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ABSTRACT
Response time densities and quantiles are important performance
and quality of service metrics, but their analytical derivation is,
in general, very expensive. This paper presents a technique for
determining approximate response time densities in Markov and
semi-Markov stochastic models that requires two orders of mag-
nitude less computation than exact Laplace transform-based tech-
niques. The method computes the first four moments of the desired
response time and then makes use of Generalised Lambda Distri-
butions to obtain an approximation of the corresponding density.
Numerical results show good agreement over a range of response
time curves, particularly for those that are unimodal.

1. INTRODUCTION
Software and hardware system architects are increasingly required
to consider response time guarantees as key quality of service met-
rics. Indeed, response time quantiles are routinely specified in
Service Level Agreements (SLAs) and it is therefore important
to quantify the risk of violating response time targets. Analyt-
ical methods based on the numerical inversion of Laplace trans-
forms have recently been developed to extract response time densi-
ties and quantiles from high-level stochastic modelling formalisms
based on Markov and semi-Markov chains [7, 5, 3]. However, these
methods are computationally expensive, and large models require
the availability of a cluster of workstations to calculate results in
reasonable time.
This paper presents a low-cost technique which seeks to approxi-
mate response time densities and quantiles from the corresponding
first four moments. In contrast to the exact technique which re-
quires the solution of many hundreds of sets of linear equations,
calculation of the moments requires the solution of just four sets.
In both cases the dimension of the linear equations is given by the
number of states in the model. A Generalised Lambda Distribution
(GLD) is then fitted to these moments as an approximation to the
exact density. Fitting the moments is a rapid operation and its com-
plexity does not depend on the number of states. The corresponding
cumulative distribution function (used to determine response time
quantiles) is then obtained by numerical integration.
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The rest of this paper is organised as follows. Section 2 outlines
the computation of response time densities and their corresponding
moments in Markov and semi-Markov models. Section 3 intro-
duces Generalised Lambda Distributions and describes how a GLD
is fitted to a given set of moments. Section 4 compares exact and
approximate response time densities for a range of models. Sec-
tion 5 concludes and discusses future work.

2. RESPONSE TIME ANALYSIS

2.1 Semi-Markov Processes
Consider a Markov renewal process [9]{(Xn, Tn) : n ≥ 0}
whereTn is the time of thenth transition (T0 = 0) andXn ∈ S is
the state at thenth transition. Let the kernel of this process be:

R(n, i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i)

for i, j ∈ S. The continuous time semi-Markov process (SMP),
{Z(t), t ≥ 0}, defined by the kernelR, is related to the Markov
renewal process by:

Z(t) = XN(t)

whereN(t) = max{n : Tn ≤ t}, i.e. the number of state transi-
tions that have taken place by timet. ThusZ(t) represents the state
of the system at timet. We consider time-homogeneous SMPs, in
which R(n, i, j, t) is independent of any previous state except the
last. ThusR becomes independent ofn:

R(i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i)

= pijHij(t)

wherepij = IP(Xn+1 = j | Xn = i) is the state transition prob-
ability between statesi and j and Hij(t) = IP(Tn+1 − Tn ≤
t | Xn+1 = j, Xn = i), is the sojourn time distribution in statei
when the next state isj.

2.2 First passage times
Consider a finite, irreducible, continuous-time semi-Markov pro-
cess withN states{1, 2, . . . , N}. Recalling thatZ(t) denotes the
state of the SMP at timet (t ≥ 0), the first passage time from a
source statei at timet into a non-empty set of target states~j is:

Pi~j(t) = inf{u > 0 : Z(t+u) ∈ ~j, N(t+u) > N(t), Z(t) = i}
For a stationary time-homogeneous SMP,Pi~j(t) is independent of
t and we have:

Pi~j = inf{u > 0 : Z(u) ∈ ~j, N(u) > 0, Z(0) = i}
Pi~j has an associated probability density functionfi~j(t). In gen-
eral, the Laplace transform offi~j , Li~j(s), can be computed by



solving a set ofN linear equations:

Li~j(s) =
X

k/∈~j

r∗ik(s)Lk~j(s) +
X

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N

(1)
wherer∗ik(s) is the Laplace-Stieltjes transform (LST) ofR(i, k, t)
from Section 2.1 and is defined by:

r∗ik(s) =

Z ∞

0

e−st dR(i, k, t)

When there are multiple source states, denoted by the vector~i, the
Laplace transform of the passage time density at steady-state is:

L~i~j(s) =
X

k∈~i

αkLk~j(s)

where the weightαk is the probability at equilibrium that the sys-
tem is in statek ∈ ~i at the starting instant of the passage. If
π̃ denotes the steady-state vector of the embedded discrete-time
Markov chain (DTMC) with one-step transition probability matrix
P = [pij , 1 ≤ i, j ≤ N ], thenαk is given by:

αk =

¡
π̃k/

P
j∈~i π̃j if k ∈~i

0 otherwise

2.3 Moments
Let Mi~j(n) denote thenth moment of the first passage time be-

tween a given source statei and set of target states~j, and letmik(n)
denote thenth moment of the holding time in statei with next state
k. Assuming the derivatives ofr∗ik(s) exist at the origin, we have

mik(n) = (−1)n dnr∗ik(s)

dsn

ŕŕŕŕ
s=0

Hence, using Leibnitz’ rule,

Mi~j(n) =
X

k/∈~j

nX
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ű
mik(r)Mk~j(n− r) +

X

k∈~j

mik(n)

=
X

k/∈~j

nX
r=1

ţ
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ű
mik(r)Mk~j(n− r) +

X

k/∈~j

pikMk~j(n) +
X

k∈~j

mik(n) (2)

for i /∈ ~j andMi~j(n) = 0 for i ∈ ~j, wherepik = r∗ik(0) ≡
mik(0). The first and third terms on the right hand side will be
known prior to an iteration, facilitating a straightforward iteration
that solves a set of linear equations at each step.
For a Markov chain with generator matrixQ, Eq. 2 reduces to:

−qiiMi~j(n) =
X

k/∈~j

qikMk~j(n) + nMi~j(n− 1) (3)

for i /∈ ~j andMi~j(n) = 0 for i ∈ ~j. Forn = 0, we haveMi~j(0) =
1 and so each set of moments can be computed iteratively.

3. GENERALISED LAMBDA DISTRIBUTION

3.1 Description
The Generalised Lambda Distribution (GLD) is a family of curves
which has ability to assume a wide variety of shapes including the
standard distribution types exponential, normal,χ2, uniform, log-
normal etc. Because of this flexibility, GLDs have been extensively

used to fit and model continuous probability distributions in diverse
application areas such as meteorology, medical trials, financial data
modelling and Monte Carlo simulation studies [8].
A GLD is defined as an inverse cumulative distribution (quantile)
functionF−1(u) (whereu takes values between 0 and 1) that yields
the value ofx such thatF (x) = u. It has form:

F−1(u) ≡ Qλ1,λ2,λ3,λ4(u) (4)

whereλ1 the location parameter,λ2 is the scale parameter andλ3

andλ4 are the shape parameters. Ifλ3 = λ4 then the distribution
is symmetric. The functionQ can take one of two forms, both
of which are multi-parameter generalisations of the one-parameter
Tukey-Lambda distribution. For notational simplicity in what fol-
lows we will omit theλ subscripts and simply writeQ(u).
Using the relationshipsQ(u) = x andF (x) = u and Eq. (4), the
probability density functionf(x) may be derived as:

f(x) =
du

dx
=

du

dQ(u)
=

ţ
dQ(u)

du

ű−1

(5)

A plot of the density functionf(x) can thus be obtained paramet-
rically by plottingQ(u) againstf(Q(u)) for 0 ≤ u ≤ 1.
As we will be fitting the GLD by moments, we note that thekth
raw moment of a quantile functionQ(u) is:

E[Xk] =

Z ∞

0

xkf(x)dx

=

Z 1

0

(Q(u))k du

dQ(u)
dQ(u)

=

Z 1

0

(Q(u))kdu (6)

3.2 Parameterization
As mentioned, the functionQ in Eq. (4) can take on one of two
forms. In the original Ramberg-Schmeiser (RS) [15] parameterisa-
tion,

Q(u) = λ1 +
uλ3 − (1− u)λ4

λ2

However, this parameterisation does not result in a well defined pdf
for certain values ofλ3 andλ4 [8]. This limitation can be partially
overcome by introducing Generalised Beta Distributions (GBDs) to
extend the defined area [8]. The later FMKL [6] parameterisation
due to Freimeret aldefines

Q(u) = λ1 +
1

λ2

ţ
uλ3 − 1

λ3
− (1− u)λ4 − 1

λ4

ű
(7)

which is well defined over the entireλ3, λ4 plane. For this reason,
we adopt this FMKL parameterisation. Using Eq. (5) and Eq. (7)
we have:

f(Q(u)) =
λ2

uλ3−1 + (1− u)λ4−1

3.3 Fitting via moment matching
We wish to find GLD parametersλ1, λ2, λ3, λ4 such that the mean
µ, varianceσ2, skewnessα3 and kurtosisα4 of the GLD corre-
spond to a given mean̂µ, varianceσ̂2, skewnessα̂3 and kurtosis
α̂4. Matching these four measures of distribution is adequate to
determineλ1, λ2, λ3 andλ4.
First, we need to determine the central moments of the quantile



functionQ(u). Eq. (7) can be expanded as [10]:

Q(u) =

ţ
λ1 − 1

λ2λ3
+

1

λ2λ4
+

1

λ2

ţ
uλ3

λ3
− (1− u)λ4

λ4

űű

= a + bR(u) (8)

where

R(u) =

ţ
uλ3

λ3
− (1− u)λ4

λ4

ű

Let q̂k denote thekth central moment ofQ(u) andrk thekth raw
moment ofR(u). Then, from Eq. (8), the first four central moments
of Q(u), can be expressed in terms of the raw moments ofR(u)
as:

q̂1 = λ1 − 1/(λ2λ3) + 1/(λ2λ4) + r1/λ2

q̂2 =
1

λ2
2

ą
r2 − r2

1

ć

q̂3 =
1

λ3
2

ą
r3 − 3r1r2 + 2r3

1

ć

q̂4 =
1

λ4
2

ą
r4 − 4r1r3 + 6r2

1r2 − 3r4
1

ć
(9)

From Eq. (6),rk is given by:

rk =

Z 1

0

ţ
uλ3

λ3
− (1− u)λ4

λ4

űk

du

By binomial expansion onrk, we have [10]:

rk =

Z 1

0
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3

(1− u)λ4j

λj
4
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=

kX
j=0

(−1)j

λk−j
3 λj
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β(λ3(k − j) + 1, λ4j + 1)(10)

where

β(a, b) =

Z 1

0

ua−1(1− u)b−1du

The beta function is defined only for positive arguments, so (in
common with all GLD moment matching methods) we require

min(λ3, λ4) > −1

4
.

Now, from Eq. (9) and Eq. (10), it follows that the skewnessα3 ≡
q̂3/q̂

3/2
2 and and kurtosisα4 ≡ q̂4/q̂2

2 are functions ofλ3 andλ4

only. By solving the set of two simultaneous non-linear equations

α3 = α̂3

α4 = α̂4 (11)

we obtain values forλ3, λ4. Thenλ2 andλ1 are computed as:

λ2 =

p
r2 − r2

1

σ̂

λ1 = µ̂ +
1

λ2

ţ
1

λ3 + 1
− 1

λ4 + 1

ű

The non-linear equations of Eq. (11) do not have a closed-form
solution. However, it is possible to apply numerical methods such
as the Nelder-Mead simplex method [11, 13] and Powell’s method
[12]. Computer software libraries which implement these methods
and which perform multi-variable optimization are available; for
our results we used Besset’s Java library [1]. Corresponding cdfs
can be obtained by numerical integration of the pdf (e.g. using the

Trapezoidal rule or Simpson’s rule). Note that, since the system of
non-linear equations is small and of fixed size irrespective of the
number of states in the model, fitting the moments is typically very
rapid (cf. Section 4.5).

4. NUMERICAL RESULTS
This section presents results obtained from a variety of Markov and
semi-Markov models. In each case, we extract a response time
probability density function (pdf) and corresponding cumululative
distribution function (cdf) using the exact Laplace transform ap-
proach of Section 2.2 [7, 5, 3], and compare it to the approxima-
tions calculated using the GLD approach outlined above. We also
present timing results and compare the quality of the results with
those provided by the WinMoments tool [14].

4.1 GSPN models
We first apply our technique to two GSPN models. The Courier
model is a 45-place GSPN representing the ISO Application, Ses-
sion and Transport layers of a sliding-window communication pro-
tocol (see [16] for full details). The response time of interest is
the time taken from the start of a transport-layer send to the ar-
rival of the corresponding acknowledgement. The FMS model is
a 22-place GSPN representing an assembly line composed of three
types of machines and four types of parts (see [4] for full details).
Starting with 4 unprocessed parts of types 1, 2 and 3, we are in-
terested in measuring the time to complete the first processed part
of type 4. Fig. 1 shows the exact response time pdf and cdf, cal-
culated using the Laplace-transform based technique of [7], as well
as the approximate GLD pdf and cdf for the Courier (left) and FMS
(right) models. In both cases, we observe good agreement between
the approximate and exact pdfs, and excellent agreement between
the approximate and exact cdfs. The latter is particularly useful for
accurately estimating response time quantiles.

4.2 Queueing network model
We now apply our method to approximate a cycle time density for a
path in a closed tree-like network with 8 customers shown in Fig. 2
(left) (see [7] for full details). The cycle time of interest is mea-
sured from when a tagged customer arrives at the back of the first
queue, and ends when the customer returns to the queue. Fig. 2
(right) shows moderate agreement between the exact and approxi-
mate pdfs but excellent agreement between the cdfs.

4.3 Bimodal models
To test the ability of the GLD method to approximate response time
densities that are not unimodal, we show results for the cycle time
in a branching Erlang model (see [7]). This model is composed of
two equiprobable branches, one of which results in an Erlang(3, λ1)
delay, and the other of which results in a Erlang(12, λ2) delay. Set-
ting λ1 = λ2 = 1, we obtain a bimodal density curve, as shown
on the left in Fig. 3. The GLD approximation for the pdf does not
capture its bimodal nature; however the cdf still shows good agree-
ment. Settingλ1 = 1 andλ2 = 2, we obtain the almost unimodal
curve shown on the right in Fig. 3. The GLD approximation now
shows a much better fit (for both pdf and cdf).

4.4 SMSPN models
Moving on to semi-Markov Stochastic Petri net models (see [2] for
details of this formalism), we consider a model of a web content
authoring service (see [3] for more details). Authors publish con-
tent on a number of web servers; there is also a pool of readers who
submit requests to the servers to be provided with content. The
servers are unreliable and can fail and then recover. A system of



0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

f(
t)

t

exact pdf
gld pdf

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
(t

)

t

exact cdf
gld cdf

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25

f(
t)

t

exact pdf
gld pdf

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

F
(t

)

t

exact cdf
gld cdf

Figure 1: Courier GSPN-model pdf and corresponding cdf (left) and FMS GSPN-model pdf and corresponding cdf (right)
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Figure 2: Tree-like queueing network (left) with cycle time pdf and corresponding cdf (right)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

f(
t)

t

exact pdf
gld pdf

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
(t

)

t

exact cdf
gld cdf

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10 12 14

f(
t)

t

exact pdf
gld pdf

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

F
(t

)

t

exact cdf
gld cdf

Figure 3: Bimodal branching Erlang pdf and corresponding cdf (left) and almost unimodal branching Erlang pdf and corresponding
cdf (right)
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Figure 4: Webserver SMSPN-model Response Time 1 pdf and corresponding cdf (left) and Webserver SMSPN-model Response Time
2 pdf and corresponding cdf (right)



12 writers and 24 readers yields a15 257 state semi-Markov chain.
Fig. 4 (left) shows the distribution of time taken for all writers to
commit their updates and all readers to receive their requested con-
tent, while Fig. 4 (right) represents the time taken only for the read-
ers to receive their requested content. The exact distributions were
calculated using the iterative algorithm presented in [3].

4.5 Timing results
The table below compares the time (in seconds) taken to calcu-
late the above pdfs using the GLD method and the exact Laplace
transform-based method.

Moment Moment GLD Laplace
Model States Calc. Matching Total Total

courier 11 700 0.66 0.28 0.94 134
fms 35 910 7.64 0.42 8.06 834
tree 20 592 2.71 0.61 3.32 366

bi-erlang 32 0.05 0.27 0.32 14.6
uni-erlang 32 0.02 0.12 0.14 13.2

webserver-1 15 257 3.62 0.37 3.99 2374
webserver-2 15 257 1.91 1.08 2.99 1078

4.6 Comparison with WinMoments tool
Finally, Fig. 5 compares the cdf approximations produced by the
GLD method with the upper and lower bounds computed by Rácz’s
WinMoments tool [14] for the Webserver Response Time 2 cdf and
the first branching Erlang cdf. Given a finite number of moments
and at point, WinMoments calculates upper and lower bounds on
the value ofF (t). In both cases, the GLD approximation lies well
within the WinMoment-calculated bounds, and provides a better
approximation to the actual cdf than the mid-point of the bounds.
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Figure 5: Webserver SMSPN-model Response Time 2 cdf
(left) and first branching Erlang cdf (right) compared with the
bounds generated by the WinMoments tool.

5. CONCLUSIONS
We have conducted a study into the rapid approximation of re-
sponse time densities and quantiles in Markov and semi-Markov
models using Generalised Lambda Distributions. The results pre-
sented demonstrate that this method provides a good estimation of
pdfs and excellent estimation of cdfs from the first four moments of
response time, most notably where the response time densities are
unimodal. The approximations produced compare favourably with
the bounds generated by the WinMoments tool.
The GLD-based estimation technique offers significant predictive
insights at low cost when compared to an exact Laplace transform-
based approach. The exact technique requires the solution of a large
number of systems of linear equations (typically greater than 400),
the complexity of which is a function of the number of states in
the stochastic model. The approximation technique presented here,

however, requires the solution of only four sets of these linear equa-
tions in order to calculate the first four moments of the response
time distribution, plus the time taken to use these moments to per-
form the estimation (which is independent of the number of states).
As future work, we intend to investigate the sensitivity of the GLD
method to perturbations in the moments. For bimodal densities, it
may be possible to improve the accuracy of the GLD method by
considering them as the superposition of two unimodal densities.
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