Efficient Parallel Sparse Matrix–Vector Multiplication Using Graph and Hypergraph Partitioning

- U.V. Çatalyürek and C. Aykanat: "Hypergraph-Partitioning-Based Decomposition for Parallel Sparse Matrix-Vector Multiplication". *IEEE Trans. on Parallel and Distributed Systems*, 10(7), July 1999, pp. 673–693.
- A. Trifunovic: "Parallel Algorithms for Hypergraph Partitioning". PhD thesis, Imperial College London, November 2005.
- J.T. Bradley, D.V. de Jager, W.J. Knottenbelt, A. Trifunovic: "Hypergraph Partitioning for Faster PageRank Computation". *Proc. EPEW 2005*, pp. 155–171.
- A. Trifunovic and W.J. Knottenbelt: "A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix–Vector Multiplication". *Proc. ISCIS 2006*, pp. 813–824.

	4		うくで			 < □ > < □ > < □ > < Ξ > < Ξ > < Ξ 	$\mathcal{O} \land \mathcal{O}$
William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	1 / 26	William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	2 / 26
Recommended Soft	ware Tools		Outline				

- CHACO graph partitioning software: http://www.cs.sandia.gov/~bahendr/chaco.html
- PaToH hypergraph partitioning software: http://bmi.osu.edu/~umit/software.html
- METIS/ParMETIS graph partitioners and hMETIS hypergraph partitioner: http://glaros.dtc.umn.edu/gkhome/views/metis
- Parkway parallel hypergraph partitioner: http://www.doc.ic.ac.uk/~at701/parkway/

- Parallel Sparse Matrix–Vector Products
- Partitioning Objectives and Strategies
- Naïve Row-Striping
- 1D Graph Partitioning
- 1D Hypergraph Partitioning
- 2D Hypergraph Partitioning
- Comparison of Graph and Hypergraph Partitioning Techniques

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

- Parallel sparse matrix-vector product (and similar) operations form the kernel of many parallel numerical algorithms.
- Particularly widely used in iterative algorithms for solving very large sparse systems of linear equations (e.g. Jacobi and Conjugate-Gradient Squared methods).
- The data partitioning strategy adopted (i.e. the assignment of matrix and vector elements to processors) has a major impact on performance, especially in distributed memory environments.

- Aim is to allocate matrix and vector elements across processors such that:
 - computational load is balanced
 - communication is minimised
- Candidate partitioning strategies:
 - random permutation applied to rows and columns with 2D checkerboard processor layout
 - naïve row (or column) striping
 - coarse-grained mapping of rows (or columns) and corresponding vector elements to processors using 1D graph or hypergraph-based data partitioning
 - fine-grained mapping of individual non-zero matrix elements and vector elements to processors using 2D hypergraph-based partitioning

	< [৩৫৫			() () () () () () () () () ()	৩৫৫
William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	5 / 26	William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	6 / 26
Partitioning Object	ives and Strategies			Naïve Row-Striping	g: Definition		

- Aim is to allocate matrix and vector elements across processors such that:
 - computational load is balanced
 - communication is minimised
- Candidate partitioning strategies:
 - random permutation applied to rows and columns with 2D checkerboard processor layout
 - naïve row (or column) striping
 - coarse-grained mapping of rows (or columns) and corresponding vector elements to processors using 1D graph or hypergraph-based data partitioning
 - fine-grained mapping of individual non-zero matrix elements and vector elements to processors using 2D hypergraph-based partitioning

- Assume an $n \times n$ sparse matrix **A**, an *n*-vector **x** and *p* processors.
- Simply allocate *n*/*p* matrix rows and *n*/*p* vector elements to each processor (assuming *p* divides *n* exactly).
- If *p* does not divide *n* exactly, allocate one extra row and one extra vector element to those processors with rank less than *n* mod *p*.
- What are the advantages and disadvantages of this scheme?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

William Knottenbelt (Imperial)

- Consider the layout of a 16 × 16 non-symmetric sparse matrix A and vector x onto 4 processors under a naïve row-striping scheme on the previous slide.
- What is:
 - (a) the computational load per processor?
 - (b) the total comms volume per matrix-vector product?

- An $n \times n$ sparse matrix **A** can be represented as an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}).$
- Each row $i \ (1 \le i \le n)$ in **A** corresponds to vertex $v_i \in \mathcal{V}$ in the graph.
- The (vertex) weight w_i of vertex v_i is the total number of non-zeros in row *i*.
- For the edge-set \mathcal{E} , edge e_{ij} connects vertices v_i and v_j with (edge) weight:
 - 1 if either one of $|a_{ij}| > 0$ or $|a_{ji}| > 0$,
 - 2 if both $|a_{ij}| > 0$ and $|a_{ji}| > 0$
- Aim to partition the vertices into p mutually exclusive subsets (parts) {P₁, P₂, ..., P_p} such that edge-cut is minimised and load is balanced.

- An edge e_{ij} is cut if the vertices which it contains are assigned to two different processors, i.e. if v_i ∈ P_m and v_j ∈ P_n where m ≠ n.
- The edge-cut is the sum of the edge weights of cut edges and is an approximation for the amount of interprocessor communication.
 - Why is it not exact?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

William Knottenbelt (Imperial)

Let

$$W_k = \sum_{i \in P_k} w_i$$
 (for $1 \le k \le p$)

denote the weight of part P_k , and \overline{W} denote the average part weight.

• A partition is said to be balanced if:

$$(1-\varepsilon)\overline{W} \leq W_k \leq (1+\varepsilon)\overline{W}$$

for k = 1, 2, ..., p.

- Problem of finding a balanced *p*-way partition that minimises edge cut is NP-complete.
- But heuristics can often be applied to obtain good sub-optimal solutions.
- Software tools:
 - CHACO
 - METIS
 - ParMETIS
- Once partition has been computed, assign matrix row i to processor kif $v_i \in P_k$.

	4	ロト イポト イヨト イヨト - ヨ	୬୯୯			< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <	: ৩৫৫
William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	12 / 26	William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	13 / 26
1D Graph Partition	ing: Example			1D Graph Partition	ing: Example (cont	.)	

- Consider the graph corresponding to the sparse matrix **A** of the previous example.
- Assume the graph is partitioned into four parts as follows:

$$P_1 = \{v_{13}, v_7, v_{16}, v_{11}\} \quad P_2 = \{v_{15}, v_9, v_2, v_5\}$$
$$P_3 = \{v_{14}, v_8, v_{10}, v_4\} \quad P_4 = \{v_3, v_{12}, v_1, v_6\}$$

• Draw the graph representation and compute the edge cut.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

		13	7	16	11	15	9	2	5	14	8	10	4	3	12	1	6	X	
	13	×			\times														
P1	7		\times		Х											\times			
1	16		\times	\times	\times											\times			
	11				\times							Х	X						
	15					\times	\times								\times	\times			
22	9						\times							\times					
	2						\times	\times	\times					\times					
	5								\times					\times					
	14									\times	\times	Х							
22	8				\times						\times	\times	\times						
	10	X			\times							\times							
	4									\times			X						
	3					Х								\times	Х	\times			
	12						\times							\times	Х		X		
	1														Х	\times			
	6													\times			\times		

- The row-striped layout of the sparse matrix **A** and vector **x** onto 4 processors under this graph-partitioning scheme is given on the previous slide.
- What is:
- (a) the computational load per processor?
- (b) the total comms vol. per matrix-vector product? How does the comms vol. compare to the edge cut?

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ・ロト ・ 同ト ・ ヨト ・ ヨト William Knottenbelt (Imperial) (Hyper)graph Partitioning William Knottenbelt (Imperial) (Hyper)graph Partitioning Eebruary 2015 16 / 26 1D Hypergraph Partitioning: Definition

- An $n \times n$ sparse matrix **A** can be represented as a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N}).$
- \mathcal{V} is a set of vertices and \mathcal{N} is a set of nets or hyperedges. Each $n \in \mathcal{N}$ is a subset of the vertex set \mathcal{V} .
- Each row i $(1 \le i \le n)$ in **A** corresponds to vertex $v_i \in \mathcal{V}$.
- Each column j $(1 \le i \le n)$ in **A** corresponds to net $N_i \in \mathcal{N}$. In particular $v_i \in N_i$ iff $a_{ii} \neq 0$.
- The (vertex) weight w_i of vertex v_i is the total number of non-zeros in row *i*.
- Given a partition $\{P_1, P_2, \ldots, P_p\}$, the connectivity λ_i of net N_i denotes the number of different parts spanned by N_i . Net N_i is cut iff $\lambda_i > 1.$

- 1D Hypergraph Partitioning: Definition (cont.)
 - The cutsize or hyperedge cut of a partition is defined as:

$$\sum_{N_j \in \mathcal{N}} (\lambda_j - 1)$$

- Aim is to minimise the hyperedge cut while maintaining the balance criterion (which is same as for graphs).
- Again, problem of finding a balanced *p*-way partition that minimises the hyper-edge cut is NP-complete, but heuristics can be used to find sub-optimal solutions.
- Software tools:
 - hMETIS
 - PaToH
 - Parkway

1D Hypergraph Partitioning: Example

- Consider the hypergraph corresponding to the sparse matrix **A** of the previous example.
- Assume the hypergraph is partitioned into four parts as follows:

 $P_1 = \{v_{13}, v_7, v_{16}, v_{10}\} \quad P_2 = \{v_{15}, v_9, v_1, v_3\}$ $P_3 = \{v_{14}, v_8, v_{11}, v_4\} \quad P_4 = \{v_2, v_{12}, v_5, v_6\}$

• Draw the hypergraph representation and compute the hyperedge cut.

	٩		うみで		<.⊥	コト 4 母 ト 4 国 ト 4 国 - シック
William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	20 / 26	William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015 21 / 26
1D Hypergraph Pa	rtitioning: Example ((cont.)		1D Hypergraph Par	rtitioning: Example (cont.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x x <t< th=""><th>22.6</th><th> The row-striped lay processors under th previous slide. What is: (a) the co (b) the to does t </th><th>out of the sparse matrix A is hypergraph partitioning omputational load per proc otal comms vol. per matrix the comms vol. compare to</th><th>and vector x onto 4 scheme is given on the essor? -vector product? How o the edge cut?</th></t<>	22.6	 The row-striped lay processors under th previous slide. What is: (a) the co (b) the to does t 	out of the sparse matrix A is hypergraph partitioning omputational load per proc otal comms vol. per matrix the comms vol. compare to	and vector x onto 4 scheme is given on the essor? -vector product? How o the edge cut?

22 / 26 William Knottenbelt (Imperial)

February 2015

2D Hypergraph Partitioning: Definition

- The most general mapping possible is to allocate individual non-zero matrix elements and vector elements to processors.
- General form of parallel sparse matrix-vector multiplication follows four stages, where each processor:
 - **(**) sends its x_j values to processors that possess a non-zero a_{ij} in column j,
 - 2 computes the products $a_{ij}x_j$ for its non-zeros a_{ij} yielding a set of contributions b_{is} where s is a processor identifier.
 - **③** sends b_{is} values to the processor that has b_i .
 - (adds up received contributions for assigned vector elements, so $b_i = \sum_{s=0}^{p-1} b_{is}$

- Each non-zero is modelled by a vertex (weight 1) in the hypergraph; if a_{ii} is zero then add "dummy" vertex (weight 0).
- Model Stage 1 comms volume by net whose constituent vertices are the non-zeros of column *j*. Model Stage 3 comms volume by net whose constituent vertices are the non-zeros of row *i*.
- Now partition hypergraph into p parts such that the k-1 metric is minimised, subject to balance constraint.
- Assign non-zeros to processors according to partition.
- Assign *b_i*'s to processors appropriately according to whether row *i* and/or column *i* hyperedge is cut (if any).

	<		596		4		500
William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	24 / 26	William Knottenbelt (Imperial)	(Hyper)graph Partitioning	February 2015	25 / 26
Comparison of Tech	nniques						

- A graph partition aims to minimise the number of non-zero entries in off-diagonal matrix blocks.
- A hypergraph partition aims to minimise actual communication; the partition may have more off-diagonal non-zero entries than a graph partition but these will tend to be column aligned.
- Either sort of partitioning is preferable to a naïve or random partition.
- Parallel partitioning tools are necessary for very large matrices, e.g. ParMETIS for graph partitioning, or Parkway, Zoltan, ... for hypergraph partitioning.

February 2015 26 / 26

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで