benchmark), there are other techniques

that could have been used.

One common strategy for investigating error detection in existing software is to perturb the source code, and

seeing if the perturbations are detected by the tool being used. For example, conditional |if/then/else| branches

could be swapped, or (for Haskell) the order of guards swapped, or identi�ers exchanged for faulty versions. This

technique, often called mutant generation, usually transforms a single piece of source code into several hundred

or thousand mutants; mutants then detected by the tool (e.g. by �nding introduced crashes) are then said to be

�killed�. One problem with mutant generation is that a lot of care must go into creating the mutants, to be aware

what the mutants are really testing. For example in object oriented languages it is not appropriate to create

mutants by negating boolean values on conditional constructs in order to test control �ow coverage, as control

�ow in object oriented languages is usually encoded in dynamic dispatch on message receivers. For Haskell,

higher order functions and polymorphic combinators may make meaningful mutant creation not straightforward.

We are currently unaware of any research or tools for Haskell to automatically create mutant test suites with

well established properties, although it would be a very interesting area of research to pursue.

6.3.4 Support Set Inference

There are some limitations during the support set creation phase. For example, with type classes Irulan

currently relies on GHC's dictionary passing transform to remove type classes from the set of concepts it has to

understand. Unfortunately some type class speci�c information does remain and that can prove problematic.

Orphan instances are not found by Irulan unless its support set happened to analyse a module that contains
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them while chasing other dependencies. Solving this is mostly a software engineering issue, but may bring useful

ideas for other work in this space.

There is another software engineering issue at work within the Haskell community. The Haskell ecosystem has

been rapidly growing, and the notion of a package is emerging for the convenient grouping of modules that

make up a library. As the de�nition of a package stabilises, it would be interesting to try and test the interface

of a library at a slightly coarser grain than the level of identi�ers exported from a module. Extending Irulan

with the knowledge of visible modules and hidden modules (an idiom introduced by the introduction of Haskell

packages) and only presenting test cases that use visible identi�ers from visible modules would be useful, but

would also present interesting challenges for determining the appropriate identi�ers to use.

Additionally, Irulan currently allows the user to provide a constant pool for adding to the support set. This

is useful for specifying speci�c built in values, such as Ints, Chars, that the set of support discovery mechanism

cannot �nd as they are not inductively de�ned. We have some very experimental work for analysing the source

code of any presented modules to identify constants automatically by looking at the constants used in the source

code. However it would be interesting to take this work further, looking at deeper forms of source code analysis

to work out constants that are important to reach all branches. This would require knowledge of theories (e.g.

addition or solving inequalities) underlying Int or Double values, for example.

There is also the issue of generating higher order functions (HOFs). Irulan can use existing functions in

its support set as higher order functions. However other testing tools, such as SmallCheck and QuickCheck,

actually synthesise HOFs by mapping from possible inputs to outputs. The ability to synthesise higher order

functions would be valuable for testing a library before it is released to users (as a user could provide arbitrary

functions), whereas Irulan's ability to use existing functions is suitable for testing more closed systems where

the HOF will typically be a provided function.

6.3.5 Referential Transparency

The idea of using referential transparency to avoid needing to re-execute some expressions, and to prune

branches, seems very appealing. Our initial work with runtime caches to exploit this did not prove successful

however, so some further focused work there would appear to be useful. Our experiments suggested that there

are some simple optimisations that may help, for example not checking for redundant values when at the end of

a Plan branch. There may be further ways for the Plan to give hints to the cache as to what types of expression

to look up in certain places. There is also the design space of the implementation of the caches themselves that

may mean some overheads can be reduced.

An issue relating to referential transparency is the ability to test functions that do IO. Irulan assumes that all

functions it tests are referentially transparent (the threaded cache in the Plan and the runtime caches exploit

this). Since Irulan is generating arbitrary test expressions and executing them, we decided not to try and add

the ability to run IO expressions; Irulan can and will try and evaluate values of type IO to a WHNF, but

that does not mean the action gets executed, just that there is an action described by a WHNF. Adding the
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ability to execute and test IO functions presents several challenges. For example, a sandbox or white/blacklist

may need creating to ensure functions such as deleteFile aren't able to wipe data from the user's hard disk.

Another issue would be whether IO values could be used as arguments to pure functions, and ensuring that the

resulting expressions correctly capture that the IO action needs to be run before it can be passed into a pure

function. There is also issues with IO computations spawning new threads or processes which would need to

be monitored and correctly handled.

6.3.6 Haskell features

Throughout this work, we have assumed the Haskell functions being tested conformed to a rank one type system.

We have also assumed the absence of many GHC extensions to the Haskell language (e.g. type and data families,

GADTs, existential types). These assumptions were made to keep the core as simple and easy to develop as

possible while still allowing an expressive testing tool to be developed. Extending Irulan's understanding of

types to the full richness of GHC Core's would be an interesting exercise, however it would also pose challenges

for mapping the more exotic generated expressions back to Haskell expressions that could be entered into a

GHCi prompt.

There are a couple of less exotic Haskell features that we decided to ignore as features that would be nice to have

in a polished tool, but add little to a research prototype. For example, data constructors can be declared using

Haskell's record syntax. This allows the �elds in a record to be named, and that name also acts as a Haskell

function which extracts that �eld from the data constructor. Instead of creating explicit case expressions for

data constructors which export their �eld accessors, Irulan could use those accessors instead. However, since

case expressions work over any exported data constructor, we decided against adding extra complexity while

the bene�ts of using selectors was being researched.

Another simple limitation in Irulan is that types declared using Haskell's newtype syntax cannot have case

expressions constructed over them (as there is nothing to scrutinise at runtime). To do so would require extra

checking to see if the case expression were over a newtype'd type, and if so during compilation not actually to

construct the case expression. This would then lead into the interesting space of potential optimisation where an

identical operation may get executed twice, even though it's represented by syntactically di�erent expressions.

6.3.7 Parallelism and Concurrency

Irulan does not currently exploit parallelism to enable testing multiple expressions at the same time, however

it would be easy to see how such an extension could be made to work. The explicit internal |Plan|, and the

�exibility with which search strategies can be speci�ed should make it straightforward to allow strategies that

divide the |Plan| between multiple cores. Of course, getting the trade o� between dividing work between cores

and having enough work to make the overheads of managing multiple cores worthwhile would be an interesting

space of optimisation, but for large enough spaces it should be easy to make work.
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Haskell also makes it very easy to write pure, parallel programs (i.e. programs that run in parallel without

using |IO|, though e.g. the |par| combinator). While we have not directly tested this, because the construct is

pure, it should not cause a problem for Irulan to test code that uses it, as the external interface of such code

(i.e. what Irulan sees), will still be pure.

However at the moment Irulan has no support for testing explicitly concurrent programs. If support for

testing IO-based expressions were added to Irulan, then supporting IO-based concurrency would be a natural

extension. In supporting this work, we could draw lessons from the published experiences of using QuickCheck

like techniques in Erlang (from e.g. [CPS+09]). Here the authors note that the testing library should also

be able to interact with the scheduler of the program, in order to try and force more of the unlikely thread

interactions that would not normally occur. With the scheduler under control of the testing tool, traces and

repeatable test cases can also be produced.

6.4 Final Words

As long as humans are allowed to program, they will make mistakes, and there will be bugs in software. To

combat this, many techniques (testing, veri�cation, peer-review) employ abstraction, repetition, and sanity

checking to help programmers make sure that the code they write is the code they mean, and that what

programs do is what the programmer intends.

Pure functional programming lends itself towards automation of some of these techniques due to its simple

underlying core; but it can still be complicated due to the richness of the abstractions available. In this work we

have investigated testing in a pure functional language, and focusing on producing test cases with their results

(in the form of errors they throw) that we can get (from the programmer's point of view) almost for free. Our

results are encouraging, and we have many ideas for how to turn our techniques into even more useful tools for

Haskell programmers.

6.5 Finding the Lazy Programmer's Bugs

The full sources for the prototype implementation of our techniques, Irulan, together with our experimental

evaluations, is freely available, at http://www.doc.ic.ac.uk/~tora/irulan.



Appendix A

Full no�b Results

In Figure A.1 we present all code coverage results from the 8 di�erent con�gurations of Irulan we ran on

the programs in the spectral suite. In Figure A.2 we present all code coverage results from the 8 di�erent

con�gurations of Irulan we ran on the programs in the real suite. For both graphs, the results where case

expressions were enabled are pre�xed with a `C', and disabled `N'. The times correspond to how long Irulan

was run, using iterative deepening, on each of the modules in the program.
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Figure A.1 All coverage results for spectral. `C' bars have case expressions enabled, `N', disabled. The times
are runtime per module per program.

 0 2
0

 4
0

 6
0

 8
0

 1
00

atom

awards

boyer2

cichelli

compreals

cryptarithm2

cse

expert

fft2

hartel

knights

mandel

mandel2

mate

minimax

multiplier

para

power

pretty

primetest

scc

simple

sorting

sphere

Code coverage (%)

P
ro

gr
am

M
ax

im
um

 c
od

e 
co

ve
ra

ge
 a

ch
ie

ve
d 

pe
r 

pr
og

ra
m

C
1s

C
10

s
C

60
s

C
30

0s
N

1s
N

10
s

N
60

s
N

30
0s



129

Figure A.2 All coverage results for real. `C' bars have case expressions enabled, `N', disabled. The times are
runtime per module per program.
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