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Abstract. Passage time densities and quantiles are important perfor-
mance metrics which are increasingly used in specifying service level
agreements (SLAs) and benchmarks. PEPA is a popular stochastic pro-
cess algebra and a powerful formalism for describing performance models
of communication and computer systems. We present a case study pas-
sage time analysis of an 82,944 state PEPA model using the HYDRA
tool. HYDRA specialises in passage time analysis of large Markov sys-
tems based on stochastic Petri nets. By using the new Imperial PEPA
compiler (ipc), we can construct a HYDRA model from a PEPA model
and obtain passage time densities based on the original PEPA descrip-
tion.

1 Introduction

Traditionally, performance analysis of concurrent systems has focused on steady-
state analysis—that is, on calculating the long-run probability that a system will
be in each of its reachable states. This is adequate to predict standard resource-
based measures, such as throughput and utilisation, but is inadequate to answer
questions about transient state distributions, such as “What is the probability
that a router has 10 packets in its buffer 20 seconds after startup?”, or questions
about passage time quantiles, such as “What is the probability that a packet
will pass through a router in under 5 milliseconds?”. The latter question is
particularly important since passage time quantiles are increasingly specified as
key quality-of-service metrics in benchmarks and Service Level Agreements.

PEPA [1, 2] is a popular Markovian process algebra for specifying compositional
performance models. PEPA models reduce to an underlying Markov chain, which
can be analysed using appropriate Markovian techniques. While PEPA Work-
bench [3, 4] can produce both steady-state and transient results, we concentrate



here on an example calculation of a passage time from a model expressed in
PEPA.

The HYpergraph-based Distributed Response-time Analyser (HYDRA) [5] is a
parallel tool that uses an efficient uniformization-based technique to compute
passage time densities and quantiles in Markov chains with large state spaces
of the order of 107 states. It is an extension of DNAmaca [6, 7], a tool for the
steady-state analysis of large low-level Markov [8] and semi-Markov [9] chains.
By using state-of-the-art hypergraph partitioning techniques HYDRA yields ex-
cellent scalability on distributed memory parallel computers and is able to utilise
effectively the compute power and RAM provided by a network of workstations.

In this paper, we present a case study showing how passage time quantities can
be calculated from PEPA models using the new Imperial PEPA compiler (ipc)
and the HYDRA tool. ipc translates a PEPA specification at the component level
(as opposed to the global state-space level) to a stochastically identical HYDRA
specification. We then use HYDRA to extract the passage time densities and
quantiles of interest. We demonstrate the applicability of our approach by the
analysis of an 82, 944 state PEPA model of an active badge system of people
moving along a corridor of rooms (extended from the original model presented
in [10]).

2 PEPA

PEPA is a parsimonious stochastic process algebra that can concisely describe
compositional models. These models consist of components whose actions have
exponentially distributed rates. The syntax of a PEPA component P is repre-
sented by:

P ::= (a, λ).P P + P P ¤¢
S

P P/L A (1)

where:

(a, λ).P is a prefix operation defining a component which performs an activity of
type a, with a duration exponentially distributed with rate λ, before evolving
into P .

P1 + P2 is a choice operation. A race is entered into between components P1 and
P2. If P1 evolves first then any behaviour of P2 is discarded and vice-versa.

P1 ¤¢
S

P2 is the cooperation operator. P1 and P2 run in parallel and synchronise
over the set of actions in the set S. If P1 is to evolve with an action a ∈ S,
then it must first wait for P2 to reach a point where it is capable of producing
an a action (and vice versa). The two components then jointly execute an
a-action with a rate that reflects the slower of the two components (usually
the minimum of the two individual a-rates).



P/L is a hiding operator whereby actions in the set L that emanate from the
component P are rewritten as silent τ actions (with the same appropriate
delays). The actions in L can no longer be used in cooperation with other
components.

A is a constant label which allows, amongst other things, for recursive definitions
to be constructed.

3 HYDRA Model Description

The HYDRA model description language is based on the DNAmaca interface
language detailed in [6] which allows for the high-level description of Markovian
models such as stochastic Petri nets and queueing networks.

We provide an excerpt from a sample HYDRA specification below, showing:

– constant declarations for MM to 45, NN to 5 and CC to 175
– type declaration of the state or marking vector elements p1 to p7 to short
– configuration of the initial marking, setting p3 to MM and p5 to NN
– a sample definition of a transition, t5, where:

• \condition sets the firing condition that must be met for the marking
to be enabled

• \action denotes how the global marking will change once the transition
fires

• \rate specifies the exponential rate parameter for the delay incurred
when firing the transition

• \priority allows for priority selection of the highest priority transitions

\model{

\constant{MM}{45}

\constant{NN}{5}

\constant{CC}{175}

\statevector{

\type{short}{ p1, p2, p3, p4, p5, p6, p7 }

}

\initial{

p1 = CC; p2 = 0; p3 = MM; p4 = 0; p5 = NN; p6 = 0; p7 = 0;

}

...

\transition{t5}{

\condition{p7 > MM-1}

\action{

next->p3 = p3 + MM;

next->p7 = p7 - MM;

}

\rate{3.2}



\priority{1}

}

...

}

\solution{

\method{sor}

}

\passage{

\sourcecondition{ (p1 == CC && p3 == MM && p5 == NN) }

\targetcondition{ (p2 == CC) }

\t_start{50.0}

\t_stop{200.0}

\t_step{5.0}

}

After the model description comes the specification of analysis to be performed
on the model. The \solution directive identifies which numerical method should
be used for steady-state solution. Of particular interest to this paper is the
\passage directive, however, which specifies a passage time density function
using the start and end marking(s) of the passage. In this case, the passage can
start from the state where p1 = CC, p3 = MM and p5 = NN but can terminate
in any state where p2 = NN . If there are many source states to a passage, then
the steady-state distribution is used to weight the different possible passages,
to give an overall passage distribution at equilibrium [11]. The resulting density
function is produced by sampling at intervals specified by \t_step between the
time points, \t_start and \t_stop.

4 Tool Theory and Architecture

4.1 Technical Summary

PEPA models reduce to an underlying continuous-time Markov chain (CTMC),
so we consider a CTMC with rate matrix Q = qij . Solving the linear system
πQ = 0 subject to

∑
πi = 1, gives us the steady state vector, π. HYDRA

calculates passage time densities from many source states i to many target states
j by means of an efficient uniformization-based analysis.

Uniformization [12, 13] transforms a CTMC into one in which all states have
the same mean holding time 1/q, by allowing invisible transitions from a state
to itself. This is equivalent to a discrete-time Markov chain (DTMC), after nor-
malising the rows, together with an associated Poisson process of rate q. The
one-step DTMC transition matrix, P , is given by:

P = Q/q + I (2)



where q > maxi |qii| (to ensure that the DTMC is aperiodic) and I is the identity
matrix.

While uniformization is normally used for transient analysis, it can also be em-
ployed for the calculation of passage time densities and quantiles [14, 15]. We
add an extra, absorbing state to our uniformized chain, which is the sole suc-
cessor state for all target states (thus ensuring we calculate the first passage
time density). We denote by P ′, the one-step transition matrix of the modified,
uniformized chain. Remembering that the time taken to traverse a path with n
hops in this chain will have an Erlang distribution with parameters n and q, the
density of the time taken to pass from a set of source states i into a set of target
states j is given by:

fij(t) =
∞∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈j
π

(n)
k (3)

where

π(n+1) = π(n)P ′ : for n ≥ 0

with

π
(0)
k =

{
0 : for k /∈ i
πk/

∑
j∈i πj : for k ∈ i

(4)

and in which π is any non-zero solution to π = πP . The corresponding passage
time cumulative distribution function is given by:

Fij(t) =
∞∑

n=1





(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈j
π

(n)
k



 . (5)

Truncation is employed to approximate the infinite sum in Eq. (3) (and Eq. (5)),
terminating the calculation when the Erlang term drops below a specified thresh-
old value. Concurrently, when the convergence criterion

||π(n+1) − π(n)||∞
||π(n)||∞

< ε (6)

is met, for given tolerance ε, the steady state probabilities of P ′ are considered
to have been obtained with sufficient accuracy and no further multiplications
with P ′ are performed.



4.2 Tool Pipeline

The overall pipeline for the passage time analysis of a PEPA model goes as
follows:

1. ipc compilation of .pepa file to HYDRA’s native .mod format:
(a) PEPA normal form translation
(b) Component state space exploration
(c) HYDRA component linking for shared transitions and .mod file genera-

tion
2. Construct passage start and termination conditions in terms of HYDRA

marking specification.
3. HYDRA analysis:

(a) solves for steady state vector using selected algorithm e.g. SOR, CGS,
Gauss-Seidel

(b) solves for the required passage time density or quantile according to
Section 4.1

We show how meaningful passage time specifications from PEPA models can be
expressed in HYDRA in the next section.

5 Worked Example

5.1 General Active Badge Model

In the original active badge model, described in [10], there are 4 rooms on a
corridor, all installed with active badge sensors, and a single person who can
move from one room to an adjacent room. The sensors are linked to a database
which records which sensor has been activated last. In the model of Fig. 1, we
have M people in N rooms with sensors and a database that can be in one of N
states. To maintain a reasonable state space, this is a simple database which does
not attempt to keep track of every individual’s location, rather it remembers the
last movement that was made by any person in the system.

In the model below, Personi represents a person in room i, Sensori is the sensor
in room i and Dbasei is the state of the database. A person in room i can either
move to room i − 1 or i + 1 or, if they remain there long enough, set off the
sensor in room i, which registers its activation with the database.

The first thing to note about such a model is how fast the state space can grow.
With M people in N rooms, we already have NM states just from the different
configurations of people in rooms. Then there are 2N sensor configurations and
finally N states that the database can be in, giving us a total of 2NNM+1 states.
For as few as 3 people and 6 rooms, the example we use, we have a global state
space of 82, 944 states.



Person1 = (reg1, r).Person1 + (move2, m).Person2

Personi = (movei−1, m).Personi−1 + (reg i, r).Personi

+ (movei+1, m).Personi+1

: 1 < i < N
PersonN = (moveN−1, m).PersonN−1 + (regN , r).PersonN

Sensori = (reg i,>).(repi, s).Sensori : 1 ≤ i ≤ N

Dbasei =
∑N

j=1
(repj ,>).Dbasej : 1 ≤ i ≤ N

Sys =
∏M

j=1
Person1 ¤¢

Reg

∏N

j=1
Sensorj ¤¢

Rep
Dbase1

where Reg = {regi | 1 ≤ i ≤ N} and Rep = {repi | 1 ≤ i ≤ N}

Fig. 1. The PEPA description for the generalised active badge model with N rooms
and M people.

5.2 Results

We include two passages from the active badge system with 3 people and 6
possible rooms (the .pepa file for this is given in Appendix A). As the model of
Fig. 1 tells us, all 6 people start in room 1 and move out from there.

The place labels reflect the way ipc translates repeat components, in this case
3 copies of Person1 in parallel, into independent HYDRA subnets. The first
person, Personi, gets converted to Personi, the second to Personi 1 and the
third to Personi 2, for each room 1 ≤ i ≤ 6. So asking if person 2 is in room 4
in HYDRA terms is (Person4 1 == 1).

Fig. 2 shows the density function for the passage representing how long it takes
for all 3 people to be together in room 6 for the first time. So, using the above
reasoning, this was achieved using the HYDRA passage specification:

\passage{
\sourcecondition{ (Person1 == 1)

&& (Person1_1 == 1) && (Person1_2 == 1) }
\targetcondition{ (Person6 == 1)

&& (Person6_1 == 1) && (Person6_2 == 1) }
}

It is interesting to observe that it is virtually impossible for all 3 people to end
up in room 6, which requires 6 successive move transitions from all 3 people for
it to happen at the earliest opportunity, until at least 10 time units have elapsed.
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Fig. 2. The passage time density for 3 people starting in room 1 ending up all in room
6.

After that time, very low probabilities are registered and the distribution clearly
has a very heavy tail.
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Fig. 3. The passage time density for 3 people starting in room 1 ending up with any
one or more of them in room 6.
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Fig. 4. The cumulative passage time distribution function for 3 people starting in room
1 ending up with any one or more of them in room 6.

The second passage of Fig. 3 shows an equivalent passage time density from the
same start point to a terminating condition of at least one person of the three
entering room 6. This is achieved similarly with a HYDRA passage definition of:

\passage{
\sourcecondition{ (Person1 == 1) &&

(Person1_1 == 1) && (Person1_2 == 1) }
\targetcondition{ (Person6 == 1) ||

(Person6_1 == 1) || (Person6_2 == 1) }
}

where the logical ANDs of the first target specification are replaced by logical
ORs. The resulting passage is much less heavy tailed, as this time only a single
person has to make it to room 6 before the passage ends.

From these densities, it is a simple matter to construct cumulative distribution
functions (the integral of the density function) and obtain quantiles, e.g. the
probability that 3 people all reach room 6 by time, t = 150. Fig. 4 shows the
cumulative distribution function (cdf) corresponding to the passage time density
of Fig. 3. From this cdf, we can ascertain, for example, that there is a 90%
probability that at least one person will have reached room 6 by time t = 62.



6 Conclusion

In this paper, we presented a PEPA model of an active badge system and used it
to demonstrate passage time analysis. Using ipc, we translate the PEPA model
to a stochastically identical HYDRA model. From there, we make use of the
HYDRA tool to produce passage time quantities.

Although the ipc tool automatically generates the main body of the HYDRA
model description from the corresponding PEPA description, it is not yet possible
to generate passage time definitions from PEPA directly. As future work, we
therefore plan to relate the desired passage time quantity to the action behaviour
of the PEPA model and generate the source and target state descriptions for
HYDRA automatically.
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A PEPA Workbench model of the Active Badge System

We show the version of the .pepa file generated for the active badge model for
3 people and 6 rooms, as passed to the ipc tool. Due to space limitations the
equivalent 3 people/6 rooms version of the HYDRA model is not shown here
but can be found at:

http://www.doc.ic.ac.uk/ipc/examples/

In the equivalent .mod file, we have expressed a passage specification which
represents any of the people ending up in room 6, having started from room 1
(as in the second passage specification in Section 5.2).

% Model created by: mkActive - parameters: 3 people, 6 rooms

# Person1 = (reg1, r).Person1 + (move2, m).Person2;

# Person2 = (move1, m).Person1 + (reg2, r).Person2 + (move3, m).Person3;

# Person3 = (move2, m).Person2 + (reg3, r).Person3 + (move4, m).Person4;

# Person4 = (move3, m).Person3 + (reg4, r).Person4 + (move5, m).Person5;

# Person5 = (move4, m).Person4 + (reg5, r).Person5 + (move6, m).Person6;

# Person6 = (reg6, r).Person6 + (move5, m).Person5;

# Sensor1 = (reg1, infty).(rep1, s).Sensor1;

# Sensor2 = (reg2, infty).(rep2, s).Sensor2;

# Sensor3 = (reg3, infty).(rep3, s).Sensor3;

# Sensor4 = (reg4, infty).(rep4, s).Sensor4;

# Sensor5 = (reg5, infty).(rep5, s).Sensor5;

# Sensor6 = (reg6, infty).(rep6, s).Sensor6;

# Dbase1 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2

+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Dbase2 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2



+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Dbase3 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2

+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Dbase4 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2

+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Dbase5 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2

+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Dbase6 = (rep1, infty).Dbase1 + (rep2, infty).Dbase2

+ (rep3, infty).Dbase3 + (rep4, infty).Dbase4

+ (rep5, infty).Dbase5 + (rep6, infty).Dbase6;

# Sys = (((Person1 <> (Person1 <> Person1))

<reg1, reg2, reg3, reg4, reg5, reg6>

(Sensor1 <> (Sensor2 <> (Sensor3

<> (Sensor4 <> (Sensor5 <> Sensor6))))))

<rep1, rep2, rep3, rep4, rep5, rep6> Dbase1);

Sys


