
Hypergraph Partitioning for Faster Parallel

PageRank Computation

Jeremy T. Bradley, Douglas V. de Jager,
William J. Knottenbelt, and Aleksandar Trifunović

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{jb, dvd03, wjk, at701}@doc.ic.ac.uk

Abstract. The PageRank algorithm is used by search engines such as
Google to order web pages. It uses an iterative numerical method to
compute the maximal eigenvector of a transition matrix derived from
the web’s hyperlink structure and a user-centred model of web-surfing
behaviour. As the web has expanded and as demand for user-tailored
web page ordering metrics has grown, scalable parallel computation of
PageRank has become a focus of considerable research effort.

In this paper, we seek a scalable problem decomposition for parallel
PageRank computation, through the use of state-of-the-art hypergraph-
based partitioning schemes. These have not been previously applied in
this context. We consider both one and two-dimensional hypergraph de-
composition models. Exploiting the recent availability of the Parkway 2.1
parallel hypergraph partitioner, we present empirical results on a gigabit
PC cluster for three publicly available web graphs. Our results show that
hypergraph-based partitioning substantially reduces communication vol-
ume over conventional partitioning schemes (by up to three orders of
magnitude), while still maintaining computational load balance. They
also show a halving of the per-iteration runtime cost when compared to
the most effective alternative approach used to date.

1 Introduction

The PageRank metric is a widely-used hyperlink-based estimate of the relative
importance of web pages [1]. The standard algorithm for determining PageRank
uses power method iterations that converge to the maximal eigenvector of a tran-
sition matrix. This matrix is derived from a web graph that reflects the hyperlink
structure of the web and a user-centred model of web-surfing behaviour.

The sheer size and high growth rate of the web necessitates a scalable par-
allel/distributed approach to PageRank computation. In turn, the scalability of
such an approach demands detailed scrutiny of computation and communica-
tion overheads induced by problem decomposition over available processors. A
poor decomposition results in excessive communication overhead and/or a poor
computational load balance with correspondingly poor run times.

In addition to size considerations, web search engines are recognising the
need to tailor search results to different classes of users (or individual users),

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 155–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 J.T. Bradley et al.

and other contextual information [2]. This is achieved in practice by performing
distinct PageRank computations (using distinct personalisation vectors) for each
class of user or search context. Since these repeated calculations have the same
structure (in terms of matrix sparsity pattern), it is often worthwhile investing
considerable effort in finding a high-quality decomposition that can be reused
for every PageRank calculation.

A promising state-of-the-art approach for producing high-quality decompo-
sitions (that has been used in many contexts, ranging from VLSI circuit layout
to distributed database design), is hypergraph partitioning [3,4,5]. Hypergraphs
are extensions of graph data structures, in which (hyper)edges connect arbitrary
sets of vertices. Like graphs, hypergraphs can represent the structure of many
sparse, irregular problems, and may be partitioned such that a cut metric is min-
imised subject to a load balancing constraint. However, hypergraph cut metrics
provide a more expressive and accurate model than their graph counterparts. For
example, in the decomposition of a sparse matrix for parallel matrix–vector mul-
tiplication, hypergraph models quantify communication volume exactly, whereas
graph models can only provide an approximation [4].

This paper considers, for the first time, the application of hypergraph-based
decomposition techniques to the parallel PageRank computation problem. We
show how this problem can be mapped onto a hypergraph partitioning problem,
for both one- and two-dimensional decompositions. The partitioning of hyper-
graphs of large scale has only recently become a practical proposition with the
development of parallel hypergraph partitioning tools such as Parkway [6] and
the forthcoming Zoltan implementation [7]. Exploiting the Parkway tool as part
of a parallel PageRank computation pipeline, we present experimental results
using a gigabit PC cluster on three public-domain web graphs, ranging in size
from a university-domain to a national-level crawl. The results show a substantial
reduction in per-iteration communication volume, yielding a runtime reduction
of up to 70% over the most effective current alternative.

The remainder of this paper is organised as follows. Section 2 presents tech-
nical details of the PageRank algorithm. Section 3 describes the application of
hypergraph partitioning to parallel PageRank computation. Section 4 discusses
our results. Finally, Section 5 concludes and presents ideas for future work.

2 PageRank Algorithm

The PageRank computation for ranking hypertext-linked web pages was origi-
nally outlined by Page and Brin [1]. Later Kamvar et al. [8] presented a more
rigorous formulation of PageRank and its computation. In fact, the latter de-
scription differs from the original; however, apart from the respective treatment
of so-called cul de sac pages (web pages with no out-links, sometimes called
dead-end pages), the difference is largely superficial [9]. A good discussion of the
issues involved along with analysis of other variations in the PageRank algorithm
can be found in Langville et al. [10]. We shall concern ourselves here with the
Kamvar et al. formulation.

Hypergraph Partitioning for Faster Parallel PageRank Computation 157

Two intuitive explanations are offered for PageRank [8]. The first presents
PageRank as an analogue of citation theory: that is, an out-link from a web
page w to a web page w′ is an indication that w′ may be “important” to the
author of w. Many such links into w′, especially from pages that are themselves
“important”, should raise the importance of w′ relative to other web pages.
More specifically, the importance that is propagated from w to w′ should be
proportional to the importance of w and inversely proportional to the number
of out-links from w. This account of PageRank is still incomplete as it does not
take into account any form of user personalisation, or how to deal with cul de
sac pages.

The second conceptual model of PageRank is called the random surfer model.
Consider a surfer who starts at a web page and picks one of the links on that
page at random. On loading the next page, this process is repeated. If a cul de
sac page is encountered, then the surfer chooses to visit a random page. During
normal browsing, the user may also decide, with a fixed probability, not to choose
a link from the current page, but instead to jump at random to another page. In
the latter case, to support both unbiased and personalised surfing behaviour, the
model allows for the specification of a probability distribution of target pages.

The PageRank of a page is considered to be the (steady-state) probability
that the surfer is visiting a particular page after a large number of click-throughs.
Calculating the steady-state probability vector corresponds to finding a maxi-
mal eigenvalue of the modified web-graph transition matrix. As shown in Sec-
tion 2 below, this can be done via an iterative numerical method based on sparse
matrix–vector multiply operations.

Random Surfer Model. In the random surfer model, the web is represented by
a graph G = (V, E), with web pages as the vertices, V , and the links between web
pages as the edges, E. If a link exists from page u to page v then (u → v) ∈ E.

To represent the following of hyperlinks, we construct a transition matrix P
from the web graph, setting:

pij =
{ 1

deg(ui)
: if (ui → uj) ∈ E

0 : otherwise

where deg(u) is the out-degree of vertex u, i.e. the number of outbound links
from page u. From this definition, we see that if a page has no out-links, then
this corresponds to a zero row in the matrix P.

To represent the surfer’s jumping from cul de sac pages, we construct a second
matrix D = dpT , where d and p are both column vectors and:

di =
{

1 : if deg(ui) = 0
0 : otherwise

and p is the personalisation vector representing the probability distribution of
destination pages when a random jump is made. Typically, this distribution is
taken to be uniform, i.e. pi = 1/n for an n-page graph (1 ≤ i ≤ n). However, it
need not be as many distinct personalisation vectors may be used to represent

158 J.T. Bradley et al.

different classes of user with different web browsing patterns. This flexibility
comes at a cost, though, as each distinct personalisation vector requires an ad-
ditional PageRank calculation.

Putting together the surfer’s following of hyperlinks and his/her random
jumping from cul de sac pages yields the stochastic matrix P′ = P + D, where
P′ is a transition matrix of a discrete-time Markov chain (DTMC).

To represent the surfer’s decision not to follow any of the current page links,
but to instead jump to a random web page, we construct a teleportation ma-
trix E, where eij = pj for all i, i.e. this random jump is also dictated by the
personalisation vector.

Incorporating this matrix into the model gives:

A = cP′ + (1 − c)E (1)

where 0 < c < 1, and c represents the probability that the user chooses to follow
one of the links on the current page, i.e. there is a probability of (1− c) that the
surfer randomly jumps to another page instead of following links on the current
page.

This definition of A avoids two potential problems. The first is that P′,
although a valid DTMC transition matrix, is not necessarily irreducible (i.e. it
might have more than one strongly connected subset of states) and aperiodic.
Taken together, these are a sufficient condition for the existence of a unique
steady-state distribution. Now, provided pi > 0 for all 1 ≤ i ≤ n, irreducibility
and aperiodicity are trivially guaranteed.

The second problem relates to the rate of convergence of power method
iterations used to compute the steady-state distribution. This rate depends on
the reciprocal of the modulus of the subdominant eigenvalue (λ2). For a general
P′, |λ2| may be very close to 1, resulting in a very poor rate of convergence.
However, it has been shown in [11] that in the case of matrix A, |λ2| ≤ c, thus
guaranteeing a good rate of convergence for the widely taken value of c = 0.85.

Given the matrix A, we can now define the unique PageRank vector, π, to
be the steady-state vector or the maximal eigenvector that satisfies:

πA = π (2)

Power Method Solution. Having constructed A we might näıvely attempt to
find the PageRank vector of Eq. (2) by using a direct power method approach:

x(k+1) = x(k)A (3)

where x(k) is the kth iterate towards the PageRank vector, π. However looking
at the current size of the web and its rate of growth since 1997 (currently 8
billion indexed pages [12]), it is clear that this is not a practical approach for
realistic web graphs. The reason for this is that A is a (completely) dense matrix.
Accordingly, the PageRank algorithm, as cited in for instance Kamvar et al. [13],
reduces Eq. (3) to a series of sparse vector–matrix operations on the original P
matrix.

Hypergraph Partitioning for Faster Parallel PageRank Computation 159

1. x(0) := pT

2. y := cx(k)P
3. ω := ‖x(k)‖1 − ‖y‖1

4. x(k+1) := y + ωpT

5. Repeat from 2. until ‖x(k+1) − x(k)‖1 < ε

Fig. 1. Pseudocode description of the PageRank algorithm

In particular, transforming Eq. (3) gives:

x(k+1) = x(k)A
= cx(k)P′ + (1 − c)x(k)E

= cx(k)P + cx(k)D + (1 − c)x(k)(1pT) (4)

Now x(k)D = (‖x(k)‖1 − ‖x(k)P‖1)pT , where ‖a‖1 =
∑

i |ai| is the 1-norm of
a and further ‖a‖1 = 1Ta if ai ≥ 0 for all i. It can be shown inductively that
‖x(k)‖1 = 1 for all k, so:

x(k+1) = cx(k)P + c(1 − ‖x(k)P‖1)pT + (1 − c)(x(k)1)pT

= cx(k)P + (1 − c‖x(k)P‖1)pT (5)

This leads to the algorithm shown in Fig. 1. When distributing this algorithm,
it is important to distribute the sparse matrix–vector calculation of x(k)P in
such a way so as to balance computational load as evenly as possible across
the processors and minimise communication overhead between processors. This
latter optimisation is where we introduce hypergraph partitioning for P.

Later, in Section 4, we refine the coarse notion of communication overhead to
distinguish between number of messages sent, total communication volume (in
terms of number of floating point elements sent), as well as maximum number
of messages sent by a processor.

3 Parallel PageRank Computation

We consider the parallel formulation of the PageRank algorithm from Section 2
for which the kernel operation is parallel sparse matrix–vector multiplication.
Note that, although our discussion is presented in the context of power method
solution, there is nothing to prevent the application of our technique to other
iterative linear system solvers with a sparse matrix–vector multiplication ker-
nel, such as the Krylov subspace methods proposed in [14]. Furthermore, our
approach does not preclude the application of power method acceleration tech-
niques, for example those proposed in [8].

Efficient Parallel Sparse Matrix–Vector Multiplication. Let Ax = b be
the sparse matrix–vector product to be computed in parallel on p distributed

160 J.T. Bradley et al.

processors that are connected by a network. The general form of a parallel algo-
rithm for sparse matrix–vector multiplication with an arbitrary non-overlapping
distribution of the matrix and the vectors across the processors is given in [5]:

1. Each processor sends its components xj to those processors that possess a
non-zero aij in column j.

2. Each processor computes the products aijxj for its non-zeros aij and adds
the results for the same row index i. This yields a set of contributions bis,
where s is the processor identifier 0 ≤ s < p.

3. Each processor sends its non-zero contributions bis to the processor that is
assigned vector element bi.

4. Each processor adds the contributions received for its components bi, giving
bi =

∑p−1
s=0 bis.

Efficient parallel sparse matrix–vector multiplication requires intelligent a
priori partitioning of the sparse matrix non-zeros across the processors. This
ensures that interprocessor communication during stages 1 and 3 is minimised
and computational load balance is achieved across the processors. We note that
the computational requirement of step 2 dominates that of step 4. Henceforth,
we assume that the computational load of the entire algorithm is represented by
step 2.

Recently, a number of hypergraph-based models for parallel sparse matrix–
vector multiplication that correctly model total communication volume and
per-processor computational load have been proposed [4,15,16,5]. These have
addressed the shortcomings implicit in traditional graph models [17]. In [4], a
hypergraph-based model for 1-dimensional decomposition of the sparse matrix
is proposed. A 1-dimensional decomposition implies that processors either store
entire rows or entire columns of the matrix. Note that, in the case of row-wise
decomposition, this has the effect of making the communication step 3 in the
parallel sparse matrix–vector multiplication pipeline redundant; in the case of
column-wise decomposition, step 1 is redundant. The hypergraph-based models
in [15,16,5] are 2-dimensional, which means to say that they model a general
distribution of matrix non-zeros to processors (not necessarily assigning entire
rows or columns of the matrix to processors). Although here both steps 1 and 3
may incur communication overhead, the overall communication volume should
be at least as low as that of the 1-dimensional decomposition (at least for op-
timal partitions, since the 1-dimensional decomposition is a special case of the
2-dimensional decomposition).

In previous work on efficient parallel PageRank implementation, only näıve
1-dimensional matrix decompositions have been considered. In [14], the authors
reject traditional graph partitioning models as a plausible approach, on account
of the apparent power-law distribution of the number of non-zeros in the rows of
web graph transition matrices. Instead, they use a relatively simple load balanc-
ing scheme that assigns consecutive rows of the matrix to each processor. Our
work here demonstrates that this power-law distribution does not appear to be
a significant obstacle in the context of a hypergraph-based approach.

Hypergraph Partitioning for Faster Parallel PageRank Computation 161

In this paper, we consider both 1-dimensional decomposition, based on the
hypergraph model presented in [4], and 2-dimensional decomposition, based on
the models presented in [15,5]. Since the output vector b of the parallel sparse
matrix–vector product is reused as the input vector x in the subsequent iteration,
we note that the processor that is assigned the vector component bi should also
be assigned the vector component xi (resulting in a symmetric decomposition of
the vector elements).

Description of the Hypergraph Models. A hypergraph is a set system (V, E)
on a set V , here denoted H(V, E), such that E ⊂ P(V), where P(V) is the power
set of V . The elements of the set V are called the vertices of the hypergraph and
E the set of hyperedges, where each hyperedge e ∈ E is a subset of the set V .
When E ⊂ V (2), each hyperedge has cardinality two and the resulting set system
is known as a graph. A hypergraph H(V, E) is said to be hyperedge-weighted if
each hyperedge e ∈ E has an associated integer weight. Correspondingly, in a
vertex-weighted hypergraph H(V, E), each vertex v ∈ V has an integer weight.

Given a hypergraph H(V, E), with V = {v1, . . . , vn} and E = {e1, . . . , en},
the corresponding incidence matrix A = (aij) is the n × n matrix with entries

aij =
{

1 if vi ∈ ej

0 otherwise (6)

A k-way partition Π (k > 1) of the set V is a finite collection Π = {P1, . . . , Pk},
of subsets of V (or parts), such that Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ k and⋃k

i=1 Pi = V . A hyperedge is said to be cut by a partition if it spans (i.e. has a
vertex in) at least two parts of a partition. The goal of the hypergraph partition-
ing problem is to find a k-way partition Π = {P1, . . . , Pk}, with corresponding
part weights Wi, 1 ≤ i ≤ k, such that an objective function fo : (Π, E) → Z is
optimised, while a balance constraint over the part weights is maintained. That
is, for some ε (0 < ε 	 1):

Wi < (1 + ε)Wavg (7)

for all 1 ≤ i ≤ k. The part weights Wi are computed as the sum of the constituent
vertex weights. Here we consider the objective function known as the k−1 metric,
shown in Eq. (8), where λi represents the number of parts spanned by hyperedge
ei and w(ei) is the weight of hyperedge ei.

fo(Π, E) =
n∑

i=1

(λi − 1)w(ei) (8)

As the hypergraph partitioning problem is NP-hard [18], in practice a good
sub-optimal partition is sought in low-order polynomial time using heuristic
multilevel algorithms.

1-Dimensional Sparse Matrix Decomposition. Without loss of generality,
we describe the hypergraph model for 1-dimensional row-wise sparse matrix

162 J.T. Bradley et al.

decomposition, i.e. where all non-zeros in a row of the matrix are allocated to
the same processor. A similar column-wise model follows from considering the
allocation of all non-zeros in a column of the matrix to the same processor. These
1-dimensional hypergraph-based models were first proposed in [4].

The hypergraph model H(V, E) for the decomposition of a sparse matrix A
is constructed as follows. The rows of the matrix A form the set of vertices V in
the hypergraph H(V, E) and the columns form the set of hyperedges E . That is,
if aij
= 0, then hyperedge ej ∈ E , defined by column j of the matrix A, contains
vertex vi ∈ V . The weight of vertex vi ∈ V is given by the number of non-zero
elements in row i of the matrix A, representing the computational load induced
by assigning row i to a processor. The weights of each hyperedge are set to unity.

The allocation of the rows of the matrix A to p processors for parallel sparse
matrix–vector multiplication corresponds to a p-way partition Π of the above
hypergraph H(V, E). Ignoring the negligible impact of stage 4, as mentioned
earlier, the computational load on each processor i is given by the number of
scalar multiplications performed on that processor during stage 2 of the general
parallel sparse matrix–vector multiplication pipeline. This quantity is given by
the number of non-zeros of the matrix A allocated to that processor, which is
in turn given by the weight of part Pi.

The vector elements xi and bi are allocated to the processor that is allocated
row i of the matrix A. There remains one further condition that the hypergraph
model must satisfy to ensure that the k-1 metric on partition Π exactly repre-
sents the total communication volume incurred during a single parallel sparse
matrix–vector multiplication (in this case stage 1 only). We require that for all
1 ≤ i ≤ n, vi ∈ ei holds. If this is not the case for some 1 ≤ i′ ≤ n, then we add
vi′ to hyperedge ei′ . The weight of vi′ is not modified.

Thus, finding a partition that minimises the k-1 metric over the hypergraph
while maintaining the balance constraint in Eq. (7) directly corresponds to min-
imising communication volume during parallel sparse matrix–vector multiplica-
tion while maintaining a computational load balance.

2-Dimensional Sparse Matrix Decomposition. The 2-dimensional sparse
matrix decomposition takes a more general approach, no longer imposing the
restriction of allocating entire rows (or columns) of the matrix A to the same
processor, as in 1-dimensional decomposition. Instead, a general distribution
of matrix non-zeros to processors is considered. This may introduce additional
communication operations during stage 3 in the general parallel sparse matrix–
vector multiplication pipeline, but the aim is to reduce the overall communication
volume. Here we describe the hypergraph model H(V, E) introduced in [15,5].
Each non-zero aij
= 0 is modelled by a vertex v ∈ V so that a p-way partition Π
of the hypergraph H(V, E) will correspond to an assignment of matrix non-zeros
across p processors.

In order to define the hyperedges of the hypergraph model, consider the cause
of communication between processors in stages 1 and 3 of the parallel sparse
matrix–vector multiplication pipeline. In stage 1, the processor with non-zero
aij requires vector element xj for computation during stage 2. This results in a

Hypergraph Partitioning for Faster Parallel PageRank Computation 163

communication of xj to the processor assigned aij if xj is assigned to a different
processor to aij . The dependence between non-zeros in column j of matrix A and
vector element xj can be modelled by a hyperedge, whose constituent vertices are
the non-zeros of column j of the matrix A. So that the communication volume
associated with communicating vector element xj is given by λj − 1, where λj

denotes the number of parts spanned by the column j hyperedge, we require
that the column j hyperedge contains the vertex corresponding to non-zero ajj .
If ajj is zero in the matrix A, we can add a “dummy” vertex with zero weight
corresponding to ajj . The fact that this vertex has weight zero means that its
allocation to a processor will have no bearing on the processor’s computational
load, while the exact communication volume during stage 1 is modelled correctly.

In stage 3, the processor assigned vector element bi requires the value of the
inner product of row i of the matrix A with the vector x. Thus, a communication
between processors is induced if matrix non-zero aij is assigned to a different
processor from vector entry bi. The dependence between non-zeros in row i
of matrix A and vector element bi can be modelled by a hyperedge, whose
constituent vertices are the non-zeros of row i of the matrix A. This is analogous
to modelling the communication of stage 1 with column hyperedges and likewise,
“dummy” vertices corresponding to aii are added to row hyperedge i if the value
of aii in matrix A is zero.

The hypergraph model H(V, E) is then partitioned into p parts such that
the k-1 metric is minimised, subject to the balance constraint of Eq. (7) (thus
maintaining computational load balance during stage 2). In our implementation,
this is done using a parallel multilevel partitioning algorithm [19,6].

Note that, except for restricting vector elements xi and bi to the same pro-
cessor, we have not explicitly allocated vector entries to processors. The overall
communication volume during the parallel sparse matrix–vector multiplication
will be correctly modelled by the 2-dimensional hypergraph model, provided that
we allocate the vector elements to processors in the following fashion. For the
vector element with index i:

1. If both the row i hyperedge and the column i hyperedge are not cut, then
assign vector elements xi and bi to the processor assigned vertices from row
i and column i hyperedges.

2. If the row i hyperedge is cut and the column i hyperedge is not cut, then
assign vector elements xi and bi to the processor assigned vertices from
column i hyperedge.

3. If the row i hyperedge is not cut and the column i hyperedge is cut, then
assign vector elements xi and bi to the processor assigned vertices from row
i hyperedge.

4. If both the row i hyperedge and the column i hyperedge are cut, then let Ri

denote the set of processors that contain row i hyperedge elements and let Ci

denote the set of processors that contain column i hyperedge elements. Since
either aii
= 0 or there exists a “dummy” vertex in the row i and column
i hyperedges corresponding to aii, the set Ti = Ri ∩ Ci is non-empty and
vector elements xi and bi may be assigned to any of the processors in Ti.

164 J.T. Bradley et al.

With the additional freedom in the assignment of vector elements to proces-
sors given by case 4 above, it may be possible to further decrease the maximum
number of messages sent or received by an individual processor while keeping the
overall communication volume constant. In our implementation of stage 4 above,
the vector elements xi and bi are allocated to the first part in Ti encountered
during traversal of matrix A.

4 Experimental Results

In this section, we apply four decomposition strategies to calculate PageRanks
for three publicly available web graphs. Each web graph was generated from a
crawl of a particular domain or combination of domains; we represent them
by a sparse matrix A with non-zero aij whenever there exists a link from
page i to page j. The Stanford and Stanford Berkeley web graphs were ob-
tained from the University of Florida Sparse Matrix Collection [20] and repre-
sent lexically ordered crawls of the Stanford and combined Stanford/Berkeley
domains respectively. The India-2004 web graph represents a breadth-first crawl
of the .in domain conducted in 2004, obtained from the UbiCrawler public data
set [21]. The main characteristics of the corresponding matrices are given in
Table 1.

The two hypergraph decomposition methods of Section 3 were tested against
two näıve load balancing methods. In the cyclic row-striping matrix decompo-
sition, the non-zeros of the matrix A in row with index i are assigned to the
processor i mod p. Vector elements xi and bi are also allocated to processor
i mod p. This ensures that each processor is allocated the same number (±1) of
rows of matrix A and vector elements of x and b. However, this scheme does
not take into account the distribution of the non-zeros within the rows.

The load balancing scheme presented in [14], hereafter referred to as the
GleZhu scheme, attempts to balance the number of non-zeros across the pro-
cessors, while assigning consecutive rows of the matrix A to each processor. A
threshold value τp = (wnn + wηη)/p is computed, where n is the number of
rows and η the number of non–zeros in the matrix. The parameters wn and
wη were both set to unity in [14]. Starting with row index zero and i = 0, the
load–balancing algorithm then assigns consecutive rows of matrix A and con-
secutive elements of vectors x and b to each processor i, maintaining the value
of τi = wnni + wηηi, where ni is the number of rows and ηi the number of
non–zeros assigned thus far to processor i. When τi exceeds τp, the algorithm
begins to assign subsequent rows to processor i + 1.

Table 1. Characteristics of the test hypergraphs

WebGraph #rows #columns #non-zeros

Stanford 281 903 281 903 2 594 228
Stanford Berkeley 683 446 683 446 8 262 087

India-2004 1 382 908 1 382 908 16 917 053

Hypergraph Partitioning for Faster Parallel PageRank Computation 165

WebGraph

x1

x2
.

.

.

xn

Pagerank

Vector
x =

Sparse

Matrix

Decomposition

PageRank

Parallel

Computation

Naive Partitioning Models

Hypergraph Partitioning Models

1D

2D

Cyclic

Gleich−Zhukov

Parallel Partitioning with Parkway2.1

Fig. 2. Parallel PageRank Calculation Pipeline

Experimental Setup. Our parallel PageRank computation pipeline is shown
in Fig. 2. Taking the web graph matrix A as input, a decomposition of this matrix
across p processors is performed using either one of the hypergraph partitioning-
based models (i.e. 1D or 2D) or one of the load balancing row-wise decomposition
methods (i.e. cyclic or GleZhu).

The hypergraph partitioning-based schemes compute a p-way partition of
the hypergraph representation of the sparse web matrix using the parallel hy-
pergraph partitioning tool Parkway2.1 [6]. In our experiments, we have used
a 5% balance constraint for hypergraph partitioning, meaning that the weight
of each part in the partition of the hypergraph must not exceed the average
part weight by more than 5% (ε = 0.05 in Eq. (7)). The computed hyper-
graph partition is then used to allocate the rows (in the case of 1D partition-
ing) or the non-zeros (in the case of 2D partitioning) of the web matrix to the
processors.

Finally, the algorithm described in Section 2 is used to compute the PageRank
vector for the matrix, with all matrix–vector and vector operations performed
in parallel. The criterion of convergence for the PageRank calculation was taken
to be 10−8 and convergence was computed using the L1 norm.

The architecture used in all the experiments consisted of a Beowulf Linux
Cluster with 8 dual processor nodes. Each node has two Intel Pentium 4 3.0GHz
processors and 2GB of RAM. The nodes are connected by a gigabit Ethernet
network. The algorithms were implemented in C++ using the Message Passing
Interface (MPI) standard.

Results. For each matrix decomposition method, we observed the following
measures of communication cost during each parallel PageRank iteration: to-
tal communication volume (the total volume of all messages sent); number of

166 J.T. Bradley et al.

Table 2. Stanford Web graph Results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 15.2 1 181
#iterations 83 83 85 88

per iteration time(s) 0.2153 0.1681 0.0699 0.0762
Ax = b time(s) 0.2028 0.1621 0.0583 0.0657

Ax = b comp. time(s) 0.0607 0.0390 0.0551 0.0599
Ax = b comm. time(s) 0.1427 0.1237 0.0035 0.0058

#messages 12 12 12 19
max non-zeros per proc. 614 346 583 653 607 030 601 362

max vector elems per proc. 70 476 73 611 90 601 87 253

max per proc. comm. vol. 304 442 267 683 12 344 1 318
total comm. vol. 601 964 530 420 13 849 1 399

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 13.2 1 061
#iterations 79 79 83 86

per iteration time(s) 0.1854 0.1473 0.0443 0.0465
Ax = b time(s) 0.1716 0.1415 0.0318 0.0365

Ax = b comp. time(s) 0.0425 0.0169 0.0269 0.0309
Ax = b comm. time(s) 0.1299 0.1253 0.0055 0.0056

#messages 56 56 44 64
max non-zeros per proc. 326 891 297 854 303 515 299 503

max vector elems per proc. 35 238 38 962 49 443 55 398

max per proc. comm. vol. 255 053 231 233 31 564 1 660
total comm. vol. 989 071 894 098 34 221 2 285

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.3 543.1
#iterations 75 76 79 81

per iteration time(s) 0.1810 0.1446 0.0515 0.0513
Ax = b time(s) 0.1614 0.1377 0.0347 0.0353

Ax = b comp. time(s) 0.0532 0.0182 0.0242 0.0277
Ax = b comm. time(s) 0.1094 0.1203 0.0116 0.0076

#messages 240 240 147 207
max non-zeros per proc. 192 857 155 898 151 757 151 236

max vector elems per proc. 17 619 21 208 31 215 28 221

max per proc. comm. vol. 186 331 173 525 39 820 2 214
total comm. vol. 1 364 285 1 325 808 74 137 4 307

messages sent; the maximum total communication volume of messages sent and
received by a single processor during stage 1, in the case of row-wise decom-
position, and the maximum total communication volume of messages sent and
received by a single processor during stages 1 and 3, in the case of 2D decompo-
sition.

The purely load balancing matrix decomposition approaches do not attempt
to minimise the metrics above. The 1D and 2D hypergraph-based methods aim
to minimise the overall communication volume. In row-wise decomposition meth-
ods, the number of messages sent during parallel sparse matrix–vector multipli-
cation is at most p(p− 1). In the 2D method, the number of messages is at most
2p(p − 1).

Tables 2, 3 and 4 present results of our experiments on the Stanford, Stan-
ford Berkeley and india-2004 web graphs, respectively. The following statistics
are also recorded, for the combination of different web graph models being run
on 4, 8 and 16 processor clusters using the 4 distinct partitioning algorithms:
decomposition time (time taken to prepare the partition for each of the different
partitioning algorithms); number of iterations (number of iterations to conver-
gence of the distributed PageRank algorithm); per iteration times (average time
for a single PageRank iteration); Ax = b time (average time to perform a single
Ax = b iteration); Ax = b comp. time (time taken to complete the local com-
putation of an Ax = b iteration); Ax = b comm. time (time taken to complete
the interprocessor communication of an Ax = b iteration); Max non-zeros per
proc. (maximum number of non-zeros allocated per processor); Max vector elems

Hypergraph Partitioning for Faster Parallel PageRank Computation 167

Table 3. Stanford Berkeley Web graph results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 22.9 5 169
#iterations 84 87 89 89

per iteration time(s) 0.4596 0.0618 0.0353 0.0377
Ax = b time(s) 0.4341 0.0527 0.0253 0.0264

Ax = b comp. time(s) 0.0632 0.0237 0.0239 0.0244
Ax = b comm. time(s) 0.3714 0.0293 0.0018 0.0019

#messages 12 12 12 20
max non-zeros per proc. 1 977 527 1 906 240 1 990 554 1 989 151

max vector elems per proc. 170 862 188 568 204 129 243 758

max per proc. comm. vol. 810 530 112 101 6 432 2 023
total comm. vol. 1 605 286 165 765 6 648 2 081

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.4 3 304
#iterations 80 85 85 84

per iteration time(s) 0.4616 0.0458 0.0285 0.0246
Ax = b time(s) 0.4376 0.0395 0.0202 0.0167

Ax = b comp. time(s) 0.0774 0.0123 0.0136 0.0130
Ax = b comm. time(s) 0.3578 0.0276 0.0071 0.0038

#messages 56 56 42 62
max non-zeros per proc. 1 063 001 961 340 994 257 994 592

max vector elems per proc. 85 431 115 805 131 713 142 253

max per proc. comm. vol. 727 768 129 977 35 117 2 620
total comm. vol. 2 744 682 269 095 45 132 3 479

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.8 1 842
#iterations 76 85 85 83

per iteration time(s) 0.5955 0.0518 0.0351 0.0238
Ax = b time(s) 0.5549 0.0443 0.0271 0.0150

Ax = b comp. time(s) 0.1435 0.0110 0.0101 0.0102
Ax = b comm. time(s) 0.4132 0.0340 0.0169 0.0048

#messages 240 178 129 165
max non-zeros per proc. 627 253 510 616 497 659 497 055

max vector elems per proc. 42 716 73 665 78 873 69 754

max per proc. comm. vol. 548 922 120 589 80 112 3 242
total comm. vol. 4 002 962 478 162 147 590 7 302

per proc. (maximum number of vector elements allocated per processor); Max
per proc. comm vol. (maximum communication volume sent and received by a
processor); Total comm. vol. (total communication volume of number of floating
point elements sent in a single PageRank iteration).

Note that, due to numerical errors (truncation and roundoff), the num-
ber of iterations is not constant across the different methods. We observe that
the application of hypergraph partitioning attracts a significantly lower over-
all communication overhead. 2D partitioning is the most effective at reducing
overall communication volume, although this does not always translate into a
lower PageRank per-iteration time, on account of the higher number of mes-
sages sent, and the relatively high message start-up cost on our gigabit PC
cluster.

Fig. 3 displays the total per-iteration communication volume for each par-
titioning algorithm. It shows that the GleZhu technique has a lower commu-
nication overhead than the näıve cyclic partitioning, as might be expected.
We also see that, when compared to the GleZhu method, hypergraph parti-
tioning reduces communication volume by an order of magnitude for 1D hy-
pergraph partitioning and by 2 orders of magnitude for 2D hypergraph
partitioning.

Fig. 4 shows the overall PageRank iteration time for GleZhu, 1D and 2D
hypergraph partitions of the Stanford Berkeley web matrix on the 16-processor
cluster. The computation label refers to the time taken to compute a single
Ax = b iteration. The communication label represents the time taken in com-

168 J.T. Bradley et al.

Table 4. India Web graph Results

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 557.5 13 480
#iterations 81 84 84 85

per iteration time(s) 0.7577 0.1142 0.0762 0.0781
Ax = b time(s) 0.7094 0.0972 0.0537 0.0528

Ax = b comp. time(s) 0.1243 0.0501 0.0526 0.0506
Ax = b comm. time(s) 0.5856 0.0475 0.0015 0.0022

#messages 12 12 11 24
max non-zeros per proc. 4 346 286 4 319 031 4 431 469 4 264 282

max vector elems per proc. 345 727 381 623 501 669 557 602

max per proc. comm. vol. 1 326 626 147 078 2 110 1 901
total comm. vol. 2 646 280 223 467 2 428 3 018

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 280.9 11 360
#iterations 77 81 83 81

per iteration time(s) 0.8489 0.0756 0.0458 0.0444
Ax = b time(s) 0.7985 0.0641 0.0290 0.0292

Ax = b comp. time(s) 0.1455 0.0251 0.0276 0.0263
Ax = b comm. time(s) 0.6537 0.0395 0.0024 0.0028

#messages 56 56 46 105
max non-zeros per proc. 2 196 083 2 165 349 2 218 547 2 185 533

max vector elems per proc. 172 864 204 069 335 547 309 293

max per proc. comm. vol. 1 214 716 105 491 3 248 2 996
total comm. vol. 4 800 997 266 447 4 758 5 867

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 157.3 7 857
#iterations 74 81 79 80

per iteration time(s) 0.9548 0.0577 0.0396 0.0405
Ax = b time(s) 0.8755 0.0455 0.0229 0.0255

Ax = b comp. time(s) 0.2797 0.0207 0.0194 0.0198
Ax = b comm. time(s) 0.5987 0.0257 0.0045 0.0055

#messages 240 240 154 306
max non-zeros per proc. 1 124 363 1 126 092 1 110 174 1 091 597

max vector elems per proc. 86 432 122 143 182 236 198 703

max per proc. comm. vol. 928 783 88 210 4 486 3 896
total comm. vol. 7 237 257 313 198 14 433 11 684

munication when performing a single Ax = b iteration. The results for the cyclic
technique are not shown as they are orders of magnitude larger and our main
interest here is in comparing the GleZhu method (as the best currently used
alternative) with the hypergraph versions. We see that the overall PageRank
iteration time is dictated by the communication overhead incurred in perform-
ing the distributed Ax = b calculation. As might be expected, the computation
element and the residual of the PageRank computation (those calculations not
involving the distributed matrix–vector multiplication) of the algorithm con-
tribute an (approximately) fixed cost to the overall iteration time. We observe
that 1D and 2D hypergraph partitioning successfully reduce the communication
overhead by factors of 2 and 6 respectively. This reduction results in a decrease
in the overall PageRank iteration time by 50% in the 2D case.

We note that, contrary to intuition, in some cases computation times do vary
significantly depending on decomposition method used. We conjecture that this
occurred because we did not make any attempt to optimise the caching behaviour
of our parallel PageRank solver. As a consequence the GleZhu method (which
assigned consecutive vector elements to processors) has a good cache hit rate;
conversely the cyclic method (which assigned vector elements on a striped basis)
suffers a poor cache hit rate.

Hypergraph Partitioning for Faster Parallel PageRank Computation 169

 1000

 10000

 100000

 1e+06

 1e+07

C
yc

lic

G
le

Z
hu

1D
 H

-g
ra

ph

2D
 H

-g
ra

ph

C
om

m
un

ic
at

io
n

vo
l.

(#
 o

f f
lo

at
in

g
po

in
t e

le
m

en
ts

)

Partition algorithm

Total inter-processor communication for different webgraph partitions

Number of FP elements sent

Fig. 3. Total per-iteration communi-
cation volume for 16-processor Stan-
ford Berkeley PageRank computation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

G
le

Z
hu

1D
 H

-g
ra

ph

2D
 H

-g
ra

ph

T
im

e,
 s

Partition algorithms

Breakdown of PageRank time per iteration into constituent components

Communication

Communication

Communication

Computation

Computation

Computation

Residual

Residual

Residual

Fig. 4. Per-iteration execution time for
16-processor Stanford Berkeley PageR-
ank computation

5 Conclusion and Future Work

In this paper, we have sought to speed up the execution of parallel Page-
Rank computation through the use of hypergraph partitioning-based decom-
position techniques. We have investigated the application of both one- and
two-dimensional hypergraph models, and compared them to conventional load
balancing decomposition methods. Our experiments on a gigabit PC cluster
have shown that hypergraph-based models consistently and substantially de-
crease distributed per-iteration communication overhead, resulting in the halv-
ing of per-iteration run-time when compared to the best available currently-used
alternative.

Because of the initial partitioning overhead, the proposed technique is partic-
ularly applicable when performing PageRank calculations with multiple person-
alisation vectors, since the same partition can be reused at no additional cost.
We observed that the partitioning overhead was relatively low for the 1D hy-
pergraph decomposition when compared to the 2D hypergraph decomposition.
We have some observations to make about this. Firstly, the 2D hypergraph de-
composition is a harder problem to solve, since the more sophisticated layout
requires the solution of a much larger hypergraph partitioning problem instance
with unique characteristics. Secondly, the parallel partitioning tool used (i.e.
Parkway 2.1) is constantly evolving and has not yet been optimised for 2D de-
composition. Furthermore, other emerging hypergraph partitioning tools (e.g.
Zoltan [7]) promise potentially much faster parallel execution times, for both 1D
and 2D decomposition.

In terms of future work, the current decomposition models aim to minimise
total communication volume only. However, depending on the characteristics of
the interconnection network used, performance may also be significantly affected
by factors such as the number of messages sent or the maximum communication
volume passing through a processor. To this end, we aim to develop hypergraph

170 J.T. Bradley et al.

models which incorporate message and communication volume balancing con-
straints. Secondly, the 2D hypergraph-based decomposition gives rise to a hyper-
graph where each vertex is incident on exactly two hyperedges. Faster parallel
partitioning algorithms may be developed, exploiting this favourable structure.

References

1. L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
Bringing order to the web,” Tech. Rep. 1999–66, Stanford Univ., November 1999.

2. T. H. Haveliwala, “Topic sensitive PageRank: A context-sensitive ranking algo-
rithm for web search,” Tech. Rep., Stanford University, March 2003.

3. C. Alpert, J.-H. Huang, and A. Kahng, “Recent Directions in Netlist Partitioning,”
Integration, the VLSI Journal, vol. 19, no. 1–2, pp. 1–81, 1995.

4. U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decomposition
for parallel sparse matrix–vector multiplication,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, no. 7, pp. 673–693, 1999.

5. B. Vastenhouw and R. H. Bisseling, “A Two-Dimensional Data Distribution
Method for Parallel Sparse Matrix-Vector Multiplication,” SIAM Review, vol. 47,
no. 1, pp. 67–95, 2005.

6. A. Trifunovic and W. J. Knottenbelt, “Parkway2.0: A Parallel Multilevel Hyper-
graph Partitioning Tool,” in Proc. 19th International Symposium on Computer and
Information Sciences (C. Aykanat, T. Dayar, and I. Korpeoglu, eds.), vol. 3280 of
Lecture Notes in Computer Science, pp. 789–800, Springer, 2004.

7. E. Boman, K. Devine, R. Heaphy, U. Catalyurek, and R. Bisseling, “Parallel hyper-
graph partitioning for scientific computing,” Tech. Rep. SAND05–2796C, Sandia
National Laboratories, Albuquerque, NM, April 2005.

8. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, “Extrapolation
methods for accelerating PageRank computations,” in Twelfth International World
Wide Web Conference, (Budapest, Hungary), pp. 261–270, ACM, May 2003.

9. D. de Jager, “PageRank: Three distributed algorithms,” M.Sc. thesis, Department
of Computing, Imperial College London, London SW7 2BZ, UK, September 2004.

10. A. N. Langville and C. D. Meyer, “Deeper inside PageRank,” Internet Mathemat-
ics, vol. 1, no. 3, pp. 335–400, 2004.

11. T. H. Haveliwala and S. D. Kamvar, “The second eigenvalue of the google matrix,”
Tech. Rep., Computational Mathematics, Stanford University, March 2003.

12. “Google.” http://www.google.com/. 20th June 2005.

13. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, “Exploiting
the block structure of the web for computing PageRank,” Stanford database group
tech. rep., Computational Mathematics, Stanford University, March 2003.

14. D. Gleich, L. Zhukov, and P. Berkhin, “Fast parallel PageRank: A linear system
approach,” Tech. Rep., Institute for Computation and Mathematical Engineering,
Stanford University, 2004.

15. U. V. Catalyurek and C. Aykanat, “A Fine-Grain Hypergraph Model for 2D De-
composition of Sparse Matrices,” in Proc. 8th International Workshop on Solving
Irregularly Structured Problems in Parallel, (San Francisco, USA), April 2001.

16. B. Ucar and C. Aykanat, “Encapsulating Multiple Communication-Cost Metrics in
Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiples,”
SIAM Journal of Scientific Computing, vol. 25, no. 6, pp. 1837–1859, 2004.

Hypergraph Partitioning for Faster Parallel PageRank Computation 171

17. B. A. Hendrickson, “Graph partitioning and parallel solvers: Has the Emperor no
clothes,” in Proc. Irregular’98, vol. 1457 of LNCS, pp. 218–225, Springer, 1998.

18. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

19. A. Trifunovic and W. Knottenbelt, “A Parallel Algorithm for Multilevel k-way
Hypergraph Partitioning,” in Proc. 3rd International Symposium on Parallel and
Distributed Computing, (University College Cork, Ireland), pp. 114–121, July 2004.

20. T. Davis, “University of Florida Sparse Matrix Collection,” March 2005.
http://www.cise.ufl.edu/research/sparse/matrices.

21. “UbiCrawler project.” http://webgraph-data.dsi.unimi.it/.

	Introduction
	PageRank Algorithm
	Parallel PageRank Computation
	Experimental Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

