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Abstract

Semi-Markov processes (SMPs) are expressive tools for
modelling concurrent systems; they are a generalisation of
Markov processes that allow for arbitrarily distributed so-
journ times. This paper presents an iterative technique for
passage time and transient analysis of large structurally
unrestricted semi-Markov processes. Our method is based
on the calculation and subsequent numerical inversion of
Laplace transforms and is amenable to a highly scalable
distributed implementation. Results for a distributed voting
system model with up to 1.1 million states are presented and
compared against simulation.

1. Intr oduction

Traditiond techniquesfor the andytical perfformance mod-
elling of paralleland distributed systemsarepredominantly
basedon the steady-state aralysisof Markov chans. Thisis
restictive for two main reasors. Firstly, the Markov prop-
erty imposes the (often unredistic) limitation tha all time
ddays must be exponertialy distributed. Secondly, steady-
state measuresreadequateto deerminemean passgetime
values but not to determinepassage (respns§ time quan-
tiles. Thisis an espeially serbus problem sincepassag
time quartiles are assurming increasingimportarce as key
quality of service and performarte metrics.

The aim of the presat study is to investigate the use of
semi-Marlov processes for the purposesof system descip-
tion and aralyticd passge time cdculation. By using
SMPswe can specify morerealistic modds with geneally
distiibuted delays while still maintaning sone of the ama-
lytical tractability assodatedwith Markovian mockls.

Our spedfic contribution is an iterative algorithm for large
structurally unrestricted SMPs that gererates passage time
densities and quartiles, as well astransien state distribu-
tions. The algaithm is basel on the calculation and sub-
seqient numerical inversion of Laplace transforms One
of the biggest probdems involved in working with sem-
Markov processesis how to store the Laplace transform of
state sojoun timesin an effective way, such tha accuracy
is maintained but representation explosiondoes not occur.
We addressthis issue with a constant-gace representation
of a general distribution function basel on the evaluation
demands of the numaeical inversion algarithm employed

We implement our technique in a scdable, distributed and
chedpointed aralysispipdine and apply it to instarces of
a distiibuted voting model. The high-level model descip-
tion is given in the form of a semi-Markov Stocastic Petri
net — our own prdiminary proposal for a hon-Markovian
Stachastc Petri net formdism— and is textudly describe
in an extended semi-Marlovian version of the high-level
DNAmaca Markov chain speification language [7]. Our
resultsare validated againsta simulaion derived from the
samehigh-level mocel.

The rest of this paper is orgarised as follows. In Sec-
tion 2, we briefly detailthebackgroundtheay behind semi-
Markov processes,amd show how to derive first passag
timesand transiert distributions. Our iterative passageime
procedureis preseted and formalised in Sedion 3. Sec-
tion 4 descrbesthe pradical implemertationissuesn nu-
merically inverting Lagdace trarsforms as well as storing
ard manipulating general distributions. Section 5 briefly
introduces the sem-Markov stodestic Pdri net formdism
arnd DNAmacaspedfication system.Passgetime and tran-
sient results are produced for systems with up to ~ 10°
stateswhich are validatedby simulations. Section 6 con-
cludes ard considers futurework.



2. Definitions and Background Theory
2.1.SemiMark ov Processes

Conside a Markov reneva process {(X,,,T,,) : n > 0}
where T, is the time of the nth trarsition (7; = 0) ard
X, € S isthe state at (just after) the nth transition. Letthe
kernel of this process be:

R(nviajat) = ]P(X'n+1 = ja Tn+1 _Tn S t ‘ Xn = 7)

for i,j € S. The continuous time semi-Markov process
(SMP), {Z(t),t > 0}, definedby the kernd R, is relatedto
the Markov renewal processby:

Z(t) = Xn@)

where N (t) = max{n : T,, < t}, i.e.the number of state
transionstha have takenplace by time ¢. Thus Z(t) rep-
reseits the state of the system attime ¢t. We conside time-
homogeneous SMPs, in which R(n, 1, j,t) is indeperdent
of ary previous state except the last. Thus R bemmesinde-
pendert of n:

R(j’aj:t) IP(Xn+1 = jaTn+1 -T, <t | Xp = 7)

pijHij(t)

wherep;; = IP(X,, 11 = j | X,, = 1) is the state tran-
sition probebility between sttes i and j and H;;(t) =
IP(T71+1 - Tn <t | Xn+1 = J«Xn = i), is the sojoun
time distribution in statei when the next stateis j.

2.2.First passagtimes

Conside a finite, irreducible, continuoustime sem-
Markov processwith NV states {1, 2,..., N}. Realling that
Z(t) derotesthe stateof the SMPattimet (¢t > 0), thefirst
passagetimefromasaurcestate attime into anon-empy
setof target states j is:
Pet) =inf{u>0:Z(t +u) € j| Z(t) =i}

For astationary time-homogeneous SMP, Pﬁ(t) isindepen-
dent of t and we have:

Pz =inf{u>0:Z(u) €j|Z(0) =i} 1)
P is arandom variable with an assodatedprobahlity den-
sity function fi;.(t) suc that the passagdime quartile is
definedas:

ta
Pt < Py < ) = / falt)at
t1

In general, the Laplace transform of f;7, Li;(s), can be
computedby solving asetof N linear equaions:

Lis(s) =Y ri(s)Ls(s)+Y ri(s) for 1 <i < N (2)

k¢j kej

where 77, (s) is the Laplace-Stieltes transform (LST) of
R(i, k,t) from Section 2.1 ard is defined by:

Ti*k(S):/) e ' dR(i, k,t)

Eq. (2) hasa marix-vedor form, Az = b, wherethe ele-
ments of A are arbitrary complex functions; carenealsto
be taken when storing suchfunctions for eventud numeri-
cd inversbn (seeSedion 4). For examge, when j = {1},
Eq. (2) yields:

1 —ris(s) —rin(s) r11(s)
0 1—r3(s) —ran(s) 31(8)
0 riys) rin(®) |2 | i)
0 —ris) 1= i (s) i (5)
©)

wherez = (L,3(s), Ly3(s), ..., Ly;(s))". Whenthereare

multiple soure statesdenoted by the vector 7, the Laplace
transformof the passagtime distribution at steady-stateis:

Lis(s) = Y arL,(s) (4)

ket

wherethe weight «, is the probahlity at equilibrium that
thesysem s in state k € 7 atthe starting instant of the pas-
saee. If 7 denctes the steady-statevector of the embedded
discretetime Markov chain (DTMC) with one-step transk
tion probatility matix P = [p;;,1 < 14,j < NJ, then oy, is
given by:

if kei
othewise

®)

Qp =

T/ D jei T
0
The row vector with compments «, is denotedby a.

2.21 Transent statedistributions

Anothe useful mocklling resultis the trarsient statedistri-
bution, T;;(t), of astodastic process:

Ti(t) =P (Z(t) = j | Z(0) = 1)

From Pyke’s semind pgpe on SMPs [10], we have the
following relationship beween passage time densities ard



transiert state distributions, in Laplace form:

11-h7 ((s))
T* = s 1—Li;i(s
) (S) L” (S)Tjkj (8)

ifi=j
if i £

whereT};(s) is the Laplace transform of T;; and hj(s) =
>_;7i;(s) is the LST of the sojoun-time distribution in
state i. For multiple target statesthis becomes:

(6)

1
=3 (s) = [ Aidiy + > AxLik(s)

kej ke ki

()

whereA,, = (1 — h%(s))/(1 — L,,(s)) and §p is 1 if con-
dition B is trueand 0 othewise

To constuct @}(s), for a vecta of target states;] we re-

quire 2|j| — 1 passage time quantities, L;x(s), which we
can be computad from || matrix calculatiors of the form of
Eqg. (3).

As for passge times, for multiple source states, i, we
weight thetrarsient distributionsaccordingly:

3. Iterati ve Passage time Analysis

In this section, we describe a passag time generdion
method that creates successiely moreaccurateapproxima-
tionsto the SMP passage time quantity of Eq. (2).

The iterative passag time technique considers the rth tran-
sition passagetime of the system,Lff_) (s). Thisis thecon-
ditional probahlity dersity of the sySEm being in any of
the spedfied target states after r statetransitions. The un-
conditioned passge time dersity, Li;.(s), is then obtained

in thelimit as r — oco. We calcuate LZ(,;;)(s) for a suffi-

ciently high valueof r to give anapproximation to within a
specified degree of aacuracy.

This iterative methal bea's alooseresembance to thewell -
known uniformization technique [9, 8, 5] which canbe used
to geneate trarsient-state distributions and passage time
densities for Markov chans. However, aswe areworking
with semi-Markov sysems, therecanbe no uniformizing of
the geneal distributionsin the SMP. The general distribu-
tion informationhasto be maintaned as predsely as pos-
sible throughout the process. We achieve this by using the
representationtechnique describedn Section 4.

Oncean L,(s) quantity has been created it can be used
to generate Lﬁ(s) passage times (c.f. Eqg. (4)) or transient
distributions(c.f. Eq. (7)).

3.1.Technical Desgip tion

Recdl the semi-Marlov process, Z(t), of Sedion 2.2,
whereN (¢) is the number of state transitonsthathave taken
place by time ¢. We define the rth transtion first passag
timeto be

Pg> =inf{u >0:Z(u) € 7| N(u) <r Z0) =i} (8)

which is the time taken to erter a state in j for the first
time having startedin statei at time 0 and having undergone
up to r statetransitions. P(’”) is a rancbm variable with

assocated probability densnty function, f(r)( t), which has
Laplacetrarsform LZ(,;,) (s).

LEJC_) (s) is, in turn, the ith componert of the vector

(r) _ 7 (r) (r)
LO(s) = (LD (), LT (s).. ., L H(s)

which may be compuedas:

L) = U+ U +U” -+ U D)e (9
Here U is a trarsition matrix with elements u,, = r, (s).
U’ is a modified transition matrix with elements u,,, =

u,q, Where statesin j have been made absorbing The

p
oizumn vector ¢ hasentries ey, = 6, 5.

Weincludetheinitial U termin Eq.(9), soasto gereratecy-

cle timesfor cases such as L7 (s) which would otherwise
register as0, if U’ wereused instead

From Egs.(1) ard (8):

.= p(®) (g) = 1,()
Py = PZ,; andthus L,(s) = Li; (s).
Now, ngf_) (s) canbe gererdisedto multiple sourcestates 7
usingthe normalised steady-state vector, &, of Eq. (5):

L%)(s) = aiﬁﬁ (s)
= (aU +aUU’' +aUuu” + . .. (10)
L+ auU2 4 auUrY)e

Cdculating the individud aUU’™ vectors of Eq. (10) is
a spasemarix-vedor multiplication operation which can
be achieved iteraively by multiplying the previous vedor,
auu’(m=1 by the transition matrix U’. The worstcase



time complexity for the cdculation of Eg. (10) is O(N?r)
versusthe O(N?) of typical matrix inverson techniques.

Convergerceof thesumin Eq. (10) is saidto have occurred
ataparticularr, if for agivens-point:

|Re(L%T+1>(s) - Lg>(s))| <e and

|Im(L£:+l)(s) -

i

L (s))| < e (11)

wheree is chosen to bea suitably smallvalue (e.g 10-8).

4 Laplace Transform Inversion

The key to pradical aralysis of semi-Markov proces®slies
in the efficient represetation of ther gererally distributed
functions. Without care the structural complexity of the
SMP can be recreded within the represemation of the dis-
tribution functions. This is espedally true with the manip-
ulations performedin theiterative passage time cdculation
of Section 3.

Many techniques have beenusel for representing arbitrary
distributions — two of the most popuar being phase-type
distributions and vector-of-moments methals. Thesemeth-
ods suffer from, respedively, exploding representationsize
under composition and containng insufficient information
to produce accurateanswes after large anownts of compo-
sition.

As all our distribution manipulatiors take placein Laplace-
space we link our distribution representaion to the Lapace
inversion techniquetha we ultimately use. Our implemen-
tationsupprtstwo Lapacetransforminversion algariithms:
the Euler technique [2] and the Laguerre methal [1] with
moadificatiors sumnarisedin [6].

Both algorithmswork on thesamegereralprincple of sam-
pling thetransform function L(s) atn points, s1, sa, . . ., Sy,
and generating values of f(¢) at m use-spedfied ¢-points
t1,t2,...,tm. Inthe Euler inverson casen = km, where
k typicdly variesbetween 15 ard 50, depending on the ac-
curagy of theinverson required. In the modified Laguerre
case,n = 400 and, crucially, isindependert of m.

The chace of inversn algarithm depends on the charac-
terigtics of the dersity function f(¢). If the function is con-
tinuous, and has continuous derivatives(i.e. it is “smodh”)
then the Laguerre methodcanbe used If, however, theden-
sity fundion or its derivativescontain discontinuities — for
exampleif the system exclusively containstrarsitions with
determinisic or uniform holding-time distributions — then
the Euler method mustbe enployed

Whichever inverson algaithm is useq it is important to
note tha calcuating s;, 1 < i < n and storingall thedistri-
bution transform functions, sampledat these points,will be
sufficient to provide a complete inverdon. Storingour dis-
tribution functions in this way has three man advantayes.
Firstly, the function has constart storage space, indepen-
dent of the distribution-type. Secondy, each distribution
has, therefore, the same constart storage even after com-
position with other distributions. Finally, the function has
sufficient informationabout a distribution to detemine the
required passgetime or transien dersity (andno more).

Our implemertation enmploys a distiibuted master-save ar-
chitecture similar to that of theMarkovian passgetime ca-
culation todl of [6]. The master proces®r computesin ad-
varcethe values of s atwhich it will needto know the value
of L;z(s) in order to perform the inversion The s-values
arethen placed in a global work-queue to which the slave
processorsmale requests. On making a requestslave pro-
cesors areassgned the next availabde s-value and use this
to construct thematricesU and U’. The iterative algorithm
is then applied to calcuate the truncated sumof Eq. (10)
for that s-value. The resultis retuned to the masterand
cached (both in memory ard on disk so that all computa-
tion is chedpointed), and once all values have been com-
putedard returred the find Lapaceinverdon calcuations
aremack by the master The resulting ¢-points can then be
plotted ona graph. As inter-slave communicationis not re-
quired, thealgorithm exhibits excellentscalability (see Sec-
tion 5.3.3).

5. Distrib uted SystemModelling

We demmstrate the SMP andysis techniques of the pre-
vious sedions with a semi-Marlov modd of a distributed
voting system. As there is a rich tradition of moddling
distibuted systems with stodhastic Pdri nets [4, 11], we
propase and then make useof a semi-Marlov extersion of
GSPNsto generate the modd.

Themodd isspeified in asemi-Marlov stochastic Petri net
(SM-SH) formdism (outlined below) usingan extension
of the DNAmaa [7] Markov chain modelling language.
From here the semi-Markov state space is gereratedard
we extract passge time dersities, cumulaive distribution
functionsand transiert distiibutions.

5.1.SemiMark ov Stochastic Petri Nets

Seami-Markov stochasfc Peri nets are extersions of
GSPNs [3], which can hardle arbitrary state-deperdent



hading-time distributions and which generde an under-
lying semi-Markov process rather than a Markov process
Formdly a SM-SHN corsistsof a4-tude, (PN, P, W, D),
where:

e PN = (P, T,I7,I", M) is the underlying Place-
Transition net. P is the setof places, T, the setof tran-
sitions, I/~ are theforward ard bacward incidence
functions describing the connedions between places
ard transiionsand M is theinitial marking.

eP : T x M — Z* denoted p,(m), is a state-
dependert priority function for atrarsition.

e W:T x M — IR", denated w;(m), is a marking-
dependent weight function for a trarsition, to allow
implemertation of probahilistic choice.

eD:TxM — (RY — [0,1]), deroted d;(m), is
amarking-dependert cumulaive distribution function
for the firing-time of atransiton.

In the above M is the set of all reechalde markings for a
given net. Further we define the following general net-
eraling functions:

e &y : M — P(T), afunction tha spedfies ne-
eraded trarsitionsfrom a givenmarking.

e &p : M — P(T), afunction that spedfies priority-
erabed trarsitionsfrom a givenmarkirng.

The net-enabling function, £y, is defined in the usual way
for stardard Petri nets: if all preedng placeshave occupy-
ing tokensthenatransition isnet-enalded. Similarly, we de-
fine the more stringert priority-enabling function, £p. For
agivenmaking, m, £p(m) selets only thosenet-enabled
transitonsthat have the highest priority, i.e. :

Ep(m) = {t S SN(m) :
pe(m) = max{py (m) : t' € Ex(m)}}

Now for a given priority-enabled transiton, ¢t € Ep(m),
there is a probebility tha it will adually fire after a delay
sampbed from its firing distribution, d; (m):

wi(m)

IP(t € Ep(m) fires) = 5 o ()
t'eEp(m

Note that the choice of which priority-enaled transition is
fired in ary given markingis mace by a probahilistic selec-
tion basedon transition weights, andis not a race condition
basedon finding the minimum of samples extracted from

firing time distibutions. This mechanism enales the un-
derlying reachability grgph of the SM-SPN to be mapped
diredly onto a semi-Markov chain.

The marking-dependerce of the weights and distributions
does, in fact, allow us to translate SPNs and GSPNs into
the SM-SPN paradgm in astraightforward manner, but that
translationis not within the scqe of this pgper.

5.2.A Distrib uted Voting System

Multiple “polling unit” servers

\ Multiple redundant
. voting units
Queue of
voting agents 7
<%
T e
772N

Fig. 1. A queueng modelof avoting systen

Fig. 1 shows thedistributed compaents of avoting sysem
with breakdowns ard repairs, which we will useto gener-
ate a semi-Markov model. A voting agert quelesto vote
in the buffer; then asa polling unit becomes freg it can re-
cavetheagert'svote andtheagernt can be marked ashaving
voted Thepdlling unit contadsall the currently operatioral
central voting units to register voteswith all of them; thisis
donein order to prevert multiple vote fraud and to provide
faut tolerance through redundancy. The polling unit then
becomes available to recdve ancther voting agent.

The semi-Marlov stochastic Petri net for this system is
shawvn in Fig. 2. Voting agerts vote asyrchronously, mov-
ing from placep, to p, asthey do so. A restictednumkber of
paling units which recave ther votestrarsit ¢; from place
p3 to place ps. At ty, the vote is registered with as many
central voting units as are currertly operationd in ps.

The sysem is consideredto bein afailure mockif eithe all
the polling units have failed ard arein p; or al the central
voting unitshavefailed and arein pg. If eithe of thesecom-
plete failuresoccur, then ahigh priority repair is performed,
which resetsthe fail ed units to a fully operatioral state. If
somebut not all the palling or voting unitsfail, they attempt
selfreavery. The system will continue to functionas long
asat leastone polling unit and one voting unit remain oper-
atioral.
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Fig.2. A semi-Markov stochastt Petri netof thevoting sysem

\transition{t5}{
\condi ti on{p7 > Mw 1}

\action{
next->p3 = p3 + MM
next->p7 = p7 - MM
}
\wei ght {1. 0}

\priority{2}
\'soj ournti meLT{
return (0.8 * unifornLT(1.5,10,5s)
+ 0.2 * erlanglLT(0.001,5,5s));

Fig. 3. Excerptfrom speciftation of voting example,showing definition
of transtion ¢5.

This exanple is defined in full asa DNAmaca speifica-
tion [7], anexcerpt of which is shovn in Fig. 3. Thisdefines
transition ¢5, saying thatit:

e is enabled when place p; has greate than MM — 1
tokensin it.

e removes M M tokens from place p; and adds M M
tokensto place p3, whenfired.

e has aweight 1.0 (usedto define probabilistic choice
between transiionswhen two or moreare concurrently
emabed).

e has a priority of 2, which will engble it above other
transitions which would otherwise be structurally en-
abled but have alower priority.

e is given a firing distribution which, with probahility
0.8, is a uniform distiibution or, with probability 0.2,

| Sygem CC MM NN States |
0 18 6 3 2061
1 60 25 4 106540
2 100 30 4 249760
3 125 40 4 541,280
4 150 40 5 778850
5 175 45 5 1,1400%0

Tab. 1. Differentconfiguetions of the voting sysem asused to preent
reallts

is anErlang distribution. The Laplace transform ¢*(s)
for thisfiring time distiibution is:

0.8 x uniformLT(1.5,10, s)+0.2X erlangLT(0.001, 5, s)

where

e—as _ efbs

uniformLT (a,b, s) = 0—a

and

erlangLT (A\,n, s) = (Aj\— ) .
s

In gereral, ary arbitrary Lapace trarsform function
can be spedfied as a firing distribution using the
\'sojourntineLT{...} pragma

5.3.Reallts

In this section, we compue passge time quartities for the
time taken for a numbe of voters to pass from place p,
to po (avote throuchput quartity), as well asfor the time
takenfor afully operationd system to enter a failure mode
(i.e. when M M pdling units fail in place p; or when NN
central voting units fail in place pg). We also extract sim-
plereliability quantiles from cumulative distributionsof the
passagetimes,and transient measuregor thevoterthrough-
put passag.

For the voting sysem descrbed in Fig. 2, Talde 1 shawvs
how the size of the underlying SMP varies aacording to the
configuration of the variades CC, M M, and NN, which
are the number of voters, paling units and central voting
units, respedively.

5.31 Example passace time distributions

Fig. 4 shows the density of the time taken for the passag
of 175 voters from place p; to ps in system 5 ascomputed
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simulation It is interestng that, quditatively, the density

appearsNormal. Certainly, the passge time random vari-
abe is a (weighted sumof alarge number of indeperdent
random variables, but theseare in general, not idertically

distributed.

Fig. 5 shows a cumulative distribution for the same passag
asFig. 4. Thisis easily obtained by inverting the Laplace
transform L;;(s)/s; it alows us to extract respnse time

quartiles, for instarce

IP(system 5 proaes®s 175 votersin under 440s) = 0.9858

Fig. 6 shawvs andytic and simulatedresultsfor the time to
complete failurein an initially fully operaional voting sys-
tem. It is produced for amuch smdler system (2061 states)
asthe probalilities for the larger sysemswere so smdl that
thesimulator wasnot able to register any meaningful distri-
bution for the quantity without usingrare-e/en techniques.
As we wanted to validate the passag time agorithm, we
reduced the number of states so tha the simulatar would
register a dersity. Examining very-low-probability everts
is anexcellent exampe of where andytical techniques out-
perform simulations that would take mary hours or even

daysto complee.

5.32 Exampletransient distrib ution
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Fig.7. Transient and stealy-state values in sysem O, for the transt of 5
votersfrom theinitial marking to placep2

by bothour truncated iterative technique and by simulation.
The close agreemert providesmutud validation of the an-
alytical method, with its numerical approximation, ard the

We can use the trarsformaion of Eq. (7) to generate tran-
sient distributions from passgetime dersities. Fig. 7 shovs
the trarsient distiibution for the transit of five votersfrom
place p; to p. As expeded, the transien distribution terds

towardsits stealy-statevalueast — oc.



| SlaveProcessars  Time(s) Speedup  Efficiercy |
1 549.08 1.00 1.000
8 7111 7.72 0.9
16 39.16 14.02 0.8
32 24.10 22.79 0.712

Tab. 2. Time, speedy and efficiency for varyingnumters of slave proces-
sorswhencdculatingapassagetime at5 t-pointsfor system1, using Euler
inverdon (total of 165 s-point evaluations).

5.33 Tool scalability

Tabe 2 shows the time, speedups and efficiency for the
analysis pipeline of Sedion 4 with varying numbersof slave
processorswhen calculating5 ¢-points for a passagetime of
sysem 1. The slave processors each of which hasa2 GHz
Intel Pertium 4 processorand 512 MB RAM, are part of a
shaed depatmental network conneded by 100MBps Eth-
erret. The masterproeessorusedwasa dud 1 GHz Pen-
tium Il server with 2GB RAM (note,however, thatamuch
lower spee machinewould have beenadequateasthemaster
processorsinceit doesnat perform significant conputation,
nor doesit require large amaunts of memay). Eventhough
exclusive access to the slave processrs could not be guar-
arteed and the probdem sizein system1 is relatively smadl,
our distributedaralysis pipeline still exhibits excdl ent sca-
ablity.

6. Conclusion

In this paper, we have derived passag time density, quantile
ard transient resultsfor distributed systemswith underlying
semi-Marlov statespaces of upto 106 states.

An iterative passgetime gererationalgorithm was derived,
implemerted and comparedagainstsimulation Our imple-
mentationoptimisesstorage by relating the functionto aset
of s-points necessary for Laplace transforminversion. In
thisway, storageof an arbitrary distribution iskept constant
and successve vedor-matrix iterations do not suffer from
the problem of represetation-explosion.

Finally, we useda semi-Markov stochastic Petri net in con-
junction with a semi-Markov extension to the DNAmaca
language to specify a modd of a distributed voting sys-
tem, generate the corresponding semi-Markov state space
ard solwe for a variety of passage time measures.

Our researcheffortsin the near future will include studying
the corvergerce behaviour of our algarithm, with the goal
of obtaining aralytical bounds on the truncation error. In

addition, we will apply speciaist techniques, e.g. using hy-
pergraph partiti oning of datastructures,to achieve scalalde
algorithmsfor systemswith up to ~ 108 statesand beyond.
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