
Extracting Response-times from Fluid analysis
of Performance Models

Jeremy T. Bradley Richard Hayden
William J. Knottenbelt Tamas Suto

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom.

{jb,rh,wjk,suto}@doc.ic.ac.uk

Abstract. Recent developments in the analysis of stochastic process al-
gebra models allow for transient measures of very large models to be
extracted. By performing so-called fluid analysis of stochastic proces al-
gebra models, it is now feasible to analyse systems of size 101000 states
and beyond. This paper seeks to extend the type of measure that can
be extracted from this style of fluid analysis. We present a systematic
transformation of a PEPA model that will allow us to extract measures
analogous to response-times. We end by extracting these response-time
measures from a PEPA model of a healthcare system.

1 Introduction

The ability to calculate response-time or passage-time measures in quantitative
analysis is important in many industrial systems. Response-time quantiles form
the basis of many service level agreements (SLAs) in the telecommunications and
other industries, e.g. a broadband connection should be successfully established
within 2 seconds, 95% of the time.

However such industrial-scale systems require huge state-space analysis capabil-
ity. If using traditional explicit state-space performance techniques, we quickly
exceed the capability of Markov chain response-time analysers [1] to be able to
generate and analyse the state-space.

Recently, so-called fluid techniques have been developed to cope with the state-
space explosion. This approach, typically, approximates the state-space with a
sequence of time-varying real variables and describes their evolution by a set of
differential equations [2]. This sounds at first to be a panacea, but these tech-
niques typically produce transient component counts at a given time instant.
What we would like to do is reproduce useful response-time measures while
taking advantage of the massive state-space capability of the fluid analysis tech-
niques.

In this paper, we present a combination of these approaches by looking at how
response-time measures might be extracted from fluid analysis of a stochastic
process algebra model, PEPA. We show how, by modifying the state-space of the
model in a systematic fashion, we can transform the problem of response-time
extraction from fluid models to one of component time-to-extinction measure-
ment.

2 Stochastic Process Algebra and Fluid Modelling

2.1 PEPA

PEPA [3] as a performance modelling formalism has been used to study a wide
variety of systems: multimedia applications [4], mobile phone usage [5], GRID
scheduling [6], production cell efficiency [7] and web-server clusters [8] amongst
others. The definitive reference for the language is [3].

As in all process algebras, systems are represented in PEPA as the composition
of components which undertake actions. In PEPA the actions are assumed to
have a duration, or delay. Thus the expression (α, r).P denotes a component
which can undertake an α action at rate r to evolve into a component P . Here
α ∈ A where A is the set of action types. The rate r is interpreted as a random
delay which samples from an exponential random variable with parameter, r.

PEPA has a small set of combinators, allowing system descriptions to be built
up as the concurrent execution and interaction of simple sequential components.
The syntax of the type of PEPA model considered in this paper may be formally
specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ¤¢
L

P | P/L | C
where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
component or a model component as introduced by a definition. CS stands for
constants which denote sequential components. The effect of this syntactic sep-
aration between these types of constants is to constrain legal PEPA components
to be cooperations of sequential processes.

More information and structured operational semantics on PEPA can be found
in [3]. A brief discussion of the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a system with a
PEPA model is to give a component a designated first action using the
prefix combinator, denoted by a full stop, which was introduced above. As
explained, (α, r).P carries out an α action with rate r, and it subsequently
behaves as P .

Choice The component P + Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activity
to complete distinguishes one of them: the other is discarded. The system
will behave as the derivative resulting from the evolution of the chosen com-
ponent.

Constant It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is
given by a defining equation. The notation for this is X

def= E. The name X
is in scope in the expression on the right hand side meaning that, for exam-
ple, X

def= (α, r).X performs α at rate r forever.
Hiding The possibility to abstract away some aspects of a component’s be-

haviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to
the component and which will appear as the unknown type τ .

Cooperation We write P ¤¢
L

Q to denote cooperation between P and Q over L.
The set which is used as the subscript to the cooperation symbol, the co-
operation set L, determines those activities on which the components are
forced to synchronise. For action types not in L, the components proceed in-
dependently and concurrently with their enabled activities. We write P ‖ Q
as an abbreviation for P ¤¢

L
Q when L is empty. Further, particularly useful

in fluid analysis is, P [n] which is shorthand for the parallel cooperation of n
P -components, P || · · · || P︸ ︷︷ ︸

n

.

In process cooperation, if a component enables an activity whose action type
is in the cooperation set it will not be able to proceed with that activity until
the other component also enables an activity of that type. The two components
then proceed together to complete the shared activity. Once enabled, the rate of a
shared activity has to be altered to reflect the slower component in a cooperation.

In some cases, when a shared activity is known to be completely dependent only
on one component in the cooperation, then the other component will be made
passive with respect to that activity. This means that the rate of the activity is
left unspecified (denoted >) and is determined upon cooperation, by the rate of
the activity in the other component. All passive actions must be synchronised
in the final model.

Within the cooperation framework, PEPA respects the definition of bounded
capacity : that is, a component cannot be made to perform an activity faster by
cooperation, so the rate of a shared activity is the minimum of the apparent
rates of the activity in the cooperating components.

The definition of the derivative set of a component will be needed later in the
paper. The derivative set, ds(C), is the set of states that can be reached from a
the state C. In the case, where C is a state in a strongly connected sequential
component, ds(C) represents the state space of that component.

2.2 Fluid Analysis

Traditionally, stochastic process algebras such as PEPA have been analysed by
expanding the model description and extracting the global state-space. The un-
derlying mathematical model of a PEPA-generated state-space is a continuous-
time Markov chain or CTMC. The CTMC can be analysed for steady-state
measures, transient measures or response-time measures and related back to
the original PEPA model. This process suffers from the state-space explosion
problem.

In previous fluid modelling papers [2, 9], a PEPA model was translated into a
set of ordinary differential equations which were then solved. The results gave
measures that roughly equated to mean transient measures in some cases.1 What
we seek to achieve here is a type of response-time result that can be extracted
from the fluid analysis of a PEPA model.

Fluid modelling of process models refers to a continuum representation of the un-
derlying discrete state-space. Deriving such a representation from a performance-
annotated process model, such as PEPA, gives a description of the flow of com-
ponents from one derivative state to the next over time.

The first description of fluid analysis of PEPA models was presented by Hill-
ston [2]. This has since been expanded upon [9, 10] but in this paper we keep
to the subset of PEPA originally considered by Hillston [2] for translation to a
fluid model.

In brief, we will summarise how the fluid model is constructed from a PEPA
model that displays a large degree of parallelism. In [2], Hillston shows how
a class of PEPA models can be analysed using coupled ordinary differential
equations (ODEs). In this section, we summarise the numerical vector form
representation and ODE analysis of PEPA models.

Cooperating models of identical non-synchronising agents of the form, for exam-
ple:

P || P || · · · || P︸ ︷︷ ︸
n

are more succinctly represented by a vector which describes the number of com-
ponents in a given derivative state. That is to say, suppose P has two other
derivative states, P ′ and P ′′, in its component description. A triple (v1, v2, v3)
could be used to represent there being v1 components in state P , v2 in state P ′

and v3 in state P ′′ in the cooperation above. This creates an aggregation of the
original explicit state-space where, for example, the states P ′ || P || · · · || P and
P || P ′ || · · · || P are combined with other states where there is only a single P ′

component in cooperation with P components.

1 The exact relationship between the deterministic solution of the fluid model and the
traditional probabilistic analysis of the CTMC is the subject of current research.

Clearly v1 + v2 + v3 = n, the total number of components in the cooperation.
The ordering of the derivative states within the expression above makes no differ-
ence to the observable behaviour. Thus there is no loss of information in simply
counting derivatives in this way rather than recording their relative positions.
Moreover it has the effect of reducing the state-space representation to an ag-
gregated form (described in [11]) which requires a vector representation of size
|ds(P)|, the number of derivative states of P , rather than one of size n, in the
unaggregated form.

In the generic example of an n-processor/m-resource system given in [2]:

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Proc0

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

System def= (Proc0 || · · · || Proc0) ¤¢
{task1}

(Res0 || · · · || Res0)

An aggregate state ((n − 1, 1), (m, 0)) would represent a possible state where
there were n − 1 processor components in state Proc0, one in state Proc1, m
resource components in state Res0, and none in state Res1.

Hillston [2] further goes on to show how a set of ODEs can be constructed
which can represent the discrete number of components in a given state with
a continuous state-space approximation. This is particularly useful in agent-
oriented models which typically have many thousands of similar components
in parallel. For this type of model, this type of aggregation is essential if the
resulting state-space explosion is to be avoided.

2.3 Numerical vector form and ODE generation

Consider a PEPA model made up of component types Ci, such that the system
equation has the form:

C1[n1] ¤¢
L

C2[n2] ¤¢
L
· · · ¤¢

L
Cm[nm] (1)

where C[n] is the parallel composition of n C-components. Take Cij to be the jth
derivative state of component Ci. The cooperation set L is made up of common
actions to Ci for 1 ≤ i ≤ m. Now a numerical vector form for such a model
would consist of (vij : 1 ≤ i ≤ m, 1 ≤ j ≤ |ds(Ci)|) where vij is the number
of Cij components in the system at a given time. A set of coupled differential

equations can be created to describe the time-variation of vij as follows:

dvij (t)
dt

= −
∑

k : Cij

(a,·)
−−−→Cik

rate of a-action leaving Cij cpt

+
∑

k : Cik

(b,·)
−−−→Cij

rate of b-action leaving Cik cpt (2)

To make this specific to PEPA models of the type in Equation (1), we need a few
preliminary definitions. Let us define Ex (C) to be the set of action/rate pairs or
activities (a, r) that are enabled by derivative state, C. Also Ex (a, r) gives the
set of derivative states for which (a, r) is an exit activity. Similarly, define the
set of entry activities, En(C), to be the set of action/rate pairs (b, s) that lead

to state C, that is, for some C ′, there exists a one-step evolution C ′
(b,s)−−−→ C.

It is also assumed in [2] that if, for some component type Ci, a derivative state
enables an a-action, then no other derivative state of Ci can enable that same
action.

From these definitions, we can create a more precise version of Equation (2):

dvij (t)
dt

= −
∑

(a,r)∈Ex(Cij)

r ×min{vkl : Ckl ∈ Ex (a, r)}

+
∑

(b,s)∈En(Cij)

s×min{vkl : Ckl ∈ Ex (b, s)} (3)

This formulation deals with PEPA models that cooperate actively and do so
with constituent components enabling shared actions with the same rate. That
is:

P ¤¢
{a}

Q where P
(a,λ)−−−→ P ′ and Q

(a,λ)−−−→ Q′

This can be generalised straightforwardly to heterogeneous rates in cooperation
where:

P ¤¢
{a}

Q where P
(a,λ)−−−→ P ′ and Q

(a,µ)−−−→ Q′

by a small modification to the ODE formula to:

dvij (t)
dt

= −
∑

(a,rp)∈Ex(Cij)

min{rpvkl : Ckl ∈ Ex (a, rp)}

+
∑

(b,sp)∈En(Cij)

min{spvkl : Ckl ∈ Ex (b, sp)} (4)

where {rp} and {sp} represent the set of distinct rates of a-actions and b-actions
as enabled by the derivatives of the component-types Ci.

3 Response-time generation

The standard definition of a response-time random variable in a Markov chain
is set up as below.

Consider a finite, irreducible, continuous-time Markov process, {X(t) : t ≥ 0}.
X(t) denotes the state of the Markov process at time t ≥ 0. N(t) denotes the
number of state-transitions that have occurred by time t.

The first passage-time from a source state i at time 0 into a non-empty set of
target states j is:

Pij = inf{u > 0 : X(u) ∈ j, N(u) > 0 | X(0) = i} (5)

for a stationary time-homogeneous Markov process.

Loosely, this can be considered as the time-to-absorption from state i to one of
the states in j. What we propose in this paper, is to construct a similar concept
in the fluid analysis of a PEPA model of the type of Equation (1).

One of the standard techniques for extracting response-time distributions from
CTMCs, is to make states in the target set, j, absorbing and perform transient
analysis on the resulting modified chain [12].

Our approach is to perform a similar absorbing modification, but at the PEPA
abstraction level rather than at the CTMC level, and then solve the resulting
fluid model. The time-to-absorption measure which represents the response-time
in the original CTMC calculation is translated into the component extinction-
time in the new fluid model.

3.1 Constructing an absorbing PEPA model

First, we will set up a basic PEPA absorption operator, ¤, which modifies the
PEPA model in preparation for extracting a response-time measure.

We will only consider response-times in terms of transitions of individual com-
ponent types, e.g. how long before all the voters have voted, or all the clients
have received service.

This translates into finding the response-time for ni components of type Ci,
to have entered one of the states H = {Cij : j ∈ j}, having started in state
Ci1, where j represents the set of target states in the component type being
considered. Taking a PEPA model of the form:

C1[n1] ¤¢
L

C2[n2] ¤¢
L
· · · ¤¢

L
Cm[nm] (6)

Given a set, H = {Cij : j ∈ j}, of component states that we wish to make
absorbing, we apply the absorption operator recursively over the PEPA syntax:

((a, λ).P) ¤(U) H =

(a, λ).Stop : if P ∈ H

(a, λ).(P ¤(U∪{P}) H) : if P 6∈ H, P 6∈ U

(a, λ).P : if P 6∈ H, P ∈ U

(P + Q) ¤(U) H = (P ¤(U) H) + (Q ¤(U) H)
(P\L) ¤ H = (P ¤ H)\L

(P ¤¢
L

Q) ¤ H = (P ¤ H) ¤¢
L

(Q ¤ H)

P ¤ H is shorthand for P ¤(∅) H where the indexed set keeps track of previ-
ously visited component states. We assume that derivative states are uniquely
labelled across the component types to avoid multiple component types being
made absorbing. If this is not the case then a simple relabelling can be applied
in advance of this transformation.

In this paper, we are considering simple response-times that are expressed in
terms of one component type only. We will only consider derivative states in H
that come from the same component type Ci for any i (as given by the definition
of H).

Having absorbing states in PEPA is unusual as PEPA models usually have irre-
ducible underlying CTMCs. The absorbing state in this instance is Stop, and a
discussion of absorbing states in PEPA can be found in [13].

3.2 Process–Resource Example

Taking the earlier example of a n-processor/m-resource system:

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Proc0

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

System def= Proc0[n1] ¤¢
{task1}

Res0[n2]

We require the response-time of n1 Proc-components making the transition from
Proc0 to Proc0 again. To achieve this, we apply the absorption operator to the
PEPA model System ¤ H with H = {Proc0}. This gives an absorbed model:

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Stop

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

System def= Proc0[n1] ¤¢
{task1}

Res0[n2]

By way of comparison, solving the ODEs generated by the original model gives
the plot in Figure 1. Solving the ODEs for the absorbing version gives Figure 2.
In both cases n1 = 100, n2 = 60, r1 = 1.0, r2 = 0.6 and s = 0.4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

C
om

po
ne

nt
s

Time, t

Proc0
Proc1
Res0

Fig. 1. ODE solution of the original Process/Resource model for number of Proc0,
Proc1,Res0 components

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

C
om

po
ne

nt
s

Time, t

Proc0
Proc1
Res1

Fig. 2. ODE solution of the absorbed Process/Resource model with response-time
measured at 11.515s

In Figure 2, we see the count of Proc0 and Proc1 components drop to 0 as would
be expected in an absorbing model. We count the moment of absorption as the

moment at which < 0.5% of the components remain in either state Proc0 or
Proc1. This is measured at time 11.52 and represents a response-time measure
for the time taken for n1 = 100 Proc-components to transit from state Proc0 to
Proc0 while cooperating with the Res-components.

4 Worked Example: Healthcare system

The healthcare system in this section is a model of an accident and emergency
department, first presented as a stochastic Petri net model in [14].

The system consists of patients, doctors and nurses, where patients who fall
ill, are assessed by nurses before being sent to doctors for tests, treatment or
surgery. The purpose of the system is to assess how fluctuations in the numbers
of resources in the system, the number of nurses and doctors, affect the overall
response-time for treatment.

System def= Patient [P] ¤¢
L

(Nurse[N] || Doctor [D])

where L = {see nurse, complete assessment , see emergency nurse,
emergency assessment , see doctor , discharge treated patient , surgery , recover}.
The attentive reader will note that this system equation is not quite of the
form of Equation (1), that we require for this particular style of fluid analysis.
However, since the Doctor and Nurse component have no common actions, this
formation does in fact match the required form.

The nurses in the system can either see a standard patient or an emergency
admittance. In each case an assessment is made before handing on for treatment.

Nurse def= (see nurse, r4).(complete assessment , r5).Nurse
+ (see emergency nurse, r6).(emergency assessment , r7).Nurse

The doctors in the system can either see and treat the patient or admit the
patient for surgery.

Doctor def= (see doctor , r8).(discharge treated patient , r11).Doctor
+ (surgery , r9).(recover , r12).Doctor

Finally, the patients are of two types – either standard walk-in arrivals or emer-
gency cases. They cooperate with the nurses and the doctors over the shared

actions before being discharged.

Patient def= (fall ill , r1).Ill

Ill def= (walk in arrival , r2).Waiting room
+ (ambulance arrival , r3).Trolley

Waiting room def= (see nurse, r4).Patient assessment

Patient assessment def= (complete assessment , r5).Waiting to be treated

Trolley def= (see emergency nurse, r6).Ambulance assessment

Ambulance assessment def= (emergency assessment , r7).Waiting to be treated

Waiting to be treated def= (see doctor , r8).Treated by doctor
+ (surgery , r9).Surgery done
+ (perform lab tests, r10).Tests done

Treated by doctor def= (discharge treated patient , r11).Patient

Surgery done def= (recover , r12).Patient Recovered

Patient Recovered def= (discharge recovered patient , r13).Patient

Tests done def= (evaluate results, r14).Waiting to be treated

Using the techniques of Section 2.3, we construct a system of 17 coupled ODEs
for P = 100 patients, N = 30 nurses, D = 5 doctors. Such a system is well
beyond the capability of existing explicit state-space techniques to analyse due
to the size of the underlying CTMC. Without modification, we obtain solutions
for patients, ill patients, nurses and doctors in Figure 3.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 3. ODE solution of the original hospital model for number of Patient , Ill , Nurse
and Doctor components

Now we seek the response-time measure for the time taken for P = 100 patients
to pass through the system and go from state Patient back to state Patient . We
set up the absorbing PEPA model with the transformation System ¤ {Patient}.
Plotting the new set of 18 resulting ODEs gives Figure 4, and on examining
the data, we obtain the measure that it takes 7.17 hours for all 100 patients to
progress through the system.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 4. ODE solution of the hospital model for patient response-time metric.

Finally, we seek a response-time measure on the progress of doctors in the model.
Similarly, we calculate the response-time for D = 5 doctors to go from state
Doctor to state Doctor . We set up the absorbing PEPA model with the trans-
formation System ¤ {Doctor}. Plotting the new set of 18 resulting ODEs gives
Figure 5, and on examining the data, we obtain the measure that it takes 1.84
hours for all 5 doctors to process at least 1 patient.

5 Conclusion

Fluid analysis of stochastic process algebra models is a powerful analytic tool
for obtaining quantitative analysis of massive state-space models. We have sum-
marised existing fluid techniques for a popular process algebra, PEPA, and
pointed out that the type of measure that is obtainable is slightly restricted
to a form of transient analysis. We have shown, in this paper, how it might be
possible to express and extract response-time style measures from fluid anal-
ysis of stochastic process algebra models. We did this by using an analogous
absorbing state technique to that used in the explicit state-space analysis of
response-times in CTMCs.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 5. ODE solution of the hospital model for patient response-time metric.

There is much still to investigate about this style of measurement. Most im-
portantly, we would like to establish a relationship with the response-time and
mean response-time measures of traditional CTMC analysis. Currently, we look
for the absorption of 99.5% of the components under consideration in the system
to extract the response-time. This seemed to be a reasonable figure but was an
arbitrary selection. We would like to have a systematic understanding of how
close to full absorption we need to get before we can say that a response-time
has completed. We are looking to generate variance and higher moment metrics
for the response-time measure extacted in this way.

Finally, there is the potential for constructing more expressive measures. Cur-
rently, we only look for movement of an entire population of component types
from one state to another. It would be a clear advantage to be able to look at
response-times of a combination of partial movements of populations of compo-
nents types.

References

1. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Extracting passage
times from PEPA models with the HYDRA tool: a case study. In Jarvis, S.A., ed.:
UKPEW’03, Proceedings of 19th Annual UK Performance Engineering Workshop,
University of Warwick (July 2003) 79–90

2. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST’05, Proceedings
of the 2nd International Conference on Quantitative Evaluation of Systems, Torino,
IEEE Computer Society Press (September 2005) 33–42

3. Hillston, J.: A Compositional Approach to Performance Modelling. Volume 12
of Distinguished Dissertations in Computer Science. Cambridge University Press
(1996)

4. Bowman, H., Bryans, J.W., Derrick, J.: Analysis of a multimedia stream using
stochastic process algebras. The Computer Journal 44(4) (2001) 230–245

5. Fourneau, J.M., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50(2–3) (November 2002) 83–99

6. Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling
strategies in a GRID-based resource model. IEE Software Engineering 151(5)
(September 2004) 232–239

7. Holton, D.R.W.: A PEPA specification of an industrial production cell. In Gilmore,
S., Hillston, J., eds.: Process Algebra and Performance Modelling Workshop. Vol-
ume 38(7) of Special Issue: The Computer Journal., CEPIS (Edinburgh, June 1995)
542–551

8. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of
passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler. In
Kotsis, G., ed.: MASCOTS’03, Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nications Systems, University of Central Florida, IEEE Computer Society Press
(October 2003) 344–351

9. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm at-
tacks using continuous state-space approximation of process algebra models. Jour-
nal of Computer and System Sciences (July 2007) (in press).

10. Hayden, R.: Addressing the state space explosion problem for pepa models through
fluid-flow approximation. Technical report, Ugrad. project report, Imperial College
London (2007)

11. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5) (2001) 449–464

12. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Uniformization and hypergraph
partitioning for the distributed computation of response time densities in very large
Markov models. Journal of Parallel and Distributed Computing 64(8) (August
2004) 908–920

13. Thomas, N., Bradley, J.T.: Terminating processes in PEPA. In Djemame, K., Kara,
M., eds.: UKPEW’01, Proceedings of 17th Annual UK Performance Evaluation
Workshop, Leeds (July 2001) 143–154

14. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: Expressiveness
and quantitative semantics. In: QEST’07, 4th International Conference on the
Quantitative Evaluation of Systems, IEEE (September 2007) 41–50

