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Abstract

Semi-Markov processes (SMPs) are expressive tools for
modelling concurrent systems; they are a generalisation of
Markov processes that allow for arbitrarily distributed so-
journ times. This paper presents an iterative technique for
passage time and transient analysis of large structurally
unrestricted semi-Markov processes. Our method is based
on the calculation and subsequent numerical inversion of
Laplace transforms and is amenable to a highly scalable
distributed implementation. Results for a distributed voting
system model with up to 1.1 million states are presented and
compared against simulation.

1. Intr oduction

Traditional techniquesfor the analytical performance mod-
elling of paralleland distributedsystemsarepredominantly
basedon thesteady-stateanalysisof Markov chains. This is
restrictive for two main reasons. Firstly, theMarkov prop-
erty imposes the (often unrealistic) limitation that all time
delaysmust beexponentially distributed. Secondly, steady-
statemeasuresareadequatetodeterminemeanpassagetime
values but not to determinepassage (response) time quan-
tiles. This is an especially serious problem sincepassage
time quantiles areassuming increasingimportance as key
quality of serviceandperformancemetrics.

The aim of the present study is to investigate the use of
semi-Markov processes for thepurposesof system descrip-
tion and analytical passage time calculation. By using
SMPswe canspecify morerealistic models with generally
distributed delays while still maintaining some of the ana-
lytical tractabili ty associatedwith Markovianmodels.

Our specific contribution is an iterative algorithm for large
structurally unrestricted SMPs that generates passage time
densities and quantiles, as well as transient statedistribu-
tions. The algorithm is based on the calculation andsub-
sequent numerical inversion of Laplace transforms. One
of the biggest problems involved in working with semi-
Markov processesis how to store theLaplacetransform of
state sojourn timesin an effective way, such that accuracy
is maintained but representation explosiondoes not occur.
We addressthis issue with a constant-space representation
of a general distribution function based on the evaluation
demandsof thenumerical inversion algorithm employed.

We implement our technique in a scalable, distributed and
checkpointed analysispipeline and apply it to instances of
a distributed voting model. The high-level model descrip-
tion is given in theform of a semi-Markov Stochastic Petri
net – our own preliminary proposal for a non-Markovian
Stochastic Petri net formalism – and is textually described
in an extended semi-Markovian version of the high-level
DNAmaca Markov chain specification language [7]. Our
resultsarevalidated againsta simulation derived from the
samehigh-level model.

The rest of this paper is organised as follows. In Sec-
tion 2, webriefly detail thebackgroundtheory behind semi-
Markov processes,and show how to derive first passage
timesand transient distributions.Our iterativepassagetime
procedure is presented and formalised in Section 3. Sec-
tion 4 describesthe practical implementation issuesin nu-
merically inverting Laplace transforms as well as storing
and manipulating general distributions. Section 5 briefly
introduces thesemi-Markov stochastic Petri net formalism
and DNAmacaspecification system.Passagetimeand tran-
sient results are produced for systems with up to �������
stateswhich arevalidatedby simulations. Section 6 con-
cludesand considers futurework.



2. Definitions and Background Theory

2.1.Semi-Mark ov Processes

Consider a Markov renewal process 	�
���������������������
where ��� is the time of the � th transition (�� "!#� ) and� ��$�% is the state at (just after) the � th transition. Let the
kernelof this processbe:& 
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for )���+ $�% . The continuous time semi-Markov process
(SMP), 	�BC
,-�*��,7�D��� , definedby thekernel
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theMarkov renewal processby:
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where KL
',-�M!ONQPSRT	U�V�W�8�@<",X� , i.e. thenumber of state
transitions that have takenplaceby time , . Thus BC
',-� rep-
resents thestate of thesystem at time , . We consider time-
homogeneous SMPs, in which

& 
'�>��)��*+���,-� is independent
of any previousstateexcept the last. Thus
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pendent of � :
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���4365�!c+L=W����!c)A� is the state tran-
sition probabili ty between states ) and + and ad^`9
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'�8�43\5Z:0�8�e<f,d=g���4365h!i+S���;�"!i)A� , is the sojourn
timedistribution in state) when thenext stateis + .
2.2.First passage times

Consider a finite, irreducible, continuous-time semi-
Markov processwith K states 	��9�kjl�AmXmAmA�AKn� . Recalling thatBC
',-� denotes thestateof theSMPat time , (,Z�o� ), thefirst
passagetimefrom asourcestate ) attime , into anon-empty
setof target states p+ is:q ^'r` 
',-�(!0sutlvX	Uwnxy�z�_BC
,6{hw(� $ p+|=gBC
',-�.!�)A�
For astationary time-homogeneousSMP,

q ^ r` 
,-� is indepen-
dent of , andwehave:q ^ r` !0stWv-	}wLxo�;�~BC
'w(� $ p+�=gBC
����(!�)?� (1)

q ^ r` is arandomvariablewith an associatedprobability den-
sity function � ^ r` 
',-� such that the passagetime quantile is
definedas:
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In general, the Laplace transform of � ^'r` , � ^'r` 
*��� , can be
computedby solving asetof K linearequations:

� ^ r` 
*���.! �~�� r`
���^ � 
*����� � r` 
*���}{ � � r`

���^ � 
���� for �C<@)�<eK (2)

where � �^ � 
*��� is the Laplace-Stieltjes transform (LST) of& 
')��A�W�*,-� from Section 2.1 and is definedby:
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Eq. (2) hasa matrix-vector form, �Q�� ! � � , wherethe ele-
ments of � are arbitrary complex functions; careneeds to
be taken when storing suchfunctions for eventual numeri-
cal inversion (seeSection 4). For example, when p+[!�	��9� ,
Eq. (2) yields:
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where �� !"
*� 5 r` 
����*�A� � r` 
����*�AmAmXmA�A� F r` 
����«�¬ . When thereare

multiple source states,denoted by thevector p) , the Laplace
transformof thepassage timedistribution at steady-stateis:

� r ^�r` 
*���.! � � r ^
® � � � r` 
���� (4)

wherethe weight ® � is the probability at equilibrium that
thesystem is in state � $ p) at thestarting instant of thepas-
sage. If �¯ denotes the steady-statevector of theembedded
discrete-time Markov chain (DTMC) with one-step transi-
tion probability matrix

q !O° ]_^`-�-�d<o)���+;<OKz± , then ® � is
given by:

® � ! ¯ �~² ` � r ^ ¯ ` if � $ p)� otherwise
(5)

The row vectorwith components ® � is denotedby �® .

2.2.1 Transient statedistr ibutions

Another useful modelling resultis thetransient statedistri-
bution, �8^'`4
',-� , of astochastic process:

�8^`9
',-�.!D/ 12
�BE
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����.!�)X�
From Pyke’s seminal paper on SMPs [10], we have the
following relationshipbetween passage time densities and
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transient statedistributions, in Laplace form:

� �^` 
*�9�(! 5
�
5 �
³4´ µ G � J5 �
¶ µuµ G � J

if )Z!�+��^`9
*�9�'� �`*` 
*��� if )d·!�+ (6)

where � �^'` 
���� is the Laplace transform of ��^` and ¸ �^ 
*���C!` � �^` 
*�9� is the LST of the sojourn-time distribution in
state ) . For multiple target states,this becomes:

� �^ r` 
*�9�(! � � r` �
�^ � 
*�9�(! �� ¹ ^*º ^ � r` { � � r`X» �S¼½ ^ ¹

� ��^ � 
*���
(7)

where ¹ ��!V
k��:D¸ �� 
*�9�«�
² 
k��:D���S��
*�9�«� and ºU¾ is � if con-

dition ¿ is trueand � otherwise.

To construct � �^ r` 
*�9� , for a vector of target statesp+ we re-

quire jl=Àp+l=�:�� passage time quantities, ��^ � 
*��� , which we
can becomputed from = p+l= matrix calculationsof theform of
Eq. (3).

As for passage times, for multiple source states, p) , we
weight thetransient distributionsaccordingly:

� �r ^ r` 
*�9�(! � � r ^
® � � �� r` 
*����m

3. Iterati vePassage time Analysis

In this section, we describe a passage time generation
method thatcreatessuccessively moreaccurateapproxima-
tionsto theSMP passage time quantity of Eq. (2).

The iterativepassage time techniqueconsiders the � th tran-
sition passagetime of the system,� GIÁ*J^ r` 
*��� . This is thecon-

ditional probabil ity density of the system being in any of
the specified target statesafter � statetransitions. The un-
conditioned passage time density, � ^'r` 
*��� , is then obtained

in the limit as �ÃÂÅÄ . We calculate � GIÁ*J^ r` 
*��� for a suffi-

ciently high valueof � to giveanapproximation to within a
specified degreeof accuracy.

This iterativemethod bearsalooseresemblanceto thewell -
known uniformization technique[9, 8, 5] whichcanbeused
to generate transient-statedistributions and passage time
densities for Markov chains. However, aswe areworking
with semi-Markov systems,therecanbenouniformizing of
the general distributions in the SMP. The general distribu-
tion informationhasto be maintained as precisely as pos-
sible throughout theprocess.We achieve this by using the
representationtechniquedescribedin Section4.

Once an � ^'r` 
*��� quantity has been created, it can be used
to generate � r ^ r` 
*�9� passage times (c.f. Eq. (4)) or transient
distributions(c.f. Eq. (7)).

3.1.Technical Descrip tion

Recall the semi-Markov process, BC
',-� , of Section 2.2,
where KL
',-� is thenumberof statetransitionsthathavetaken
place by time , . We define the � th transition first passage
time to be:q GIÁ*J^'r` !0stWvX	UwLxo�;�~BC
'w(� $ p+C=9KL
'w(�©< � �XBC
����(!�)?� (8)

which is the time taken to enter a state in p+ for the first
timehaving startedin state) at time0 andhaving undergone
up to � statetransitions.

q GIÁ*J^'r` is a random variable with

associated probability density function, � GIÁ*J^ r` 
',-� , which has

Laplacetransform � GIÁ*J^ r` 
*��� .
� GÀÁ*J^ r` 
*�9� is, in turn, the ) th component of thevector

�� GIÁ*Jr` 
*���.!"
*� GIÁ*J5 r` 
*�9�*�A� GIÁkJ� r` 
����*�AmAmXmA�A� GIÁ*JF r` 
����«�
which may becomputedas:

�� GIÁ*Jr` 
*���.!ÃÆ�
'ÇQ{DÆ7È�{DÆ7È � {oÉAÉXÉS{DÆ7È GIÁ � 5 J �T�� (9)

Here Æ is a transition matrix with elements wËÊUÌ�! � �ÊUÌ 
*�9� .Æ È is a modified transition matrix with elements w È ÊUÌ !º Ê ¼� r` wËÊUÌ , where statesin p+ have been made absorbing. The
columnvector �� hasentries ��

� !Ãº � � r` .
Weincludetheinitial Æ termin Eq.(9), soasto generatecy-
cle timesfor cases such as � GIÁ*J^^ 
*�9� which would otherwise
register as0, if Æ È wereused instead.

From Eqs.(1) and (8):

q ^ r` ! q G � J^ r` and thus � ^ r` 
*���.!Ã� G � J^ r` 
*�9�*m
Now, � GIÁ*J^ r` 
*�9� canbegeneralisedto multiple sourcestates p)
usingthenormalised steady-statevector, �® , of Eq. (5):

� GIÁ*Jr ^'r` 
*�9�ª! �® �� GIÁ*Jr` 
*���! 
��® ÆÃ{��® ÆEÆ È {��® ÆdÆ È � {0mXmAmmAmAmg{��® ÆdÆ È GÀÁ � � J {��® ÆdÆ È GÀÁ � 5 J �T��
(10)

Calculating the individual �® ÆdÆ ÈIÍ vectors of Eq. (10) is
a sparsematrix-vector multiplication operation, which can
be achieved iteratively by multiplying the previous vector,�® ÆdÆ È G Í � 5 J , by the transition matrix Æ È . The worst-case
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time complexity for the calculation of Eq. (10) is Î�
*K � � �
versusthe Î|
*KzÏ~� of typical matrix inversion techniques.

Convergenceof thesumin Eq. (10) issaidto haveoccurred
ataparticular � , if for agiven � -point:

= Ð�Ñg
*� GÀÁ 365 Jr ^ r` 
�����:o� GÀÁ*Jr ^ r` 
*�9�«�k=_�"Ò and

= /�NÓ
*� GIÁ 365 Jr ^ r` 
*���T:o� GIÁ*Jr ^ r` 
*���k�k=W�"Ò (11)

where Ò is chosen to beasuitably smallvalue (e.g. �U� �
Ô
).

4 LaplaceTransform Inversion

Thekey to practical analysis of semi-Markov processes lies
in the efficient representation of their generally distributed
functions. Without care the structural complexity of the
SMP canbe recreated within the representationof the dis-
tribution functions. This is especially truewith the manip-
ulationsperformedin theiterative passagetime calculation
of Section3.

Many techniques have beenused for representing arbitrary
distributions – two of the most popular being phase-type
distributions and vector-of-moments methods. Thesemeth-
ods suffer from, respectively, exploding representationsize
under composition and containing insufficient information
to produceaccurateanswers after large amountsof compo-
sition.

As all our distributionmanipulations takeplacein Laplace-
space, welink our distributionrepresentation to theLaplace
inversion techniquethat we ultimatelyuse. Our implemen-
tationsupportstwo Laplacetransforminversion algorithms:
the Euler technique [2] and the Laguerre method [1] with
modificationssummarisedin [6].

Both algorithmswork on thesamegeneralprinciple of sam-
pling thetransform function �\
*�9� at � points, ��5?�A�U�S�XmAmAmA�X���
and generating values of �Ë
',-� at Õ user-specified , -points,-5?��,k���AmAmXmA��, Í . In the Euler inversion case�V!i�4Õ , where� typically variesbetween15 and 50, depending on the ac-
curacy of the inversion required. In the modified Laguerre
case,�D!0ÖS�S� and, crucially, is independent of Õ .

The choice of inversion algorithm depends on the charac-
teristics of the density function �Ë
',-� . If the function is con-
tinuous,and has continuous derivatives(i.e. it is “smooth”)
then theLaguerremethodcanbeused. If, however, theden-
sity function or its derivativescontain discontinuities – for
example if the system exclusively containstransitions with
deterministic or uniform holding-time distributions – then
theEulermethodmustbeemployed.

Whichever inversion algorithm is used, it is important to
note that calculating �?^*�-�C<@)�<@� andstoringall thedistri-
bution transform functions,sampledat these points,will be
sufficient to provide a complete inversion. Storingour dis-
tribution functions in this way has three main advantages.
Firstly, the function has constant storage space, indepen-
dent of the distribution-type. Secondly, each distribution
has, therefore, the same constant storage even after com-
position with other distributions. Finally, the function has
sufficient informationabout a distribution to determine the
required passagetimeor transient density (andnomore).

Our implementation employs a distributedmaster-slave ar-
chitecturesimilar to thatof theMarkovian passagetimecal-
culation tool of [6]. The master processor computesin ad-
vancethevaluesof � atwhich it wil l needto know thevalue
of � r ^ r` 
*�9� in order to perform the inversion. The � -values
arethen placed in a global work-queue to which the slave
processorsmake requests. On making a requestslave pro-
cessors areassigned thenext available � -value and use this
to construct thematrices Æ and Æ È . The iterative algorithm
is then applied to calculate the truncated sumof Eq. (10)
for that � -value. The result is returned to the masterand
cached (both in memory and on disk so that all computa-
tion is checkpointed), and once all values have been com-
putedand returned, the final Laplaceinversion calculations
aremade by themaster. Theresulting , -pointscan then be
plotted on a graph. As inter-slave communicationis not re-
quired, thealgorithm exhibitsexcellentscalabili ty (seeSec-
tion 5.3.3).

5. Distrib uted SystemModelling

We demonstrate the SMP analysis techniques of the pre-
vious sections with a semi-Markov model of a distributed
voting system. As there is a rich tradition of modell ing
distributed systems with stochastic Petri nets [4, 11], we
propose and then make useof a semi-Markov extension of
GSPNsto generate themodel.

Themodel isspecified in asemi-Markov stochastic Petri net
(SM-SPN) formalism (outlined below) usingan extension
of the DNAmaca [7] Markov chain modelling language.
From here, the semi-Markov state space is generatedand
we extract passage time densities, cumulative distribution
functionsand transient distributions.

5.1.Semi-Mark ov Stochastic Petr i Nets

Semi-Markov stochastic Petri nets are extensions of
GSPNs [3], which can handle arbitrary state-dependent

4



holding-time distributions and which generate an under-
lying semi-Markov process rather than a Markov process.
Formally a SM-SPN consistsof a 4-tuple, 
 q Kz�k×¦�*ØÙ�*Úh� ,
where:

Û q K !§
 q �����*Ç � ��Ç 3 �AÜÓ g� is the underlying Place-
Transition net.

q
is thesetof places, � , thesetof tran-

sitions, Ç 3
�
� are theforwardand backward incidence

functions describing the connections between places
and transitionsand Ü  is theinitial marking.

Û × ���ÞÝyß Â B 3 , denoted ] H 
ÕD� , is a state-
dependent priority function for a transition.

Û Ø �T�àÝhß Â / Ð 3 , denoted á H 
'ÕD� , is a marking-
dependent weight function for a transition, to allow
implementation of probabil istic choice.

Û ÚY�.�âÝnß Â 
ã/ Ð 3 Â ° �l�-��±�� , denoted ä H 
'Õ0� , is
a marking-dependent cumulative distribution function
for thefiring-time of a transition.

In the above ß is the set of all reachable markings for a
given net. Further, we define the following general net-
enabling functions:

ÛÓå F ��ß Â q 
'�æ� , a function that specifies net-
enabled transitionsfromagivenmarking.

ÛÓålç �8ß Â q 
�æ� , a function that specifies priority-
enabled transitionsfromagivenmarking.

The net-enabling function, å F , is defined in theusual way
for standard Petri nets: if all preceding placeshaveoccupy-
ing tokensthenatransition isnet-enabled. Similarly, wede-
fine themore stringent priority-enabling function, ålç . For
a givenmarking, Õ , åWç 
'Õ0� selects only thosenet-enabled
transitionsthathave thehighest priority, i.e. :

ålç 
'ÕD�.!e	U, $ å F 
'Õ0�.�] H 
'Õ0�.!DNQP�R�	U] H�è 
'Õ0�(�X, È $ å F 
'Õ0�k�S�
Now for a given priority-enabled transition, , $ åWç 
'Õ0� ,
there is a probabili ty that it will actually fire after a delay
sampled from its firing distribution, ä H 
ÕD� :

/ 12
, $ ålç 
'Õ0�léWê«ÑXë4�.! á H 
ÕD�H�è �Xì�í G Í J á H è 
'ÕD�
Note that the choice of which priority-enabled transition is
fired in any given markingis made by a probabilistic selec-
tion basedon transition weights, andis not a racecondition
basedon finding the minimum of samples extracted from

firing time distributions. This mechanism enables the un-
derlying reachabili ty graph of the SM-SPN to be mapped
directly ontoasemi-Markov chain.

The marking-dependence of the weights and distributions
does, in fact, allow us to translate SPNs and GSPNs into
theSM-SPNparadigm in astraightforwardmanner, but that
translationis not within thescopeof this paper.

5.2.A Distrib uted Voting System

Fig.1. A queueing modelof avoting system

Fig. 1 shows thedistributed componentsof avoting system
with breakdowns and repairs, which we will useto gener-
atea semi-Markov model. A voting agent queuesto vote
in the buffer; then, asa polling unit becomes free, it can re-
ceivetheagent’svoteandtheagent can bemarked ashaving
voted. Thepolling unit contactsall thecurrently operational
central voting units to register voteswith all of them; this is
donein order to prevent multiple vote fraud and to provide
fault tolerance through redundancy. The polling unit then
becomesavailable to receiveanothervotingagent.

The semi-Markov stochastic Petri net for this system is
shown in Fig. 2. Voting agents vote asynchronously, mov-
ing from place]�5 to ]g� asthey do so.A restrictednumberof
poll ing units which receive their votestransit ,-5 from place] Ï to place ]~î . At ,*� , the vote is registered with asmany
central voting units asarecurrently operational in ]gï .
Thesystem isconsideredto be in afailuremodeif either all
thepolling units have failed and arein ]gð or all the central
voting unitshavefailed andarein ] � . If either of thesecom-
pletefailuresoccur, then ahigh priority repair is performed,
which resetsthe failed units to a fully operational state. If
somebut not all thepolling or voting units fail, they attempt
self-recovery. The system will continue to functionas long
asat leastonepolling unit andonevotingunit remainoper-
ational.
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Fig.2. A semi-Markov stochastic Petri netof thevoting system

\transition{t5}{
\condition{p7 > MM-1}
\action{

next->p3 = p3 + MM;
next->p7 = p7 - MM;

}
\weight{1.0}
\priority{2}
\sojourntimeLT{

return (0.8 * uniformLT(1.5,10,s)
+ 0.2 * erlangLT(0.001,5,s));

}
}

Fig.3. Excerptfrom specification of voting example,showing definition
of transition ñ*ò .

This example is defined in full as a DNAmaca specifica-
tion [7], anexcerpt of which is shown in Fig. 3. Thisdefines
transition ,kï , saying that it:

Û is enabled when place ]gð has greater than ÜóÜY:��
tokensin it.

Û removes ÜóÜ tokens from place ]~ð and adds ÜOÜ
tokensto place ] Ï , whenfired.

Û has a weight �9m � (usedto define probabilistic choice
between transitionswhen two or moreareconcurrently
enabled).

Û has a priority of j , which will enable it above other
transitions which would otherwise be structurally en-
abledbut havea lowerpriority.

Û is given a firing distribution which, with probability
0.8, is a uniform distribution or, with probabili ty 0.2,

System ôEô ÜóÜ KÓK States

0 18 6 3 2061
1 60 25 4 106,540
2 100 30 4 249,760
3 125 40 4 541,280
4 150 40 5 778,850
5 175 45 5 1,140,050

Tab.1. Differentconfigurations of the voting system asused to present
results

is anErlang distribution. TheLaplace transform õ � 
*�9�
for this firing timedistribution is:

�lm ö>Ý7÷_ølù ú4û�ü�ý7þ�ÿ2
«�4m �l�-���l�A���U{Z�Wm j(Ý��-ü�����ø��-þ�ÿ2
ã�lm �S���4�	�W�X�9�
where

÷_ølù ú4û�ü�ý7þ�ÿ2
�
~� � �A���.! � � � � : � �

���
 � :�
W�

and

�-ü�����ø��-þ�ÿ2
����*�(�X�9�(! �
�Q{0�

� m
In general, any arbitrary Laplace transform function
can be specified as a firing distribution using the
\sojourntimeLT{...} pragma.

5.3.Results

In this section, we compute passagetime quantities for the
time taken for a number of voters to pass from place ]�5
to ]g� (a voter throughput quantity), as well asfor the time
takenfor a fully operational system to enter a failuremode
(i.e. when ÜOÜ polling units fail in place ]gð or when KÓK
central voting units fail in place ] � ). We also extract sim-
plereliability quantiles fromcumulativedistributionsof the
passagetimes,and transient measuresfor thevoterthrough-
put passage.

For the voting system described in Fig. 2, Table 1 shows
how thesize of the underlying SMPvaries according to the
configuration of the variables ôdô , ÜOÜ , and KÓK , which
are the number of voters, polling units and central voting
units, respectively.

5.3.1 Examplepassage timedistr ibutions

Fig. 4 shows the density of the time taken for the passage
of 175 voters from place ]�5 to ]g� in system 5 ascomputed
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Fig.6. Analytic andsimulateddensity for failuremode passage in system
0 (2061 states).

by bothour truncated iterative techniqueandby simulation.
The close agreement providesmutual validation of thean-
alytical method, with its numerical approximation, and the

simulation. It is interesting that, qualitatively, the density
appearsNormal. Certainly, the passage time random vari-
able is a (weighted) sumof a large number of independent
random variables,but theseare, in general, not identically
distributed.

Fig. 5 showsacumulativedistribution for thesamepassage
asFig. 4. This is easily obtained by inverting the Laplace
transform � r ^ r` ��������� ; it allows us to extract response time
quantiles, for instance:

� � �
system 5 processes175votersin under440s

�������  "!�#"!

Fig. 6 shows analytic and simulatedresultsfor the time to
complete failure in an initially fully operational voting sys-
tem. It isproduced for amuch smaller system(2061 states)
astheprobabil ities for the larger systemswereso small that
thesimulator wasnot able to register any meaningful distri-
bution for thequantity without usingrare-event techniques.
As we wanted to validate the passage time algorithm, we
reduced the number of states so that the simulator would
register a density. Examining very-low-probabili ty events
is anexcellent example of where analytical techniques out-
perform simulations that would take many hours or even
days to complete.

5.3.2 Example transient distrib ution

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100

p(
t)$

time (s)

Transient solution: system 0/5
Steady-state solution: system 0/5

Fig.7. Transient and steady-statevalues in system 0, for the transit of 5
votersfrom theinitial marking to place%"&

We can use the transformation of Eq. (7) to generate tran-
sient distributionsfrom passagetimedensities.Fig.7 shows
the transient distribution for the transit of five votersfrom
place '�5 to 'g� . As expected, the transient distribution tends
towardsits steady-statevalueas(*),+ .
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SlaveProcessors Time (s) Speedup Efficiency

1 549.08 1.00 1.000
8 71.11 7.72 0.965
16 39.16 14.02 0.876
32 24.10 22.79 0.712

Tab.2. Time,speedup and efficiency for varyingnumbersof slaveproces-
sorswhencalculatingapassagetimeat5 ñ -pointsfor system1,using Euler
inversion (total of 165 - -pointevaluations).

5.3.3 Tool scalabil ity

Table 2 shows the time, speedups and efficiency for the
analysis pipelineof Section 4 with varying numbersof slave
processorswhen calculating5 , -points for apassagetimeof
system 1. The slave processors, each of which hasa 2 GHz
Intel Pentium 4 processorand 512 MB RAM, are part of a
shared departmental network connected by 100MBps Eth-
ernet. The masterprocessorusedwasa dual 1 GHz Pen-
tium II I server with 2GB RAM (note,however, thatamuch
lowerspec machinewould havebeenadequateasthemaster
processorsinceit doesnot perform significant computation,
nor doesit require largeamountsof memory). Eventhough
exclusive access to theslave processors could not beguar-
anteed and the problem sizein system1 is relatively small ,
our distributedanalysis pipelinestill exhibitsexcellent scal-
abil ity.

6. Conclusion

In thispaper, wehavederived passagetimedensity, quantile
and transient resultsfor distributed systemswith underlying
semi-Markov statespacesof up to �U�S� states.

An iterativepassagetimegenerationalgorithmwasderived,
implemented and comparedagainstsimulation. Our imple-
mentationoptimisesstorageby relating thefunctionto aset
of � -points necessary for Laplace transform inversion. In
thisway, storageof an arbitrary distribution iskept constant
and successive vector-matrix iterations do not suffer from
theproblem of representation-explosion.

Finally, we useda semi-Markov stochastic Petri net in con-
junction with a semi-Markov extension to the DNAmaca
language to specify a model of a distributed voting sys-
tem, generate the corresponding semi-Markov state space
and solve for avariety of passage timemeasures.

Our researchefforts in thenear futurewill includestudying
the convergence behaviour of our algorithm, with the goal
of obtaining analytical bounds on the truncation error. In

addition, wewil l apply specialist techniques, e.g. using hy-
pergraph partitioning of datastructures,to achieve scalable
algorithmsfor systemswith up to �V��� Ô statesandbeyond.
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