
University of London
Imperial College of Science, Technology and Medicine

Department of Computing

Parallel Computation of Response Time
Densities and Quantiles in Large Markov and

Semi-Markov Models

Nicholas John Dingle

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, October 2004

Abstract

Response time quantiles reflect user-perceived quality of service more accurately than

mean or average response time measures. Consequently, on-line transaction process-

ing benchmarks, telecommunications Service Level Agreements and emergency ser-

vices legislation all feature stringent 90th percentile response time targets.

This thesis presents techniques and tools for extracting response time densities, quan-

tiles and moments from large-scale models of real-life systems. This work expands

the applicability, capacity and specification power of prior work, which was hitherto

focused on the analysis of Markov models which only support exponential delays.

Response time densities or cumulative distribution functions of interest are computed

by calculating and subsequently numerically inverting their Laplace transforms. We

develop techniques for the extraction of response time measures from Generalised

Stochastic Petri Nets (GSPNs) and Semi-Markov Stochastic Petri Nets (SM-SPNs).

The latter is our proposed modelling formalism for the high-level specification of semi-

Markov models which support generally-distributed delays.

The techniques presented improve dramatically on the state-space capacity of previ-

ous work in two ways. Firstly, we use a space-efficient function representation scheme

based on the evaluation demands of a numerical Laplace transform inversion algo-

rithm. Secondly, we exploit the processing power and memory capacity of a network

of machines to perform calculations in parallel. Hypergraph partitioning is used to

minimise the amount of communication between processors whilst ensuring that the

computational load is balanced. An alternative approach, based on exact state-level

aggregation, is also described.

Finally, we describe an extended Continuous Stochastic Logic (eCSL) for the formu-

lation of performance queries for high-level models in a concise and rigorous manner.

Response time and scalability results which have been produced on a range of architec-

tures (including workstation clusters and parallel computers) are presented for several

case studies. Our implementations exhibit good scalability and demonstrate the ability

to analyse models with state spaces ofO
(
107

)
states and above.

i

ii

Acknowledgements

I would like to thank the following people:

• My supervisor, Dr. William Knottenbelt, for his help and enthusiasm throughout

the course of my research.

• My friends and family for their love and support, especially during the writing

of this thesis.

• The members of the Analysis, Engineering, Simulation and Optimisation of Per-

formance (AESOP) research group. In particular: Ashok Argent-Katwala, Su-

sanna Au-Yeung, Jeremy Bradley, Tony Field, Uli Harder, Peter Harrison, David

Thornley, Aleks Trifunovíc and Harf Zatschler.

• Keith Sephton and the Imperial College Parallel Computing Centre for the use

of the Fujitsu AP3000 parallel computer.

• The London e-Science Centre for the use of the Viking Beowulf cluster.

• The Engineering and Physical Sciences Research Council (EPSRC) for provid-

ing me with the funding to do my PhD.

iii

Time is everything: five minutes makes the difference between victory and defeat.

Vice Admiral Lord Nelson

The copyright of this thesis rests with the author and no quotation from it or informa-

tion derived from it may be published without the prior written consent of the author.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Real World Examples . 1

1.1.2 Performance Modelling . 4

1.2 Aims and Objectives . 7

1.3 Contributions . 7

1.4 Outline . 10

1.5 Statement of Originality and Publications 13

1.6 Notation . 15

2 Background 18

2.1 Stochastic Processes . 18

2.1.1 Discrete-Time Markov Chains 20

2.1.2 Continuous-Time Markov Chains 22

2.1.3 Semi-Markov Processes . 24

2.1.4 Classical Iterative Techniques for Steady-state Analysis 25

2.2 High-level Modelling Formalisms 26

2.2.1 Petri Nets . 26

2.2.2 Stochastic Petri Nets . 28

v

vi CONTENTS

2.2.3 Generalised Stochastic Petri Nets 29

2.2.4 Semi-Markov Stochastic Petri Nets 31

2.2.5 Stochastic Process Algebras 36

2.2.6 Queueing Networks . 38

2.3 Laplace Transforms . 40

2.3.1 Properties . 41

2.3.2 Laplace Transform Inversion 43

3 Passage Times in Markov Models 49

3.1 The Laplace Transform Method for CTMCs 49

3.2 Extension to GSPNs . 53

3.2.1 Example of GSPN Analysis 54

3.3 Uniformization . 57

3.3.1 Uniformization for Transient Analysis of CTMCs 57

3.3.2 Uniformization for Passage Time Analysis of CTMCs 58

3.4 Comparison of Methods . 60

3.4.1 Models Studied . 63

3.4.2 Discussion . 64

3.5 Passage Times in Stochastic Process Algebras 66

3.5.1 Example of SPA Analysis 67

3.6 Estimation of Passage Time Densities and Distributions From Their

Moments . 68

3.6.1 Moment Calculation for CTMCs 69

3.6.2 Extension to GSPNs . 71

3.6.3 Distribution Estimation from Moments 71

CONTENTS vii

4 Passage Times in Semi-Markov Models 80

4.1 Efficient Representation of General Distributions 81

4.2 The Laplace Transform Method for SMPs 82

4.3 Iterative Passage Time Analysis . 83

4.3.1 Technical Overview . 84

4.3.2 Example Passage Time Results 85

4.3.3 Practical Convergence of the Iterative Passage Time Algorithm 90

4.4 Iterative Transient Analysis . 92

4.4.1 Technical Overview . 93

4.4.2 Example Transient Results 98

4.4.3 Practical Convergence of the Iterative Transient Algorithm . . 99

4.5 Estimation of Passage Time Densities and Distributions From Their

Moments . 101

4.5.1 Moment Calculation . 102

4.5.2 Example Results . 104

5 Techniques for Analysing Large Models 107

5.1 Sparse Matrix Partitioning Strategies 110

5.1.1 Graph Partitioning . 113

5.1.2 Hypergraph Partitioning . 115

5.1.3 Evaluation . 117

5.2 State-level Aggregation for Semi-Markov Processes 121

5.2.1 Aggregation Algorithm . 123

5.2.2 State-ordering Strategies . 126

5.2.3 State-selection Algorithms 128

viii CONTENTS

5.2.4 Comparing Aggregation Strategies 129

5.2.5 Comparing Models of Different Size 133

5.2.6 Parallel Aggregation . 134

6 Implementations 140

6.1 DNAmaca . 141

6.1.1 Model Specification Language 143

6.1.2 Model Description . 143

6.1.3 Solution Control . 146

6.1.4 Performance Measure Specification 146

6.1.5 State-space Generator . 147

6.1.6 Functional Analyser . 150

6.1.7 Steady-state Solver . 151

6.1.8 Sparse Matrix Representation 151

6.1.9 Performance Analyser . 154

6.2 HYDRA . 154

6.2.1 Input Language Augmentation 156

6.2.2 State Generator and Steady-state Solver 157

6.2.3 Matrix Uniformization and Transposition 158

6.2.4 Hypergraph Partitioner . 158

6.2.5 Uniformization-based Passage Time and Transient Analyser . 158

6.3 SMCA . 160

6.3.1 Input Language Augmentation 160

6.3.2 State-space Generator . 162

6.3.3 Steady-state Solver . 162

CONTENTS ix

6.3.4 Example SMP Steady-state Analysis 163

6.4 SMARTA . 166

6.4.1 Tool Architecture . 166

6.4.2 Implementation of the Parallel Iterative Algorithm 168

7 Extended Continuous Stochastic Logic 172

7.1 CSL . 173

7.1.1 Formal CSL semantics . 174

7.1.2 Opportunities for Enhancing CSL 174

7.2 eCSL . 175

7.2.1 The Syntax of eCSL . 176

7.2.2 Examples of eCSL Formulae 177

7.2.3 Formal Stochastic Semantics of eCSL 178

8 Numerical Results for Very Large Markov and Semi-Markov Models 181

8.1 Very Large Markov Models . 181

8.1.1 Flexible Manufacturing System 182

8.1.2 Tree-like Queueing Network 183

8.1.3 HYDRA Scalability . 186

8.2 Very Large Semi-Markov Models 189

8.2.1 Transient Analysis . 189

8.2.2 Passage Time Analysis . 190

8.2.3 SMARTA Scalability . 193

9 Conclusion 199

9.1 Summary of Achievements . 199

9.2 Applications . 202

9.3 Future Work . 203

x CONTENTS

A Models 205

A.1 Courier Communications Protocol 205

A.2 Flexible Manufacturing System . 212

A.3 Tree-like Queueing Network . 217

A.4 Voting Model . 221

A.5 Web Content Authoring System . 224

B Semi-Markov Process Aggregation Algorithm 228

B.1 Aggregation Functions . 230

B.2 Utility functions . 231

Bibliography 232

List of Tables

1.1 Response time constraints for transactions in the TPC-C benchmark

[120]. 2

1.2 Some common probability density and cumulative distribution functions. 17

3.1 Comparison of run-time in seconds for uniformization, Laplace trans-

form inversion and simulation passage time analysis. 63

3.2 Run-time in seconds for the Laplace transform inversion method on

GSPN state-spaces without vanishing state elimination. 63

3.3 Comparison of run-times in seconds for GLD approximation and full

Laplace transform-based passage time solution. 78

5.1 Run-times for hypergraph partitioned and row-striped parallel sparse

matrix–vector multiplication for the analysis of 165s-points in the

249 760 state Voting model using the iterative algorithm of Chapter 4. 117

5.2 Run-times for hypergraph partitioned and row-striped parallel sparse

matrix–vector multiplication for the1 639 440 state FMS model using

uniformization (512 multiplications). 118

5.3 Speedup figures for hypergraph partitioned and row-striped matrix–

vector multiplication for the analysis of 165s-points in the249 760

state Voting model. 118

5.4 Speedup figures for hypergraph partitioned and row-striped matrix–

vector multiplication for the analysis of the1 639 440 state FMS model

using uniformization. 118

xi

xii LIST OF TABLES

5.5 Percentage of state-space which can be aggregated without requiring

information stored on remote processors. Shown for differing numbers

of partitions in a number of different sized models. 139

6.1 Some common transition delay density functions and their correspond-

ing Laplace transforms. 162

8.1 Communication overhead in the queueing network model with six cus-

tomers (left) and interprocessor communication matrix (right) for each

processor in a 4 processor decomposition. 184

8.2 Per-iteration communication overhead for various partitioning meth-

ods for the queueing network model with 27 customers on 16 processors.184

8.3 Run-time, speedup (Sp), efficiency (Ep) and per-iteration communi-

cation overhead forp-processor passage time density calculation in

the FMS model withk = 7. Results are presented for an AP3000

distributed-memory parallel computer and a PC cluster. 186

8.4 Run-time, speedup and efficiency of performing hypergraph-partitioned

sparse matrix–vector multiplication across 1 to 32 processors. Calcu-

lated for the249 760 state Voting model for 165s-points on the Viking

Beowulf cluster. 194

8.5 Run-time, speedup and efficiency using 32 slave processors divided

into various different size sub-clusters. Calculated for the249 760 state

Voting model for 165s-points on the Viking Beowulf cluster. 194

A.1 Number of states generated by the Voting model SM-SPN in terms of

the number of voters (CC), polling units (MM) and central voting

units (NN). 222

A.2 Number of states generated by the Web-server SM-SPN in terms of

the number of clients (RR), authors (WW), parallel web servers (SS)

and write-buffers (BB). 225

List of Figures

2.1 An example Place-Transition net (left) and the result of firing transi-

tion t1 (right). 27

2.2 An example Generalised Stochastic Petri Net (GSPN) [48]. 30

2.3 An example Semi-Markov Stochastic Petri Net (SM-SPN) [25]. . . . 35

2.4 An example PEPA model. 38

2.5 An example open queueing network. 38

2.6 Algorithm for automatically determining scaling parameters [70]. . . 47

3.1 The Simple GSPN model. 55

3.2 The reachability graph of the Simple GSPN model. 55

3.3 Numerical and simulated response time densities for the Simple model

for time taken from markings whereM(p1) > 0 to markings where

M(p2) > 0. Here the transition rate parameters arer = 2 andv = 5. . 56

3.4 Numerical and simulated (with 95% confidence intervals) passage time

densities for time taken from the initiation of a transport layer trans-

mission to the arrival of an acknowledgement packet in the Courier

model. 60

3.5 Numerical and simulated (with 95% confidence intervals) density for

the time taken to produce a finished part of typeP12 starting from

states in which there arek = 6 unprocessed parts of typesP1 andP2

in the FMS model. 61

xiii

xiv LIST OF FIGURES

3.6 Numerical and simulated (with 95% confidence intervals) passage time

densities for the cycle-time in a tree-like queueing network with 15

customers. 61

3.7 GSPN passage time density calculation pipeline [48]. 62

3.8 The PEPA description for the generalised active badge model withN

rooms andM people [23]. 67

3.9 Passage time density of the time taken for the first person to move from

room 1 to room 6 in the 3-person Active Badge model. 68

3.10 The branching Erlang model. 75

3.11 The approximate Courier model passage time density function pro-

duced by the GLD method compared with the exact result. 75

3.12 The approximate Courier model cumulative distribution function pro-

duced by the GLD method compared with the exact result. 76

3.13 The approximate Erlang model passage time density function pro-

duced by the GLD method compared with the exact result. 76

3.14 The approximate Erlang model cumulative distribution function pro-

duced by the GLD method compared with the exact result. 77

3.15 The branching Erlang model cumulative distribution function produced

by the GLD method compared with the bounds produced by the Win-

Moments tool. 77

4.1 Numerical and simulated (with 95% confidence intervals) density for

the failure mode passage in the Voting model system 1 (2 081 states). . 86

4.2 Cumulative distribution function and quantile for the failure mode pas-

sage in the Voting model system 1 (2 081 states). 86

4.3 Numerical and simulated (with 95% confidence intervals) density for

the time taken to process 45 reads and 22 writes in the Web-server

model system 1 (107 289 states). 87

LIST OF FIGURES xv

4.4 Cumulative distribution function and quantile for the time taken to pro-

cess 45 reads and 22 writes in the Web-server model system 1 (107 289

states). 87

4.5 Numerical and simulated (with 95% confidence intervals) density for

the time taken to process 175 voters in the Voting model system 7 (1.1

million states). 88

4.6 Cumulative distribution function and quantile for the time taken to pro-

cess 175 voters in the Voting model system 7 (1.1 million states). . . . 88

4.7 Average number of iterations to converge pers point for two different

values ofε over a range of model sizes for the iterative passage time

algorithm. 90

4.8 Average time to convergence pers point for two different values ofε

over a range of model sizes for the iterative passage time algorithm. . 91

4.9 Average number of iterations per unit time over a range of model sizes

for the iterative passage time algorithm. 91

4.10 A simple two-state semi-Markov process. 95

4.11 Example iterations towards a transient state distribution in a system

with successive exponential and deterministic transitions. 95

4.12 Example iterations towards a transient state distribution in a system

with successive deterministic and exponential transitions. 96

4.13 Where numerical inversion performs badly: transient state distribution

in a system with two deterministic transitions. 96

4.14 The effect of adding randomness: transient state distribution of the two

deterministic transitions system with a initial exponential transition

added. 97

4.15 Transient and steady-state values in system 1, for the transit of 5 voters

from the initial marking to placep2. 97

xvi LIST OF FIGURES

4.16 Average number of iterations to converge pers point for two differ-

ent values ofε over a range of model sizes for the iterative transient

algorithm. 100

4.17 Average time to convergence pers point for two different values ofε

over a range of model sizes for the iterative transient algorithm. 100

4.18 Average number of iterations per unit time over a range of model sizes

for the iterative transient algorithm. 101

4.19 A simple four-state semi-Markov model (SMFour). 105

4.20 The SMFour model passage time density function produced by the

GLD method compared with the exact result. 105

4.21 The SMFour model cumulative distribution function produced by the

GLD method compared with the exact result. 106

5.1 A 16× 16 non-symmetric sparse matrixA [50]. 110

5.2 The 4-way row-striped partition of the matrixA in Fig. 5.1 and the

corresponding partition of the vectorx. 111

5.3 The 4-way 2D checkerboard partition of the matrixA in Fig. 5.1 (with

random asymmetric row and column permutation) and the correspond-

ing partition of the vectorx. 111

5.4 The 4-way graph partition of the matrixA in Fig. 5.1 and the corre-

sponding partition of the vectorx [50]. 114

5.5 A graph (left) and a hypergraph (right) [121]. 115

5.6 The 4-way hypergraph partition of the matrixA in Fig. 5.1 and the

corresponding partition of the vectorx [50]. 116

5.7 Speedup for hypergraph partitioned and row-striped matrix–vector mul-

tiplication for the analysis of 165s-points in the249 760 state Voting

model. 119

LIST OF FIGURES xvii

5.8 Speedup for hypergraph partitioned and row-striped matrix–vector mul-

tiplication for the analysis of the1 639 440 state FMS model using uni-

formization. 119

5.9 Reducing a complete 4 state graph to a complete 3 state graph. 122

5.10 Aggregating sequential transitions in an SMP. 123

5.11 Aggregating branching transitions in an SMP. 124

5.12 The three-step removal of a cycle from an SMP. 124

5.13 Complete aggregation of a2 081 state semi-Markov system to two states.127

5.14 Transition matrix density for the2 081 state model for four different

state-selection algorithms. 130

5.15 Computational cost (in terms of sequential, branching and cycle re-

duction operations) for the2 081 state model for four different state-

selection algorithms. 130

5.16 Transition matrix density over two different model sizes and two dif-

ferent state-selection algorithms. 131

5.17 Computational complexity over two different model sizes and two dif-

ferent state-selection algorithms. 131

5.18 Computational complexity for systems with up to541 280 states; fewest-

paths-first algorithm only. 132

5.19 Transition matrix density for systems with up to541 280 states; fewest-

paths-first algorithm only. 132

5.20 Transition matrix for the2 081 state Voting model. 135

5.21 Hypergraph bi-partitioned transition matrix for the2 081 state Voting

model. 136

5.22 Aggregated hypergraph-partitioned transition matrix for the2 081 state

Voting model (contains374 states). 137

6.1 DNAmaca tool architecture [87]. 142

xviii LIST OF FIGURES

6.2 Breadth-first search algorithm for state-space exploration [88]. 148

6.3 DNAmaca’s sparse matrix representation scheme [87]. 152

6.4 HYDRA tool architecture. 155

6.5 A three-state SM-SPN. 163

6.6 The SMCA input file for the SM-SPN in Fig. 6.5. 164

6.7 The SMCA performance analyser output for the model file in Fig. 6.6. 165

6.8 SMARTA: Semi-Markov Passage Time Analyser. 167

6.9 Parallel iterative passage time calculation algorithm for slave proces-

sori. 169

7.1 An example of a transient constraint~m |= T Rt
Rp

(Ψ) which is satisfied

by a transient distribution in the shaded area. 177

8.1 Numerical and simulated (with 95% confidence intervals) passage time

densities for the time taken to produce a finished part of typeP12 start-

ing from states in which there arek = 7 unprocessed parts of typesP1

andP2. 182

8.2 TransposedP′ matrix (left) and hypergraph-partitioned matrix (right)

for the tree-like queueing network with 6 customers (5 544 states). . . 183

8.3 Numerical and analytical cycle time densities for the tree-like queue-

ing network of Fig. A.3 with 27 customers (10 874 304 states). 185

8.4 Distributed run-time for the FMS model withk = 7 on the AP3000

and a PC cluster. 187

8.5 Speedup for the FMS model withk = 7 on the AP3000 and a PC cluster.187

8.6 Efficiency for the FMS model withk = 7 on the AP3000 and a PC

cluster. 188

8.7 Transient and steady-state values in Voting system 3, for the transit of

5 voters from the initial marking to placep2. 190

LIST OF FIGURES xix

8.8 Numerical and simulated (with 95% confidence intervals) density for

the time taken to process 300 voters in the Voting model system 8 (10.9

million states). 191

8.9 Cumulative distribution function and quantile of the time taken to pro-

cess 300 voters in the Voting model system 8 (10.9 million states). . . 191

8.10 Numerical and simulated (with 95% confidence intervals) density for

the time taken to process 100 reads and 50 page updates in the Web-

server model system 6 (15.4 million states). 192

8.11 Cumulative distribution function and quantile of the time taken to pro-

cess 100 reads and 50 page updates in the Web-server model system 6

(15.4 million states). 192

8.12 Run-time of hypergraph-partitioned sparse matrix–vector multiplica-

tion. Calculated for the249 760 state Voting model for 165s-points

on the Viking Beowulf cluster. 195

8.13 Speedup of hypergraph-partitioned sparse matrix–vector multiplica-

tion. Calculated for the249 760 state Voting model for 165s-points

on the Viking Beowulf cluster. 195

8.14 Efficiency of hypergraph-partitioned sparse matrix–vector multiplica-

tion. Calculated for the249 760 state Voting model for 165s-points

on the Viking Beowulf cluster. 196

8.15 Run-time of hypergraph-partitioned sparse matrix–vector multiplica-

tion when using 32 processors in groups of varying sizes. Calculated

for the249 760 state Voting model for 165s-points on the Viking Be-

owulf cluster. 196

8.16 Speedup of hypergraph-partitioned sparse matrix–vector multiplica-

tion when using 32 processors in groups of varying sizes. Calculated

for the249 760 state Voting model for 165s-points. 197

xx LIST OF FIGURES

8.17 Efficiency of hypergraph-partitioned sparse matrix–vector multiplica-

tion when using 32 processors in groups of varying sizes. Calculated

for the249 760 state Voting model for 165s-points on the Viking Be-

owulf cluster. 197

A.1 The Courier communications protocol GSPN model [125]. 206

A.2 The GSPN model of a Flexible Manufacturing System [41]. 212

A.3 The tree-like queueing network [68, 70]. 216

A.4 The Voting Model SM-SPN [24]. 221

A.5 The Web-server Model SM-SPN [28, 29]. 225

B.1 Theaggregate smp function . 228

Chapter 1

Introduction

1.1 Motivation

A fast response time is an important performance criterion for almost all computer-

communication and transaction processing systems. Examples of systems with strin-

gent response time requirements include stock market trading systems, mobile com-

munication systems, web servers, database servers, manufacturing systems, commu-

nication protocols and communications networks. Typically, response time targets are

specified in terms of quantiles (percentiles). For example, in a mobile messaging sys-

tem it might be required that “there should be a 95% probability that a text message

will be delivered within 3 seconds”. To further illustrate the importance of response

time quantiles in the real world we will consider three application areas in detail, viz.

benchmark suites, Service Level Agreements and emergency services legislation.

1.1.1 Real World Examples

Benchmarks

The Transaction Processing Performance Council (TPC) benchmarks [120] were con-

ceived to compare different implementations of large-scale on-line transaction pro-

cessing (OLTP) systems in a consistent way. A range of benchmarks are available,

1

2 Chapter 1. Introduction

Minimum Minimum 90th Percentile Minimum Mean

Transaction Percentage Keying Response Time of Think Time

Type of Mix Time (sec) Constraint (sec) Distribution (sec)

New-Order n/a 18.0 5.0 12.0

Payment 43.0 3.0 5.0 12.0

Order-Status 4.0 2.0 5.0 10.0

Delivery 4.0 2.0 5.0 5.0

Stock-Level 4.0 2.0 20.0 5.0

Table 1.1.Response time constraints for transactions in the TPC-C benchmark [120].

each of which is suitable for different applications including transaction processing,

decision support, business reporting and e-Commerce [120]. For example:

TPC BenchmarkTM C (TPC-C) is an OLTP workload. It is a mixture

of read-only and update intensive transactions that simulate the activities

found in complex OLTP application environments . . . The performance

metric reported by TPC-C is a “business throughput” measuring the num-

ber of orders processed per minute. Multiple transactions are used to sim-

ulate the business activity of processing an order, and each transaction is

subject to a response time constraint.

The TPC-C workload consists of five different types of transaction, three of which have

strict response time requirements (New-Order, Payment and Order-Status transactions)

and two where these requirements are more relaxed (Delivery and Stock-Level trans-

actions). The response time constraints on each type of transaction are summarised in

Table 1.1.

In order for a set of results to be considered compliant with the TPC-C benchmark, a

full disclosure report must be supplied. Amongst other things, this must include [120]:

The numerical quantities listed below must be summarised near the begin-

ning of the Full Disclosure report [including] . . . ninetieth percentile, av-

erage and maximum response times for the New-Order, Payment, Order-

1.1. Motivation 3

Status, Stock-Level, Delivery (deferred and interactive) and Menu trans-

actions . . . Response Time frequency distribution curves . . . must be re-

ported for each transaction type.

Service Level Agreements

Service Level Agreements (SLAs) exist as contracts between service providers and

their customers [44, 52]. For example, an e-commerce site may have an SLA with the

company which hosts its website, or two Internet Service Providers (ISPs) may have

mutual SLAs to regulate the carrying of each other’s traffic. A typical SLA specifies

the level of service to be provided (according to metrics such as availability, response

time, latency, packet loss and so forth) and how much this will cost, as well describing

what financial penalties will be incurred if this level is not met. It should also describe

what level of technical support will be given to the customer in the event of problems.

Usually, the main metric of interest to customers is the availability of the provider’s

service (e.g. network or servers). However, customers (particularly those involved in

web-commerce) often require response time guarantees as well [52]:

Availability is one metric used to guarantee network and application up-

time, but according to a study conducted by Cahners most business ex-

ecutives rank response time as the second most important service factor

after availability. Sluggish response time is a major problem facing e-

commerce. Potential customers who cannot get through to a Web site

quickly get disgusted and bored, and may even give up on using the Web

for commerce.

More informally, the Engineering and Physical Sciences Research Council (EPSRC)

uses response time quantiles to offer quality of service guarantees to academics apply-

ing for research funding. In acknowledgement letters sent out on receipt of research

grant proposals, it is stated that:

The EPSRC aims to notify 90% of all proposers of the outcome of their

proposals within 26 weeks of receipt.

4 Chapter 1. Introduction

Emergency Services

Response time percentiles are also used by governmental organisations when measur-

ing the effectiveness of emergency services. Indeed, in Ontario, Canada, it is a legal

requirement to report 90th percentile response times for ambulance services [43, 104,

119]:

The 90th Percentile Response Time is a legislated requirement that was

established by the Ministry of Health to be used as a benchmark to mea-

sure the efficiency and effectiveness of a land ambulance service, based

on the 90th Percentile Response Time from 1996 [119].

By way of example, in [119] it is reported that:

In 1996, the 90th Percentile Response Time for the services within Leeds

& Grenville was 17:45 (mm:ss). In the subsequent years, from 1997 to

2000, the ambulance services in Leeds & Grenville were unable to meet

the time established in 1996. However, in 2001, Leeds & Grenville EMS

was able to meet and exceed the 1996 90th Percentile Response Time with

a time of 17:26 (mm:ss).

Similar reporting takes place in Australia [9] and San Francisco [113]. In the UK, the

London Ambulance Service aims to have an ambulance at the scene of 75% percent

of life-threatening incidents within 8 minutes [97] while the National Health Service

aims to see 90% of accident and emergency patients within 4 hours [42].

1.1.2 Performance Modelling

As can be seen from the above examples, it is important to ensure that systems will

meet quality of service targets expressed in terms of response time quantiles. Ideally,

it should be possible to determine whether or not this will be the case at design time.

This can be achieved through the modelling and analysis of the system in question.

Such analysis is usually conducted by capturing the behaviour of the system with a

1.1. Motivation 5

formal model; that is, identifying the possible states the system may be in and the way

in which it can move between these states. The concept of time can be introduced

by associating delays with the state transitions. The result is that a certain amount

of time will be spent in a state before moving to another, and we term this thestate

sojourn time. When the choice of the next state depends only on the current state

and state sojourn times are random numbers sampled from the negative exponential

distribution, we call such a model acontinuous-time Markov chain.

As specifying every state and transition in the state space of a complex model of a

real-life system is infeasible, high-level formalisms such as stochastic Petri nets [15],

stochastic process algebras [75] and queueing networks [78] can be employed. These

permit a succinct description of the model from which a Markov chain can automat-

ically be extracted and then solved for performance measures of interest. From the

equilibrium (steady-state) probability distribution of the model’s underlying Markov

chain, standard resource-based performance measures, such as mean buffer occupancy,

system availability and throughput, andexpectedvalues of various sojourn times can

be obtained. There is a large body of previous work on the efficient calculation of

steady-state probabilities in large Markov chains, including parallel [16, 32, 88] and

disk-based [46, 89, 93] implementations, as well as those which employ implicit state

space representation techniques [38, 47, 74, 94]. Steady-state measures allow the an-

swering of questions such as: “What is the probability that the system will be in a

failure state in the long run?” and “What is the average utilisation of this resource?”.

The focus of this thesis, however, is on the harder problem of calculating full response

time densities in very large Markov models and semi-Markov models (a generalisation

of Markov models in which state sojourn times can have an arbitrary distribution).

As we have seen, the answers to response time questions provide greater insight into

whether or not a system meets its user requirements than steady-state probabilities. In

the context of high-level models, response times can be specified aspassagetimes in

the model’s underlying Markov or semi-Markov chain – that is, the time taken to enter

any one of a set of target states having started from a specified set of source states.

In the past, numerical computation of analytical passage time densities has proved

6 Chapter 1. Introduction

prohibitively expensive except in some Markovian systems with restricted structure

such as overtake-free tree-like queueing networks [68]. However, with the advent of

high-performance parallel computing and the widespread availability of PC clusters,

direct numerical analysis of Markov chains has now become a practical proposition.

There are two main analytical methods for computing first passage time (and hence

response time) densities in Markov chains: those based on Laplace transforms and

their inversion [70] and those based on uniformization [99, 102, 105]. The former has

wider application to semi-Markov processes (with generally-distributed state holding-

times) but is less efficient than uniformization when restricted to Markov chains.

In general, the probability density function of the time taken to move from a set of

source states to a set of target states is calculated by convolving the state-holding time

functions along all possible paths between the two sets of states. To convolve two

functions together directly requires the evaluation of an integral, and the convolution

across a pathn states long requires the evaluation of an(n − 1) dimensional integral.

To perform such a calculation for large values ofn (perhaps in the millions) would

therefore be impractical. Instead, we make use of Laplace transforms, which uniquely

map a real-valued function (e.g. a probability density function) to a function of a com-

plex variable. We do this as we wish to exploit the convolution property of Laplace

transforms, which states that the Laplace transform of the convolution of two func-

tions is the product of the functions’ individual Laplace transforms. Once the Laplace

transform of the passage time measure has been calculated it is possible to retrieve the

corresponding density function using a process known asLaplace transform inversion.

A number of numerical techniques are available to accomplish this.

Although all state holding-times in Markov models are exponentially distributed, this

does not make the direct calculation of their convolutions significantly easier as the

rate parameters of the state holding-time distributions will usually be different for dif-

ferent states. An alternative technique known as uniformization can, however, be em-

ployed. This transforms the model’s underlying continuous-time Markov chain with

different rates out of the states into an equivalent one where all delay rate parameters

are identical. The passage time density across any number of these states can therefore

1.2. Aims and Objectives 7

be calculated easily because the convolution of exponential delays with the same rate

parameter is simply an Erlang distribution.

As semi-Markov processes do not have identically distributed state holding-time func-

tions, uniformization cannot be applied to calculate passage time measures in such

processes. Very little work has been done on the problem of calculating passage time

densities and distributions in semi-Markov models, and what has been done is limited

to applying analytical techniques to models with small state spaces (of the order of103

to 104 states) [64, 98].

1.2 Aims and Objectives

The aims and objectives of this thesis are:

• To develop algorithms for the calculation of passage time densities and quantiles

and transient state distributions in semi-Markov models.

• To investigate techniques for the passage time analysis of Markov and semi-

Markov models with very large state-spaces. We will focus on two methods.

The first is partitioning the state-spaces across a number of processors to conduct

analysis in parallel. The second is an exact aggregation strategy for reducing the

state-spaces of very large models prior to performing analysis.

• To develop a formal language for specifying performance questions on high-

level models.

• To develop parallel tools for the analysis of very large Markov and semi-Markov

which implement our passage time and transient algorithms.

1.3 Contributions

This thesis presents techniques and tools for the extraction of passage time densities,

quantiles and moments from very large Markov and semi-Markov models. The work

8 Chapter 1. Introduction

presented expands the applicability, capacity and specification power of prior work,

which was hitherto focused mainly on the analysis of Markov models.

We extend existing work on the extraction of passage time densities and quantiles

from Markov models to the analysis of Generalised Stochastic Petri Nets (GSPNs) and

Semi-Markov Stochastic Petri Nets (SM-SPNs), the latter being our proposed mod-

elling formalism for the high-level specification of semi-Markov models. The general

approach we take is to compute the Laplace transform of the passage time density by

convolving the Laplace transforms of the state holding-time functions together. This

is then numerically inverted to yield the required passage time measure.

Previous attempts to perform passage time analysis of semi-Markov processes (SMPs)

have foundered on the complexity of maintaining a symbolic representation of the state

holding-time functions under composition which limits the size of models that can be

analysed. We have overcome this by developing a representation scheme based on

the evaluation demands of the Laplace transform inversion algorithms which requires

constant space even when these functions are convolved or added together.

We have devised an iterative algorithm to calculate the Laplace transform of the pas-

sage time quantity of interest, the kernel of which is repeated sparse matrix–vector

multiplication. We have also extended this approach to the efficient calculation of

transient state distributions in SMPs. For very large models, however, it is not possible

to maintain the transition matrix in the memory of a single machine. Consequently,

we take advantage of the combined memory capacity and computational power of a

group of machines to divide the matrix across multiple processors and perform the

calculations in parallel. This requires updated vector elements to be exchanged after

each iteration and, in order for the parallelisation to be efficient, it is vital that the

amount of communication be minimised whilst ensuring that the computational load

is balanced. To achieve this we use hypergraph partitioning (traditionally used in the

VLSI domain). Experimentation shows that this offers significant run-time benefits

over näıve row-striped (linear) partitioning, particularly on machines or clusters with

relatively slow interconnection networks.

An alternative to parallel computation for the analysis of very large models is to at-

1.3. Contributions 9

tempt to reduce the size of the model’s state-space by aggregating states together.

An exact state-level aggregation algorithm for semi-Markov processes (originally pre-

sented in [21]) is described and its behaviour when applied to large models is investi-

gated. As this algorithm operates on a single state at a time it lends itself to a parallel

implementation, and the issues which arise when implementing this are discussed.

As well as specifying high-level models in a formal manner, it is also beneficial to ask

questions about them in a formal way. There is a large body of prior work on the use of

Continuous Stochastic Logic (CSL) to check CTMCs and SMPs for steady-state and

passage time properties [10, 11, 13, 14, 85, 98]. CSL operates at the state-transition

level of the model’s underlying Markov or semi-Markov chain, which requires the

reasoning about paths through the state-space. A more natural mode of expression for

the performance modeller is to pose questions at the level of the high-level model – in

the case of Petri nets, performance queries can be posed more easily in terms of the

number of tokens on places. We therefore propose an extended Continuous Stochastic

Logic (eCSL) which permits the formulation of steady-state, transient or passage time

queries directly at the SM-SPN model level. These queries are then answered either

by traditional steady-state analysis or by application of the iterative passage time or

transient algorithm.

We have implemented three tools based on the algorithms and techniques described

in this thesis. These build on the input language specification, probabilistic state-

space generation and steady-state solution techniques of DNAmaca [87], a steady-state

analyser for Markov chains. The first tool we present, HYDRA (HYpergraph-based

Distributed Response Time Analyser), calculates passage time densities and transient

distributions in large Markov models through the use of uniformization. It employs hy-

pergraph partitioning to permit the efficient parallel analysis of very large state spaces.

Next, we describe SMCA (Semi-Markov Chain Analyser), a semi-Markov extension

of DNAmaca for the steady-state analysis of large semi-Markov chains. Finally, we

present SMARTA (Semi-MArkov Response Time Analyser), which implements our

iterative passage time algorithm for the analysis of very large semi-Markov models.

SMARTA uses numerical Laplace transform inversion to calculate the required pas-

10 Chapter 1. Introduction

sage time measure. It has a distributed architecture with a master process which hands

out work to groups of slaves. Each group of slaves employs the hypergraph partition

of the state graph to carry out its work efficiently in parallel.

In order to demonstrate the capacity and scalability of our implementations, we con-

duct analysis on a number of large Markov and semi-Markov models of real-life sys-

tems. The three Markov models are of a communication protocol, a Flexible Manu-

facturing System and a tree-like queueing network. The first semi-Markov model is

of a distributed electronic voting system with voting booths and central servers, both

of which are subject to random failures. The second is a model of a web-content au-

thoring system, where authors publish material on unreliable web-servers for a pool

of readers to read. Both of the semi-Markov models are specified using the SM-SPN

formalism. We generate a range of state space sizes by altering the initial number of

tokens in the high-level models (corresponding to the number of voters or authors, for

example).

In order to analyse very large models with 10 million states and above in an acceptable

time, the Imperial College Parallel Computing Centre’s Fujitsu AP3000 (60 Ultra-

SPARC 300MHz processors with 256MB RAM interconnected by a 2D wraparound

mesh network with wormhole routing and a peak throughput of 520Mbps) and the

London eScience Centre’s Beowulf cluster (comprised of 64 dual-processor nodes

with Intel 2.0Ghz Xeon processors and 2GB of RAM connected by Myrinet with a

peak throughput of 2Gbps) were used. Thanks to the use of hypergraph partitioning,

the two tools (HYDRA and SMARTA) exhibit good scalability, even on clusters of

commodity workstations.

1.4 Outline

The remainder of this thesis is organised as follows:

Chapter 2 describes the background theory to the work presented in this thesis. The

general topic of stochastic processes is introduced and then three specific ex-

1.4. Outline 11

amples (namely discrete-time and continuous-time Markov chains and semi-

Markov chains) are described in detail. As it is impractical to describe complex

systems with many thousands of states directly with these low-level processes,

a number of high-level modelling formalisms are described from which such

state-transition systems can be generated. The three examples considered are

Petri nets, process algebras and queueing networks. Finally, Laplace transforms

and methods for their numerical inversion are described.

Chapter 3 begins by presenting prior work on the extraction of passage time densities

and quantiles from Markov models. Two methods are presented: one based on

the use of Laplace transforms and the other making use of uniformization as de-

scribed above. The two techniques are compared with each other and also with

simulation in terms of their run-time performance. We have extended this work

to facilitate the extraction of passage time densities from Generalised Stochastic

Petri Nets (GSPNs), and our modifications to the previously described Laplace

transform method are presented here. A method for the approximation of pas-

sage time densities from their moments is also presented and the extraction of

passage time measures from stochastic process algebra models is demonstrated.

Chapter 4 presents an iterative algorithm for the calculation of passage time den-

sities and quantiles in semi-Markov models. This is achieved by calculating

and numerically inverting the Laplace transform of the passage time quantity

of interest. Using the inversion algorithms described in Chapter 2, it is pos-

sible to determine in advance at which values of the complex parameters the

Laplace transform of the passage time density or distribution function must be

computed in order to perform the inversion. This makes it possible to adopt

an efficient storage scheme for the generally distributed state holding-time func-

tions which occur in semi-Markov models. These are convolved together, across

all paths leading from source to target states, to calculate the passage time den-

sity. By storing their values, and these values of the convolutions, only at the

previously-identifieds-points, enough information to perform the Laplace trans-

form is available without the complexity of attempting to maintain a full sym-

12 Chapter 1. Introduction

bolic representation. We present the theoretical background to the iterative al-

gorithm and then describe its implementation. Empirical complexity results are

also presented. We also describe an extension of the iterative algorithm to the

calculation of transient state distributions in semi-Markov models which im-

proves on the computational effort of existing methods. Finally, we describe

the calculation of the moments of passage time quantities in semi-Markov pro-

cesses.

Chapter 5 describes a number of techniques for analysing very large models. A major

difficulty experienced in such analysis is the amount of memory required to

store the model’s transition matrix. Two ways of surmounting this problem are

presented. The first is to partition the matrix across a number of processors

and conduct the calculations in parallel; a number of schemes for performing

this partitioning are described. The most effective is hypergraph partitioning,

which symmetrically permutes the rows and columns of the matrix in such a way

that the amount of communication required between the processors involved

in minimised whilst computational load is balanced. Experimental results are

provided which demonstrate its advantages over direct row-striped partitioning.

The second method is to reduce the state-space of the model (and hence the

dimension of the transition matrix) by aggregating states. An exact aggregation

algorithm for semi-Markov processes is described and a number of different

state-selection criteria are evaluated. The issues involved in implementing this

algorithm in parallel are also considered.

Chapter 6 describes the implementation of three tools for the steady-state, passage

time and transient analysis of very large Markov and semi-Markov models. The

Markovian DNAmaca steady-state analyser has been extended with HYDRA

(HYpergraph-based Distributed Response-time Analyser), which permits the

calculation of passage time densities and transient distributions in very large

Markov models through the use of uniformization and hypergraph partition-

ing. We then describe SMCA (Semi-Markov Chain Analyser), a semi-Markov

steady-state analyser also based on DNAmaca. This required alterations to the

1.5. Statement of Originality and Publications 13

input language, state generator and steady-state solver in order to deal with

generally-distributed transition firing delays. Finally, SMARTA (Semi-MArkov

Response Time Analyser), a scalable parallel pipeline which implements the

iterative algorithms of Chapter 4 for passage time and transient analysis, is

presented. This builds upon the semi-Markov extension to DNAmaca and the

hypergraph-partitioned sparse matrix–vector computations performed by HY-

DRA to analyse very large semi-Markov models.

Chapter 7 presents a formal language for performance queries using an extended

Continuous Stochastic Logic (eCSL). We begin by describing existing Continu-

ous Stochastic Logic and then highlight the areas in which it can be enhanced.

We add the ability to reason about multiple start states and transient distribu-

tions to eCSL, whilst simplifying the expression of passage time measures. We

illustrate our enhancements with a number of example formulae.

Chapter 8 presents numerical results produced using the tools described in Chapter 6.

We calculate passage time results for Markov chains with up to 10.8 million

states using HYDRA. Transient and passage time density and quantile results

produced using SMARTA are displayed for two very large semi-Markov models

(with up to 10.9 million and 15.4 million states respectively).

Chapter 9 concludes the thesis by summarising and evaluating the achievements pre-

sented and highlighting opportunities for future work.

Appendix A describes the five models used as examples throughout the body of the

thesis.

Appendix B describes the aggregation algorithm presented in Chapter 5 more fully.

1.5 Statement of Originality and Publications

I declare that this thesis was composed by myself, and that the work that it presents is

my own except where otherwise stated.

14 Chapter 1. Introduction

The following publications arose from work conducted during the course of this PhD.

The chapters in this thesis where material from them appears are indicated below.

• Journal of Parallel and Distributed Computing (JPDC) [50] andInterna-

tional Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA 2003) [49] consider the uniformization method for pas-

sage time density calculation in Markov models and describes the use of hyper-

graphs as a means to implement the calculations efficiently in parallel. Material

from these papers appears in Chapters 3, 5 and 8.

• Workshop On Software and Performance 2002(WOSP 2002) [48] presents

an extension of earlier work on the use of Laplace transforms to calculate pas-

sage time densities in Markov models [70] to cover Generalised Stochastic Petri

Nets. The section in Chapter 3 on passage times in GSPNs is taken from this

paper.

• Performance Modeling, Evaluation, and Optimization of Parallel and Dis-

tributed Systems(PMEO/PDS 2003) [24] presents an iterative algorithm for the

calculation of passage time densities and quantiles in semi-Markov processes

(SMPs). This algorithm makes use of Laplace transforms and their inversion.

Chapter 4 of this thesis presents material from this paper. An extended version

of this paper presenting the efficient transient state distribution calculation al-

gorithm of Section 4.4 has been submitted toFuture Generation Computer

Systems[26]. The paper presented atInternational Conference on Numerical

Solution of Markov Chains (NSMC 2003) [28] extends the PMEO/PDS work

with an efficient parallel implementation using hypergraph partitioning. It also

considers the convergence behaviour of the iterative algorithm. The latter aspect

was joint work with Jeremy Bradley and Helen Wilson. Material from these pa-

pers appears in Chapters 4 and 6, and some of the results in Chapter 8 are also

presented in this paper. This paper was selected to appear in a special issue of

theJournal of Linear Algebra and Applications [29].

• International Workshop on Petri Nets and Performance Models(PNPM

1.6. Notation 15

2003) [25] presents Semi-Markov Stochastic Petri Nets (SM-SPNs), a high-level

formalism from which SMPs can be derived, and describes an extended Contin-

uous Stochastic Logic (eCSL) in which performance questions can asked. Ma-

terial from this paper appears here in Chapters 2 and 7. This was joint work with

Jeremy Bradley.

• Symposium on Performance Evaluation of Computer and Telecommunica-

tion Systems(SPECTS 2003) [27] considers how the aggregation algorithm for

SMPs presented in [21] scales to large systems and investigates the effect dif-

ferent state selection strategies have on its computational complexity. This was

joint work with Jeremy Bradley. Work from this paper is presented in Chapter 5.

• International Symposium on Modeling, Analysis and Simulation of Com-

puter and Telecommunications Systems(MASCOTS 2003) [22],Workshop

on Software and Performance 2004(WOSP 2004) [6] andUK Performance

Engineering Workshop 2003(UKPEW 2003) [23] consider the extraction of

passage time measures from stochastic process algebra models. Material from

these papers appears in Chapter 3.

• UK Performance Engineering Workshop 2002(UKPEW 2002) [51] discusses

the use of graph-partitioning in an asynchronous parallel steady-state solver for

Markov chains. Material from this paper appears in Chapter 6.

• Workshop on Software and Performance 2004(WOSP 2004) [8] considers

ways in which passage time densities can be approximated from their moments.

This was joint work with M.Sc. student Susanna Au-Yeung. Material from this

paper appears in Chapter 3.

1.6 Notation

A function f(x) has Laplace transform denotedf ∗(s), wheres is a complex variable.

The Laplace transform of a functionf(x) may also be denotedL{f(x)}, while the

16 Chapter 1. Introduction

corresponding inverse Laplace transform off ∗(s) is denotedL−1{f ∗(s)}. The real

part ofs is denotedRe(s) while the imaginary part is referred to asIm(s).

If χ is a random variable then its average (expected) value is denotedE[χ].

Matrices are denoted by bold-face capital letters, while the elements of a matrix are

addressed as the corresponding lower-case letter with a subscript denoting the(x, y)

coordinate of the desired element;aij is therefore the(i, j)th element of matrixA. 2D

blocks of the matrix are denotedAij. Vectors are denoted by lower-case bold letters

(either Roman or Greek), while individual vector elements are not written in bold type

and are addressed with a subscript. Thus,πn is thenth element of the vectorπ.

f ′(x) is defined as the first derivative of a functionf(x), and similarlyf ′′(x) is that

function’s second derivative. Thenth derivative off(x) is denoted byf (n)′(x). We

denote the Laplace transform of a passage time density from statei into a set of target

states~j asLi~j(s), and thenth moment of this asMi~j(n). Similarly, thenth moment of

the density of the passage time for a single transition from statei to statek is denoted

mik(n).

We also use shorthand notation to refer to a number of probability distributions through-

out this thesis. This is presented in Table 1.2.

1.6. Notation 17

Distribution Description PDF CDF

exp(λ) Exponential with λe−λt 1− e−λt

parameterλ

uni(a, b) Uniform with

parametersa andb

1
b−a

if a ≤ t ≤ b

0 elsewhere

0 if t < a

t−a
b−a

if a ≤ t ≤ b

1 if t > b

erlang(λ, n) n-stage Erlang λnt(n−1)e−λt

(n−1)!
1− e−λt

∑n−1
k=0

(λt)k

k!

with parameterλ

gamma(λ, n) Gamma with

parametersλ andn

λn

Γ(n)
t(n−1)e−λt

where

Γ(n) =
∫∞
0

t(n−1)e−t dt

No closed form

unlessn is integer

in which case as

erlang(λ, n)

det(d) Deterministic with

delayd

∞ if t = d

0 elsewhere

1 for t ≥ d

0 elsewhere

det(0) Immediate ∞ if t = 0

0 elsewhere

1 for t ≥ 0

0 elsewhere

Table 1.2.Some common probability density and cumulative distribution functions.

Chapter 2

Background

This chapter presents the background theory underlying the work described in this

thesis. A general overview of stochastic processes is provided, before considering

Markov and semi-Markov chains in more detail. This is followed by a discussion of

high-level modelling formalisms from which Markov or semi-Markov chains can be

automatically generated. These are grouped under three headings: stochastic Petri

Nets (SPNs), stochastic process algebras (SPAs) and queueing networks. We consider

both Markovian [15] and semi-Markovian Petri nets [25, 55, 60, 63, 64, 96, 109],

while our discussion of SPAs and queueing networks is confined entirely to Markovian

examples. We describe one particular SPA in detail, namely Performance Enhanced

Process Algebra (PEPA) [75]. This chapter concludes by describing the theory of

Laplace transforms as it relates to the calculation of passage time densities, and also

details a number of numerical methods by which they can be inverted.

2.1 Stochastic Processes

At the lowest level, the performance modelling of a system can be accomplished by

identifying all possible configurations (orstates) that the system can enter and de-

scribing the ways in which the system can move between those states. This is termed

thestate-transitionlevel behaviour of the model, and the changes in state as time pro-

gresses describe astochastic process. In this chapter, we focus on those stochastic pro-

18

2.1. Stochastic Processes 19

cesses which belong to the class known asMarkov processes, specifically discrete-time

Markov chains (DTMCs), continuous-time Markov chains (CTMCs) and the more

general semi-Markov processes (SMPs).

Consider a random variableχ which takes on different values at different timest. The

sequence of random variablesχ(t) is said to be a stochastic process. The different

values which members of the sequenceχ(t) can take (also referred to asstates) all

belong to the same set known as thestate-spaceof χ(t).

A stochastic process can therefore be classified by the nature of its state-space and

of its time parameter. If the values in the state-space ofχ(t) are finite or countably

infinite, then the stochastic process is said to have adiscrete state-space(and may

also be referred to as achain). Otherwise, the state-space is said to becontinuous.

Similarly, if the times at whichχ(t) is observed are also countable, the process is

said to be adiscrete timeprocess. Otherwise, the process is said to be acontinuous

timeprocess. In this thesis, all stochastic processes considered have discrete and finite

state-spaces, and we focus mainly on those which evolve in continuous time (although

some consideration is also given to the solution of discrete time chains).

A Markovprocess is a stochastic process in which theMarkov propertyholds. Given

thatχ(t) = xt indicates that the state of the processχ(t) at timet is xt, this property

stipulates that:

IP
(
χ(t) = x | χ(tn) = xn, χ(tn−1) = xn−1, . . . , χ(t0) = x0

)
= IP

(
χ(t) = x | χ(tn) = xn

)

t > tn > tn−1 > . . . > t0

That is, the future evolution of the system depends only on the current state and not on

any prior states.

Definition 2.1 A Markov process is said to behomogenousif it is invariant to shifts

in time, i.e. [15]:

IP
(
χ(t + s) = x | χ(tn + s) = xn

)
= IP

(
χ(t) = x | χ(tn) = xn

)

20 Chapter 2. Background

2.1.1 Discrete-Time Markov Chains

This section considers Markov processes where state changes are observed at discrete

time intervals and with discrete state-spaces; we call these discrete-time Markov chains

(DTMCs).

Definition 2.2 The stochastic processχn, n = 0, 1, 2, . . . is a DTMC if, for n ∈
IN0 [15]:

IP(χn+1 = xn+1 | χn = xn, χn−1 = xn−1, . . . , χ0 = x0) = IP(χn+1 = xn+1 | χn = xn)

This describes the one-step transition probabilities of a DTMC – that is, the probability

that the DTMC moves from statexn to statexn+1 in a single transition (orstep). These

transition probabilities can be expressed as a matrixP, the elementspij of which are

defined as:

pij = IP(χn+1 = j | χn = i) (2.1)

given the restriction that0 ≤ pij ≤ 1 ∀i, j and
∑

j pij = 1 ∀i.

Definition 2.3 A Markov chain isirreducible if every state is reachable from every

other state in one or more transitions. If this is not the case, the chain is said to be

reducible[15].

The states in a Markov chain can be distinguished as being eitherrecurrentor tran-

sient. If f
(m)
j is the probability of leaving statej and then first returning to it inm

transitions, it follows that the probability of ever returning to statej is:

fj =
∞∑

m=1

f
(m)
j

If fj = 1 then it is certain that we will return to statej at some point in the future and

soj is said to berecurrent. Otherwise, statej is transient.

We can reason about the periodicity of a DTMC as follows:

Definition 2.4 If a Markov chain can return to statej only at stepsη, 2η, 3η, . . . for

η ≥ 2, then statej is periodic with periodη. Otherwise, statej is aperiodic[15].

2.1. Stochastic Processes 21

From the probability of returning to a statej in m steps,f (m)
j , the mean recurrence

timeMj of statej (the average number of steps needed to return toj for the first time

after leaving it) is defined as:

Mj =
∞∑

m=1

mf
(m)
j

A statej is classified asrecurrent nullif Mj = ∞, or asrecurrent nonnullif not.

For DTMCs, we define the probability of being in statej at timem having started in

statei at time 0, denotedπ(m)
ij , as:

π
(m)
ij = IP(χm = j | χ0 = i)

A typical performance measure of interest is the probability that a DTMC is in some

state (or set of states) at an arbitrary point in the future, irrespective of the state in which

it was initially. This is known as asteady-stateprobability, and the set of the steady-

state probabilities of all states in a DTMC is referred to as thelimiting or steady-state

probability distribution.

Definition 2.5 Thelimiting or steady-state probability distribution{πj} of a DTMC is

defined as [15]:

πj = lim
m→∞

π
(m)
ij

Definition 2.6 Thestationary probability distribution[117] is defined in terms ofP,

the one-step transition probability matrix of a DTMC, and the vectorz whose elements

zi denote the probability of being in statei. The vectorz is a probability distribution;

i.e.:

zi ∈ IR, 0 ≤ zi ≤ 1 and
∑

i

zi = 1

z is said to be a stationary distribution if and only ifzP = z.

Theorem 2.1 In an irreducible and aperiodic DTMC, the steady-state probabilities

{πj} always exist and are independent of the initial state probability distribution. Fur-

thermore, one of the following two situations exists [15]:

22 Chapter 2. Background

• all states are transient or all states are recurrent null. In this case,πj = 0 ∀j
and no stationary distribution exists. For this condition to occur the state-space

must be infinite.

• all states are recurrent nonnull. In this case,πj > 0 ∀j and{πj} is given by the

stationary probability distribution where:

πj =
1

Mj

For a finite DTMC withN states, the values ofπj are uniquely determined by

the equations:
∑

i

πipij = πj subject to
∑

i

πi = 1

Or in matrix–vector notation, whereπ is a vector of probabilities{π1, π2, . . . πN}
and the matrixP has elementspij as defined in Eq. 2.1:

π = πP

The fact that a DTMC has a stationary probability distribution does not imply that

it has a steady-state probability distribution. For example, the irreducible periodic

DTMC with one-step transition matrix:

 0 1

1 0

 (2.2)

has a stationary distribution(0.5, 0.5) but no steady-state probability distribution.

A finite, irreducible and recurrent nonnull DTMC is termed anergodicchain.

2.1.2 Continuous-Time Markov Chains

There also exists a family of Markov processes with discrete state spaces but whose

transitions can occur at arbitrary points in time; we call these continuous-time Markov

chains (CTMCs). The definitions above for homogeneity, aperiodicity and irreducibil-

ity in DTMCs also hold for CTMCs. An homogenousN -state{1, 2, . . . , N} CTMC

has state at timet denotedχ(t). Its evolution is described by anN × N generator

2.1. Stochastic Processes 23

matrix Q, whereqij is the infinitesimal rate of moving from statei to statej (i 6= j),

andqii = −∑
i6=j qij.

The Markov property imposes the restriction on the distribution of the sojourn times

in states in a CTMC that they must bememoryless– the future evolution of the system

therefore does not depend on the evolution of the system up until the current state, nor

does it depend on how long has already been spent in the current state. This means

that the sojourn timeν in any state must satisfy:

IP(ν ≥ s + t | ν ≥ t) = IP(ν ≥ s) (2.3)

A consequence of Eq. 2.3 is that all sojourn times in a CTMC must be exponentially

distributed (see [15] for a proof that this is the only continuous distribution function

which satisfies this condition). The rate out of statei, and therefore the parameter of

the sojourn time distribution, isµi and is equal to the sum of all rates out of statei,

that isµi = −qii. This means that the density function of the sojourn time in statei is

fi(t) = µi e−µit and the average sojourn time in statei is µ−1
i .

We define the steady-state distribution for a CTMC in a similar manner as for a DTMC.

Once again, we denote the set of steady-state probabilities as{πj}.

Definition 2.7 In a CTMC which has all states recurrent nonnull and which is irre-

ducible and homogenous, thelimiting or steady-state probability distribution{πj} is

given by [15]:

πj = lim
t→∞

IP(χ(t) = j | χ(0) = i)

Theorem 2.2 For an finite, irreducible and homogenous CTMC, the steady-state prob-

abilities {πj} always exist and are independent of the initial state distribution. They

are uniquely given by the solution of the equations:

−qjjπj +
∑

k 6=j

qkjπk = 0 subject to
∑

i

πi = 1

Again, this can be expressed in matrix vector form (in terms of the vectorπ with

elements{π1, π2, . . . , πN} and the matrixQ defined above) as:

πQ = 0

24 Chapter 2. Background

A CTMC also has an embedded discrete-time Markov chain (EMC) which describes

the behaviour of the chain at state-transition instants, that is to say the probability that

the next state isj given that the current state isi. The EMC of a CTMC has a one-step

N ×N transition matrixP wherepij = qij/− qii for i 6= j andpij = 0 for i = j.

2.1.3 Semi-Markov Processes

Semi-Markov Processes (SMPs) are an extension of Markov processes which allow

for generally distributed sojourn times. Although the memoryless property no longer

holds for state sojourn times, at transition instants SMPs still behave in the same way

as Markov processes (that is to say, the choice of the next state is based only on the

current state) and so share some of their analytical tractability.

Consider a Markov renewal process{(χn, Tn) : n ≥ 0} whereTn is the time of the

nth transition (T0 = 0) andχn ∈ S is the state at thenth transition. Let the kernel of

this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process,{Z(t), t ≥ 0}, defined by the

kernelR, is related to the Markov renewal process by:

Z(t) = χ
N(t)

whereN(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have taken

place by timet. ThusZ(t) represents the state of the system at timet. We consider

only time-homogenous SMPs in whichR(n, i, j, t) is independent ofn:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for anyn ≥ 0

= pijHij(t)

wherepij = IP(χn+1 = j | χn = i) is the state transition probability between states

i and j andHij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i), is the sojourn time

distribution in statei when the next state isj. An SMP can therefore be characterised

by two matricesP andH with elementspij andHij respectively.

2.1. Stochastic Processes 25

Semi-Markov processes can be analysed for steady-state performance metrics in the

same manner as DTMCs and CTMCs. To do this, we need to know the steady-state

probabilities of the SMP’s EMC and the average time spent in each state. The first of

these can be calculated by solvingπ = πP, as in the case of the DTMC. The average

time in statei, E[τi], is the weighted sum of the averages of the sojourn time in the

statei when going to statej, E[τij], for all successor statesj of i, i.e.:

E[τi] =
∑

j

pijE[τij]

The steady-state probability of being in statei of the SMP is then [15]:

φi =
πiE[τi]∑N

m=1 πmE[τm]
(2.4)

That is, the probability of finding the SMP in statei is the probability of its EMC

being in statei multiplied by the average amount of time the SMP spends in statei,

normalised over the mean total time spent in all of the states of the SMP.

2.1.4 Classical Iterative Techniques for Steady-state Analysis

There are a number of well-known iterative techniques for computing steady-state

probabilities in Markov chains which we will outline very briefly here. These tech-

niques are used for solving linear systems of the formAx = b; in the case of CTMC

analysis,A = QT , x = πT andb = 0 (a vector with all elements being 0), where the

superscriptT denotes the transpose operator.

Jacobi’s Method is the simplest iterative solution technique:

x
(k+1)
i =

1

aii

(bi −
∑

j 6=i

aijx
(k)
j)

wherek ≥ 0 denotes the iteration number andx(0) is an initial guess for the

solution vector.

Gauss-Seidelimproves on Jacobi by using newxi iterates as soon as they are com-

puted:

x
(k+1)
i =

bi −
∑

j<i aijx
(k+1)
j −∑

j>i aijx
(k)
j

aii

26 Chapter 2. Background

Successive Over-Relaxation (SOR)accelerates the convergence of the Gauss-Seidel

technique by computing iterates as a weighted average of the previous iterate

and its newly computed value:

x
(k+1)
i = ωx̃

(k+1)
i + (1− ω)x

(k)
i

wherex̃
(k+1)
i is the ith element of the newly computed solution vector (calcu-

lated using the Gauss-Seidel technique),x
(k)
i is theith element of the solution

vector at the end of the previous iteration and0 < ω < 2.

2.2 High-level Modelling Formalisms

Specifying every state and state-transition in the state-space of even a moderately

complex Markov or semi-Markov chain with perhaps hundreds of states is infeasi-

ble. Instead, high-level formalisms can be employed to describe models of systems

succinctly; from these the underlying stochastic processes can be extracted automat-

ically and mapped onto a Markov or semi-Markov chain. We describe three such

formalisms: stochastic Petri nets, stochastic process algebras and queueing networks.

2.2.1 Petri Nets

Petri nets were invented by Carl Adam Petri in 1962 as a simple graphical formal-

ism for describing and reasoning about concurrent systems [15]. They have been used

to model a variety of such systems, including communication protocols, parallel pro-

grams, multiprocessor memory caches and distributed databases [88]. Petri initially

described Place-Transition nets but numerous other classes of nets have since been

defined to allow more for sophisticated reasoning.

The simplest form of Petri net, a Place-Transition net, is formally defined as [15]:

Definition 2.8

A Place-Transition net is a 5-tuplePN = (P, T, I−, I+,M0) where:

2.2. High-level Modelling Formalisms 27

p1

p2

t1

p1

p2

t1

Fig. 2.1.An example Place-Transition net (left) and the result of firing transitiont1 (right).

• P = {p1, . . . , pn} is a finite and non-empty set of places.

• T = {t1, . . . , tm} is a finite and non-empty set of transitions.

• P ∩ T = ∅.

• I−, I+ : P × T → IN0 are the backward and forward incidence functions,

respectively. IfI−(p, t) > 0, an arc leads from placep to transition t, and if

I+(p, t) > 0 then an arc leads from transitiont to placep.

• M0 : P → IN0 is the initial marking defining the initial number of tokens on

every place.

A marking is a vector of integers representing the number of tokens on each place in

a Petri net. The set of all markings that are reachable from the initial markingM0 is

known as thestate-spaceor reachability setof the Petri net, and is denoted byR(M0).

The connections between markings in the reachability set form thereachability graph.

If the firing of a transition that is enabled in markingMi results in markingMj, then

the reachability graph contains a directed arc from markingMi to markingMj. Place-

Transition nets can be used to reason about qualitative measures such as correctness;

for example, if it is possible to reach a marking in which no transitions are enabled

then the system candeadlock.

The dynamic behaviour of Petri nets centres around the enabling and firing of tran-

sitions, which causes tokens to be created and destroyed on places. A transition is

28 Chapter 2. Background

enabled when there are one or more tokens on each of its input places. When that

transition fires one or more tokens are destroyed on each of these input places and

one or more tokens are created on each of the transition’s output places. The exact

number of tokens required to enable a transition and the number of tokens created and

destroyed by its firing are specified by the backwards and forwards incidence functions

respectively.

In the graphical representation of Petri nets, places are represented as circles, transi-

tions as rectangles and tokens as small, filled circles on the places. Consider the simple

Place-Transition net on the left in Fig. 2.1. Here, placep1 is an input place to transition

t1, while placep2 is an output place oft1; note thatt1 is enabled as there is a token

on p1. Whent1 fires, the token is destroyed onp1 and another is created onp2 – the

marking of the net after this occurs is shown on the right of Fig. 2.1.

The formal definition of the enabling and firing rules is [15]:

Definition 2.9 For a Place-Transition netPN = (P, T, I−, I+, M0):

• Themarkingof the net is a functionM : P 7→ IN0, whereM(p) denotes the

number of tokens on placep.

• A transitiont ∈ T is enabledin markingM , denoted byM [t >, if and only if

M(p) ≥ I−(p, t), ∀p ∈ P .

• A transitiont ∈ T which is enabled in markingM may fire, resulting in a new

markingM ′ such that

M ′(p) = M(p)− I−(p, t) + I+(p, t), ∀p ∈ P

This is denotedM [t > M ′ and M ′ is said to bedirectly reachablefrom M ,

writtenM → M ′.

2.2.2 Stochastic Petri Nets

Stochastic Petri Nets are timed extensions of Place-Transition nets where a random

exponentially-distributed firing delay is associated with each transition. This means

2.2. High-level Modelling Formalisms 29

that the underlying reachability graph is isomorphic to a CTMC. This permits the

analysis of models for quantitative performance measures through the analysis of the

CTMC, for example the probability of being in a certain set of markings either at

equilibrium (steady-state) or at some point in time (transient analysis), or the time to

transit between two sets of markings (passage times).

Formally, an SPN is defined as [15]:

Definition 2.10

A Stochastic Petri Net is a tupleSPN = (PN, Λ) where:

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net.

• Λ = {λ1, . . . , λn} is the set of, possibly marking dependent, transition rates.

Transitionti has associated rateλi.

When n transitionst1, . . . , tn with corresponding ratesλ1, . . . , λn are enabled in a

given marking, the probability thatti fires is given byλi/
∑n

k=1 λk [15]. The so-

journ time in that marking is then an exponentially-distributed random number with

the sum of the rates of the enabled transitions as its parameter, i.e. the rate out of

statei is µi =
∑n

k=1 λk. This is because multiple simultaneously-enabled transitions

can be thought of as “racing”, and so the one which fires is the one which finishes

first – its exponentially-distributed delay must be the lowest of all the delays of the

enabled transitions. It is straightforward to show that the minimum of two indepen-

dent exponentially-distributed random numbers with parametersλ1 andλ2 is itself an

exponentially-distributed random number with rate parameter(λ1 + λ2) [15].

We further definepij to be the probability thatj is the next marking entered after

markingi, µ−1
i to be the mean sojourn time in markingi andqij = µipij; i.e. qij is the

instantaneous transition rate into markingj from markingi.

2.2.3 Generalised Stochastic Petri Nets

Generalised Stochastic Petri Nets [5] are timed extensions of Place-Transition nets

with two types of transitions:immediatetransitions andtimed transitions. Once en-

30 Chapter 2. Background

p1

p3

p4

t2 (3r)t1 (r)

t3 t4 (2r)

p2

p5
t5 (v)

Fig. 2.2.An example Generalised Stochastic Petri Net (GSPN) [48].

abled, immediate transitions fire in zero time, while timed transitions fire after an

exponentially-distributed firing delay. Firing of immediate transitions has priority over

the firing of timed transitions. The formal definition of a GSPN is as follows [15]:

Definition 2.11

A Generalised Stochastic Petri Net is a 4-tupleGSPN = (PN, T1, T2, C) where:

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net.

• T1 ⊆ T is the set of timed transitions,T1 6= ∅,

• T2 ⊂ T denotes the set of immediate transitions,T1 ∩ T2 = ∅, T = T1 ∪ T2

• C = (c1, . . . , c|T |) is an array whose entryci is either†

– a (possibly marking dependent)rate ∈ IR+ of an exponential distribution

specifying the firing delay, when transitionti is a timed transition (ti ∈ T1)

or

– a (possibly marking dependent)weight∈ IR+ specifying the relative firing

frequency, when transitionti is an immediate transition, (ti ∈ T2)

†Note that we have altered the notation from [15] slightly to avoid confusion between the GSPN

probabilistic weight vector, the entries of which depend on the type of transition with which they are

associated, and the SM-SPN transition weight function defined below.

2.2. High-level Modelling Formalisms 31

The reachability graph of a GSPN contains two types of marking. Avanishingmark-

ing is one in which an immediate transition is enabled and the sojourn time in such

markings is zero. Atangiblemarking is one which enables only timed transitions and

the sojourn time in such markings is exponentially distributed with the sum of the

rates out of the marking as its parameter (as for SPNs). We denote the set of reachable

vanishing markings byV and the set of reachable tangible markings byT .

In the case where only timed transitions are enabled, firing is conducted in exactly

the same manner as for SPNs. Whenn immediate transitionst1, . . . , tn with weights

c1, . . . , cn are enabled, the probability ofti firing is given byci/
∑n

k=1 ck [88]. As

with SPNs, we definepij to be the probability thatj is the next marking entered after

markingi, and, fori ∈ T , µ−1
i to be the mean sojourn time in markingi andqij =

µipij; i.e. qij is the instantaneous transition rate into markingj from markingi.

The stochastic process described by a GSPN’s reachability graph is Markovian ifV =

∅ and semi-Markovian otherwise. It is possible, however, to reduce the reachability

graph of a GSPN containing vanishing states to one which is Markovian by using

vanishing-state elimination techniques [40, 87].

An example GSPN is shown in Fig. 2.2. The main difference to note over the graphical

representation of SPNs is that we are required to distinguish between immediate and

timed transitions. Immediate transitions are therefore drawn as filled rectangles (so

transitiont3 is the only immediate transitions in the GSPN of Fig. 2.2) while timed

transitions are empty rectangles.

2.2.4 Semi-Markov Stochastic Petri Nets

As described above, SPNs and GSPNs (with vanishing states eliminated) have under-

lying reachability graphs which are isomorphic to CTMCs. It is also possible, how-

ever, to generate a semi-Markov process from a stochastic Petri net which does not

have exponentially-distributed firing delays on its transitions. Indeed, since 1984 there

have been a number of attempts to define non-Markovian stochastic Petri nets [55, 60,

63, 64, 96, 109]. ESPNs [55] were the first proposal for a non-Markovian stochastic

32 Chapter 2. Background

Petri net formalism. Here, general distributions are allowed on transition firings and

structural restrictions are imposed on the Petri net to ensure that either a Markov or

semi-Markov process is derived. Classes of transitions help to define the structural

restrictions: a transition isexclusiveif, whenever it is enabled, no other transition

is enabled; a transition iscompetitiveif it is non-exclusive and its firing both inter-

rupts and disables all other enabled transitions; a transition isconcurrentif it is non-

exclusive and its firing does not disable all other enabled transitions. It is established

that an SMP can only be generated from an ESPN if transitions with general (GEN)

firing-time distributions are constrained to be exclusive. Markovian transitions (with

exponentially-distributed firing times), on the other hand, can be both concurrently and

competitively enabled.

When more than one GEN transition is enabled [96, 109], then issues ofscheduling

policiesfor residual pre-empted transition times need to be considered. In [60] three

main scheduling policies for pre-empted processes in Markov Regenerative SPNs are

presented:

pre-emptive resume (prs) the original firing-time distribution sample is remembered

and work done (time elapsed) is conserved for when the transition is next en-

abled,

pre-emptive restart identical (pri) the original distribution sample is remembered,

but work done is lost and the transition firing delay starts from 0 when it is next

enabled,

pre-emptive restart different (prd) the original distribution sample is forgotten, work

done is discarded, and when the transition is next enabled, the transition firing

delay is resampled and starts from 0.

The motivation behind SM-SPNs (developed as part of joint work with Jeremy Bradley

and others [24, 25]) is as a specification formalism and higher-level abstraction for

semi-Markov models. It is important to note that SM-SPNs do not try to tackle the

issue of concurrently enabled GEN transitions in the most general case. If more that

2.2. High-level Modelling Formalisms 33

one GEN transition is enabled then a probabilistic choice is used to determine which

will be fired. Pre-empted GEN transition use aprd schedule if they later become re-

enabled. This approach is correctly described in [109] as not being a solution to the

more complex issue of properly concurrently enabled GEN transitions, but is merely

a way of specifying a different type of model – a semi-Markov model where GEN

transitions are essentially forced to be exclusive. Where concurrently enabled GEN

transitions do not occur then proper concurrent and competitive transition behaviour

is catered for with fullprsscheduling for pre-empted transitions.

Semi-Markov stochastic Petri nets [24, 25] are extensions of GSPNs [5] which sup-

port arbitrary marking-dependent holding-time distributions and generate an under-

lying semi-Markov process rather than a Markov process. An SM-SPN is defined

formally as follows:

Definition 2.12

An SM-SPN is a 4-tuple,(PN,P ,W ,D), where:

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net.P is the set of

places,T is the set of transitions,I+/− are the forward and backward incidence

functions describing the connections between places and transitions andM0 is

the initial marking.

• P : T ×M→ IN0, denotedpt(m), is a marking-dependent priority function for

a transition.

• W : T ×M → IR+, denotedwt(m), is a marking-dependent weight function

for a transition, to allow implementation of probabilistic choice.

• D : T ×M→ (IR+ → [0, 1]), denoteddt(m), is a marking-dependent cumula-

tive distribution function for the firing-time of a transition.

In the aboveM is the set of all markings for a given net. Further, we define the

following net-enabling functions:

Definition 2.13

34 Chapter 2. Background

• EN : M→ P (T), a function that specifies net-enabled transitions from a given

marking.

• EP : M → P (T), a function that specifies priority-enabled transitions from a

given marking.

The net-enabling functionEN is defined in the usual way for standard Petri nets: if

all preceding places have occupying tokens then a transition is net-enabled. The more

stringent priority-enabling functionEP (m) is defined for a given markingm which

selects only those net-enabled transitions that have the highest priority, i.e.:

EP (m) = {t ∈ EN(m) : pt(m) = max{pt′(m) : t′ ∈ EN(m)}}

For a given priority-enabled transition,t ∈ EP (m), the probability that it will be the

one that actually fires (after a delay sampled from its firing distributiondt(m)) is a

probabilistic choice based on the relative weights of all enabled transitions:

IP(t ∈ EP (m) fires) =
wt(m)∑

t′∈EP (m) wt′(m)

Note that the choice of which priority-enabled transition is fired in any given mark-

ing is made by a probabilistic selection based on transition weights, and is not a race

condition based on finding the minimum of samples extracted from firing time distri-

butions. This mechanism enables the underlying reachability graph of the SM-SPN to

be mapped directly onto a semi-Markov chain.

To illustrate this enabling and firing strategy, Fig. 2.3 shows an enabled pair of GEN

transitions in an SM-SPN. Transitiont1 has a weight of 1.5, a priority of 1 and a

gamma(1.2, 2.3) firing distribution, whilet2 has a weight of 1.0, a priority of 1 and

adet(0.01) firing distribution. Graphically, each transition is annotated with a 4-tuple

specifying the transition name, weight, priority and Laplace transform of its firing

time distribution. The weights are used to select which GEN transition will fire: in

this caset1 will be selected to fire with probability1.5/(1.0 + 1.5) = 0.6 and p2

with probability0.4. After a delay sampled from the selected transition’s firing-time

distribution, the probabilistic selection takes place again (for the remaining token on

p1); this is followed by another sampled delay.

2.2. High-level Modelling Formalisms 35

p2

(t2, 1.0, 1, det(0.01,s)) p3

p1

(t1, 1.5, 1, gamma(1.2,2.3,s))

Fig. 2.3.An example Semi-Markov Stochastic Petri Net (SM-SPN) [25].

Expressing SPNs and GSPNs as SM-SPNs

The marking-dependence of the weights and distributions allows the translation of

SPNs and GSPNs into the SM-SPN paradigm in a straightforward manner. An SPN

can be specified in the SM-SPN formalism in the following way:

• pt(m) = 0 ∀t,m

• wt(m) = λt ∀t,m

• dt(m) = F (r) whereF (r) = 1− exp(−λΣr) ∀t,m

whereλΣ =
∑

t∈EN (m) λt, the sum of all the rates of the enabled transitions in marking

m.

For GSPNs, the translation to an SM-SPN necessarily distinguishes between timed

transitions (t ∈ T1) and immediate transitions (t ∈ T2):

• pt(m) =

0 : t ∈ T1

1 : t ∈ T2

• wt(m) = ct for all t

• dt(m) =

F (r) : t ∈ T1

1 : t ∈ T2

36 Chapter 2. Background

whereF (r) = 1 − exp(−λΣr) andλΣ =
∑

t∈EP (m) λt. This gives us a meaningful

combined exponential rate,λΣ, if only timed transitions are priority enabled.

2.2.5 Stochastic Process Algebras

Process algebras are another formalism for describing concurrent systems but, unlike

Petri nets, they are not a graphical formalism. Instead, a model is formed of a textual

description (the format of which is dependent on the process algebra being used) of a

group ofprocessesor components. These can performactionseither individually or

by synchronising with each other. This component-oriented structure permitscompo-

sitionality in model design, so a description of a system can be constructed from the

individual descriptions of its components. Like Place-Transition nets, process alge-

bras can be used to reason about the correctness of systems, for example whether or

not they can deadlock. Examples of process algebras are Calculus of Communicating

Systems (CCS) [100, 101] and Communicating Sequential Processes (CSP) [76, 77].

Stochastic Process Algebras (SPAs) introduce the notion of time into process algebras,

usually by associating random durations with actions. This allows for the analysis of

quantitative performance measures to be undertaken (in the same manner in which

SPNs extend Place-Transition nets). As an example of a Markovian SPA we briefly

describe Performance Enhanced Process Algebra (PEPA) [75].

Definition 2.14 The syntax of a PEPA component,P , is given by:

P ::= (a, λ).P P + P P ¤¢
S

P P/L A

where:

• (a, λ).P is theprefix operator. A process performs anaction, a, and then be-

comes a new process,P . For activeactions, the time taken to performa is an

exponentially distributed random variable with parameterλ. The rate param-

eter may also take a>-value, which makes the actionpassivein a cooperation

(see below).

2.2. High-level Modelling Formalisms 37

• P1 + P2 is thechoice operator. A race is entered into between componentsP1

andP2 to determine which will complete its action first. IfP1 evolves first then

any behaviour ofP2 is lost and vice versa.

• P1 ¤¢
S

P2 is thecooperation operator. P1 andP2 run in parallel and synchronise

over the set of actions in the setS. If P1 is to evolve with an actiona ∈ S,

then it must wait forP2 to be in a position to produce ana-action before it

can proceed, and vice versa. In anactive cooperation, the two components

then jointly perform ana-action with a rate based on that of the slower of the

two components. In apassivecooperation, where one of the processes will be

performing actiona with parameter>, the cooperation proceeds at the rate of

the active action only.

• P/L is thehiding operatorwhere actions in the setL which can be performed

by componentP are rewritten as silentτ actions (although they maintain their

original delay parameters). The actions inL can no longer be used to cooperate

with other components.

• A is a constant labeland allows recursive definitions to be constructed.

Fig. 2.4 shows an example PEPA model which demonstrates the use of the choice

and cooperation operators. There are two machines,MachineA andMachineB, each

with an associated monitoring alarm,AlarmA andAlarmB. Both machines share the

behaviour that when they are paused (when they are behaving asMachinex1) they

can perform astart action to begin running. Once running, they can bothpause,

but MachineA can alsofail and must thenrecover. The two monitoring processes,

AlarmA andAlarmB, will raise analert when they observe arun action in their

corresponding machine. This behaviour is enforced by the composition of the sys-

tem, as the alarms cooperate with the machines over therun action. Finally, the

system as whole will only display analert when both theMachineA/AlarmA and

MachineB/AlarmB pairs are displaying analert.

As all delays in PEPA models are exponentially distributed, a CTMC can be generated

from a model’s derivation graph (which is analogous to the reachability graph of a Petri

38 Chapter 2. Background

MachineA1
def
= (start, r1).MachineA2 + (pause, r2).MachineA3

MachineA2
def
= (run, r3).MachineA1 + (fail, r4).MachineA3

MachineA3
def
= (recover, r1).MachineA1

AlarmA
def
= (run,>).(alert, r5).AlarmA

MachineB1
def
= (start, r1).MachineB2 + (pause, r2).MachineB1

MachineB2
def
= (run, r3).MachineB1

AlarmB
def
= (run,>).(alert, r5).AlarmB

System
def
= (AlarmA ¤¢

run
MachineA1) ¤¢

alert
(AlarmB ¤¢

run
MachineB1)

Fig. 2.4.An example PEPA model.

Fig. 2.5.An example open queueing network.

net). This Markov chain can then be analysed for steady-state or other performance

measures in exactly the same fashion as a CTMC generated from an SPN or a GSPN.

2.2.6 Queueing Networks

The final high-level modelling formalism we consider is queueing networks. Treat-

ment of them can be found in numerous works, for example [15, 71, 103]. Queueing

networks are built from three basic components:

• Serversmay have one or more queues connected to them. The time taken for a

server to process a customer is a random variable which may be drawn from a

number of distributions including the exponential. Servers also have aschedul-

2.2. High-level Modelling Formalisms 39

ing strategy, which specifies the order in which queued customers are served –

a common example is First-Come First-Served (FCFS).

• Queuesstore customers in the order in which they arrive at a server. Queues may

have a fixed capacity or have the ability to store an infinite number of customers.

• Customersmove between queues and are processed by servers. They may be

divided into differentclasses, which will affect how they are routed between

queues and how they are served when they arrive at them (for example, different

classes may be assigned different priority levels and the arrival of a high-priority

customer at a queue may pre-empt the service of a lower priority customer).

Additionally, when departures from one server can become arrivals at one of several

destination queues it is necessary to specifyrouting probabilities, which are the prob-

abilities that a customer which leaves that server will be routed to each of the possible

destinations. Different classes of customers can have different routing probabilities.

Queueing networks can be classed as eitheropenor closed. When the population of

customers in the network is fixed (i.e. it is not possible for customers to leave the

network or for new customers to join it), the network is closed. Otherwise, it is said to

be open.

Queues in a queueing network are often described using the Kendall notation:

A/B/m/K/Z/S

in which the components identify the arrival process, the service distribution, the num-

ber of servers, queue capacity, customer population (in a closed network) and schedul-

ing strategy respectively. If not specified, the queue capacity is assumed to be infinite

and the scheduling strategy is assumed to be FCFS. A commonly encountered single-

server queue is theM/M/1 queue, in which arrivals and services are exponentially-

distributed.

For closed queueing networks with Markovian service times, it is possible to generate

a reachability graph which is isomorphic to a CTMC (a state in the CTMC being

described by the number of customers at each queue). This can then be analysed for

40 Chapter 2. Background

steady-state, transient and passage time quantities in exactly the same manner as a

CTMC derived from a Petri net or SPA model.

2.3 Laplace Transforms

The Laplace transform is an integral transform which is widely used in the solution of

differential equations arising from physical problems such as heat conduction, move-

ment of bodies and so forth. Such problems are typically hard to solve in (real-valued)

t-space, but can be transformed into (complex-valued)s-space using the Laplace trans-

form and solved more easily before being transformed back intot-space. This ap-

proach can also be adopted for the passage time analysis of Markov and semi-Markov

chains.

When the Laplace transformf ∗(s) of a real-valued functionf(t) exists, it is unique

and is given by:

f ∗(s) =

∫ ∞

0

e−stf(t) dt (2.5)

wheres is a complex number.

For the Laplace transform of a functionf(t) to exist,f(t) must be ofexponential order.

Examples of functions which meet this restriction are polynomial or exponential (those

of the formekt) functions and bounded functions. Also included are those functions

with a finite number of finite discontinuities. Examples of functions which do not

fall within this category are those which have singularities (e.g.ln(x)), those whose

growth rates are faster than exponential (e.g.ex2
) or those with an infinite number of

finite discontinuities (e.g.f(x) = 1 if x is rational and 0 otherwise).

For the purposes of this thesis, the functions considered are all probability density

functions and so are sufficiently ‘well-behaved’ (i.e. they have area underneath them

which integrates to 1) that their Laplace transforms will always exist. Note, however,

that they may not always exist in closed form (e.g. as is the case for the Weibull

distribution).

2.3. Laplace Transforms 41

2.3.1 Properties

One example of where Laplace transforms are useful is the calculation of the con-

volution of two functions, an operation which is of particular importance in passage

time analysis. The calculation of the probability density function of a passage time

between two states is achieved by convolving the probability density functions of the

sojourn times of the states along all the paths between the source and target states. The

convolution of two functionsf(t) andg(t) denotedf(t) ∗ g(t) is given by:

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t− τ) dτ (2.6)

The convolution ofn functions requires the evaluation of an(n − 1) dimensional in-

tegral. To perform such a calculation for large values ofn (perhaps in the millions)

would be impractical. Instead, we exploit the convolution property of Laplace trans-

forms, which states that the Laplace transform of the convolution of two functions is

the product of the functions’ individual Laplace transforms. Once the Laplace trans-

form of the convolution has been calculated in terms of the complex parameters, it

is possible to retrieve the convolution in terms of the real-valued parametert using a

process known asLaplace transform inversion.

Theorem 2.3 Convolution:The Laplace transform of the convolution of two functions

f(t) andg(t), denotedL{f(t) ∗ g(t)}, is the product of the Laplace transforms of the

two functions, i.e.:

L{f(t) ∗ g(t)} = f ∗(s)g∗(s)

The proof for Theorem 2.3 is well known and we will outline it briefly here in the man-

ner presented in [56]. Letf(t) andg(t) be two functions whose Laplace transforms

exist and are denotedf ∗(s) andg∗(s) respectively. We write the Laplace transform of

the convolution of these two functions asL{f(t) ∗ g(t)}, and wish to prove:

L{f(t) ∗ g(t)} = f ∗(s) g∗(s)

42 Chapter 2. Background

Starting from the definition of the Laplace transform in Eq. 2.5 and of the convolution

of f(t) andg(t) in Eq. 2.6, we can write:

L{f(t) ∗ g(t)} =

∫ ∞

0

e−st

∫ t

0

f(τ)g(t− τ) dτ dt

We can rewrite this double integral as:

L{f(t) ∗ g(t)} =

∫ ∞

0

∫ t

0

e−stf(τ)g(t− τ) dτ dt

and then change the order and limits of integration:

L{f(t) ∗ g(t)} =

∫ ∞

0

∫ ∞

τ

e−stf(τ)g(t− τ) dt dτ

=

∫ ∞

0

f(τ)

(∫ ∞

τ

e−stg(t− τ) dt

)
dτ (2.7)

Substituting the variableu = t− τ into the inner integral of Eq. 2.7 gives:
∫ ∞

τ

e−st g(t− τ) dt =

∫ ∞

0

e−s(u+τ) g(u) du

= e−sτ

∫ ∞

0

e−su g(u) du

= e−sτg∗(s)

and substituting this back into Eq. 2.7 yields:

L{f(t) ∗ g(t)} =

∫ ∞

0

f(τ) e−sτ g∗(s) dτ

= g∗(s)
∫ ∞

0

e−sτ f(τ) dτ

= g∗(s) f ∗(s)

= f ∗(s) g∗(s)

Thus the convolution of the functionsf(t) andg(t) can be obtained by inverting the

Laplace transform of the convolution. The next section describes how this inversion

can be achieved using numerical methods.

Another property of Laplace transforms islinearity [56]:

Theorem 2.4 Linearity: If f(t) andg(t) are functions whose Laplace transforms ex-

ist, then:

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}

2.3. Laplace Transforms 43

Proof:

L{af(t) + bg(t)} =

∫ ∞

0

(af(t) + bg(t))e−st dt

=

∫ ∞

0

af(t)e−st + bg(t)e−st dt

= a

∫ ∞

0

f(t)e−stdt + b

∫ ∞

0

g(t)e−stdt

= aL{f(t)}+ bL{g(t)}

A final property of Laplace transforms which is particularly useful in the context of

this work is that the Laplace transform of a cumulative distribution function can be cal-

culated from the Laplace transform of the corresponding probability density function

by dividing it by s. This corresponds to integration off(t) in t-space.

Theorem 2.5 Integration: If f(t) is a probability density function andF (t) is the

corresponding cumulative distribution function,
∫∞
0

f(t) dt = F (t). The Laplace

transform ofF (t) can be calculated from the Laplace transform off(t) by dividing

L{f(t)} bys:

L{F (t)} = L{f(t)}/s

Proof:

Recalling that the integration by parts of a definite interval
∫ b

a
u dv = [uv]ba−

∫ b

a
v du :

∫ ∞

0

e−stf(t) dt =
[
e−stF (t)

]∞
0
−

∫ ∞

0

−se−stF (t) dt

= s

∫ ∞

0

e−stF (t) dt

SoL{f(t)} = sL{F (t)} or L{F (t)} = L{f(t)}/s.

2.3.2 Laplace Transform Inversion

As the Laplace transform of a function is unique it is possible to recover the function

f(t) from its Laplace transformf ∗(s). This process is called Laplace transform inver-

sion. The inverse of the Laplace transformf ∗(s) of a functionf(t) (which we denote

L−1{f ∗(s)}) is the functionf(t) itself:

L−1{f ∗(s)} = f(t) =
1

2πi

∫ a+i∞

a−i∞
estf ∗(s) ds (2.8)

44 Chapter 2. Background

wherea is a real number which lies to the right of all the singularities off ∗(s). This

is also known as theBromwich contour inversion integral.

Like Laplace transforms, inverse Laplace transforms display linearity [56]:

L−1{af ∗(s) + bg∗(s)} = aL−1{f ∗(s)}+ bL−1{g∗(s)}

The work in this thesis centres around the calculation andnumerical inversion of

Laplace transforms. There are a number of numerical Laplace transform inversion

algorithms in the literature, for example the Euler technique [3, 4], Talbot’s tech-

nique [118] and the Laguerre method [2] (also known as Weeks’ method [124]). We

now summarise the key features of these methods.

Summary of Euler Inversion

It is possible to rewrite Eq. 2.8 such that it is possible to obtainf(t) from f ∗(s) by

integrating a real-valued function of a real variable rather than requiring contour inte-

gration to be performed in complex space. Substitutings = a + iu allows Eq. 2.8 to

be rewritten as [1]:

f(t) =
1

2πi

∫ ∞

−∞
e(a+iu)tf ∗(a + iu) du

Making use of the fact that:

e(b+iu)t = ebt(cos ut + i sin ut)

yields [1]:

f(t) =
2eat

π

∫ ∞

0

Re(f ∗(a + iu)) cos(ut) du

This integral can be evaluated numerically using the trapezoidal rule. This approxi-

mates the integral of a functionf(t) over the interval[a, b] as:

∫ b

a

f(t) dt ≈ h

(
f(a) + f(b)

2
+

n−1∑

k=1

f(a + kh)

)

whereh = (b − a)/n. Setting the step-sizeh = π/2t anda = A/2t (whereA is

a constant that controls the discretisation error and is set to 19.1 in [4]) results in the

2.3. Laplace Transforms 45

alternating series [4, 53]:

f(t) ≈ eA/2

2t
Re

(
f ∗

(
A

2t

))
+

eA/2

2t

∞∑

k=1

(−1)k Re

(
f ∗

(
A + 2kπi

2t

))

Euler summation can be employed to accelerate the convergence of this alternating

series [115]. That is, we calculate the sum of the firstn terms explicitly and use Euler

summation to calculate the nextm. Themth term after the firstn is given by [3]:

E(t,m, n) =
m∑

k=0

(
m

k

)
2−m sn+k(t) (2.9)

In Eq. 2.9:

sn(t) =
n∑

k=0

(−1)k Re

(
f ∗

(
A + 2kπi

2t

))

An estimate of the truncation error incurred in using Euler summation can be calcu-

lated by comparing the magnitudes of thenth and(n + 1)th terms, i.e. [3]:

|E(t,m, n)− E(t,m, n + 1)|

To give a truncation error of10−8 we setn = 20 andm = 12 .

Summary of Talbot’s Method

Talbot’s method is very similar to Euler inversion in that it involves the trapezoidal

integration of Eq. 2.8 [118]. However, the contour over which the integration is per-

formed is altered from the one in Eq. 2.8 in such a way that the oscillations in the

terms of the infinite summation (resulting from the application of the trapezoidal rule)

are avoided and therefore no technique is needed to accelerate the convergence of the

series. The new contour, however, must enclose all singularities off ∗(s), which means

a record must be kept of the locations of these singularities [54]. In the context of the

work presented in this thesis this would not be practical: not only would a list of the

singularities of all state holding time density function Laplace transforms need to be

stored, but it would have to be maintained for the Laplace transforms of the convolu-

tions of these functions as well. For this reason, the Talbot method is not employed in

any of the work which follows.

46 Chapter 2. Background

Summary of Laguerre Inversion

The Laguerre method [2] makes use of the Laguerre series representation off(t):

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0

where the Laguerre polynomialsln are given by:

ln(t) =

(
2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t)

starting withl0 = et/2 andl1 = (1− t)et/2, and:

qn =
1

2πrn

∫ 2π

0

Q(reiu)e−inu du (2.10)

wherer = (0.1)4/n andQ(z) = (1− z)−1f ∗
(
(1 + z)/2(1− z)

)
.

The integral in the calculation of Eq. 2.10 can be approximated numerically using the

trapezoidal rule, giving:

qn ≈ 1

2nrn

(
Q(r) + (−1)nQ(−r) + 2

n−1∑
j=1

(−1)jRe
(
Q(reπji/n)

)
)

(2.11)

As described in [70], the Laguerre method can be modified by noting that the Laguerre

coefficientsqn are independent oft. Since|ln(t)| ≤ 1 for all n, the convergence

of the Laguerre series depends on the decay rate ofqn asn → ∞ which is in turn

determined by the smoothness off(t) and its derivatives [2]. Slow convergence of the

qn coefficients can often be improved by exponential dampening and scaling using two

real parametersσ andb [124]. Here the inversion algorithm is applied to the function

fσ,b(t) = e−σtf(t/b)

with f(t) being recovered as:

f(t) = eσbtfσ,b(bt).

Eachqn coefficient is computed as in Eq. 2.11, using the trapezoidal rule with2n

trapezoids. However, if we apply scaling to ensure thatqn has decayed to (almost)

zero by termp0 (sayp0 = 200), we can instead make use of a constant number of

2.3. Laplace Transforms 47

2p0 trapezoids when calculating eachqn. This allows us to calculate eachqn with high

accuracy while simultaneously providing the opportunity to cache and re-use values

of Q(z). Sinceqn does not depend ont, and each evaluation ofQ(z) involves a single

evaluation off ∗(s), we obtainf(t) at an arbitrary number oft-values at the fixed cost

of evaluatingQ(z) (and hencef ∗(s)) 2p0 times.

Suitable scaling parameters can be automatically determined using the algorithm in

Fig. 2.6 [70]. This algorithm is based on the heuristic observations in [2] that increas-

ing b (up to a given limit) can significantly lower the ratio|qn|/|q0|, and the observation

in [70] that excessive values of the damping parameterσ can lead to numerical insta-

bility in finite precision arithmetic.

σ = 0.0

b = 1

while |q200| > 10−10 or |q201| > 10−10 do begin

if σ = 0 then

σ = 0.001

else

σ = 2σ

if σ > 0.2 then begin

b = b + 4

if b > 10

exit

σ = 0

end

end

Fig. 2.6.Algorithm for automatically determining scaling parameters [70].

This fixed computational cost for any number oft-points is in contrast to the Euler

method, where the number of differents-values at whichf ∗(s) must be evaluated is

48 Chapter 2. Background

a function of the number of points at which the value off(t) is required (in fact, it is

(n + m + 1) times the number oft-points). It must be noted, however, that the Euler

method can be used to invert Laplace transforms which are not sufficiently smooth to

permit the modified Laguerre method to be used. This situation typically arises when

the original functionf(t) has discontinuities (e.g., iff(t) = det(x)).

Chapter 3

Passage Times in Markov Models

This chapter first describes the calculation of passage time densities and quantiles

in continuous-time Markov chains using the Laplace transform technique presented

in [70]. We then present a novel contribution of this thesis, namely the extraction

of passage times in systems modelled using GSPNs which can have both tangible or

vanishing source and target states [48]. We also describe a second technique for the

calculation of passage time densities in Markov models known as uniformization. We

present a comparison of the run-time behaviour of the Laplace transform and uni-

formization techniques and contrast them both with simulation. Extraction of passage

times from stochastic process algebra models using uniformization is demonstrated.

Finally, we describe a low-cost approximation technique which estimates passage time

densities and distributions from their moments [7, 8].

3.1 The Laplace Transform Method for CTMCs

Consider a finite, irreducible CTMC withN states{1, 2, . . . , N} and generator matrix

Q as defined in Section 2.1.2. Asχ(t) denotes the states of the CTMC at timet

(t ≥ 0) andN(t) denotes the number of state transitions which have occurred by time

t, the first passage time from a single source markingi into a non-empty set of target

49

50 Chapter 3. Passage Times in Markov Models

markings~j is:

Pi~j(t) = inf{u > 0 : χ(t + u) ∈ ~j, N(t + u) > N(t), χ(t) = i}

When the CTMC is stationary and time-homogenous this quantity is independent oft:

Pi~j = inf{u > 0 : χ(u) ∈ ~j, N(u) > 0, χ(0) = i} (3.1)

That is, the first time the system enters a state in the set of target states~j, given that

the system began in the source statei and at least one state transition has occurred.Pi~j

is a random variable with probability density functionfi~j(t) such that:

IP(a < Pi~j < b) =

∫ b

a

fi~j(t) dt (0 ≤ a < b)

In order to determinefi~j(t) it is necessary to convolve the state holding-time density

functions over all possible paths (including cycles) from statei to all of the states in~j.

As described in Section 2.3, the calculation of the convolution of two functions int-

space (cf. Eq. 2.6) can be more easily accomplished by multiplying their Laplace trans-

forms together ins-space and inverting the result. The calculation offi~j(t) is therefore

achieved by calculating the Laplace transform of the convolution of the state holding

times over all paths betweeni and~j and then numerically inverting this Laplace trans-

form.

In a CTMC all state sojourn times are exponentially distributed, so the density function

of the sojourn time in statei is µie
−µit, whereµi = −qii for 1 ≤ i ≤ N as defined

in Section 2.1.2. The Laplace transform of an exponential density function with rate

parameterλ can be calculated from Eq. 2.5:

L{λe−λt} =

∫ ∞

0

e−st(λe−λt) dt

= λ

∫ ∞

0

e−st−λt dt

= λ

∫ ∞

0

e−(s+λ)t dt

= λ

[−1

(s + λ)
e−(s+λ)t

]∞

0

=
λ

(s + λ)

3.1. The Laplace Transform Method for CTMCs 51

Denoting the Laplace transform of the density functionfi~j(t) of the passage time ran-

dom variablePi~j asLi~j(s), we proceed by means of a first-step analysis. That is, to

calculate the first passage time from statei into the set of target states~j, we consider

moving from statei to its set of direct successor states~k and thence from states in~k to

states in~j. This can be expressed as the following system of linear equations:

Li~j(s) =
∑

k/∈~j

pik

(−qii

s− qii

)
Lk~j(s) +

∑

k∈~j

pik

(−qii

s− qii

)
(3.2)

The first term (i.e. the summation over non-target statesk /∈ ~j) convolves the sojourn

time density in statei with the density of the time taken for the system to evolve from

statek into a target state∈ ~j, weighted by the probability that the system transits from

statei to statek. The second term (i.e. the summation over target statesk ∈ ~j) simply

reflects the sojourn time density in statei weighted by the probability that a transition

from statei into a target statek occurs.

Given thatpij = qij/ − qii in the context of a CTMC (cf. Section 2.1.2), Eq. 3.2 can

be rewritten as:

Li~j(s) =
∑

k/∈~j

(
qik

s− qii

)
Lk~j(s) +

∑

k∈~j

(
qik

s− qii

)
(3.3)

This set of linear equations can be expressed in matrix–vector form. For example,

when~j = {1} we have:

s− q11 −q12 · · · −q1n

0 s− q22 · · · −q2n

0 −q32 · · · −q3n

0
...

.. .
...

0 −qn2 · · · s− qnn

L1~j(s)

L2~j(s)

L3~j(s)
...

Ln~j(s)

=

0

q21

q31

...

qn1

(3.4)

Our formulation of the passage time quantity in Eq. 3.1 states that we must observe at

least one state-transition during the passage. In the case wherei ∈ ~j (as forL1~j(s) in

the above example), we therefore calculate the density of the cycle time to return to

statei rather than requiringLi~j(s) = 1.

Given a particular (complex-valued)s, Eq. 3.4 can be solved forLi~j(s) by standard it-

erative numerical techniques for the solution of systems of linear equations inAx = b

52 Chapter 3. Passage Times in Markov Models

form (cf. Section 2.1.4). In the context of the inversion algorithms described in Sec-

tion 2.3.2, both Euler and Laguerre can identify in advance at which values ofs Li~j(s)

must be calculated in order to perform the numerical inversion. Therefore, if the algo-

rithm requiresm different values ofLi~j(s), Eq. 3.4 will need to be solvedm times.

The corresponding cumulative distribution functionFi~j(t) of the passage time is ob-

tained by integrating under the density function. As described in Section 2.3, this

integration can be achieved in terms of the Laplace transform of the density function

by dividing it by s, i.e. F ∗
i~j
(s) = Li~j(s)/s. In practice, if Eq. 3.4 is solved as part

of the inversion process for calculatingfi~j(t), them values ofLi~j(s) can be retained.

Once the numerical inversion algorithm has used them to computefi~j(t), these val-

ues can be recovered, divided bys and then taken as input by the numerical inversion

algorithm again to computeFi~j(t). Thus, in calculatingfi~j(t), we getFi~j(t) for little

further computational effort.

When there are multiple source markings, denoted by the vector~i, the Laplace trans-

form of the response time density at equilibrium is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s)

where the weightαk is the equilibrium probability that the state isk ∈~i at the starting

instant of the passage. This instant is the moment of entry into statek; thusαk is

proportional to the equilibrium probability of the statek in the underlying embedded

(discrete-time) Markov chain (EMC) of the CTMC with one-step transition matrixP

as defined in Section 2.1.2. That is,

αk =

πk/
∑

j∈~i πj if k ∈~i

0 otherwise
(3.5)

where the vectorπ is any non-zero solution toπ = πP. The row vector with compo-

nentsαk is denoted byα.

3.2. Extension to GSPNs 53

3.2 Extension to GSPNs

The analysis described above for Markov chains can be extended to the analysis of the

underlying state spaces of GSPNs [48]. The situation is complicated, however, by the

existence of two types of state (tangible and vanishing) as described in Section 2.2.3.

As we are dealing with Petri nets, the analysis is described in terms of markings rather

than states (although the two terms are equivalent – the state of a GSPN is defined by

its marking).

In a GSPN, the first passage time from a single source markingi into a non-empty set

of target markings~j is:

Pi~j = inf{u > 0 : M(u) ∈ ~j, N(u) > 0,M(0) = i}

whereM(t) is the marking of the GSPN at timet andN(t) denotes the number of

state transitions which have occurred by timet.

We proceed by means of a first-step analysis as described above for the purely Marko-

vian case. Recalling the definitions of Section 2.2.2, the Laplace transform of the

(exponential) sojourn time density function of tangible markingi is µi/(s + µi), but

for a vanishing marking the sojourn time is 0 with probability 1, giving a correspond-

ing Laplace transform of 1 for all values ofs.† We must therefore distinguish between

passage times which start in a tangible state and those which begin in a vanishing state:

Li~j(s) =

∑
k/∈~j

(
qik

s−qii

)
Lk~j(s) +

∑
k∈~j

(
qik

s−qii

)
if i ∈ T

∑
k/∈~j pikLk~j(s) +

∑
k∈~j pik if i ∈ V

(3.6)

Again, this system of linear equations can be expressed in matrix–vector form. For

example, when~j = {1}, V = {2} andT = {1, 3, . . . , n} the above equations can be

†This also follows as the probability density function of an immediate transition is an impulse func-

tion atx = 0. The Laplace transform of an impulse function atx = a is e−as [107], which is 1 when

a = 0.

54 Chapter 3. Passage Times in Markov Models

written as:

s− q11 −q12 · · · −q1n

0 1 · · · −p2n

0 −q32 · · · −q3n

0
...

.. .
...

0 −qn2 · · · s− qnn

L1~j(s)

L2~j(s)

L3~j(s)
...

Ln~j(s)

=

0

p21

q31

...

qn1

This system of linear equations can then be solved by the same techniques as for the

Markov case above.

As described above in Section 3.1, this formulation can easily be generalised to the

case where multiple source states are required. This is accomplished by weighting the

Lk~j(s) values with the renormalised steady-state probabilities for statek ∈~i from the

embedded Markov chain (EMC) defined by the marking of the GSPN at firing instants.

Therefore,

αk =

πk/
∑

j∈~i πj if k ∈~i

0 otherwise

where the vectorπ is any non-zero solution toπ = πP.

Note also that if vanishing states are eliminated from the underlying state space during

its generation, the result is a continuous-time Markov chain which can then be analysed

for passage times as per Section 3.1. Doing so reduces the size of the state space to

be analysed but removes the ability to reason about source or target states which are

vanishing.

3.2.1 Example of GSPN Analysis

Fig. 3.1 shows a small contrived GSPN model and Fig. 3.2 its corresponding reach-

ability graph. We illustrate our technique on this GSPN by computing the response

time density for the time taken to reach markings whereM(p2) > 0 from markings

whereM(p1) > 0.

In this example, there are three source markings, two of which are vanishing and one of

which is tangible. As discussed in Section 3.2, the Laplace transforms of the passage

3.2. Extension to GSPNs 55

p1

p3

p4

t2 (3r)t1 (r)

t3 t4 (2r)

p2

p5
t5 (v)

Fig. 3.1.The Simple GSPN model.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

destination marking

source marking

vanishing marking

tangible marking

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

(0,0,2,0,1)

(0,0,0,2,1)

(0,0,1,1,1)

t2

t5t1

t4

t4

t5

t5

t3

t3

t2

t5

t5

t2

t4(0,1,2,0,0)

(0,1,1,1,0)

(0,1,0,2,0)

(1,0,1,1,0)

(1,0,0,2,0)

(1,0,2,0,0) 1

2 3

4 5

7

98

6

Fig. 3.2.The reachability graph of the Simple GSPN model.

56 Chapter 3. Passage Times in Markov Models

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: Simple model

Fig. 3.3. Numerical and simulated response time densities for the Simple model for time taken from

markings whereM(p1) > 0 to markings whereM(p2) > 0. Here the transition rate parameters are

r = 2 andv = 5.

time from these source markings into the destination markings need to be weighted

according to the normalised steady state probabilities of the source markings in the

GSPN’s EMC. Hence, for source markingsM1 = (1, 0, 2, 0, 0), M3 = (1, 0, 1, 1, 0)

andM8 = (1, 0, 0, 2, 0),

L~i~j(s) = α1L1~j(s) + α3L3~j(s) + α8L8~j(s)

where~i = {1, 3, 8},~j = {2, 4, 6}, α1 = 0.22952, α3 = 0.43660 andα8 = 0.33388 (to

5 s.f.).

Fig. 3.3 shows the resulting numerical passage time density. Also shown is the pas-

sage time density produced by a discrete-event simulator. This is the combination of

the results from 10 runs, each consisting of 1 billion (109) transition firings, and the

resulting confidence intervals are very narrow indeed. There is excellent agreement

between the numerical and simulated densities.

For this small example, a single processor (a PC with a 1.4GHz Athlon processor and

256MB RAM) required just 18 seconds to calculate the 1600 points plotted on the

numerical passage time density. The Laguerre method was used and no scaling was

needed. This required the solution of 402 sets of linear equations (2 of which were

3.3. Uniformization 57

necessary to determine that no scaling was required, with the remaining 400 used to

compute theqn coefficients).

3.3 Uniformization

As well as the Laplace transform approach described above, passage time densities

and quantiles in CTMCs may also be computed through the use ofuniformization

(also known asrandomization). This transforms a CTMC into one in which all states

have the same mean holding time1/q, by allowing ‘invisible’ transitions from a state

to itself. This is equivalent to a discrete-time Markov chain, after normalisation of the

rows, together with an associated Poisson process of rateq. The one-step transition

probability matrixP which characterises the one-step behaviour of the uniformized

DTMC is derived from the generator matrixQ of the CTMC as:

P = Q/q + I (3.7)

where the rateq > maxi |qii| ensures that the DTMC is aperiodic by guaranteeing that

there is at least one single-step transition from a state to itself.

3.3.1 Uniformization for Transient Analysis of CTMCs

Uniformization has classically been used to conduct transient analysis of finite-state

CTMCs [66, 112]. The transient state distribution of a CTMC,πi~j, is the probability

that the process is in a state in~j at timet, given that it was in statei at time 0:

πi~j(t) = IP(χ(t) ∈ j | χ(0) = i)

whereχ(t) denotes the state of the CTMC at timet.

In a uniformized CTMC, the probability that the process is in statej at timet is calcu-

lated by conditioning onN(t), the number of transitions in the DTMC that occur in a

given time interval [0,t] [112]:

πi~j(t) =
∞∑

m=0

IP
(
χ(t) ∈ ~j | N(t) = m

)
IP

(
N(t) = m

)

58 Chapter 3. Passage Times in Markov Models

whereN(t) is given by a Poisson process with rateq and the state of the uniformized

process at timet is denotedχ(t). Therefore:

πi~j(t) =
∞∑

n=1

(qt)ne−qt

n!

∑

k∈~j

π
(n)
k

where

π(n+1) = π(n)P for n ≥ 0

andπ(0) is the initial probability distribution from which the transient measure will be

measured (typically, for a single initial statei, πk = 1 if k = i, 0 otherwise).

3.3.2 Uniformization for Passage Time Analysis of CTMCs

Uniformization can also be employed for the calculation of passage time densities in

Markov chains as described in [20, 99, 102, 105]. We ensure that only the first passage

time density is calculated and that we do not consider the case of successive visits to

a target state by making the target states absorbing. We denote byP′ the one-step

transition probability matrix of the modified, uniformized chain.

The calculation of the first passage time density between two states has two main com-

ponents. The first considers the time to completen hops (n = 1, 2, 3, . . .). Recall that

in the uniformized chain all transitions occur with rateq. The density of the time taken

to move between two states is found by convolving the state holding-time densities

along all possible paths between the states. In a standard CTMC, convolving holding

times in this manner is non-trivial as, although they are all exponentially distributed,

their rate parameters are different. In a CTMC which has undergone uniformization,

however, all states have exponentially-distributed state holding-times with the same

parameterq. This means that the convolution ofn of these holding-time densities is

the convolution ofn exponentials all with rateq, which is ann-stage Erlang density

with rate parameterq.

Secondly, it is necessary to calculate the probability that the transition between a

source and target state occurs in exactlyn hops of the uniformized chain, for every

value ofn between 1 and a maximum valuem. The value ofm is determined when

3.3. Uniformization 59

the value of thenth Erlang density function (the left-hand term in Eq. 3.8) drops be-

low some threshold value. After this point, further terms are deemed to add nothing

significant to the passage time density and so are disregarded.

The density of the time to pass between a source statei and a target statej in a uni-

formized Markov chain can therefore be expressed as the sum ofm n-stage Erlang

densities, weighted with the probability that the chain moves from statei to statej

in exactlyn hops (1 ≤ n ≤ m). This can be generalised to allow for multiple target

states in a straightforward manner; when there are multiple source states it is necessary

to provide a probability distribution across this set of states (such as the renormalised

steady-state distribution calculated below in Eq. 3.10).

The response time between the non-empty set of source states~i and the non-empty set

of target states~j in the uniformized chain therefore has probability density function:

f~i~j(t) =
∞∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k

'
m∑

n=1

qntn−1e−qt

(n− 1)!

∑

k∈~j

π
(n)
k

 (3.8)

where

π(n+1) = π(n)P′ for n ≥ 0 (3.9)

with

π
(0)
k =

0 for k /∈~i

πk/
∑

j∈~i πj for k ∈~i
(3.10)

Theπk values are the steady state probabilities of the corresponding statek from the

CTMC’s embedded Markov chain. When the convergence criterion

||π(n) − π(n−1)||∞
||π(n)||∞ < ε (3.11)

is met, for given toleranceε, the vectorπ(n) is considered to have converged and no

further multiplications withP′ are performed. Here,||x||∞ is the infinity-norm given

by ||x||∞ = maxi |xi|.

The corresponding cumulative distribution function for the passage time,F~i~j(t), can

60 Chapter 3. Passage Times in Markov Models

be calculated by substituting the cumulative distribution function for the Erlang distri-

bution into Eq. 3.8 in place of the Erlang density function term, viz.:

F~i~j(t) =
∞∑

n=1

(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈~j

π
(n)
k

'
m∑

n=1

(
1− e−qt

n−1∑

k=0

(qt)k

k!

)∑

k∈~j

π
(n)
k

whereπ(n) is defined as in Eqs. 3.9 and 3.10.

3.4 Comparison of Methods

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

Fig. 3.4.Numerical and simulated (with 95% confidence intervals) passage time densities for time taken

from the initiation of a transport layer transmission to the arrival of an acknowledgement packet in the

Courier model.

As both the Laplace transform method and uniformization can be used to calculate

passage time densities in Markov models, it is instructive to compare the run-time

performance of the two methods along with simulation. Table 3.1 shows the run-

times in seconds taken to compute the passage time densities shown in Figs. 3.4, 3.5

3.4. Comparison of Methods 61

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

Fig. 3.5.Numerical and simulated (with 95% confidence intervals) density for the time taken to produce

a finished part of typeP12 starting from states in which there arek = 6 unprocessed parts of typesP1

andP2 in the FMS model.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Uniformization result

Laplace result

Fig. 3.6.Numerical and simulated (with 95% confidence intervals) passage time densities for the cycle-

time in a tree-like queueing network with 15 customers.

62 Chapter 3. Passage Times in Markov Models

DTMC
Steady
State

Solver

Reachability
graph, with
source and
destination

states

������

Distributed
Laplace

Transform
Inverter

p1

p3

p4

t2 (3r)t1 (r)

t3 t4 (2r)t5 (s)

p2

p5

master
processor

s
1 L(s)

1

L(s)
n

LT inverter

L(s)
evaluation

with

L(s)
1

LT inverter
with no

L(s)
evaluation

memory cache
master

master
disk

cache
filter

disk cache
master

Enhanced
DNAmaca
high−level

specification
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10 12 14

f(
t)

t

f(t)

GSPN
State
Space

Generator

s−value work queue
s−values

slave processors

Fig. 3.7.GSPN passage time density calculation pipeline [48].

3.4. Comparison of Methods 63

Model No. of Uniform. Laplace Run-times Sim. Run-

Name States Run-time 1 PC 2 PCs 4 PCs 8 PCs 16 PCs 32 PCs time (1 run)

Courier 11 700 1.9 42.1 30.0 22.4 19.6 18.0 23.1 3 656.0

FMS 537 768 64.8 5 096.0 2 582.6 1 298.4 675.8 398.4 182.1 2 729.6

Tree 542 638 126.2 7 555.3 4 719.3 1 921.9 993.0 550.9 398.6 1 976.8

Table 3.1. Comparison of run-time in seconds for uniformization, Laplace transform inversion and

simulation passage time analysis.

Model No. of Laplace Run-times

Name States 1 PC 2 PCs 4 PCs 8 PCs 16 PCs 32 PCs

Courier 29 010 542.7 293.6 170.6 145.6 166.6 232.8

FMS 2 519 580 27 593.8 13 790.2 6 961.3 3 548.9 1 933.4 1 079.7

Table 3.2. Run-time in seconds for the Laplace transform inversion method on GSPN state-spaces

without vanishing state elimination.

and 3.6 using uniformization, Laplace transform inversion and simulation. The run-

times were produced on a network of PC workstations linked together by 100Mbps

switched Ethernet, each PC having an Intel Pentium 4 2.0GHz processor and 512MB

RAM.

3.4.1 Models Studied

Results are presented for three models: a GSPN model of a communication protocol,

a GSPN model of a flexible manufacturing system and a tree-like queueing network.

These models are described in detail in Appendices A.1, A.2 and A.3 respectively. In

order for uniformization to be used and compared fairly with the Laplace transform

method, it was necessary in the case of the two GSPN models to generate the state

spaces with the vanishing states eliminated – the number of states given in the second

column of Table 3.1 is therefore the size of each model’s underlying CTMC.

For the Courier protocol model, the passage of interest is from markings for which

M(p11) > 0 to those markings for whichM(p20) > 0. This corresponds to the end-

64 Chapter 3. Passage Times in Markov Models

to-end response time from the initiation of a transport layer transmission to the arrival

of the corresponding acknowledgement packet; as the sliding window sizen is set

to 1, there can be only one outstanding unacknowledged packet at any time. In the

Flexible Manufacturing System (FMS) model we calculate the density of the time

taken to produce a finished part of typeP12 starting from any state in which there

are6 unprocessed parts of typeP1 and6 unprocessed parts of typeP2. That is, the

source markings are those whereM(P1) = M(P2) = 6 and the target markings are

those whereM(P12s) = 1. Finally, for the tree-like queueing network, results are

presented for a model with 15 customers and show the density of the cycle time of a

customer from when it arrives at the back of the queue for serverq1 to when it reaches

that point again.

For uniformization and simulation, the results were produced using a single PC, but

for the Laplace transform method a parallel solver illustrated in Fig. 3.7 was used.

This has a distributed master–slave architecture, where the master processor calculates

in advance at which values ofs Eq. 3.3 or Eq. 3.6 will need to be solved in order to

perform the numerical inversion. These values ofs are placed in a queue to which

slave processors make requests. They are allocated the nexts value available and

then construct and solve the set of linear equations for that value ofs, returning the

result to the master to be cached. When all the results have been returned, the master

processor then uses the cached values to perform the inversion and returns the value of

the passage time density or distribution at the required values oft.

The simulation results presented in the graphs are the combined results from 10 runs,

each run consisting of 1 billion (109) transition firings. The timing information for

simulation in Table 3.1 is the average time taken to perform one of these runs: as the

runs are independent of each other they can be executed in parallel and so 10 runs on

10 machines should take no longer than 1 run on 1 machine.

3.4.2 Discussion

From Table 3.1 it can be seen that uniformization (running on a single processor) is

much faster than the Laplace transform method (for all number of processors up to 32)

3.4. Comparison of Methods 65

except in the case of the smallest model considered (Courier with11 700 states). Us-

ing the Laguerre method required the solution of 402 sets of equations of the form of

Eq. 3.4 for the tree-like queueing network and FMS models, and 804 sets for Courier.

The reason that Courier required more equations to be solved was the use of the scal-

ing technique referred to in Section 2.3.2. We also note that for the Courier model

the solution took longer on 32 machines than it did on 16. This can be attributed to

increased contention for the global work queue.

In contrast, the uniformization implementation needed only to perform a single set

of sparse matrix–vector multiplications of the form shown in Eq. 3.9. It must be

noted, however, that the Laplace transform method is easier to extend to systems with

generally-distributed state holding-time distributions (see Chapter 4 below) and pre-

serves the ability to reason about source and target states which are vanishing. This

ability is lost in the uniformization method as vanishing states must be eliminated

when generating the state-space for the method to function.

Table 3.1 also shows that a single simulation run took much longer than either uni-

formization or the Laplace transform method for all three models and 10 runs only

produced inexact results bounded by confidence intervals (although the intervals are

fairly tight in two of the three cases). This run-time could, however, have been reduced

by performing fewer transition firings but this may have resulted in wider confidence

intervals. Simulation may not be suitable for passage time calculation in all models,

particularly those which are very large but have very few initial states. In such cases,

many more transition firings may have to be performed in order to achieve meaningful

results as the number of observed passages would otherwise be too low. By way of ex-

ample, the CTMC underlying the FMS model has537 638 states, of which only 28 are

source states (0.005% of the total states) and136 584 are target states. The CTMC of

the Courier model with11 700 states has3 150 source states (26.9% of the total states)

and 900 target states. We observe that the confidence intervals on the Courier passage

time density of Fig. 3.4 are much tighter than those on the FMS density in Fig. 3.5.

When the method of Section 3.2 is used for the analysis of GSPN models, the under-

lying state-spaces are larger as vanishing states are not eliminated. Table 3.2 shows

66 Chapter 3. Passage Times in Markov Models

the sizes of the state-spaces for the two GSPN models and the time taken to analyse

them for the same passage time quantities as Table 3.1 using the Laplace transform

method for GSPNs. Note the large increase in the size of the underlying process when

vanishing states are not eliminated (it has more than doubled in the case of Courier

and increased by a factor of 5 for the FMS model) and the consequent increase in

time taken to compute the results. This illustrates that, although the Laplace transform

method for GSPNs offers the opportunity to reason about vanishing source and target

states, the modeller must be aware that it does so at increased computational cost.

We note that we have developed a parallel tool called HYDRA (described in Chapter 6)

which implements the uniformization method. This was not used here, however, as the

size of the state spaces under consideration made it unnecessary. Its use could reduce

the time taken to perform the uniformization calculations even further – the results

presented in Section 8.1.3 demonstrate how well such an implementation scales.

3.5 Passage Times in Stochastic Process Algebras

The main focus of the work in this chapter is on the calculation of passage times in

CTMCs derived from SPNs or GSPNs. The techniques described can, however, be

applied to CTMCs generated from other high-level formalisms – in Section 3.4 above

analysis is conducted on a queueing network. Stochastic process algebras are another

popular modelling formalism, and the tools and techniques presented in this thesis can

easily be applied to their analysis for passage time and transient measures.

We focus here on models specified in PEPA (described in Section 2.2.5). Using the

Imperial PEPA Compiler (ipc) [22, 23], PEPA models can be converted into equivalent

Petri net models. It also permits the expression of passage time queries in terms of the

actions in the original PEPA model through the use ofstochastic probes. These are

fragments of process algebra which observe the behaviour of the model and change

state to indicate that actions marking the start or end of the passage time measure of

interest have occurred [6]. Interested readers are directed to [22, 23] for full details of

ipc’s implementation.

3.5. Passage Times in Stochastic Process Algebras 67

Person1
def
= (reg1, r).Person1 + (move2, m).P erson2

Personi
def
= (movei−1,m).Personi−1 + (regi, r).Personi

+(movei+1,m).P ersoni+1 : 1 < i < N

PersonN
def
= (moveN−1,m).Personi−1 + (regN , r).PersonN

Sensori
def
= (regi,>).(repj, s).Sensori : 1 ≤ i ≤ N

Dbasei
def
=

N∑
j=1

(repj,>).Dbasej : 1 ≤ i ≤ N

Sys
def
=

M∏
j=1

Person1 ¤¢
Reg

N∏
j=1

Sensorj ¤¢
Rep

Dbase1

whereReg = {regi | 1 ≤ i ≤ N}
andRep = {repi | 1 ≤ i ≤ N}

Fig. 3.8. The PEPA description for the generalised active badge model withN rooms andM peo-

ple [23].

3.5.1 Example of SPA Analysis

We illustrate the analysis of PEPA models for passage time quantities with a small

example of an active badge system. In the original model described in [65], there are

4 rooms on a corridor all installed with active badge sensors and a single person who

can move from one room to an adjacent room. The sensors are linked to a database

which records which sensor has been activated last.

In the model of Fig. 3.8 (reproduced from [23]), we have extended this to support

M people inN rooms with sensors and a database that can be in one ofN states,

representing the last sensor to be activated.

In the model,Personi represents a person in roomi, Sensori is the sensor in room

68 Chapter 3. Passage Times in Markov Models

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Passage from 3 people in R1 to any 1 person in R6

Fig. 3.9. Passage time density of the time taken for the first person to move from room 1 to room 6 in

the 3-person Active Badge model.

i and Dbasei is the state of the database. A person in roomi can either move to

room i − 1 or i + 1 or, if they remain there long enough, set off the sensor in roomi,

which registers its activation with the database. AllowingM people inN rooms yields

NM different configurations. Independently, there are2N sensor configurations andN

states that the database can be in, giving a total of2NNM+1 states.

For 3 people and 6 rooms, we have a global state space of82 944 states. Fig. 3.9 shows

the passage time density of the time taken for the first person to move from room 1 to

room 6. This was calculated using uniformization.

3.6 Estimation of Passage Time Densities and Distribu-

tions From Their Moments

As well as calculating full passage time densities in Markov models we can also com-

pute the moments of such densities. Not only are these meaningful performance mea-

sures in their own right, but it is possible to estimate the full density or distribution

3.6. Estimation of Passage Time Densities and Distributions From Their Moments69

from a small number of its moments at less computational cost than calculating the

full distribution using the techniques described above.

Thenth raw momentMi~j(n) of the passage time quantityPi~j is obtained by differenti-

ating the corresponding Laplace transformLi~j(s) n times and evaluating the resulting

expression ats = 0. For example, forn = 1:

f(s) =

∫ ∞

0

e−stf(t) dt

=⇒ f ′(s) = −
∫ ∞

0

te−stf(t) dt

=⇒ f ′(0) = −
∫ ∞

0

tf(t) dt

=⇒ Mi~j(1) = −f ′(0) (3.12)

In general:

f ′(n)(0) = (−1)n

∫ ∞

0

tnf(t) dt

In terms ofMi~j(n) andLi~j(s) [70]:

Mi~j(n) = (−1)n
dnLi~j(s)

dsn

∣∣∣∣
s=0

(3.13)

3.6.1 Moment Calculation for CTMCs

The general formula for calculating thenth moment of passage time for a Markov

model is stated without proof in [70]:

−qiiMi~j(n) =
∑

k/∈~j

qikMk~j(n) + nMi~j(n− 1) (3.14)

for i /∈ ~j, Mi~j(n) = 0 for i ∈ ~j andMi~j(0) = 1. We here prove that this holds by

induction.

We have shown in Section 3.1 that to calculate the Laplace transform of the density of

the passage time between statesi and states~j we solve a system of linear equations of

the form:

(s− qii)Li~j(s) =
∑

k/∈~j

qikLk~j(s) +
∑

k∈~j

qik (3.15)

70 Chapter 3. Passage Times in Markov Models

whereqik is the instantaneous rate between statei andk, andqii is the negated sum of

all the rates out of statei. We will now show that differentiating Eq. 3.15n times with

respect tos gives:

(s− qii)L
(n)′

i~j
(s) + nL

(n−1)′

i~j
(s) =

∑

k/∈~j

qikL
(n)′

k~j
(s) (3.16)

for any integer value ofn. Recall that the product rule for differentiating two functions

f(x) andg(x) states:

(fg)′(x) = f(x)g′(x) + f ′(x)g(x)

Base caseDifferentiating Eq. 3.15 once requires the use of the product rule, and this

yields:

(s− qii)L
′
i~j
(s) + Li~j(s) =

∑

k/∈~j

qikL
′
k~j

(s)

Which is Eq. 3.16 forn = 1.

Inductive step Given that Eq. 3.16 holds, we must show that differentiating it once

gives Eq. 3.16 for the(n + 1) differential. Applying the product rule we have:

(s− qii)L
(n+1)′

i~j
(s) + L

(n)′

i~j
(s) + nL

(n)′

i~j
(s) =

∑

k/∈~j

qikL
(n+1)′

k~j
(s)

=⇒ (s− qii)L
(n+1)′

i~j
(s) + (n + 1)L

(n)′

i~j
(s) =

∑

k/∈~j

qikL
(n+1)′

k~j
(s)

as required.

We have therefore proved that Eq. 3.16 holds for all integer values ofn ≥ 1. Evalu-

ating this ats = 0 then yields the expression for thenth moment of the passage time,

Eq. 3.14, as required.

In terms of computational requirements, calculatingn moments of a passage time

density requires the solution ofn sets ofN×N linear equations, one for each moment,

each of the form of Eq. 3.14.

3.6. Estimation of Passage Time Densities and Distributions From Their Moments71

3.6.2 Extension to GSPNs

The formulae above for the calculation of moments in CTMCs can be extended to

the calculation of moments in GSPNs in an analogous manner to the way in which

the calculation of passage time densities in CTMCs was extended to passage times in

GSPNs. Once again, it is necessary to take into consideration the possible existence

of vanishing markings. Recall that the Laplace transform of the passage time density

from a vanishing markingi to a set of target states~j is given by:

Li~j(s) =
∑

k/∈~j

pikLk~j(s) +
∑

k∈~j

pik (3.17)

By differentiating Eq. 3.17 with respect tos once we get:

L′
i~j
(s) =

∑

k/∈~j

pikL
′
k~j

(s)

Evaluating this ats = 0 to calculate the first moment gives:

Mi~j(1) =
∑

k/∈~j

pikMk~j(1)

Higher moments can be calculated by repeated differentiation of Eq. 3.17. In general,

to calculate thenth moment of a passage time from a vanishing statei to a set of target

states~j:

Mi~j(n) =
∑

k/∈~j

pikMk~j(n) (3.18)

The firstn moments of a passage time in a GSPN model starting from a vanishing state

i can therefore be calculated by using Eq. 3.14 and Eq. 3.18:

Mi~j(n) =

∑
k/∈~j

qik

−qii
Mk~j(n) + 1

−qii
nMi~j(n− 1) if i ∈ T

∑
k/∈~j pikMk~j(n) if i ∈ V

3.6.3 Distribution Estimation from Moments

The reconstruction of a function based on its firstn moments is a well-known problem.

It is of particular interest in passage time analysis as the calculation of the moments

72 Chapter 3. Passage Times in Markov Models

of a passage time density can be accomplished at much less computational cost than

the calculation of the full density – in a CTMC, the first four moments are obtained

by solving four sets of linear equations of the type shown in Eq. 3.14, while the full

density would require the solution of perhaps 400 sets of linear equations of the type

shown in Eq. 3.3 (if using the Laguerre inversion method). Once the first few moments

have been calculated, there are a number of techniques by which functions can be ap-

proximated. We describe here briefly a technique based on the use of the Generalised

Lambda Distribution (GLD) [7, 95].

The Generalised Lambda Distribution

The Generalised Lambda Distribution (GLD) is a curve capable of assuming a wide

variety of different shapes depending on the value of its parameters. For passage time

analysis, the challenge lies in determining the parameter values which result in a GLD

curve that approximates well a given passage time density or distribution. The GLD is

defined by a quantile (inverse cumulative distribution) functionQ(u) which has four

parametersλ1, λ2, λ3 andλ4. The first is the location parameter, the second the scale

parameter and the third and fourth are the shape parameters.Q(u) is defined in terms

of these four parameters as [59]:

Q(u) = λ1 +
1

λ2

(
uλ3 − 1

λ3

− (1− u)λ4 − 1

λ4

)
(3.19)

The expression ofQ(u) in this form is known as the FKML parameterisation [59]. The

process of approximating a passage time density using the GLD involves computing

values for these four parameters such that the first four moments of the resulting GLD

(meanµ, varianceσ2, skewnessα3 and kurtosisα4) match the first four moments of

the passage time measure (µ̂, σ̂2, α̂3 andα̂4 respectively).

As Q(u) is a quantile function it will yield the value ofx such thatF (x) (the corre-

sponding cumulative distribution function) equalsu. The probability density function

f(x) of the GLD can therefore be calculated as:

f(x) =
du

dx
=

du

dQ(u)
=

(
dQ(u)

du

)−1

3.6. Estimation of Passage Time Densities and Distributions From Their Moments73

It follows that thekth raw moment of a random variableχ with quantile functionQ(u)

can be calculated as:

E[χk] =

∫ ∞

0

xkf(x) dx

=

∫ 1

0

(Q(u))k du

dQ(u)
dQ(u)

=

∫ 1

0

(Q(u))k du (3.20)

Expanding Eq. 3.19 gives [95]:

Q(u) =

(
λ1 − 1

λ2λ3

+
1

λ2λ4

+
1

λ2

(
uλ3

λ3

− (1− u)λ4

λ4

))

= a + bR(u)

where

R(u) =

(
uλ3

λ3

− (1− u)λ4

λ4

)

The first four central momentŝqk, 1 ≤ k ≤ 4, of Q(u) can then be expressed in terms

of the first four raw momentsrk, 1 ≤ k ≤ 4, of R(u):

q̂1 = λ1 − 1

λ2λ3

+
1

λ2λ4

+
r1

λ2

q̂2 =
1

λ2
2

(r2 − r2
1)

q̂3 =
1

λ3
2

(r3 − 3r1r2 + 2r3
1)

q̂4 =
1

λ4
2

(r4 − 4r1r3 + 6r2
1r2 − 3r4

1) (3.21)

Thekth raw moment ofR(u) can be calculated in exactly the same manner as forQ(u)

in Eq. 3.20:

rk =

∫ 1

0

(
uλ3

λ3

− (1− u)λ4

λ4

)k

du

Using binomial expansion (as in [95]) yields:

rk =

∫ 1

0

k∑
j=0

(
k

j

)
(−1)j u

λ3(k−j)

λk−j
3

(1− u)λ4j

λj
4

du

=
k∑

j=0

(−1)j

λk−j
3 λj

4

(
k

j

)
β(λ3(k − j) + 1, λ4j + 1) (3.22)

74 Chapter 3. Passage Times in Markov Models

where

β(a, b) =

∫ 1

0

ua−1(1− u)b−1 du

As rk is defined only for positive arguments, it is required thatmin(λ3, λ4) > −1/k.

Expanding Eq. 3.22 fork = 1, 2, 3, 4 gives:

r1 =
1

λ3(λ3 + 1)
− 1

λ4(λ4 + 1)

r2 =
1

λ2
3(2λ3 + 1)

+
1

λ2
4(2λ4 + 1)

− 2

λ3λ4

β(λ3 + 1, λ4 + 1)

r3 =
1

λ3
3(3λ3 + 1)

− 1

λ3
4(3λ4 + 1)

− 3

λ2
3λ4

β(2λ3 + 1, λ4 + 1)

+
3

λ3λ2
4

β(λ3 + 1, 2λ4 + 1)

r4 =
1

λ4
3(4λ3 + 1)

+
1

λ4
4(4λ4 + 1)

+
6

λ2
3λ

2
4

β(2λ3 + 1, 2λ4 + 1)

− 4

λ3
3λ4

β(3λ3 + 1, λ4 + 1)− 4

λ3λ3
4

β(λ3 + 1, 3λ4 + 1) (3.23)

The skewnessα3 of Q(u) is therefore given by Eq. 3.21 and Eq. 3.23:

α3 =
1

σ3
E[χ− E[χ]]3

=
q̂3

q̂2
3/2

=
r3 − 3r1r2 + 2r3

1

(r2 − r2
1)

3/2

Similarly, the kurtosisα4 of Q(u) is calculated from:

α4 =
1

σ4
E[χ− E[χ]]4

=
q̂4

q̂2
2

=
r4 − 4r1r3 + 6r2

1r2 − 3r4
1

(r2 − r2
1)

2

As we require the skewness and kurtosis of the GLD to match those of the passage

time quantity, we can obtain values forλ3 andλ4 by settingα3 = α̂3 andα4 = α̂4 and

solving the resulting non-linear equations.

Finally, the values ofλ1 andλ2 are computed using the following equations:

λ1 =

√
r2 − r2

1

σ̂

λ2 = µ̂ +
1

λ2

(
1

λ3 + 1
− 1

λ4 + 1

)

3.6. Estimation of Passage Time Densities and Distributions From Their Moments75

Fig. 3.10.The branching Erlang model.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Exact pdf
GLD pdf

Fig. 3.11.The approximate Courier model passage time density function produced by the GLD method

compared with the exact result.

76 Chapter 3. Passage Times in Markov Models

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Exact cdf
GLD cdf

Fig. 3.12. The approximate Courier model cumulative distribution function produced by the GLD

method compared with the exact result.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Exact pdf
GLD pdf

Fig. 3.13.The approximate Erlang model passage time density function produced by the GLD method

compared with the exact result.

3.6. Estimation of Passage Time Densities and Distributions From Their Moments77

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Exact cdf
GLD cdf

Fig. 3.14. The approximate Erlang model cumulative distribution function produced by the GLD

method compared with the exact result.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Exact cdf
GLD cdf

WinMoments bounds

Fig. 3.15.The branching Erlang model cumulative distribution function produced by the GLD method

compared with the bounds produced by the WinMoments tool.

78 Chapter 3. Passage Times in Markov Models

An example passage time density function and the approximation produced by the

GLD method can be seen in Fig. 3.11 (this is in fact the passage time measure for the

Courier model from Section 3.4). This was produced using our implementation of the

above GLD method as described in [8]. We notice good agreement between the exact

result and the approximation. The corresponding cumulative distribution function (in

the case of the GLD method produced by numerical integration of the probability

density function but computed directly for the exact passage times) can also be seen in

Fig. 3.12. Again, the agreement is good.

One limitation of the GLD method is that it assumes that the function being approxi-

mated is unimodal. Attempting to approximate a bimodal passage time density results

in a very poor fit. The branching Erlang model shown in Fig. 3.10 is composed of

two equiprobable branches, one with anerlang(1.0, 12) distribution and the other an

erlang(1.0, 3) distribution. As can be seen in Fig. 3.13, the approximation produced

by the GLD method does not capture the bimodal nature of the passage time density.

The corresponding cumulative distribution function (shown in Fig. 3.14) does show

better agreement, however.

Moment Moment GLD Laplace

Model States Calc. Matching Total Total

Courier 11 700 0.66 0.28 0.94 42.1

Erlang 32 0.05 0.27 0.32 14.6

Table 3.3. Comparison of run-times in seconds for GLD approximation and full Laplace transform-

based passage time solution.

Table 3.3 shows that the time taken to calculate the above passage time densities using

the GLD method is considerably less than that required by the Laplace transform-

based approach. With increasing model size, we anticipate an increase in the time

taken to calculate the moments (although this will still require two orders of magnitude

less computation than the Laplace transform approach). The time to approximate the

density from these moments should remain very rapid since it is independent of the

model size.

3.6. Estimation of Passage Time Densities and Distributions From Their Moments79

A different approach based on the calculation of Hankel determinants is taken in [111],

where a technique is presented to calculate the upper and lower bounds on the range

of feasible distribution functions given a number of the moments of the function.

Fig. 3.15 compares the output produced by our implementation of the GLD method [7,

8] with that of an implementation of this second method (an implementation of the

WinMoments tool [111]) for the branching Erlang model. In both cases the approx-

imations are based on the first four moments of the passage time density. It will be

observed that the bounds calculated by WinMoments are very wide except for extreme

values. Also, in this case the GLD method provides a better approximation to the exact

distribution than the mid-points of the WinMoments bounds.

Chapter 4

Passage Times in Semi-Markov

Models

In this chapter we present a central contribution of this thesis: an iterative passage

time density extraction algorithm for very large semi-Markov processes (SMPs). Pre-

vious attempts to analyse SMPs for passage time measures have not been applicable

to very large models due to the complexity of maintaining the Laplace transforms of

state holding time distributions in closed form. In previous work [64, 98], the time

complexity of the numerical calculation of passage time densities and quantiles for a

semi-Markov system withN states isO(N4). Consequently, it has not been possible

to analyse semi-Markov systems with more than a few thousand states.

This limitation is overcome here by the application of an efficient representation for the

Laplace transforms of the state holding time density functions, which was developed

with the demands of the numerical inversion algorithms described in Chapter 2 in

mind. The resulting technique is amenable to a parallel implementation (thus allowing

for the analysis of even larger semi-Markov models) and has a time complexity of

O(N2r) for r iterations (typicallyr << N).

We also present an iterative algorithm for computing transient state probabilities in

SMPs which requires less computational effort than existing techniques. The algo-

rithm builds on the iterative passage time algorithm and shows a similar time com-

80

4.1. Efficient Representation of General Distributions 81

plexity. We present example passage time and transient results from models with up

to 1.1 million states. The chapter concludes by considering the extraction of moments

of passage times in semi-Markov systems.

4.1 Efficient Representation of General Distributions

The key to practical analysis of semi-Markov processes lies in the efficient representa-

tion of their general distributions. Without care the structural complexity of the SMP

can be recreated within the representation of the distribution functions. This is espe-

cially true with the convolutions performed in the calculation of passage time densities.

Many techniques have been used for representing arbitrary distributions – two of the

most popular beingphase-type distributions[106] andvector-of-momentsmethods.

These methods suffer from, respectively, exploding representation size under compo-

sition, and containing insufficient information to produce accurate answers after large

amounts of composition. Attempts to maintain a wholly symbolic representation are

similarly hamstrung by space constraints.

As all the distribution manipulations in the algorithm take place ins-space, the dis-

tribution representation is linked to the Laplace inversion technique used. The two

Laplace transform inversion algorithms which are applied in this thesis are described

in Chapter 2. Both work on the same general principle of sampling the transform func-

tion L(s) at n points,s1, s2, . . . , sn and generating values off(t) at m user-specified

t-points t1, t2, . . . , tm. In the Euler inversion casen = (k + m + 1), wherek can

vary between 15 and 50, depending on the accuracy of the inversion required. In the

modified Laguerre case,n = 400 and is independent ofm (cf. Section 2.3.2).

Whichever Laplace transform inversion technique is employed, it is important to note

that calculatingsi, 1 ≤ i ≤ n and storing all the state holding time distribution trans-

form functions, sampled at these points, will be sufficient to provide a complete inver-

sion. Key to this is the fact that convolution and weighted sum operations do not re-

quire any adjustment to the array of domains-points required. In the case of a convolu-

tion, for instance, ifL1(s) andL2(s) are stored in the form{(si, Lj(si)) : 1 ≤ i ≤ n},

82 Chapter 4. Passage Times in Semi-Markov Models

for j = 1, 2, then the convolution,L1(s)L2(s), can be stored using the same size array

and using the same list of domains-values,{(si, L1(si)L2(si)) : 1 ≤ i ≤ n}.

Storing the distribution functions in this way has three main advantages. Firstly, the

function has constant storage space, independent of the distribution type. Secondly,

each distribution has, therefore, the same constant storage requirement even after com-

position with other distributions. Finally, the function has sufficient information about

a distribution to determine the required passage time, and no more.

4.2 The Laplace Transform Method for SMPs

The Laplace transform-based method described in Chapter 3 for the extraction of pas-

sage times from Markov models can be extended to the analysis of semi-Markov mod-

els. Consider a finite, irreducible, continuous-time semi-Markov process withN states

{1, 2, . . . , N}. Recalling thatZ(t) denotes the state of the SMP at timet (t ≥ 0) and

thatN(t) denotes the number of transitions which have occurred by timet, the first

passage time from a source statei at timet into a non-empty set of target states~j is

defined as:

Pi~j(t) = inf{u > 0 : Z(t + u) ∈ ~j, N(t + u) > N(t), Z(t) = i}

For a stationary time-homogeneous SMP,Pi~j(t) is independent oft:

Pi~j = inf{u > 0 : Z(u) ∈ ~j, N(u) > 0, Z(0) = i} (4.1)

Pi~j has an associated probability density functionfi~j(t). In a similar way to Sec-

tion 3.1, the Laplace transform offi~j(t), Li~j(s), can be computed by means of a first-

step analysis. That is, we consider moving from the source statei into the set of its

immediate successors~k and must distinguish between those members of~k which are

target states and those which are not. This calculation can be achieved by solving a set

of N linear equations of the form:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (4.2)

4.3. Iterative Passage Time Analysis 83

wherer∗ik(s) is the Laplace-Stieltjes transform (LST) ofR(i, k, t) from Section 2.1.3

and is defined by:

r∗ik(s) =

∫ ∞

0

e−st dR(i, k, t) (4.3)

Eq. 4.2 has a matrix–vector formAx = b, where the elements ofA are general

functions of the complex variables. For example, when~j = {1}, Eq. 4.2 yields:

1 −r∗12(s) · · · −r∗1N(s)

0 1− r∗22(s) · · · −r∗2N(s)

0 −r∗32(s) · · · −r∗3N(s)
...

...
. ..

...

0 −r∗N2(s) · · · 1− r∗NN(s)

L1~j(s)

L2~j(s)

L3~j(s)
...

LN~j(s)

=

r∗11(s)

r∗21(s)

r∗31(s)
...

r∗N1(s)

(4.4)

When there are multiple source states, denoted by the vector~i, the Laplace transform

of the passage time density at steady-state is:

L~i~j(s) =
∑

k∈~i
αkLk~j(s) (4.5)

where the weightαk is the probability of being in statek ∈ ~i at the starting instant of

the passage. If measuring the system from equilibrium thenα is a normalised steady-

state vector. That is, ifπ denotes the steady-state vector of the embedded discrete-

time Markov chain (DTMC) with one-step transition probability matrixP = [pij, 1 ≤
i, j ≤ N], thenαk is given by:

αk =

πk/
∑

j∈~i πj if k ∈~i

0 otherwise
(4.6)

The row vector with componentsαk is denoted byα.

4.3 Iterative Passage Time Analysis

In this section, we present an iterative algorithm for generating passage time densities

that creates successively better approximations to the SMP passage time quantityPi~j

of Eq. 4.1. We approximatePi~j asP
(r)

i~j
, for a sufficiently large value ofr, which is the

84 Chapter 4. Passage Times in Semi-Markov Models

time forr consecutive transitions to occur starting from statei and ending in any of the

states in~j. We calculateP (r)

i~j
by constructing and then inverting its Laplace transform

L
(r)

i~j
(s).

This iterative method bears a loose resemblance to the uniformization technique de-

scribed in Section 3.3 which can be used to generate transient state distributions and

passage time densities for Markov chains. However, as we are working with semi-

Markov systems, there can be nouniformizingof the general distributions in the SMP.

The general distribution information has to be maintained as precisely as possible

throughout the process, which we achieve using the representation technique described

in Section 4.1.

4.3.1 Technical Overview

Recall the semi-Markov processZ(t) of Section 2.1.3, whereN(t) is the number of

state transitions that have taken place by timet. We formally define therth transition

first passage time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j, 0 < N(u) ≤ r, Z(0) = i} (4.7)

which is the time taken to enter a state in~j for the first time having started in statei at

time 0 and having undergone up tor state transitions.

P
(r)

i~j
is a random variable with associated Laplace transformL

(r)

i~j
(s). L

(r)

i~j
(s) is, in turn,

theith component of the vector:

L
(r)
~j

(s) =
(
L

(r)

1~j
(s), L

(r)

2~j
(s), . . . , L

(r)

N~j
(s)

)

representing the passage time for terminating in~j for each possible start state. This

vector may be computed as:

L
(r)
~j

(s) = U
(
I + U′ + U′2 + · · ·+ U′(r−1)

)
e~j (4.8)

whereU is a matrix with elementsupq = r∗pq(s) andU′ is a modified version ofU with

elementsu′pq = δp6∈~j upq, where states in~j have been made absorbing. Here,δp6∈~j = 1

4.3. Iterative Passage Time Analysis 85

if p 6∈ ~j and 0 otherwise. The initial multiplication withU in Eq. 4.8 is included so as

to generate cycle times for cases such asL
(r)
ii (s) which would otherwise register as 0

if U′ were used instead. The column vectore~j has entriesek~j = δk∈~j, whereδk∈~j = 1

if k is a target state (k ∈ ~j) and 0 otherwise.

From Eq. 4.1 and Eq. 4.7:

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s)

This can be generalised to multiple source states~i using, for example, the normalised

steady-state vectorα of Eq. 4.6:

L
(r)
~i~j

(s) = αL
(r)
~j

(s)

= (αU + αUU′ + αUU′2 + · · ·+ αUU′(r−1)
) e~j

=
r−1∑

k=0

αUU′k e~j (4.9)

The sum of Eq. 4.9 can be computed efficiently using sparse matrix–vector multipli-

cations with a vector accumulator,µr =
∑r

k=0 αU′k. At each step, the accumulator

(initialised asµ0 = αU) is updated asµr+1 = αU + µrU
′. The worst-case time

complexity for this sum isO(N2r) versus theO(N3) of typical matrix inversion tech-

niques. In practice, we typically observer << N for largeN (see Section 4.3.3

below).

4.3.2 Example Passage Time Results

In this section, we display passage time densities produced by our iterative passage

time algorithm and validate these results by simulation. Readers are referred to Ap-

pendices A.4 and A.5 for full details of the Voting and Web-server models in which

these passage times are measured.

Fig. 4.1 shows numerical and simulated (using the combined results from 10 simula-

tions of 1 billion transition firings each) results for the time to complete failure (defined

as either all booths have failed or all central servers have failed) in an initially fully

86 Chapter 4. Passage Times in Semi-Markov Models

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

0.00018

0 20 40 60 80 100

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density failure mode: 2081 state Voting model

Fig. 4.1.Numerical and simulated (with 95% confidence intervals) density for the failure mode passage

in the Voting model system 1 (2 081 states).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20 40 60 80 100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Cumulative passage-time distribution: 2081 state Voting model

Fig. 4.2.Cumulative distribution function and quantile for the failure mode passage in the Voting model

system 1 (2 081 states).

4.3. Iterative Passage Time Analysis 87

0

0.001

0.002

0.003

0.004

0.005

0.006

400 500 600 700 800 900

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 107289 state Web-server model

Fig. 4.3.Numerical and simulated (with 95% confidence intervals) density for the time taken to process

45 reads and 22 writes in the Web-server model system 1 (107 289 states).

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Cumulative passage-time distribution: 107289 Web-server model

Fig. 4.4. Cumulative distribution function and quantile for the time taken to process 45 reads and 22

writes in the Web-server model system 1 (107 289 states).

88 Chapter 4. Passage Times in Semi-Markov Models

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

300 350 400 450

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 1.1 million state Voting model

Fig. 4.5.Numerical and simulated (with 95% confidence intervals) density for the time taken to process

175 voters in the Voting model system 7 (1.1 million states).

0

0.2

0.4

0.6

0.8

1

300 350 400 450 500

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Cumulative passage-time distribution: 1.1 million state Voting model

Fig. 4.6. Cumulative distribution function and quantile for the time taken to process 175 voters in the

Voting model system 7 (1.1 million states).

4.3. Iterative Passage Time Analysis 89

operational Voting system. It is produced for a small system (2 081 states) as the prob-

abilities for the larger systems were so small that the simulator was not able to register

any meaningful distribution for the quantity without using rare-event techniques. As

we wanted to validate the passage time algorithm, we reduced the number of states

so that the simulator would register a density. Examining very-low-probability events

is an excellent example of where analytical techniques outperform simulations that

would take many hours or even days to complete.

Fig. 4.2 shows a cumulative distribution for the same passage as Fig. 4.1 (easily ob-

tained by invertingL~i~j(s)/s from cached values ofL~i~j(s)). It allows us to extract

response time quantiles, for instance:

IP(either all the booths or all the servers fail in system 1 in under 80 seconds) = 0.0109

Fig. 4.3 shows the density of the time taken to process 45 reads and 22 writes in system

1 of the Web-server model (107 289 states). This corresponds to the movement of 45

tokens fromp1 to p8 and 22 tokens fromp2 to p9. The graph shows results computed

by both the iterative technique and the combined results from 10 simulations of 1

billion transition firings each. The close agreement provides mutual validation of the

analytical method, with its numerical approximation, and the simulation.

Fig. 4.4 shows the cumulative distribution for the same passage as Fig. 4.3. An exam-

ple response time quantile for this measure would be:

IP(all reads and all writes are processed in under 470 seconds) = 0.954

Fig. 4.5 shows the density of the time taken for the passage of 175 voters from placep1

to p2 in system 7 of the Voting model (1 140 050 states) starting from when all servers

are operational. The results presented are those computed by the iterative technique

and the combined results from 10 simulations of 1 billion transition firings each. As

with the previous example, the close agreement observed provides mutual validation

of the analytical method and the simulation.

Fig. 4.6 shows a cumulative distribution for the same passage as Fig. 4.5. We can

extract response time quantiles from it, for instance:

IP(system 5 processes 175 voters in under 425 seconds) = 0.955

90 Chapter 4. Passage Times in Semi-Markov Models

4.3.3 Practical Convergence of the Iterative Passage Time Algo-

rithm

In practice, convergence of the sumL(r)
~i~j

(s) =
∑r−1

k=0 αUU′k can be said to have

occurred if, for a particularr ands-point:

|Re(L
(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε and |Im(L
(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε (4.10)

whereε is chosen to be a suitably small value, sayε = 10−16. Empirical observations

on the convergence behaviour of this technique (i.e. the order ofr) are presented

below.

0

50

100

150

200

250

300

350

400

450

500

0 200000 400000 600000 800000 1e+06 1.2e+06

N
um

be
r

of
 it

er
at

io
ns

 to
 c

on
ve

rg
e

�

Size of model

epsilon=1e-16: average no of iterations per s point (Voting model)
epsilon=1e-8: average no of iterations per s point (Voting model)

epsilon=1e-16: average no of iterations per s point (Web-server model)
epsilon=1e-8: average no of iterations per s point (Web-server model)

Fig. 4.7.Average number of iterations to converge pers point for two different values ofε over a range

of model sizes for the iterative passage time algorithm.

Fig. 4.7 shows the average number of iterations the algorithm takes to converge per

s-point for the Voting and Web-server models (see Appendices A.4 and A.5 for full

details) for two different values ofε (10−8 and10−16). It is noted that the number of

iterations required for convergence as the model size grows is sub-linear; that is, as

the model size doubles the number of iterations less than doubles. This suggests the

algorithm has good scalability properties.

4.3. Iterative Passage Time Analysis 91

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1e+06 1.2e+06

T
im

e
ta

ke
n

to
 c

on
ve

rg
e

(s
)

�

Size of model

epsilon=1e-16: average time per s point (Voting model)
epsilon=1e-8: average time per s point (Voting model)

epsilon=1e-16: average time per s point (Web-server model)
epsilon=1e-8: average time per s point (Web-server model)

Fig. 4.8. Average time to convergence pers point for two different values ofε over a range of model

sizes for the iterative passage time algorithm.

0

5

10

15

20

25

30

35

40

45

0 200000 400000 600000 800000 1e+06 1.2e+06

Ite
ra

tio
ns

 p
er

 s
ec

on
d

�

Size of model

epsilon=1e-16: iterations per unit time (Voting model)
epsilon=1e-8: iterations per unit time (Voting model)

epsilon=1e-16: iterations per unit time (Web-server model)
epsilon=1e-8: iterations per unit time (Web-server model)

Best fit curve (Voting model): k/xlog(x)
Best fit curve (Web-server model): k/xlog(x)

Fig. 4.9.Average number of iterations per unit time over a range of model sizes for the iterative passage

time algorithm.

92 Chapter 4. Passage Times in Semi-Markov Models

Fig. 4.8 shows the average amount of time to convergence pers-point, while Fig. 4.9

shows how the number of iterations per unit time decreases as model size increases.

The curves are almost identical for both values ofε, suggesting that the time spent per

iteration remains constant, irrespective of the number of iterations performed. The rate

of computation (iterations per unit time) isO
(
1/(N log(N))

)
for system sizeN . This

gives a time per iteration ofO
(
N log(N)

)
, suggesting an overall practical complexity

of better thanO
(
N2 log(N)

)
(given the better thanO(N) result for the number of

iterations required).

4.4 Iterative Transient Analysis

Another important modelling result is the transient state distributionπij(t) of a stochas-

tic process:

πij(t) = IP(Z(t) = j | Z(0) = i)

From Pyke’s seminal paper on SMPs [110], we have the following relationship be-

tween passage time densities and transient state distributions, in Laplace form:

π∗ij(s) =
1

s

1− h∗i (s)
1− Lii(s)

if i = j, π∗ij(s) = Lij(s)π
∗
jj(s) if i 6= j

whereπ∗ij(s) is the Laplace transform ofπij(t) andh∗i (s) =
∑

k r∗ik(s) is the LST of

the sojourn time distribution in statei. For multiple target states, this becomes:

π∗
i~j
(s) =

∑

k∈~j

π∗ik(s)

However, to constructπ∗
i~j
(s) directly using this translation is computationally expen-

sive: for a vector of target states~j, we need2|~j| − 1 passage time quantities,Lik(s),

which in turn require the solution of|~j| linear systems of the form of Eq. 4.4. This

motivates our development of a new transient state distribution formula for multiple

target states in semi-Markov processes which requires the solution of only one system

of linear equations pers-value.

From Pyke’s formula for the transient state distribution between two states [110, Eq.

4.4. Iterative Transient Analysis 93

(3.2)], we can derive:

πij(t) = δijF i(t) +
N∑

k=1

∫ t

0

R(i, k, t− τ) πkj(τ) dτ

whereδij = 1 if i = j and 0 otherwise, andF i(t) is the reliability function of the

sojourn time distribution in statei, i.e. the probability that the system has not left state

i after t time units.R(i, k, t − τ) is the probability that a transition from statei to an

adjacent statek occurs in timet − τ andπkj(τ) is the probability of being in statej

having left statek after a further timeτ .

Transforming this convolution into the Laplace domain and generalising to multiple

target states,~j, we obtain:

π∗
i~j
(s) = δi∈~jF

∗
i (s) +

N∑

k=1

r∗ik(s)π
∗
k~j

(s) (4.11)

Here, δi∈~j = 1 if i ∈ ~j and 0 otherwise. The Laplace transform of the reliability

functionF
∗
i (s) is generated fromh∗i (s) as:

F
∗
i (s) =

1− h∗i (s)
s

Eq. 4.11 can be written in matrix–vector form; for example, when~j = {1, 3}, we have:

1− r∗11(s) −r∗12(s) · · · −r∗1N(s)

−r∗21(s) 1− r∗22(s) · · · −r∗2N(s)

−r∗31(s) −r∗32(s) · · · −r∗3N(s)
...

...
.. .

...

−r∗N2(s) −r∗N2(s) · · · 1− r∗NN(s)

π∗
1~j

(s)

π∗
2~j

(s)

π∗
3~j

(s)
...

π∗
N~j

(s)

=

F
∗
1(s)

0

F
∗
3(s)
...

0

(4.12)

Again for multiple source states with initial distributionα, the Laplace transform of

the transient function is:

π∗~i~j(s) =
∑

k∈~i
αkπ

∗
k~j

(s)

4.4.1 Technical Overview

Our iterative transient state distribution generation technique builds on the passage

time computation technique of Section 4.3. We aim to calculateπi~j(t), that is the

94 Chapter 4. Passage Times in Semi-Markov Models

probability of being in any of the states of~j at time t having started in statei at

time t = 0. We approximate this transient state distribution by constructing and then

invertingπ
(r)

i~j
(s), which is therth iterative approximation to the Laplace transform of

the transient state distribution function, for a sufficiently large value ofr.

We note that Eq. 4.12 can be written as:

(I−U) π~j(s) = v (4.13)

where matrixU has elementsupq = r∗pq(s) and column vectorv has elementsvi =

δi∈~jF
∗
i (s). The vectorπ~j(s) has elementsπi~j(s):

π~j(s) =
(
π1~j(s), π2~j(s), . . . , πN~j(s)

)

Eq. 4.13 can be rewritten (see [30] for the proof that(I−U) is invertible) as:

π~j(s) = (I−U)−1 v

=
(
I + U + U2 + U3 + · · ·

)
v

This infinite summation may be approximated as:

π~j(s) ' π
(r)
~j

(s) =
(
I + U + U2 + · · ·+ Ur

)
v

for a suitable value ofr such that the approximation is good. See Section 4.4.3 below

for observations regarding typical values ofr.

Note that instead of using an absorbing transition matrix as in the passage time scheme,

the transient method makes use of the unmodified transition matrixU. This reflects

the fact that the transient state distribution accumulates probability from all passages

through the system and not just the first one.

Finally, as before, the technique can be generalised to multiple start states by employ-

ing an initial row vectorα, whereαi is the probability of being in statei at time0:

π
(r)
~i~j

(s) = α
(
I + U + U2 + · · ·+ Ur

)
v

Having calculatedπ(r)
~i~j

(s) in this manner, the same numerical inversion techniques

which are used in passage time analysis can be employed to computeπ~i~j(t).

4.4. Iterative Transient Analysis 95

Fig. 4.10.A simple two-state semi-Markov process.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

�

Time

Analytical solution
1 iteration

2 iterations
4 iterations
6 iterations
8 iterations

Fig. 4.11.Example iterations towards a transient state distribution in a system with successive exponen-

tial and deterministic transitions.

96 Chapter 4. Passage Times in Semi-Markov Models

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

�

Time

Numerical solution
1 iteration

2 iterations
3 iterations
4 iterations

Fig. 4.12. Example iterations towards a transient state distribution in a system with successive deter-

ministic and exponential transitions.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

�

Time

Transient solution

Fig. 4.13.Where numerical inversion performs badly: transient state distribution in a system with two

deterministic transitions.

4.4. Iterative Transient Analysis 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

�

Time

Transient solution

Fig. 4.14.The effect of adding randomness: transient state distribution of the two deterministic transi-

tions system with a initial exponential transition added.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100

P
ro

ba
bi

lit
y

�

Time

Transient solution: system 1/8
Steady-state solution: system 1/8

Fig. 4.15. Transient and steady-state values in system 1, for the transit of 5 voters from the initial

marking to placep2.

98 Chapter 4. Passage Times in Semi-Markov Models

4.4.2 Example Transient Results

We demonstrate our iterative transient technique on two models: the small two-state

example shown in Fig. 4.10 and the Voting model described in Appendix A.4.

For the two-state example, Fig. 4.11 shows a transient state distributionπ00(t), that is

the probability of being in state 0, having started in state 0, at timet. The distributions

of the transitions areX ∼ exp(2) andY ∼ det(2). The discontinuities in the deriva-

tive from the deterministic transition can clearly be made out at pointst = 2, 4 and in

fact also exist att = 6, 8, 10, Also shown on the graph are up to 8 iterations of the

algorithm which exhibit increasing accuracy in approximating the transient curve.

Fig. 4.12 shows the transient state distributionπ00(t) for the two state system with

X ∼ det(3) andY ∼ exp(0.5). The graph clearly shows the system remaining in

state 0 for the initial 3 time units, as dictated by the out-going deterministic transition.

The perturbations in the graph observed aroundt = 3 are generated by numerical

instabilities (Gibb’s Phenomena) in the Laplace inversion algorithm [3]. Also shown

on the graph are 4 iterations of the algorithm which exhibit increasing accuracy in

approximating the transient curve, as before.

We also use the two state system of Fig. 4.10 to highlight when numerical Laplace

transform inversion does not perform well and how such problems can be avoided.

Fig. 4.13 shows the transient probability of being in state 0 having started in state 0

when bothX andY aredet(2) transitions. We would expect to see the probability

equalling 1 for0 < t < 2, 4 < t < 6 and so forth, and 0 at2 < t < 4, 6 < t < 8

and so on, but the numerically computed result becomes increasingly unstable ast in-

creases. This is because discontinuities inf(t) and its derivatives result in instabilities

in the numerical inversion. Even the Euler algorithm (which was used to produce these

results) performs badly when inverting entirely deterministic probability distributions.

This example, with two such transitions and no source of randomness, is the worst

case we could expect to deal with.

The presence of a small amount of randomness is, however, enough to remove this in-

stability. We modify the two state system by adding a new state with a singleexp(0.5)

4.4. Iterative Transient Analysis 99

transition into state 0 and calculate the transient probability of being in state 0 having

started in the newly added predecessor state. There is no transition from state 0 back

to the new state, so theexp(0.5) transition fires only once. The resulting transient

state distribution is shown in Fig. 4.14. Note that the numerical instability has disap-

peared. This demonstrates that only a small amount of randomness in the model can

be sufficient for numerical inversion to be applied successfully.

For the Voting model, Fig. 4.15 shows the transient state distribution for the transit of

five voters from placep1 to p2 in system 1. As expected, the distribution tends towards

its steady-state value ast →∞.

4.4.3 Practical Convergence of the Iterative Transient Algorithm

As in the iterative passage time algorithm, convergence of the sumπ
(r)
~i~j

(s) is said to

have occurred if, for a particularr ands-point:

|Re(π
(r+1)
~i~j

(s)− π
(r)
~i~j

(s))| < ε and |Im(π
(r+1)
~i~j

(s)− π
(r)
~i~j

(s))| < ε (4.14)

whereε is chosen to be a suitably small value such as10−16.

Fig. 4.16 shows the average number of iterations the algorithm takes to converge per

s-point for the Voting model for two different values ofε (10−8 and 10−16). It is

interesting to note that, in contrast to the iterative passage time algorithm, the number

of iterations until convergence is achieved appears to remain constant as the number

of states increases.

Fig. 4.17 shows the average amount of time to convergence pers-point, while Fig. 4.18

shows how the number of iterations per unit time decreases as model size increases. As

with the iterative passage time algorithm, we observe an overall practical complexity

of better thanO
(
N2 log(N)

)
.

100 Chapter 4. Passage Times in Semi-Markov Models

0

100

200

300

400

500

600

700

0 200000 400000 600000 800000 1e+06 1.2e+06

N
um

be
r

of
 it

er
at

io
ns

 to
 c

on
ve

rg
e

�

Size of model

epsilon=1e-16: average no of iterations per s point (Voting model)
epsilon=1e-8: average no of iterations per s point (Voting model)

Fig. 4.16.Average number of iterations to converge pers point for two different values ofε over a range

of model sizes for the iterative transient algorithm.

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1e+06 1.2e+06

T
im

e
ta

ke
n

to
 c

on
ve

rg
e

(s
)

�

Size of model

epsilon=1e-16: average time per s point (Voting model)
epsilon=1e-8: average time per s point (Voting model)

Fig. 4.17.Average time to convergence pers point for two different values ofε over a range of model

sizes for the iterative transient algorithm.

4.5. Estimation of Passage Time Densities and Distributions From Their Moments101

0

10

20

30

40

50

60

0 200000 400000 600000 800000 1e+06 1.2e+06

Ite
ra

tio
ns

 p
er

 s
ec

on
d

�

Size of model

epsilon=1e-16: iterations per unit time (Voting model)
epsilon=1e-8: iterations per unit time (Voting model)

Best fit curve (Voting model): k/xlog(x)

Fig. 4.18. Average number of iterations per unit time over a range of model sizes for the iterative

transient algorithm.

4.5 Estimation of Passage Time Densities and Distribu-

tions From Their Moments

As well as calculating a full passage time density in a semi-Markov model using the it-

erative algorithm, it is also possible to approximate it from its moments. The technique

described in this section is an extension of the procedure described for calculating

moments in Markov systems in Section 3.6. Once the first four moments have been

calculated in the manner described below, the corresponding density or distribution

function can be approximated using the technique described in Section 3.6.3.

As in Chapter 3, we define thenth raw moment of the Laplace transform of the passage

time densityLi~j(s) as:

Mi~j(n) = (−1)n
dnLi~j(s)

dsn

∣∣∣∣
s=0

That is to say, thenth moment is calculated by differentiatingLi~j(s) n times and

evaluating ats = 0. As we are dealing with semi-Markov processes, we must also

deal with generally-distributed state sojourn times. We therefore define the quantity

102 Chapter 4. Passage Times in Semi-Markov Models

mik(n) for an SMP as [70]:

mik(n) = (−1)n dnr∗ik(s)
dsn

∣∣∣∣
s=0

4.5.1 Moment Calculation

The general formula for calculating thenth moment of passage time for a semi-Markov

model is stated without proof in [70]:

Mi~j(n) =
∑

k/∈~j

n∑
r=0

(
n

r

)
mik(r)Mk~j(n− r) +

∑

k∈~j

mik(n) (4.15)

for i /∈ ~j andMi~j(n) = 0 for i ∈ ~j. Also,Mi~j(0) = 1 andpik = r∗ik(0) ≡ mik(0). We

will prove that this general formula holds by induction.

For a semi-Markov model, we calculate the Laplace transform of the density of the

passage time between statesi and states~j by solving a system of linear equations of

the form:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (4.16)

wherer∗ik is as defined in Eq. 4.3. We will now show that differentiating Eq. 4.16n

times gives:

L
(n)′

i~j
(s) =

∑

k/∈~j

n∑
r=0

(
n

r

)
r
∗(r)′
ik (s)L

(n−r)′

k~j
(s) +

∑

k∈~j

r
∗(n)′
ik (s) (4.17)

for any integer value ofn.

Base caseDifferentiating Eq. 4.16 once requires the use of the product rule, and this

yields:

L′
i~j
(s) =

∑

k/∈~j

(
r∗ik(s)L

′
k~j

(s) + r′∗ik(s)Lk~j(s)
)

+
∑

k∈~j

r′∗ik(s)

which is Eq. 4.17 forn = 1.

4.5. Estimation of Passage Time Densities and Distributions From Their Moments103

Inductive step Given that Eq. 4.17 holds, we must show that differentiating it once

gives Eq. 4.17 for the(n + 1)th differential. Applying the product rule we have:

L
(n+1)′

i~j
(s) =

∑

k/∈~j

n∑
r=0

(
n

r

) (
r
∗(r+1)′
ik (s)L

(n−r)′

k~j
(s) + r

∗(r)′
ik (s)L

(n−r+1)′

k~j
(s)

)

+
∑

k∈~j

r
∗(n+1)′
ik (s) (4.18)

The first summation overk /∈ ~j requires special attention. Expanding it yields:

n∑
r=0

(
n

r

) (
r
∗(r+1)′
ik (s)L

(n−r)′

k~j
(s) + r

∗(r)′
ik (s)L

(n−r+1)′

k~j
(s)

)
=

(
n

0

) (
r
∗(1)′
ik (s)L

(n)′

k~j
(s) + r

∗(0)′
ik (s)L

(n+1)′

k~j
(s)

)

+

(
n

1

) (
r
∗(2)′
ik (s)L

(n−1)′

k~j
(s) + r

∗(1)′
ik (s)L

(n)′

k~j
(s)

)
+ . . .

+

(
n

n− 1

) (
r
∗(n)′
ik (s)L

(1)′

k~j
(s) + r

∗(n−1)′
ik (s)L

(2)′

k~j
(s)

)

+

(
n

n

) (
r
∗(n+1)′
ik (s)L

(0)′

k~j
(s) + r

∗(n)′
ik (s)L

(1)′

k~j
(s)

)

Collecting like-terms on the right-hand side gives:

n∑
r=0

(
n

r

) (
r
∗(r+1)′
ik (s)L

(n−r)′

k~j
(s) + r

∗(r)′
ik (s)L

(n−r+1)′

k~j
(s)

)
=

(
n

0

) (
r
∗(0)′
ik (s)L

(n+1)′

k~j
(s)

)
+

((
n

0

)
+

(
n

1

))(
r
∗(1)′
ik (s)L

(n)′

k~j
(s)

)

+

((
n

1

)
+

(
n

2

))(
r
∗(2)′
ik (s)L

(n−1)′

k~j
(s)

)
+ . . .

+

((
n

n− 1

)
+

(
n

n

))(
r
∗(n)′
ik (s)L

(1)′

k~j
(s)

)

+

(
n

n

) (
r
∗(n+1)′
ik (s)L

(0)′

k~j
(s)

)

Using the equivalence:

(
n

r

)
+

(
n

r − 1

)
=

(
n + 1

r

)

104 Chapter 4. Passage Times in Semi-Markov Models

this can be rewritten as:

n∑
r=0

(
n

r

) (
r
∗(r+1)′
ik (s)L

(n−r)′

k~j
(s) + r

∗(r)′
ik (s)L

(n−r+1)′

k~j
(s)

)
=

(
n + 1

0

) (
r
∗(0)′
ik (s)L

(n+1)′

k~j
(s)

)
+

(
n + 1

1

) (
r
∗(1)′
ik (s)L

(n)′

k~j
(s)

)

+

(
n + 1

2

) (
r
∗(2)′
ik (s)L

(n−1)′

k~j
(s)

)
+ . . . +

(
n + 1

n

) (
r
∗(n)′
ik (s)L

(1)′

k~j
(s)

)

+

(
n + 1

n + 1

) (
r
∗(n+1)′
ik (s)L

(0)′

k~j
(s)

)

=
n+1∑
r=0

(
n + 1

r

)
r
∗(r)′
ik (s)L

(n−r+1)′

k~j
(s)

Substituting back into Eq. 4.18 gives:

L
(n+1)′

i~j
(s) =

∑

k/∈~j

n+1∑
r=0

(
n + 1

r

)
r
∗(r)′
ik (s)L

(n−r+1)′

k~j
(s) +

∑

k∈~j

r
∗(n+1)′
ik (s)

as required.

We have therefore proved that Eq. 4.17 holds for all integer values ofn ≥ 1. Evaluat-

ing Eq. 4.17 ats = 0 now yields Eq. 4.15 as required.

4.5.2 Example Results

A simple SM-SPN model is shown in Fig. 4.19. We demonstrate the estimation of

a passage time in an SMP from its moments on the passage of 20 tokens fromp1 to

p0 in this model. The result produced by the iterative technique of Section 4.3 and

an approximation produced by applying the GLD method described in Section 3.6.3

to moments calculated using the method of Section 4.5.1 can be seen in Fig. 4.20.

We notice good agreement between the exact result and the approximation. The corre-

sponding cumulative distribution function (in the case of the GLD method produced by

numerical integration of the probability density function but computed directly for the

exact passage times) can also be seen in Fig. 4.21. Again, the agreement is excellent.

4.5. Estimation of Passage Time Densities and Distributions From Their Moments105

p0

p2p3

20

(t0, 1.0, 1, erlang(4,3.0,s))
p1

(t1, 1.0, 1, exp(5.7,s))(t3, 1.0, 1, det(0.89,s))

(t2, 1.0, 1, uniform(1.3,7.8,s))

Fig. 4.19.A simple four-state semi-Markov model (SMFour).

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 100 200 300 400 500 600

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Exact pdf
GLD pdf

Fig. 4.20. The SMFour model passage time density function produced by the GLD method compared

with the exact result.

106 Chapter 4. Passage Times in Semi-Markov Models

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Exact cdf
GLD cdf

Fig. 4.21.The SMFour model cumulative distribution function produced by the GLD method compared

with the exact result.

Chapter 5

Techniques for Analysing Large

Models

When performing passage time analysis, the biggest constraint on the size of model

which can be analysed is typically the amount of main memory available on the ma-

chine in use. For very large models with state spaces of the order of107 states and

greater, it is not possible to store the corresponding sparse transition matrix and solu-

tion vector in main memory on a single computer as they are too large.

Historically, there have been a number of ways of surmounting this problem, especially

in the context of the steady-state solution of large Markov chains:

• Disk-based or out-of-core techniques [46, 89, 93] store the transition matrix and

solution vector on disk. The steady-state solution is performed using iterative

methods such as Gauss-Seidel, which accesses the elements of the matrix and

vector in a sequential fashion. The algorithm proceeds by reading a block of

the matrix and a portion of the vector from disk into memory, performing the

calculations on this data and then writing the resulting updated portion of the

solution vector back to disk. This continues until the algorithm has converged.

The constraints on the size of models which can be analysed are therefore the

disk space available to store them and the amount of time the user is prepared

to wait for the solution to be calculated on a single processor. It is usually the

107

108 Chapter 5. Techniques for Analysing Large Models

case that disk capacity greatly exceeds memory capacity on modern computers

(at the time of writing, most desktop PCs have 512MB of RAM and hard-disks

larger than 80GB). However, a significant overhead in disk-based schemes is

the time taken to read data from and write it to the disk, which takes far longer

than performing the same operations to and from memory. The use of multiple

threads or processes to perform computation and I/O concurrently mitigates this

somewhat, but high CPU utilisations are rarely achieved.

• Implicit state-space representation techniques [38, 47, 74, 94] seek to reduce the

amount of memory required to store the sparse transition matrix by encoding

it using symbolic data structures such as Multi-Terminal Binary Decision Dia-

grams (MTBDDs) [62]. Such symbolic representations can sometimes be stored

using less memory than an explicit sparse matrix representation of the same ma-

trix (e.g. one which uses compressed sparse row (CSR) format, see [117] p.

153 for details), especially if the matrix has a regular non-zero structure. This

permits the analysis of very large models on relatively modest machines: for ex-

ample, in [45] a system with 110 million states is represented using only 13.7MB

of memory, while in [37] a CTMC with11 261 376 states requires just 176.1KB

of storage using MTBDDs compared with1 376MB for an explicit scheme.

However, implicit representation techniques suffer from a number of drawbacks.

In particular, operations using an MTBDD representation of a matrix or a vec-

tor (such as sparse matrix–vector multiplication) are much slower than the same

operations performed using an explicit representation. For example, in the FMS

case study available on the PRISM website (see [94]), for the6 520 state example

each iteration of the Jacobi solution method takes 6.45 seconds when using an

MTBDD representation and only 0.0024 seconds when using an explicit sparse

matrix and vector storage scheme. The difference is observed because of the

overheads imposed in the manipulation and maintenance of the implicit repre-

sentations of the matrix and the vector.

When using iterative techniques such as Jacobi, Gauss-Seidel or SOR, the values

in the iteration vector are updated after each step, which requires the recomputa-

109

tion of its MTBDD representation. Also, to be efficient MTBDDs require there

to be only a few distinct elements within the vector – but this is typically not

the case in practice. This imposes an even greater performance overhead which

can be avoided by storing the vectors explicitly; but this limits the size of model

which can be analysed.

• Parallel and distributed techniques [16, 32, 88] harness the combined memory

capacity and computing power of a network of workstations or a dedicated par-

allel computer to analyse very large models. As the transition matrix is too large

to be held within the memory of a single machine, this approach partitions the

matrix across a number of processors so that each holds a portion small enough

to fit into memory. Calculation of steady-state probabilities and passage time

measures in this way requires communication between the processors involved

and it is important, therefore, that the partitioning be done in such a way that

this communication does not become too large an overhead.

• State-space reduction techniques aim to reduce the size of a model’s state-space

so that it can be analysed using less memory. This is typically achieved by

aggregating states in the underlying stochastic process together and hence re-

ducing the dimensions of the transition matrix. They either operate at the level

of the underlying state-transition system directly or they can attempt to aggre-

gate elements in the high-level model (for example, in Petri nets the places and

transitions [58]) to reduce the size of the underlying state-space.

It is the two final methods that we consider in more detail in the remainder of this

chapter. A number of sparse matrix partitioning strategies are considered, but we

favour hypergraph partitioning as it minimises communication whilst maintaining a

good balance of computational load. We undertake a comparison between hyper-

graph partitioning and a simpler technique which only balances computational load

and demonstrate that the additional overhead imposed by calculating the hypergraph

partition is compensated for by the reduced time taken to perform the matrix–vector

multiplications.

110 Chapter 5. Techniques for Analysing Large Models

This chapter also describes a state-level algorithm which can be applied to semi-

Markov models to reduce the dimensions of their state-spaces. We present a practical

investigation into the computational aspects of this method, before concluding with a

discussion of the suitability of this algorithm for parallel implementation.

5.1 Sparse Matrix Partitioning Strategies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 5.1.A 16× 16 non-symmetric sparse matrixA [50].

The key opportunity for parallelism in the iterative passage time and transient analysis

algorithms presented in Chapter 4, and also in the uniformization computations in

Chapter 3, is the sparse matrix–vector multiplications of the general formAx. We

will illustrate the discussion of partitioning schemes which follows with reference to

the 16× 16 non-symmetric sparse matrixA illustrated in Fig. 5.1.

To perform sparse matrix–vector multiplications efficiently in parallel it is necessary

to map the non-zero elements ofA andx onto processors such that the computa-

tional load is balanced and communication between processors is minimised. As each

5.1. Sparse Matrix Partitioning Strategies 111

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P1

P2

P3

P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

x

Fig. 5.2.The 4-way row-striped partition of the matrixA in Fig. 5.1 and the corresponding partition of

the vectorx.

15 14 4 8 11 6 13 10 9 16 5 12 1 2 7 3

2

15

11

13

9

1

8

6

14

16

12

3

7

4

5

10

P1 P2

P3 P4

x

Fig. 5.3. The 4-way 2D checkerboard partition of the matrixA in Fig. 5.1 (with random asymmetric

row and column permutation) and the corresponding partition of the vectorx.

112 Chapter 5. Techniques for Analysing Large Models

processor holds only a portion of the vector which may not contain all the elements

that must be multiplied with the locally-stored non-zero matrix elements, this requires

processors to communicate newly-computed vector elements to other processors after

each iteration. The simplest partitioning strategy is to assign blocks of contiguous rows

to the processors such that each processor stores the same number of non-zeros – alin-

ear or row-stripedpartition. Forp processors andn matrix rows, the first processor is

assigned rows{1, 2, . . . , p1max}, the second is assigned{p1max + 1, . . . , p2max}
and so on. This partition has the advantage of being very easy to compute and also of

achieving good load balance, the drawback being that it does not minimise communi-

cation.

The effect of applying a row-striped partition to matrixA of Fig. 5.1 is shown in

Fig. 5.2. Note how the number of rows assigned to the processors is not necessarily

the same (P2 has 5 rows, whileP4 has 3) but that the number of non-zeros is nearly

the same (P1 andP3 both have 12,P3 has 13 andP4 has 11). It was not possible

to assign the same number of non-zeros to every processor in this case because of the

structure of the matrix. The number of off-diagonal non-zeros in this decomposition

is 27.

Another option proposed in [108] is to permute the rows and columns of the matrix

randomly and then perform a 2D checkerboard partitioning [92]. This approach is in-

spired by the fact that 2D checkerboard partitioning yields significantly higher efficien-

cies than row-striped partitioning when applied to dense matrices. For ann×n sparse

matrix partitioned overp processors, this scheme achieves excellent load balance and

an asymptotic worst-case communication overhead, per iteration, of2
√

p(
√

p − 1)

messages of lengthn/
√

p, giving a total communication volume of2n(
√

p − 1). The

alternative 2D checkerboard algorithm presented in [73] has communication require-

ments of2p(
√

p− 1) messages of lengthn/p, yielding the same total communication

volume. The corresponding worst-case communication overhead for a random row-

striped partitioning isp(p− 1) messages of lengthn/p, giving a total communication

volume ofn(p− 1).

Fig. 5.3 shows the effect of asymmetrically permuting the rows and columns of ma-

5.1. Sparse Matrix Partitioning Strategies 113

trix A (cf. Fig. 5.1) randomly and applying a 2D checkerboard partition. Note how

the structure ofA has been destroyed but that good balance of non-zeros has been

achieved (12 each for processorsP1 andP2, 14 forP3 and 10 forP4). Besides incur-

ring a relatively high per-iteration communication cost, the asymmetric row and col-

umn permutations increase the number of operations performed during matrix–vector

multiplication. This is because it becomes necessary to reorder vector elements at the

end of every iteration.

The disadvantage of all of the above approaches is that they are not scalable because

their communication volume exceedsO(n) while, in the context of Markov modelling,

the computational cost is usuallyO(n). This is because, typically, the number of non-

zero elements in each row of the matrix (corresponding to the number of transitions

out of a state) does not increase significantly withn.

An alternative approach is to apply graph-based partitioning techniques to a row-

or column-striped decomposition in order to minimise interprocessor communication

whilst maintaining a uniform balance of non-zero elements. In the following, we con-

sider traditional graph-based and recent hypergraph techniques.

5.1.1 Graph Partitioning

In a row-striped decomposition, then × n sparse matrixA can be represented as an

undirected graphG = (V , E) where each rowi (1 ≤ i ≤ n) in the matrix corresponds

to vertexvi ∈ V in the graph. The corresponding weightwi of vertexvi is the total

number of non-zeros in rowi. For the edge-setE , edgeeij connects verticesvi andvj

with weightwij = 1 if either one ofaij > 0 or aji > 0, and with weightwij = 2 if

bothaij > 0 andaji > 0 [35].

The task of allocating then rows of matrixA to p processors is well known to be

equivalent to ap-way partitioning of the corresponding graph [82]. The quality of

such a decomposition is judged with respect to two metrics: edge cut and balance. An

edge iscut if the vertices which it connects are assigned to two different processors – so

that the total number of edges cut is an approximation for the amount of interprocessor

114 Chapter 5. Techniques for Analysing Large Models

13 7 16 11 15 9 2 5 14 8 10 4 3 12 1 6

P1

P2

P3

P4

13

7

16

11

15

9

2

5

14

8

10

4

3

12

1

6

x

Fig. 5.4. The 4-way graph partition of the matrixA in Fig. 5.1 and the corresponding partition of the

vectorx [50].

communication. A decomposition is said to bebalancedif the sum of the weights of

the vertices in each partition does not differ from the average of these weight sums

by more than a specified amount. An optimal decomposition is one which minimises

edge cut while satisfying the balance constraint.

The problem of finding the optimal decomposition for a given graph is NP-complete.

However, there exist a number of tools which implement heuristic algorithms to cal-

culate good sub-optimal decompositions, for example Chaco [72] and MeTiS [80, 82].

A parallel implementation of MeTiS called ParMeTiS [79, 83, 84] is also available.

ParMeTiS is particularly attractive for very large matrices as an arbitrary number of

processors may be used to calculate thep-way partition, and per-processor memory

use is inversely proportional to the number of processors.

Consider the problem of producing a 4-way row-wise decomposition of the matrix

shown in Fig. 5.1. The matrix in Fig. 5.4 shows the matrix and vector corresponding

to a partition produced by the graph partitioning tool Chaco. Note how the effect

of the decomposition has been to minimise the number of non-zeros that occur in off-

5.1. Sparse Matrix Partitioning Strategies 115

diagonal blocks (just 14 off-diagonal elements as opposed to 27 in the original matrix).

However, while the edge cut is 14, the number of vector elements that must be sent

between processors (i.e. the real communication cost) is just 10. This is because off-

diagonal non-zeros which are in the same column and on the same processor are all

multiplied by the same remote vector element, a factor which is not accounted for by

graph-based partitioning strategies.

5.1.2 Hypergraph Partitioning

e1

e2

e4

e5

e3

v 4
v 5 v 5

v 1
v 1 v 2

v 4

v 3
v 3

v 2

N1 N2

N3

Fig. 5.5.A graph (left) and a hypergraph (right) [121].

Hypergraph partitioning is an extension of graph partitioning. Its primary application

has been in VLSI circuit design where the objective is to cluster pins of devices such

that interconnect is minimised.

Formally, a hypergraphH = (V ,N) is defined by a set of verticesV and a set of

nets (or hyperedges)N , where each net is a subset of the vertex setV [17, 18]. As

illustrated in Fig. 5.5, a hypergraph is therefore a generalised graph data structure in

which edges can connect arbitrary non-empty subsets of vertices.

In the context of a row-wise decomposition of a sparse matrix as described in [35], ma-

trix row i (1 ≤ i ≤ n) is represented by a vertexvi ∈ V while columnj (1 ≤ j ≤ n)

is represented by netNj ∈ N . The vertices contained within netNj correspond to

the row numbers of the non-zero elements within columnj, i.e. vi ∈ Nj if and only

if aij 6= 0. Weights are assigned to vertices in the same manner as to the vertices of

a graph i.e. the weight of vertexi is given by the number of non-zero elements in

116 Chapter 5. Techniques for Analysing Large Models

13 7 16 10 15 9 1 3 14 8 11 4 2 12 5 6

P1

P2

P3

P4

13

7

16

10

15

9

1

3

14

8

11

4

2

12

5

6

x

Fig. 5.6.The 4-way hypergraph partition of the matrixA in Fig. 5.1 and the corresponding partition of

the vectorx [50].

row i. The weight of all nets is one, with a net’s contribution to the hyperedge cut

being defined as one less than the number of different partitions (in the row-wise de-

composition) spanned by that net. The overall objective of a hypergraph sparse matrix

partitioning is to minimise the hyperedge cut while maintaining a balance criterion.

This corresponds to minimising the total communication volume whilst maintaining

computational load balance when performing sparse matrix–vector multiplication in

parallel. In this context, we apply a hypergraph partition to the corresponding matrix

by symmetrically permuting the rows and columns of the matrix such that all rows

corresponding to vertices in a partition are assigned to one processor.

The matrix in Fig. 5.6 shows the result of applying hypergraph partitioning to matrix

A of Fig. 5.1. Although the number of off-diagonal non-zeros has increased from 14

to 18 compared with the graph decomposition, the number of vector elements which

must be transmitted between processors (the communication cost) has dropped from

10 to 6. This is because hypergraph partitioning algorithms not only aim to concentrate

the non-zeros on the diagonals but also strive to line up the off-diagonal non-zeros in

5.1. Sparse Matrix Partitioning Strategies 117

columns. The edge cut of the decomposition is also 6, and so the hyperedge cut exactly

quantifies the communication cost, unlike the edge cut in graph partitioning. This is a

general property and one of the key advantages of using hypergraphs.

Like graph partitioning, hypergraph partitioning is NP-complete. However, there exist

a small number of hypergraph partitioning tools which implement fast heuristic algo-

rithms, for example PaToH [35, 36] and hMeTiS [81, 83]. These are all written to run

on a single processor so their capacity is limited to models with a few million states.

A current area of research is the development of a scalable parallel hypergraph par-

titioner – for promising preliminary work in this area see [121, 122, 123]. We note

that, for very large models, a parallel graph partitioner still yields a great reduction in

communication costs over other methods.

5.1.3 Evaluation

Hypergraph PC time Viking time Row-striped PC time Viking time

p partitioning (s) (s) (s) partitioning (s) (s) (s)

1 N/A 2528.3 3993.7 N/A 2528.3 3993.7

2 2.54 1332.3 2358.3 0.47 1495.3 2374.6

4 4.56 780.0 1285.5 0.44 972.0 1239.1

8 6.57 430.8 683.7 0.44 698.1 657.6

16 8.77 323.4 352.8 0.44 553.2 384.5

32 10.95 313.8 190.7 0.45 544.5 219.7

Table 5.1. Run-times for hypergraph partitioned and row-striped parallel sparse matrix–vector multi-

plication for the analysis of 165s-points in the249 760 state Voting model using the iterative algorithm

of Chapter 4.

Partitioning a sparse matrix for parallel sparse matrix–vector multiplication using hy-

pergraph partitioning aims to reduce the amount of data which must be exchanged at

each step. A key consideration, however, is how much time is saved by doing this –

in particular, is it quicker simply to perform a row-striped partitioning and then do the

118 Chapter 5. Techniques for Analysing Large Models

Hypergraph PC time AP time Row-striped PC time AP time

p partitioning (s) (s) (s) partitioning (s) (s) (s)

1 N/A 325.0 1243.3 N/A 325.0 1243.3

2 66.96 258.7 630.5 6.07 635.3 817.4

4 197.12 197.1 328.2 5.61 569.4 484.9

8 266.39 143.0 182.3 5.65 388.3 283.0

16 323.29 114.6 99.7 5.92 362.9 163.0

Table 5.2. Run-times for hypergraph partitioned and row-striped parallel sparse matrix–vector multi-

plication for the1 639 440 state FMS model using uniformization (512 multiplications).

Hypergraph Row-striped

p PC speedup Viking speedup PC speedup Viking speedup

1 1.00 1.00 1.00 1.00

2 1.90 1.69 1.69 1.68

4 3.24 3.11 2.60 3.22

8 6.00 5.84 3.62 6.07

16 7.82 11.32 4.57 10.39

32 8.06 20.94 4.64 18.18

Table 5.3.Speedup figures for hypergraph partitioned and row-striped matrix–vector multiplication for

the analysis of 165s-points in the249 760 state Voting model.

Hypergraph Row-striped

p PC speedup AP speedup PC speedup AP speedup

1 1.00 1.00 1.00 1.00

2 1.26 1.97 0.51 1.52

4 1.65 3.79 0.57 2.56

8 2.27 6.82 0.84 4.39

16 2.84 12.47 0.90 7.63

Table 5.4.Speedup figures for hypergraph partitioned and row-striped matrix–vector multiplication for

the analysis of the1 639 440 state FMS model using uniformization.

5.1. Sparse Matrix Partitioning Strategies 119

5

10

15

20

25

1 2 4 8 16 32

sp
ee

du
p

�

processors

Hypergraph: PC cluster
Hypergraph: Viking

Row-striped: PC cluster
Row-striped: Viking

Fig. 5.7.Speedup for hypergraph partitioned and row-striped matrix–vector multiplication for the anal-

ysis of 165s-points in the249 760 state Voting model.

0

2

4

6

8

10

12

14

16

1 2 4 8 16

sp
ee

du
p

�

processors

Hypergraph: PC cluster
Hypergraph: AP3000

Row-striped: PC cluster
Row-striped: AP3000

Fig. 5.8.Speedup for hypergraph partitioned and row-striped matrix–vector multiplication for the anal-

ysis of the1 639 440 state FMS model using uniformization.

120 Chapter 5. Techniques for Analysing Large Models

multiplications at higher cost than it is to calculate a hypergraph partition and then use

it in the multiplications?

Table 5.1 compares the partitioning time and multiplication time for hypergraph parti-

tioned and row-striped matrix–vector multiplication on two different architectures for

the analysis of 165s-points derived from the Voting model with249 760 states (see

Appendix A.4) using the iterative algorithm of Chapter 4. The PC cluster is a network

of workstations, consisting of 32 Intel Pentium 4 2.0GHz PCs each with 512MB RAM

linked together by a 100Mbps (megabits per second) switched Ethernet network. The

Viking is a Beowulf Linux cluster with 64 dual-processor nodes, where each node has

two Intel Xeon 2.0GHz processors and 2GB of RAM. The nodes are connected by a

Myrinet network with a peak throughput of 2Gbps. The partitioning was performed

on an Intel Pentium 4 2.6GHz machine with 1GB of RAM. In the case of hypergraph

partitioning, the PaToH partitioner was used with the following partitioning options:

OCM RA=10 MT=12 WI=1 FI=0.05

That is, the hypergraph is derived from a sparse matrix and should be partitioned

using the Boundary FM refinement algorithm [57] with Krishnamurthy’s multilevel

gain [91], the Absorption Clustering Using Pins coarsening algorithm [36] and a per-

mitted imbalance between final partitions of 5%.

On the PC cluster, we observe that the time taken to perform hypergraph partitioning

and then do the matrix–vector multiplications is lower than the time taken to com-

pute a row-striped partition and then carry out the matrix–vector multiplications for all

numbers of processors. As can be seen in Fig. 5.7, the hypergraph-partitioned multi-

plication scales better than row-partitioned multiplication on this architecture.

On the Viking (where the network is faster) there is much less difference between the

speeds of hypergraph partitioned and row-striped multiplication and both methods ex-

hibit similar scalability (although the hypergraph partitioned multiplication does still

scale slightly better; see Fig. 5.7). As mentioned in Section 5.1.2, a current area of

research is the development of a scalable parallel hypergraph partitioner and so we can

expect the overhead of calculating the partition to reduce. At present, the time to cal-

5.2. State-level Aggregation for Semi-Markov Processes 121

culate the row-striped partition is much lower than the time to calculate the hypergraph

partition.

Table 5.2 compares the partitioning time and multiplication time for hypergraph par-

titioned and row-striped matrix–vector multiplication on a second network of work-

stations and the Fujitsu AP3000 parallel computer for the analysis of the FMS model

with 1 639 440 states (generated with model parameterk = 7; see Appendix A.2) using

uniformization. The PC cluster is a vanilla network of workstations, consisting of 32

Athlon 1.4GHz PCs each with 512MB RAM linked together by a 100Mbps switched

Ethernet network. The AP3000 is based on a grid of 60 processing nodes, each of

which has a UltraSPARC 300MHz processor and 256MB RAM. These nodes are in-

terconnected by a 2D wraparound mesh network that uses wormhole routing and that

has a peak throughput of 520Mbps.

As with the results from the Voting model, we observe that on both architectures the

run-time for hypergraph-partitioned matrix–vector multiplication is lower than that

of linear row-striped multiplication for all numbers of processors. In Fig. 5.8 it is

observed that hypergraph-partitioned multiplication scales far better than linear row-

striped multiplication on the PC cluster. On the AP3000, where the network is faster

and the processors slower, the difference is also substantial.

Note, however, that for large numbers of processors (typically, 8 or more) the time

to perform the multiplication and the partitioning is higher for the hypergraph scheme

than the row-striped scheme. As for the results from the Voting model presented above,

it is also the case that we expect the overhead of hypergraph partitioning to fall as new

parallel and distributed techniques are developed.

5.2 State-level Aggregation for Semi-Markov Processes

Rather than developing techniques to store and multiply very large sparse matrices

across a number of parallel processors, an alternative approach is to reduce the size

of the state-space (and hence the dimensions of the corresponding transition matrices)

of the model. This has the effect of reducing the time and space requirements of

122 Chapter 5. Techniques for Analysing Large Models

Fig. 5.9.Reducing a complete 4 state graph to a complete 3 state graph.

the passage time analysis to be performed. This is achieved by aggregating states

of the model together in such a way that transition probabilities and passage time

distributions between unaggregated states are not lost, and therefore the results from

the aggregated model are the same as those from the larger, unaggregated model but

easier to compute.

We are interested in performing anexactaggregation. Many techniques exist in the

Markovian domain for exact and approximate aggregation (for example, lumpabil-

ity [86], aggregation-disaggregation [34], aggregation of hierarchical models [31] and

GSPN-level aggregation [58]) but to date analogous work on semi-Markov aggrega-

tion algorithms has been very limited. We describe one approach, originally presented

in [21], in detail before moving on to consider the cost of performing this aggrega-

tion and the effect which it has on the transition matrices with which passage time

calculations are performed.

5.2. State-level Aggregation for Semi-Markov Processes 123

5.2.1 Aggregation Algorithm

The aggregation algorithm of [21] is illustrated in Fig. 5.9. First, a state in the transition

graph is chosen to be aggregated. Next, all paths of length two centred on that state

are identified (step(i)) and aggregated into stochastically equivalent single transitions

(step(ii)). Newly-created transitions (shown dashed in Fig. 5.9) which duplicate the

route of existing transitions are combined with the existing transitions. Finally, cyclic

transitions are eliminated (step(iii)).

The result is to remove the chosen state and reduce the order of the transition matrix

by one. Repeated application of this algorithm will reduce the SMP to an arbitrary

size (≥ 2 states) whilst preserving the exact passage time distributions between all

pairs of remaining states. Such aggregation is not possible in a Markovian context as

aggregation operations of this type do not have a closed form in the Markov domain

(i.e. the convolution of two Markovian delays is not itself Markovian).

Fig. 5.10.Aggregating sequential transitions in an SMP.

There are three basic reduction steps for aggregating a single state of an SMP. These

deal with convolutions, branches and cycles respectively:

Sequential Reduction

In Fig. 5.10,Y = X1 + X2 is a convolution. In terms of the respective Laplace

transforms of the delay functions, this becomesLY (s) = LX1(s)LX2(s). The

probability of the path being selected (delayX1 followed by delayX2) is the

124 Chapter 5. Techniques for Analysing Large Models

Fig. 5.11.Aggregating branching transitions in an SMP.

Fig. 5.12.The three-step removal of a cycle from an SMP.

5.2. State-level Aggregation for Semi-Markov Processes 125

product of the probabilities of the two paths, giving an overall path probability

of p1p2.

Branch reduction

In Fig. 5.11, the overall selection probability for the aggregated path is the sum

of the probabilities of the branches,p1 + p2. The aggregated distributionY is

given by:

LY (s) =
p1

p1 + p2

LX1(s) +
p2

p1 + p2

LX2(s)

so that for both aggregated and unaggregated forms the Laplace transform of

the total sojourn-time distribution isp1LX1(s) + p2LX2(s). Note that the two

branches must have the same start and end state.

Cycle Reduction

When there is a state with at least one out-transition and a transition to itself, as

shown in Fig. 5.12, we can remove the cycle by making its stochastic effect part

of the out-going transitions. Consider a state transition system which is in the

first stage of Fig. 5.12, with(n−1) out-transitions and probabilitypi of departure

along edgei. Each out-transition has an associated sojourn time distribution

functionXi; the cycle probability ispn with sojourn time distribution function

Xn.

The first step(i) is to isolate the cycle and treat it separately from the branching

out-transitions. We do this by rewriting the system to include an instantaneous

delay and extra state immediately after the cycle,Z ∼ det(0); the introduction

of an extra state is only to aid our visualisation of the problem and is not per-

formed in the actual aggregation algorithm. Clearly the instantaneous transition

will be selected with probability(1 − pn). We now have to renormalise thepi

probabilities on the branching state to becomeqi = pi/(1− pn).

In step(ii) of Fig. 5.12, we aggregate the delay of the cycle into the instanta-

neous transition creating a new transition with distributionZ ′. By treating the

system as a random geometric sum of the random variableXn, we can write:

LZ′(s) =
1− pn

1− pnLXn(s)

126 Chapter 5. Techniques for Analysing Large Models

In stage(iii) of the process, theZ ′ delay can be sequentially convolved with the

Xi sojourn time distributions to give us our final system.

In summary, we have reduced ann-out-transition state where one of the transi-

tions was a cycle to an(n− 1)-out-transition state with no cycle such that:

qi =
pi

1− pn

and:

LYi
(z) =

1− pn

1− pnLXn(z)
LXi

(z)

Further details of the algorithms used to perform these steps are given in Appendix B.

The algorithm removes a single state and reduces the SMP to a normal form, which has

no same-state cycles, after each aggregation. If aggregating many states consecutively,

an optimisation is to perform this reduction of same-state cycles once only after the

last state has been aggregated, rather than after every state aggregation.

5.2.2 State-ordering Strategies

The order in which the states of a semi-Markov system are aggregated can have a

significant effect on the space and time demands of the algorithm. In our discussion

of various state-ordering strategies, we will focus on two key metrics by which the

practicality of these strategies can be judged:

1. the density of non-zero elements in the matrix, also known as the matrixfill-in .

For anN × N sparse matrix withr non-zero elements, the density is given by

r/N2.

2. the computational cost of the aggregation process as given by the number se-

quential, branch and cycle reduction operations performed.

Intuitively, there is a tension between these two metrics. Strategies designed to reduce

fill-in should result in more computation as they tend to remove matrix rows with large

numbers of non-zeros and so create more transitions which must be combined with

5.2. State-level Aggregation for Semi-Markov Processes 127

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

T
ra

ns
iti

on
 m

at
rix

 d
en

si
ty

�

Number of states aggregated

Matrix density: 2081 state system

Fig. 5.13.Complete aggregation of a2 081 state semi-Markov system to two states.

those that already exist. On the other hand, strategies designed to reduce computation

should tend to increase density faster as they strive to remove states with fewer paths

through them. This makes it less likely that the new transitions will coincide with

pre-existing ones but will add new non-zeros to the matrix.

Matrix density

Clearly, the density of non-zero elements in the matrix will increase and approach 1.0

as the states are removed and new non-zeros are created in the transition matrix. If a

system is aggregated so that only two states remain (with no same-state cycles) then

the density will initially approach 1.0 and then decay to 0.5 in the final stages. This

decrease in density occurs because the final transition matrix will only have non-zeros

in elementsL12(s) andL21(s) and zeros inL11(s) andL22(s). This can be observed

in Fig. 5.13, which shows the matrix density for a2 081 state semi-Markov process as

it is aggregated down to two states.

128 Chapter 5. Techniques for Analysing Large Models

Computation

In terms of computational cost, for a state withm predecessor states andn successor

states, there aremn convolution operations and as many asmn branching aggrega-

tions to perform. For anN × N transition matrix with high density, this will give us

O(N3) operations to perform to aggregateO(N) states. For a sparse transition matrix

with low density,m andn may beO(1) rather thanO(N) and if the newly created

transitions do not coincide with existing transitions then this gives us a lower bound of

mn convolutions to perform.

As semi-Markov models are often generated from high-level formalisms such as Petri

nets and process algebras where the number of potential successors of a state is al-

most always limited, their initial matrices tend to be sparse. As aggregation proceeds,

however, these matrices will become increasingly dense, with the computational cost

consequences for the ultimate passage time solution that this entails. In order to gain

any benefit from aggregation, therefore, it may be necessary to curtail the process be-

fore the improvements to solution time gained from reducing the state space size are

outweighed by the cost of performing the aggregation.

5.2.3 State-selection Algorithms

Bearing in mind the transition matrix density and computational complexity issues

highlighted above in Section 5.2.2, we propose the following orderings of states for

aggregation. Given that a state hasm predecessor states andn successor states:

Fewest-paths-first chooses the state with lowestmn-value first. This is designed to

minimise computation, asO(mn) convolution and branching aggregations are

required to eliminate a state.

Most-successors-firstchooses the state with the highestn-value first. This is de-

signed to reduce fill-in by targeting the rows of the transition matrix with the

largest number of non-zeros for aggregation.

5.2. State-level Aggregation for Semi-Markov Processes 129

Most-paths-first chooses the state with highestmn-value first. This is designed to

demonstrate the computationally worst-case scenario.

Random chooses an arbitrary state for aggregation, without consideration ofm or

n. The selection is done uniformly across the entire state space, giving us a

yardstick with which to compare our other state-ordering strategies.

5.2.4 Comparing Aggregation Strategies

To demonstrate the aggregation technique we use the example semi-Markov model

of a Voting system (described in Appendix A.4). We generate four different sized

state-spaces from this example:2 081 and4 050 state models which are used to test

several different aggregation strategies, and106 540 and541 280 state models which

are aggregated using the algorithm identified as most efficient.

Fig. 5.14 shows the change in density of the transition matrix for fewest-paths-first,

most-successors-first, most-paths-first and random state-selection methods when ag-

gregating all but two states in the2 081 state model. Note that, as with all remaining

graphs in this section, the results are plotted with a logarithmicy-axis. It can be seen

that the fewest-paths-first method provides the lowest density for nearly 75% of the ag-

gregation process. The most-paths-first technique maintains a lower transition matrix

density for the last 25% of the process.

The most-successors-first strategy experiences a density explosion early on, reaching

70% fill-in relatively quickly, almost certainly because it generates a large number of

new non-zero elements at the start of the process. This is clearly demonstrated by its

density profile when compared to that of the random state-selection method for the

first half of the state-space. Once 35% of states have been aggregated, however, the

desired effect is achieved as the removal of dense rows starts to lower the fill-in.

Fig. 5.15 shows the cumulative number of convolution, branch elimination and cycle

elimination operations taken to aggregate all but two states in the2 081 state model.

The fewest-paths-first policy maintains a very low operations count for the first 70% of

the state space. The number of operations performed by the most-paths-first algorithm

130 Chapter 5. Techniques for Analysing Large Models

0.001

0.01

0.1

1

0 500 1000 1500 2000

T
ra

ns
iti

on
 m

at
rix

 d
en

si
ty

�

Number of aggregated states

Density/most paths first: 2081 state system
Density/fewest paths first: 2081 state system

Density/most successors first: 2081 state system
Density/random: 2081 state system

Fig. 5.14. Transition matrix density for the2 081 state model for four different state-selection algo-

rithms.

1

100

10000

1e+06

1e+08

1e+10

1e+12

0 500 1000 1500 2000

C
um

ul
at

iv
e

nu
m

be
r

of
 o

pe
ra

tio
ns

�

Number of aggregated states

Operations/most paths first: 2081 state system
Operations/fewest paths first: 2081 state system

Operations/most successors first: 2081 state system
Operations/random: 2081 state system

Fig. 5.15.Computational cost (in terms of sequential, branching and cycle reduction operations) for the

2 081 state model for four different state-selection algorithms.

5.2. State-level Aggregation for Semi-Markov Processes 131

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

T
ra

ns
iti

on
 m

at
rix

 d
en

si
ty

�

Percentage of states aggregated

Matrix density/fewest paths first: 2081 state system
Matrix density/fewest paths first: 4050 state system

Matrix density/most paths first: 2081 state system
Matrix density/most paths first: 4050 state system

Fig. 5.16. Transition matrix density over two different model sizes and two different state-selection

algorithms.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

nu
m

be
r

of
 o

pe
ra

tio
ns

�

Percentage of states aggregated

Operations/fewest paths first: 2081 state system
Operations/fewest paths first: 4050 state system

Operations/most paths first: 2081 state system
Operations/most paths first: 4050 state system

Fig. 5.17. Computational complexity over two different model sizes and two different state-selection

algorithms.

132 Chapter 5. Techniques for Analysing Large Models

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

nu
m

be
r

of
 o

pe
ra

tio
ns

�

Percentage of states aggregated

Operations/fewest paths first: 2081 state system
Operations/fewest paths first: 4050 state system

Operations/fewest paths first: 106540 state system
Operations/fewest paths first: 541280 state system

Fig. 5.18.Computational complexity for systems with up to541 280 states; fewest-paths-first algorithm

only.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60 70 80 90 100

T
ra

ns
iti

on
 m

at
rix

 d
en

si
ty

�

Percentage of states aggregated

Density/fewest paths first: 2081 state system
Density/fewest paths first: 4050 state system

Density/fewest paths first: 106540 state system
Density/fewest paths first: 541280 state system

Fig. 5.19.Transition matrix density for systems with up to541 280 states; fewest-paths-first algorithm

only.

5.2. State-level Aggregation for Semi-Markov Processes 133

appears linear in the number of states aggregated. Ultimately, the most-paths-first

policy performs twice as many operations as the fewest-paths-first algorithm. The

most-successors-first policy is also seen to be computationally worse (that is, result in

a higher number of operations) than the random policy. For this reason it will not be

considered further for the aggregation of larger state spaces.

5.2.5 Comparing Models of Different Size

In Fig. 5.16, we compare density profiles over two different sizes of model (2 081

and4 050 states) for two different aggregation strategies: fewest- and most-paths-first

algorithms. For a valid comparison to be made, we plot the density against percentage

of state space aggregated. The results show that, after about 75% of states have been

aggregated, the transition matrix density is lower for the larger model, right up until

complete matrix fill-in is achieved.

The computational cost for different model sizes is shown in Fig. 5.17 for fewest-

and most-paths-first aggregation techniques. For both techniques there is a small in-

crease in the cost when aggregating larger models; but this is dwarfed by the orders-

of-magnitude increase that can be seen when using the most-paths-first algorithm over

the fewest-paths algorithm.

In Fig. 5.18 and Fig. 5.19 we consider only the fewest-paths-first algorithm, as, of

all the techniques, it seems to be the one which keeps the computational cost under

control the longest whilst simultaneously maintaining matrix sparsity. In addition to

the two previous cases, we provide results from the aggregation of SMPs with106 540

and541 280 states.

Fig. 5.18 shows the number of operations for all four state spaces. Our previous results

suggest that our first concern should be over the amount of computation to be done –

whilst matrix sparsity remains at acceptable levels when a large proportion of the state

space has been aggregated, the number of operations exceeds106 even when small

state spaces are aggregated completely. For larger models, therefore, the process is

truncated after about 75% of the state space has been aggregated, avoiding the com-

134 Chapter 5. Techniques for Analysing Large Models

putational explosion. Some success with this truncation can be observed as it limits

the required number of aggregation operations for both106 540 and541 280 state sys-

tems to below108 (this is of the same order as the number of operations required to

aggregate the4 050 state model completely using the most-paths-first method).

Finally, Fig. 5.19 shows the effect on matrix density for models with up to541 280

states, stopping when 75% of the state space has been aggregated. Again the density

of the larger model remains smaller for longer and even for the106 540 state model

only reaches 0.01. Sparse-matrix solution techniques will still function well at such

densities, and will benefit greatly from the reduction in the dimensions of the matrix.

5.2.6 Parallel Aggregation

One possible drawback of the aggregation algorithm above is the amount of computa-

tional effort required to aggregate the majority of the state-space of a large model. It

could be the case that the time taken to perform the aggregation and then analyse the

aggregated model is greater than the time required to analyse the original unaggregated

model. This stems from the fact that an exact aggregation which considers only one

state at a time is performed. In order to reduce the amount of time taken, therefore, it

is necessary to investigate parallel approaches to aggregation.

The general scheme would be to take the very large state-space, partition it across

a number of processors and have each processor perform aggregation of the portion

which they have been allocated before recombining the aggregated pieces of the state-

space and proceeding with the passage time analysis on a single machine. In this case,

the fact that the algorithm only works on a single state at a time becomes a major bene-

fit as it means that different processors can work on different portions of the state-space

without affecting each other. This is because the aggregation of a single state affects

only the immediate predecessors and successors of the chosen state. States whose im-

mediate predecessors or successors belong to other processors may be excluded from

aggregation, however, as this would require the communication of a large amount of

information between processors. In order to be able to aggregate any significant num-

5.2. State-level Aggregation for Semi-Markov Processes 135

0

500

1000

1500

2000

0 500 1000 1500 2000

Fig. 5.20.Transition matrix for the2 081 state Voting model.

136 Chapter 5. Techniques for Analysing Large Models

0

500

1000

1500

2000

0 500 1000 1500 2000

Fig. 5.21.Hypergraph bi-partitioned transition matrix for the2 081 state Voting model.

5.2. State-level Aggregation for Semi-Markov Processes 137

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Fig. 5.22. Aggregated hypergraph-partitioned transition matrix for the2 081 state Voting model (con-

tains374 states).

138 Chapter 5. Techniques for Analysing Large Models

ber of states, we must minimise the number states to which this condition applies as

much as possible.

We can determine which states are not eligible for aggregation by examining the

model’s transition matrix. Assuming the matrix is partitioned by allocating entire rows

to different processors, a state has a predecessor belonging to a different processor if

there is a non-zero in the corresponding column in a row not allocated to the processor

which is responsible for that state. Similarly, a state has a successor which belongs to

a different processor if there is a non-zero in its row of the matrix which corresponds

to a row-number not belonging to the current processor. In order to minimise the num-

ber of states which cannot be aggregated we are required to minimise the number of

off-diagonal non-zeros in the partitioned matrix. This can be achieved by employing

hypergraph partitioning.

The effect of hypergraph partitioning on the layout of the2 081 state Voting model’s

transition matrix can be seen in Figs. 5.20, 5.21 and 5.22. Initially, the breadth-first

state-generation algorithm (cf. Section 6.1.5) creates the transition matrix as seen

in Fig. 5.20 with a distinctive almost-lower-diagonal layout. This is then partitioned

using a hypergraph partitioner, resulting in the layout shown in Fig. 5.21 for a two-

way partition. The aggregation is then conducted on the two partitions independently,

excluding states which have either immediate predecessors or immediate successors in

the other partition. The resulting reduced transition matrix with 374 states is shown in

Fig. 5.22. Note how the density pattern has changed dramatically, with the on-diagonal

blocks for both processors becoming more dense.

One potential drawback with this scheme is that as the number of partitions increases,

the number of states eligible for aggregation will decrease. Table 5.5 shows the per-

centage of the state-space which can be aggregated without affecting states in other

partitions for a number of different models and number of partitions. It can be seen

that the percentage of eligible states does decrease for an increasing number of par-

titions, but that this effect is more pronounced for small models than for large ones.

This is beneficial as, because of the dimension of their transition matrices, it is pre-

cisely these large models which we would wish to reduce in size the most and which

5.2. State-level Aggregation for Semi-Markov Processes 139

Number of processors

Model States 2 4 8 16 32

Voting-1 2 081 82.3% 67.7% 40.0% 27.7% 18.7%

Voting-2 4 050 89.9% 83.2% 68.6% 41.8% 26.8%

Voting-3 106 540 96.2% 93.6% 88.1% 78.7% 69.9%

Voting-4 249 760 97.7% 96.0% 92.8% 86.2% 79.4%

Voting-5 541 280 98.1% 96.8% 94.2% 88.9% 83.7%

Voting-6 778 850 98.4% 97.2% 95.0% 90.4% 84.3%

Voting-7 1 140 050 98.6% 97.6% 95.7% 91.7% 86.0%

Web-server-1 107 289 98.0% 90.8% 85.1% 76.0% 69.0%

Web-server-2 248 585 93.2% 91.6% 82.3% 77.8% 73.4%

Web-server-3 517 453 98.2% 92.1% 83.3% 79.9% 76.2%

Web-server-4 763 680 93.9% 89.6% 83.8% 81.4% 78.6%

Web-server-5 1 044 540 94.4% 89.4% 86.1% 81.9% 78.7%

Table 5.5. Percentage of state-space which can be aggregated without requiring information stored on

remote processors. Shown for differing numbers of partitions in a number of different sized models.

would need to be divided across as many processors as possible.

We conclude by noting a disturbing trend which requires future investigation: despite

the impressive reduction in the dimensions of the matrix, the number of non-zeros

in the aggregated matrix of Fig. 5.22 (15 726) is actually larger than the number in

the original matrix of Fig. 5.20 (8 120). This has serious implications for the amount

of memory which will be consumed in storing the matrix, and also the amount of

time it will take to perform calculations using it. This suggests that when performing

aggregation, it is important to keep track of the number of non-zeros in the matrix

after each new state removal. If it becomes higher than the original matrix, then only

states whose removal would not create any more new non-zeros should be aggregated.

We identify this as a future area of research, particularly when seeking to perform

aggregation efficiently in parallel.

Chapter 6

Implementations

This chapter describes the implementation of three tools based on the algorithms and

techniques described in Chapters 3, 4 and 5 for the calculation of steady-state prob-

abilities, passage time densities and transient distributions in very large Markov and

semi-Markov models.

We begin by describing the Markovian DNAmaca steady-state solver [87] on which

these implementations are based. We then describe HYDRA (HYpergraph-based Dis-

tributed Response-time Analyser) [49] which enables the calculation of passage time

densities and transient distributions in Markov models through the use of uniformiza-

tion. Hypergraph partitioning is employed to permit the efficient parallel analysis of

very large state spaces.

Next, we detail SMCA (Semi-Markov Chain Analyser), a semi-Markov extension of

DNAmaca for the steady-state analysis of large semi-Markov chains. To the best of

our knowledge, this is the only such analyser to have been written for the semi-Markov

domain. This required an extension of DNAmaca’s input language to support the spec-

ification of generally-distributed transition firing delays, and corresponding alterations

to the state generator and steady-state solver. These modifications are described in this

chapter.

Finally, we present SMARTA (Semi-MArkov Response Time Analyser), a parallel

analysis pipeline which implements the iterative algorithms of Chapter 4 for the anal-

140

6.1. DNAmaca 141

ysis of passage time and transient measures in very large semi-Markov models. This

builds upon SMCA by making use of the augmented model description language,

state-space generator and steady-state solver. A distributed Laplace transform inverter

implementing the Euler method is employed to numerically invert the Laplace trans-

form of the required performance measure. The central computation to be performed

in this step is repeated sparse matrix–vector multiplications, and we use hypergraph

partitioning to implement this efficiently in parallel.

6.1 DNAmaca

DNAmaca is a Markov chain steady-state analyser with the proven ability to analyse

models with states spaces larger thanO
(
107

)
states [87]. We describe it here as it

forms the basis of the three tools implemented as part of our work. DNAmaca supports

models specified as SPNs, GSPNs, SPAs and queueing networks.

The architecture of DNAmaca is shown in Fig. 6.1. A model description, which de-

scribes the structure of the model and the steady-state performance measures of inter-

est, is parsed into C++ code and the result is compiled with a pre-existing probabilistic

hash-based state-space generator library. Running the resulting executable generates

the state-space and generator matrixQ of the model’s underlying CTMC on disk with

vanishing states eliminated. This state-space is checked by a functional analyser to test

if it is irreducible. If it is not, then it may be possible to eliminate transient states and

remap the remaining states so that it becomes irreducible. The steady-state distribution

of the CTMC is then calculated using one of a number of solution methods (specified

in the input file). Finally, the C++ code generated from the model description is linked

with a pre-compiled performance analyser library and executed to compute the steady-

state performance measures requested by the user. We consider each of the steps shown

in Fig. 6.1 in more detail in the sections which follow.

142 Chapter 6. Implementations

Results

Functional
Analyser

Analyser
Performance

State Space

Steady State
Solver

Parser

Code
User

State Space
Generator

Model
Description

Transition
Matrix

Steady State
Solution

Common Library
Routines

Fig. 6.1.DNAmaca tool architecture [87].

6.1. DNAmaca 143

6.1.1 Model Specification Language

DNAmaca’s model specification language has a TEX-like syntax and makes use of

standard C/C++ expressions such as comparisons and variable assignments. The lan-

guage defines a high-level model in terms of its resources and the customer population

at each resource. Transitions, which are enabled or not according to the current pop-

ulations of certain resources, can fire and in doing so alter the populations on the

resources in the model. This is obviously a natural way to describe stochastic Petri

nets and queueing networks, but it is also flexible enough to permit the specification

of stochastic process algebra models [6, 22, 23]. The user specifies the performance

measures of interest using the same language.

It is not intended that this section should provide an exhaustive description of DNA-

maca’s input language; instead we focus on only the central portion needed to describe

most models. Interested readers are directed to [87, 88] for the full details of the lan-

guage.

In the description which follows we use the following symbols:

{X}∗ denotes one or more occurrences of X

| separates alternatives

6.1.2 Model Description

A model description consists of:

model_description = \model{

{

state_vector | initial_state | transition_declaration |

constant | solution_control

}*

}

144 Chapter 6. Implementations

State Descriptor Vector

States are described by an array of values which are modified by the firing of transi-

tions. When describing Petri nets, this array maps naturally onto the array of places

in the net – the value of each entry in the state descriptor vector tracks the number of

tokens on the corresponding place. The state descriptor vector is composed of one or

more C/C++ variables, usually of typeint , long , short or char . The names of

these variables must conform to C/C++ naming rules for variables. That is to say, each

name must be a sequence of one or more letters, digits or underline symbols which

does not begin with a digit or clash with any pre-existing keyword.

state_vector= \statevector{

{ <type> <identifier> {, <identifier> }*; }*

}

type = C/C++ variable type

identifier = C/C++ variable name

Initial State

It is necessary to supply a description of the initial state of the model to provide the

state-space generation process with a starting point. This is done by assigning values

to the elements of the state vector in the same way as assigning values to variables in

C/C++; e.g. having already declared a variableint a in the state descriptor vector,

the value of 1 is assigned to it bya = 1 .

initial_state = \initialstate{

{ <assignment> }*

}

assignment = C/C++ assignment statement

6.1. DNAmaca 145

Transition Declarations

The dynamic behaviour of the model is captured by the enabling and firing of its

transitions. For each transition, it is necessary to specify the following:

• the conditions under which the transition will become enabled. This is a boolean

expression in terms of some or all elements of the state descriptor vector.

• the change in the state of the model which results from the transition firing. This

specifies the changes to the values in the state descriptor vector which result

when the transition fires.

• either the probabilistic weight of the transition, for immediate transitions, or the

exponentially-distributed firing rate, for timed transitions.

• the (optional) priority level of the transition, which permits higher-priority tran-

sitions to pre-empt the firing of those with lower priority.

A transition description in the input language is composed of the following:

transition_declaration = \transition{<identifier>}{

\condition{ <boolean expression> }

\action{ { <assignment> }* }

\rate{<real expression>} | \weight{<real expression>}

\priority{ <non-negative integer> }

}

Constants

Constant values which are used repeatedly throughout a model description (for exam-

ple the number of customers in a closed queueing network) can be defined.

constant = \constant{ <identifier> }{value}

146 Chapter 6. Implementations

6.1.3 Solution Control

These options allow the user to specify the method and parameters to be used when

performing steady-state analysis (including for the analysis undertaken when calculat-

ing the relative weights of the source states for passage time analysis). A full list of

supported methods is given in Section 6.1.7 below.

solution_control = \solution{

{

\method{ <method name> } | \accuracy{ <real> } |

\maxiterations{ <long int> }

}*

}

method name = { gauss | grassman | gauss_seidel | sor |

bicg | cgnr | bicgstab | bicgstab2 |

cgs | tfqmr | ai | air | automatic }

6.1.4 Performance Measure Specification

Two types of steady-state performance measure are supported in DNAmaca. These are

state measuresandcount measures:

steady_state_measures = \performance{

{ state_measure | count_measure }*

}

State measuresare expressed in terms of the values of the elements of the state vector

and can be used to compute measures such as the average number of tokens on a place

in a Petri net (corresponding perhaps to the average number of jobs in a buffer in

the system being modelled) or the probability of being in a subset of the state-space.

We can compute the mean, the variance, the standard deviation and the probability

distribution of such measures.

6.1. DNAmaca 147

state_measure = \statemeasure{identifier}{

\estimator{ {mean | variance | stddev | distribution}* }

\expression{ <real expression> }

}

Count measuresallow event frequencies such as the throughput of transitions to be

computed. The user can specify pre- and post-conditions on the event which must

hold for the measure to be evaluated and must provide a list of transitions for which

the measure will be computed.

count_measure = \countmeasure{identifier}{

\estimator{mean}

\precondition{ <boolean expression> }

\postcondtion{ <boolean expression> }

\transition{ all | { <identifier> }* }

}

6.1.5 State-space Generator

The parsing of the high-level model description and performance measure specifica-

tion produces C/C++ code for aState class. Elements of the model description then

become attributes and member functions of this class; for example, the state vector

elements become attributes ofState of the type declared in the state descriptor vec-

tor and there is a functionfire() which alters the values of these attributes exactly

as specified in the transition declarations. This code is then separately compiled and

linked with a general-purpose state-space generator library. The resulting executable

explores the underlying state-space of the high-level model, generating the transition

matrixQ and a list of the state descriptor vectors for all states in the state-space.

A breadth-first search is employed to explore the model’s state-space using the algo-

rithm described in [88] and outlined here in Fig. 6.2. This starts from an initial state

s0 (specified in the model in the\initialstate clause) and uses a FIFO queue

148 Chapter 6. Implementations

begin

A = ∅
E = s0

F .insert(s0)

while F (not empty)do begin

F .remove(s)

foreachs′ ∈ succ(s) do begin

if s′ /∈ E do begin

F .insert(s′)

E = E ∪ s′

end

A = A ∪ id(s) → id(s′)

end

end

end

Fig. 6.2.Breadth-first search algorithm for state-space exploration [88].

6.1. DNAmaca 149

(F) and a list of explored states (E) to generate the state graph (A). The functions

insert() and remove() add a state to and extract a state fromF respectively,

while succ(s) returns the set of successor states ofs. The functionid(s) returns

a unique sequence number for states. Breadth-first search is favoured over depth-first

search as it allowsQ to be generated and written to disk row-by-row without the need

to maintain more than one row in memory.

When generating very large state-spaces a major problem is keeping track of which

states have already been explored – it is important not only to keep the amount of

memory consumed byE low but also to be able to searchE quickly to determine

if a newly generated state has been encountered before. The most naı̈ve method of

implementingE would be to maintain it as an array or linked list of full state vectors.

This has the advantage of beingexhaustiveas every encountered state is guaranteed to

be in the list and so a newly generated state will not be erroneously treated as having

already been explored. There are two obvious limitations, however. Firstly, to maintain

a list of all previously encountered state vectors can require a large amount of memory,

especially when there are many states and/or the individual state descriptor vectors are

very large (for example in a Petri net with many places). Secondly, searching the list to

check to see if a newly generated state is already there (which must be done repeatedly

in the state-space generation process) is time-consuming – for a list ofn states it would

take at mostn state descriptor vector comparisons to ascertain that a new state had not

already been encountered.

We use a probabilistic hash-based scheme [87, 88, 90] to overcome both of these prob-

lems. Rather than maintain a list of full state vectors, we store hashed values of the

state vectors in the rows of a hash table. This requires two independent hash func-

tions: one to calculate in which row the state belongs (theprimary hash value) and

the second to calculate the hashed value of the state vector to be inserted in that row

(thesecondaryhash value). Memory usage is reduced over the exhaustive scheme as

only the hashed values are stored (the full state descriptor is written to disk and not

referred to again during generation), and the time complexity of checking for a state

vector hash in the hash table isO(1) versusO(n) for checking for its existence in an

n element list.

150 Chapter 6. Implementations

It is possible, however, for two different states to map onto the same entry in the hash

table – when this happens acollision is said to have occurred. If this is the case (which

can only be if both hashed values are the same) then the second state to be encountered

will be incorrectly omitted from the generated state-space as it will have been deemed

already to have been entered in the hash table. It is possible to calculate the probability

that an incorrect omission will occur in terms of the total number of states, the number

of rows in the hash table and the number of distinct values the secondary hash value can

take (cf. [87, 88, 90]), and by careful choice of these values ensure that this probability

is acceptably low. For example, with10 000 000 states,350 003 hash table rows and

40-bit hash keys (giving240 distinct values), the probability of a collision is 0.0001.

It is important to note, however, that an omission probability of 0.01%does notmean

that 0.01% of all states generated will be incorrectly identified as having already been

explored and so not feature in the final state-space; rather it means that there is a

0.01% probability that one or more states will be missing from the generated state-

space. 99.99% of the time the full correct state-space is generated.

The state-space exploration process results in two files being written to disk, one con-

taining the rows ofQ and the other a list of the state descriptor vectors of all the states

in the state-space.

6.1.6 Functional Analyser

Steady-state analysis of a model requires that its state-space be irreducible; that is,

that every state be reachable from every other (cf. Definition 2.3). For an arbitrary

high-level model there is no guarantee that this will be the case, and so DNAmaca

incorporates a functional analyser. This examines the generated state-space using a

strongly-connected component checking algorithm [12] and, if the state-space is not

irreducible, attempts to map it onto one which is. There are three possible results of

this procedure:

• The state-space is irreducible and analysis proceeds to the steady-state solution

stage.

6.1. DNAmaca 151

• The state-space consists of a number of transient states and a single irreducible

component. As these transient states will have a steady-state probability of zero

they can be eliminated from the state-space. Steady-state analysis then proceeds

on the single irreducible component.

• The state-space consists of several separate irreducible components. This case

cannot be remapped onto a single irreducible state-space and so the steady-state

solution is not attempted.

6.1.7 Steady-state Solver

The steady-state solution of the model’s CTMC is achieved by solvingπQ = 0 for π

(subject to
∑

i πi = 1). This can be rewritten in the form of a system of linear equa-

tionsAx = b, for which there exist a wide range of solution techniques. DNAmaca

implements a number of techniques which can be grouped into four main categories:

Direct methods: Gaussian Elimination and Grassman’s method.

Classical iterative methods: Gauss-Seidel, fixed SOR and dynamic SOR.

Krylov subspace techniques:Conjugate Gradient Squared (CGS), Conjugate Gra-

dient using the normal equations, Biconjugate Gradient, BiCG stabilised (two

versions) and the Transpose Free Quasi-Minimal Residual Algorithm.

Decompositional techniques:Aggregation-Isolation and Aggregation-Isolation Re-

laxed.

Interested readers are directed to [87, 88] for full details of these algorithms and their

implementations.

6.1.8 Sparse Matrix Representation

DNAmaca’s great strength is its ability to analyse very large state-spaces. Central to

this ability are the data structures employed for representing the very largeQ matri-

ces in memory. The tools presented later in this chapter all employ a similar storage

152 Chapter 6. Implementations

va
l

ro
w

en
tr

ie
s

va
l

ro
w

va
l

ro
w

en
tr

ie
s

va
l

ro
w

va
l

ro
w

va
l

ro
w

va
l

ro
w

en
tr

ie
s

le
ft

va
l

ri
g

h
t

le
ft

va
l

ri
g

h
t

le
ft

va
l

ri
g

h
t

le
ft

va
l

ri
g

h
t

le
ft

va
l

ri
g

h
t

21 n3

232
1

2

1

n
7

2

S
p

ar
se

 M
at

ri
x

1.
00

00
00

2.
50

00
00

-1
.0

00
00

0

-2
.5

00
00

0

-3
.5

00
00

0

co
l

S
to

re

A
V

L
 T

re
e

5

Fig. 6.3.DNAmaca’s sparse matrix representation scheme [87].

6.1. DNAmaca 153

scheme for their matrix representations and so we describe it in some detail here. The

choice of representation is governed by the access pattern of the algorithms to the

non-zeros in the matrix and the number of distinct non-zeros stored in the matrix.

Most of the steady-state algorithms and all of the passage time/transient algorithms

only require access to their matrices (Q, P′ andU) by row or by column exclusively.

This means that the representation can be tailored to give access to either the rows or

to the columns of the matrix but does not have to cater for both row and column access.

We can therefore store the matrix as a vector of vectors, with the vector at positioni

storing the non-zeros of rowi or columni (depending on the algorithm) of the matrix.

Furthermore, as the models analysed are derived from high-level descriptions with

(usually) a small number of transitions, the number of distinct non-zero values in the

matrix should be reasonably low – although it is worth noting that this may not be

the case when transitions have state-dependent rates or weights. This means that it is

wasteful, in general, to store every non-zero explicitly. Rather we can maintain a list

of all the distinct values and have a pointer into that list from every non-zero value

in the matrix. In the case of matricesQ andP′ these non-zeros will be floating-point

numbers, but inU they will be complex numbers. In either case, however, the same

scheme can be used.

These considerations lead to the creation of the sparse matrix representation structure

shown in Fig. 6.3 (reproduced from [87]). There are three components:

Sparse matrix. As described above, this is implemented as a vector of vectors which

can be dynamically resized.

Store. This holds the distinct values of the non-zeros in the matrix. Non-zero elements

in the sparse matrix have pointers to the corresponding value in this store.

AVL tree. Used only in the construction of the matrix and deleted when no longer

needed, the AVL tree is a height-balanced binary tree. It is used to check effi-

ciently if a non-zero value to be added to the matrix already exists in the store.

Normally, checking such a list ofn elements would requireO(n) time, but an

AVL tree can be searched inO(log2 n) time.

154 Chapter 6. Implementations

6.1.9 Performance Analyser

DNAmaca can compute two classes of steady-state performance measures as described

above in the language specification: state measures and count measures. State mea-

sures are expressed in terms of the values of the elements of the state vector and can

be used to compute measures such as the average number of jobs in a buffer. Given

the steady-state probability distribution vectorπ and a vector of expression valuesv

(wherevi is a function of the elements in the state descriptor vector of statei), the

mean of a state measurem is given by:

E[m] =
n∑
i

πivi

and its second (raw) moment as:

E[m2] =
n∑
i

πiv
2
i

The variance ofm is therefore:

V ar[m] =
n∑
i

πiv
2
i −

(
n∑
i

πivi

)2

Count measures are used to calculate the mean rate at which events occur in the model,

allowing the computation of quantities such as the throughput of transitions. Given the

steady-state probability distribution vectorπ and a functionri which returns the rate

at which the event occurs in statei, the mean of a count measurem is:

E[m] =
n∑

i=1

πiri

6.2 HYDRA

In this section we describe the first of the tools produced as a result of the work pre-

sented in this thesis. HYDRA builds on the technology used by DNAmaca to permit

the analysis of very large Markov models for passage time and transient measures

through the use of uniformization (cf. Chapter 3). The capacity of DNAmaca to han-

dle very large state-space is expanded further by the use of a parallel approach and

6.2. HYDRA 155

Hypergraph
Partitioner

Uniformizer
And

Matrix

Transposer

p1

p3

p4

t2 (3r)t1 (r)

t3 t4 (2r)

p2

p5
t5 (v)

State−Space
Generator

Response
Time

Calculator

Distributed

Enhanced

High−Level
Specification

DNAmaca
Steady

State

Solver

Fig. 6.4.HYDRA tool architecture.

we exploit hypergraph partitioning (cf. Chapter 5) to perform the necessary sparse

matrix–vector multiplications efficiently across a number of processors. Results pre-

sented in Chapter 8 demonstrate that HYDRA has the ability to analyse models with

more than107 states.

Fig. 6.4 shows the architecture of the HYDRA tool. The process of calculating a re-

sponse time density begins with a high-level model, which we specify in an enhanced

form of the DNAmaca Markov chain analyser interface language. Next, the proba-

bilistic, hash-based state generator uses the high-level model description to produce

the generator matrixQ of the model’s underlying Markov chain as well as a list of the

initial and target states. Normalised weights for the initial states are then determined

from Eq. 3.10. We calculate the uniformized matrixP from Q (cf. Section 3.3) and

constructP′T from P by transposing and making the target states absorbing. Having

been converted into an appropriate input format,P′T is then partitioned using a hy-

pergraph or graph-based partitioning tool. The analysis pipeline is completed by our

distributed passage time and transient calculator.

156 Chapter 6. Implementations

6.2.1 Input Language Augmentation

The input language used by HYDRA is an extended version of that employed by DNA-

maca. As DNAmaca is purely a steady-state solver we have added syntax to permit

the specification of passage time and transient performance measures. For either case,

the user is required to specify a high-level description of the measures of interest.

For passage time analysis, the user must specify the conditions which identify the

source and target states of the passage and also the time range for which the result

should be calculated. The time range is specified as an initial value oft, an incremental

step and a maximum value. The source and target conditions are expressed as C/C++

boolean expressions in terms of the elements of the state vector of the model.

passage_time_measure = \passage{

\sourcecondition{ <boolean expression> }

\targetcondition{ <boolean expression> }

\t_start{ <real expression> }

\t_stop{ <real expression> }

\t_step{ <real expression> }

}

Conditions for transient measures are expressed in a similar fashion:

transient_state_measure = \transient{

\sourcecondition{ <boolean expression> }

\targetcondition{ <boolean expression> }

\t_start{ <real expression> }

\t_stop{ <real expression> }

\t_step{ <real expression> }

}

6.2. HYDRA 157

6.2.2 State Generator and Steady-state Solver

HYDRA employs the same probabilistic hash-based state-space generator as DNA-

maca to generateQ. When there are multiple source states in the passage time mea-

sure it is necessary to calculate the steady-state of the CTMC’s embedded Markov

chain (EMC) by solvingπP = π subject to
∑

πi = 1. This may be rewritten as

Ax = 0 whereA = (I−P)T , x = πT (where the superscriptT denotes the transpose

operation) and0 is a vector of zeros, which can then be solved using the techniques

outlined in Section 2.1.4 or any of the methods supported by DNAmaca described

above in Section 6.1.7.

For very large models it may be necessary to perform these calculations in parallel,

which requires the partitioning ofA andx as described in Chapter 5. When using

iterative steady-state solution techniques in parallel, such partitioning requires the ex-

change of elements ofx at the end of each iteration. This enforced barrier synchroni-

sation limits execution speed to that of the slowest processor.

Asynchronous iterative algorithms attempt to overcome this problem [19, 61]. Rather

than exchange vector elements at the end of every iteration, processors send updates

to each other everyn iterations. These values are then used until the next update is

received, meaning that some elements ofx will be out of date compared with those

computed locally. This may delay the convergence of the solution, but as it is usu-

ally the case that the computation capacity of a network of processors exceeds that

network’s communication capacity it may be advantageous to increase the amount of

computation performed while reducing communication. The use of graph partitioning

may be of some benefit when using asynchronous iterations as the amount of non-

zeros which must be communicated between processors will be minimised and so the

amount of information which must be received from other processors will be low [51].

When calculating passage time measures, the end result of this step is the creation of

a file containingα, the source-state weighting vector (cf. Eq. 3.10).

158 Chapter 6. Implementations

6.2.3 Matrix Uniformization and Transposition

OnceQ has been generated and the steady-state solution for the EMC has been calcu-

lated, we uniformize (cf. Eq. 3.7) and transposeQ in preparation for partitioning and

passage time analysis. We determine the value ofq > maxi |qii| and then read in the

rows ofQ, dividing every non-zero byq and add 1 to the diagonal elements, in order

to construct the columns ofPT . At the same time, we ensure that the target states are

made absorbing. This gives us our final uniformized and transposed matrixP′T .

6.2.4 Hypergraph Partitioner

It is necessary to partition the state-space so that the final passage time calculations

can be performed in parallel. Writing a hypergraph partitioner was beyond the scope

of the work presented here. Instead, any one of a number of off-the-shelf tools such as

PaToH and hMeTiS can be used to perform this step (cf. Chapter 5). The output from

all the tools is a text file which assigns each row (or column, if doing a column-wise

partition) to one of the partitions. This mapping is then applied toP′ andα.

6.2.5 Uniformization-based Passage Time and Transient Analyser

The analysis pipeline is completed by our distributed passage time density calcula-

tor, which is implemented in C++ using the Message Passing Interface (MPI) [67]

standard. This means that it is portable to a wide variety of parallel computers and

workstation clusters. Initially, each processor tabulates the Erlang terms for eacht-

point required (cf. Eq. 3.8). Computation of these terms terminates when they fall

below a specified threshold value. In fact, this is safe to use as a truncation condition

for the entire passage time density expression because the Erlang term is multiplied

by a summation which is a probability. The terminating condition also determines the

maximum number of hopsm used to calculate the inner summation in Eq. 3.8, which

is independent oft.

Each processor reads in the rows of the matrixP′T that correspond to its allocated

6.2. HYDRA 159

partition into two types of sparse matrix data structure and also computes the corre-

sponding elements of the vectorπ(0). Local non-zero elements (i.e. those elements

in the diagonal matrix blocks that will be multiplied with vector elements stored lo-

cally) are stored in the sparse matrix representation described above.Remotenon-

zero elements (i.e. those elements in off-diagonal matrix blocks that must be multi-

plied with vector elements received from other processors) are stored in an ultrasparse

matrix data structure – one for each remote processor – using a coordinate format.

That is to say, each non-zero is stored in the form<rowIndex> <columnIndex>

<nonZeroValue>. Each processor then determines the vector elements which will

need to be received from and sent to every other processor on each iteration, adjusting

the column indices in the ultrasparse matrices so that they index into a vector of re-

ceived elements. This ensures that a minimum amount of communication takes place

and makes multiplication of off-diagonal blocks with received vector elements very

efficient.

The vectorπ(n) is then calculated forn = 1, 2, 3, . . . , m by repeated sparse matrix-

vector multiplications of formπ(n+1)T = P′T π(n)T (wherem is the upper limit on the

number of Erlang terms in Eq. 3.8). Actually, fewer thanm multiplications may take

place since a test for convergence is made after every iteration (cf. Eq. 3.11); if the

convergence criterion is satisfied, the matrix-vector multiplication is not performed

and we setπ(n+1)T = π(n)T in subsequent iterations. The check for convergence

is performed on each processor individually and the results broadcast to every other

processor. Only if the calculations on all processors have converged do we stop per-

forming the multiplications. The broadcasting of convergence results is, therefore, a

synchronisation point in the algorithm.

For each matrix-vector multiplication, each processor begins by using non-blocking

communication primitives to send and receive remote vector elements, while calcu-

lating the product of local matrix elements with locally stored vector elements. The

use of non-blocking operations allows computation and communication to proceed

concurrently on parallel machines where dedicated network hardware supports this

effectively. The processor then waits for the completion of non-blocking operations

160 Chapter 6. Implementations

(if they have not already completed) before multiplying received remote vector ele-

ments with the relevant ultrasparse matrices and adding their contributions to the local

matrix-vector product cumulatively.

From the resulting local matrix-vector products each processor calculates and stores

its contribution to the sum
∑

k∈~j π
(n)
k . After m iterations have completed, these sums

are accumulated onto an arbitrary master processor where they are multiplied with

the tabulated Erlang terms for eacht-point required for the passage time density. The

resulting points are written to a disk file and are displayed using the GNUplot graph

plotting utility.

6.3 SMCA

The second tool produced as a result of the work described in this thesis is an extension

of DNAmaca to semi-Markov processes. Our motivation was that, while there exist a

large number analysis tools for Markov models (see for example [39, 94, 114, 116]),

relatively little work has been done on the steady-state analysis of large semi-Markov

models. We have sought to rectify this by producing SMCA, which is capable of

analysing SMPs of the same size state-spaces as the CTMCs solvable with DNAmaca.

As with HYDRA, SMCA builds on a large amount of the technology incorporated

into DNAmaca such as hash-based probabilistic state-space exploration and efficient

sparse matrix representation. We therefore discuss below the modifications neces-

sary to DNAmaca to permit the analysis of SMPs. Much of this feeds into the final

tool presented in this chapter, namely the parallel passage time and transient analyser

SMARTA.

6.3.1 Input Language Augmentation

The greatest difference when moving from the Markov domain into the semi-Markov

domain is that state holding-times are no longer constrained to being exponentially dis-

tributed. This required altering DNAmaca’s input language to permit the specification

6.3. SMCA 161

of such transitions, modifying the state-space generator to generate SMPs and incor-

porating the different approach for steady-state solution of SMPs into the steady-state

solver.

The modified DNAmaca input language is tailored towards the description of Semi-

Markov Stochastic Petri Nets (cf. Section 2.2.4) although it can also be used to specify

any semi-Markov chain. Transitions are described in the same manner as in DNAmaca

(cf. Section 6.1.2) except that it is also necessary to describe the firing-time density

function associated with each transition. As our analysis is conducted in the Laplace

domain, we describe this density function in terms of its Laplace transform. Also,

because the inversion algorithms require the values of these Laplace transforms at

many values ofs, the user is required to provide a C/C++ function which returns the

value of the firing-time density function’s Laplace transform at a given value ofs. Note

that the\rate{} clause is not used in SMCA as transitions only have probabilistic

weights.

To aid the user, macros are defined for several common firing-time distributions as

shown in Table 6.1. Note that themarkov() distribution is a special case; it permits

the semi-Markov analyser to model true Markovian concurrency and, if used, there

can be no non-Markovian transitions enabled at the same priority level. The weight

of a markov() transition is used as the rate parameter of its exponential firing-time

distribution.

A transition description in the input language is composed of the following:

transition_declaration = \transition{<identifier>}{

\condition{ <boolean expression> }

\action{ { <assignment> }* }

\weight{ <real expression> }

\priority{ <non-negative integer> }

\sojountimeLT{ <function> }

}

boolean expression = C/C++ boolean expression

162 Chapter 6. Implementations

Macro Name Distribution L.T. of corresponding pdf

exponential(λ,s); exp(λ) λ
s+λ

uniform(a,b,s); uni(a, b) (e−as−e−bs)
(b−a)s

erlang(λ,n,s); erlang(λ, n)
(

λ
s+λ

)n
wheren is an integer

gamma(λ,n,s); gamma(λ, n)
(

λ
s+λ

)n

deterministic(d,s); det(d) e−ds

immediate(); det(0) 1 for all values ofs

markov(s); exp(µi) whereµi is the sum of the rates µi

s+µi

of all enabled transitions in statei

Table 6.1. Some common transition delay density functions and their corresponding Laplace trans-

forms.

real expression = C/C++ real expression

assignment = C/C++ assignment

function = C/C++ function returning a complex value

6.3.2 State-space Generator

Augmenting the input language in this fashion required modification to a number of

components of DNAmaca. The parser had to be altered to recognise the new fields

in the transition declarations, and extra methods were added to theState class to

return the Laplace transforms of the transition firing delays. SMCA employs the same

probabilistic state-space generator as DNAmaca, but instead of generatingQ it is used

to generateP, the transition matrix of the model’s EMC. Note that we do not generate

the matrixH explicitly; instead it can be constructed when needed fromP and the

state sojourn time information parsed from the high-level model description.

6.3.3 Steady-state Solver

The steady-state solver also required a degree of reworking to calculate steady-state

probabilities for SMPs. Eq. 2.4 states that in order to calculate these probabilities,

6.3. SMCA 163

it is necessary to know the steady-state probabilities for the EMC and the average

amount of time spent in each state. The former is calculated fromP using the existing

steady-state solution methods of DNAmaca. The latter is computed using the transition

distribution information (parsed from the model file) of the transitions enabled in each

state.

The average amount of time in a state is calculated as the sum of the mean firing times

of the enabled transitions in that state, weighted with the probability that each tran-

sition fires. As our specification of the firing-time distributions of the transitions is

linked to the demands of the numerical Laplace transform inversion algorithms, we

make use of Eq. 3.12 to calculate the average time before a transition fires from the

Laplace transform of its firing distribution. This is then used, along with the steady-

state probabilities from the EMC, to solve for the steady-state probabilities of the SMP

using Eq. 2.4. SMCA’s performance analyser can then use these steady-state probabil-

ities to calculate state and count measures in exactly the same way as DNAmaca.

6.3.4 Example SMP Steady-state Analysis

p0 p1

p2

(t0, 1.0, 1, det(1.0,s))

(t1, 1.0, 1, det(2.0,s))

(t2, 1.0, 1, det(3.0,s))

Fig. 6.5.A three-state SM-SPN.

We now demonstrate the analysis of a simple SMP using SMCA. Fig. 6.5 shows a

three state SMP described as an SM-SPN, while Fig. 6.6 shows the corresponding

SMCA input file. We also define four performance measures, in this case three state

164 Chapter 6. Implementations

\model{

\statevector{ \type{short}{ p0, p1, p2 } }

\initial{ p0 = 1; p1 = 0; p2 = 0; }

\transition{t0}{
\condition{p0 > 0}
\action{ next->p0 = p0 - 1; next->p1 = p1 + 1; }
\weight{1.0}
\priority{1}
\sojourntimeLT{ return deterministic(1.0, s); }

}

\transition{t1}{
\condition{p1 > 0}
\action{ next->p1 = p1 - 1; next->p2 = p2 + 1; }
\weight{1.0}
\priority{1}
\sojourntimeLT{ return deterministic(2.0, s); }

}

\transition{t2}{
\condition{p2 > 0}
\action{ next->p2 = p2 - 1; next->p0 = p0 + 1; }
\weight{1.0}
\priority{1}
\sojourntimeLT{ return deterministic(3.0, s); }

}
}

\solution{ \method{ sor } }

\performance{
\statemeasure{ mean_tokens_on_place_p0 }{

\estimator{ mean }
\expression{ p0 }

}
\statemeasure{ mean_tokens_on_place_p1 }{

\estimator{ mean }
\expression{ p1 }

}
\statemeasure{ mean_tokens_on_place_p2 }{

\estimator{ mean }
\expression{ p2 }

}
\countmeasure{ throughput_t2 }{

\estimator{ mean }
\transition{ t2 }

}
}

Fig. 6.6.The SMCA input file for the SM-SPN in Fig. 6.5.

6.3. SMCA 165

PerformanceAnalyser (0x8063248): powering up...
Timer (0x8063280): timer started...
Information (0x8063298): reading data from ’OPTIONS’.
Information (0x8063298): reading state data from ’INFO’.
PerformanceAnalyser (0x8063248): powered up...
Vector input (0x8063254) from ’SM-STEADY’
(precision set to 10 places)

(begin performance results)

State Measure ’mean_tokens_on_place_p0’

mean 1.6666666666e-01

State Measure ’mean_tokens_on_place_p1’

mean 3.3333333333e-01

State Measure ’mean_tokens_on_place_p2’

mean 5.0000000000e-01

Count Measure ’throughput_t2’

mean 1.6666666667e-01

(end performance results)
PerformanceAnalyser (0x8063248): powered down...

Fig. 6.7.The SMCA performance analyser output for the model file in Fig. 6.6.

166 Chapter 6. Implementations

measures which calculate the average number of tokens on each of the places and a

count measure calculating the throughput of transitiont2. As there is only one token in

the net, the state measure results correspond to the steady-state probabilities of being

in each of the three states of the underlying SMP.

Fig. 6.7 shows the output from SMCA’s performance analyser. Given the delays of the

three deterministic transitions, we would expect that at steady-state the SMP would

spend half its time in the state wheret2 is enabled, one third of the time in the state

wheret1 is enabled and one sixth of the time time in the state wheret0 is enabled. In

addition, transitions should fire once every 6 time units for a throughput of1/6. These

intuitions are supported by the results from SMCA.

6.4 SMARTA

In this section we describe SMARTA (Semi-MArkov Passage Time Analyser), the

final tool implementing work presented in this thesis. This draws upon technology

from the semi-Markov steady-state solver SMCA and the Markovian passage time

analyser HYDRA (both described above), as well as the GSPN analyser described

in Chapter 3, and implements the iterative algorithm presented in Chapter 4 for the

passage time analysis of very large semi-Markov models. As in HYDRA, hypergraph

partitioning is employed to perform the central sparse matrix-vector multiplications

efficiently in parallel. Many of the underlying techniques (probabilistic hash-based

state exploration, efficient sparse matrix representation) are shared with HYDRA and

SMCA, and so we concentrate here on novel features of the parallel Laplace transform

inverter which implements our iterative algorithm.

6.4.1 Tool Architecture

The process of computing a passage time density using SMARTA is shown in Fig. 6.8

and begins with a high-level model specified in an enhanced form of the DNAmaca

interface language. This input language combines the passage time measure spec-

6.4. SMARTA 167

DTMC
Steady
State

Solver

Distributed
Laplace

Transform
Inverter

Hypergraph

Partitioner

master
processor

LT inverter
with no

L(s)
evaluation

master
disk

cache
filter

disk cache
master

partitioned
matrix
files

Enhanced
DNAmaca
high−level

specification Generator
Space
State

s
1

s
2

LT inverter

L(s)
evaluation

with

L(s)
1

L(s)
n

memory cache
master

L(s)
2

L(s)
2

L(s)
1 L(s)

1

L(s)
n

memory cache
master

L(s)
2

s−value work queue
s−values

groups
slave processor

Fig. 6.8.SMARTA: Semi-Markov Passage Time Analyser.

168 Chapter 6. Implementations

ification syntax from HYDRA with SMCA’s ability to specify generally distributed

transitions. The model description is parsed into C/C++ source code and is compiled

with SMCA’s probabilistic, hash-based state generator and then executed to generate

the state-space of the model’s underlying semi-Markov process and the correspond-

ing transition probability matrixP of the model’s embedded Markov chain. A list

of source and target states is also constructed.U andU′ are then generated using

P and the state holding-time distributions and target states specified in the high-level

model. Normalised weights for the source states (the vectorα in Eqs. 3.5 and 4.5)

are determined by the solution ofπ = πP, as in HYDRA. The state-space is then

partitioned using an off-the-shelf hypergraph partitioning tool. Finally, a distributed

Laplace transform inverter (the operation of which is described in detail below) is used

to calculate the value of the required passage time density or quantile at user-specified

time-points. This can then be plotted using a program such as GNUplot.

6.4.2 Implementation of the Parallel Iterative Algorithm

The parallel passage time density calculator is implemented in C++ using the Message

Passing Interface (MPI) standard [67] and employs a master-slave architecture with

groups of slave processors. The master processor computes in advance the values of

s at which it will need to know the value ofL~i~j(s) in order to perform the inversion.

As described in Section 4.1, this can be done irrespective of the inversion algorithm

employed. Thes-values are then placed in a global work-queue to which the groups

of slave processors make requests.

The highest ranking processor in a group of slaves makes a request to the master for

ans-value and is assigned the next one available. This is then broadcast to the other

members of the slave group to allow them to construct their columns of the matrixU′

for that specifics. Each processor reads in the columns of the matrixP that corre-

spond to its allocated partition and uses the probabilities stored in these, along with

the current value ofs and the transition firing-time information from the parsed model

file, to constructU′ as described in Section 4.3.1. Also, each processor reads in the

source-state weighting vectorα.

6.4. SMARTA 169

begin
y: vector of length|xi|
zj: vector of length|xj|, one for eachj ∈ P , j 6= i

converged: boolean
µi: complex number
L(s): complex number
xT

i = αt

do begin
for j = 0 to j = |P | − 1 do begin

if j 6= i

irecv(j, zj)
end
yT = xT

i U′
ii

for j = 0 to j = |P | − 1 do begin
if j 6= i

isend(j, y)
end
waitall(P)
for j = 0 to j = |P | − 1 do begin

if j 6= i

yT = yT + zT
j U′

ij

end
for k = 0 to k = |xi| − 1 do begin

if yk ∈ T

µi+ = yk

end
converged = true

for k = 0 to k = |xi| − 1 do begin
if |yk − (xi)k| > 10−8 do begin

converged = false

break
end

end
allreduce(converged, and, P)
xT

i = yT

end
while not converged

reduce(L(s), µi, sum, min(P), P)
return L(s)

end

Fig. 6.9.Parallel iterative passage time calculation algorithm for slave processori.

170 Chapter 6. Implementations

Fig. 6.9 outlines the iterative algorithm as implemented for slave processori. P is the

set of processors in a group of slaves andT is the set of target states. Each processor

holds |P | blocks of the matrixU′ and we denote thejth block stored on processor

i asU′
ij, 0 ≤ i, j, < |P |. The blockU′

ii (the on-diagonal block) is stored in the

compressed sparse column format (cf. Section 6.1.8), while blocksU′
ij, i 6= j, are

stored in ultrasparse format (cf. Section 6.2.5). Note that theblockU′
ij should not be

confused with the(i, j)th elementof U′ denotedu′ij. Each processor also maintains

a portion of the initial weighting vectorα and the current iteration vectorx, and we

denote the portion held by processori asαi andxi respectively.

Each processor inP also determines which vector elements need to be received from

and sent to every other processor. A vector of vectors in which to store the non-zeros

transmitted to it by the other processors in the group is then initialised. In Fig. 6.9,

these are thezp vectors. Only those elements required by remote processorj are sent

from i, thus ensuring that a minimum amount of communication takes place. Processor

i must therefore adjust the row indices inU′
ij so that they index into the vector of

received elementszj. This makes multiplication of theU′
ij blocks with thezj vectors

efficient.

The iterative algorithm then proceeds until the difference between successive iteration

vectors (y andxi) is less than some pre-specified amount (10−8 in Fig. 6.9) on all

processors inP . On each iteration, processori first sets up non-blocking receives to

receive remote elements ofx from the other processors. The operationirecv(j, zj)

receives vector elements from processorj into the vectorzj. Whilst waiting for these

operations to complete, processori multiplies its local matrix blockU′
ii with its lo-

cally maintained portion of the vectorxi and the result stored in the vectory. Processor

i then sends the newly computed elements ofy to the other processors which require

them. The operationisend(j, y) is a non-blocking operation which transmits those

elements ofy required by processorj to that processor.

Processori then waits for the completion of non-blocking operations with a call to

a waitall(P) function. This waits for all outstandingisend() and irecv()

calls to processors inP involving i (either as source or destination) to complete be-

6.4. SMARTA 171

fore the algorithm proceeds. Remote vector elements stored in thezj vectors are then

multiplied with theU′
ij blocks and the result added toy. Each processor then checks

for convergence by comparing the absolute value of the difference between every ele-

ment in the current and previous iteration vector. The algorithm has converged when

the calculations of every slave inP has converged, and this is checked by performing

an allreduce() with an and operator across all processors inP . This operation

places the result ofanding all the values ofconverged together acrossP on every

processor inP .

Once the calculations of a slave group are deemed to have converged,µj from all

processorsj ∈ P are collected on the lowest-ranking processor using a reduce with the

sum operator. In Fig. 6.9, this is thereduce(L(s), µj, sum, min(P), P) function,

which accumulates the values ofµj into the variableL(s) on processormin(P) (the

lowest-ranked processor∈ P) from all processors inP . L(s) is then returned to

the global master by processormin(P) where it is cached. When all results have

been computed and returned for all required values ofs, the final Laplace inversion

calculations are made by the master, resulting in the value of the passage time density

or quantile at the requiredt-points. These points can then be displayed using a graph-

plotting program such as GNUplot.

The next chapter will present examples of the analysis of very large semi-Markov

models using SMARTA.

Chapter 7

Extended Continuous Stochastic Logic

Formal logics for stochastic systems provide a concise and rigorous way to pose per-

formance questions and allow for the composition of simple queries into more com-

plex ones. One such logic is Continuous Stochastic Logic (CSL), which was originally

presented in [10, 11] and has been applied to Markovian state spaces in [13, 14, 85].

CSL can express performance measures by selecting states and paths from a system

that meet both steady-state and passage time quantile criteria. CSL has been applied

to Generalised Semi-Markov Processes [126] to specify performance properties on

discrete event simulations, but its application to semi-Markov chains is relatively re-

cent [98].

This chapter presents extended CSL (eCSL), which augments semi-Markov CSL with

the ability to express a richer class of passage time quantities as well as measures based

on transient state distributions. Unlike basic CSL, which operates at a state-transition

level, eCSL is designed to operate at the model level on semi-Markov stochastic Petri

nets (SM-SPNs, cf. Section 2.2.4), from which an underlying semi-Markov process

can be generated. We first discuss the current state of CSL and highlight those areas

which we enhance in eCSL. We then present eCSL and provide example formulae.

172

7.1. CSL 173

7.1 CSL

In order to make detailed comparisons with CSL, and to understand fully the enhance-

ments introduced in eCSL, we first present a detailed summary of the standard CSL as

used in [13, 14, 85, 98]. A semi-Markov CSL (similar to [98]) is defined directly over

a semi-Markov state space(S,P,H, A) whereS is the set of states,P is the embed-

ded probability transition matrix,H is the state holding time distribution matrix andA

is a state labelling function. This labelling function attaches multiple labels to every

state, and allows states to be associated with a more meaningful description (in terms

of the high-level model) than solely their integer position in the transition matrix. For

example, the labelfailed may be attached to several states; this label can then be

used to refer to the states collectively rather than having to enumerate them explicitly

as a set of state indices.

A CSL formula is defined as follows:

Ψ
def
= tt a Ψ ∧Ψ ¬Ψ Sρ(Ψ) Pρ(ψ) (7.1)

ψ
def
= XΨ Ψ ∪τ Ψ (7.2)

S represents a steady-state condition andP represents a passage time condition on a

set of paths defined byψ. The valuesρ andτ represent ranges of allowed probabilities

and times, respectively.

The semantics of the logic are expressed by stating the precise conditions under which

a single states satisfies each of the possible clauses of aΨ-formula. As in other

temporal logics, this is writtens |= Ψ.

The clausea is a label and a states satisfies that label ifa ∈ A(s). Thus using the

not andconjunctiveclauses in combination with labelling allows whole sets of states

to be defined with aΨ-formula. The set of states specified in this manner is written

Sat(Ψ) = {s ∈ S | s |= Ψ}. Thus the steady-state clauseSρ(Ψ) defines a set of states

S1 = Sat(Ψ) and is true if the sum of the long-run probabilities of the states inS1 lies

in the rangeρ.

174 Chapter 7. Extended Continuous Stochastic Logic

7.1.1 Formal CSL semantics

The formal semantics of CSL are:

s |= tt ∀s
s |= a iff a ∈ A(s)

s |= Ψ1 ∧Ψ2 iff s |= Ψ1 ∧ s |= Ψ2

s |= ¬Ψ iff s 6|= Ψ

s |= Sρ(Ψ) iff Π~j ∈ ρ where ~j = Sat(Ψ)

s |= Pρ(ψ) iff IP
(
σ ∈ Path(s) | σ |= ψ

) ∈ ρ

(7.3)

wherePath(s) is the set of all paths starting froms. The quantityΠ~j is the long term

probability of being in any of the states in~j.

Further, a pathσ satisfies a path formula,ψ, as follows:

σ |= XΨ iff ∃σ[1] |= Ψ

σ |= Ψ1 ∪τ Ψ2 iff ∃u ∈ τ . (σ@u |= Ψ2 ∧ ∀u′ < u, σ@u′ |= Ψ1)
(7.4)

whereσ[1] is a state immediately succeeding the start state ofσ andσ@t is the state

that the system is in at timet on the pathσ. TheX path operator is often referred

to as thenext state operatorand is used to extract an aggregate DTMC probability

for selecting a given set of successor states,Sat(Ψ). Finally, thetime-bounded until

formula,Ψ1 ∪τ Ψ2, specifies a set of paths starting in a single states which satisfyΨ1

for the duration of the path and terminate when they satisfyΨ2; this is further restricted

to complete the passage in timeu ∈ τ .

7.1.2 Opportunities for Enhancing CSL

There are three main issues regarding the specification of performance measures that

arise from the definition of CSL:

1. Only a single start state can be specified for the time-bounded until formula with

the existing formulation of CSL. Passage time specifications are more expressive

when associated with many possible start states, especially when asking perfor-

mance questions of high-level formalisms where the start and end conditions for

a passage may not necessarily specify a unique state.

7.2. eCSL 175

2. There is no ability to express performance conditions based on transient state

distributions.

3. Although compound formulae of steady-state and passage time constraints are

allowed, the meaning of the derived formulae is somewhat obscure.

As an example of this last point, considerPρ1

(Sρ2
(Ψ1)∪τ Ψ2

)
which would define a

passage along a set of paths that consists of states which satisfySρ2
(Ψ1), and terminate

satisfyingΨ2. As long asSat(Ψ1) has a steady-state value inρ2 (and the underlying

process is irreducible†), then all states will satisfySρ2
(Ψ1), which therefore represents

no constraint on the selected paths at all. Alternatively, ifSat(Ψ1) does not have

a steady-state value inρ2, then only paths of length0 may be selected. Similarly

abstruse would be anS formula which relied on the possible start states of aP formula,

for example,Sρ1

(Pρ2
(Ψ1∪τ Ψ2)

)
: that is, calculating the long term state probability

over the set of possible start states of theP portion.

7.2 eCSL

We present an extension to CSL, called eCSL, which can express a greater variety of

performance-related questions: for example, transient state distribution-based proper-

ties and multiple start states for both passage and transient properties. Unlike standard

CSL, which is applied directly to a labelled Markovian state space, eCSL operates on

semi-Markov stochastic Petri nets, which can express any Markov or semi-Markov

model (including those with immediate transitions). This eCSL is intended to comple-

ment CSL, as CSL concentrates on describing properties which are formally decidable

while eCSL focuses on the specification of performance queries.

For the reasons given in Section 7.1.2, we remove the possibility of specifying com-

pound formulae in the manner of CSL. We also simplify the path formulae of the

†The importance of this can be seen by considering an example with a state-space consisting of two

strongly-connected components. The long-run probabilities will depend on which component is entered

first, and if the target states only exist in one component then there is no possible path to them from the

other.

176 Chapter 7. Extended Continuous Stochastic Logic

original CSL and instead specify paths by providing high-level rules that yield a set

of start states, a set of terminating states and a set of excluded states though which

a path cannot pass. Taking into account the fact that CSL could not specify multiple

start states, this is equivalently expressive to the logical until formula, which provides

a single start state, a set of end states and a set of states that the passage is restricted to.

In eCSL, sets of states themselves are specified in terms of markings of a semi-Markov

stochastic Petri net. We believe that these simplifications make for a formalism which

maps more pleasantly onto both Petri nets and the underlying stochastic quantities.

It also keeps the path formulae required to specify complex performance measures

simple.

7.2.1 The Syntax of eCSL

In this section, we define the syntax of eCSL over SM-SPNs. An eCSL statementΨ

acting on an SM-SPN system with set of markingsM is defined by:

Ψ
def
= tt Ψ ∧Ψ ¬Ψ Sρ(ψ) T τ

ρ (ψ, ψ) Pτ
ρ (ψ, ψ)

ψ
def
= tt p[N] ψ ∧ ψ ¬ψ

Here we have deliberately separated out the state specificationψ-formulae from the

performance specificationΨ-formulae. This avoids the conceptual problems associ-

ated with the compound performance properties that arise in CSL, while still being

sufficiently expressive to allow for multiple simultaneous performance criteria to be

specified. We define the function which operates on aψ-formula and extracts the set

of all states that satisfy it asSat(ψ) = {m ∈ M |m |= ψ}.

In theψ specification,N ∈ IN0 andp[N] is satisfied if the number of tokens on placep

in some statem is in the set of allowed numbers of tokensN . As with CSL,ρ ∈ 2[0,1]

is a set of allowed probabilities and similarlyτ ∈ 2[0,∞] is a set of times. Here,2M is

a power set which consists of all the subsets of the setM .

Sρ(ψ) is true if the steady-state probability of being in the set of states defined byψ

lies in the setρ.

7.2. eCSL 177

Fig. 7.1.An example of a transient constraint~m |= T Rt

Rp
(Ψ) which is satisfied by a transient distribution

in the shaded area.

T τ
ρ (ψ1, ψ2) is satisfied by a set of start states if the probability of the system being in

statesSat(ψ1) at timet, while not having passed through statesSat(ψ2), lies inρ for

all timest ∈ τ (shown for an arbitrary transient distribution in Fig. 7.1).

Finally, Pτ
ρ (ψ1, ψ2) is true for a set of start states if the random variable represent-

ing the passage time to target statesSat(ψ1), while not having traversed states in

Sat(ψ2), lies in the range of timesτ with probability p ∈ ρ. For a high-level mod-

elling paradigm, we believe that specifying rules for sets of excluded states is simpler

than having to specify explicitly all the permitted states for a path with state-by-state

logical formulae as used by standard CSL on conventionally labelled state spaces.

7.2.2 Examples of eCSL Formulae

As an example of how eCSL could be used to pose performance questions in practice,

we consider the problem of finding the value ofq that satisfies the formula:

Sat(p1[35] ∧ p5[10]) |= P [0,10)
{q} (p2[175], p6[1]) (7.5)

178 Chapter 7. Extended Continuous Stochastic Logic

The question being asked is: what is the probability that a defined passage takes less

than time10? The passage time quantity is defined by the source statesp1[35]∧p5[10],

by the target statesp2[175] and taking into account the excluded states,p6[1]. These

expressions define sets of states, for instancep1[35] ∧ p5[10] selects all the Petri net

markings which have 35 tokens onp1 and 10 tokens onp5.

If we wish to define multiple performance requirements for a single set of start states

on a system then we might ask:

Sat(p1[35] ∧ p5[10]) |=
(
P [0,10)

(0.9,1](p2[175], p6[1]) ∧ P [0,100)
(0.98,1](p2[320], p6[4])

)
(7.6)

This expresses the need to surpass a 90% quantile for a passage time within the first 10

time units of the passage starting and a 98% quantile, over a different passage, within

100 time units. In this way, multiple quality of service requirements may be succinctly

expressed and verified with a single eCSL formula.

If distinct start states are required for each performance measure, we could compose

them as follows:

(
Sat(p5[10]) |= P [0,10)

(0.9,1](p2[175], p6[1])
)
∧

(
Sat(p1[35]) |= T [0,100)

(0.2,1] (p2[320], p6[4])
)

(7.7)

This expresses the need to surpass a 90% quantile for a passage time within the first

10 time units starting from states where there are 10 tokens onp5, and a 20% quantile

for a passage time within the first 100 time units starting from states where there are

35 tokens onp1.

7.2.3 Formal Stochastic Semantics of eCSL

In this section, we formally define the satisfiability formulae for eCSL over SM-SPNs.

These are expressed in terms of a markingm of an SM-SPN wherem(p) is the number

of tokens at placep in markingm. We test individual markings of the Petri net against

every allowed combination ofΨ andψ-expressions. As before, these are evaluated in

terms of individual satisfiability questions, e.g.m |= ψ1, which poses the question:

does the single statem satisfy the formulaψ1?

7.2. eCSL 179

Formally, for the generalψ-expression:

m |= tt ∀m
m |= p[N] iff m(p) ∈ N

m |= ψ1 ∧ ψ2 iff m |= ψ1 ∧m |= ψ2

m |= ¬ψ iff m 6|= ψ

(7.8)

Importantly, theΨ-formulae are satisfied by vectors of markings or states. This is so

that a configuration of multiple start states can be defined and used to specify corre-

sponding multiple performance properties. This overcomes the restriction inherent in

CSL that it is only able to express performance properties with single start states.

~m |= tt ∀~m

~m |= Ψ1 ∧Ψ2 iff ~m |= Ψ1 ∧ ~m |= Ψ2

~m |= ¬Ψ iff ~m 6|= Ψ

~m |= Sρ(ψ) iff Π~j ∈ ρ where ~j = Sat(ψ)

~m |= T τ
ρ (ψ1, ψ2) iff ∀t ∈ τ , T

~k
~m~j

(t) ∈ ρ where

~j = Sat(ψ1), ~k = Sat(ψ2)

~m |= Pτ
ρ (ψ1, ψ2) iff IP

(
P

~k
~m~j
∈ τ

) ∈ ρ where

~j = Sat(ψ1), ~k = Sat(ψ2)

(7.9)

The steady-state operatorΠ~j represents the long term probability of being in the set

of states~j and is independent of any start state (assuming that the underlying SMP is

irreducible).

For the transient operatorT we have a modified transient distribution function to take

account of the excluded states in~k:

T
~k
~i~j

(t) =
∑

i∈~i
αiIP

(
Z(t) ∈ ~j | Z(0) = i,∀t′ < t . Z(t′) 6∈ ~k

)
(7.10)

TheIP(·) term inside the summation describes the conditional probability that the SMP

is in a state in~j at timet given that it started from a statei and has never been through

any state in~k. This probability is finally deconditioned over the set of all the possible

start states in~i. α is taken to be a normalised steady-state vector, but there is no reason

why it could not be generalised to an arbitrary initial weighting vector, specified by

the user (although there is currently no syntactic support for this in eCSL).

180 Chapter 7. Extended Continuous Stochastic Logic

Similarly for the passage time operator,P, we can modify the passage time random

variable to incorporate the excluded states vector~k:

P
~k
~i~j

=
∑

i∈~i
αi inf{u > 0 : Z(u) ∈ ~j | Z(0) = i,∀u′ < u . Z(u′) 6∈ ~k} (7.11)

Calculating the modified passage time probabilityIP
(
P

~k
~m~j

∈ τ
) ∈ ρ or transient

probabilityT
~k
~i~j

(t) quantities involves straightforward modification of the formulae of

the standard passage time and transient formulae for an SMP given in Chapter 4. All

the excluded states in an exclusion set~k are removed from the embedded DTMC

(∀i ∈ S, k ∈ ~k let pik = 0 andpki = 0), while renormalising the probabilities as

necessary, so that
∑

j pij = 1 for all i. The renormalising of the DTMC, after removal

of the excluded states, reflects the conditional nature of Eq. 7.10 and Eq. 7.11.

More examples of eCSL formulae are given in Section 8.2 of the next chapter.

Chapter 8

Numerical Results for Very Large

Markov and Semi-Markov Models

This chapter presents passage time and transient results calculated in very large Markov

and semi-Markov models using the tools described in Chapter 6. This serves as a

demonstration of the capacity of our methods and of the types of performance queries

they can answer. We first analyse two Markov models with up to 10.8 million states

using HYDRA. Numerical passage time results are presented and are validated against

simulation. We also examine the scalability of HYDRA on two parallel architectures.

We then demonstrate the analysis of very large semi-Markov models using SMARTA.

We begin by conducting transient analysis on a106 540 state model, and then move

onto the passage time analysis of models with up to 15.4 million states. Both pas-

sage time density and quantile results are produced. We also demonstrate the use of

eCSL for the formal specification of performance queries. Finally, the scalability of

SMARTA is investigated on the Viking Beowulf cluster.

8.1 Very Large Markov Models

In this section we present passage time results for the analysis of very large Markov

models using HYDRA. We consider two models: the Flexible Manufacturing System

181

182 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

GSPN described in Appendix A.2 and the tree-like queueing network of Appendix A.3.

We produce passage time results for the FMS model with1 639 440 states and for the

tree-like queueing network with10 874 304 states, and validate them against simula-

tion and a known analytical solution respectively. In the case of the tree-like queueing

network, we also present figures for the number of non-zeros and amount of data ex-

changed after each iteration under a number of partitioning schemes. The scalability

of HYDRA is investigated on two architectures (a dedicated parallel computer and a

network of PC workstations).

8.1.1 Flexible Manufacturing System

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 1.6 million state FMS model

Fig. 8.1. Numerical and simulated (with 95% confidence intervals) passage time densities for the time

taken to produce a finished part of typeP12 starting from states in which there arek = 7 unprocessed

parts of typesP1 andP2.

The first Markov model for which we present results is the Flexible Manufacturing

System GSPN. Fork = 7, the GSPN’s underlying Markov chain has1 639 440 states

and13 552 968 non-zero off-diagonal entries in its generator matrixQ. For this model,

we calculate the density of the time taken to produce a finished part of typeP12 start-

ing from any state in which there are7 unprocessed parts of typeP1 and7 unprocessed

8.1. Very Large Markov Models 183

parts of typeP2. That is, the source markings (of which there are 36, corresponding to

the possible submarkings ofM3) are those whereM(P1) = M(P2) = 7 and the tar-

get markings (of which there are 429 624) are those whereM(P12s) = 1. We weight

the density from each source state according to the relative probability that the passage

originates in that state (cf. Eq. 3.10).

After modification of the state graph to allow for transitions from target states to a

new terminal state, the uniformized matrixP′ has11 001 408 non-zero entries. The

hypergraph tool PaToH is then used to partition the rows of the transposed matrixP′T

as input to our parallel algorithm. Fig. 8.1 shows the resulting numerically calcu-

lated passage time density, which is validated against the combined results from 10

simulations (each of which consisted of 1 billion transition firings) plotted with 95%

confidence bounds. There is excellent agreement between the numerical and simulated

passage time densities.

8.1.2 Tree-like Queueing Network

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

P1

P2

P3

P4

x

Fig. 8.2.TransposedP′ matrix (left) and hypergraph-partitioned matrix (right) for the tree-like queueing

network with 6 customers (5 544 states).

The second example we consider is a cycle time in the closed tree-like queueing net-

work. For a small six-customer system with 5 544 states, Fig. 8.2 shows the resulting

184 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

proc- non- local remote reused

essor zeros % % % 1 2 3 4

1 7 022 99.96 0.04 0 1 - 407 - 4

2 7 304 91.41 8.59 34.93 2 3 - 16 181

3 6 802 88.44 11.56 42.11 3 - - - 12

4 6 967 89.01 10.99 74.28 4 - 1 439 -

Table 8.1. Communication overhead in the queueing network model with six customers (left) and in-

terprocessor communication matrix (right) for each processor in a 4 processor decomposition.

Partitioning Communication Overhead

Method Messages Volume (MB)

randomised 240 450.2

linear 134 78.6

graph-based 110 19.7

Table 8.2. Per-iteration communication overhead for various partitioning methods for the queueing

network model with 27 customers on 16 processors.

transposedP′ matrix and associated hypergraph decomposition produced by hMETIS

for a 4 processor decomposition. Statistics about the per-iteration communication as-

sociated with this decomposition are presented in Table 8.1. Around 90% of the non-

zero elements allocated to each processor are local, i.e. they are multiplied with vector

elements that are stored locally. The remote non-zero elements are multiplied with

vector elements that are sent from other processors. However, because the hypergraph

decomposition tends to align remote non-zero elements in columns (well illustrated in

the 2nd block belonging to processor 4), reuse of received vector elements is good (up

to 74%) with correspondingly lower communication overhead. The communication

matrix on the right in Table 8.1 shows the number of vector elements sent between

each pair of processors during each iteration (e.g. 181 vector elements are sent from

processor 2 to processor 4).

Moving to a more sizeable model, the queueing network with 27 customers has an un-

8.1. Very Large Markov Models 185

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Numerical density: 10.8 million state Tree model
Analytical density

Fig. 8.3. Numerical and analytical cycle time densities for the tree-like queueing network of Fig. A.3

with 27 customers (10 874 304 states).

derlying Markov Chain with10 874 304 states and82 883 682 transitions. This model

is too large to partition using a hypergraph partitioner on a single machine (even one

with 2GB RAM), and consequently a lesser quality graph-based decomposition pro-

duced by the parallel graph partitioner ParMETIS (running on the PC cluster) was

used. The options chosen were to use the parallel partitioning algorithm, a successive

folding level of 300 [84] and weights on both vertices and edges. It must be noted that

this decomposition still offers a great reduction in communication costs over other

methods available: a 16-way partition has an average of 95.8% local non-zero ele-

ments allocated to each processor and a reused received non-zero element average of

30.4%. Table 8.2 shows the per-iteration communication overhead for randomised

(i.e. random assignment of rows to partitions), linear (i.e. simple in-order allocation

of rows to processors such that the number of non-zeros assigned to each processor is

the same) and graph-based allocations. The graph-based method is clearly superior,

both in terms of number of messages sent and (especially) communication volume.

Fig. 8.3 compares the numerical and analytical cycle time densities for the queueing

network with 27 customers. Readers are directed to Appendix A.3 for details of the

186 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

AP3000 PC Cluster Comm. per iteration

p time (s) Sp Ep time (s) Sp Ep Messages Vol (MB)

1 1243.3 1.00 1.000 325.0 1.00 1.000 0 0

2 630.5 1.97 0.986 258.7 1.26 0.628 2 1.5

4 328.2 3.78 0.947 197.1 1.65 0.412 12 3.2

8 182.3 6.82 0.853 143.0 2.27 0.284 51 5.3

16 99.7 12.47 0.779 114.6 2.84 0.178 207 7.3

32 58.6 21.22 0.663 71.7 4.53 0.142 663 9.6

Table 8.3. Run-time, speedup (Sp), efficiency (Ep) and per-iteration communication overhead forp-

processor passage time density calculation in the FMS model withk = 7. Results are presented for an

AP3000 distributed-memory parallel computer and a PC cluster.

analytical solution. Agreement is excellent and the results agree to an accuracy of

0.00001% over the time range plotted. The numerical density is computed in 968

seconds (16 minutes 8 seconds) for 875 iterations using 16 Athlon 1.4GHz PCs with

512MB RAM linked together by 100Mbps switched Ethernet. The memory used on

each PC is just 84MB. It was not possible to compute the density on a single PC (with

512MB RAM) but the same computation on a dual-processor server machine (with

2GB RAM) required5 580 seconds (93 minutes).

8.1.3 HYDRA Scalability

Table 8.3 shows the performance of our algorithm on two architectures: a Fujitsu

AP3000 distributed-memory parallel computer running Solaris and a Linux-based PC

workstation cluster. The AP3000 is based on a grid of 60 processing nodes, each of

which has a UltraSPARC 300MHz processor and 256MB RAM. These nodes are in-

terconnected by a 2D wraparound mesh network that uses wormhole routing and that

has a peak throughput of 520Mbps. The PC cluster is a vanilla network of worksta-

tions, consisting of 32 Athlon 1.4GHz PCs each with 512MB RAM linked together

by a 100Mbps switched Ethernet network. Distributed run-time is measured as the

maximum processor run time from the start of the first uniformization iteration. The

8.1. Very Large Markov Models 187

0

200

400

600

800

1000

1200

1 2 4 8 16 32

ru
n

tim
e

(s
)

�

processors

Run-time (seconds): AP3000
Run-time (seconds): PC cluster

Fig. 8.4.Distributed run-time for the FMS model withk = 7 on the AP3000 and a PC cluster.

0

5

10

15

20

25

1 2 4 8 16 32

sp
ee

du
p

�

processors

Speedup: AP3000
Speedup: PC cluster

Fig. 8.5.Speedup for the FMS model withk = 7 on the AP3000 and a PC cluster.

188 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ef
fic

ie
nc

y

processors

Efficiency: AP3000
Efficiency: PC cluster

Fig. 8.6.Efficiency for the FMS model withk = 7 on the AP3000 and a PC cluster.

speedup forp processors, denoted bySp, is given by the run time of the sequential

solution (p = 1) divided by the run time withp processors. Efficiency forp proces-

sors, denoted byEp, is defined asEp = Sp/p. In every case, the sparse matrix was

partitioned using PaToH with the same partitioning options as in Section 5.1.3. The

machine used for partitioning was an Intel Pentium 4 2.6GHz machine with 1GB of

RAM.

Corresponding graphs of the run-time, speedup and efficiency on each architecture are

presented in Fig. 8.4, Fig. 8.5 and Fig. 8.6. The speedups and efficiencies achieved on

the AP3000 are excellent. Solution time on a single AP3000 node is 20 minutes 43

seconds whereas on 32 processors it takes just 58.6 seconds (i.e. 21.22 times faster,

corresponding to an efficiency of 66.3%).

With processors that are about 4 times faster and a communication network that is

about 6 times slower than the AP3000, and without exclusive access to either pro-

cessors or the interconnection network, we cannot expect such good results on the

(shared departmental) PC cluster. However, unusually for problems of this type, rea-

sonable speedups are still achieved, requiring 5 minutes 25 seconds on a single PC and

8.2. Very Large Semi-Markov Models 189

1 minute 12 seconds on 32 PCs (i.e. 4.53 times faster, corresponding to an efficiency

of 14.2%). The speedup trend for the PC cluster is shallow but linear, suggesting that

speedup will continue to improve for an even larger number of processors. Adding

extra workstations also boosts solution capacity through additional RAM. Note that

the results presented for the PC cluster were gathered at times when the network and

processors were most likely to be idle (e.g. late at night) and have been averaged over

three runs to minimise the impact of any external interference.

8.2 Very Large Semi-Markov Models

In this section, we display transient state distributions and passage time densities pro-

duced from semi-Markov models using SMARTA. We analyse two models: the Voting

model of Appendix A.4 and the Web-server model of Appendix A.5. State spaces of

up to 15.4 million states are analysed and the results are validated by simulation. Ex-

amples of eCSL queries for these measures are provided. We also present scalability

results for SMARTA.

The results presented in this section were produced on the Viking Beowulf Linux clus-

ter with 64 dual-processor nodes. Each node has two Intel Xeon 2.0GHz processors

and 2GB of RAM. The nodes are connected by a Myrinet network with a peak through-

put of 2Gbps.

8.2.1 Transient Analysis

Fig. 8.7 shows the transient state distribution for the transit of five voters from place

p1 to p2 in system 3 (106 540 states) of the Voting model. We can pose performance

questions about the transient behaviour of the system using eCSL, for example:

Sat(p1[60] ∧ p3[25] ∧ p5[4]) |= T (0,50]
[0,0.18)(p2[5])

This asks the question: does the probability of having processed exactly 5 voters (rep-

resented by the movement of 5 tokens fromp1 to p2) stay below 0.18 for the first 50

190 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

�

Time

Transient solution: system 3/8
Steady-state solution: system 3/8

Fig. 8.7.Transient and steady-state values in Voting system 3, for the transit of 5 voters from the initial

marking to placep2.

seconds of the operation of the system? By inspection of Fig. 8.7, we can see that it

does.

This graph can be compared with the results from the much smaller example shown in

Fig. 4.15. There is a more noticeable separation between the first two peaks in Fig. 8.7

as there are many more voters to be processed (60 rather than 18).

8.2.2 Passage Time Analysis

Fig. 8.8 shows the density of the time taken to process 300 voters (as given by the

passage of 300 tokens from placep1 to p2) in system 8 (10 991 400 states) of the Voting

model. Numerical calculation of the density required 15 hours and 7 minutes using 64

slave processors (in 8 groups of 8) for the 31t-points plotted. Our algorithm evaluated

L~i~j(s) at 1 023 s-points, each of which involved manipulating sparse matrices of rank

10 999 140. The curve is validated against the combined results from 10 simulations,

each of which consisted of 1 billion transition firings. Despite this large simulation

effort, we still observe wide confidence intervals (probably because of the rarity of

source states).

8.2. Very Large Semi-Markov Models 191

0

0.002

0.004

0.006

0.008

0.01

0.012

500 550 600 650 700 750 800

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 10.9 million state Voting model

Fig. 8.8.Numerical and simulated (with 95% confidence intervals) density for the time taken to process

300 voters in the Voting model system 8 (10.9 million states).

0

0.2

0.4

0.6

0.8

1

500 550 600 650 700 750 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Cumulative passage-time distribution: 10.9 million state Voting model

Fig. 8.9. Cumulative distribution function and quantile of the time taken to process 300 voters in the

Voting model system 8 (10.9 million states).

192 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

0

0.001

0.002

0.003

0.004

0.005

0.006

400 500 600 700 800 900

P
ro

ba
bi

lit
y

de
ns

ity

�

Time

Result from 10 simulation runs of 1 billion transitions each
Passage-time density: 15.4 million state Web-server model

Fig. 8.10.Numerical and simulated (with 95% confidence intervals) density for the time taken to process

100 reads and 50 page updates in the Web-server model system 6 (15.4 million states).

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

�

Time

Cumulative passage time distribution: 15.4 million state web server model

Fig. 8.11. Cumulative distribution function and quantile of the time taken to process 100 reads and 50

page updates in the Web-server model system 6 (15.4 million states).

8.2. Very Large Semi-Markov Models 193

Fig. 8.9 is a cumulative distribution for the same passage as Fig. 8.8, which again

allows us to extract reliability quantiles. For instance:

IP(system 8 can process 300 voters in less than 730 seconds) = 0.9876

In eCSL, this query would satisfy:

Sat(p1[300] ∧ p3[80] ∧ p5[10]) |= P [0,730)
(0.98,1](p2[300])

Fig. 8.10 shows the density of the time taken to perform 100 reads and 50 page updates

in the Web-server model 6 (15 445 919 states). Calculation of the 35t-points plotted

required 2 days, 17 hours and 30 minutes using 64 slave processors (in 8 groups of

8). Our algorithm evaluatedL~i~j(s) at 1 155 s-points, each of which involved manip-

ulating sparse matrices of rank15 445 919. Again, the numerical result is validated

against the combined results from 10 simulations, each of which consisted of 1 billion

transition firings. We observe excellent agreement. Fig. 8.11 shows the corresponding

cumulative distribution function with a reliability quantile superimposed, in this case

showing:

IP(system 6 can process 100 reads and 50 page updates in less than 700 seconds) = 0.9613

In eCSL, this query would satisfy:

Sat(p1[100] ∧ p8[50]) |= P [0,700)
(0.96,1](p2[100] ∧ p9[50])

8.2.3 SMARTA Scalability

Table 8.4 and Figs. 8.12, 8.13 and 8.14 display the performance of the hypergraph-

partitioned sparse matrix–vector multiplication operations on the Viking Beowulf clus-

ter. They show good scalability with a linear speedup trend, which is unusual in prob-

lems of this nature. This is because the hypergraph partitioning minimises the amount

of data which must be exchanged between processors. The efficiency is not 100% in

all cases, however, as even this reduced amount of inter-node communication imposes

an overhead and computational load is not perfectly balanced.

194 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

Processors Time (s) Speedup Efficiency

1 3968.07 1.00 1.00

2 2199.98 1.80 0.902

4 1122.97 3.53 0.883

8 594.07 6.68 0.835

16 320.19 12.39 0.775

32 188.14 21.09 0.659

Table 8.4.Run-time, speedup and efficiency of performing hypergraph-partitioned sparse matrix–vector

multiplication across 1 to 32 processors. Calculated for the249 760 state Voting model for 165s-points

on the Viking Beowulf cluster.

Processors Time (s) Speedup Efficiency

32× 1 150.13 26.43 0.830

16× 2 159.55 24.87 0.777

8× 4 162.13 24.47 0.765

4× 8 165.24 24.01 0.750

2× 16 173.76 22.84 0.714

1× 32 188.14 21.09 0.659

Table 8.5. Run-time, speedup and efficiency using 32 slave processors divided into various different

size sub-clusters. Calculated for the249 760 state Voting model for 165s-points on the Viking Beowulf

cluster.

8.2. Very Large Semi-Markov Models 195

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32

ru
n-

tim
e

(s
)

�

processors

Run-time (seconds)

Fig. 8.12. Run-time of hypergraph-partitioned sparse matrix–vector multiplication. Calculated for the

249 760 state Voting model for 165s-points on the Viking Beowulf cluster.

5

10

15

20

25

1 2 4 8 16 32

sp
ee

du
p

�

processors

Speedup

Fig. 8.13. Speedup of hypergraph-partitioned sparse matrix–vector multiplication. Calculated for the

249 760 state Voting model for 165s-points on the Viking Beowulf cluster.

196 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

ef
fic

ie
nc

y

processors

Efficiency

Fig. 8.14.Efficiency of hypergraph-partitioned sparse matrix–vector multiplication. Calculated for the

249 760 state Voting model for 165s-points on the Viking Beowulf cluster.

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32

ru
n-

tim
e

(s
)

�

processors per group

Run-time (seconds)

Fig. 8.15.Run-time of hypergraph-partitioned sparse matrix–vector multiplication when using 32 pro-

cessors in groups of varying sizes. Calculated for the249 760 state Voting model for 165s-points on

the Viking Beowulf cluster.

8.2. Very Large Semi-Markov Models 197

5

10

15

20

25

30

1 2 4 8 16 32

sp
ee

du
p

�

processors per group

Speedup

Fig. 8.16. Speedup of hypergraph-partitioned sparse matrix–vector multiplication when using 32 pro-

cessors in groups of varying sizes. Calculated for the249 760 state Voting model for 165s-points.

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

ef
fic

ie
nc

y

processors per group

Efficiency

Fig. 8.17.Efficiency of hypergraph-partitioned sparse matrix–vector multiplication when using 32 pro-

cessors in groups of varying sizes. Calculated for the249 760 state Voting model for 165s-points on

the Viking Beowulf cluster.

198 Chapter 8. Numerical Results for Very Large Markov and Semi-Markov Models

Table 8.5 and Figs. 8.15, 8.16 and 8.17 show the hypergraph scalability in the case

where 32 slave processors were divided into various size sub-clusters (32 groups of 1,

16 groups of 2, 8 groups of 4, and so on). This was to measure the benefit to be gained

from adding extra groups to draws-points from the global work queue versus doing the

computation across larger groups of slave processors (which may be necessary when

the state space of the model under analysis is very large). The efficiency decreases as

the number of groups decreases. Note, however, that with run-times of between 150

and 188 seconds, there is still a dramatic improvement over the run-time on a single

slave processor (3 968 seconds) regardless of the group size employed. These results

suggest that, given a fixed number of slave processors, it is best to allocate them into

the smallest size subgroups (that is, to maximise the number of groups drawing from

the global work-queue) subject to the constraints imposed by the size of the model and

the memory available on each processor.

Chapter 9

Conclusion

9.1 Summary of Achievements

This thesis has explored the numerical computation of passage time densities and

quantiles in large Markov and semi-Markov models. Prior work in this area has fo-

cused mainly on the analysis of Markov systems using the two techniques described in

Chapter 3, viz. the Laplace transform method and uniformization. Previous attempts

to analyse semi-Markov models have, however, been stymied by the complexity of

representing the generally-distributed state sojourn-time functions in a space-efficient

manner. This thesis rectifies this by presenting techniques which enable the computa-

tion of passage time densities and quantiles in Markov and semi-Markov models with

state-spaces of107 states and above.

The key contribution of this thesis is the iterative passage time analysis algorithm de-

scribed in Chapter 4. This calculates the Laplace transform of the passage time quan-

tity by convolving the Laplace transforms of the state holding-times across all possible

paths between source and target states. This Laplace transform is then inverted using

numerical inversion techniques to yield the value of the density or quantile function at

a range of user-specified time points. This iterative algorithm has also been extended

to permit the efficient calculation of transient state distributions.

It is possible to adopt an efficient representation scheme for the state holding-time

199

200 Chapter 9. Conclusion

functions because of the way in which the numerical Laplace transform inversion

algorithms work. In order to calculate the value of a functionf(t) at a range oft-

points, both the Euler and the Laguerre methods require the value of the corresponding

Laplace transformf ∗(s) at a range ofs-points, and theses-points can be determined

in advance and do not change during inversion. Rather than attempt to maintain full

symbolic representations of the state holding-time functions and of their convolutions,

therefore, we instead only store the values of the functions at theses-points. This

requires constant storage space regardless of the number of convolutions performed.

Two techniques were investigated to deal with the high memory consumption and

long run-times experienced when analysing very large models. The first approach was

to perform passage time analysis in parallel. This takes advantage of the distributed

memory of a cluster of workstations or parallel computer to store the very large tran-

sition matrices. Furthermore, parallel computation offers the potential to perform this

analysis faster than would be possible on a single machine. Central to the efficiency

of this approach is the way in which non-zero elements of the matrix are assigned to

the processors involved. As communication is very expensive in parallel computa-

tion (compared to local computation), it is vital that these non-zeros be assigned such

that the communication required between processors at the beginning of each itera-

tion is as small as possible. This is achieved by applying hypergraph partitioning to

the matrix. Experimental comparison with simple row-striped partitioning shows that

hypergraph-partitioned sparse matrix–vector multiplication is faster and scales better.

The second approach explored was to reduce the size of the model’s state-space (and

hence the dimensions of its transition matrix) by aggregating states together in such a

way that sojourn-time distribution information is preserved. An algorithm for semi-

Markov processes which achieves this was implemented and then evaluated on a vari-

ety of different size models. We observed that a tension exists between attempting to

minimise the fill-in of the matrix (as states are aggregated, new transitions are created)

and trying to keep low the number of aggregation operations (convolution, branching

and cycle removals) which have to be performed. Aggregating states results in fill-in

of the matrix and consequently makes it more dense, but attempting to avoid or delay

9.1. Summary of Achievements 201

this results in an increase in the number of aggregation operations performed. The

order in which states are selected for aggregation has a significant impact on the be-

haviour of the algorithm – in particular, choosing states with the smallest number of

paths through them delays the observed explosion in the number of aggregation opera-

tions the longest while keeping matrix density low. We also investigated the feasibility

of performing aggregation in parallel. We noted that it is important to ensure that the

number of non-zeros in the final aggregated matrix does not exceed the number in the

original matrix, even if the dimensions of the aggregated matrix are much smaller than

the original matrix.

In order to describe large semi-Markov models succinctly, we have devised a high-

level modelling formalism called Semi-Markov Stochastic Petri Nets (SM-SPNs). This

is an extension of stochastic Petri nets which includes transitions with generally-

distributed firing delays. In the event that two or more general transitions are con-

currently enabled, the selection of the next to fire is done by probabilistic choice

and the delay is then sampled from that transition’s firing distribution. This means

that the underlying stochastic process is isomorphic to a semi-Markov chain. While

SM-SPNs do not attempt to model true Generalised Semi-Markov Process-style con-

currency, they do support Markovian concurrency provided that generally-distributed

(non-exponential) transitions are exclusively enabled.

We have also presented a language for the framing of performance queries about semi-

Markov models in a rigorous manner. This extended Continuous Stochastic Logic

(eCSL) permits the construction of steady-state, transient and passage time questions

at the SM-SPN level (i.e. in terms of the markings of the places in an SM-SPN) rather

than in terms of the states of the underlying SMP. We believe this is a more natural

mode of expression for performance modellers.

We have drawn on the work described above and on the DNAmaca steady-state Markov

chain analyser to implement three analysis tools. HYDRA (HYpergraph-based Dis-

tributed Response Time Analyser) uses uniformization and hypergraph partitioning to

analyse very large Markov models for transient and passage time quantities. SMCA

(Semi-Markov Chain Analyser) is a steady-state analyser for large semi-Markov mod-

202 Chapter 9. Conclusion

els. Finally, SMARTA (Semi-MArkov Response Time Analyser) uses the iterative

algorithm and numerical Laplace transform inversion to compute the passage time

measure of interest in very large semi-Markov models. Using these tools, passage

time density and quantile results have been calculated for Markov and semi-Markov

models with up to 15.4 million states. The HYDRA and SMARTA are shown to scale

well, especially on architectures with fast interconnection networks.

9.2 Applications

In this section we discuss the applicability of the contributions of this thesis to the area

of performance analysis.

As described in the introduction to this thesis, response time targets can be found in

many areas. It would be interesting to apply the tools and techniques presented here

to models other than those of computer and communication systems. One such area

could be the modelling of accident and emergency units in NHS hospitals. These

departments aim to see 90% of patients within 4 hours of admission and at present

collect a large amount of data about patient waiting times. With access to this data it

could be possible to model and then investigate their performance using the techniques

described here. This would allow predictions of resource utilisation and patient waiting

times to be made, which could then be used to target bottlenecks and hence improve

response times. It would also allow the potential impact of different resource allocation

decisions (including extra staff or equipment) to be investigated. Indeed, such analysis

need not be restricted solely to A&E departments, but could also applied to other areas

such as ambulance services and out-patient clinics.

The examples presented in this thesis indicate that numerical Laplace transform in-

version is a viable technique for recoveringf(t) from f ∗(s) for a broad range of

probability distributions. This could be of use in other areas of performance analy-

sis where analytical results are expressed in terms of Laplace transforms which cannot

be symbolically inverted (e.g. the sojourn time distribution in an MM CPP/GE/c G-

Queue [69]).

9.3. Future Work 203

Our investigations have demonstrated that hypergraph partitioning is an efficient ma-

trix partitioning scheme for sparse matrix–vector multiplication. It is used here in

parallel computation of response time densities, but it could also be applied to parallel

steady-state solution of very large Markov chains. A number of such parallel tools al-

ready exist, but to the best of our knowledge do not make use of partitioning schemes

which minimise communication. It would be interesting to see what the effect of its

adoption would be on their run-times and scalability.

9.3 Future Work

There are a number of possible extensions to the work presented in this thesis. By

implementing a fully parallel pipeline with parallel state-space generation, steady-state

solution and hypergraph partitioning, the size of models which can analysed could be

increased further, perhaps even up to108 states. It is worth noting, however, that even

on the fastest hardware currently available the time taken to perform the passage time

analysis on such models would be prohibitive. For the 15.4 million state semi-Markov

model analysed in this thesis, it took nearly three days to compute the passage time

densities on 64 2GHz Intel Xeon machines using SMARTA.

Another area of future research could be the graphical specification and automatic

translation of eCSL queries into the modified DNAmaca input language. At present,

the user must manually convert eCSL formulae into passage time specifications, with

the possibility for error which that entails.

The parallel aggregation algorithm merits further investigation. From the results pre-

sented in Table 5.5, the algorithm offers the ability to aggregate a large proportion

of a state-space without the need for interprocessor communication. More research

is needed, however, on determining how much of the state-space can be aggregated

without introducing so many new non-zeros that the aggregated matrix actually con-

tains more than the original. Also, the cost of aggregating and solving the aggregated

matrix needs to be compared with solving the original matrix.

It would be interesting to investigate a compositional approach to passage time analy-

204 Chapter 9. Conclusion

sis. This would be well suited to stochastic process algebra models, and would involve

computing passage time densities in subcomponents which would then be combined to

yield an overall passage time density. Such an approach would have the benefit that the

passage time analysis of the individual components should be faster than analysis of

the whole system as the sum of state-spaces of the individual components will usually

be much smaller than the total state-space of the entire model. Research would need to

be undertaken, however, into exactly how the results from components should be com-

bined to give system-level results, and how good an approximation can be achieved.

Finally, the semi-Markov chains analysed in this thesis do not model true concurrency

in the case where multiple concurrently-enabled general transitions exist. While this

is acceptable in certain situations, it can only be an approximation to genuine con-

currency. Some formalisms (such as Deterministic and Stochastic Petri Nets [96]) do

model true concurrency in the presence of concurrent non-exponential (although not

necessarily fully general) transitions but the computations required even to calculate

the steady-state probabilities are complex. An obvious extension of the work presented

in this thesis would therefore be the computation of passage time densities and quan-

tiles in true-concurrency models with multiple concurrently-enabled non-exponential

transitions.

Appendix A

Models

This appendix gives full details of the five high-level models which are referred to in

the main text. These are a GSPN model of communications protocol, a GSPN model

of a manufacturing system, a tree-like queueing network, an SM-SPN model of an

electronic voting system and an SM-SPN model of a parallel web-server. In each case,

we provide the full specification of the model in the language described in Chapter 6.

A.1 Courier Communications Protocol

The GSPN shown in Fig. A.1 (originally presented in [125]) models the ISO Appli-

cation, Session and Transport layers of the Courier sliding-window communication

protocol. Data flows from a sender (p1 to p26) to a receiver (p27 to p46) via a network.

The sender’s transport layer fragments outgoing data packets; this is modelled as two

paths betweenp13 andp35. The path viat8 carries all fragments before the last one

through the network top33. Acknowledgements for these fragments are sent back to

the sender (as signalled by the arrival of a token onp20), but no data is delivered to

the higher layers on the receiver side. The path viat9 carries the last fragment of each

message block. Acknowledgements for these fragments are generated and a data token

is delivered to higher receiver layers viat27.

The average number of data packets sent is determined by the ratio of the weights on

205

206 Appendix A. Models

n

courier1

network
delay

sender
application

task

sender
session

task

sender
transport

task

receiver
application

task

receiver
session

task

receiver
transport

task

m

p2

t2

p4p3

p5

p6

p8

t5

p10 p9

p11

p13p12

p16p15

p14

p17

p20 p18 p19

t14t13

p22p21t15

p23

p24 p25

p26

p27 p28 p29

t23 t24

p31p30

p32

t22

p33 p34

t27

p35

p36 p37

t29

p38 p39

p40

p41

p42

t32

p44p43

p45 p46p1

courier3courier2

courier4

network delay

t1 (r7)

t3 (r1)

t4 (r2)

t6 (r1)

t7 (r8)

t12 (r3)

t8 (q1) t9 (q2)

t11 (r5)t10 (r5)

t18 (r4)

t16 (r6) t17 (r6)

t34 (r10)

t33 (r1)

t31 (r2)

t30 (r1)

t28 (r9)

t25 (r5) t26 (r5)

t19 (r3) t20 (r4) t21 (r4)

Fig. A.1. The Courier communications protocol GSPN model [125].

A.1. Courier Communications Protocol 207

the immediate transitionst8 andt9. This ratio, known as the fragmentation ratio, is

given byq1 : q2 (whereq1 andq2 are the weights associated with transitionst8 andt9

respectively). This number of data packets is geometrically distributed, with parameter

q1/(q1 + q2). In our case study, we use a fragmentation ratio of one.

The transport layer is further characterised by two important parameters: the sliding

window sizen (p14) and the transport spacem (p17). For our example, we setm = 1

andn = 1.The transition ratesr1, r2, . . . , r10 used in the original model [125] were

obtained by benchmarking a working implementation of the protocol.

\model{

\constant{nn}{1}
\constant{mm}{1}

\constant{r1}{(5000.0/0.57)}
\constant{r2}{(5000.0/4.97)}
\constant{r3}{(5000.0/1.09)}
\constant{r4}{(5000.0/10.37)}
\constant{r5}{(5000.0/4.29)}
\constant{r6}{(5000.0/0.39)}
\constant{r7}{(5000.0/0.68)}
\constant{r8}{(5000.0/2.88)}
\constant{r9}{(5000.0/3.45)}
\constant{r10}{(5000.0/1.25)}

\constant{q1}{1.0}
\constant{q2}{1.0}

\statevector{
\type{short}{ p1, p2, p3, p4, p5, p6, p8, p9, p10 }
\type{short}{ p11, p12, p13, p14, p15, p16, p17, p18, p19 }
\type{short}{ p20, p21, p22, p23, p24, p25, p26, p27, p28 }
\type{short}{ p29, p30, p31, p32, p33, p34, p35, p36, p37 }
\type{short}{ p38, p39, p40, p41, p42, p43, p44, p45, p46 }

}

\initial{
p1 = p3 = p6 = p10 = p12 = p32 = 1;
p37 = p39 = p41 = p44 = p46 = 1;
p2 = p4 = p5 = p8 = p9 = p11 = 0;
p13 = p15 = p16 = p18 = p19 = 0;
p20 = p21 = p22 = p23 = p24 = p25 = 0;
p26 = p27 = p28 = p29 = 0;
p30 = p31 = p33 = p34 = p35 = p36 = 0;
p38 = p40 = p42 = p43 = p45 = 0;
p14 = nn; p17 = mm;

}

\transition{t1}{

208 Appendix A. Models

\condition{p1 > 0}
\action{next->p1 = p1 - 1; next->p2 = p2 + 1;}
\rate{r7}

}

\transition{t2}{
\condition{p2 > 0 && p3 > 0}
\action{next->p2 = p2 - 1; next->p3 = p3 - 1;

next->p1 = p1 + 1; next->p4 = p4 + 1;}
\weight{1.0}

}

\transition{t3}{
\condition{p4 > 0 && p6 > 0}
\action{next->p4 = p4 - 1; next->p6 = p6 - 1;

next->p3 = p3 + 1; next->p5 = p5 + 1;}
\rate{r1}

}

\transition{t4}{
\condition{p5 > 0}
\action{next->p5 = p5 - 1; next->p8 = p8 + 1;}
\rate{r2}

}

\transition{t5}{
\condition{p8 > 0 && p10 > 0}
\action{next->p8 = p8 - 1; next->p10 = p10 - 1;

next->p6 = p6 + 1; next->p9 = p9 + 1;}
\weight{1.0}

}

\transition{t6}{
\condition{p9 > 0 && p12 > 0 && p17 > 0}
\action{next->p9 = p9 - 1; next->p12 = p12 - 1;

next->p17 = p17 - 1; next->p10 = p10 + 1;
next->p11 = p11 + 1;}

\rate{r1}
}

\transition{t7}{
\condition{p11 > 0}
\action{next->p11 = p11 - 1; next->p12 = p12 + 1;

next->p13 = p13 + 1;}
\rate{r8}

}

\transition{t8}{
\condition{p12 > 0 && p13 > 0 && p14 > 0}
\action{next->p12 = p12 - 1; next->p14 = p14 - 1;

next->p15 = p15 + 1;}
\weight{q1}

}

\transition{t9}{

A.1. Courier Communications Protocol 209

\condition{p12 > 0 && p13 > 0 && p14 > 0}
\action{next->p12 = p12 - 1; next->p13 = p13 - 1;

next->p14 = p14 - 1; next->p16 = p16 + 1;}
\weight{q2}

}

\transition{t10}{
\condition{p15 > 0}
\action{next->p15 = p15 - 1; next->p12 = p12 + 1;

next->p18 = p18 + 1;}
\rate{r5}

}

\transition{t11}{
\condition{p16 > 0}
\action{next->p16 = p16 - 1; next->p12 = p12 + 1;

next->p19 = p19 + 1;}
\rate{r5}

}

\transition{t12}{
\condition{p20 > 0}
\action{next->p20 = p20 - 1; next->p14 = p14 + 1;

next->p12 = p12 + 1;}
\rate{r3}

}

\transition{t13}{
\condition{p12 > 0 && p18 > 0}
\action{next->p12 = p12 - 1; next->p18 = p18 - 1;

next->p21 = p21 + 1;}
\weight{1.0}

}

\transition{t14}{
\condition{p12 > 0 && p19 > 0}
\action{next->p12 = p12 - 1; next->p19 = p19 - 1;

next->p22 = p22 + 1;}
\weight{1.0}

}

\transition{t15}{
\condition{p12 > 0 && p23 > 0}
\action{next->p12 = p12 - 1; next->p23 = p23 - 1;

next->p20 = p20 + 1;}
\weight{1.0}

}

\transition{t16}{
\condition{p21 > 0}
\action{next->p21 = p21 - 1; next->p12 = p12 + 1;

next->p24 = p24 + 1;}
\rate{r6}

}

210 Appendix A. Models

\transition{t17}{
\condition{p22 > 0}
\action{next->p22 = p22 - 1; next->p12 = p12 + 1;

next->p17 = p17 + 1; next->p25 = p25 + 1;}
\rate{r6}

}

\transition{t18}{
\condition{p26 > 0}
\action{next->p26 = p26 - 1; next->p23 = p23 + 1;}
\rate{r4}

}

\transition{t19}{
\condition{p27 > 0}
\action{next->p27 = p27 - 1; next->p32 = p32 + 1;

next->p26 = p26 + 1;}
\rate{r3}

}

\transition{t20}{
\condition{p24 > 0}
\action{next->p24 = p24 - 1; next->p28 = p28 + 1;}
\rate{r4}

}

\transition{t21}{
\condition{p25 > 0}
\action{next->p25 = p25 - 1; next->p29 = p29 + 1;}
\rate{r4}

}

\transition{t22}{
\condition{p32 > 0 && p33 > 0}
\action{next->p32 = p32 - 1; next->p33 = p33 - 1;

next->p27 = p27 + 1;}
\weight{1.0}

}

\transition{t23}{
\condition{p32 > 0 && p28 > 0}
\action{next->p32 = p32 - 1; next->p28 = p28 - 1;

next->p30 = p30 + 1;}
\weight{1.0}

}

\transition{t24}{
\condition{p32 > 0 && p29 > 0}
\action{next->p32 = p32 - 1; next->p29 = p29 - 1;

next->p31 = p31 + 1;}
\weight{1.0}

}

\transition{t25}{
\condition{p30 > 0}

A.1. Courier Communications Protocol 211

\action{next->p30 = p30 - 1; next->p32 = p32 + 1;
next->p33 = p33 + 1;}

\rate{r5}
}

\transition{t26}{
\condition{p31 > 0}
\action{next->p31 = p31 - 1; next->p34 = p34 + 1;

next->p32 = p32 + 1;}
\rate{r5}

}

\transition{t27}{
\condition{p34 > 0 && p32 > 0}
\action{next->p34 = p34 - 1; next->p32 = p32 - 1;

next->p33 = p33 + 1; next->p35 = p35 + 1;}
\weight{1.0}

}

\transition{t28}{
\condition{p35 > 0 && p37 > 0}
\action{next->p35 = p35 - 1; next->p37 = p37 - 1;

next->p32 = p32 + 1; next->p36 = p36 + 1;}
\rate{r9}

}

\transition{t29}{
\condition{p36 > 0 && p39 > 0}
\action{next->p36 = p36 - 1; next->p39 = p39 - 1;

next->p38 = p38 + 1; next->p37 = p37 + 1;}
\weight{1.0}

}

\transition{t30}{
\condition{p41 > 0 && p38 > 0}
\action{next->p41 = p41 - 1; next->p38 = p38 - 1;

next->p39 = p39 + 1; next->p40 = p40 + 1;}
\rate{r1}

}

\transition{t31}{
\condition{p40 > 0}
\action{next->p40 = p40 - 1; next->p42 = p42 + 1;}
\rate{r2}

}

\transition{t32}{
\condition{p42 > 0 && p44 > 0}
\action{next->p42 = p42 - 1; next->p44 = p44 - 1;

next->p43 = p43 + 1; next->p41 = p41 + 1;}
\weight{1.0}

}

\transition{t33}{
\condition{p43 > 0 && p46 > 0}

212 Appendix A. Models

\action{next->p43 = p43 - 1; next->p46 = p46 - 1;
next->p44 = p44 + 1; next->p45 = p45 + 1;}

\rate{r1}
}

\transition{t34}{
\condition{p45 > 0}
\action{next->p45 = p45 - 1; next->p46 = p46 + 1;}
\rate{r10}

}
}

A.2 Flexible Manufacturing System

k

M1

k

k

M3

tM2

tP3

#(P3s)

#(P12s)

#(P12s)

#(P12s)

#(P1s) #(P1s)

tP1s

P1 P1wM1
tP1 tM1

P1M1
tP1M1

P1d
tP1e

P1s

tP12s
P12s

tP12M3
P12M3

tM3
P12wM3

tP12
P12

tx

P1wP2

P2wP1

P2s

tP2eP2d

P2wM2
tP2

P2M2
tP2M2

P2

tP2s

M2

P3 P3M2

tP3M2

P3s
tP3s

tP2j

tP1j

#(P2s)#(P2s)

#(P3s)

Fig. A.2. The GSPN model of a Flexible Manufacturing System [41].

A.2. Flexible Manufacturing System 213

Fig. A.2 shows a 22-place GSPN model of a flexible manufacturing system [41]. The

model describes an assembly line with three types of machines (M1, M2 andM3)

which assemble four types of parts (P1, P2, P3 andP12). Initially, there arek un-

processed parts of each typeP1, P2 andP3 in the system. There are no parts of type

P12 at start-up since these are assembled from processed parts of typeP1 andP2 by

the machines of typeM3. When parts of any type are finished, they are stored for

shipping on placesP1s, P2s, P3s andP12s.

\model{

\constant{kk}{7}

\statevector{
\type{short}{P1, P1wM1, P1M1, P1d, P1s, M1, P1wP2}
\type{short}{P12s, P12M3, M3, P12wM3, P12}
\type{short}{P2, P2wM2, P2M2, M2, P2d, P2s, P2wP1}
\type{short}{P3, P3M2, P3s}

}

\initial{
P1 = kk; P1wM1 = 0; P1M1 = 0; P1d = 0; P1s = 0; M1 = 3;
P1wP2 = 0; P12s = 0; P12M3 = 0; M3 = 2; P12wM3 = 0;
P12 = 0; P2 = kk; P2wM2 = 0; P2M2 = 0; M2 = 1; P2d = 0;
P2s = 0; P2wP1 = 0; P3 = kk; P3M2 = 0; P3s = 0;

}

\transition{tP1s}{
\condition{P1s > 0}
\action{next->P1s = 0; next->P1 += P1s;}
\rate{1.0}

}

\transition{tP1}{
\condition{P1 > 0}
\action{next->P1 = P1 - 1; next->P1wM1 = P1wM1 + 1;}
\rate{1.0}

}

\transition{tM1}{
\condition{(P1wM1 > 0) && (M1 > 0)}
\action{next->P1wM1 = P1wM1 - 1; next->M1 = M1 - 1;

next->P1M1 = P1M1 + 1;}
\weight{1.0}

}

\transition{tP1M1}{
\condition{P1M1 > 0}
\action{next->P1M1 = P1M1 - 1; next->M1 = M1 + 1;

next->P1d = P1d + 1;}
\rate{1.0}

214 Appendix A. Models

}

\transition{tP1e}{
\condition{P1d > 0}
\action{next->P1d = P1d - 1; next->P1s = next->P1s + 1;}
\weight{1.0}

}

\transition{tP1j}{
\condition{P1d > 0}
\action{next->P1d = P1d - 1; next->P1wP2 = next->P1wP2 + 1;}
\weight{1.0}

}

\transition{tP12s}{
\condition{P12s > 0}
\action{next->P12s = 0; next->P1 = P1 + P12s;

next->P2 = P2 + P12s;}
\rate{1.0}

}

\transition{tP12M3}{
\condition{P12M3 > 0}
\action{next->P12M3 = P12M3 - 1; next->P12s = P12s + 1;

next->M3 = M3 + 1;}
\rate{1.0}

}

\transition{tM3}{
\condition{(M3 > 0) && (P12wM3 > 0)}
\action{next->P12wM3 = P12wM3 - 1; next->M3 = M3 - 1;

next->P12M3 = P12M3 + 1;}
\weight{1.0}

}

\transition{tP12}{
\condition{P12 > 0}
\action{next->P12 = P12 - 1; next->P12wM3 = P12wM3 + 1;}
\rate{1.0}

}

\transition{tx}{
\condition{(P1wP2 > 0) && (P2wP1 > 0)}
\action{next->P1wP2 = P1wP2 - 1; next->P2wP1 = P2wP1 - 1;

next->P12 = P12 + 1;}
\weight{1.0}

}

\transition{tP2}{
\condition{P2 > 0}
\action{next->P2 = P2 - 1; next->P2wM2 = P2wM2 + 1;}
\rate{1.0}

}

\transition{tM2}{

A.3. Tree-like Queueing Network 215

\condition{(P2wM2 > 0) && (M2 > 0)}
\action{next->P2wM2 = P2wM2 - 1; next->M2 = M2 - 1;

next->P2M2 = P2M2 + 1;}
\weight{1.0}

}

\transition{tP2M2}{
\condition{P2M2 > 0}
\action{next->P2M2 = P2M2 - 1; next->P2d = P2d + 1;

next->M2 = M2 + 1;}
\rate{1.0}

}

\transition{tP2j}{
\condition{P2d > 0}
\action{next->P2d = P2d - 1; next->P2wP1 = P2wP1 + 1;}
\weight{1.0}

}

\transition{tP2e}{
\condition{P2d > 0}
\action{next->P2d = P2d - 1; next->P2s = P2s + 1;}
\weight{1.0}

}

\transition{t2Ps}{
\condition{P2s > 0}
\action{next->P2s = 0; next->P2 = P2 + P2s; }
\rate{1.0}

}

\transition{tP3}{
\condition{P3 > 0}
\action{next->P3 = P3 - 1; next->P3M2 = P3M2 + 1;}
\rate{1.0}

}

\transition{tP3M2}{
\condition{(M2 > 0) && (P3M2 > 0)}
\action{next->P3M2 = P3M2 - 1; next->P3s = P3s + 1;}
\rate{1.0}

}

\transition{tP3s}{
\condition{P3s > 0}
\action{next->P3s = 0; next->P3 = P3 + P3s;}
\rate{1.0}

}
}

216 Appendix A. Models

p12 p13 p14

q1

q2 q3 q4

q5 q6

Fig. A.3. The tree-like queueing network [68, 70].

A.3. Tree-like Queueing Network 217

A.3 Tree-like Queueing Network

Fig. A.3 shows a tree-like queueing network which has six servers with ratesµ1, . . . , µ6

and non-zero routing probabilities as shown. Thus the visitation ratesv1, . . . , v6 for

servers 1 to 6 are respectively proportional to:1, p12, p13, p14, p12, p14. For

this example, we set{µ1, µ2, µ3, µ4, µ5, µ6} = {3, 5, 4, 6, 2, 1} and{p12, p13, p14} =

{0.2, 0.5, 0.3}.

Analytical results for the cycle time density in this type of overtake-free, tree-like

queueing network withM servers and populationn are known [68, 70]. In particular,

if the servers in an overtake-free path(1, 2, ..., m) (m ≤ M) have distinct service rates

µ1, µ2, ..., µm, the passage time density function, conditional on the choice of path, is

∏m
i=1 µi

G(n− 1)

n−1∑
c=0

Gm(n− c− 1)
m∑

j=1

e−µjt

∏
1≤i6=j≤m(µi − µj)

c∑
i=0

(vjt)
c−i

(c− i)!
Km(j, i)

whereKm(j, l), Gm(n − c − 1) andG(n − 1) are normalising constants that may be

computed efficiently by Buzen’s algorithm [33]. If we define the recursive functionk,

for real vectory = (y1, . . . , ya) and integersa, b (0 ≤ a ≤ M, 0 ≤ b ≤ N − 1) by:

k(y, a, b) = k(y, a− 1, b) + yak(y, a, b− 1) (a, b > 0)

k(y, a, 0) = 1 (a > 0)

k(y, 0, b) = 0 (b ≥ 0)

then:

Gm(l) = k(xm,M −m, l) (0 ≤ l ≤ n− 1)

G(n− 1) = k(x,M, n− 1)

Km(j, l) = k(wj,m− 1, l)

with xi = vi/µi, x = (x1, . . . , xM),xm = (xm+1, . . . , xM) and, for1 ≤ j ≤ m,

(wj)k =

(vk − vj)/(µk − µj) if 1 ≤ k < j

(vk+1 − vj)/(µk+1 − µj) if j ≤ k < m

To compute the cycle time density in this network in terms of its underlying Markov

Chain using the uniformization technique described in this thesis requires the state

218 Appendix A. Models

vector to be augmented by 4 extra components so that a “tagged” customer can be

followed through the system. The extra components are: the queue containing the

tagged customerm, the position of the tagged customer in that queuek (with k ≥ 0),

the cycle sequence numberc (an alternating bit, flipped whenever the tagged customer

joins q1) and a flagp indicating whether or not a passage has started.

\model{

\constant{NN}{16}

\constant{MM}{6}
\constant{MU1}{3.0}
\constant{MU2}{5.0}
\constant{MU3}{4.0}
\constant{MU4}{6.0}
\constant{MU5}{2.0}
\constant{MU6}{1.0}

\constant{P1}{0.2}
\constant{P2}{0.5}
\constant{P3}{0.3}

\statevector{\type{int}{n1, n2, n3, n4, n5, n6, m, k, c, p}}

\initial{
n1 = NN; n2 = n3 = n4 = n5 = n6 = 0; m = 1; k = NN - 1;
c = 0; p = 0;

}

\transition{q1_q2_service}{
\condition{n1 > 0}
\action{

next->n1 = n1 - 1;
next->n2 = n2 + 1;
next->p = 1;
if (m==1) {

if (k)
next->k = k - 1;

else {
next->m = 2;
next->k = n2;

}
}

}
\rate{MU1*P1/(P1+P2+P3)}

}

\transition{q1_q3_service}{
\condition{n1 > 0}
\action{

next->n1 = n1 - 1;
next->n3 = n3 + 1;

A.3. Tree-like Queueing Network 219

next->p = 1;
if (m==1) {

if (k)
next->k = k - 1;

else {
next->m = 3;
next->k = n3;

}
}

}
\rate{MU1*P2/(P1+P2+P3)}

}

\transition{q1_q4_service}{
\condition{n1 > 0}
\action{

next->n1 = n1 - 1;
next->n4 = n4 + 1;
next->p = 1;
if (m==1) {

if (k)
next->k = k - 1;

else {
next->m = 4;
next->k = n4;

}
}

}
\rate{MU1*P3/(P1+P2+P3)}

}

\transition{q2_q5_service}{
\condition{n2 > 0}
\action{

next->n2 = n2 - 1;
next->n5 = n5 + 1;
next->p = 1;
if (m==2) {

if (k)
next->k = k - 1;

else {
next->m = 5;
next->k = n5;

}
}

}
\rate{MU2}

}

\transition{q3_q1_service}{
\condition{n3 > 0}
\action{

next->n3 = n3 - 1;
next->n1 = n1 + 1;
if (m==3) {

220 Appendix A. Models

if (k)
next->k = k - 1;

else {
next->m = 1;
next->k = n1;
next->c = !c;
next->p = 0;

}
}

}
\rate{MU3}

}

\transition{q4_q6_service}{
\condition{n4 > 0}
\action{

next->n4 = n4 - 1;
next->n6 = n6 + 1;
next->p = 1;
if (m==4) {

if (k)
next->k = k - 1;

else {
next->m = 6;
next->k = n6;

}
}

}
\rate{MU4}

}

\transition{q5_q1_service}{
\condition{n5 > 0}
\action{

next->n5 = n5 - 1;
next->n1 = n1 + 1;
if (m==5) {

if (k)
next->k = k - 1;

else {
next->m = 1;
next->k = n1;
next->c = !c;
next->p = 0;

}
}

}
\rate{MU5}

}

\transition{q6_q1_service}{
\condition{n6 > 0}
\action{

next->n6 = n6 - 1;
next->n1 = n1 + 1;

A.4. Voting Model 221

if (m==6) {
if (k)

next->k = k - 1;
else {

next->m = 1;
next->k = n1;
next->c = !c;
next->p = 0;

}
}

}
\rate{MU6}

}
}

A.4 Voting Model

p2

p1

p4

p3 p7

CC

MM

NN
NN

NN

MM

MM

CC

CC

(t0, 1.0, 2, det(0,s))

(t1, 1.0, 1, exp(0.5,s)) (t2, 1.0, 1, det(0.01,s)) (t6, 0.01, 1, exp(1.0,s))

(t7, 1.0, 1, uni(2.0,3.0,s))(t8, 1.0, 2, gam(0.1,12.337,s))

(t3, 0.05, 1, exp(1.5,s))

(t4, 1.0, 1, uni(1.0,2.0,s))

(t5, 1.0, 2, 0.8 x uni(1.5,10,s) + 0.2 x erl(0.2,5,s))

p6

booths

p5

servers

voters

Fig. A.4. The Voting Model SM-SPN [24].

Fig. A.4 shows an SM-SPN model of a distributed voting system [24, 28, 29]. Voting

agents vote asynchronously, moving from placep1 to p2 as they do so. A restricted

number of polling units which receive their votes transitt1 from placep3 to place

p4. At t2, the vote is registered with as many central voting units as are currently

operational inp5.

The system is considered to be in a failure mode if either all the polling units have

222 Appendix A. Models

System CC MM NN States

1 11 7 4 2 081

2 22 7 4 4 050

3 60 25 4 106 540

4 100 30 4 249 760

5 125 40 4 541 280

6 150 40 5 778 850

7 175 45 5 1 140 050

8 300 80 10 10 991 400

Table A.1. Number of states generated by the Voting model SM-SPN in terms of the number of voters

(CC), polling units (MM) and central voting units (NN).

failed and are inp7 or all the central voting units have failed and are inp6. If either

of these complete failures occur, then a high priority repair is performed, which resets

the failed units to a fully operational state. If some (but not all) the polling or voting

units fail, they attempt self-recovery. The system will continue to function as long as

at least one polling unit and one voting unit remain operational.

There are several voters,CC, a limited number of polling units,MM , and a smaller

number of central voting units,NN . The size of the underlying semi-Markov chain

can be varied by altering these three parameters as shown in Table A.1.

\model{

%booths
\constant{MM}{12}
%servers
\constant{NN}{4}
%voters
\constant{CC}{22}

\statevector{
\type{short}{ p1, p2, p3, p4, p5, p6, p7 }

}

\initial{
p1 = CC; p2 = 0; p3 = MM; p4 = 0; p5 = NN; p6 = 0; p7 = 0;

}

A.4. Voting Model 223

\transition{t1}{
\condition{p1 > 0 && p3 > 0}
\action{next->p1 = p1 - 1; next->p2 = p2 + 1;

next->p3 = p3 - 1; next->p4 = p4 + 1;}
\weight{1.0}
\priority{1}
\sojourntimeLT{ return exponential(0.5, s); }

}

\transition{t2}{
\condition{p4 > 0 && p5 > 0}
\action{next->p3 = p3 + 1; next->p4 = p4 - 1;}
\weight{1.0}
\priority{1}
\sojourntimeLT{ return deterministic(0.01, s); }

}

\transition{t3}{
\condition{p3 > 0}
\action{next->p3 = p3 - 1; next->p7 = p7 + 1;}
\weight{0.05}
\priority{1}
\sojourntimeLT{ return exponential(1.5, s); }

}

\transition{t4}{
\condition{p7 > 0}
\action{next->p3 = p3 + 1; next->p7 = p7 - 1;}
\weight{1.0}
\priority{1}
\sojourntimeLT{ return uniform(1.0, 2.0, s); }

}

\transition{t5}{
\condition{p7 > MM-1}
\action{next->p3 = p3 + MM; next->p7 = p7 - MM;}
\weight{1.0}
\priority{2}
\sojourntimeLT{ return (0.8 * uniform(1.5,10,s) +

0.2 * erlang(0.2,5,s)); }
}

\transition{t6}{
\condition{p5 > 0}
\action{next->p5 = p5 - 1; next->p6 = p6 + 1;}
\weight{0.01}
\priority{1}
\sojourntimeLT{ return exponential(1.0, s); }

}

\transition{t7}{
\condition{p6 > 0}
\action{next->p5 = p5 + 1; next->p6 = p6 - 1;}
\weight{1.0}
\priority{1}

224 Appendix A. Models

\sojourntimeLT{ return uniform(2.0, 3.0, s); }
}

\transition{t8}{
\condition{p6 > NN-1}
\action{next->p5 = p5 + NN; next->p6 = p6 - NN;}
\weight{1.0}
\priority{2}
\sojourntimeLT{ return gamma(0.1, 12.337, s); }

}

\transition{t9}{
\condition{p2 > CC-1}
\action{next->p2 = p2 - CC; next->p1 = p1 + CC;}
\weight{1.0}
\priority{2}
\sojourntimeLT{ return immediate(); }

}
}

A.5 Web Content Authoring System

Fig. A.5 represents an SM-SPN model of a web server withRR clients (readers),

WW web content authors (writers),SS parallel web servers and a write-buffer ofBB

in size [28, 29]. As with the Voting model, the size and complexity of the underly-

ing semi-Markov chain can be varied by altering these four parameters as shown in

Table A.2.

Clients can make read requests to one of the web servers for content (represented by

the movement of tokens fromp8 to p7). Web content authors submit page updates

into the write buffer (represented by the movement of tokens fromp1 ontop2 andp4),

and whenever there are no outstanding read requests all outstanding write requests

in the buffer (represented by tokens onp4) are applied to all functioning web servers

(represented by tokens onp6). Web servers can fail (represented by the movement of

tokens fromp6 to p5) and institute self-recovery unless all servers fail, in which case a

high-priority recovery mode is initiated to restore all servers to a fully functional state.

Complete reads and updates are represented by tokens onp9 andp2 respectively.

\model{

% writers

A.5. Web Content Authoring System 225

p1

p2

WW

p4

p3

p5

p6

p7

p8

p9

BB SS
RR

RR

RRWW

WW

(t1, 1.0, 3, immediate(s))

(t2, 0.1, 1, markov(s))

(t3, 1.0, 2, gamma(2.0,1.56+m(p4),s))

(t4, 1.2m(p7), 1, markov(s))

(t8, 1.0, 1, markov(s))

SS

SS

m(p4)

m(p4)

(t5, 0.2m(p6), 1, markov(s)) (t7, 0.1m(p5), 1, markov(s))

(t6, 1.0, 2, uniform(5.0,10.0,s))

serversbuffers

writers readers

Fig. A.5. The Web-server Model SM-SPN [28, 29].

System RR WW SS BB States

1 45 22 4 8 107 289

2 52 26 5 10 248 585

3 60 30 6 12 517 453

4 65 30 7 13 763 680

5 70 35 7 14 1 044 540

6 100 50 18 20 15 445 919

Table A.2. Number of states generated by the Web-server SM-SPN in terms of the number of clients

(RR), authors (WW), parallel web servers (SS) and write-buffers (BB).

226 Appendix A. Models

\constant{WW}{12}
% buffers
\constant{BB}{6}
% servers
\constant{SS}{3}
% readers
\constant{RR}{24}

% read-rate
\constant{RDRATE}{1.0}
% buffer-write-rate
\constant{BUFWRTRATE}{2.0}
% server-read-recovery
\constant{SRVRDRECOVER}{3.6}
% server-fail-rate
\constant{SRVFAILRATE}{0.2}
% server-fail-recovery
\constant{SRVFAILRECOVER}{(0.5*SRVFAILRATE)}

\statevector{
\type{short}{ p1, p2, p3, p4, p5, p6, p7, p8, p9 }

}

\initial{
p1 = WW; p2 = 0; p3 = BB; p4 = 0; p5 = 0;
p6 = SS; p7 = 0; p8 = RR; p9 = 0;

}

\transition{t1}{
\condition{ p2 == WW && p9 == RR}
\action{next->p2 = p2 - WW; next->p1 = p1 + WW;

next->p9 = p9 - RR; next->p8 = p8 + RR;}
\weight{1.0}
\priority{3}
\sojourntimeLT{ return immediate(); }

}

\transition{t2}{
\condition{ p1 > 0 && p3 > 0}
\action{next->p3 = p3 - 1; next->p1 = p1 - 1;

next->p2 = p2 + 1; next->p4 = p4 + 1;}
\weight{ (0.1 * RDRATE) }
\priority{1}
\sojourntimeLT{ return markov(s); }

}

\transition{t3}{
\condition{ p4 > 0 && p7 == 0 && p6 > 0 }
\action{next->p3 = p3 + p4; next->p4 = 0;}
\weight{1.0}
\priority{2}
\sojourntimeLT{ return gamma(BUFWRTRATE,(p4+1.56), s); }

}

\transition{t4}{

A.5. Web Content Authoring System 227

\condition{ p7 > 0 }
\action{next->p6 = p6 + 1;next->p7 = p7 - 1;

next->p9 = p9 + 1;}
\weight{p7*SRVRDRECOVER}
\priority{1}
\sojourntimeLT{ return markov(s); }

}

\transition{t5}{
\condition{p6 > 0}
\action{next->p5 = p5 + 1; next->p6 = p6 - 1;}
\weight{p6*SRVFAILRATE}
\priority{1}
\sojourntimeLT{ return markov(s); }

}

\transition{t6}{
\condition{ p5 == SS }
\action{next->p5 = p5 - SS; next->p6 = p6 + SS;}
\weight{1.0}
\priority{2}
\sojourntimeLT{ return uniform(5.0, 10.0, s); }

}

\transition{t7}{
\condition{ p5 > 0 }
\action{next->p5 = p5 - 1; next->p6 = p6 + 1;}
\weight{p5*SRVFAILRECOVER}
\priority{1}
\sojourntimeLT{ return markov(s); }

}

\transition{t8}{
\condition{ p6 > 0 && p8 > 0 }
\action{next->p7 = p7 + 1; next->p6 = p6 - 1;

next->p8 = p8 - 1;}
\weight{RDRATE}
\priority{1}
\sojourntimeLT{ return markov(s); }

}
}

Appendix B

Semi-Markov Process Aggregation

Algorithm

aggregate smp : SMP × S → SMP

aggregate smp (M, i) = fold(set ,M ′, vs) where

vs = aggregate cycles(M ′, tsc),

M ′ = fold(set ,M, us),

us = aggregate branches(M, tsb),

tsb = ts \ tsc,

tsc = ((i, j), t) . ((i, j), t) ∈ ts, i = j,

ts = aggregate sequences(M, i)

Fig. B.1. Theaggregate smp function

This appendix describes more fully the semi-Markov process state-level aggregation

algorithm presented by Bradley in [21]. We define the aggregation function,aggregate smp,

which is defined on an SMP,M , for a statei being aggregated. We representM by the

tuple(S, P, L) whereS is the finite set of states,P is the underlying DTMC andL is

the state holding-time distribution matrix whose entries are the Laplace transforms of

the state sojourn-time densities. In an irreducible semi-Markov process, the aggrega-

228

229

tion procedure can be applied to any state, while in a transient SMP, it may be applied

to any state except the absorbing or initial states. Reading from the bottom up in the

function definition of Fig. B.1:

1. ts = aggregate sequences(M, i):

Find all valid paths of length two that havei as the centre state. Form a set of

single transitions using the sequential aggregation described in Section 5.2.1.

2. tsb = ts \ tsc, tsc = {((i, j), t) . ((i, j), t) ∈ ts, i = j}:
Separate the transition setts into a set of cycles,tsc, and a set of branching

transitions to other states,tsb.

3. us = aggregate branches(M, tsb):

Where transitions inM are duplicated by transitions intsb, these are aggregated

and placed inus using the branching aggregation from Section 5.2.1. Where

a new transition that is not present inM in describedtsb then that transition is

written unchanged intous.

4. M ′ = fold(set ,M, us):

Overwrite all the transitions inM that are present inus.

5. vs = aggregate cycles(M ′, tsc):

Perform cyclic aggregation on the transitions intsc, using the method from Sec-

tion 5.2.1.

6. aggregate smp(M, i) = fold(set ,M ′, vs):

Finally, overwrite the transitions ofM ′ with the replacementvs transitions and

return the final SMP.

The result is thatM ′ will have a disconnected state,i, which can be removed from the

transition matrices.

230 Appendix B. Semi-Markov Process Aggregation Algorithm

B.1 Aggregation Functions

This section defines the key functions used byaggregate smp: aggregate sequences,

aggregate branches andaggregate cycles. As before, we define the setSMP as the

tuple (S, P, L). We also usePD = (Prob, LaplaceT) to be a tuple of a probability

and Laplace transform associated with a particular transition.T = (S × S) × PD,

associates statesi andj states to a given transition pair. We definei
M→ j to mean that

there exists a transition from statei to statej in M .

aggregate sequences takes a state to be aggregated,i, and the SMP and returns a

set of transitions which represent all the paths (from one state preceding to one state

after i) which pass throughi. The paths have been aggregated into single transitions

usingagg seq . The number of transitions generated is equal to the product the number

transitions leading intoi and the number leaving the state.

aggregate sequences : SMP × S → P(T)

aggregate sequences (M, i) = {((i, j), agg seq(t, t′)) . (i, t) ∈ trans to(i,M),

(j, t′) ∈ trans from(i,M)}

aggregate branches processes an SMP,M , and a set of transitions,R, which must not

contain any cycles. The transitions are to be integrated into the SMP,M . If there is

a pre-existing transition inM for a given member ofR, then the two are combined

usingagg branch, otherwise the transition inR is just returned unchanged.

aggregate branches : SMP × P(T) → P(T)

aggregate branches (M, R) = {((i, j), agg branch(t, t′)) . ((i, j), t)) ∈ R,

t′ = if i
M→ j then (MP (i, j),ML(i, j)) else (0, 0)}

aggregate cycles processes an SMP,M , and a set of cyclic transitions,R. For each

cycle defined inR from i to i, the set of out-transitions is selected from the SMP,M .

For each member of that set, the aggregation functionagg cycle is applied. All the

B.2. Utility functions 231

modified transitions are unified into a single set and returned.

aggregate cycles : SMP ×P(T) → P(T)

aggregate cycles (M,R) =
⋃

i:((i,i),t′)∈R

X

. X = {((i, j), agg cycle(t, t′)) . (j, t) ∈ trans from(i,M)}

agg seq is used to represent two transitions in sequence as a single transition.

agg seq : PD × PD → PD

agg seq ((p, d(z)), (p′, d′(z))) = (pp′, d(z)d′(z))

agg branch is used to represent two branching transitions which terminate in the same

state as a single transition.

agg branch : PD × PD → PD

agg branch ((p, d(z)), (p′, d′(z))) = (p + p′,
p

p + p′
d(z) +

p′

p + p′
d′(z))

agg cycle is used to represent a cycle to the same state and a leaving transition as

a single transition. The first argument is the leaving transition and the second is the

cyclic transition. If there is more than one out-transition then the transformation will

need to be applied to each in turn.

agg cycle : PD × PD → PD

agg cycle ((p, d(z)), (pc, dc(z))) =

(
p

1− pc

,
(1− pc)d(z)

1− pcdc(z)

)

B.2 Utility functions

The definitions oftrans from, trans to, set , fold andelem rest :

The functiontrans from takes a state,i, and returns the set of states, probabilities and

distributions which succeedi.

trans from : S × SMP → P(S × PD)

trans from (i,M) = {(j, (MP (i, j),ML(i, j))) . j ∈ MS, i
M→ j}

232 Appendix B. Semi-Markov Process Aggregation Algorithm

The functiontrans to takes a state,i, and returns the set of states, probabilities and

distributions which connect toi.

trans to : S × SMP → P(S × PD)

trans to (i,M) = {(j, (MP (j, i),ML(j, i))) . j ∈ MS, j
M→ i}

Theset function is used to set a given transition in the underlying DTMC and distri-

bution matrix of an SMP. If necessary the current transition is overwritten.

set : T × SMP → SMP

set (((i, j), (p, d(z))),M) = (MS, P ′, L′)

. P ′(k, l) =

p if (k, l) = (i, j)

MP (k, l) otherwise

L′(k, l) =

d(z) if (k, l) = (i, j)

ML(k, l) otherwise

fold is used to add whole sets of new or replacement transitions to an SMP, as done in

Fig. B.1.

fold : (A×B → B)×B ×P(A) → B

fold (f, r, Γ) =

r if Γ = ∅
f(x, r, fold(f, r, Γ′))

. (x, Γ′) = elem rest(Γ) otherwise

The function,elem rest , is used byfold to select an arbitrary element from a set and

return a tuple containing that element and the set minus that element.

elem rest : P(A) → (A,P(A))

elem rest (T) =

⊥ if T = ∅
(x . x ∈ T, {t . t ∈ T, t 6= x}) otherwise

Bibliography

[1] J. Abate, G. Choudhury, and W. Whitt. An introduction to numerical transform

inversion and its application to probability models. In W. Grassman, editor,

Computational Probability, pages 257–323, Kluwer, Boston, 2000.

[2] J. Abate, G.L. Choudhury, and W. Whitt. On the Laguerre method for nu-

merically inverting Laplace transforms.INFORMS Journal on Computing,

8(4):413–427, 1996.

[3] J. Abate and W. Whitt. The Fourier-series method for inverting transforms of

probability distributions.Queueing Systems, 10(1):5–88, 1992.

[4] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of probability

distributions.ORSA Journal on Computing, 7(1):36–43, 1995.

[5] M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalised Stochas-

tic Petri Nets for the performance evaluation of multiprocessor systems.ACM

Transactions on Computer Systems, 2:93–122, 1984.

[6] A. Argent-Katwala, J.T. Bradley, and N.J. Dingle. Expressing performance re-

quirements using regular expressions to specify stochastic probes over process

algebra models. InProceedings of the 4th International Workshop on Software

and Performance (WOSP’04), pages 49–58, Redwood Shores CA, USA, Jan-

uary 14th–16th 2004.

[7] S.W. Au-Yeung. Finding probability distributions from moments. Master’s

thesis, Imperial College, London, United Kingdom, 2003.

233

234 BIBLIOGRAPHY

[8] S.W. Au-Yeung, N.J. Dingle, and W.J. Knottenbelt. Efficient approximation

of response time densities and quantiles in stochastic models. InProceedings

of the 4th International Workshop on Software and Performance (WOSP’04),

pages 151–155, Redwood Shores CA, USA, January 14th–16th 2004.

[9] Australian Capital Territory Commissioner for the Environ-

ment. Indicator: Emergency services, February 2004. URL:

http://www.environmentcommissioner.act.gov.au/

SoE2000/ACT/IndicatorResults/Emergencyservices.htm .

[10] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous-time

Markov chains. InLecture Notes in Computer Science 1102: Computer-Aided

Verification, pages 269–276. Springer-Verlag, 1996.

[11] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous-

time Markov chains.ACM Transactions on Computational Logic, 1(1):162–

170, 2000.

[12] S. Baase and A. van Gelder.Computer Algorithms – Introduction to Design and

Analysis. Addison-Wesley, Reading, MA, 3rd edition, 2000.

[13] C. Baier, B.R. Haverkort, H. Hermanns, and J-P. Katoen. Model checking

continuous-time Markov chains by transient analysis. InLecture Notes in Com-

puter Science 1855: Proceedings of the 12th International Conference on Com-

puter Aided Verification (CAV’00), pages 358–372, Chicago IL, USA, 2000.

Springer-Verlag.

[14] C. Baier, J-P. Katoen, and H. Hermanns. Approximate symbolic model check-

ing of continuous-time Markov chains. InLecture Notes in Computer Science

1664: Proceedings of the 10th International Conference on Concurrency The-

ory (CONCUR’99), pages 142–162. Springer-Verlag, 1999.

[15] F. Bause and P.S. Kritzinger.Stochastic Petri Nets – An Introduction to the

Theory. Verlag Vieweg, Wiesbaden, Germany, 1995.

BIBLIOGRAPHY 235

[16] M. Benzi and M. Tuma. A parallel solver for large-scale Markov chains.Ap-

plied Numerical Mathematics, 41:135–153, 2002.

[17] C. Berge.Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[18] C. Berge.Hypergraphs: Combinatorics of Finite Sets. North-Holland, Amster-

dam, 1989.

[19] K. Blathras, D. Szyld, and Y. Shi. Timing models and local stopping crite-

ria for asynchronous iterative algorithms.Journal of Parallel and Distributed

Computing, 58(3):446–465, September 1999.

[20] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi.Queueing Networks and

Markov Chains. Wiley, August 1998.

[21] J.T. Bradley. A passage-time preserving equivalence for semi-Markov pro-

cesses. InLecture Notes in Computer Science 2324: Proceedings of the 12th In-

ternational Conference on Modelling, Techniques and Tools (TOOLS’02), pages

178–187, London, April 14th–17th 2002. Springer-Verlag.

[22] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Derivation of

passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler.

In Proceedings of the 11th IEEE/ACM International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunications Systems (MAS-

COTS’03), pages 344–351, Orlando FL, USA, October 12th–15th 2003.

[23] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Extracting pas-

sage times from PEPA models with the HYDRA tool: A case study. InProceed-

ings of the 19th UK Performance Engineering Workshop (UKPEW’03), pages

79–90, Warwick, July 9th–10th 2003.

[24] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Distributed

computation of passage time quantiles and transient state distributions in large

Semi-Markov models. InProceedings of the International Workshop on Per-

formance Modeling, Evaluation and Optimization of Parallel and Distributed

Systems (PMEO-PDS’03), Nice, April 26th 2003.

236 BIBLIOGRAPHY

[25] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Performance

queries on semi-Markov stochastic Petri nets with an extended Continuous

Stochastic Logic. InProceedings of 10th International Workshop on Petri

Nets and Performance Models (PNPM’03), pages 62–71, Urbana-Champaign

IL, USA, September 2nd–5th 2003.

[26] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Distributed com-

putation of transient state distributions and passage time quantiles in large Semi-

Markov models.Future Generation Computer Systems, 2004. (to appear).

[27] J.T. Bradley, N.J. Dingle, and W.J. Knottenbelt. Strategies for exact iterative ag-

gregation of semi-Markov performance models. InProceedings of International

Symposium on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS’03), pages 755–762, Montreal, Canada, July 20th–24th 2003.

[28] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson. Hypergraph-based

parallel computation of passage time densities in large semi-Markov models.

In Proceedings of the 4th International Conference on the Numerical Solution

of Markov Chains (NSMC’03), pages 99–120, Urbana-Champaign IL, USA,

September 2nd–5th 2003.

[29] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson. Hypergraph-based

parallel computation of passage time densities in large semi-Markov models.

Linear Algebra and its Applications, 386:311–334, 2004.

[30] J.T. Bradley and H.J. Wilson. Convergence and correctness of an iterative

scheme for calculating passage times in semi-Markov processes.Performance

Evaluation, 2004. (to appear).

[31] P. Buchholz. Hierarchical Markovian models: Symmetries and aggregation.

Performance Evaluation, 22:93–110, 1995.

[32] P. Buchholz, M. Fischer, and P. Kemper. Distributed steady state analysis us-

ing Kronecker algebra. InProceedings of the 3rd International Conference on

BIBLIOGRAPHY 237

the Numerical Solution of Markov Chains (NSMC’99), pages 76–95, Zaragoza,

Spain, September 1999.

[33] J.P. Buzen. Computational algorithms for closed queueing networks with expo-

nential servers.Communications of the ACM, 16:527–531, 1973.

[34] W-L. Cao and W.J. Stewart. Iterative aggregation/disaggregation techniques for

nearly uncoupled Markov chains.Journal of the ACM, 32(3):702–719, July

1985.

[35] U.V. Catalÿurek and C. Aykanat. Hypergraph-partitioning-based decomposition

for parallel sparse-matrix vector multiplication.IEEE Transactions on Parallel

and Distributed Systems, 10(7):673–693, July 1999.

[36] U.V. Catalÿurek and C. Aykanat. PaToH: A multilevel hypergraph partitioning

tool. Technical Report BU-CE-9915, Version 3.0, Department of Computer

Engineering, Bikent University, Ankara, 06800, Turkey, 1999.

[37] G. Ciardo, M. Forno, P.L.E. Grieco, and A.S. Miner. Comparing implicit rep-

resentations of large CTMCs. InProceedings of the 4th International Confer-

ence on the Numerical Solution of Markov Chains (NSMC’03), pages 323–327,

Urbana-Champaign IL, USA, September 2nd–5th 2003.

[38] G. Ciardo and A.S. Miner. A data structure for the efficient Kronecker solution

of GSPNs. InProceedings of the 8th International Conference on Petri Nets and

Performance Models (PNPM’99), pages 22–31, Zaragoza, Spain, September

1999. IEEE Computer Society Press.

[39] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: Stochastic petri net package. In

Proceedings of the 3rd International Workshop on Petri Nets and Performance

Models (PNPM’89), pages 142–151, Kyoto, 1989.

[40] G. Ciardo, J.K. Muppula, and K.S. Trivedi. On the solution of GSPN reward

models.Performance Evaluation, 12(4):237–253, 1991.

238 BIBLIOGRAPHY

[41] G. Ciardo and K.S. Trivedi. A decomposition approach for stochastic reward

net models.Performance Evaluation, 18(1):37–59, 1993.

[42] Commission for Health Improvement. Final key targets and perfor-

mance indicators for primary care trusts (PCTs), December 2003. URL:

http://www.chi.nhs.uk/eng/ratings/2004/index.shtml .

[43] County of Oxford Board of Health. 2001 annual report, October 2002. URL:

http://www.county.oxford.on.ca/healthservices/ocbh/pdf/

2001 Annual Report PublicHealth Oct29 2002.pdf .

[44] Cross-Industry Working Team. Customer view of internet service

performance: Measurement methodology and metrics, October 1998.

URLs: http://www.xiwt.org/documents/IPERF-paper.pdf ,

http://www.metron.co.uk/reference/technical/tech31.doc .

[45] I. Davies, W.J. Knottenbelt, and P.S. Kritzinger. Symbolic methods for the state

space exploration of GSPN models. InLecture Notes in Computer Science

2324: Proceedings of the 12th International Conference on Modelling, Tech-

niques and Tools (TOOLS’02), pages 188–199, London, April 14th–17th 2002.

Springer Verlag.

[46] D.D. Deavours and W.H. Sanders. An efficient disk-based tool for solving large

Markov models.Performance Evaluation, 33(1):67–84, June 1998.

[47] D.D. Deavours and W.H. Sanders. “On-the-fly” solution techniques for stochas-

tic Petri nets and extensions.IEEE Transactions on Software Engineering,

24(10):889–902, 1998.

[48] N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Response time densities

in Generalised Stochastic Petri Net models. InProceedings of the 3rd Inter-

national Workshop on Software and Performance (WOSP’02), pages 46–54,

Rome, July 24th–26th 2002.

[49] N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. HYDRA: HYpergraph-based

Distributed Response-time Analyser. InProceedings of the International Con-

BIBLIOGRAPHY 239

ference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’03), pages 215–219, Las Vegas NV, USA, June 23rd–26th 2003.

[50] N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Uniformization and hyper-

graph partitioning for the distributed computation of response time densities in

very large Markov models.Journal of Parallel and Distributed Computing,

64(8):908–920, August 2004.

[51] N.J. Dingle and W.J. Knottenbelt. Distributed solution of large Markov models

using asynchronous iterations and graph partitioning. InProceedings of the 18th

UK Performance Engineering Workshop (UKPEW’02), pages 27–34, Glasgow,

July 10th–11th 2002.

[52] DLT Solutions Inc. Capacity planning for e-commerce sys-

tems with Benchmark FactoryTM, February 2004. URL:

http://www.dlt.com/quest/resources-whitepapers.asp .

[53] H. Dubner and J. Abate. Numerical inversion of Laplace transforms by relating

them to the finite Fourier cosine transform.Journal of the ACM, 15(1):115–123,

1968.

[54] D.G. Duffy. On the numerical inversion of Laplace transforms: comparison of

three new methods on characteristic problems from applications.ACM Trans-

actions on Mathematical Software, 19(3):333–357, September 1993.

[55] J.B. Dugan, K. Trivedi, R. Geist, and V. Nicola. Extended stochastic Petri nets:

Applications and analysis. InProceedings of the 10th International Symposium

on Models of Computer System Performance (Performance ’84), pages 507–

519, Paris, December 19th–21th 1984.

[56] P.P.G. Dyke. An Introduction to Laplace Transforms and Fourier Series.

Springer-Verlag, 2001.

[57] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for improving

network partitions. InProc. 19th IEEE Design Automation Conference, pages

175–181, 1982.

240 BIBLIOGRAPHY

[58] J. Freiheit and A. Heindl. Novel formulae for GSPN aggregation. InProceed-

ings of the 10th IEEE/ACM International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunications Systems (MASCOTS’02),

pages 209–216, Fort Worth TX, USA, October 11th–16th 2002.

[59] M. Freimer, G. Kollia, G.S. Mudholkar, and C.T. Lin. A study of the generalized

Tukey Lambda family. Communications in Statistics: Theory and Methods,

17(10):3547–3567, 1988.

[60] R.M. Fricks, A. Puliafito, M. Telek, and K. Trivedi. Applications of non-

Markovian stochastic Petri nets.Performance Evaluation Review, 26(2):15–27,

1998.

[61] A. Frommer and D.B. Szyld. On asynchronous iterations.Journal of Computa-

tional and Applied Mathematics, 123:201–216, 2000.

[62] M. Fujita, P. McGeer, and J.-Y. Yang. Multi-terminal binary decision diagrams:

an efficient data structure for matrix representations.Formal Methods in System

Design, 10(2/3):149–169, 1997.

[63] R. German.Performance Analysis of Communication Systems: Modelling with

Non-Markovian Stochastic Petri Nets. John Wiley & Sons, 2000.

[64] R. German, D. Logothetis, and K.S. Trivedi. Transient analysis of Markov

regenerative stochastic Petri nets: A comparison of approaches. InProceed-

ings of the 6th International Workshop on Petri Nets and Performance Models

(PNPM’95), pages 103–112, Durham, North Carolina, 1995.

[65] S.T. Gilmore, J. Hillston, and G. Clark. Specifying performance measures for

PEPA. InLecture Notes in Computer Science 1691: Proceedings of the 5th

International AMAST Workshop on Real-Time and Probabilistic Systems, Bam-

berg, 1999. Springer-Verlag.

[66] W. Grassman. Means and variances of time averages in Markovian environ-

ments.European Journal of Operational Research, 31(1):132–139, 1987.

BIBLIOGRAPHY 241

[67] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Program-

ming with the Message Passing Interface. MIT Press, Cambridge, Massachus-

setts, 1994.

[68] P.G. Harrison. Laplace transform inversion and passage-time distributions in

Markov processes.Journal of Applied Probability, 27:74–87, 1990.

[69] P.G. Harrison. The MM CPP/GE/c G-Queue: sojourn time distribution.Queue-

ing Systems, 41:271–298, January 2002.

[70] P.G. Harrison and W.J. Knottenbelt. Passage time distributions in large Markov

chains. InProceedings of ACM SIGMETRICS 2002, pages 77–85, Marina Del

Rey, California, June 2002.

[71] P.G. Harrison and N.M. Patel.Performance Modelling of Communication Net-

works and Computer Architectures. International Computer Science Series. Ad-

dison Wesley, 1993.

[72] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

In Proceedings of the ACM/IEEE Supercomputing Conference. ACM/IEEE, De-

cember 1995.

[73] B. Hendrickson, R. Leland, and S. Plimpton. An efficient parallel algorithm for

matrix–vector multiplication.International Journal of High Speed Computing,

7(1):73–88, 1995.

[74] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision

diagrams to represent and analyse continuous time Markov chains. InProceed-

ings of the 3rd International Conference on the Numerical Solution of Markov

Chains (NSMC’99), pages 188–207, Zaragoza, Spain, September 1999.

[75] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,

University of Edinburgh, 1994.

[76] C.A.R. Hoare. Communicating sequential processes.Communications of the

ACM, 21(8):666–677, August 1978.

242 BIBLIOGRAPHY

[77] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[78] Ng Chee Hock. Queueing Modelling Fundamentals. John Wiley and Sons,

1996.

[79] G. Karypis and V. Kumar. A coarse-grain parallel formulation of multilevelk-

way graph partitioning algorithm. InProceedings of the 8th SIAM Conference

on Parallel Processing for Scientific Computing, 1997.

[80] G. Karypis and V. Kumar.METIS: A Software Package for Partitioning Un-

structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Order-

ings of Sparse Matrices, Version 4.0. University of Minnesota, September 1998.

[81] G. Karypis and V. Kumar. Multilevelk-way hypergraph parititioning. Technical

Report #98-036, University of Minnesota, 1998.

[82] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular

graphs.Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

[83] G. Karypis and V. Kumar. Parallel multilevelk-way partitioning scheme for

irregular graphs. Technical Report #96-036, University of Minnesota, 1998.

[84] G. Karypis, K. Schloegel, and V. Kumar.ParMETIS: Parallel Graph Partition-

ing and Sparse Matrix Ordering Library, Version 2.0. University of Minnesota,

September 1998.

[85] J-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic

CTMC model checking. InLecture Notes in Computer Science 2165: Proceed-

ings of Process Algebra and Probabilistic Methods (PAPM’01), pages 23–38,

Aachen, September 2001. Springer-Verlag.

[86] J.G. Kemeny and J.L. Snell.Finite Markov Chains. Van Nostrand, 1960.

[87] W.J. Knottenbelt. Generalised Markovian analysis of timed transition systems.

Master’s thesis, University of Cape Town, Cape Town, South Africa, July 1996.

BIBLIOGRAPHY 243

[88] W.J. Knottenbelt.Parallel Performance Analysis of Large Markov Models. PhD

thesis, Imperial College, London, United Kingdom, February 2000.

[89] W.J. Knottenbelt and P.G. Harrison. Distributed disk-based solution techniques

for large Markov models. InProceedings of the 3rd International Conference on

the Numerical Solution of Markov Chains (NSMC’99), pages 58–75, Zaragoza,

Spain, September 1999.

[90] W.J. Knottenbelt, P.G. Harrison, M.A. Mestern, and P.S. Kritzinger. A prob-

abilistic dynamic technique for the distributed generation of very large state

spaces.Performance Evaluation, 39(1–4):127–148, February 2000.

[91] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI net-

works. IEEE Transactions on Computers, 33(5):438–446, 1984.

[92] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Introduction to Parallel Com-

puting: Design and Analysis of Algorithms. Benjamin/Cummings Publishing,

1994.

[93] M. Kwiatkowska and R. Mehmood. Out-of-core solutions of large linear sys-

tems of equations arising from stochastic modelling. InProceedings of Process

Algebra and Performance Modelling (PAPM’02), pages 135–151, Copenhagen,

July 25th–26th 2002.

[94] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic sym-

bolic model checker. InLecture Notes in Computer Science 2324: Proceed-

ings of the 12th International Conference on Modelling, Techniques and Tools

(TOOLS’02), pages 200–204, London, April 14th–17th 2002. Springer Verlag.

[95] A. Lakhany and H. Mausser. Estimating the parameters of the Generalized

Lambda Distribution.Algo Research Quarterly, 3(3):47–58, December 2000.

[96] C. Lindemann.Performance Modelling with Deterministic and Stochastic Petri

Nets. John Wiley and Sons, 1998.

244 BIBLIOGRAPHY

[97] London Ambulance Service. Category A response times, February 2004. URL:

http://www.londonambulance.nhs.uk/news/performance/

performance.html .

[98] G.G. Infante Ĺopez, H. Hermanns, and J-P. Katoen. Beyond memoryless dis-

tributions: Model checking semi-Markov chains. InLecture Notes in Com-

puter Science 2165: Proceedings of Process Algebra and Probabilistic Methods

(PAPM’01), pages 57–70, Aachen, September 2001. Springer-Verlag.

[99] B. Melamed and M. Yadin. Randomization procedures in the computation of

cumulative-time distributions over discrete state Markov processes.Operations

Research, 32(4):926–944, July–August 1984.

[100] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer

Science 92. Springer-Verlag, 1980.

[101] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[102] A.S. Miner. Computing response time distributions using stochastic Petri nets

and matrix diagrams. InProceedings of the 10th International Workshop

on Petri Nets and Performance Models (PNPM’03), pages 10–19, Urbana-

Champaign, IL, September 2nd–5th 2003.

[103] I. Mitrani. Probabilistic Modelling. Cambridge University Press, August 1998.

[104] Municipal Corporation of the County of Renfrew. Health committee min-

utes, May 2003. URL:http://www.countyofrenfrew.on.ca/

2003/Health/Minutes/HMinutes%20May%2014-03.pdf .

[105] J.K. Muppala and K.S. Trivedi. Numerical transient analysis of finite Markovian

queueing systems. In U.N. Bhat and I.V. Basawa, editors,Queueing and Related

Models, pages 262–284. Oxford University Press, 1992.

[106] M.F. Neuts.Matrix-Geometric Solutions in Stochastic Models: An Algorithmic

Approach. Johns Hopkins University Press, Baltimore, MD, 1981.

BIBLIOGRAPHY 245

[107] F. Oberhettinger and L. Badii.Tables of Laplace Transforms. Spring-Verlag,

1973.

[108] A.T. Ogielski and W. Aiello. Sparse matrix computations on parallel processor

arrays.SIAM Journal on Scientific Computing, 14(3):519–530, May 1993.

[109] A. Puliafito, M. Scarpa, and K.S. Trivedi. Petri nets withk simultaneously en-

abled generally distributed timed transitions.Performance Evaluation, 32(1):1–

34, 1998.

[110] R. Pyke. Markov renewal processes with finitely many states.Annals of Math-

ematical Statistics, 32(4):1243–1259, December 1961.

[111] S. Ŕacz. Numerical Analysis of Communication Systems Through Markov Re-

ward Models. PhD thesis, Budapest University of Technology and Economics,

2002.

[112] A. Reibman and K.S. Trivedi. Numerical transient analysis of Markov models.

Computers and Operations Research, 15(1):19–36, 1988.

[113] San Francisco EMS Section Department of Public Health. San

Francisco EMS system activity summary, December 1999. URL:

http://www.sanfranciscoems.org/publication/

SystemActivities/emssystemactivities1999.pdf .

[114] M. Sczittnick. Technicken zur funktionalen und quantitativen Analyse von

Markoffschen Rechensystemmodellen. Diplomarbeit, Universität Dortmund,

October 1987.

[115] R.M. Simon, M.T. Stroot, and G.H. Weiss. Numerical inversion of Laplace

transforms with application to percentage labeled mitoses experiments.Com-

puters and Biomedical Research, 5(6):596–607, 1972.

[116] W.J. Stewart. MARCA: Markov chain analyser. a software package for Markov

modelling. In W.J. Stewart, editor,Numerical Solution of Markov Chains, pages

37–62. Marcel Dekker Inc., New York, 1991.

246 BIBLIOGRAPHY

[117] W.J. Stewart.Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press, 1994.

[118] A. Talbot. The accurate numerical inversion of Laplace transforms.Journal of

the Institute of Mathematical Applications, 23:97–120, 1979.

[119] Township of Rideau Lakes. Leeds Grenville emergency medi-

cal services frequently asked questions, February 2004. URL:

http://www.twprideaulakes.on.ca/ambulance-faq.html .

[120] Transaction Processing Performance Council. TPC benchmark

C: Standard specification revision 5.2, December 2003. URL:

http://www.tpc.org/tpcc/default.asp .

[121] A. Trifunovic and W.J. Knottenbelt. A parallel algorithm for multilevelk-way

hypergraph partitioning. InProceedings of the 3rd International Symposium

on Parallel and Distributed Computing (ISPDC’04), University College Cork,

Ireland, July 5th–7th 2004.

[122] A. Trifunovic and W.J. Knottenbelt. Parkway 2.0: A parallel multilevel hyper-

graph partitioning tool. InProceedings of the 19th International Symposium

on Computer and Information Sciences (ISCIS’04), Antalya, Turkey, October

27th–29th 2004.

[123] A. Trifunovic and W.J. Knottenbelt. Towards a parallel algorithm for multilevel

k-way hypergraph partitioning. InProceedings of the 5th Workshop on Parallel

and Distributed Scientific and Engineering Computing (PDSEC’04), Santa Fe

NM, April 26th–30th 2004.

[124] W.T. Weeks. Numerical inversion of Laplace transforms using Laguerre func-

tions. Journal of the ACM, 13(3):419–429, 1966.

[125] C.M. Woodside and Y. Li. Performance Petri net analysis of communication

protocol software by delay-equivalent aggregation. InProceedings of the 4th

International Workshop on Petri nets and Performance Models (PNPM’91),

BIBLIOGRAPHY 247

pages 64–73, Melbourne, Australia, 2–5 December 1991. IEEE Computer So-

ciety Press.

[126] H.L.S. Younes and R.G. Simmons. Probabilistic verification of discrete event

systems using acceptance sampling. InLecture Notes in Computer Sci-

ence 2404: Proceedings of the 14th International Conference on Computer

Aided Verification (CAV’02), pages 223–235, Copenhagen, July 2002. Springer-

Verlag.

