Efficient Parallel Sparse Matrix-Vector Multiplication Using Graph and Hypergraph Partitioning

William Knottenbelt

Imperial College London
wjk@doc.ic.ac.uk
February 2015

- U.V. Çatalyürek and C. Aykanat: "Hypergraph-Partitioning-Based Decomposition for Parallel Sparse Matrix-Vector Multiplication". IEEE Trans. on Parallel and Distributed Systems, 10(7), July 1999, pp. 673-693.
- A. Trifunovic: "Parallel Algorithms for Hypergraph Partitioning". PhD thesis, Imperial College London, November 2005.
- J.T. Bradley, D.V. de Jager, W.J. Knottenbelt, A. Trifunovic: "Hypergraph Partitioning for Faster PageRank Computation". Proc. EPEW 2005, pp. 155-171.
- A. Trifunovic and W.J. Knottenbelt: "A General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix-Vector Multiplication". Proc. ISCIS 2006, pp. 813-824.

Recommended Software Tools

Outline

- CHACO graph partitioning software:
http://www.cs.sandia.gov/~bahendr/chaco.html
- PaToH hypergraph partitioning software:
http://bmi.osu.edu/~umit/software.html
- METIS/ParMETIS graph partitioners and hMETIS hypergraph partitioner:
http://glaros.dtc.umn.edu/gkhome/views/metis
- Parkway parallel hypergraph partitioner:
http://www.doc.ic.ac.uk/~at701/parkway/
- Parallel Sparse Matrix-Vector Products
- Partitioning Objectives and Strategies
- Naïve Row-Striping
- 1D Graph Partitioning
- 1D Hypergraph Partitioning
- 2D Hypergraph Partitioning
- Comparison of Graph and Hypergraph Partitioning Techniques
- Parallel sparse matrix-vector product (and similar) operations form the kernel of many parallel numerical algorithms.
- Particularly widely used in iterative algorithms for solving very large sparse systems of linear equations (e.g. Jacobi and Conjugate-Gradient Squared methods).
- The data partitioning strategy adopted (i.e. the assignment of matrix and vector elements to processors) has a major impact on performance, especially in distributed memory environments.
- Aim is to allocate matrix and vector elements across processors such that:
- computational load is balanced
- communication is minimised
- Candidate partitioning strategies:
- random permutation applied to rows and columns with 2D
checkerboard processor layout
- naïve row (or column) striping
- coarse-grained mapping of rows (or columns) and corresponding vector elements to processors using 1D graph or hypergraph-based data
partitioning
- fine-grained mapping of individual non-zero matrix elements and vector elements to processors using 2D hypergraph-based partitioning

- Aim is to allocate matrix and vector elements across processors such
that:
- computational load is balanced
- communication is minimised
- Candidate partitioning strategies:
- random permutation applied to rows and columns with 2D checkerboard processor layout
- naïve row (or column) striping
- coarse-grained mapping of rows (or columns) and corresponding vector elements to processors using 1D graph or hypergraph-based data partitioning
- fine-grained mapping of individual non-zero matrix elements and vector elements to processors using 2D hypergraph-based partitioning
- Assume an $n \times n$ sparse matrix \mathbf{A}, an n-vector \mathbf{x} and p processors.
- Simply allocate n / p matrix rows and n / p vector elements to each processor (assuming p divides n exactly).
- If p does not divide n exactly, allocate one extra row and one extra vector element to those processors with rank less than $n \bmod p$.
- What are the advantages and disadvantages of this scheme?

1D Graph Partitioning: Definition

1D Graph Partitioning: Definition (cont.)

- An $n \times n$ sparse matrix \mathbf{A} can be represented as an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- Each row $i(1 \leq i \leq n)$ in \mathbf{A} corresponds to vertex $v_{i} \in \mathcal{V}$ in the graph.
- The (vertex) weight w_{i} of vertex v_{i} is the total number of non-zeros in row i.
- For the edge-set \mathcal{E}, edge $e_{i j}$ connects vertices v_{i} and v_{j} with (edge) weight:
- 1 if either one of $\left|a_{i j}\right|>0$ or $\left|a_{j i}\right|>0$,
- 2 if both $\left|a_{i j}\right|>0$ and $\left|a_{j i}\right|>0$
- Aim to partition the vertices into p mutually exclusive subsets (parts) $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$ such that edge-cut is minimised and load is balanced.
- An edge $e_{i j}$ is cut if the vertices which it contains are assigned to two different processors, i.e. if $v_{i} \in P_{m}$ and $v_{j} \in P_{n}$ where $m \neq n$.
- The edge-cut is the sum of the edge weights of cut edges and is an approximation for the amount of interprocessor communication.
- Why is it not exact?
- Let

$$
W_{k}=\sum_{i \in P_{k}} w_{i} \quad(\text { for } 1 \leq k \leq p)
$$

denote the weight of part P_{k}, and \bar{W} denote the average part weight.

- A partition is said to be balanced if:

$$
(1-\varepsilon) \bar{W} \leq W_{k} \leq(1+\varepsilon) \bar{W}
$$

for $k=1,2, \ldots p$.

- Problem of finding a balanced p-way partition that minimises edge cut is NP-complete.
- But heuristics can often be applied to obtain good sub-optimal solutions.
- Software tools:
- CHACO
- METIS
- ParMETIS
- Once partition has been computed, assign matrix row i to processor k if $v_{i} \in P_{k}$.
- Consider the graph corresponding to the sparse matrix \mathbf{A} of the previous example.
- Assume the graph is partitioned into four parts as follows:

$$
\begin{array}{ll}
P_{1}=\left\{v_{13}, v_{7}, v_{16}, v_{11}\right\} & P_{2}=\left\{v_{15}, v_{9}, v_{2}, v_{5}\right\} \\
P_{3}=\left\{v_{14}, v_{8}, v_{10}, v_{4}\right\} & P_{4}=\left\{v_{3}, v_{12}, v_{1}, v_{6}\right\}
\end{array}
$$

- Draw the graph representation and compute the edge cut.

1D Hypergraph Partitioning: Example

- Consider the hypergraph corresponding to the sparse matrix \mathbf{A} of the previous example.
- Assume the hypergraph is partitioned into four parts as follows:

$$
\begin{aligned}
P_{1} & =\left\{v_{13}, v_{7}, v_{16}, v_{10}\right\} \\
P_{3} & =\left\{v_{14}=\left\{v_{15}, v_{9}, v_{11}, v_{1}, v_{3}\right\}\right. \\
P_{4} & =\left\{v_{2}, v_{12}, v_{5}, v_{6}\right\}
\end{aligned}
$$

- Draw the hypergraph representation and compute the hyperedge cut.

1D Hypergraph Partitioning: Example (cont.)

1D Hypergraph Partitioning: Example (cont.)

- The row-striped layout of the sparse matrix \mathbf{A} and vector \mathbf{x} onto 4 processors under this hypergraph partitioning scheme is given on the previous slide.
- What is:
(a) the computational load per processor?
(b) the total comms vol. per matrix-vector product? How does the comms vol. compare to the edge cut?
- The most general mapping possible is to allocate individual non-zero matrix elements and vector elements to processors.
- General form of parallel sparse matrix-vector multiplication follows four stages, where each processor:
(1) sends its x_{j} values to processors that possess a non-zero $a_{i j}$ in column j,
(2) computes the products $a_{i j} x_{j}$ for its non-zeros $a_{i j}$ yielding a set of contributions $b_{i s}$ where s is a processor identifier.
(3) sends $b_{i s}$ values to the processor that has b_{i}.
(1) adds up received contributions for assigned vector elements, so $b_{i}=\sum_{s=0}^{p-1} b_{i s}$
- Each non-zero is modelled by a vertex (weight 1) in the hypergraph; if $a_{i j}$ is zero then add "dummy" vertex (weight 0).
- Model Stage 1 comms volume by net whose constituent vertices are the non-zeros of column j. Model Stage 3 comms volume by net whose constituent vertices are the non-zeros of row i.
- Now partition hypergraph into p parts such that the $k-1$ metric is minimised, subject to balance constraint.
- Assign non-zeros to processors according to partition.
- Assign b_{i} 's to processors appropriately according to whether row i and/or column i hyperedge is cut (if any).

Comparison of Techniques

- A graph partition aims to minimise the number of non-zero entries in off-diagonal matrix blocks.
- A hypergraph partition aims to minimise actual communication; the partition may have more off-diagonal non-zero entries than a graph partition but these will tend to be column aligned.
- Either sort of partitioning is preferable to a naïve or random partition.
- Parallel partitioning tools are necessary for very large matrices, e.g. ParMETIS for graph partitioning, or Parkway, Zoltan, ... for hypergraph partitioning.

