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Recommended Software Tools Outline

@ CHACO graph partitioning software:
http://www.cs.sandia.gov/~bahendr/chaco.html

Parallel Sparse Matrix—Vector Products

S Partitioning Objectives and Strategies
@ PaToH hypergraph partitioning software:

http://bmi.osu.edu/~umit/software.html

Naive Row-Striping

1D Graph Partitioning
o METIS/ParMETIS graph partitioners and hMETIS hypergraph

partitioner:
http://glaros.dtc.umn.edu/gkhome/views/metis

1D Hypergraph Partitioning

2D Hypergraph Partitioning
@ Parkway parallel hypergraph partitioner:

http://www.doc.ic.ac.uk/~at701/parkway/ @ Comparison of Graph and Hypergraph Partitioning Techniques
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Parallel Sparse Matrix—Vector Products Partitioning Objectives and Strategies

@ Aim is to allocate matrix and vector elements across processors such
that:

e computational load is balanced
e communication is minimised

@ Parallel sparse matrix—vector product (and similar) operations form
the kernel of many parallel numerical algorithms.

e Particularly widely used in iterative algorithms for solving very large °
sparse systems of linear equations (e.g. Jacobi and o
Conjugate-Gradient Squared methods).

@ The data partitioning strategy adopted (i.e. the assignment of matrix
and vector elements to processors) has a major impact on
performance, especially in distributed memory environments.
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Partitioning Objectives and Strategies Naive Row-Striping: Definition

°
@ Assume an n X n sparse matrix A, an n-vector x and p processors.
_ o ' @ Simply allocate n/p matrix rows and n/p vector elements to each
o Candidate partitioning strategies: processor (assuming p divides n exactly).
e random permutation applied to rows and columns with 2D
checkerboard processor layout e If p does not divide n exactly, allocate one extra row and one extra
e naive row (or column) striping vector element to those processors with rank less than n mod p.

e coarse-grained mapping of rows (or columns) and corresponding vector

elements to processors using 1D graph or hypergraph-based data

partitioning _ o _ @ What are the advantages and disadvantages of this scheme?
e fine-grained mapping of individual non-zero matrix elements and vector

elements to processors using 2D hypergraph-based partitioning
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Naive Row-Striping: Example Naive Row-Striping: Example (cont.)
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o x <
5 X X ‘ ‘ o Consider the layout of a 16 x 16 non-symmetric sparse matrix A and
oy O X X vector x onto 4 processors under a naive row-striping scheme on the
7| X X X previous slide.
8 X XX X _
T > >< N e What is:
py 1© XXX (a) the computational load per processor?
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1D Graph Partitioning: Definition 1D Graph Partitioning: Definition (cont.)

@ An n X n sparse matrix A can be represented as an undirected graph
Gg=0,¢).

@ Each row i (1 <i < n)in A corresponds to vertex v; € V in the

graph. @ An edge e is cut if the vertices which it contains are assigned to two
@ The (vertex) weight w; of vertex v; is the total number of non-zeros different processors, i.e. if v; € Py, and v; € P, where m # n.
in row J.

@ The edge-cut is the sum of the edge weights of cut edges and is an

o For the edge-set &, edge ej connects vertices v; and v; with (edge) approximation for the amount of interprocessor communication.

weight:
o 1 if either one of |a;| > 0 or |a;| > 0,
o 2 if both |a;| > 0 and |a;| >0

e Why is it not exact?

@ Aim to partition the vertices into p mutually exclusive subsets (parts)
{P1, Pa,..., Py} such that edge-cut is minimised and load is
balanced.
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1D Graph Partitioning: Definition (cont.) 1D Graph Partitioning: Definition (cont.)

@ Problem of finding a balanced p-way partition that minimises edge
o Let cut is NP-complete.

Wk:Zw,- (for 1 < k <p)

s @ But heuristics can often be applied to obtain good sub-optimal
k

solutions.

denote the weight of part P, and W denote the average part weight.
e Software tools:

@ A partition is said to be balanced if: o CHACO
(1- )W < Wi < (1+)W e
e ParMETIS

fork=1,2,...p.
T @ Once partition has been computed, assign matrix row /i to processor k

if vi € Pg.
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1D Graph Partitioning: Example 1D Graph Partitioning: Example (cont.)

@ Consider the graph corresponding to the sparse matrix A of the
previous example.

@ Assume the graph is partitioned into four parts as follows:
P1 = {v13,v7,vig, vi1} P2 = {vi5, vo, v2, v5}

Ps; = {V14, vg, V10, V4} Py = {V3= V12, V1, V6}

@ Draw the graph representation and compute the edge cut.
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1D Graph Partitioning: Example (cont.) 1D Graph Partitioning: Example (cont.)

13 7161115 9 2 5 14 8 10 4 3 12 1 6 X

13 X X

—_1 - @ The row-striped layout of the sparse matrix A and vector x onto 4
‘ j j processors under this graph-partitioning scheme is given on the
P2 previous slide.

8 X X || o What is:

8 >< VIS (a) the computational load per processor?

10) x| X (b) the total comms vol. per matrix—vector product? How
‘ does the comms vol. compare to the edge cut?
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1D Hypergraph Partitioning: Definition 1D Hypergraph Partitioning: Definition (cont.)

o An n x n sparse matrix A can be represented as a hypergraph @ The cutsize or hyperedge cut of a partition is defined as:

H=(V,N). -
@ Vs a set of vertices and V is a set of nets or hyperedges. Each Z (N —1)

. N;eN

n € N is a subset of the vertex set V.

@ Each row i (1 <i < n)in A corresponds to vertex v; € V. @ Aim is to minimise the hyperedge cut while maintaining the balance

@ Each column j (1 <i < n) in A corresponds to net N; € N. In criterion (which is same as for graphs).

particular v; € N; iff a; # 0. @ Again, problem of finding a balanced p-way partition that minimises
the hyper-edge cut is NP-complete, but heuristics can be used to find

@ The (vertex) weight w; of vertex v; is the total number of non-zeros _ )
sub-optimal solutions.

in row i.
e Given a partition {P1, P>,..., P,}, the connectivity A; of net N; ® Software tools:
denotes the number of different parts spanned by N;. Net N; is cut iff ° II;';A'I'EO-LIS
]
Aj > 1. e Parkway
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1D Hypergraph Partitioning: Example 1D Hypergraph Partitioning: Example (cont.)

@ Consider the hypergraph corresponding to the sparse matrix A of the
previous example.

@ Assume the hypergraph is partitioned into four parts as follows:
Py = {v13,v7,vi6,vio} P2 = {vis5,vo, v1,v3}

Pz = {via,vg, vi1,va} Pa={vo,vi2, 5,6}

@ Draw the hypergraph representation and compute the hyperedge cut.
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1D Hypergraph Partitioning: Example (cont.) 1D Hypergraph Partitioning: Example (cont.)

13 7161015 9 1 3 14 8 11 4 2 12 5 6 X

T s IVEVEVE. R: o The row-striped layout of the sparse matrix A and vector x onto 4
9 o w x| processors under this hypergraph partitioning scheme is given on the
1 X L% previous slide.

— — e What is:
8 x| X X X (a) the computational load per processor?

" < Rt (b) the total comms vol. per matrix—vector product? How
4 X X | does the comms vol. compare to the edge cut?
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2D Hypergraph Partitioning: Definition 2D Hypergraph Partitioning: Definition (cont.)

@ Each non-zero is modelled by a vertex (weight 1) in the hypergraph; if

@ The most general mapping possible is to allocate individual non-zero ajj is zero then add “dummy” vertex (weight 0).

matrix elements and vector elements to processors. . .
P @ Model Stage 1 comms volume by net whose constituent vertices are

the non-zeros of column j. Model Stage 3 comms volume by net
whose constituent vertices are the non-zeros of row i.

@ General form of parallel sparse matrix—vector multiplication follows
four stages, where each processor:

@ sends its x; values to processors that possess a non-zero a;; in column j,

@ computes the products a;x; for its non-zeros aj; yielding a set of @ Now partition hypergraph into p parts such that the k — 1 metric is

contributions b;s where s is a processor identifier. minimised, subject to balance constraint.
© sends b;s values to the processor that has b;.

@ adds up relceived contributions for assigned vector elements, so @ Assign non-zeros to processors according to partition.
bi =S"P_ 1 b;
s=0 Yis

@ Assign bj's to processors appropriately according to whether row i
and/or column i hyperedge is cut (if any).
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Comparison of Techniques

@ A graph partition aims to minimise the number of non-zero entries in
off-diagonal matrix blocks.

@ A hypergraph partition aims to minimise actual communication; the
partition may have more off-diagonal non-zero entries than a graph
partition but these will tend to be column aligned.

o Either sort of partitioning is preferable to a naive or random partition.

o Parallel partitioning tools are necessary for very large matrices, e.g.
ParMETIS for graph partitioning, or Parkway, Zoltan, ... for
hypergraph partitioning.
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