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Abstract. Generalised Stochastic Petri Nets (GSPNs) suffer from the
same problem as any other state-transition modelling technique: it is
difficult to represent sufficient states so that general, real life systems can
be analysed. In this paper we use symbolic techniques to perform state
space exploration for unstructured GSPNs. We present an algorithm for
finding an encoding function which attempts to minimize the height of
BDDs used to encode GSPN state spaces. This technique brings together
and extends a spectrum of ad-hoc heuristics in a formal algorithm. We
also develop a BDD state exploration algorithm which incorporates an
adjustable memory threshold. Our results show the ability to encode over
108 states using just 13.7MB of memory.

1 Introduction

As communication systems evolve and become more complex, the need for soft-
ware tools to analyse these systems grows. A popular way of analysing such
systems is to model their behaviour using a high-level abstraction such as Gen-
eralised Stochastic Petri Nets (GSPNs) [1]. Qualitative and quantitative prop-
erties of the system can then be assessed by analysing the low-level state space
and state graph underlying the model. However, even relatively simple models
can suffer from the state space explosion problem, where the number of states
reachable from the initial state becomes too large to store.

In order to cope with increasingly complex models we therefore require advanced
techniques for constructing and storing state spaces and state graphs. Based
upon earlier work in electronic circuit theory (e.g. [6,12,15]), this paper describes
our technique to explore and store the state space and state graph of GSPN
models, using Binary Decision Diagrams (BDDs) [5] and Multi-terminal BDDs
(MTBDDs) [9] as data storage structures. The application of BDDs to modelling
formalisms is an active research area and has been investigated by, amongst
others, Pastor et al [7,8] and Hermanns et al [11]. More recently Ciardo et al
have successfully applied another BDD variant, Multi-valued Decision Diagrams
(MDDs), to construct structured Petri net model state spaces [2,10].
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The focus of the present study is twofold. Firstly, in Section 3, we bring to-
gether and extend a spectrum of known ad-hoc heuristics in a formal algorithm
for finding an encoding function for BDDs used to encode GSPN state spaces.
Secondly, in Section 4, we present a BDD state exploration algorithm for un-
structured GSPNs which has an adjustable memory threshold. Experimental
results are presented in Section 5.

2 Background Theory

A BDD is a rooted, directed, acyclic graph which contains a set of vertices.
Each vertex is associated with an index that describes its height in the BDD
and a unique identifier that distinguishes it from the other vertices. There are
two types of vertices in a BDD: non-terminal vertices, each of which has two
child vertices; and terminal vertices that have a Boolean value but no children.
Each BDD vertex can have any number of parent vertices. The two children of a
non-terminal vertex associated with the Boolean values true and false are called
the high and low child respectively.

A BDD is ordered if and only if each non-terminal vertex has a lower index than
its child vertices. Further, an ordered BDD is reduced if it contains no vertex
v such that low(v) = high(v), nor does it contain distinct vertices v and v′

such that the subgraphs rooted at v and v′ are isomorphic [6]. Reduced, ordered
BDDs are therefore canonical representations of Boolean functions. This means
that two functions are equivalent if and only if the reduced, ordered BDDs for
the two functions are isomorphic.

Boolean operators may be applied to BDD data-structure operands. In 1990,
Brace et al. [14] devised the efficient ite-algorithm for manipulating Boolean
functions based on the Boolean ternary operator if-then-else. We refer the inter-
ested reader to [14] for further details.

MTBDDs are an extension of BDDs proposed by Fujita et al [9]. They contend
that MTBDDs are a superior data structure, in terms of memory utilisation,
particularly for the representation of sparse matrices. In fact, the matrix need
not be sparse. If several of the matrix elements have the same value then the
isomorphism of MTBDD subgraphs may be exploited to gain further advantage
over standard sparse matrix packages. MTBDDs represent functions of the form
f : D̃ → R where D̃ is a arbitrary finite set. One can encode the members of
D̃ using �log2 |D̃|� Boolean variables. In the case where D̃ is the set of integers
{0, ..., n−1}, then the MTBDD represents a vector of length n. In the case where
D̃ is the finite set {0, ..., n − 1} × {0, ..., m − 1}, then the MTBDD represents a
matrix of dimension n × m.

The individual positions of elements in a vector or matrix can be encoded by
a unique combination of Boolean variables. MTBDDs are both reduced and or-
dered and form a canonical representation of the vector or matrix they encode.
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Information about the length of the vector or dimension of the matrix is lost
in the MTBDD representation, and this must be stored separately from the
data structure. Readers interested in more background regarding MTBDDs are
referred to [9], [18] and [11].

3 Encoding Functions

Central to using BDDs for GSPN state space exploration is the encoding func-
tion, which symbolically represents a state by its characteristic function encoded
as a BDD. The encoding function determines the height of the BDD and thereby
directly influences the time taken for BDD-based operations. In the context of
state-space exploration, the encoding function must provide a one-to-one map-
ping from each marking (or state of the GSPN) onto {true, false}n. Thus we
need to determine how many bits to allocate for each place in the net in order
that it can be identified uniquely in each possible marking.

This section presents a technique for encoding GSPN states in BDDs that com-
bines and extends the heuristics found by Haverkort [4] et al, Pastor and Cor-
tadella [8] and Hermanns et al [11] in a formal algorithm. For brevity we have
a assumed a basic knowledge of Petri net invariant theory in the explanations
that follow; interested readers should consult [17].

3.1 Using P-Invariants

A P-invariant describes a weighted sum of place markings which remains the
same for any reachable marking of the Petri net. A P-invariant is characterised
by an equation of the following form:

Cp1p1 + . . . + Cpn
pn = U (1)

where pi represents the marking on place i, Cpi represents the coefficient (weight)
of pi in the invariant equation, and U is the upper bound imposed by the equa-
tion. An upper bound on pk is thus given by (for non-zero Cpk

):

pk ≤ U/(Cpk
) (2)

Rearranging Equation 1 we find (again for non-zero Cpk
):

pk = (U − (Cp1p1 + ... + Cpk−1pk−1 + Cpk+1pk+1 + ... + Cpnpn))/Cpk
(3)

Since, we can compute pk given {p1, . . . , pk−1, pk+1, . . . , pn}, it is only necessary
to store n − 1 of the places in that equation. We can apply this procedure for
each P-invariant equation.
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The places of the GSPN can therefore be divided into two categories: those which
must be stored, and those which can be computed. The challenge is to attempt
to minimise the number of bits used for the stored places that are actually
encoded in the BDD. Our heuristic algorithm for this is shown in Figure 1. The
P-invariant equations are sorted in order of increasing right-hand-side. This way
the equation with the smallest RHS will be used first and require the smallest
number of bits for each of its stored places. This is only effective in cases where
the place concerned appears in more than one invariant equation. In this case
we use the minimum of the upper bounds. We also sort each equation’s left-
hand-side terms in order of decreasing coefficient so that the place added to the
computed set would have required the highest number of bits to store.

program Invariant Encoding
begin
1 initialise set S of stored places = φ
2 initialise set C of computed places = φ
3 Sort invariant equations on RHS
4 for each equation do
5 Sort equation in order of decreasing coefficient
6 for each equation e in order do
7 begin
8 for each place p in order do
9 begin
10 if (p /∈ S) ∧ (p /∈ C) ∧ (¬(p is the last place in e))
11 add p to S
12 if p is the last place in e
13 insert p at end of C
14 end
15 end
end.

Fig. 1. Algorithm for selecting places to be encoded.

This is a greedy algorithm which may not result in the optimal encoding, but it
improves on the technique of simply using P-invariants to remove one place per
equation by greedily selecting the places required to be stored with the smallest
number of bits first. Results using this technique are reported in Section 5.

3.2 Partitions and BDD Ordering

Variable ordering can have a dramatic effect on the amount of memory and time
needed to construct a BDD-based representation of the model’s state space. In
our experiments, we have observed state space searches completing in less than
half the time when a good variable ordering is chosen. It is known to be an
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NP-complete problem to a priori decide on the optimal ordering of variables [3].
However, good orderings can often be constructed using heuristics.

In our technique, each component place of a marking is binary encoded with
the separate encodings being concatenated making a bit-vector describing the
marking. The variables for the individual markings are stored with least signif-
icant bit first. We noted no difference between least significant bit versus most
significant bit first. Therefore, in order to improve the encoding we look to the or-
dering of the places themselves. We have experimented with two different GSPN
partitioning techniques.

First, we tried to cluster the places into logical partitions, based on the tran-
sitions of the GSPN. For each transition we construct a partition consisting of
all places connected to it via incoming arcs. If any of those places are already
elements of other partitions, then the partitions are combined. Once this oper-
ation is completed we are left with distinct sets of places which enable certain
transition sets.

Breaking the net into partitions in this way turns out to be the close to the worst
thing one can do. The aggregation of places enabling the same transitions does
not lead to a suitable place ordering. One needs to interleave similarly affected
places in the Petri net. This is true for the interleaving of row and column
matrices in MTBDDs [11], and the same theory applies here. That is, finding
two similar sub-nets and interleaving the corresponding places bit-vectors. To
try to automate this process for Petri nets with no obvious structure, we grouped
together those places whose number of incoming and outgoing arcs are equal.
Our experience was that this resulted in a great improvement upon the previous
technique, as discussed in Section 5.

4 State Space Exploration

Having found an efficient encoding method and having chosen a good variable
ordering, we are in a position to conduct an efficient state space exploration.
Typically symbolic state space exploration methods use breadth-first searches.
The algorithm in Figure 2 shows how the set N of new states, initialised to the
starting state, is used as a frontier set. That is, all those states whose successors
have not been found. The states reachable in one-step from the states in N
are determined by the function findSuccessorStatesFrom and stored in U , the
unexplored state set. E accumulates all the explored states and, at each iteration,
the frontier set is found by performing a set minus of U from E.

The most flexible part of this algorithm is the function findSuccessorStatesFrom.
We can find all the states stored in N by a simple BDD traversal during which
we maintain an array of values indicating whether the low child path or the high
child path was taken, or whether we skipped a node, or number of nodes. If we
do skip a number of nodes, then for each index, we need to set the corresponding
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program Breadth-First Exploration
var
1 Set E, U , N = φ
begin
4 insert the initial state into N
5 while N �= φ do

begin
6 let U = findSuccessorStatesFrom(N)
7 E = E ∪ N {add the newly explored states to the explored BDD}
8 N = U − E {find the frontier set}

end
end.

Fig. 2. Breadth-First State Space Exploration Algorithm

path array value to a “don’t care” value. Whenever we reach the true terminal,
we use the path array to set the marking of the GSPN under analysis, which we
store separately in memory. If the path array contains “don’t care” values then
all the permutations of the array are set one at a time.

For each permutation in N , we find and fire the enabled transitions. This process,
encapsulated by the function findAllSuccessorsOf, changes the marking of the
Petri net via transition firing. The new marking can then be inserted into the
BDD denoted U (see Fig. 3) representing the set of states found at this depth
of the state graph. These are the unexplored states, which will contribute to the
frontier set in the next iteration of the state search algorithm.

The most time-consuming part of this algorithm is the collection of the successor
states by the function findSuccessorStatesFrom from the algorithm in Figure 2.
We could make use of the BDD ite (if-then-else) algorithm in [14] to insert
each newly found successor state into the set of found successor states, but, in
practice, this is very time consuming and impractical. A much more efficient
way to add the new states is to realise that a new state simply means a new
path in the BDD. This new path would simply be a worst-case O(D) insertion,
where D is the depth of the BDD. Unfortunately, since the BDDs are reduced we
cannot simply add a new path to the existing BDD because arbitrarily adding
new paths would violate this property.

We developed a new technique to avoid this problem. If the BDD is unreduced,
we can simply add the nodes to build the new path from root to true terminal.
This reduces the time complexity of adding a new state to O(D). Unfortunately,
unreduced BDDs lose their compactness. Parent nodes are still re-used in the
unreduced BDDs, but isomorphic child sub-graphs are not re-used, thus lead-
ing to a blow-up in memory usage. We therefore cannot leave BDDs in their
unreduced form indefinitely.

Our technique makes use of two BDDs for the successor state computation.
The first is an ordinary reduced BDD, U , which simply stores the states found
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Fig. 3. Our algorithm for incremental reduction during state space exploration.

to that point. The second is an unreduced temporary BDD denoted T . The
temporary BDD has states added to it by simply inserting the new paths to
the true terminal. This is done until the temporary BDD reaches a user-defined
upper-bound for the number of nodes used.

Once this upper-bound is reached, the ite algorithm is used to union T , the
unreduced graph, with U , the reduced graph. Since the ite algorithm always
returns a reduced BDD, this process has the effect of reducing the size of the
BDD needed to store the newly explored states. Since the reduced BDD is nor-
mally several orders of magnitude smaller than its unreduced counterpart, this
algorithm effectively allows the user to place an upper-bound on the amount of
memory used for the exploration. In this way the maximum amount of mem-
ory required during the exploration is limited and the user can ensure that the
problem will fit in the available memory. Naturally, the lower this limit the less
time efficient the algorithm becomes.

The algorithm just described and shown in Figure 3 finds all the successors of
all the states in N , some of which may have been already explored. In order to
ensure that we do not re-explore them, they are removed at the next step in the
algorithm in the set-minus operation on line 8. We implemented an enhancement
to this. For each state found, we first check whether it is in the BDD for the
explored states, which involves a worst-case O(D) comparison. This is more
efficient than re-inserting and then removing the states; in our experiments, this
generally lead to a time improvement of approximately 25%.
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A final enhancement we made was in the detection of enabled transitions. As
described in Section 3, some place values are stored in the BDD, while others
are computed. Transitions have places from either category in their input set.
As the BDD is traversed, place values are determined in the order in which
they are stored from root to terminal node. Some transitions may rely only on
places stored near the root of the BDD, and other transitions may rely on com-
puted place values derived from places stored near the BDD root. Our algorithm
for detecting enabled transitions is applied at every recursive step of the func-
tion findSuccessorStatesFrom. When the recursion reaches the base case, a much
smaller subset of the transitions only need be tested to see if they are enabled.
This enhancement typically led to an average 70% reduction in the state space
exploration time compared with our previous results.

During the exploration, all state-to-state rates are recorded in an MTBDD ma-
trix. States are added in exactly the same way as above, also incrementally
reducing the MTBDD used to store the states when it becomes too large.

Note that it is more common in symbolic state space search algorithms to find
all the successor states of the frontier set in one computation using the transition
relation BDD in the predicate transformation. For highly structured models this
is an extremely efficient approach, but for more non-structured examples the
state space sizes that can be explored are dramatically reduced. This is because
the BDD depth for the transition relation is double that of BDD needed to store
the state space. The transition relation BDD is thus normally a very large BDD
and each predicate transformation takes an impractically long time.

We conclude this section with a short discussion of how vanishing state elimi-
nation is incorporated into our algorithm. So-called “vanishing” states occur in
GSPN state spaces because enabled immediate transitions lead to states with
a sojourn time of zero. We eliminate these states on-the-fly using a standard
technique that makes use of a vanishing state depth-first stack [13]. The alter-
native approach of removing vanishing states at the end of a traversal involves a
matrix inversion operation which, except in some specialised cases, is inefficient
in MTBDD data structures [9]. This can be attributed to the fact that inversions
typically involve a large amount of fill-in.

5 Experimental Results

The results below are based on our own implementation of a BDD package, using
hashing to improve the time taken for each run of the ite algorithm.

Invariant-Based Encoding Function: The height of the BDD directly im-
pacts on the time taken of any BDD-based manipulation and the encoding func-
tion determines the height of the BDD. We compared our invariant-based GSPN
encoding function with a naive binary encoding, where the number of tokens on
every place is converted to its unsigned binary form. The smallest improvement
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upon this technique was a 70% reduction in the height of the corresponding
BDD. The greatest improvement we found reduced the BDD height to just 20%
of its original size.

Table 1. Comparative performance of classical and BDD storage methods. Dashed
entries indicate that the process ran out out memory on a SPARC Station 5 with
256MB total memory.

No. of Phil. No. of states Classical Binary Invariant
Peak Final Peak Final

5 81 256 KB 27 KB 12 KB 5 KB 1 KB
7 477 296 KB 198 KB 33 KB 29 KB 2.4 KB
10 6725 800 KB - - 398 KB 3.7 KB
12 39201 3.3 MB - 2.2 MB 4.6 KB
15 551,613 44.9 MB - - 13.2 MB 3.3 KB
17 3,215,041 - - - 13.7 MB 9.1 KB
21 110 Million - - - 13.7 MB 11.7 KB

State Space Exploration: Using BDDs for this purpose lead to a remarkable
saving in space, allowing us to represent systems with as many as 108 states on
a single workstation using 13.7MB of memory. While our BDD-based approach
is slower for smaller state spaces, the speed of our implementation became com-
parable to a published classical technique (Knottenbelt et al [20]) at about the
million-state mark on a single workstation. We are able to explore approximately
11 million states, and save the state to state rates for performance analysis in
an MTBDD, in 6 hours on a single workstation using 4.5MB of memory. This is
compared with a tool (DNAmaca [13]) using a probabilistic hashing-based tech-
nique which fails after 20 hours having explored only 5 million states in nearly
800MB of memory.

Table 1 shows results from the scalable Petri net model of the Dining Philoso-
phers problem. It demonstrates how the use of BDDs in state space explorations,
in combination with our computational invariant encoding technique, improves
on the memory usage of both classical storage techniques as well as a naive
binary encoding technique.

Partitions and Variable Ordering: We found that memory and time ef-
ficiency can be improved by ensuring that the Boolean variables encoding the
state vectors are ordered felicitously by exploiting the structure of the GSPN. We
found that the most efficient variable ordering technique interleaved the places
of similar sub-areas in the GSPN.

The graph in Figure 4 shows some interesting general trends we have found in
the course of our experimentation. Each bar corresponds to the number of states
per second the technique allowed, given a particular model. For example, the
leftmost bar shows that approximately 2 800 states per second were found using
a random ordering on the Kanban [16] model with 3 kanbans. For each technique,
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Fig. 4. A graph showing the relative performance of different variable ordering tech-
niques in states per second.

the bars corresponding to each model are in order of decreasing regular structure.
The most structured model is the Kanban model and the least structured is the
parsys [19] GSPN. In general, there is a decrease in states per second as the
regularity of the model structure decreases. This confirms the intuition that,
generally, symbolic methods are less efficient on less regular GSPNs. The graphs
also show that a user-chosen ordering method was better than the others in
almost every case. However, our automated technique comes close to achieve
similar throughputs as the user-chosen ordering. This shows that interleaving
the places of individual subnets yields a better ordering than clustering places
into partitions based on the transitions to which they are connected.

6 Conclusion

We have reported on our experience with symbolic methods for GSPN state
space exploration. In this work we are not constrained to solving only regularly
structured models, any model structure is suitable. We presented our GSPN en-
coding technique which brings together in a formal algorithm several heuristics
found in existing work. We found that memory and time efficiency can be im-
proved drastically by a well-chosen variable ordering, which, in our experience,
involves interleaving the places of similar, but not necessarily the same, subnets
in the GSPN. We presented results showing how our techniques improve over
the memory and time efficiency of probabilistic hashing-based methods for large
models on a single workstation.

BDD-based techniques move the focus from the search for space efficient meth-
ods, to a search for time efficient ones. In the future we plan to develop more
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efficient MTBDD-based matrix manipulation algorithms so that the good mem-
ory efficiency of MTBDDs can be complemented with good time-savings. Fur-
thermore, we intend to investigate the possibility of distributing our techniques
over a network of workstations.
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