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Abstract

Semi-Markov processes (SMPs) are expressive tools for modelling parallel and dis-
tributed systems; they are a generalisation of Markov processes that allow for ar-
bitrarily distributed sojourn times. This paper presents an iterative technique for
transient and passage time analysis of large structurally unrestricted semi-Markov
processes. Our method is based on the calculation and subsequent numerical in-
version of Laplace transforms and is amenable to a highly scalable distributed im-
plementation. Results for a distributed voting system model with up to 1.1 million
states are presented and validated against simulation.

1 Introduction

Traditional techniques for the analytical performance modelling of parallel and
distributed systems are predominantly based on the steady-state analysis of
Markov chains. This is restrictive for three main reasons. Firstly, the Markov
property imposes the (often unrealistic) limitation that all time delays must be
exponentially distributed. Secondly, steady-state measures cannot give insight
into the transient behaviour of the system before or after critical events, such as
failures, reconfigurations and system startup. Thirdly, steady-state measures
are adequate to determine mean resource-based measures and even some mean
passage or response time values, but not to determine passage time quantiles.
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This is a serious problem since passage time quantiles are assuming increasing
importance as key quality of service and performance metrics.

The aim of the present study is to investigate the use of semi-Markov processes
(SMPs) for the purposes of system description, calculation of transient state
distributions and computation of passage time densities and quantiles. By
using SMPs we can specify more realistic models with generally distributed
delays while still maintaining some of the analytical tractability associated
with Markovian models.

Our specific contribution is a novel iterative algorithm for large structurally
unrestricted SMPs that generates transient state distributions. This builds
upon our iterative technique for generating passage time densities and quan-
tiles [1,2]. The algorithm is based on the calculation and subsequent numer-
ical inversion of Laplace transforms. One of the biggest problems involved in
working with semi-Markov processes is how to store the Laplace transform
of state sojourn time distributions in an effective way, such that accuracy is
maintained but representation explosion does not occur. We address this issue
with a constant-space representation of a general distribution function based
on the evaluation demands of the numerical inversion algorithm employed.

We implement our technique in a scalable, distributed and checkpointed anal-
ysis pipeline and apply it to instances of a distributed voting model. The
high-level model description is given in the form of a semi-Markov Stochastic
Petri net – our own proposal for a non-Markovian Stochastic Petri net for-
malism – and is textually described in an extended semi-Markovian version of
the high-level DNAmaca Markov chain specification language [3]. Our results
are validated against a simulation derived from the same high-level model.

The rest of this paper is organised as follows. In Section 2, we briefly detail
the background theory behind semi-Markov processes, and show how to derive
first passage times and transient state distributions. Our iterative passage
time procedure is described in Section 3.2 and the new iterative transient
scheme is presented in Section 3.3. Section 4 describes the practical issues in
numerically inverting Laplace transforms as well as storing and manipulating
general distributions. Section 5 describes the architecture of our distributed
implementation. Section 6 briefly introduces the semi-Markov stochastic Petri
net formalism and DNAmaca specification system from [1,4]. Passage time
and transient results are produced for systems with up to ∼ 106 states which
are validated by simulations. Section 7 concludes and considers future work.
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2 Definitions and Background Theory

2.1 Semi-Markov Processes

Consider a Markov renewal process {(Xn, Tn) : n ≥ 0} where Tn is the time
of the nth transition (T0 = 0) and Xn ∈ S is the state just after the nth
transition. Let the kernel of this process be:

R(n, i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i) (1)

for i, j ∈ S. The continuous time semi-Markov process (SMP), {Z(t), t ≥ 0},
defined by the kernel R, is related to the Markov renewal process by:

Z(t) = XN(t) (2)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have
taken place by time t. Thus Z(t) represents the state of the system at time t.

In an SMP the kernel, R(n, i, j, t), is independent of the transition number, n:

R(i, j, t) = IP(Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i) for any n ≥ 0

= pijHij(t) (3)

where pij = IP(Xn+1 = j | Xn = i) is the one-step state transition probability
between states i and j and Hij(t) = IP(Tn+1 − Tn ≤ t | Xn+1 = j, Xn = i), is
the sojourn time distribution in state i when the next state is j.

2.2 First Passage Times

Consider a finite, irreducible, continuous-time semi-Markov process with N
states {1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time
t ≥ 0, the first passage time from a source state i to the moment at time
t when the system has just entered a non-empty subset of the state space
J ⊆ S, is:

PiJ (t) = inf{u > 0 : Z(t + u) ∈ J , N(t + u) > N(t), Z(t) = i} (4)

Throughout this paper we refer to J , the set of states that terminate the
passage, as the set of target states. For a stationary time-homogeneous SMP,
PiJ (t) is independent of t and we have:

PiJ = inf{u > 0 : Z(u) ∈ J , N(u) > 0, Z(0) = i} (5)

PiJ is a random variable with an associated probability density function fiJ (t)
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such that the passage time quantile is defined as:

IP(t1 < PiJ ≤ t2) =
∫ t2

t1
fiJ (t) dt (6)

In general, the Laplace transform of fiJ , LiJ (s), can be computed by solving
a set of N linear equations:

LiJ (s) =
∑

k/∈J
r∗ik(s)LkJ (s) +

∑

k∈J
r∗ik(s) : for 1 ≤ i ≤ N (7)

where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) from Sec-
tion 2.1 and is defined by:

r∗ik(s) =
∫ ∞

0
e−st dR(i, k, t) (8)

Eq. (7) has a matrix–vector form, A~x = ~b, where the elements of A are arbi-
trary complex functions. For example, when J = {1}, Eq. (7) yields:




1 −r∗12(s) · · · −r∗1N(s)

0 1− r∗22(s) · · · −r∗2N(s)

0 −r∗32(s) · · · −r∗3N(s)
...

...
. . .

...

0 −r∗N2(s) · · · 1− r∗NN(s)







L1J (s)

L2J (s)

L3J (s)
...

LNJ (s)




=




r∗11(s)

r∗21(s)

r∗31(s)
...

r∗N1(s)




(9)

When there are multiple source states, denoted by the set I, the Laplace
transform of the passage time distribution is:

LIJ (s) =
∑

k∈I
αkLkJ (s) (10)

where the weight αk is the probability of being in state k ∈ I at the starting
instant of the passage.

If measuring the system from equilibrium then ~α is a renormalised steady-state
vector. That is, if ~π denotes the steady-state vector of the embedded discrete-
time Markov chain (DTMC) with one-step transition probability matrix P =
[pij, 1 ≤ i, j ≤ N ], then αk is given by:

αk =





πk/
∑

j∈I πj : if k ∈ I
0 : otherwise

(11)
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2.3 Transient state distributions

Another key modelling result is the transient state distribution, πij(t), of a
stochastic process:

πij(t) = IP(Z(t) = j | Z(0) = i) (12)

From Pyke’s seminal paper on SMPs [5], we have the following relationship
between passage time densities and transient state distributions, in Laplace
form:

π∗ij(s) =
1

s

1− h∗i (s)
1− Lii(s)

if i = j, π∗ij(s) = Lij(s)π
∗
jj(s) if i 6= j (13)

where π∗ij(s) is the Laplace transform of πij(t) and h∗i (s) =
∑

j r∗ij(s) is the
LST of the sojourn time distribution in state i. For multiple target states, this
becomes:

π∗iJ (s) =
∑

k∈J
π∗ik(s) (14)

However, to construct π∗iJ (s) directly using this translation is computationally
expensive: for a set of target states J , we need 2|J |−1 passage time quantities,
Lik(s), which in turn require the solution of |J | linear systems of the form of
Eq. (9).

This motivates our development of a new transient state distribution formula
for multiple target states in semi-Markov processes which requires the solution
of only one system of linear equations. We calculate the transient probability
of being in a set of states J at time t, having started in state i as follows:

πiJ (t) = Ii∈J IP(Z(t) = i, N(t) = 0) + IP(Z(t) ∈ J , N(t) > 0)

= Ii∈J F i(t) +
N∑

k=1

∫ t

0
πkJ (t− τ) dR(i, k, τ) (15)

where Ii∈J = 1 if i ∈ J and 0 otherwise, and F i(t) = 1 − ∑N
k=1 pikHik(t)

is the reliability function of the sojourn time distribution in state i, i.e. the
probability that the system has not left state i after t elapsed time units.
R(i, k, τ) represents the occurrence of a single transition out of state i to an
adjacent state k in time τ and πkJ (t − τ) is the probability of being in one
of the states in J at time t having started in state k at time τ . Note that if
J is restricted to a single state in Eq. (15), we recover Pyke’s formula for a
transient state distribution between two individual states [5, Eq. (3.2)].

Finally, transforming this convolution into the Laplace domain, we obtain:

π∗iJ (s) = Ii∈JF
∗
i (s) +

N∑

k=1

r∗ik(s)π
∗
kJ (s) (16)
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The Laplace transform of the reliability function F
∗
i (s) = 1

s
(1− h∗i (s)).

In matrix–vector form, when J = {1, 3}, for example, Eq. (16) becomes:




1− r∗11(s) −r∗12(s) · · · −r∗1N(s)

−r∗21(s) 1− r∗22(s) · · · −r∗2N(s)

−r∗31(s) −r∗32(s) · · · −r∗3N(s)
...

...
. . .

...

−r∗N2(s) −r∗N2(s) · · · 1− r∗NN(s)







π∗1J (s)

π∗2J (s)

π∗3J (s)
...

π∗NJ (s)




=




F
∗
1(s)

0

F
∗
3(s)
...

0




(17)

Again for multiple source states, with initial distribution ~α, the Laplace trans-
form of the transient function is:

π∗IJ (s) =
∑

k∈I
αkπ

∗
kJ (s) (18)

3 Iterative Passage Time and Transient Analysis

3.1 Introduction

In this section, we describe iterative algorithms for generating passage time
densities/quantiles and transient state distributions. The algorithms create
successively more accurate approximations to the analytic passage time func-
tion given by Eq. (7) and transient function given by Eq. (16), respectively.

3.2 Iterative Passage Time Method

The iterative passage time technique considers the rth transition passage time
of the system, P

(r)
iJ . This is the time for r consecutive transitions to occur,

starting from state i and ending in any of the states in J . The unconditioned
passage time density, PiJ , is then obtained in the limit as r →∞. We calculate

P
(r)
iJ for a sufficiently high value of r to give an approximation to within a

specified degree of accuracy.

Recall the semi-Markov process, Z(t), of Section 2.2, where N(t) is the number
of state transitions that have taken place by time t. Formally, we define the
rth transition first passage time to be:

P
(r)
iJ = inf{u > 0 : Z(u) ∈ J , 0 < N(u) ≤ r, Z(0) = i} (19)

which is the time taken to enter a state in J for the first time having started
in state i at time 0 and having undergone up to r state transitions. P

(r)
iJ is
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a random variable with associated probability density function, f
(r)
iJ (t), which

has Laplace transform L
(r)
iJ (s).

L
(r)
iJ (s) is, in turn, the ith component of the vector

~L
(r)
J (s) = (L

(r)
1J (s), L

(r)
2J (s), . . . , L

(r)
NJ (s))

which may be computed as:

~L
(r)
J (s) = U(I + U ′ + U ′2 + · · ·+ U ′(r−1))~e (20)

Here U is a matrix with elements upq = r∗pq(s) and U ′ is a modified version of
U with elements u′pq = Ip6∈J upq, where states in J have been made absorbing.
The column vector ~e has entries ek = Ik∈J .

We include the initial U term in Eq. (20) so as to generate cycle times for cases

such as L
(r)
ii (s) which would otherwise register as 0 if U ′ were used instead.

From Eqs. (5) and (19):

PiJ = P
(∞)
iJ and thus LiJ (s) = L

(∞)
iJ (s). (21)

Now, L
(r)
iJ (s) can be generalised to multiple source states I using, for example,

the normalised steady-state vector, ~α, of Eq. (11):

L
(r)
IJ (s) = ~α~L

(r)
J (s)

=
∑r−1

k=0 ~αUU ′k~e
(22)

The sum of Eq. (22) can be computed efficiently using sparse matrix–vector
multiplications with a vector accumulator. At each step, the accumulator (ini-
tialised to ~αU) is post-multiplied by U ′ and ~αU is added. The worst-case
time complexity for this sum is O(N2r) versus the O(N3) of typical matrix
inversion techniques. In practice, we typically observe r << N for large N .

Convergence of the sum in Eq. (22) is said to have occurred at a particular r,
if for a given s-point:

|Re(L
(r+1)
IJ (s)− L

(r)
IJ (s))| < ε and |Im(L

(r+1)
IJ (s)− L

(r)
IJ (s))| < ε (23)

where ε is chosen to be a suitably small value (e.g. 10−8).

3.3 Iterative Transient Method

Our iterative transient state distribution generation technique builds on the
passage time computation technique of the previous section. We aim to calcu-
late πiJ (t), that is the probability of being in any of the states of J at time t,
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having started in state i at time, t = 0. We approximate this transient state
distribution by constructing π

(r)
iJ (s), which is the rth iterative approximation

to the Laplace Transform of the transient state distribution function.

π
(r)
iJ (s) is, in turn, the ith component of the vector:

~π
(r)
J (s) = (π

(r)
1J (s), π

(r)
2J (s), . . . , π

(r)
NJ (s))

which may be computed as:

~π
(r)
J (s) = (I + U + U2 + · · ·+ U r)~v (24)

where ~v is made up of the reliability functions for each of the target states in
J , i.e. vi = Ii∈JF

∗
i (s).

Note that, instead of using an absorbing transition matrix as in the passage
time scheme, the transient method makes use of the unmodified transition
matrix U , which has elements uij = r∗ij(s). This reflects the fact that the tran-
sient state distribution accumulates probability from all the passages through
the system and not just the first one.

The astute reader may notice that this method bears a loose resemblance to
the well-known uniformization technique [6–8] which can be used to generate
transient-state distributions and passage time densities for Markov chains.
However, as we are working with semi-Markov systems, there can be no uni-
formizing of the general distributions in the SMP. The general distribution in-
formation has to be maintained as precisely as possible throughout the process.
We achieve this by using the representation technique described in Section 4.

Finally, as before, the technique can be generalised to multiple start states by
employing an initial vector, ~α, where αi is the probability of being in state i
at time 0:

π
(r)
IJ (s) = ~α(I + U + U2 + · · ·+ U r)~v (25)

Fig. 1 shows a transient state distribution, π00(t), that is the probability of
being in state 0, having started in state 0, at time t. The system being analysed
is a simple two state system with an exponential (rate 2) transition from state
0 to state 1, and a deterministic transition (parameter 2) from 1 to 0. The
discontinuities in the derivative from the deterministic transition can clearly
be made out at points t = 2, 4 and in fact also exist at t = 6, 8, 10, . . .. Also
shown on the graph are 5 iterations of the algorithm which exhibit increasing
accuracy in approximating the transient curve.

Fig. 2 shows the transient state distribution π00(t) for a two state system
with a deterministic transition (parameter 3) from state 0 to state 1, and an
exponential (rate 0.5) transition from 1 to 0. The graph clearly shows the
system remaining in state 0 for the initial 3 time units, as dictated by the
out-going deterministic transition. The perturbations in the graph observed
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Fig. 1. Example iterations towards a transient state distribution in a system with
successive exponential and deterministic transitions
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Fig. 2. Example iterations towards a transient state distribution in a system with
successive deterministic and exponential transitions

around t = 3 are generated by small numerical instabilities (Gibb’s Phenom-
ena) in the Laplace inversion algorithm [9]. These are most pronounced when
an initial deterministic distribution is observed and are, for systems with more
smoothing, almost always unobservable. Also shown on the graph are 4 itera-
tions of the algorithm which exhibit increasing accuracy in approximating the
transient curve, as before.
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4 Laplace Transform Representation and Inversion

The key to the practical analysis of semi-Markov processes lies in the efficient
representation of their generally distributed sojourn time distribution func-
tions. Without care the structural complexity of the SMP can be recreated
within the representation of the distribution functions. This is especially true
with the manipulations performed in the iterative passage time calculation of
Section 3.

Many techniques have been used for representing arbitrary distributions –
two of the most popular being phase-type distributions and vector-of-moments
methods. These methods suffer from, respectively, exploding representation
size under composition and containing insufficient information to produce ac-
curate answers after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link our
distribution representation to the Laplace inversion technique that we ulti-
mately use. Our implementation supports two Laplace transform inversion
algorithms: the Euler technique [10] and the Laguerre method [11] with mod-
ifications summarised in [12].

Both algorithms work on the same general principle of sampling the transform
function L(s) at n points, s1, s2, . . . , sn and generating values of f(t) at m user-
specified t-points t1, t2, . . . , tm. In the Euler inversion case n = km, where k
typically varies between 15 and 50, depending on the accuracy of the inversion
required. In the modified Laguerre case, n = 400 and, crucially, is independent
of m.

The choice of inversion algorithm depends on the characteristics of the density
function f(t). If the function is continuous, and has continuous derivatives (i.e.
it is “smooth”) then the Laguerre method can be used. If, however, the density
function or its derivatives contain discontinuities – for example if the system
exclusively contains transitions with deterministic or uniform holding-time
distributions – then the Euler method must be employed.

Whichever inversion algorithm is used, it is important to note that calculating
si, 1 ≤ i ≤ n and storing all the distribution transform functions, sampled at
these points, will be sufficient to provide a complete inversion. Storing our dis-
tribution functions in this way has three main advantages. Firstly, the function
has constant storage space, independent of the distribution-type. Secondly,
each distribution has, therefore, the same constant storage even after compo-
sition with other distributions. Finally, the function has sufficient information
about a distribution to determine the required passage time or transient den-
sity (and no more).
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5 Implementation Architecture

Our implementation employs a distributed master–slave architecture similar
to that of the Markovian passage time calculation tool of [12]. The master
processor computes in advance the values of s at which it will need to know the
value of LIJ (s) in order to perform the inversion. The s-values are then placed
in a global work-queue to which the slave processors make requests. On making
a request slave processors are assigned the next available s-value and use this
to construct the matrices U and U ′. The iterative algorithm is then applied to
calculate the truncated sum of Eq. (22) or Eq. (25) (as appropriate) for that
s-value. The result is returned to the master and cached (both in memory
and on disk so that all computation is checkpointed), and once all values
have been computed and returned, the final Laplace inversion calculations are
made by the master. The resulting t-points can then be plotted on a graph.
As inter-slave communication is not required, the algorithm exhibits excellent
scalability (see Section 6.4.3).

6 Distributed System Modelling

6.1 Introduction

We demonstrate the SMP analysis techniques of the previous sections with a
semi-Markov model of a distributed voting system. As there is a rich tradition
of modelling distributed systems with stochastic Petri nets [13,14], we propose
and then make use of a semi-Markov extension of GSPNs to generate the
model.

6.2 Semi-Markov Stochastic Petri Nets

Semi-Markov stochastic Petri nets (SM-SPNs) are extensions of GSPNs [15],
which can handle arbitrary state-dependent sojourn time distributions and
which generate an underlying semi-Markov process rather than a Markov pro-
cess. Formally a SM-SPN consists of a 4-tuple, (PN,P ,W ,D), where:

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net. P is the set
of places, T , the set of transitions, I+/− are the forward and backward inci-
dence functions describing the connections between places and transitions
and M0 is the initial marking.

• P : T ×M → ZZ+, denoted pt(m), is a state-dependent priority function
for a transition.

• W : T ×M→ IR+, denoted wt(m), is a marking-dependent weight function
for a transition, to allow implementation of probabilistic choice.
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• D : T × M → (IR+ → [0, 1]), denoted dt(m), is a marking-dependent
cumulative distribution function for the firing-time of a transition.

In the above M is the set of all reachable markings for a given net. Further,
we define the following general net-enabling functions:

• EN : M → P (T ), a function that specifies net-enabled transitions from a
given marking.

• EP : M→ P (T ), a function that specifies priority-enabled transitions from
a given marking.

The net-enabling function, EN , is defined in the usual way for standard Petri
nets: if all preceding places have occupying tokens then a transition is net-
enabled. Similarly, we define the more stringent priority-enabling function,
EP . For a given marking, m, EP (m) selects only those net-enabled transitions
that have the highest priority, that is:

EP (m) = {t ∈ EN(m) : pt(m) = max{pt′(m) : t′ ∈ EN(m)}} (26)

Now for a given priority-enabled transition, t ∈ EP (m), there is a probability
that it will actually fire after a delay sampled from its firing distribution,
dt(m):

IP(t ∈ EP (m) fires) =
wt(m)∑

t′∈EP (m) wt′(m)
(27)

Note that the choice of which priority-enabled transition is fired in any given
marking is made by a probabilistic selection based on transition weights, and is
not a race condition based on finding the minimum of samples extracted from
firing time distributions. This mechanism enables the underlying reachability
graph of the SM-SPN to be mapped directly onto a semi-Markov chain.

The marking-dependence of the weights and distributions does, in fact, allow
us to translate SPNs and GSPNs into the SM-SPN paradigm in a straightfor-
ward manner, but that translation is not within the scope of this paper.

6.3 A Distributed Voting System

Fig. 3 shows the distributed components of a voting system with breakdowns
and repairs, which we will use to generate a semi-Markov model. A voting
agent queues to vote in the buffer; then, as a polling unit becomes free, it
can receive the agent’s vote and the agent can be marked as having voted.
The polling unit contacts all the currently operational central voting units to
register votes with all of them; this is done in order to prevent multiple vote
fraud and to provide fault tolerance through redundancy. The polling unit
then becomes available to receive another voting agent.

The semi-Markov stochastic Petri net for this system is shown in Fig. 4. Voting
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Fig. 3. A queueing model of a voting system

agents vote asynchronously, moving from place p1 to p2 as they do so. A
restricted number of polling units which receive their votes transit t1 from
place p3 to place p4. At t2, the vote is registered with as many central voting
units as are currently operational in p5.

The system is considered to be in a failure mode if either all the polling units
have failed and are in p7 or all the central voting units have failed and are
in p6. If either of these complete failures occur, then a high priority repair is
performed, which resets the failed units to a fully operational state. If some
but not all the polling or voting units fail, they attempt self-recovery. The
system will continue to function as long as at least one polling unit and one
voting unit remain operational.

Fig. 4. A semi-Markov stochastic Petri net of a voting system with breakdowns and
repairs
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\transition{t5}{
\condition{p7 > MM-1}
\action{
next->p3 = p3 + MM;
next->p7 = p7 - MM;

}
\weight{1.0}
\priority{2}
\sojourntimeLT{
return (0.8*uniformLT(1.5,10,s) + 0.2*erlangLT(0.001,5,s));

}
}

Fig. 5. Excerpt from specification of voting example, showing definition of transition
t5.

This example is defined in full as a DNAmaca specification [3], an excerpt of
which is shown in Fig. 5. This defines transition t5, saying that it:

• is enabled when place p7 has greater than MM − 1 tokens in it.
• removes MM tokens from place p7 and adds MM tokens to place p3, when

fired.
• has a weight 1.0 (used to define probabilistic choice between transitions

when two or more are concurrently enabled).
• has a priority of 2, which will enable it above other transitions which would

otherwise be structurally enabled but have a lower priority.
• is given a firing distribution which, with probability 0.8, is a uniform dis-

tribution or, with probability 0.2, is an Erlang distribution. The Laplace
transform g∗(s) for this firing time distribution is:

0.8× uniformLT (1.5, 10, s) + 0.2× erlangLT (0.001, 5, s)

where

uniformLT (a, b, s) =
e−as − e−bs

s(b− a)

and

erlangLT (λ, n, s) =

(
λ

λ + s

)n

In general, any arbitrary Laplace transform function can be specified as
a firing distribution using the \sojourntimeLT{...} pragma.

6.4 Results

In this section, we compute passage time quantities for the time taken for a
number of voters to pass from place p1 to p2 (a voter throughput quantity),
as well as for the time taken for a fully operational system to enter a failure
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System CC MM NN States

0 18 6 3 2061

1 60 25 4 106,540

2 100 30 4 249,760

3 125 40 4 541,280

4 150 40 5 778,850

5 175 45 5 1,140,050
Table 1
Different configurations of the voting system as used to present results

mode (i.e. when MM polling units fail in place p7 or when NN central voting
units fail in place p6). We also extract simple reliability quantiles from cumu-
lative distributions of the passage times, and transient measures for the voter
throughput passage.

For the voting system described in Fig. 4, Table 1 shows how the size of the
underlying SMP varies according to the configuration of the variables CC,
MM , and NN , which are the number of voters, polling units and central
voting units, respectively.

6.4.1 Example Passage Time Distributions
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Fig. 6. Analytic and simulated density for the time taken to process 175 voters in
system 5 (1.1 million states).

Fig. 6 shows the density of the time taken for the passage of 175 voters from
place p1 to p2 in system 5 as computed by both our (truncated) iterative tech-
nique and by simulation. The close agreement provides mutual validation of
the analytical method, with its numerical approximation, and the simulation.
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It is interesting that, qualitatively, the density appears close to Normal. Cer-
tainly, the passage time random variable is a (weighted) sum of a large number
of independent random variables, but these are, in general, not identically dis-
tributed.
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Fig. 7. Cumulative distribution function for the time taken to process 175 voters in
system 5 (1.1 million states).

Fig. 7 shows a cumulative distribution for the same passage as Fig. 6. This is
easily obtained by inverting the Laplace transform LIJ (s)/s; it allows us to
extract response time quantiles, for instance:

IP(system 5 processes 175 voters in under 440s) = 0.9858
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Fig. 8. Analytic and simulated density for failure mode passage in system 0 (2061
states).

Fig. 8 shows analytic and simulated results for the time to complete failure in
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an initially fully operational voting system. It is produced for a much smaller
system (2061 states) as the probabilities for the larger systems were so small
that the simulator was not able to register any meaningful distribution for
the quantity without using rare-event techniques. As we wanted to validate
the passage time algorithm, we reduced the number of states so that the
simulator would register a density. Examining very-low-probability events is
an excellent example of where analytical techniques out-perform simulations
that would take many hours or even days to complete.

6.4.2 Example Transient State Distributions
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Fig. 9. Transient and steady-state values in system 0, for the transit of 5 voters
from the initial marking to place p2

We use the iterative transient calculation scheme of Section 3.3 to generate
transient state distributions. Fig. 9 shows the transient state distribution for
the transit of five voters from place p1 to p2 in system 0. As expected, the
distribution tends towards its steady-state value as t →∞.

Fig. 10 shows the same measure but for a much larger system (106,000 states).
There is a more noticeable separation between the first two peaks in Fig. 10 as
there are many more voters to be processed (60 rather than 18 in the previous
example). Again, we note that the transient state distribution tends towards
the corresponding steady-state probability. It is worth noting that the iterative
transient algorithm required at most 50 iterations to converge for each s-point
(often less); this despite having a large time range of 0 < t < 500.

6.4.3 Tool Scalability

Table 2 shows the time, speedups and efficiency for the analysis pipeline of
Section 4 with varying numbers of slave processors when calculating 5 t-points
for a passage time of system 1. The slave processors, each of which has a 2 GHz
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Fig. 10. Transient and steady-state values in system 1, for the transit of 5 voters
from the initial marking to place p2

Slave Processors Time (s) Speedup Efficiency

1 549.08 1.00 1.000

8 71.11 7.72 0.965

16 39.16 14.02 0.876

32 24.10 22.79 0.712
Table 2
Time, speedup and efficiency for varying numbers of slave processors when calcu-
lating a passage time at 5 t-points for system 1, using Euler inversion (total of 165
s-point evaluations).

Intel Pentium 4 processor and 512 MB RAM, are part of a shared departmental
network connected by 100MBps Ethernet. The master processor used was a
dual 1 GHz Pentium III server with 2GB RAM (note, however, that a much
lower spec machine would have been adequate as the master processor since
it does not perform significant computation, nor does it require large amounts
of memory). Even though exclusive access to the slave processors could not be
guaranteed and the problem size in system 1 is relatively small, our distributed
analysis pipeline still exhibits excellent scalability. The loss of efficiency, as the
number of processors is increased, can be attributed to minor load imbalances
between slaves (which can occur when the work queue is nearly empty) and
the increase in the amount of communication between the master and slaves.
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7 Conclusion

In this paper, we have derived passage time densities, quantiles and transient
state distributions for distributed systems with underlying semi-Markov state
spaces of up to 106 states.

Building on our recent passage time generation algorithm, we derived and
implemented a new iterative algorithm that computes transient state distri-
butions. Our implementation optimises storage by relating the function to a
set of s-points necessary for Laplace transform inversion. In this way, stor-
age of an arbitrary distribution is kept constant and successive vector–matrix
iterations do not suffer from the problem of representation explosion.

Finally, we used a semi-Markov stochastic Petri net in conjunction with a
semi-Markov extension to the DNAmaca language to specify a model of a dis-
tributed voting system, generate the corresponding semi-Markov state space
and solve for a variety of transient and passage time measures.

Our research efforts in the near future will include studying the convergence
behaviour of our transient algorithm, with the goal of obtaining analytical
bounds on the truncation error. In addition, we will apply specialist tech-
niques, e.g. using hypergraph partitioning of data structures, to achieve a
scalable algorithm for systems with up to 108 states and beyond.
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