
A Brief Introduction to OpenMP

Will Knottenbelt

Imperial College London

wjk@doc.ic.ac.uk

February 2015

Will Knottenbelt (Imperial) OpenMP February 2015 1 / 13

Recommended Reading

OpenMP FAQ
http://openmp.org/openmp-faq.html

OpenMP on Wikipedia
http://en.wikipedia.org/wiki/OpenMP

OpenMP Tutorial
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Will Knottenbelt (Imperial) OpenMP February 2015 2 / 13

Outline

Supercomputer Evolution

What is OpenMP

Using OpenMP

OpenMP vs MPI

OpenMP + MPI

Will Knottenbelt (Imperial) OpenMP February 2015 3 / 13

Supercomputer Evolution

Mainstream supercomputers of the 1990s tended to feature single
core, single processor nodes with specialised interconnects.

Imperial took delivery of a Fujitsu AP3000 supercomputer in 1997,
now already a museum piece:
http://museum.ipsj.or.jp/en/computer/super/0013.html

Modern supercomputers feature multi-core, multi-processor nodes
with specialised interconnects, see: http://www.top500.org

Clear need for parallelisation mechanism directly targetting multicore
shared-memory environments.

Will Knottenbelt (Imperial) OpenMP February 2015 4 / 13

What is OpenMP

OpenMP is a specification for a set of compiler directives, library
routines, and environment variables for specifying shared-memory
parallelism

A primary design goal was to take away the pain of programming
multithreaded applications and increase their portability

C/C++ and Fortran supported

Evolution directed by the OpenMP Architecture Review Board

Will Knottenbelt (Imperial) OpenMP February 2015 5 / 13

Using OpenMP

Supports incremental parallelisation of sequential code via addition of
compiler directives. So

int main() {

cout << "hello world" << endl;

return 0;

}

becomes:

#include <omp.h>

int main() {

#pragma omp parallel

{ cout << "hello world" << endl; }

return 0;

}

Will Knottenbelt (Imperial) OpenMP February 2015 6 / 13

Using OpenMP (cont.)

Support built into gcc/g++:

g++ omp_basic_hello.cpp -o omp_basic_hello -fopenmp

Default number of threads controlled by environment variable
OMP_NUM_THREADS (use setenv or export to set depending on your
shell)

Execute as normal:

./omp_basic_hello

Will Knottenbelt (Imperial) OpenMP February 2015 7 / 13

Using OpenMP (cont.)

In addition to parallel constructs there are various useful runtime
routines e.g.:

void omp_set_num_threads(int num_threads);

int omp_get_num_threads();

int omp_get_thread_num();

int omp_in_parallel();

double omp_get_wtime();

Will Knottenbelt (Imperial) OpenMP February 2015 8 / 13

Using OpenMP (cont.)

int main(int argc, char *argv[])

{

int th_id, nthreads;

#pragma omp parallel private(th_id) shared(nthreads)

{

th_id = omp_get_thread_num();

#pragma omp critical

{ cout << "Hello World from thread " << th_id << ’\n’; }

#pragma omp barrier

#pragma omp master

{

nthreads = omp_get_num_threads();

cout << "There are " << nthreads << " threads" << ’\n’;

}

}

return 0;

}

Will Knottenbelt (Imperial) OpenMP February 2015 9 / 13

Using OpenMP (cont.)

For loops can be scheduled in parallel, in a dynamic or static fashion:

#pragma omp for schedule(dynamic,chunk)

for (i=0; i<N; i++) {

c[i] = a[i] + b[i];

}

return 0;

}

Reductions are possible:

double ave=0.0, A[MAX]; int i;

#pragma omp parallel for reduction (+:ave)

for (i=0;i< MAX; i++) {

ave + = A[i];

}

ave = ave/MAX;

Will Knottenbelt (Imperial) OpenMP February 2015 10 / 13

OpenMP vs MPI

OpenMP is a predominantly implemented as a compiler extension;
MPI is implemented as a library of functions.

OpenMP uses threads, MPI processes.

OpenMP is restricted to shared-memory multiprocessor platforms, the
architecture of which can limit its scalability; MPI works on both
shared-memory and distributed-memory platforms.

OpenMP requires less expertise than MPI, allows concise incremental
parallelism and yields unified code for sequential and parallel
applications. MPI requires more knowledge and more programming to
go from serial to parallel code.

Performance comparable.

Will Knottenbelt (Imperial) OpenMP February 2015 11 / 13

OpenMP + MPI (cont.)

Increasingly popular as a complementary combination

Could it really be as simple as:

mpic++ program.cpp -o program -fopenmp

Let’s try!

Will Knottenbelt (Imperial) OpenMP February 2015 12 / 13

OpenMP + MPI

#include <iostream>

#include <omp.h>

#include "mpi.h"

int main(int argc, char **argv) {

int rank, tid;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel private(tid) num_threads(4)

{

tid = omp_get_thread_num();

#pragma omp critical

std::cout << "[" << rank << "] Started thread " << tid << std::endl;

}

MPI_Finalize();

return 0;

}

Will Knottenbelt (Imperial) OpenMP February 2015 13 / 13

