
Parallel Algorithms

Efficient Parallel

Sparse Matrix–Vector

Multiplication Using Graph

and Hypergraph Partitioning

William Knottenbelt Peter Harrison

{wjk,pgh}@doc.ic.ac.uk

February 2009

Recommended Reading

• U.V. Çatalyürek and C. Aykanat: “Hypergraph-

Partitioning-Based Decomposition for Par-

allel Sparse Matrix–Vector Multiplication”.

IEEE Trans. on Parallel and Distributed

Systems, 10(7), July 1999, pp. 673–693.

• A. Trifunovic: “Parallel Algorithms for

Hypergraph Partitioning”. PhD thesis,

Imperial College London, November 2005.

• J.T. Bradley, D.V. de Jager, W.J. Knot-

tenbelt, A. Trifunovic: “Hypergraph Par-

titioning for Faster PageRank Computa-

tion”. Proc. EPEW 2005, 2005,

pp. 155–171.

• A. Trifunovic and W.J. Knottenbelt: “A

General Graph Model for Representing Ex-

act Communication Volume in Parallel Sparse

Matrix–Vector Multiplication”. Proc. IS-

CIS 2006, 2006, pp. 813–824.

Recommended Software Tools

• CHACO graph partitioning software:

http://www.cs.sandia.gov/~bahendr/chaco.html

• PaToH hypergraph partitioning software:

http://bmi.osu.edu/~umit/software.html

• METIS/ParMETIS graph partitioners and

hMETIS hypergraph partitioner:

http://www.cs.umn.edu/~karypis/metis

• Parkway parallel hypergraph partitioner:

http://www.doc.ic.ac.uk/~at701/parkway/

Outline

• Parallel Sparse Matrix–Vector Products

• Partitioning Objectives and Strategies

• Naive Row-Striping

• 1D Graph Partitioning

• 1D Hypergraph Partitioning

• 2D Hypergraph Partitioning

• Comparison of Graph and Hypergraph Par-

titioning Techniques

Parallel Sparse Matrix–Vector Products

• Parallel sparse matrix–vector product (and

similar) operations form the kernel of many

parallel numerical algorithms.

• Particularly widely used in iterative algo-

rithms for solving very large sparse sys-

tems of linear equations (e.g. Jacobi and

Conjugate-Gradient Squared methods).

• The data partitioning strategy adopted

(i.e. the assignment of matrix and vec-

tor elements to processors) has a major

impact on performance, especially in dis-

tributed memory environments.

Partitioning Objectives and Strategies

• Aim is to allocate matrix and vector ele-

ments across processors such that:

– computational load is balanced

– communication is minimised

• Candidate partitioning strategies:

– random permutation applied to rows

and columns with 2D checkerboard pro-

cessor layout

– naive row (or column) striping

– coarse-grained mapping of rows (or columns)

and corresponding vector elements to

processors using 1D graph or hypergraph-

based data partitioning

– fine-grained mapping of individual non-

zero matrix elements and vector ele-

ments to processors using 2D hypergraph-

based partitioning

Naive Row-Striping: Definition

• Assume an n × n sparse matrix A, an n-

vector x and p processors.

• Simply allocate n/p matrix rows and n/p

vector elements to each processor (as-

suming p divides n exactly).

• If p does not divide n exactly, allocate one

extra row and one extra vector element

to those processors with rank less than

n mod p.

• What are the advantages and disadvan-

tages of this scheme?

Naive Row-Striping: Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

x

P1

P2

P3

P4

• Consider the layout of a 16 × 16 non-

symmetric sparse matrix A and vector

x onto 4 processors under a naive row-

striping scheme (see above).

• What is (a) the computational load per

processor and (b) total comms volume

per matrix–vector product?

1D Graph Partitioning: Definition

• An n × n sparse matrix A can be repre-

sented as an undirected graph G = (V, E).

• Each row i (1 ≤ i ≤ n) in A corresponds

to vertex vi ∈ V in the graph.

• The (vertex) weight wi of vertex vi is the

total number of non-zeros in row i.

• For the edge-set E, edge eij connects ver-

tices vi and vj with (edge) weight:

– 1 if either one of |aij| > 0 or |aji| > 0,

– 2 if both |aij| > 0 and |aji| > 0

• Aim to partition the vertices into p mutu-

ally exclusive subsets (parts) {P1, P2, . . . , Pp}

such that edge-cut is minimised and load

is balanced.

1D Graph Partitioning: Definition (cont.)

• An edge eij is cut if the vertices which

it contains are assigned to two different

processors, i.e. if vi ∈ Pm and vj ∈ Pn

where m 6= n.

• The edge-cut is the sum of the edge weights

of cut edges and is an approximation for

the amount of interprocessor communi-

cation (why is it not exact?)

• Let

Wk =
∑

i∈Pk

wi (for 1 ≤ k ≤ p)

denote the weight of part Pk, and W de-

note the average part weight.

• A partition is said to be balanced if:

(1 − ǫ)W ≤ Wk ≤ (1 + ǫ)W

for k = 1,2, . . . p.

1D Graph Partitioning: Definition (cont.)

• Problem of finding a balanced p-way par-

tition that minimizes edge cut is NP-complete.

• But heuristics can often be applied to ob-

tain good sub-optimal solutions.

• Software tools:

– CHACO

– METIS

– ParMETIS

• Once partition has been computed, as-

sign matrix row i to processor k if vi ∈ Pk.

1D Graph Partitioning: Example

• Consider the graph corresponding to the

sparse matrix A of the previous example.

• Assume the graph is partitioned into four

parts as follows:

P1 = {v13, v7, v16, v11} P2 = {v15, v9, v2, v5}

P3 = {v14, v8, v10, v4} P4 = {v3, v12, v1, v6}

• Draw the graph representation and com-

pute the edge cut.

1D Graph Partitioning: Example (cont.) 1D Graph Partitioning: Example (cont.)

13 7 16 11 15 9 2 5 14 8 10 4 3 12 1 6

P1

P2

P3

P4

13

7

16

11

15

9

2

5

14

8

10

4

3

12

1

6

x

• The row-striped layout of the sparse ma-

trix A and vector x onto 4 processors

under this graph-partitioning scheme is

given above.

• What is (a) the computational load per

processor and (b) total comms vol. per

matrix–vector product? How does the

comms vol. compare to the edge cut?

1D Hypergraph Partitioning: Definition

• An n × n sparse matrix A can be repre-

sented as a hypergraph H = (V,N).

• V is a set of vertices and N is a set of nets

or hyperedges. Each n ∈ N is a subset of

the vertex set V.

• Each row i (1 ≤ i ≤ n) in A corresponds

to vertex vi ∈ V.

• Each column j (1 ≤ i ≤ n) in A cor-

responds to net Nj ∈ N . In particular

vi ∈ Nj iff aij 6= 0.

• The (vertex) weight wi of vertex vi is the

total number of non-zeros in row i.

• Given a partition {P1, P2, . . . , Pp}, the con-

nectivity λj of net Nj denotes the number

of different parts spanned by Nj. Net Nj
is cut iff λj > 1.

1D Hypergraph Partitioning: Definition (cont.)

• The cutsize or hyperedge cut of a parti-

tion is defined as:
∑

Nj∈N

(λj − 1)

• Aim is to minimize the hyperedge cut

while maintaining the balance criterion

(which is same as for graphs).

• Again, problem of finding a balanced p-

way partition that minimizes the hyper-

edge cut is NP-complete, but heuristics

can be used to find sub-optimal solutions.

• Software tools:

– hMETIS

– PaToH

– Parkway

1D Hypergraph Partitioning: Example

• Consider the hypergraph corresponding

to the sparse matrix A of the previous

example.

• Assume the hypergraph is partitioned into

four parts as follows:

P1 = {v13, v7, v16, v10} P2 = {v15, v9, v1, v3}

P3 = {v14, v8, v11, v4} P4 = {v2, v12, v5, v6}

• Draw the hypergraph representation and

compute the hyperedge cut.

1D Hypergraph Partitioning: Example (cont.)

1D Hypergraph Partitioning: Example (cont.)

13 7 16 10 15 9 1 3 14 8 11 4 2 12 5 6

P1

P2

P3

P4

13

7

16

10

15

9

1

3

14

8

11

4

2

12

5

6

x

• The row-striped layout of the sparse ma-

trix A and vector x onto 4 processors un-

der this hypergraph partitioning scheme

is given above.

• What is (a) the computational load per

processor and (b) total comms vol. per

matrix–vector product? How does the

comms vol. compare to the edge cut?

2D Hypergraph Partitioning: Definition

• The most general mapping possible is to

allocate individual non-zero matrix ele-

ments and vector elements to processors.

• General form of parallel sparse matrix–

vector multiplication follows four stages,

where each processor:

1. sends its xj values to processors that

possess a non-zero aij in column j,

2. computes the products aijxj for its non-

zeros aij yielding a set of contributions

bis where s is a processor identifier.

3. sends bis contributions to the proces-

sor that is assigned xi.

4. adds up received contributions for as-

signed vector elements, so bi =
∑p−1

s=0 bis

2D Hypergraph Partitioning: Definition (cont.)

• Each non-zero is modelled by a vertex

(weight 1) in the hypergraph; if aii is zero

then add “dummy” vertex (weight 0).

• Model Stage 1 comms volume by net whose

constituent vertices are the non-zeros of

column j. Model Stage 3 comms volume

by net whose constituent vertices are the

non-zeros of row i.

• Now partition hypergraph into p parts such

that the k−1 metric is minimised, subject

to balance constraint.

• Assign non-zero elements to processors

according to partition.

• Assign bi’s to processors appropriately ac-

cording to whether row i and/or column

i hyperedge is cut (if any).

Comparison of Graph and Hypergraph

Partitioning Techniques

• A graph partition aims to minimise the

number of non-zero entries in off-diagonal

matrix blocks.

• A hypergraph partition aims to minimise

actual communication; the partition may

have more off-diagonal non-zero entries

than a graph partition but these will tend

to be column aligned.

• Either sort of partitioning is preferable to

a naive or random partition.

• For very large matrices, parallel partition-

ing tools are required – currently these

only exist for graphs.

• There are ongoing research projects to

construct efficient parallel hypergraph par-

titioners (Parkway, Zoltan, . . .).

