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Abstract

Passage time densities and quantiles are important performance and quality of service met-
rics, but their numerical derivation is, in general, computationally expensive. We present an
iterative algorithm for the calculation of passage time densities in semi-Markov models, along
with a theoretical analysis and empirical measurement of its convergence behaviour. In order
to implement the algorithm efficiently in parallel, we use hypergraph partitioning to minimise
communication between processors and to balance workloads. This enables the analysis of
models with very large state spaces which could not be held within the memory of a single
machine. We produce passage time densities and quantiles for very large semi-Markov models
with over 15 million states and validate the results against simulation.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A rapid response time is an important performance criterion for almost all com-
puter communication and transaction processing systems. Examples of systems with
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stringent response time requirements include mobile communication systems, stock
market trading systems, web servers, database servers, flexible manufacturing sys-
tems, communication protocols and communication networks. Typically, response
time targets are specified in terms of quantiles––for example “95% of all text mes-
sages must be delivered within 3 s”. Response time quantiles are frequently specified
as key quality of service metrics in service level agreements and industry standard
benchmarks such as TPC.

In the context of the high-level models used by performance analysts (e.g. queue-
ing networks and stochastic Petri nets), response times can be specified as passage
times––that is, the time taken to enter any one of a set of target states starting from a
specified set of source states in the underlying Markov or semi-Markov chain. Tradi-
tional steady-state performance analysis of such models is adequate to predict stan-
dard resource-based measures such as utilisation and throughput, but is inadequate
to predict passage time densities and quantiles.

The focus of the present study is on semi-Markov processes [1], a generalisa-
tion of Markov processes which support arbitrary state holding times. Techniques
already exist for the practical extraction of passage time densities and quantiles
from large purely Markovian systems [2–4]. Until now, however, only relatively
small semi-Markov systems have been analysed for passage time quantities
[5–7].

In this paper, we present a scalable iterative passage time density extraction algo-
rithm for very large semi-Markov processes (SMPs). This extends our preliminary
work on passage time extraction [8] with significant theoretical and empirical con-
vergence results for the central iterative algorithm. Our approach is based on the
calculation and subsequent numerical inversion of the Laplace transform [9,10] of
the desired passage time density. In [6,7], the time complexity of the numerical der-
ivation of passage time and transient quantities for a semi-Markov system with N

states, using the Laplace domain, is O(N4). This approach is dominated by the com-
plexity of maintaining the Laplace transforms of state holding time distributions in
closed form. We solve this problem by characterising a distribution by the samples
from its Laplace transform that are ultimately required for the inversion process. The
result is an iterative algorithm which calculates arbitrary semi-Markov passage times
in O(N2r) time, for r iterations.

The data partitioning strategy employed is key to the scalability (in terms of both
efficiency and capacity) of all parallel algorithms. We exploit recent advances in
the application of hypergraph data structures and their partitioning [11] to minimise
inter-processor communication while balancing computational load.

The rest of this paper is organised as follows: Section 2 summarises the theory
relating to the computation of passage time densities in semi-Markov processes. Our
iterative passage time algorithm and its theoretical convergence analysis are detailed
in Section 3. Section 4 addresses the problem of general distribution representation,
while Section 5 discusses the application of hypergraph partitioning techniques. Sec-
tion 6 presents a complete parallel passage time analysis pipeline. Section 7 presents
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numerical results showing passage time densities extracted from two very large semi-
Markov models, as well as scalability and convergence results.

2. Definitions and background theory

2.1. Semi-Markov processes

Consider a Markov renewal process {(Xn, Tn) : n � 0} where Tn is the time of the
nth transition (T0 = 0) and Xn ∈ S is the state at the nth transition. Let the kernel
of this process be

R(n, i, j, t) = P
(
Xn+1 = j, Tn+1 − Tn � t | Xn = i

)
(1)

for i, j ∈ S. The continuous time semi-Markov process (SMP), {Z(t), t � 0}, defined
by the kernel R, is related to the Markov renewal process by

Z(t) = XN(t), (2)

where N(t) = max{n : Tn � t}, i.e. the number of state transitions that have taken
place by time t . Thus Z(t) represents the state of the system at time t . We consider
time-homogeneous SMPs, in which R(n, i, j, t) is independent of any previous state
except the last. Thus R becomes independent of n:

R(i, j, t) = P
(
Xn+1 = j, Tn+1 − Tn � t | Xn = i

)
for any n � 0

= pijHij (t), (3)

where pij = P(Xn+1 = j | Xn = i) is the state transition probability between states
i and j and Hij (t) = P(Tn+1 − Tn � t | Xn+1 = j, Xn = i), is the sojourn time dis-
tribution in state i when the next state is j .

2.2. First passage times

Consider a finite, irreducible, continuous-time semi-Markov process with N states
{1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time t (t � 0), the
first passage time from a source state i at time t into a non-empty set of target states
�j is

P
i �j (t) = inf

{
u > 0 : Z(t + u) ∈ �j, N(t + u) > N(t), Z(t) = i

}
. (4)

For a stationary time-homogeneous SMP, P
i �j (t) is independent of t and we have

P
i �j = inf

{
u > 0 : Z(u) ∈ �j, N(u) > 0, Z(0) = i

}
. (5)

This formulation of the random variable P
i �j applies to an SMP with no immediate

(that is, zero-time) transitions. If zero-time transitions are permitted in the model
then the passage time can be stated as
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P
i �j = inf

{
u > 0 : N(u) � M

i �j
}
, (6)

where M
i �j = min{m ∈ Z+ : Xm ∈ �j | X0 = i} is the transition marking the termi-

nating state of the passage.

P
i �j has an associated probability density function f

i �j (t) such that the passage
time quantile is given as

P(t1 < P
i �j < t2) =

∫ t2

t1

f
i �j (t) dt. (7)

In general, the Laplace transform of f
i �j , L

i �j (s), can be computed by solving a
set of N linear equations:

L
i �j (s) =

∑
k /∈�j

r∗
ik(s)Lk �j (s) +

∑
k∈�j

r∗
ik(s) for 1 � i � N, (8)

where r∗
ik(s) is the Laplace–Stieltjes transform (LST) of R(i, k, t) from Section 2.1

and is defined by

r∗
ik(s) =

∫ ∞

0
e−st dR(i, k, t). (9)

Eq. (8) has a matrix–vector form, Ax̃ = b̃, where the elements of A are general
complex functions; care needs to be taken when storing such functions for eventual
numerical inversion (see Section 4). For example, when �j = {1}, Eq. (8) yields



1 −r∗
12(s) · · · −r∗

1N(s)

0 1 − r∗
22(s) · · · −r∗

2N(s)

0 −r∗
32(s) · · · −r∗

3N(s)

...
...

. . .
...

0 −r∗
N2(s) · · · 1 − r∗

NN(s)







L1 �j (s)
L2 �j (s)
L3 �j (s)

...

L
N �j (s)




=




r∗
11(s)

r∗
21(s)

r∗
31(s)

...

r∗
N1(s)




. (10)

When there are multiple source states, denoted by the vector �i, the Laplace trans-
form of the passage time density at steady-state is

L�i �j (s) =
∑
k∈�i

αkLk �j (s), (11)

where the weight αk is the probability at equilibrium that the system is in state
k ∈ �i at the starting instant of the passage. If π̃ denotes the steady-state vector of the
embedded discrete-time Markov chain (DTMC) with one-step transition probability
matrix P = [pij , 1 � i, j � N], then αk is given by

αk =
{

πk

/ ∑
j∈�i πj if k ∈ �i,

0 otherwise.
(12)

The vector with components αk is denoted by α̃.
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3. Iterative passage time analysis

3.1. Overview

In this section, we describe an algorithm for generating passage time densities
that creates successively better approximations to the SMP passage time quantity of
Eq. (8). Our technique considers the rth transition passage time of the system, P

(r)

i �j .

This is the conditional passage time of the system having reached any of the specified
target states within r state-transitions. The unconditioned passage time random vari-
able, P

i �j , is then obtained in the limit as r → ∞. We calculate the Laplace transform

of P
(r)

i �j , L
(r)

i �j (s), and pick a sufficiently high value of r to give an approximation

to L
i �j (s) to within a specified degree of accuracy. L

i �j (s) can then be numerically
inverted to obtain the desired passage time density f

i �j (t).
This iterative method bears a loose resemblance to the well-known uniformisation

technique [12–14] which can be used to generate transient-state distributions and
passage time densities for Markov chains. However, as we are working with semi-
Markov systems, there can be no uniformising of the general distributions in the
SMP. The general distribution information has to be maintained as precisely as pos-
sible throughout the process, which we achieve using the representation technique
described in Section 4.

3.2. Technical description

Recall the semi-Markov process Z(t) of Section 2.1, where N(t) is the number of
state transitions that have taken place by time t . We formally define the rth transition
first passage time to be

P
(r)

i �j = inf
{
u > 0 : Z(u) ∈ �j, 0 < N(u) � r, Z(0) = i

}
, (13)

which is the time taken to enter a state in �j for the first time having started in state i

at time 0 and having undergone up to r state transitions.1 P
(r)

i �j is a random variable

with associated Laplace transform L
(r)

i �j (s). L
(r)

i �j (s) is, in turn, the ith component of

the vector

L̃
(r)

�j (s) = (
L

(r)

1 �j (s), L
(r)

2 �j (s), . . . , L
(r)

N �j (s)
)
, (14)

representing the passage time for terminating in �j for each possible start state. This
vector may be computed as

L̃
(r)

�j (s) = U
(
I + U ′ + U ′2 + · · · + U ′(r−1)

)
ẽ �j , (15)

1 If we have immediate transitions in our SMP model (as in Eq. (6)) then the rth transition first passage

time is P
(r)

i �j = inf{u > 0 : M
i �j � N(u) � r}.
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where U is a matrix with elements upq = r∗
pq(s) and U ′ is a modified version of

U with elements u′
pq = δ

p/∈�j upq , where states in �j have been made absorbing. We
include the initial multiplication with U in Eq. (15), so as to generate cycle times for
cases such as L

(r)
ii (s) which would otherwise register as 0 if U ′ were used instead.

The column vector ẽ �j has entries e
k �j = δ

k∈�j .
From Eqs. (5) and (13),

P
i �j = P

(∞)

i �j and thus L
i �j (s) = L

(∞)

i �j (s). (16)

We can generalise to multiple source states �i using the vector α̃ of Eq. (12):

L
(r)

�i �j (s) = α̃L̃
(r)

�j (s)

=
r−1∑
k=0

α̃UU ′kẽ �j . (17)

The sum of Eq. (17) can be computed efficiently using sparse matrix–vector mul-
tiplications with a vector accumulator, µ̃r = ∑r

k=0 α̃UU ′k . At each step, the accu-
mulator (initialised as µ̃0 = α̃U ) is updated as µ̃r+1 = α̃U + µ̃rU

′. The worst-case
time complexity for this sum is O(N2r) versus the O(N3) of typical matrix inversion
techniques. In practice, for a sparse matrix with constant number of non-zeros per
row, this can be as low as O(Nr).

3.3. Analytic convergence and truncation error analysis

In the iterative passage time calculation of Eq. (17), we approximate the Laplace
transform of the passage time density L�i �j (s) by a sum of the form

∑k
i=0 x̃Ai . In

this section, we demonstrate that this sum converges onto the analytic solution of
Eq. (8); also, by using the Power method to provide an expression for the dominant
eigenvalue, we derive an approximation for the truncation error after k iterations.

3.3.1. Limit and convergence
Let us consider the finite sum

∑k
i=0 x̃Ai where A has dominant eigenvalue λ1. If

we post-multiply this expression by (I − A), we obtain

k∑
i=0

x̃Ai(I − A) = x̃ − x̃Ak+1, (18)

and so, if the modulus of the dominant eigenvalue of A, |λ1| < 1, then
limk→∞ x̃Ak+1 = 0, and we obtain

∞∑
i=0

x̃Ai(I − A) = x̃ and thus
∞∑
i=0

x̃Ai = x̃(I − A)−1. (19)
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We can relate the above analysis to the iterative passage time algorithm by taking
x̃ = α̃U and A = U ′. We know empirically that this sum will converge because the
sum of Eq. (15) converges as r → ∞ according to Eq. (16). A formal proof that our
iterative scheme will converge in the limit to the analytic solution of Eq. (8) can be
found in [15]. It is also shown in [15] that U ′ has dominant eigenvalue |λ1| � 1 but
the iterations converge even if |λ1| = 1.

3.3.2. Truncation error analysis
Let A have eigenvalues λj and associated eigenvectors ṽj , with dominant eigen-

value λ1 as above. Assuming non-degenerate eigenvalues, the ṽj form a basis and so
for an arbitrary vector x̃:

x̃ =
∑
j

aj ṽj ,

x̃Ai =
∑
j

ajλ
i
j ṽj

= a1λ
i
1ṽ1 +

∑
j>1

ajλ
i
j ṽj ,

x̃Ak ∼ a1λ
k
1ṽ1 as k −→ ∞. (20)

Thus the quantity x̃Ak is dominated by the largest eigenvalue, with the rate of
asymptotic convergence being governed by the ratio of the moduli of the dominant
and sub-dominant eigenvalues, |λ1|/|λ2|. Eq. (20) yields x̃Ak � λ1x̃Ak−1 for large
k; so, by right-multiplying both sides by (x̃Ak)∗, we may approximate λ1 with

λ1 � |x̃Ak|2
(x̃Ak−1) · (x̃Ak)∗

, (21)

where for ω̃, a vector with complex elements ωi , the complex conjugate ω̃∗ has
elements ω∗

i .
The error incurred in truncating the sum at the kth term is

∑∞
i=k+1 x̃Ai . Using the

approximation x̃Ai � a1λ
i
1ṽ1 for i � k yields:

∞∑
i=k+1

x̃Ai =
∞∑
i=1

x̃Ak+i

�
∞∑
i=1

λi
1x̃Ak

= λ1

1 − λ1
x̃Ak (22)

providing |λ1| < 1 as in Section 3.3.1. Thus, in the case where |λ1| < 1, an approx-
imate convergence condition is to find the minimum k such that
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∣∣∣∣ λ1

1 − λ1
x̃Ak

∣∣∣∣ < ε, (23)

where λ1 is approximated as in Eq. (21).

3.4. Practical convergence

In practice, convergence of the sum L
(r)

�i �j (s) = ∑r−1
k=0 α̃UU ′k can be said to have

occurred if, for a particular r and s-point,∣∣∣Re
(
L

(r+1)

�i �j (s) − L
(r)

�i �j (s)
)∣∣∣ < ε and

∣∣∣Im(
L

(r+1)

�i �j (s) − L
(r)

�i �j (s)
)∣∣∣ < ε,

(24)

where ε is chosen to be a suitably small value, say ε = 10−16. We present empirical
observations on the convergence behaviour of this technique (i.e. the order of r) in
Section 7.

An optimisation which makes the sum converge more quickly (assuming the
approximation of Eq. (21) for λ1 is a good one), is to use the approximate truncation
error to improve the accuracy of the calculation. For each iteration we can take

L
(r)

�i �j (s) =
r−1∑
k=0

α̃UU ′k + λ1

1 − λ1
α̃UU ′(r−1). (25)

We can then compare successive L
(r)

�i �j (s) in the real and imaginary parts as before.

If |λ1| = |λi | < 1 for one or more values of i /= 1 then convergence of L
(r)

�i �j (s) will

still occur, but the error dynamics are more complicated and we are forced to resort
to the stricter notion of convergence above.

4. Distribution representation and Laplace inversion

The key to practical analysis of semi-Markov processes lies in the efficient repre-
sentation of their general distributions. Without care the structural complexity of the
SMP can be recreated within the representation of the distribution functions. This
is especially true with the manipulations performed in the iterative passage time
calculation of Section 3.

Many techniques have been used for representing arbitrary distributions––two
of the most popular being phase-type distributions and vector-of-moments methods.
These methods suffer from, respectively, exploding representation size under com-
position, and containing insufficient information to produce accurate answers after
large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link our
distribution representation to the Laplace inversion technique that we ultimately use.
Our tool supports two Laplace transform inversion algorithms, which are briefly out-
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lined below: the Euler technique [16] and the Laguerre method [9] with modifica-
tions summarised in [3].

Both algorithms work on the same general principle of sampling the transform
function L(s) at n points, s1, s2, . . . , sn and generating values of f (t) at m user-
specified t-points t1, t2, . . . , tm. In the Euler inversion case n = km, where k can
vary between 15 and 50, depending on the accuracy of the inversion required. In the
modified Laguerre case, n = 400 and, crucially, is independent of m (see Section
4.2).

The process of selecting a Laplace transform inversion algorithm is discussed
later; however, whichever is chosen, it is important to note that calculating si , 1 �
i � n and storing all our distribution transform functions, sampled at these points,
will be sufficient to provide a complete inversion. Key to this is the fact that mat-
rix element operations, of the type performed in Eq. (17), (i.e. convolution and
weighted sum) do not require any adjustment to the array of domain s-points re-
quired. In the case of a convolution, for instance, if L1(s) and L2(s) are stored in
the form {(si, Lj (si)) : 1 � i � n}, for j = 1, 2, then the convolution, L1(s)L2(s),
can be stored using the same size array and using the same list of domain s-values,
{(si , L1(si)L2(si)) : 1 � i � n}.

Storing our distribution functions in this way has three main advantages. Firstly,
the function has constant storage space, independent of the distribution-type. Sec-
ondly, each distribution has, therefore, the same constant storage requirement even
after composition with other distributions. Finally, the function has sufficient infor-
mation about a distribution to determine the required passage time (and no more).

4.1. Summary of Euler inversion

The Euler method is based on the Bromwich contour inversion integral, express-
ing the function f (t) in terms of its Laplace transform L(s). Making the contour a
vertical line s = a such that L(s) has no singularities on or to the right of it gives

f (t) = 2eat

�

∫ ∞

0
Re(L(a + iu)) cos(ut) du. (26)

This integral can be numerically evaluated using the trapezoidal rule with step-
size h = �/2t and a = A/2t (where A is a constant that controls the discretisation
error), which results in the nearly alternating series:

f (t) ≈ fh(t) = eA/2

2t
Re(L(A/2t)) + eA/2

2t

∞∑
k=1

(−1)kRe

(
L

(
A + 2k�i

2t

))
.

(27)

Euler summation is employed to accelerate the convergence of the alternating
series infinite sum, so we calculate the sum of the first n terms explicitly and use
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Euler summation to calculate the next m. To give an accuracy of 10−8 we set A =
19.1, n = 20 and m = 12 (compared with A = 19.1, n = 15 and m = 11 in [16]).

4.2. Summary of Laguerre inversion

The Laguerre method [9] makes use of the Laguerre series representation:

f (t) =
∞∑

n=0

qnln(t), t � 0, (28)

where the Laguerre polynomials ln are given by

ln(t) =
(

2n − 1 − t

n

)
ln−1(t) −

(
n − 1

n

)
ln−2(t), (29)

starting with l0 = et/2 and l1 = (1 − t)et/2, and

qn = 1

2�rn

∫ �

0
Q(reiu)e−iru du, (30)

where r = (0.1)4/n and Q(z) = (1 − z)−1L((1 + z)/2(1 − z)).
The integral in Eq. (30) can be approximated numerically by the trapezoidal rule,

giving

qn ≈ q̄n = 1

2nrn


Q(r) + (−1)nQ(−r) + 2

n−1∑
j=1

(−1)j Re
(
Q(re�j i/n)

) .

(31)

As described in [3], the Laguerre method can be modified by noting that the La-
guerre coefficients qn are independent of t . This means that if the number of trape-
zoids used in the evaluation of qn is fixed to be the same for every qn (rather than
depending on the value of n), values of Q(z) (and hence L(s)) can be reused after
they have been computed. Typically, we set n = 200. In order to achieve this, how-
ever, the scaling method described in [9] must be used to ensure that the Laguerre
coefficients have decayed to (near) 0 by n = 200. If this can be accomplished, the
inversion of a passage time density for any number of t-values can be achieved at the
fixed cost of calculating 400 truncated summations of the type shown in Eq. (17).
This is in contrast to the Euler method, where the number of truncated summations
required is a function of the number of points at which the value of f (t) is required.

4.3. Automatic inversion algorithm selection

We have implemented a distributed Laplace transform inverter which automat-
ically selects which inversion algorithm is the most suitable for a given model in
the following manner. Firstly, it attempts to scale the Laguerre coefficients (as de-
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scribed in the previous section) and if this scaling is successful the modified La-
guerre method is used to invert the Laplace transform L�i �j (s) and yield the required
passage time density. If, however, it proves impossible to scale the Laguerre coeffi-
cients––typically when the density function contains discontinuities––then the tool
switches to the Euler inversion method. This ensures that the Laguerre method is
used whenever possible as it minimises the amount of computation needed, while
the ability to calculate pathological passage time densities using the Euler method is
preserved at the cost of requiring more computation.

5. Hypergraph partitioning

As discussed in Section 3.2, the core operation in our algorithm is the repeated
sparse matrix–vector multiplication of Eq. (17). In order to exploit the combined
processing power and memory capacity of several processors to compute passage
time densities for very large systems (with state spaces of the order of 107 states or
more), it is necessary to partition the sparse matrix U ′ across the processors. Such
a scheme will necessitate the exchange of data (vector elements and possibly partial
sums) after every iteration in the solution process. The objective in partitioning the
matrix is to minimise the amount of data which needs to be exchanged while bal-
ancing the computational load (as given by the number of non-zero elements of U ′
assigned to each processor).

Hypergraph partitioning is an extension of graph partitioning. Its primary appli-
cation to date has been in VLSI circuit design, where the objective is to cluster pins
of devices such that interconnect is minimised. It can also be applied to the problem
of allocating the non-zero elements of sparse matrices across processors in parallel
computation [11].

Formally, a hypergraph H = (V,N) is defined by a set of vertices V and a set
of nets (or hyperedges) N, where each net is a subset of the vertex set V [11]. In the
context of a row-wise decomposition of a sparse matrix A, matrix row i (1 � i � n)
is represented by a vertex vi ∈ V while column j (1 � j � n) is represented by net
Nj ∈ N. The vertices contained within net Nj correspond to the row numbers of the
non-zero elements within column j , i.e. vi ∈ Nj if and only if aij /= 0. The weight
of vertex i is given by the number of non-zero elements in row i, while the weight of
a net is its contribution to the edge cut, which is defined as one less than the number
of different partitions spanned by that net. The overall objective of a hypergraph
sparse matrix partitioning is to minimise the sum of the weights of the cut nets while
maintaining a balance criterion. A column-wise decomposition is achieved in an
analogous fashion.

The matrix on the right of Fig. 1 shows the result of applying hypergraph-par-
titioning to the matrix on the left in a four-way row-wise decomposition. Although
the number of off-diagonal non-zeros is 18 the number of vector elements which
must be transmitted between processors during each matrix–vector multiplication
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Fig. 1. A 16 × 16 non-symmetric sparse matrix (left), with corresponding four-way hypergraph partition
(right) and corresponding partitions of the vector.

(the communication cost) is 6. This is because the hypergraph partitioning algorithms
not only aim to concentrate the non-zeros on the diagonals but also strive to line up
the off-diagonal non-zeros in columns. The edge cut of the decomposition is also
6, and so the hypergraph partitioning edge cut metric exactly quantifies the com-
munication cost. This is a general property and one of the key advantages of using
hypergraphs––in contrast to graph partitioning, where the edge cut metric merely
approximates communication cost. Optimal hypergraph partitioning is NP-complete
but there are a small number of hypergraph partitioning tools which implement fast
heuristic algorithms, for example PaToH [11] and hMeTiS [17].

6. Parallel pipeline

The process of calculating a passage time density (shown in Fig. 2) begins with a
high-level model specified in an enhanced form of the DNAmaca interface language
[18,19]. This language supports the specification of queueing networks, stochastic
Petri nets and stochastic process algebras. Next, a probabilistic, hash-based state
generator [20] uses the high-level model description to produce the transition prob-
ability matrix, P , of the model’s embedded Markov chain, the matrices U and U ′,
and a list of the initial and target states. Normalised weights for the initial states
are determined by the solution of π̃ = π̃P , which is readily done using any of a
variety of steady-state solution techniques (e.g. [21,22]). U ′ is then partitioned using
a hypergraph partitioning tool.

Control is then passed to the distributed passage time density calculator, which is
implemented in C++ using the Message Passing Interface (MPI) [23] standard. This
employs a master–slave architecture with groups of slave processors. The master
processor computes in advance the values of s at which it will need to know the
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Fig. 2. Parallel hypergraph-based passage time density calculation pipeline.

value of L�i �j (s) in order to perform the inversion. As described in Section 4, this
can be done irrespective of the inversion algorithm employed. The s-values are then
placed in a global work-queue to which the groups of slave processors make requests.

The highest ranking processor in a group of slaves makes a request to the master
for an s-value and is assigned the next one available. This is then broadcast to the
other members of the slave group to allow them to construct their columns of the
matrix U ′ for that specific s. Each processor reads in the columns of the matrix
U ′ that correspond to its allocated partition into two types of sparse matrix data
structure and also reads in the initial source-state weighting vector α̃. Local non-
zero elements (i.e. those elements in diagonal matrix blocks that will be multiplied
with vector elements stored locally) are stored in a conventional compressed sparse
column format. Remote non-zero elements (i.e. those elements in off-diagonal matrix
blocks that must be multiplied with vector elements received from other processors)
are stored in an ultrasparse matrix data structure––one for each remote processor–
–using a coordinate format. Each processor then determines which vector elements
need to be received from and sent to every other processor in the group on each
iteration, adjusting the row indices in the ultrasparse matrices so that they index into a
vector of received elements. This ensures that a minimum amount of communication
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takes place and makes multiplication of off-diagonal blocks with received vector
elements efficient.

For each step in our iterative algorithm, each processor begins by using non-
blocking communication primitives to send and receive remote vector elements,
while calculating the product of local matrix elements with locally stored vector
elements. The use of non-blocking operations allows computation and communica-
tion to proceed concurrently on parallel machines where dedicated network hardware
supports this effectively. The processor then waits for the completion of non-block-
ing operations (if they have not already completed) before multiplying received
remote vector elements with the relevant ultrasparse matrices and adding their con-
tributions to the local vector–matrix product cumulatively.

Once the calculations of a slave group are deemed to have converged, the result
is returned to the master by the highest-ranking processor in the group and cached.
When all results have been computed and returned for all required values of s, the
final Laplace inversion calculations are made by the master, resulting in the required
t-points.

7. Numerical results

The results presented in this section were produced on a Beowulf Linux cluster
with 64 dual processor nodes. Each node has two Intel Xeon 2.0 GHz processors
and 2 GB of RAM. The nodes are connected by a Myrinet network with a peak
throughput of 250 Mb/s.

We demonstrate the SMP passage time analysis techniques of the previous sec-
tions with large semi-Markov models of a distributed voting system (Fig. 3) and a
distributed web server (Fig. 4). The models are specified in a semi-Markov stochastic
Petri net formalism (see [24] for full SM-SPN semantics) using an extension of the
DNAmaca Markov chain modelling language [18]. Generally distributed transitions,
if simultaneously enabled, are selected by probabilistic choice; in this way, we are
guaranteed an underlying semi-Markov state space. This probabilistic selection can
be seen as an approximation of the more expressive concurrency provided by gener-
alised semi-Markov process (GSMP) models. However, semi-Markov processes are
an accurate model in many useful cases; for example when modelling mutual exclu-
sion or probabilistic task switching on a uniprocessor computer system. Concurrent
Markovian execution is, however, fully supported (and used in Fig. 4). Transition
firing time densities are specified in terms of their Laplace transforms, with macros
provided for common distributions (e.g. uniform, gamma, deterministic), and can be
made marking dependent by use of the m(pi) function (which returns the current
number of tokens on place pi). Support for inhibitor arcs is also provided.

Fig. 3 represents a voting system with CC voters, MM polling units and NN

central voting servers. In this system, voters cast votes through polling units which
in turn register votes with all available central voting units. Both polling units and



J.T. Bradley et al. / Linear Algebra and its Applications 386 (2004) 311–334 325

Fig. 3. A semi-Markov stochastic Petri net of a voting system with breakdowns and repairs.

central voting units can suffer breakdowns, from which there is a soft recovery mech-
anism. If, however, all the polling or voting units fail, then, with high priority, a
failure recovery mode is instituted to restore the system to an operational state.

Fig. 4 represents a web server with RR clients, WW web content authors, SS

parallel web servers and a write-buffer of BB in size. Clients can make read requests
to one of the web servers for content (represented by the movement of tokens from p8
to p7). Web content authors submit page updates into the write buffer (represented
by the movement of tokens from p1 onto p2 and p4), and whenever there are no
outstanding read requests all outstanding write requests in the buffer (represented by
tokens on p4) are applied to all functioning web servers (represented by tokens on
p6). Web servers can fail (represented by the movement of tokens from p6 to p5) and
institute self-recovery unless all servers fail, in which case a high-priority recovery
mode is initiated to restore all servers to a fully functional state. Complete reads and
updates are represented by tokens on p9 and p2 respectively.

For the voting system, Table 1 shows how the size of the underlying SMP varies
according to the configuration of the variables CC, MM , and NN . Similarly, for the
web server model, Table 2 shows state space sizes in relation to the configuration of
the variables RR, WW , SS and BB.

In the following, we consider the rate of convergence of the iterative passage time
algorithm and the extraction of passage time densities and cumulative distribution
functions for the example semi-Markov systems.



326 J.T. Bradley et al. / Linear Algebra and its Applications 386 (2004) 311–334

Fig. 4. A semi-Markov Petri net of a parallel web server.

Table 1
Configurations of the voting system as used to present convergence results and passage times

System CC MM NN States

1 60 25 4 106,540
2 100 30 4 249,760
3 125 40 4 541,280
4 150 40 5 778,850
5 175 45 5 1,140,050
6 300 80 10 10,999,140

7.1. Convergence of iterative passage time algorithm

Our iterative algorithm terminates when two successive iterates are less than ε

apart (cf. Eq. (24)), for some suitably small value of ε. Fig. 5 shows the average
number of iterations the algorithm takes to converge per s-point for both models for
two different values of ε (10−8 and 10−16).
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Table 2
Configurations of the web server system as used to present convergence results and passage times

System RR WW SS BB States

1 45 22 4 8 107,289
2 52 26 5 10 248,585
3 60 30 6 12 517,453
4 65 30 7 13 763,680
5 70 35 7 14 1,044,540
6 100 50 18 20 15,445,919
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Fig. 5. Average number of iterations to converge per s point for two different values of ε over a range of
model sizes.

It is noted that the number of iterations required for convergence as the model
size grows is sub-linear; that is, as the model size doubles the number of iterations
less than doubles. This suggests the algorithm has good scalability properties. Fig.
6 shows the average amount of time to convergence per s-point, while Fig. 7 shows
how the number of iterations per unit time decreases as model size increases. The
curves are almost identical for both values of ε, suggesting that the time spent per
iteration remains constant, irrespective of the number of iterations performed. The
rate of computation (iterations per unit time) is O(1/(N log(N))) for system size
N . This gives a time per iteration of O(N log(N)), suggesting an overall practical
complexity of better than O(N2 log(N)) (given the better than O(N) result for the
number of iterations required).
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7.2. Passage time densities and quantiles

In this section, we display passage time densities produced by our iterative pas-
sage time algorithm and validate these results by simulation.
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voters in the voting model system 6 (10.9 million states).

Fig. 8 shows the density of the time taken to process 300 voters (as given by the
passage of 300 tokens from place p1 to p2) in system 6 of the voting model. Calcu-
lation of the analytical density required 15 h and 7 min using 64 slave processors (in
8 groups of 8) for the 31 t-points plotted. Our algorithm evaluated L�i �j (s) at 1,023
s-points, each of which involved manipulating sparse matrices of rank 10,999,140.
The analytical curve is validated against the combined results from 10 simulations,
each of which consisted of 1 billion transition firings. Despite this large simulation
effort, we still observe wide confidence intervals (probably because of the rarity of
source states).

Fig. 9 is a cumulative distribution for the same passage as Fig. 8 (easily obtained
by inverting L�i �j (s)/s from cached values of L�i �j (s)). It allows us to extract reliability
quantiles, for instance:

P(system 6 can process 300 voters in less than 730 s) = 0.9876.

Fig. 10 shows the density of the time taken to perform 100 reads and 50 page
updates in the web server model 6. Calculation of the 35 t-points plotted required
2 days, 17 h and 30 min using 64 slave processors (in 8 groups of 8). Our algo-
rithm evaluated L�i �j (s) at 1,155 s-points, each of which involved manipulating sparse
matrices of rank 15,445,919. Again, the analytical result is validated against the com-
bined results from 10 simulations, each of which consisted of 1 billion transition
firings. We observe excellent agreement.
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7.3. Scalability results

Table 3 and Fig. 11 display the performance of the hypergraph-partitioned sparse
matrix–vector multiplication operations. They show good scalability with a linear
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Table 3
Speedup and efficiency of performing hypergraph-partitioned sparse matrix–vector multiplication across
1–32 processors

Processors Time (s) Speedup Efficiency

1 3968.07 1.00 1.000
2 2199.98 1.80 0.902
4 1122.97 3.53 0.883
8 594.07 6.68 0.835
16 320.19 12.39 0.775
32 188.14 21.09 0.659

Calculated for the 249,760 state voting model for 165 s-points.
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Fig. 11. Runtime, speedup and efficiency using hypergraph partitioning.

speedup trend, which is unusual in problems of this nature. This is because the hyper-
graph partitioning minimises the amount of data which must be exchanged between
processors. The efficiency is not 100% in all cases, however, as even this reduced
amount of inter-node communication imposes an overhead and computational load
is not perfectly balanced.

Table 4 and Fig. 12 show the hypergraph scalability in the case where 32 slave
processors were divided into various size sub-clusters (32 groups of 1, 16 groups
of 2, 8 groups of 4, and so on). This was to measure the benefit to be gained from
adding extra groups to draw s-points from the global work queue versus doing the
computation across larger groups of slave processors (which may be necessary when
the state space of the model under analysis is very large). The efficiency decreases as

Table 4
Speedup and efficiency using 32 slave processors divided into various different size sub-clusters

Processors Time (s) Speedup Efficiency

32 × 1 150.13 26.43 0.830
16 × 2 159.55 24.87 0.777
8 × 4 162.13 24.47 0.765
4 × 8 165.24 24.01 0.750
2 × 16 173.76 22.84 0.714
1 × 32 188.14 21.09 0.659
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the number of groups decreases. Note, however, that with runtimes of between 150
and 188 s, there is still a dramatic improvement over the runtime on a single slave
processor (3,968 s) regardless of the group size employed. These results suggest that,
given a fixed number of slave processors, it is best to allocate them into the smallest
size subgroups (that is, to maximise the number of groups drawing from the global
work-queue) subject to the constraints imposed by the size of the model and the
memory available on each processor.

8. Conclusion

In this paper, we have derived passage time densities and quantiles from semi-
Markov models with over 15 million states. To achieve this, we have developed a
parallel iterative algorithm for computing passage time densities. The key to its sca-
lability is the hypergraph data partitioning used to minimise communication and
balance load. We represent the general distributions found in SMPs efficiently by
using a constant-space representation based on the evaluation demands of a numeri-
cal Laplace transform inverter.

We have analysed the truncation error of our algorithm and derived an optimised
convergence test that may be applied provided that the dominant eigenvalue of the
system can be found. Finally, we have demonstrated the applicability, scalability and
capacity of the method on several semi-Markov systems derived from stochastic Petri
nets, and have observed practical complexity of better than O(N2 log N) processing
times for systems with N states.

As future work, we are planning to extend the iterative scheme to generate tran-
sient distributions while maintaining a similar complexity profile.
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