
Efficient Parallel Sparse Matrix–Vector Multiplication
Using Graph and Hypergraph Partitioning

William Knottenbelt

Imperial College London

wjk@doc.ic.ac.uk

February 2015

William Knottenbelt (Imperial) (Hyper)graph Partitioning February 2015 1 / 26

Recommended Reading
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Recommended Software Tools

CHACO graph partitioning software:
http://www.cs.sandia.gov/~bahendr/chaco.html

PaToH hypergraph partitioning software:
http://bmi.osu.edu/~umit/software.html

METIS/ParMETIS graph partitioners and hMETIS hypergraph
partitioner:
http://glaros.dtc.umn.edu/gkhome/views/metis

Parkway parallel hypergraph partitioner:
http://www.doc.ic.ac.uk/~at701/parkway/
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Parallel Sparse Matrix–Vector Products

Parallel sparse matrix–vector product (and similar) operations form
the kernel of many parallel numerical algorithms.

Particularly widely used in iterative algorithms for solving very large
sparse systems of linear equations (e.g. Jacobi and
Conjugate-Gradient Squared methods).

The data partitioning strategy adopted (i.e. the assignment of matrix
and vector elements to processors) has a major impact on
performance, especially in distributed memory environments.
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Partitioning Objectives and Strategies

Aim is to allocate matrix and vector elements across processors such
that:

computational load is balanced
communication is minimised

Candidate partitioning strategies:

random permutation applied to rows and columns with 2D
checkerboard processor layout
näıve row (or column) striping
coarse-grained mapping of rows (or columns) and corresponding vector
elements to processors using 1D graph or hypergraph-based data
partitioning
fine-grained mapping of individual non-zero matrix elements and vector
elements to processors using 2D hypergraph-based partitioning
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Näıve Row-Striping: Definition

Assume an n × n sparse matrix A, an n-vector x and p processors.

Simply allocate n/p matrix rows and n/p vector elements to each
processor (assuming p divides n exactly).

If p does not divide n exactly, allocate one extra row and one extra
vector element to those processors with rank less than n mod p.

What are the advantages and disadvantages of this scheme?
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Näıve Row-Striping: Example
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Näıve Row-Striping: Example (cont.)

Consider the layout of a 16 × 16 non-symmetric sparse matrix A and
vector x onto 4 processors under a näıve row-striping scheme on the
previous slide.

What is:

(a) the computational load per processor?

(b) the total comms volume per matrix–vector product?
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1D Graph Partitioning: Definition

An n × n sparse matrix A can be represented as an undirected graph
G = (V, E).

Each row i (1 ≤ i ≤ n) in A corresponds to vertex vi ∈ V in the
graph.

The (vertex) weight wi of vertex vi is the total number of non-zeros
in row i .

For the edge-set E , edge eij connects vertices vi and vj with (edge)
weight:

1 if either one of |aij | > 0 or |aji | > 0,
2 if both |aij | > 0 and |aji | > 0

Aim to partition the vertices into p mutually exclusive subsets (parts)
{P1,P2, . . . ,Pp} such that edge-cut is minimised and load is
balanced.
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1D Graph Partitioning: Definition (cont.)

An edge eij is cut if the vertices which it contains are assigned to two
different processors, i.e. if vi ∈ Pm and vj ∈ Pn where m 6= n.

The edge-cut is the sum of the edge weights of cut edges and is an
approximation for the amount of interprocessor communication.

Why is it not exact?
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1D Graph Partitioning: Definition (cont.)

Let
Wk =

∑

i∈Pk

wi (for 1 ≤ k ≤ p)

denote the weight of part Pk , and W denote the average part weight.

A partition is said to be balanced if:

(1− ε)W ≤Wk ≤ (1 + ε)W

for k = 1, 2, . . . p.
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1D Graph Partitioning: Definition (cont.)

Problem of finding a balanced p-way partition that minimises edge
cut is NP-complete.

But heuristics can often be applied to obtain good sub-optimal
solutions.

Software tools:

CHACO

METIS

ParMETIS

Once partition has been computed, assign matrix row i to processor k
if vi ∈ Pk .
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1D Graph Partitioning: Example

Consider the graph corresponding to the sparse matrix A of the
previous example.

Assume the graph is partitioned into four parts as follows:

P1 = {v13, v7, v16, v11} P2 = {v15, v9, v2, v5}

P3 = {v14, v8, v10, v4} P4 = {v3, v12, v1, v6}

Draw the graph representation and compute the edge cut.
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1D Graph Partitioning: Example (cont.)
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1D Graph Partitioning: Example (cont.)
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1D Graph Partitioning: Example (cont.)

The row-striped layout of the sparse matrix A and vector x onto 4
processors under this graph-partitioning scheme is given on the
previous slide.

What is:

(a) the computational load per processor?

(b) the total comms vol. per matrix–vector product? How
does the comms vol. compare to the edge cut?
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1D Hypergraph Partitioning: Definition

An n × n sparse matrix A can be represented as a hypergraph
H = (V,N ).

V is a set of vertices and N is a set of nets or hyperedges. Each
n ∈ N is a subset of the vertex set V.

Each row i (1 ≤ i ≤ n) in A corresponds to vertex vi ∈ V.

Each column j (1 ≤ i ≤ n) in A corresponds to net Nj ∈ N . In
particular vi ∈ Nj iff aij 6= 0.

The (vertex) weight wi of vertex vi is the total number of non-zeros
in row i .

Given a partition {P1,P2, . . . ,Pp}, the connectivity λj of net Nj

denotes the number of different parts spanned by Nj . Net Nj is cut iff
λj > 1.
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1D Hypergraph Partitioning: Definition (cont.)

The cutsize or hyperedge cut of a partition is defined as:

∑

Nj∈N
(λj − 1)

Aim is to minimise the hyperedge cut while maintaining the balance
criterion (which is same as for graphs).

Again, problem of finding a balanced p-way partition that minimises
the hyper-edge cut is NP-complete, but heuristics can be used to find
sub-optimal solutions.

Software tools:

hMETIS
PaToH
Parkway
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1D Hypergraph Partitioning: Example

Consider the hypergraph corresponding to the sparse matrix A of the
previous example.

Assume the hypergraph is partitioned into four parts as follows:

P1 = {v13, v7, v16, v10} P2 = {v15, v9, v1, v3}
P3 = {v14, v8, v11, v4} P4 = {v2, v12, v5, v6}

Draw the hypergraph representation and compute the hyperedge cut.
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1D Hypergraph Partitioning: Example (cont.)
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1D Hypergraph Partitioning: Example (cont.)
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1D Hypergraph Partitioning: Example (cont.)

The row-striped layout of the sparse matrix A and vector x onto 4
processors under this hypergraph partitioning scheme is given on the
previous slide.

What is:

(a) the computational load per processor?

(b) the total comms vol. per matrix–vector product? How
does the comms vol. compare to the edge cut?
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2D Hypergraph Partitioning: Definition

The most general mapping possible is to allocate individual non-zero
matrix elements and vector elements to processors.

General form of parallel sparse matrix–vector multiplication follows
four stages, where each processor:

1 sends its xj values to processors that possess a non-zero aij in column j ,
2 computes the products aijxj for its non-zeros aij yielding a set of

contributions bis where s is a processor identifier.
3 sends bis values to the processor that has bi .
4 adds up received contributions for assigned vector elements, so

bi =
∑p−1

s=0 bis
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2D Hypergraph Partitioning: Definition (cont.)

Each non-zero is modelled by a vertex (weight 1) in the hypergraph; if
aii is zero then add “dummy” vertex (weight 0).

Model Stage 1 comms volume by net whose constituent vertices are
the non-zeros of column j . Model Stage 3 comms volume by net
whose constituent vertices are the non-zeros of row i .

Now partition hypergraph into p parts such that the k − 1 metric is
minimised, subject to balance constraint.

Assign non-zeros to processors according to partition.

Assign bi ’s to processors appropriately according to whether row i
and/or column i hyperedge is cut (if any).
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Comparison of Techniques

A graph partition aims to minimise the number of non-zero entries in
off-diagonal matrix blocks.

A hypergraph partition aims to minimise actual communication; the
partition may have more off-diagonal non-zero entries than a graph
partition but these will tend to be column aligned.

Either sort of partitioning is preferable to a näıve or random partition.

Parallel partitioning tools are necessary for very large matrices, e.g.
ParMETIS for graph partitioning, or Parkway, Zoltan, . . . for
hypergraph partitioning.
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