
Performance Trees: Implementation and
Distributed Evaluation

Darren K. Brien1 , Nicholas J. Dingle2 ,
William J. Knottenbelt3 , Harini Kulatunga4 , Tamas Suto5

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ

Abstract

In this paper, we describe the first realisation of an evaluation environment for Performance Trees, a
recently proposed formalism for the specification of performance properties and measures. In particular,
we present details of the architecture and implementation of this environment that comprises a client-side
model and performance query specification tool, and a server-side distributed evaluation engine, supported
by a dedicated computing cluster. The evaluation engine combines the analytic capabilities of a number
of distributed tools for steady-state, passage time and transient analysis, and also incorporates a caching
mechanism to avoid redundant calculations. We demonstrate in the context of a case study how this analysis
pipeline allows remote users to design their models and performance queries in a sophisticated yet easy-
to-use framework, and subsequently evaluate them by harnessing the computing power of a Grid cluster
back-end.

Keywords: Performance Trees, Quantitative Performance Analysis, Parallel and Distributed Computing,
Grid Computing

1 Introduction

In today’s fast-paced world great importance is attached to performance. To help
engineers design efficient systems, it is essential to provide the means to (a) quan-
tify performance measures (e.g. “In a hospital waiting room, what is the steady-state
distribution of the number of patients waiting to be treated?”) and (b) verify confor-
mance to Quality of Service (QoS) requirements (e.g. “In a mobile communications
network, is the time taken to send an SMS message between two handsets less than
5 seconds with more than 95% probability?”).

1 Email: dkb03@doc.ic.ac.uk
2 Email: njd200@doc.ic.ac.uk
3 Email: wjk@doc.ic.ac.uk
4 Email: hkulatun@doc.ic.ac.uk
5 Email: suto@doc.ic.ac.uk

c©2008 Published by Elsevier Science B. V.

Brien et al.

In [1] and [2] we proposed Performance Trees as a unifying framework for the
quantification and verification of performance properties. The concepts expressible
in Performance Tree queries are intended to be familiar to engineers and include
steady-state and passage time distributions and densities, their moments, transition
firing rates, convolutions and arithmetic operations. An important concern during
the development of Performance Trees was ease of use, resulting in a formalism that
can be straightforwardly visualised and manipulated as hierarchical tree structures.

In this paper, we describe major extensions to the open-source PIPE Petri net ed-
itor which establish the first tool support for Performance Trees. Specifically, we
describe the architecture and implementation of a user-facing front-end module for
performance query design and a Grid cluster-based back-end for distributed perfor-
mance query evaluation. Together with the original model specification capabilities
of PIPE, the result is a comprehensive system modelling, performance query design
and performance query evaluation pipeline.

The structure of the remainder of this paper is as follows. Section 1.1 provides
a brief overview of Performance Trees. Sections 1.2 to 1.5 summarise some funda-
mental analysis techniques underlying the evaluation of Performance Tree operators
in the context of Generalised Stochastic Petri Nets. Section 2 describes the archi-
tecture of the Performance Tree Evaluation Engine – the computational back-end
of the evaluation architecture. Section 3 gives details of the techniques used for
the distributed evaluation of Performance Tree queries. Section 4 demonstrates the
application and evaluation of Performance Trees on a case study of a hospital’s
Accident and Emergency unit. Section 5 concludes with a summary of the paper
and a discussion of future work.

1.1 Performance Trees

As mentioned above, Performance Trees are a recently proposed formalism for the
representation of performance-related queries. They combine the ability to specify
performance requirements – i.e. queries aiming to determine whether particular
properties hold on system models – and to extract performance measures – i.e.
quantifiable performance metrics of interest.

A Performance Tree query is represented as a tree structure, consisting of nodes and
interconnecting arcs. Nodes can have two kinds of roles within queries: operation
nodes represent performance-related concepts, such as the calculation of a passage
time density for instance, while value nodes represent the inputs to these operations.
Value nodes identify attributes such as a set of states, a function on a set of states,
an action, or simply numerical or boolean constants. Operation nodes can be inter-
preted like functions in a programming language, which perform some operation on
the supplied inputs in order to obtain a result that is provided as output. In this
way, complex queries can be easily constructed from basic concepts by connecting
nodes together. Table 1 provides an overview of the currently available operation
nodes.

Performance Trees are an extensible formalism in the sense that every operation
node encapsulates a single self-contained concept, and hence new nodes can be pro-

2

Brien et al.

Textual Graphical Description

? The overall result of a performance query.

; Represents a vector of results of independent queries that are joined to-
gether.

PTD Represents a passage time density, calculated from a given set of start
and target states, as well as optional additional constraints on excluded
states.

Dist Represents a passage time distribution that is obtained from a passage
time density.

Conv Represents a convolution of two passage time densities.

ProbInInterval Represents the probability with which a passage takes place in a certain
amount of time.

ProbInStates Represents the transient probability of the system being in a given set of
states at a given instant in time.

Moment Represents a raw moment of a passage time density or distribution.

FR Represents the mean occurrence of an action / firing rate of a transition.

SS:P Represents the steady-state probability distribution for a given set of
states.

SS:S Represents a set of states that have a certain steady-state probability.

StatesAtTime Represents the set of states that the system can occupy at a given time.

InInterval A boolean operator that determines whether a numerical value is within
an interval or possibly within multiple intervals.

⊆ A boolean operator that determines whether a set is included in or cor-
responds to another set.

∨, ∧ Represent a boolean disjunction or conjunction of two logical expressions.

¬ Represents boolean negation of a logical expression.

>, ≥, ==, ≤
, <

Represent arithmetic comparisons of two numerical values.

+, −, ∗, /, ˆ Represent arithmetic operations on two numerical values.

Table 1
Description of Performance Tree operation nodes

gressively added as long as evaluation support for the new operations is integrated
into the analysis engine at the same time. The formalism also supports macros,
which allow new concepts to be created with the use of existing operators.

Performance Trees can be used with many different modelling formalisms, enabled
by an abstract state specification mechanism, details of which can be found in [2].
This paper will consider Generalised Stochastic Petri nets (GSPNs) as the modelling
formalism and will present a GSPN-based application case study.

1.2 Generalised Stochastic Petri Nets

Petri nets were originally devised as a graphical formalism for describing concur-
rency and synchronisation in distributed systems. In their simplest form (not con-
taining any timing information) they are also known as Place-Transition nets [3].

3

Brien et al.

Definition 1.1 A Place-Transition net is a 5-tuple PN = (P, T, I−, I+,M0) where:

• P = {p1, ..., pn} is a finite and non-empty set of places.
• T = {t1, ..., tm} is a finite and non-empty set of transitions.
• P ∩ T = ∅
• I−, I+ : P × T → N0 are the backward and forward incidence functions, respec-

tively.
• M0 : P → N0 is the initial marking.

A marking (or state) is a vector of integers representing the number of tokens on
each place of the model. A transition can fire if the input places of the transition
contain at least the number of tokens specified by the backward incidence matrix.
In so firing, a number of tokens are removed from the transition’s input places and a
number of tokens added to the transition’s output places according to the backward
and forward incidence matrices respectively.

Generalised Stochastic Petri Nets (GSPNs) extend Place-Transition nets by incor-
porating timing information [3, 4].

Definition 1.2 A GSPN is a 4-tuple GSPN = (PN , T1, T2,W) where

• PN = (P, T, I−, I+M0) is the underlying Place-Transition net.
• T1 ⊆ T is the set of timed transitions.
• T2 ⊂ T is the set of immediate transitions, where T1 ∩ T2 = ∅ and T = T1 ∪ T2.
• W =

(
w1, ..., w|T |

)
is an array whose entry wi ∈ R+ is a (possibly marking depen-

dent)
· rate of a negative exponential distribution specifying the firing delay, when tran-

sition ti is a timed transition, or
· firing weight, when transition ti is an immediate transition.

Timed transitions have an exponentially distributed firing rate λi. Immediate tran-
sitions fire in zero time. Markings that only enable timed transitions are known
as tangible, while markings that enable both timed and immediate transitions are
called vanishing. We denote the set of tangible markings T and the set of vanishing
markings V. The sojourn time in a tangible marking Mi is exponentially distributed
with parameter µi =

∑
k∈en(Mi)

λk where en(Mi) is the set of transitions enabled
by marking Mi. The sojourn time in vanishing markings is zero.

1.3 Steady-State Calculations for GSPNs

The stochastic process described by a GSPN’s reachability graph is a continuous-
time Markov chain (CTMC) if V = ∅ and semi-Markovian otherwise. It is possible,
however, to reduce the reachability graph of a GSPN where V 6= ∅ to a CTMC using
vanishing-state elimination techniques [5, 6].

An homogeneous N -state {1, 2, . . . , N} CTMC has state at time t denoted χ(t). Its
evolution is described by an N×N generator matrix Q, where qij is the infinitesimal

4

Brien et al.

rate of moving from state i to state j (i 6= j), and qii = −∑
i6=j qij .

Where it exists, the steady-state distribution of CTMC, {πj}, is given by [3]:

πj = lim
t→∞ IP(χ(t) = j | χ(0) = i)

For an finite, irreducible and homogeneous CTMC, the steady-state probabilities
{πj} always exist and are independent of the initial state distribution. They are
uniquely given by the solution of the equations:

−qjjπj +
∑

k 6=j

qkjπk = 0 subject to
∑

i

πi = 1

This can be expressed in matrix vector form (in terms of the vector π with elements
{π1, π2, . . . , πN} and the matrix Q defined above) as πQ = 0. We define pij to be
the probability that j is the next state to be entered after state i.

1.4 Passage Time Density Calculations for GSPNs

The Laplace transform is an integral transform which is widely used in the solution
of problems which are hard to solve in (real-valued) t-space. It transforms such
problems into (complex-valued) s-space where they can be solved more easily; this
solution is then inverted to bring it back into t-space. We adopt this approach for
the passage time analysis of GSPNs [7, 8].

For a GSPN where V 6= ∅, we define the passage time from a single source marking
i to a non-empty set of target markings ~j:

Ti~j = inf{u > 0 : N(u) ≥ Mi~j}

where Mi~j = min{m ∈ Z+ : χm ∈ ~j | χ0 = i}; here χi is the state of the system
after the ith transition firing [9].

To find this passage time we must convolve the state sojourn time densities for
all paths from i to j ∈ ~j. We exploit the convolution property of the Laplace
transform which states that the convolution of two functions is equal to the product
of their Laplace transforms. We perform a first-step analysis to find the Laplace
transform of the relevant density; that is, we first find the probability density of
moving from state i to its set of direct successor states ~k and then convolve it with
the probability density of moving from ~k to the set of target states ~j. Vanishing
markings have a sojourn time density of 0, with probability 1, which results in their
Laplace transform equalling 1 for all values of s. If Li~j(s) is the Laplace transform
of the density function fi~j(t) of the passage time variable Ti~j , then we can express
this Laplace transform as a system of linear equations given by:

Li~j(s) =

∑

k/∈~j

(
qik

s− qii

)
Lk~j(s) +

∑

k∈~j

(
qik

s− qii

)
if i ∈ T

∑
k/∈~j pikLk~j(s) +

∑
k∈~j pik if i ∈ V

(1)

If we wish to calculate the passage time from multiple source states, denoted by the
vector ~i, the Laplace transform of the passage time density is given by:

L~i~j(s) =
∑

k∈~i
αkLk~j(s)

5

Brien et al.

where αk is the steady-state probability that the SMP is in state k at the starting
instant of the passage.

Now that we have the Laplace transform of the passage time, we must invert it to
get the distribution in the real domain. To do this we use the Laguerre method,
which makes use of the Laguerre series representation of f(t) [10]:

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0

where the Laguerre polynomials ln are given by:

ln(t) =
(

2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t)

starting with l0 = et/2 and l1 = (1− t)et/2, and:

qn =
1

2πrn

2π∫

0

Q(reiu)e−inu du(2)

where r = (0.1)4/n and Q(z) = (1− z)−1f∗((1 + z)/2(1− z)).

The integral in the calculation of Eq. 2 can be approximated numerically using the
trapezoidal rule, giving:

qn ≈ 1
2nrn

Q(r) + (−1)nQ(−r) + 2

n−1∑

j=1

(−1)jRe
(
Q(reπji/n)

)

(3)

As described in [7], the Laguerre method can be modified by noting that the La-
guerre coefficients qn are independent of t. Since |ln(t)| ≤ 1 for all n, the convergence
of the Laguerre series depends on the decay rate of qn as n → ∞ which is in turn
determined by the smoothness of f(t) and its derivatives [10]. Slow convergence
of the qn coefficients can often be improved by exponential dampening and scaling
using two real parameters σ and b [11]. Suitable values for these parameters can be
automatically determined using the algorithm described in [7].

Each qn coefficient is computed as in Eq. 3, using the trapezoidal rule with 2n
trapezoids. However, if we apply scaling to ensure that qn has decayed to (almost)
zero by term p0 (say p0 = 200), we can instead make use of a constant number of
2p0 trapezoids when calculating each qn. This allows us to calculate each qn with
high accuracy while simultaneously providing the opportunity to cache and re-use
values of Q(z). Since qn does not depend on t, and each evaluation of Q(z) involves
a single evaluation of f∗(s), we obtain f(t) at an arbitrary number of t-values at
the fixed cost of evaluating Q(z) (and hence f∗(s)) 2p0 times.

1.5 Moments Calculation for GSPNs

As well as calculating passage-time densities, we can also compute the moments
of such densities. The nth (raw) moment Mi~j(n) of the passage time density from

state i into a vector of target states ~j Li~j(s) is obtained by differentiating Li~j(s) n

6

Brien et al.

times and evaluating the resulting expression at s = 0:

Mi~j(n) = (−1)n
dnLi~j(s)

dsn

∣∣∣∣∣
s=0

Moments in GSPNs can therefore be calculated by repeated differentiation of Eq. 1
and evaluation of the result at s = 0:

Mi~j(n) =

∑
k/∈~j

qik
−qii

Mk~j(n) + 1
−qii

nMi~j(n− 1) if i ∈ T

∑
k/∈~j pikMk~j(n) if i ∈ V

2 Performance Query Evaluation Architecture

The architecture we have implemented for the evaluation of Performance Tree
queries on GSPN models is shown in Fig. 1.

Fig. 1. Performance Query Evaluation Architecture

2.1 Client

The user-facing front-end is the open-source Platform Independent Petri net Editor
(PIPE) [12]. Its basic functionality is the graphical design and animation of GSPN
models. Beyond this, PIPE is equipped with pluggable analysis modules which
perform tasks such as invariant analysis, steady state analysis, and so on.

PIPE provides support for Performance Trees through its Performance Query Ed-
itor module, which implements a graphical interface for the composition of Per-
formance Tree queries. These are constructed on a canvas using a toolbar that
enables the placing, connection and manipulation of operation and value nodes.

7

Brien et al.

The creation process is aided by a natural language query translation mechanism,
which continuously informs the user of the natural language equivalent of the cur-
rent query. Figure 2 depicts a performance requirement verification query being
built with the query designer interface. It also shows how a query is represented in
natural language while being constructed.

Fig. 2. Performance Query Editor module showing a performance requirement verification query

For added convenience, a macro mechanism supports the creation of new concepts
through the use of existing operators. Whole subtrees can be conveniently repre-
sented by a single parameterisable node and reused within the same or even among
different queries.

When a GSPN model of a system and an applicable Performance Tree query have
been specified, PIPE converts the graphical information into a tool-specific XML
format (through Java object serialisation) that is used for the communication with
the analysis back-end. Both the GSPN model and the Performance Tree query are
converted into XML files, which are sent via a socket connection to the Analysis
Server, the coordinating entity of the Evaluation Engine, for further processing.
Upon initialisation of a socket connection with the Analysis Server, a dedicated
thread is made available to receive the incoming data and to commence the evalu-
ation process.

2.2 Evaluation Engine

2.2.1 Analysis Server

The Analysis Server’s main responsibility is the inspection of performance queries
and the appropriate distribution of work among the dedicated analysis tools hosted
on the Grid cluster. Once the server has obtained the two XML documents describ-
ing the system model and the performance query, it constructs its own representa-
tion of the data, based on input formats required by the analysis tools. Firstly, a

8

Brien et al.

translation to the DNAmaca [6] model specification language is performed, which
describes the structure of the model Then, the performance query XML document
is inspected to determine what kinds of calculations will have to be carried out and
what their dependencies are. Subsequently, the analysis tools invoked by the server
parse the model and relevant parts of the query data into C++ code and compile
the output with a probabilistic hash-based state space generator library. This is
linked with a pre-compiled performance analysis library and executed in order to
compute the requested performance measures. Once the server has distributed the
jobs amongst the analysis tools, it awaits the results of the calculations, which it
then forwards to the client.

2.2.2 Distributed Analysis Tools

The evaluation of quantitative performance measures laid out in the Performance
Tree query generated by the client is carried out by a set of distributed analysis
tools coordinated by the Analysis Server. Currently, tools are available for the
calculation of steady-state measures, first passage time and transient distributions,
as well as higher-order moments based on the underlying Markov chain of the GSPN
model [6, 13]. The integration of these tools into the analysis pipeline has enabled
the evaluation of the majority of Performance Tree operator nodes and has set the
framework for future development in implementing support for the few remaining
operators (such as convolution).

DNAmaca [6] is a Markov chain steady-state analyser that can solve models with
up to O(107) states. It features model and performance measure specification in its
input language, functional and steady-state analysis and the computation of perfor-
mance statistics, such as the mean, variance and standard deviation of expressions
computed on states in the model and the mean rate at which particular events oc-
cur. DNAmaca is used for the direct evaluation of the SS:P and FR nodes, and
the indirect evaluation of the ProbInInterval and ProbInStates nodes.

SMARTA [13], the Semi-MArkov Response Time Analyser, is a parallel MPI-based
analysis pipeline for the iterative numerical analysis of passage time and transient
measures in very large semi-Markov models (including GSPNs). It is used to eval-
uate the PTD and Dist nodes.

MOMA is a performance analyser that calculates nth order (raw) moments using a
Laplace transform-based method. It is used to evaluate the Moment node.

2.3 Hardware Infrastructure

Camelot, the computational cluster forming the backbone of the evaluation engine,
consists of 16 dual-processor dual-core nodes, each of which is a Sun Fire x4100 with
two 64-bit Opteron 275 processors and 8GB of RAM. Nodes are connected with both
Gigabit Ethernet and Infiniband interfaces; the Infiniband fabric runs at 2.5Gbit/s,
managed by a Silverstorm 9024 switch. Job submission is handled by Sun Grid
Engine, a middleware that configures and exposes the cluster as a computational
Grid resource. Clients submit sequential and parallel (MPI) jobs to Grid Engine
via the Distributed Resource Management Application API (DRMAA).

9

Brien et al.

3 Distributed Evaluation of Performance Trees

Performance Tree evaluation occurs on the Analysis Server where the query tree is
decomposed into sub-trees for evaluation. The Analysis Server then sends queries
derived from each sub-tree to the appropriate distributed analysis tools and waits
to collate results to deliver back to the client upon availability.

3.1 Query Processing and Distribution

Before a query is submitted to the Analysis Server, the client performs validation.
This is designed to prevent users from building illegal or incomplete performance
queries, for instance by connecting incompatible operation nodes (causing a type
violation) or by not supplying required arguments to operation nodes.

A single Performance Tree query often requires the calculation of many potentially
dependent measures, giving rise to an ordering in which results must be evaluated.
Therefore, the scheduling of node evaluation requires an understanding of the de-
pendencies of the sub-trees of the current node. The evaluation of independent
nodes takes place in parallel, so that multiple elements in the tree are submitted
for evaluation to the cluster at the same time. Dependent nodes are queued and
scheduled for evaluation once their dependents have been evaluated. The results
from nodes being evaluated usually become available in an unordered fashion and
the client is made aware of the availability of results as soon as they arrive at the
Analysis Server.

For enhanced speed and efficiency, the Analysis Server incorporates a disk-based
cache mechanism that stores the results of performance queries evaluated by the
analysis tools. In order to differentiate between different queries on the same model,
a hash of the model description and the performance query specification is done
separately, using a hashing algorithm with a very low probability of clashes (e.g.
MD5). This is used to create a two-level structure in which the computed perfor-
mance measures can be stored. Before any computation takes place, a cache look-up
is performed for the given model. If a match is found, the hash of the current query
is compared to all existing hashes of queries on that particular model in the cache.
If a further match is found, the query has already been evaluated on the model and
the results are already available. If not, the query has to be evaluated, with the
results being stored in the cache.

For DNAmaca, each performance measure is hashed separately and the correspond-
ing cache location contains the computed steady-state result (either a state measure
or count measure). For SMARTA and MOMA, the cache is particularly useful as
calculating the density or distribution of a passage time requires the solution of at
least 400 sets of linear equations of the form shown in Eq. 1. Recalling Eq. 3, the
values at which the Laplace transform of the passage time must be evaluated are
independent of the range of t-values at which the final answer is required. Thus, for
a given model and set of initial and target states, results can be computed at any
value of t using the same values of the Laplace transform of the passage time. We
therefore store the computed values of this Laplace transform indexed by the value
of s to which they correspond.

10

Brien et al.

3.2 Query Analysis

Using DNAmaca, steady-state performance statistics for the GSPN model are de-
rived by generating and then solving a continuous-time Markov chain (see Sec-
tion 1.3). From the Markov chain’s steady-state probability distribution, high-level
performance measures such as throughput and mean buffer occupancy can be de-
rived. These correspond to the FR and SS:P Performance tree operators.

Passage time analysis on a GSPN model is performed as described in Section 1.4.
If the operation nodes PTD and Dist are part of a Performance Tree query, the
user can expect a probability density function (pdf) and a cumulative distribution
function (cdf) as a result after the passage time calculation has been completed by
SMARTA (see Fig. 1).

An interesting issue that arises in displaying the results of the above nodes is the
automatic determination of the time range over which a pdf or cdf should be plotted.
In both cases, we do this by establishing at what time value t the cdf approaches 1
within some ε bound. The pdf or cdf is then plotted between 0 and t.

We consider the complementary cumulative distribution function (ccdf) F c(t) =
1 − F (t), since it has a structure more suited to numerical inversion (since F c(t)
is a non-negative decreasing function with F c(t) → 0 as t → ∞). Using Laguerre
series representation,

F c(t) =
∑

q′nln(t)(4)

with Q′(z) = q′nzn. It can be shown that

Q′(z) =
−2(1− z)
(1 + z)

(
Q(z)− (1− z)−1

)
(5)

Thus, the Laguerre coefficients of the ccdf q′n can be computed based on the Laplace
transform f∗(s) of the density function. Furthermore, based on the following rela-
tionship, the Laguerre coefficients of the pdf f(t) can also be recursively computed
from q′n:

qn − qn−1 = −1
2
(q′n + q′n−1)(6)

Finally, the cdf and pdf are obtained as:

F (t) = 1−
∑

q′nln(t) and f(t) =
∑

qnln(t)(7)

The time range of interest for the user is given by the time at which F c(t) → ε

where ε is chosen as an arbitrarily small, positive value. Eqs. 5 and 6 are described
in more detail in [14].

If the Moment operation node is included in a query then MOMA is invoked to
calculate the required moments using the formula in Section 1.5.

3.3 Results Processing

Once the user has created a valid Performance Tree and submitted the query and
model for analysis, they are presented with an evaluation progress window. This
shows a replicated version of the Performance Tree query, augmented with an eval-

11

Brien et al.

uation status indicator associated with each node. Initially, the status indicator of
every node is red, signaling that evaluation of the nodes has not started yet, but as
soon as a node’s evaluation has been scheduled (that is, forwarded to the Analysis
Server), the respective status indicator turns yellow. Once results for a node have
been returned to the client by the Analysis Server, the status indicator turns green
and the user can access individual results by clicking on the node.

4 Case Study

Fig. 3. GSPN model of a Hospital A&E Department

To demonstrate our performance analysis pipeline, we will design queries and calcu-
late relevant results for two example case studies based on a small modified version
of the Accident and Emergency (A&E) department model introduced in [2]. In the
GSPN model of Figure 3 there is an initial group of healthy people who fall ill and
go to a hospital – arriving either as walk-in patients or by ambulance. Walk-in pa-
tients await assessment by a nurse, while ambulance patients are given prioritised
attention. Patients are subsequently either seen by a doctor for treatment, sent
for lab tests, or taken for surgery. Once a patient is discharged from the hospital,
(s)he is assumed to be healthy again. The model is parameterised with P , N and
D, which denote the number of tokens on the places healthy (people), nurses and
doctors, respectively. In the following examples, we set P = 5, N = 2 and D = 2,
yielding an underlying Markov chain with 3, 815 states. In order to illustrate better
the types of passage time query that can be asked, we have modified the model to
include an extra place (“finished” on the diagram) which collects patients as they
leave the hospital. Only when the entire population P has arrived at this place will
the immediate transition “reset” become enabled and repopulate the system with
healthy individuals. This allows us to measure the time taken to process all patients
in the system without the need to identify individuals (i.e. by tagging tokens).

Example 1 : What is the cumulative distribution function of the time taken for
all patients in the system to fall ill, complete treatment and be discharged from
the hospital?

12

Brien et al.

The screen shots of the Performance Tree user interface for the query in Example 1
and its evaluation window are given in Figures 4 and 5, respectively. Relevant state
labels for this query are:

all patients healthy := (#(healthy) = P)

all patients treated := (#(finished) = P)

Fig. 4. Query tree with PTD and Dist operators.

Fig. 5. Evaluation window for the query with PTD and Dist operators.

As mentioned in the previous section, the time range of interest for pdf and cdf
plots is computed automatically. The result generated by the PTD operator for
the hospital model in this case study is shown in Figure 6(a), while the result
generated by the Dist operator is shown in Figure 6(b). In the traffic light-based
status indicator system shown in Figure 5, a green status indicates that results have

13

Brien et al.

been computed and are available for inspection (by clicking on the corresponding
node).

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

P
ro

ba
bi

lit
y

Probability density function

(a) Result of evaluating PTD node

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

Time

P
ro

ba
bi

lit
y

Cumulative distribution function

(b) Result of evaluting Dist node

Fig. 6. Results.

It can be deduced from the results in Figure 6(b) that all A&E patients are treated
by time 4 with probability 0.9150 (rounded to 4 decimal places).

Example 2 : What is the average rate of occurrence of surgeries and the steady-
state probability distribution of the number of patients waiting for treatment?

This example demonstrates three distinct features of Performance Trees: a steady-
state probability calculation, a firing rate calculation and the ability to combine
multiple independent queries into one. The Performance Tree for this query is
given in Figure 7, which shows how independent sub-queries are combined using
the ; operator. The first part of the query is seeking the average rate of occurrence
of an action, which is represented by the FR node, while the second part of the
query addresses a steady-state probability distribution with the SS:P node.

The results of this query are as follows. Figure 8 gives the distribution of the
number of patients awaiting treatment at steady-state. The average number of
patients waiting to be treated at steady-state is 0.316 (to 3 decimal places), with
a variance of 0.360 (also to 3 d.p.), and the average rate with which surgery is
performed is 0.711 operations per hour.

5 Conclusions and Future Work

In this paper, we have introduced a distributed evaluation architecture for perfor-
mance queries expressed as Performance Trees on Generalised Stochastic Petri Net
models. We have detailed the query design and analysis workflow, and have shown
in the context of a case study how results for passage time density, steady-state
probability distribution and average firing rate calculations are obtained.

We are currently in the process of integrating support for all presently available
Performance Tree operation nodes, as well as a mechanism for the specification of

14

Brien et al.

Fig. 7. Steady state and firing rate measure specification.

Fig. 8. Distribution of the number of patients waiting to be treated at steady-state.

tagged customers in a system, which will enable us to analyse customer-centric per-
formance queries. Once the whole spectrum of Performance Tree-based queries can
be evaluated, we will focus our efforts onto the optimisation and efficient scheduling
of computations on the analysis cluster in order to achieve even better response
time for our analysis pipeline.

15

Brien et al.

References

[1] T. Suto, J. Bradley, and W. Knottenbelt, “Performance Trees: A New Approach to Quantitative
Performance Specification,” in Proc. 14th IEEE/ACM Intl. Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems (MASCOTS 2006), Monterey, CA, USA,
September 2006, pp. 303–313.

[2] ——, “Performance Trees: Expressiveness and Quantitative Semantics,” in Proc. 4th Quantitative
Evaluation of Systems Conference (QEST 2007), Edinburgh, UK, September 2007, pp. 41–50.

[3] F. Bause and P. Kritzinger, Stochastic Petri Nets – An Introduction to the Theory. Wiesbaden,
Germany: Verlag Vieweg, 1995.

[4] M. Ajmone-Marsan, G. Conte, and G. Balbo, “A class of Generalised Stochastic Petri Nets for the
performance evaluation of multiprocessor systems,” ACM Transactions on Computer Systems, vol. 2,
pp. 93–122, 1984.

[5] G. Ciardo, J. Muppula, and K. Trivedi, “On the solution of GSPN reward models,” Performance
Evaluation, vol. 12, no. 4, pp. 237–253, 1991.

[6] W. Knottenbelt, “Generalised Markovian analysis of timed transition systems,” Master’s thesis,
University of Cape Town, Cape Town, South Africa, July 1996.

[7] P. Harrison and W. Knottenbelt, “Passage time distributions in large Markov chains,” in Proc. ACM
SIGMETRICS 2002, Marina Del Rey, California, June 2002, pp. 77–85.

[8] N. Dingle, P. Harrison, and W. Knottenbelt, “Response time densities in Generalised Stochastic Petri
Net models,” in Proc. 3rd Int. Workshop on Software and Performance (WOSP 2002), 2002, pp. 46–54.

[9] J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson, “Hypergraph-based parallel computation of
passage time densities in large semi-Markov models,” Linear Algebra and its Applications, vol. 386, pp.
311–334, 2004.

[10] J. Abate, G. Choudhury, and W. Whitt, “On the Laguerre method for numerically inverting Laplace
transforms,” INFORMS Journal on Computing, vol. 8, no. 4, pp. 413–427, 1996.

[11] W. Weeks, “Numerical inversion of Laplace transforms using Laguerre functions,” Journal of the ACM,
vol. 13, no. 3, pp. 419–429, 1966.

[12] PIPE: Platform-Independent Petri net Editor – http://pipe2.sourceforge.net.

[13] N. Dingle, “Parallel computation of response time densities and quantiles in large Markov and semi-
Markov models,” Ph.D. dissertation, Imperial College, London, United Kingdom, 2004.

[14] H. Kulatunga and W. Knottenbelt, “Cumulative distribution function calculation using Laguerre
transform inversion,” Electronics Letters, To be submitted in January 2008.

16

