Efficient Parallel Sparse Matrix–Vector Multiplication Using Graph and Hypergraph Partitioning

William Knottenbelt
Imperial College London
wjk@doc.ic.ac.uk
February 2015

Recommended Reading

Recommended Software Tools

- PaToH hypergraph partitioning software: http://bmi.osu.edu/~umit/software.html
- METIS/ParMETIS graph partitioners and hMETIS hypergraph partitioner: http://glaros.dtc.umn.edu/gkhome/views/metis
- Parkway parallel hypergraph partitioner: http://www.doc.ic.ac.uk/~at701/parkway/

Outline

Parallel Sparse Matrix–Vector Products
Partitioning Objectives and Strategies
Naïve Row-Striping
1D Graph Partitioning
1D Hypergraph Partitioning
2D Hypergraph Partitioning
Comparison of Graph and Hypergraph Partitioning Techniques
Parallel Sparse Matrix–Vector Products

- Parallel sparse matrix–vector product (and similar) operations form the kernel of many parallel numerical algorithms.
- Particularly widely used in iterative algorithms for solving very large sparse systems of linear equations (e.g., Jacobi and Conjugate-Gradient Squared methods).
- The data partitioning strategy adopted (i.e., the assignment of matrix and vector elements to processors) has a major impact on performance, especially in distributed memory environments.

Partitioning Objectives and Strategies

- Aim is to allocate matrix and vector elements across processors such that:
 - computational load is balanced
 - communication is minimised
- Candidate partitioning strategies:
 - random permutation applied to rows and columns with 2D checkerboard processor layout
 - naive row (or column) striping
 - coarse-grained mapping of rows (or columns) and corresponding vector elements to processors using 1D graph or hypergraph-based data partitioning
 - fine-grained mapping of individual non-zero matrix elements and vector elements to processors using 2D hypergraph-based partitioning

Naïve Row-Striping: Definition

- Assume an \(n \times n \) sparse matrix \(A \), an \(n \)-vector \(x \) and \(p \) processors.
- Simply allocate \(n/p \) matrix rows and \(n/p \) vector elements to each processor (assuming \(p \) divides \(n \) exactly).
- If \(p \) does not divide \(n \) exactly, allocate one extra row and one extra vector element to those processors with rank less than \(n \mod p \).
- What are the advantages and disadvantages of this scheme?
Consider the layout of a 16×16 non-symmetric sparse matrix A and vector x onto 4 processors under a naïve row-stripping scheme on the previous slide.

What is:

(a) the computational load per processor?

(b) the total comms volume per matrix–vector product?

An $n \times n$ sparse matrix A can be represented as an undirected graph $G = (V, E)$.

Each row i ($1 \leq i \leq n$) in A corresponds to vertex $v_i \in V$ in the graph.

The (vertex) weight w_i of vertex v_i is the total number of non-zeros in row i.

For the edge-set E, edge e_{ij} connects vertices v_i and v_j with (edge) weight:

- 1 if either one of $|a_{ij}| > 0$ or $|a_{ji}| > 0$,
- 2 if both $|a_{ij}| > 0$ and $|a_{ji}| > 0$

Aim to partition the vertices into p mutually exclusive subsets (parts) $\{P_1, P_2, \ldots, P_p\}$ such that edge-cut is minimised and load is balanced.

An edge e_{ij} is cut if the vertices which it contains are assigned to two different processors, i.e. if $v_i \in P_m$ and $v_j \in P_n$ where $m \neq n$.

The edge-cut is the sum of the edge weights of cut edges and is an approximation for the amount of interprocessor communication.

Why is it not exact?
Let
\[W_k = \sum_{i \in P_k} w_i \quad (\text{for } 1 \leq k \leq p) \]
denote the weight of part \(P_k \), and \(\bar{W} \) denote the average part weight.

A partition is said to be balanced if:
\[(1 - \varepsilon)\bar{W} \leq W_k \leq (1 + \varepsilon)\bar{W} \]
for \(k = 1, 2, \ldots, p \).

Problem of finding a balanced \(p \)-way partition that minimises edge cut is NP-complete.

But heuristics can often be applied to obtain good sub-optimal solutions.

Software tools:
- CHACO
- METIS
- ParMETIS

Once partition has been computed, assign matrix row \(i \) to processor \(k \) if \(v_i \in P_k \).

Consider the graph corresponding to the sparse matrix \(A \) of the previous example.

Assume the graph is partitioned into four parts as follows:

\[P_1 = \{ v_{13}, v_7, v_{16}, v_{11} \} \quad P_2 = \{ v_{15}, v_9, v_2, v_5 \} \]
\[P_3 = \{ v_{14}, v_8, v_{10}, v_4 \} \quad P_4 = \{ v_3, v_{12}, v_1, v_6 \} \]

Draw the graph representation and compute the edge cut.
The row-striped layout of the sparse matrix A and vector x onto 4 processors under this graph-partitioning scheme is given on the previous slide.

What is:

(a) the computational load per processor?
(b) the total comms vol. per matrix–vector product? How does the comms vol. compare to the edge cut?

An $n \times n$ sparse matrix A can be represented as a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N})$.

\mathcal{V} is a set of vertices and \mathcal{N} is a set of nets or hyperedges. Each $n \in \mathcal{N}$ is a subset of the vertex set \mathcal{V}.

Each row i ($1 \leq i \leq n$) in A corresponds to vertex $v_i \in \mathcal{V}$.

Each column j ($1 \leq i \leq n$) in A corresponds to net $N_j \in \mathcal{N}$. In particular $v_i \in N_j$ iff $a_{ij} \neq 0$.

The (vertex) weight w_i of vertex v_i is the total number of non-zeros in row i.

Given a partition $\{P_1, P_2, \ldots, P_p\}$, the connectivity λ_j of net N_j denotes the number of different parts spanned by N_j. Net N_j is cut iff $\lambda_j > 1$.

The cutsize or hyperedge cut of a partition is defined as:

$$\sum_{N_j \in \mathcal{N}} (\lambda_j - 1)$$

Aim is to minimise the hyperedge cut while maintaining the balance criterion (which is same as for graphs).

Again, problem of finding a balanced p-way partition that minimises the hyper-edge cut is NP-complete, but heuristics can be used to find sub-optimal solutions.

Software tools:
- hMETIS
- PaToH
- Parkway

An $n \times n$ sparse matrix A can be represented as a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N})$.
Consider the hypergraph corresponding to the sparse matrix A of the previous example.

Assume the hypergraph is partitioned into four parts as follows:

$$P_1 = \{v_{13}, v_7, v_{16}, v_{10}\} \quad P_2 = \{v_{15}, v_9, v_1, v_3\}$$

$$P_3 = \{v_{14}, v_8, v_{11}, v_4\} \quad P_4 = \{v_2, v_{12}, v_5, v_6\}$$

Draw the hypergraph representation and compute the hyperedge cut.

The row-striped layout of the sparse matrix A and vector x onto 4 processors under this hypergraph partitioning scheme is given on the previous slide.

What is:

(a) the computational load per processor?

(b) the total comms vol. per matrix–vector product? How does the comms vol. compare to the edge cut?
The most general mapping possible is to allocate individual non-zero matrix elements and vector elements to processors.

- General form of parallel sparse matrix–vector multiplication follows four stages, where each processor:
 1. sends its x_j values to processors that possess a non-zero a_{ij} in column j.
 2. computes the products $a_{ij}x_j$ for its non-zeros a_{ij} yielding a set of contributions b_{is} where s is a processor identifier.
 3. sends b_{is} values to the processor that has b_i.
 4. adds up received contributions for assigned vector elements, so $b_i = \sum_{s=0}^{p-1} b_{is}$

Each non-zero is modelled by a vertex (weight 1) in the hypergraph; if a_{ii} is zero then add “dummy” vertex (weight 0).

- Model Stage 1 comms volume by net whose constituent vertices are the non-zeros of column j. Model Stage 3 comms volume by net whose constituent vertices are the non-zeros of row i.

- Now partition hypergraph into p parts such that the $k-1$ metric is minimised, subject to balance constraint.

- Assign non-zeros to processors according to partition.

- Assign b_i’s to processors appropriately according to whether row i and/or column i hyperedge is cut (if any).

A graph partition aims to minimise the number of non-zero entries in off-diagonal matrix blocks.

A hypergraph partition aims to minimise actual communication; the partition may have more off-diagonal non-zero entries than a graph partition but these will tend to be column aligned.

Either sort of partitioning is preferable to a naïve or random partition.

Parallel partitioning tools are necessary for very large matrices, e.g. ParMETIS for graph partitioning, or Parkway, Zoltan, . . . for hypergraph partitioning.

Comparison of Techniques