
Heterogeneous Workflows in Scientific Workflow
Systems

Vasa Curcin, Moustafa Ghanem, Patrick Wendel, and Yike Guo

Department of Computing, Imperial College London

Abstract. Workflow systems are used to model a range of scientific and
business applications, each requiring a different set of capabilities. We
analyze how these heterogeneous approaches can be resolved, look at
how existing workflow systems address this and present the solution in
Discovery Net, which combines three levels of workflows, control, data
and grid, at different levels of abstraction.

1 Introduction

A disctinction is often drawn between workflow systems based on their intended
aim. Typically, the two types isolated are dubbed business and scientific work-
flows, with the former concentrating on increasing efficiency within an organiza-
tion, while the latter are concerned with the fostering of innovation in scientific
environments. While the two are not neccessarily in direct conflict and even
share some common areas of interest such as automation, provenance tracking
and collaboration, they do branch into different fields. The business workflow
field revolves around issues such as messaging protocols, process optimization,
and sophisticated patterns involved in component interaction. Scientific work-
flows, on the other hand include technologies which help bring the usability of
the workflow abstraction in scientific research up to the level of a research sci-
entist, by investigating interactive analysis creation, process knowledge capture,
dissemination and reusability, and harnessing complex computational infrastruc-
tures within simple graphical metaphors. In addition to this separation, there are
several perspectives from which a workflow model can be observed [2]. Control
flows describe the flow of execution control between tasks, data flows represent
a functional programming perspective, in which tasks are data transformations,
while some other perspectives, such as resource and operational are also possible.

Workflow technologies have also been used in the context of Grid computing,
mainly automating the submission and execution of user tasks on distributed
computing resources. The level of details captured in such workflows varies be-
tween different systems. For example, within the Globus GT3 [3] project, Gri-
dAnt provides a workflow language with conditional, sequential, and parallel
constructs that are used to describe the detailed steps required for submission
and execution of user tasks on high performance resources. In contrast, within
the Pegasus [4] system, the VDL language is used to define workflows as depen-
dency graphs between user tasks, and the Pegasus system then automatically

Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 204–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Heterogeneous Workflows in Scientific Workflow Systems 205

maps the abstract workflows down to executable ones based on the available grid
resources.

The Discovery Net system [1] was designed primarily to support the analysis
of scientific data based on a distributed Web Service/Grid Service composition
methodology. Within this framework, computational services executing at re-
mote locations can be treated as black boxes with known input and output
interfaces. Such services are connected together into acyclic graphs or workflows
defined as sequences of operations where the outputs of one service act as in-
puts for other services. To initiate an execution, the user defines the termination
node in the workflow and data is pulled through the preceding nodes in a de-
mand driven fashion. Data passed between the nodes can be either atomic or a
collection (e.g. a table of values), and in the latter case, each node will implicitly
iterate over the input contents. That original paradigm is best suited to capture
the semantics of a data flow model of computation. Although the system allowed
the definition of parallel branches within a workflow to be formed (e.g. through
the availability of multiple output ports in a service), it supported no explicit
control flow constructs (e.g. conditionals) or explicit iteration operations. De-
spite these restrictions, the system has been extremely successful in enabling
end users to create complex data analysis applications in various fields, includ-
ing Life Sciences [6], Environmental Monitoring [5] and Geo-hazard Modelling
[7]. Some of the key features that enabled its wide uptake were rooted in its
support for a fully interactive model of workflow construction and deployment.

In this paper we describe the introduction of new extended features for sup-
porting control flow semantics within the Discovery Net system. The paper is
organized is follows. Section 2 reviews the main features of the scientific work-
flow systems that were described in the literature since the design of the original
Discovery Net system. In Section 3, we present and describe the notion of work-
flow embedding as a generic solution to heterogeneous workflow composition,
demonstrating it in Discovery Net through two new layers: a control flow layer
and Grid control layer. Section 4 presents the conclusion and lays out the future
research directions.

2 Heterogeneity in Existing Workflow Systems

There are numerous criteria which we can use to characterize the workflow
execution semantics: atomic vs. streaming, push vs. pull, single vs. multiple
starting/ending points, implicit or explicit iterations over data sets etc. The
important thing to note is that all of these have their uses in some workflow
scenarios. However, we argue that the correct way of modelling systems with
multiple requirements is by implementing the heterogeneity in different seman-
tic levels, rather than providing all of the functionality as different components
in the same environment. In this section, we will investigate how some popular
workflow systems address this issue.



206 V. Curcin et al.

2.1 Taverna

Taverna [8] is a graphical workflow authoring and execution environment, using
SCUFL as its workflow language, and Freefluo as its enactment engine. SCUFL
(Simple Conceptual Unified Flow Language) was developed for the purposes of
the Taverna project, and can integrate any Java executable code as a component.
The basic unit of execution in SCUFL is a processor, which has associated with it
input and output ports. The processor may be regarded as a function from input
data to output data, with possible side effects on the execution environment.

Data links between the components have a source processor and output port
name, a sink processor and an input port name. This type of link ensures the
basic consistency in pure dataflow execution. However, due to possible effects on
the execution environment which are separate from inputs and outputs, explicit
ordering constraints are introduced, which are not based on the data dependency
between processors. These control constraints are useful when execution ordering
must be imposed between two processors but when there is no dataflow between
them. The execution of a SCUFL workflow will start from the nominated starting
points, sources, and finish when all end points, sinks, have either produced their
outputs or failed. Whether the workflow can execute partially (ie. if one sink
failed, should the others complete) is configurable by the user.

In addition to control constraints and data links SCUFL also has an indirect
conditional construct, which corresponds to if/else or case structure in proce-
dural programming languages. This construct consists of a single input being
passed to multiple nodes, which are all connected downstream to the same com-
ponent. The user has to ensure that only one of them will succeed and continue
the execution. If, however, for some reason multiple nodes execute and pro-
duce output, the downstream node will only process the first input received.
The generic iteration construct is not supported, but one special case is the
implicit iteration. This form of execution happens when a single-item processor
receives a data collection, then the processor is executed once for each item in
the collection. This behaviour is equivalent to the map construct in functional
programming languages.

2.2 Triana

Triana [9] is a visual workflow-based problem solving environment, developed at
Cardiff University. The functional component in Triana is called a unit. Units are
connected through cables to form workflows. The notion of hierarchical work-
flows is supported through grouping connected components into a higher-level
group unit. The created group unit implicitly has an associated control structure,
another unit, which can coordinate its executional behaviour.

In addition to numerous functional components, Triana provides control flow
units that operate on the same level as the data flow, and can be freely combined
with them. The looping is achieved through a dedicated Loop component, that
has two output ports. One typically connects to a functional unit, while the
other provides the final output once the iteration is over. The Loop component



Heterogeneous Workflows in Scientific Workflow Systems 207

receives input data, evaluates its exit condition, and then passes the data either
to the exit port or to its functional unit. Also, Triana posseses a number of trigger
units, which can be used to send a signal on user action, at a fixed time or after a
certain delay. Streaming execution is achieved using dedicated units for blocking,
merging, splitting, pausing, etc. There is no explicit distinction between data and
control components, placing them all on the same level. Semantics are left for the
user to design, using the large number of specialized units provided. This design
is opposed to languages such as YAWL and Kepler, which try to minimize the
number of control nodes, the former through formalizing them into a minimum
neccessary set, and the latter by separating control from the nodes altogether.

2.3 YAWL

YAWL (Yet Another Workflow Language) has its origins in theoretical work
on workflow patterns [2] comparing a number of (mostly business) workflow
systems. and was not developed for the purposes of an application project. Real-
izing that all the patterns described can be implemented in high-level Petri nets,
albeit with some difficulty in cases of patterns with multiple process instances,
advanced synchronization and cancellation, YAWL was based on high-level Petri
nets, in order to preserve their benefits, but with extensions to help direct sup-
port of the special cases mentioned. YAWL’s formal semantics are in contrast
with other languages which either have no formal semantics (Triana, XPDL)
or they constructed post hoc (Taverna). While the control flow perspective of
YAWL is the most investigated one, the language also supports the data and re-
source perspective by allowing input and output parameters in the components
to be connected to global variables.

The core component concept in YAWL is derived from the Petri Nets, with
the workflow being a set of tasks, conditions and flows between them. Unlike
Petri Nets, tasks can be connected to each other directly, without a condition
inbetween (or an implicit condition that automatically succeeds). A task in a
workflow can be either atomic or composite, with composite tasks containing
another workflow (extended workflow net in YAWL terminology) within them.
This corresponds exactly to the grouping concept present in Discovery Net, Tav-
erna, Kepler, Triana and some other systems. There are six explicit branching
constructs: three splits (AND, XOR and OR) and three joins (AND, XOR and
OR), which model every legal data routing through the workflow. Due to the
nature of splits the execution path through the workflow is determined dynami-
cally at runtime, as opposed to being apriori statically determined. Both looping
and conditional constructs are achieved using explicit conditions which evaluate
the state of the workflow and direct the execution accordingly. So, there are
no if/else or while components but the structure of the graph can create such
behaviour.

The data flow in YAWL is achieved via variables, and can be split into internal
and external data transfers. Internal transfers are always performed between the
tasks and their workflows, since all variables inside tasks are internal to that
task. So, in order to communicate some data between tasks A and B, task A



208 V. Curcin et al.

has to register its variable as the output parameter, and pass it to some global
workflow variable N, which task B will take as its input parameter. External
transfers occur between global variable and the user or an external component,
such as a web or Grid service.

2.4 Kepler

Kepler [11] is a scientific workflow construction, composition, and orchestration
engine, focusing on data analysis and modelling. This focus influenced the de-
sign in that it is suitable for modelling a wide variety of scientific domains, from
physics via ecosystems to bioinformatics web services. Instead of trying to pro-
vide a generic semantic for all possible types of processes encountered in these
domains, Kepler externalizes the execution engine from the workflow model, and
assigns one director to each model, that then coordinates the model execution.

The workflow components in Kepler are represented by actors with ports
that can be input, output, or mixed. Tokens are basic data containers, and they
are passed from the output port of one actor to another through the relation
connections. The number of tokens consumed and produced depends on the
node used. Directors are the key concept in Kepler. While actors and relations
together constitute a workflow model, the directors form the execution model,
or the model of computation. In this setup, actors’ intelligence stretches as far as
knowing its inputs, the operation to be performed on them and what outputs to
produce. The decision when to schedule the execution of each actor is left to the
director. Therefore, depending on the director used, the actors may have separate
threads of control, or they may have their executions triggered by the availability
of new input, in a more conventional dataflow manner. The architecture in which
components are agnostic to the manner in which they are executed is formalized
as behavioural polymorphism.

Kepler supports four director types. SDF - Synchronous Dataflow is char-
acterized by fixed token production and consumption rates per firing. The actor
is invoked as soon as all inputs have data, which is possible to know since all
actors have to declare their token production before the execution. Therefore,
the order of execution is statically determined from the model, and components
cannot change the routing of tokens during execution. PN - Process Network
is a derestricted variant of SDF, in that the actor is invoked when the data ar-
rives. However, there is no requirement that all data has to be present, which
results in a more dynamic environment, where actors are executing in parallel
and sending each other data when and if needed. The tokens are created on
output ports whenever input tokens for an actor are available and the outputs
can be calculated. The output tokens are then passed to connected actors where
they are held in a buffer until that next actor can fire. The workflow is thus
driven by data availability. CT - Continuous Time introduces the notion of
time that is affixed to tokens in order to perform system simulations. The system
is typically based on differential equations, and start conditions, which are then
used to predict the state at some specified future time. The data tokens that
are passing through the system then have a timestamp that the director is using



Heterogeneous Workflows in Scientific Workflow Systems 209

to determine the step and the stop condition. DE - Discrete Event director
is working with timestamps, however, they are not used to approximate func-
tions and schedule executions, but to measure average wait times and occurrence
rates.

3 Discovery Net Workflow Embedding

The key new feature of Discovery Net 3.0 is the layered approach for definition,
embedding and execution of scientific workflows. The top, control flow, layer is
introducing new control operators for the coordination of the traditional data
flow operations. This layer enables the execution of distributed applications with
scheduling dependencies more advanced than the simple data availability crite-
ria, and where the data passing between components need to be restricted due to
volume or costs associated with transfers. The middle layer corresponds to the
traditional Discovery Net data flow layer enabling data integration, transforma-
tion and processing using distributed services. The bottom layer, Grid Control,
enables the access and control of Grid resources.

Fig. 1. Hierarchical workflow composition

3.1 Control Flow Layer

This layer includes a range of control flow elements such as branching synchro-
nisation, conditional branching and looping. The control flow mechanisms use
a different execution scheme to the standard workflow execution engine; hence
the control flow components cannot be connected to data flow components, but
rather they orchestrate data flows, specifying which will be the next data flow



210 V. Curcin et al.

to run based on the control decision. The key new control flow operations intro-
duced in Discovery Net include:

– Test Generic condition construct, where the user specifies the condition, and
indicates which branch is to be executed, depending on the outcome.

– Wait for All Provides synchronisation allowing waiting for all arriving tasks
to be completed before a workflow can proceed.

– Wait for One Similar to Wait for All, except that it executes the node,
once the first of the arriving tasks is complete.

– For Explicit looping construct, which loops through activities a specified
number of times - a syntactic shortcut for a generic loop implementable
using the former three components.

– While Loops through activities while a variable is true, also a syntactic
shortcut.

Firstly, a notion of token was introduced, in which each component may receive
a token, which will cause an execution of its instance. Multiple tokens may exist
in the workflow at any one time, and even in a single component. Secondly,
the execution switched from the pull-based model to a push-based one, with a
dynamic flow of control – nodes making runtime decisions about the direction
which the execution will take. Furthermore, tokens have access to the component
that produced them, thereby giving a link to the result of a previous execution,
if needed.

Interestingly enough, even though the control flow does not fit into the
workflow-as-service model, so strongly upheld on the dataflow level, it utilizes it
in order to have a uniform execution paradigm for its components. Namely, the
execution node in the control flow is the only component which can perform an
action outside of the scope of the flow being executed. The way it operates is by
executing an internal dataflow, with a nominated output, which is used to pro-
duce and fire a token once the execution is complete. The output is nominated
by declaring it as the output of the service created from the inner workflow. So,
the atomic unit of execution inside the control flow is actually a dataflow-based
service.

3.2 Grid Control Layer

The role of the bottom layer is to enable access and control of remote Grid com-
puting resources. Specifically, within this layer, sub-workflows are used to control
selection of resources as well as authentication, job submission, job invocation,
collection of results as well as session management. An example implementation
of these operations for the GRIA middleware is described in details in [10].

4 Summary

This paper discussed the need for heterogeneity in workflow systems, reviewed the
approaches different scientific workflow systems take, and introduced the hierar-
chical approach to combining control and data structures in Discovery Net.



Heterogeneous Workflows in Scientific Workflow Systems 211

Discovery Net adopts a conservative approach to its dataflow semantic, insist-
ing on a single-output static execution model, corresponding to a function call,
with no non-determinism in the execution flow. All non-deterministic elements,
such as conditional and looping structures, are implemented in a separate level,
as well as strategies for GRID execution which involve scheduling and service
discovery. This is in sharp contrast to other systems analyzed, which are ei-
ther enriching a dynamic control flow structure with global variables (YAWL),
introducing dataflow-flavoured control elements (Taverna), placing all the com-
binations of functionality/semantics into separate nodes (Triana). The Kepler
approach of letting the user determine the hierarchical composition of different
semantics, is the closest to the one presented here, but it allows for some dis-
tinctly non-workflow systems to be built. In the future work, we plan to analyze
how multiple execution semantics interact in a hierarchical model, by looking at
error handling, user interaction and process provenance. The complete picture
of the Discovery Net model will then allow us to compare and contrast workflow
executions with other scientific workflow systems, producing formal notions of
equivalences between these systems.

Acknowledgement. The authors would like to thank Dr. Yong Zhang and Mr.
Nabeel Azam for the helpful discussions on the embedding implementation.

References

1. AlSairafi et al: The Design of Discovery Net: Towards Open Grid Services for
Knowledge Discovery, High Performance Computing Applications, vol 17, no 3,
(2003) 297–315

2. Aalst van der et al: Advanced Workflow Patterns, 7th International Conference on
Cooperative Information Systems, vol 1901, Lecture Notes in Computer Science
(2000) 18–29

3. Ian T. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems,
NPC (2005) 2–13

4. Deelman, E. et al: Pegasus: Mapping Scientific Workflows onto the Grid, Lecture
Notes in Computer Science : Grid Computing, (2004) 11–20

5. Richards et al: Grid-based analysis of air pollution data, Ecological Modelling, vol
194, no 1–3 (2006) 274–286

6. Rowe et al: The discovery net system for high throughput bioinformatics, Bioin-
formatics, vol 19, no 90001, (2003) 225–231

7. Guo et al: Bridging the Macro and Micro: A Computing Intensive Earthquake
Study Using Discovery Net, Proceedings of SC2005 ACM/IEEE (2005)

8. Hull et al: Taverna: A tool for building and running workflows of services, Nucleic
Acids Research, Web Server Issue, vol 34, (2006) W729–W732

9. Taylor, Ian et al: Visual Grid Workflow in Triana Journal of Grid Computing, vol
3, no 3-4, (2005) 153–169,

10. Ghanem, M. et al.: Grid-enabled workflows for industrial product design, 2nd IEEE
International Conference on e-Science and Grid Computing (2006)

11. Ludaescher, B. et al.:Scientific Workflow Management and the Kepler System,
Concurr. Comput. : Pract. Exper., vol 18, no 10, (2006) 1039–1065


	Introduction
	Heterogeneity in Existing Workflow Systems
	Taverna
	Triana
	YAWL
	Kepler

	Discovery Net Workflow Embedding
	Control Flow Layer
	Grid Control Layer

	Summary

