
J. Parallel Distrib. Comput. 64 (2004) 908–920

ARTICLE IN PRESS
*Correspond

E-mail addr

pgh@doc.ic.ac.

(W.J. Knottenb
1Also for cor

0743-7315/$ - se

doi:10.1016/j.jp
Uniformization and hypergraph partitioning for the distributed
computation of response time densities in very large Markov models

Nicholas J. Dingle,* Peter G. Harrison, and William J. Knottenbelt1

Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ, UK

Received 17 October 2002; revised 19 March 2004
Abstract

Fast response times and the satisfaction of response time quantile targets are important performance criteria for almost all

transaction processing and computer-communication systems. We present a distributed uniformization-based technique for

obtaining response time densities from very large unstructured Markov models. Our method utilizes hypergraph partitioning to

minimize inter-processor communication while maintaining a good load balance. The resulting algorithm scales well on a

distributed-memory parallel computer and, unusually for a problem of this nature, also produces near-linear speed-ups on a

network of commodity PCs linked by 100 Mbps ethernet. We demonstrate our approach by calculating passage time densities in a

1.6 million state Markov chain derived from a Generalized Stochastic Petri net model and a 10.8 million state Markov chain derived

from a closed tree-like queueing network. We compare the accuracy of our results with simulation and known analytical solutions

and contrast the run-time performance of our technique with an approach based on numerical Laplace transform inversion.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Response time densities and quantiles; Markov models; Hypergraph partitioning
1. Introduction

Stochastic performance models provide a formal way
of capturing and analysing the dynamic behaviour of
computer and communication systems. These models
can be specified using several high-level formalisms
including stochastic Petri nets [3], queueing networks
[26] and stochastic process algebras [25]. With the
exception of the special case of product-form queueing
networks, performance statistics for these models are
usually derived by generating and then solving a
Markov chain corresponding to the model’s behaviour
at the state transition level. From the chain’s equili-
brium (steady state) probability distribution, standard
resource-based performance measures (such as mean
buffer occupancy, system availability and throughput)
and expected values of various sojourn times can be
ing author. Tel.: +44-20-7594-8385.

esses: njd200@imperial.ac.uk (N.J. Dingle),

uk (P.G. Harrison), wjk@doc.ic.ac.uk

elt).

respondence

e front matter r 2004 Elsevier Inc. All rights reserved.

dc.2004.03.017
obtained. There is a large body of previous work on the
efficient calculation of steady-state probabilities in large
Markov chains, including parallel [4,8,35] and disk-
based [15,36,40] implementations, as well as those which
employ implicit state-space representation techniques
[12,16,24,41].
The focus of the present study, however, is on the

harder problem of calculating full response time
densities in structurally unrestricted Markov models.
This has important practical applications since response
time quantiles are often specified as quality of service
metrics in Service Level Agreement contracts and
industry standard benchmarks such as TPC-C [14]. In
the past, numerical computation of analytical response
time densities has proved prohibitively expensive except
in some Markovian systems with restricted structure
such as overtake-free queueing networks [20]. However,
with the advent of high-performance parallel computing
and the widespread availability of PC clusters, direct
numerical analysis on Markov chains has now become a
practical proposition.
There are two main methods for computing first

passage time (and hence response time) densities in



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 909
Markov chains: those based on Laplace transforms and
their inversion [1,21] and those based on uniformization
[42–44]. The former has wider application to semi-
Markov processes but is less efficient than uniformiza-
tion when restricted to Markov chains.
Our contribution is a parallel uniformization-based

algorithm and tool for computing passage time densities
in Markov chains with very large state spaces (more
than 107 states). By using the state-of-the-art hyper-
graph partitioning techniques presented in [10] we
achieve a remarkably scalable algorithm that yields
excellent performance on a distributed-memory parallel
computer and that effectively utilizes the compute power
and RAM provided by a network of workstations. To
the best of our knowledge, this is the first application of
hypergraph partitioning in the domain of performance
analysis. Further, we are not aware of any other
distributed uniformization-based tools for computing
response time densities, and our implementation im-
proves substantially on both the solution time and
capacity of contemporary distributed response time
density analysers based on numerical Laplace transform
inversion [21]. The uniformization-based approach of
Miner [43] uses the implicit state-space representation
technique of matrix diagrams to analyse systems of a
similar size to those presented here for response time
densities. This technique is not distributed, however,
and like many approaches employing implicit techni-
ques suffers from significant run-time performance
overheads.
The rest of this paper is organized as follows. Section

2 summarizes the uniformization method and how it
may be used to derive response time densities for
arbitrary Markov chains. Section 3 compares and
contrasts two data partitioning schemes for efficient
parallel sparse matrix–vector multiplication: traditional
graph-based partitioning and the recent hypergraph
partitioning. Section 4 details the implementation of our
parallel algorithm, which uses uniformization and
hypergraph partitioning to produce response time
density graphs for Markov chains derived from a high-
level modelling formalism. Section 5 presents numerical
results for two models, viz. a 1.6 million state General-
ized Stochastic Petri net model and a 10.8 million state
queueing network model, showing speed-up curves and
validating against simulation and an exact analytical
model, respectively. Section 6 concludes and discusses
future work.
2. Response time densities via uniformization

2.1. First passage times

Consider a finite, irreducible, continuous-time Mar-
kov Chain (CTMC) with n states f1; 2;y; ng and an
n � n generator matrix Q; where qij is the infinitesimal
rate of moving from state i to state j ðiajÞ; and qii ¼
�
P

iaj qij: All state holding-times in a CTMC are
exponentially distributed random variables. If XðtÞ
denotes the state of the CTMC at time tX0; then the
first passage time from a source state i into a non-empty
set (denoted by a vector) of target states ~jj is ð8tX0Þ
Ti~jjðtÞ ¼ inffu40 : Xðt þ uÞA~jj j XðtÞ ¼ ig:

For a stationary, time-homogeneous CTMC, Ti~jjðtÞ is
independent of t; so

Ti~jj ¼ inffu40 : X ðuÞA~jj j Xð0Þ ¼ ig:

Ti~jj is a random variable with an associated prob-
ability density function fi~jjðtÞ such that

PrðaoTi~jjpbÞ ¼
Z b

a

fi~jjðtÞ dt ð0paobÞ:

Our aim is to determine fi~jjðtÞ: In effect, this involves
convolving exponentially distributed state holding times
over all possible paths (including cycles) from state i into
any of the states in the set ~jj: As we show in the next
section, the problem can also be readily extended to
multiple initial states by weighting the first passage time
densities for each initial state.

2.2. Uniformization

Uniformization has classically been used to conduct
transient analysis of finite-state, continuous-time Mar-
kov chains, see for example [18,46]. It involves the
transformation of the CTMC into one in which all states
have the same mean holding time 1=q; by allowing
‘invisible’ transitions from a state to itself. This is
equivalent to a discrete-time Markov chain (DTMC),
after normalization of the rows, together with an
associated Poisson process of rate q: The one-step
transition probability matrix P which characterizes the
one-step behaviour of the DTMC is derived from the
generator matrix Q of the CTMC as

P ¼ Q=q þ I;

where the rate q4maxijqiij ensures that the DTMC is
aperiodic by guaranteeing that there is at least one
single-step transition from a state to itself. The number
of transitions in the DTMC that occur in a given time
interval is given by a Poisson process with rate q:
Uniformization can also be employed for the calcula-

tion of response time densities in Markov chains as
described in [42,44]. We add an extra, absorbing state to
our uniformized chain, which is the sole successor state
for all target states. This ensures we only calculate the
first passage time density and need not worry about the
case of successive visits to a target state. We denote by
P0 the one-step transition probability matrix of the
modified, uniformized chain.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920910
The calculation of the first passage time density
between two states has two main components. The first
considers the time to complete n hops ðn ¼ 1; 2; 3;yÞ:
Recall that in the uniformized chain all transitions occur
with rate q: The density of the time taken to move
between two states is found by convolving the state
holding-time densities along all possible paths between
the states. In a standard CTMC, convolving holding
times in this manner is non-trivial as, although they are
all exponentially distributed, their rate parameters are
different. In a CTMC which has undergone uniformiza-
tion, however, all states have exponentially distributed
state holding-times with the same parameter q: This
means that the convolution of n of these holding time
densities is the convolution of n exponentials all with
rate q; which yields an n-stage Erlang density with rate q:
Secondly, it is necessary to calculate the probability

that the transition between a source and target state
occurs in exactly n hops of the uniformized chain, for
every value of n between 1 and a maximum value m: The
value of m is determined when the value of the nth
Erlang density function (the left-hand term in Eq. (1))
drops below some threshold value. After this point,
further terms are deemed to add nothing further to the
response time density and so are disregarded.
The density of the time to pass between a source state

i and a target state j in a uniformized Markov chain can
therefore be expressed as the sum of m n-stage Erlang
densities, weighted with the probability that the chain
moves from state i to state j in exactly n hops ð1pnpmÞ:
This can be generalized to allow for multiple target
states in a straightforward manner, by providing a
probability distribution across this set of states (such as
the renormalized steady-state distribution calculated
below in Eq. (3)).
The response time between the non-empty set of

source states~ii and the non-empty set of target states~jj in
the uniformized chain therefore has probability density
function:

f~ii~jjðtÞ ¼
XN
n¼1

qntn�1e�qt

ðn � 1Þ!
X
kA~jj

pðnÞk

0
@

1
A

C
Xm

n¼1

qntn�1e�qt

ðn � 1Þ!
X
kA~jj

pðnÞk

0
@

1
A; ð1Þ

where

pðnþ1Þ ¼ pðnÞP0 for nX0 ð2Þ

with

pð0Þk ¼
0 for ke~ii;

pk=
P

jA~ii pj for kA~ii:

(
ð3Þ

The pk values are the steady-state probabilities of the
corresponding state k from the CTMC’s embedded
Markov chain. When the convergence criterion

jjpðnÞ � pðn�1Þjj
N

jjpðnÞjj
N

oe ð4Þ

is met, for given tolerance e; the steady-state probabil-
ities of P0 are considered to have been obtained with
sufficient accuracy and no further multiplications with
P0 are performed. Here, jjxjj

N
is the infinity-norm given

by jjxjj
N

¼ maxijxij:
3. Partitioning sparse matrices for parallel processing

The key opportunity for parallelism in the uniformi-
zation algorithm is the sparse matrix–vector product
pðnþ1Þ ¼ pðnÞP0; or equivalently pðnþ1ÞT ¼ P

0TpðnÞT; where
the superscript T denotes the transpose operator. In the
following, we let A ¼ P

0T; x ¼ pðnÞT and consider sparse
matrix–vector products of the form Ax:
To perform this operation efficiently it is necessary

to map the non-zero elements of A onto processors
such that the computational load is balanced and
communication between processors is minimized. One
option proposed in [45] is to permute the rows
and columns of the matrix randomly and then perform
a 2D checkerboard partitioning [39]. For an n � n

sparse matrix partitioned over p processors, this
scheme achieves excellent load balance and an
asymptotic worst-case communication overhead, per
iteration, of 2

ffiffiffi
p

p ð ffiffiffi
p

p � 1Þ messages of length n=
ffiffiffi
p

p
;

giving a total communication volume of 2nð ffiffiffi
p

p � 1Þ:
The alternative 2D checkerboard algorithm presented
in [23] has worst-case communication requirements
of 2pð ffiffiffi

p
p � 1Þ messages of length n=p; yielding the

same total communication volume. The corresponding
worst-case communication overhead for a random
row-striped partitioning is pðp � 1Þ messages of
length n=p; giving a total communication volume of
nðp � 1Þ:
The disadvantage of these approaches is that they are

not scalable because their communication volume
exceeds OðnÞ while, in the context of Markov modelling,
the computational cost is usually OðnÞ: This is because,
typically, the number of non-zero elements in each row
of the matrix (corresponding to the number of transi-
tions out of the row-state) does not increase significantly
with n:
Instead of randomly permuting the row and column

indices, an alternative approach is to apply graph-based
partitioning techniques in a row-striped decomposition
to minimize inter-processor communication whilst
maintaining a uniform balance of non-zero elements.
In the following, we consider traditional graph-based
and recent hypergraph techniques.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 911
3.1. Graph partitioning

In a row-striped decomposition, the n � n sparse
matrix A can be represented as an undirected graph G ¼
ðV; EÞ where each row i ð1pipnÞ in the matrix
corresponds to vertex viAV in the graph. The corre-
sponding weight wi of vertex vi is the total number of
non-zeros in row i: For the edge-set E; edge eij connects
vertices vi and vj with weight 1 if either one of aij40 or
aji40; and with weight 2 if both aij40 and aji40 [10].
The task of allocating the n rows of matrix A to p

processors is well known to be equivalent to a p-way
partitioning of the corresponding graph [31]. The
quality of such a decomposition is judged with respect
to two metrics: edge cut and balance. An edge is cut if
the vertices which it connects are assigned to two
different processors—so that the total number of edges
cut is an approximation for the amount of interpro-
cessor communication. A decomposition is said to be
balanced if the sum of the weights of the vertices in each
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

13 7 16 11 15 9 2 5 14 8 10 4 3 12 1 6

P1

P2

P3

P4

13

7

16

11

15

9

2

5

14

8

10

4

3

12

1

6

x

P

P

P

P

Fig. 1. A 16� 16 non-symmetric sparse matrix A (top), with corresponding

(right bottom) and corresponding partitions of the vector x:
partition does not differ from the average of these
weight sums by more than a specified amount. An
optimal decomposition is one which minimizes edge cut
while satisfying the balance constraint.
The problem of finding the optimal decomposition for

a given graph is NP-complete. However, there exist a
number of tools which implement heuristic algorithms
to calculate good sub-optimal decompositions, for
example Chaco [22] and METIS [27,29]. A parallel
implementation of METIS called ParMETIS [32,33] is
also available. ParMETIS is particularly attractive for
very large matrices as an arbitrary number of processors
may be used to calculate the p-way partition, and per-
processor memory use is inversely proportional to the
number of processors.
Consider the problem of producing a 4-way row-wise

decomposition of the matrix shown at the top of Fig. 1.
The matrix on the bottom left of Fig. 1 shows the matrix
and vector partitioning produced by the graph parti-
tioning tool Chaco. Note how the effect of the
9 10 11 12 13 14 15 16

13 7 16 10 15 9 1 3 14 8 11 4 2 12 5 6

1

2

3

4

13

7

16

10

15

9

1

3

14

8

11

4

2

12

5

6

x

4-way graph partition (left bottom) and 4-way hypergraph partition



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920912
decomposition has been to minimize the number of non-
zeros that occur in off-diagonal blocks (just 14 off-
diagonal elements as opposed to 27 in the original
matrix). However, while the edge cut is 14, the number
of vector elements that must be sent between processors
(i.e. the real communication cost) is just 10. This is
because off-diagonal non-zeros which are in the same
column and on the same processor are all multiplied by
the same remote vector element, a factor which is not
accounted for by graph-based partitioning strategies.

3.2. Hypergraph partitioning

Hypergraph partitioning is an extension of graph
partitioning. Its primary application has been in VLSI
circuit design where the objective is to cluster pins of
devices such that interconnect is minimized.
Formally, a hypergraph H ¼ ðV;NÞ is defined by a

set of vertices V and a set of nets (or hyperedges) N ;
where each net is a subset of the vertex set V [5,6]. In the
context of a row-wise decomposition of a sparse matrix
as described in [10], matrix row i ð1pipnÞ is repre-
sented by a vertex viAV while column j ð1pjpnÞ is
represented by net NjAN : The vertices contained within
net Nj correspond to the row numbers of the non-zero
elements within column j; i.e. viANj if and only if aija0:
Weights are assigned to vertices in the same manner as
to the vertices of a graph i.e. the weight of vertex i is
given by the number of non-zero elements in row i: The
weight of all nets is one, with a net’s contribution to the
hyperedge cut being defined as one less than the number
of different partitions (in the row-wise decomposition)
spanned by that net. The overall objective of a
hypergraph sparse matrix partitioning is to minimize
the hyperedge cut while maintaining a balance criterion.
This corresponds to minimizing the total communica-
tion volume whilst maintaining computational load
balance when performing sparse matrix–vector multi-
plication in parallel. In this context, we apply a
hypergraph partition to the corresponding matrix by
symmetrically permuting the rows and columns of the
matrix such that all rows corresponding to vertices in a
partition are assigned to one processor.
The matrix on the bottom right of Fig. 1 shows the

result of applying hypergraph-partitioning to the matrix
at the top. Although the number of off-diagonal non-
zeros has increased from 14 to 18 compared with the
graph decomposition, the number of vector elements
which must be transmitted between processors (the
communication cost) has dropped from 10 to 6. This is
because the hypergraph partitioning algorithms not only
aim to concentrate the non-zeros on the diagonals but
also strive to line up the off-diagonal non-zeros in
columns. The edge cut of the decomposition is also 6,
and so the hyperedge cut exactly quantifies the commu-
nication cost, unlike the edge cut in graph partitioning.
This is a general property and one of the key advantages
of using hypergraphs.
Like graph partitioning, optimal hypergraph

partitioning is NP-complete. However, there exist a
small number of hypergraph partitioning tools
which implement fast heuristic algorithms, for example
PaToH [10,11] and hMETIS [30,28]. These are all
written to run on a single processor so their capacity is
limited to models with a few million states. We have
identified a parallel hypergraph partitioner capable of
functioning on very large models as a future research
area. We note that, for very large models, a parallel
graph partitioner still yields a great reduction in
communication costs over other methods (see Section
5.2 for an example).
4. Parallel algorithm and tool implementation

The process of calculating a response time density
begins with a high-level model, which we specify in an
enhanced form of the DNAmaca Markov Chain
Analyser interface language [34,35]. This language
supports the specification of queueing networks, sto-
chastic Petri nets, stochastic process algebras and other
models that can be mapped onto Markov chains. Next,
a probabilistic, hash-based state generator [37] uses the
high-level model description to produce the generator
matrix Q of the model’s underlying Markov chain as
well as a list of the initial and target states. We also
calculate P from Q (as shown in Section 2.2). Normal-
ized weights for the initial states are then determined
from Eq. (3), which requires us to solve pP ¼ p: This is
readily done using any of a variety of steady-state
solution techniques (e.g. [15,36]). P

0T is constructed from
P by transposing and by adding the extra, terminal state
that becomes the sole successor state of all target states.
Having been converted into an appropriate input
format, P

0T is then partitioned using a hypergraph or
graph-based partitioning tool.
The analysis pipeline is completed by our distributed

response time density calculator, which is implemented
in C++ using the Message Passing Interface (MPI) [19]
standard. This means that it is portable to a wide variety
of parallel computers and workstation clusters. Initially,
each processor tabulates the Erlang terms for each t-
point required (cf. Eq. (1)). Computation of these terms
terminates when they fall below a specified threshold
value. In fact, this is safe to use as a truncation condition
for the entire passage time density expression because
the Erlang term is multiplied by a summation which is a
probability. The terminating condition also determines
the maximum number of hops m used to calculate the
inner summation in Eq. (1), which is independent of t:
Each processor reads in the rows of the matrix P

0T

that correspond to its allocated partition into two types



ARTICLE IN PRESS

k

M1

k

k

M3

tM2

tP3

#(P3s)

#(P12s)

#(P12s)

#(P12s)

#(P1s) #(P1s)

tP1s

P1 P1wM1tP1 tM1 P1M1 tP1M1
P1d tP1e P1s

tP12s P12s tP12M3 P12M3 tM3 P12wM3 tP12 P12 tx

P1wP2

P2wP1

P2s

tP2eP2d

P2wM2tP2 P2M2 tP2M2
P2

tP2s

M2

P3 P3M2

tP3M2

P3s tP3s

tP2j

tP1j

#(P2s)#(P2s)

#(P3s)

Fig. 2. The flexible manufacturing system (FMS) GSPN [13].

N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 913
of sparse matrix data structure and also computes the
corresponding elements of the vector pð0Þ: Local non-
zero elements (i.e. those elements in the diagonal matrix
blocks that will be multiplied with vector elements
stored locally) are stored in compressed sparse row
(CSR) format (see [47, p. 153]). Remote non-zero
elements (i.e. those elements in off-diagonal matrix
blocks that must be multiplied with vector elements
received from other processors) are stored in an
ultrasparse matrix data structure—one for each remote
processor—using a coordinate format. That is to say,
each non-zero is stored in the form orowIndex4
ocolumnIndex4 ononZeroValue4. Each processor
then determines the vector elements which will need to
be received from and sent to every other processor on
each iteration, adjusting the column indices in the
ultrasparse matrices so that they index into a vector of
received elements. This ensures that a minimum amount
of communication takes place and makes multiplication
of off-diagonal blocks with received vector elements
very efficient.
The vector pðnÞ is then calculated for n ¼ 1; 2; 3;y;m

by repeated sparse matrix–vector multiplications of
form pðnþ1ÞT ¼ P

0TpðnÞT: Actually, fewer than m multi-
plications may take place since a test for steady-state
convergence is made after every iteration (cf. Eq. (4)); if
the convergence criterion is satisfied, the matrix–vector
multiplication is not performed and we set pðnþ1ÞT ¼
pðnÞT in subsequent iterations. The check for conver-
gence is performed on each processor individually and
the results broadcast to every other processor. Only if
the calculations on all processors have converged do we
stop performing the multiplications. The broadcasting
of convergence results is, therefore, a synchronisation
point in the algorithm.
For each matrix–vector multiplication, each processor

begins by using non-blocking communication primitives
to send and receive remote vector elements, while
calculating the product of local matrix elements with
locally stored vector elements. The use of non-blocking
operations allows computation and communication to
proceed concurrently on parallel machines where
dedicated network hardware supports this effectively.
The processor then waits for the completion of non-
blocking operations (if they have not already completed)
before multiplying received remote vector elements
with the relevant ultrasparse matrices and adding
their contributions to the local matrix–vector product
cumulatively.
From the resulting local matrix–vector products each

processor calculates and stores its contribution to the
sum

P
kA~jj p

ðnÞ
k : After m iterations have completed, these

sums are accumulated onto an arbitrary master proces-
sor where they are multiplied with the tabulated Erlang
terms for each t-point required for the passage time
density. The resulting points are written to a disk file
and are displayed using the GNUplot graph plotting
utility.
5. Numerical results

This section presents numerical results that demon-
strate the applicability, accuracy, scalability and capa-
city of our technique. First, we compute a first passage
time density in a Petri net model of a manufacturing
system. We consider the scalability of our algorithm on
two different parallel architectures and validate the
density produced against a simulation. Next, we
compute a cycle time density in a queueing network
model with a very large underlying Markov chain. We
illustrate the effect of hypergraph partitioning and
compare the results with an analytical solution. Finally,
we compare the time taken to partition and solve a
model using hypergraph partitioning with the corre-
sponding time to perform the calculations using a row-
striped (linear) partition.

5.1. The FMS generalized stochastic Petri net model

Fig. 2 shows a 22-place Generalized Stochastic Petri
net (GSPN) [2] model of a flexible manufacturing
system. Interested readers are directed to [3] as a good
introduction to GSPNs, while a full description of this
model, which we will refer to as the FMS model, can be
found in [13]. For our purposes, it suffices to note that
the model describes an assembly line with three types of
machines (M1; M2 and M3) which assemble four types
of parts (P1; P2; P3 and P12). Initially, there are k



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920914
unprocessed parts of each type P1; P2 and P3 in the
system. There are no parts of type P12 at start-up since
these are assembled from processed parts of type P1 and
P2 by the machines of type M3: When parts of any type
are finished, they are stored for shipping on places P1s;
P2s; P3s and P12s:
For k ¼ 7; the GSPN’s underlying Markov chain has

1 639 440 states and 13 552 968 non-zero off-diagonal
entries in its generator matrix Q: For this model, we
calculate the density of the time taken to produce a
finished part of type P12 starting from any state in
which there are 7 unprocessed parts of type P1 and 7
unprocessed parts of type P2: That is, the source
markings (of which there are 36, corresponding to the
possible submarkings of M3) are those where MðP1Þ ¼
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

numerical
simulation

Fig. 3. Numerical and simulated (with 95% confidence intervals)

passage time densities for the time taken to produce a finished part of

type P12 starting from states in which there are k ¼ 7 unprocessed

parts of types P1 and P2:

Table 1

Run time, speedup ðSpÞ; efficiency ðEpÞ and per-iteration communication o

model with k ¼ 7

AP3000 PC cluster

p Time (s) Sp Ep Time (s)

1 1243.3 1.00 1.000 325.0

2 630.5 1.97 0.986 258.7

4 328.2 3.78 0.947 197.1

8 182.3 6.82 0.853 143.0

16 99.7 12.47 0.779 114.6

32 58.6 21.22 0.663 71.7

Results are presented for an AP3000 distributed-memory parallel computer
MðP2Þ ¼ 7 and the target markings (of which there are
429 624) are those where MðP12sÞ ¼ 1: We weight the
density from each source state according to the relative
probability that the passage originates in that state (cf.
Eq. (3)).
After modification of the state graph to allow for

transitions from target states to a new terminal state, the
uniformized matrix P0 has 11 001 408 non-zero entries.
The hypergraph tool PaToH is then used to partition the
rows of the transposed matrix P

0T as input to our
parallel algorithm. Fig. 3 shows the resulting numeri-
cally calculated passage time density, which is validated
against the combined results from 10 simulations (each
of which consisted of 1 billion transition firings) plotted
with 95% confidence bounds. There is excellent agree-
ment between the numerical and simulated passage time
densities.
Table 1 shows the performance of our algorithm on

two architectures: a Fujitsu AP3000 distributed-memory
parallel computer running Solaris and a Linux-based PC
workstation cluster. The AP3000 is based on a grid of 60
processing nodes, each of which has a UltraSPARC
300 MHz processor and 256 MB RAM. These nodes are
interconnected by a 2D wraparound mesh network that
uses wormhole routing and that has a peak throughput
of 520 Mbps (megabits per second). The PC cluster is a
vanilla network of workstations, consisting of 32 Athlon
1:4 GHz PCs each with 512 MB RAM linked together
by a 100 Mbps switched Ethernet network. Distributed
run-time is measured as the maximum processor run
time from the start of the first uniformization iteration.
The speedup for p processors, denoted by Sp; is given by
the run time of the sequential solution ðp ¼ 1Þ divided
by the run time with p processors. Efficiency for p

processors, denoted by Ep; is defined as Ep ¼ Sp=p: In
every case, the sparse matrix was partitioned using
PaToH on an Intel Pentium 4 2:6 GHz machine with
1GB of RAM using the following partitioning options:

OCM RA ¼ 10; MT ¼ 12; WI ¼ 1; FI ¼ 0:05:

That is, the hypergraph is derived from a sparse matrix
and should be partitioned using the Boundary FM
verhead for p-processor passage time density calculation in the FMS

Comm. per iteration

Sp Ep Messages Vol (MB)

1.00 1.000 0 0

1.26 0.628 2 1.5

1.65 0.412 12 3.2

2.27 0.284 51 5.3

2.84 0.178 207 7.3

4.53 0.142 663 9.6

and a PC cluster.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 915
refinement algorithm [17] with Krishnamurthy’s multi-
level gain [38], the absorption clustering using pins
coarsening algorithm [11] and a permitted imbalance
between final partitions of 5%.
Corresponding graphs of the run time, speedup and

efficiency on each architecture are presented in Figs. 4
and 5. The speedups and efficiencies achieved on the
AP3000 are excellent. Solution time on a single AP3000
node is 20 min 43 s whereas on 32 processors it takes
just 58:6 s (i.e. 21.22 times faster, corresponding to an
efficiency of 66.3%).
With processors that are about 4 times faster and a

communication network that is about 6 times slower
0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30

di
st

rib
ut

ed
 r

un
 ti

m
e 

(s
)

processors

AP3000
PC cluster

Fig. 4. Distributed run time for the FMS model with k ¼ 7 on the

AP3000 and a PC cluster.

5

10

15

20

25

30

5 10 15 20 25 30

sp
ee

du
p

processors

AP3000
PC cluster

Fig. 5. Speedup (left) and efficiency (right) for the FMS
than the AP3000, and without exclusive access to either
processors or the interconnection network, we cannot
expect such good results on the (shared departmental)
PC cluster. However, unusually for problems of this
type, reasonable speedups are still achieved, requiring
5 min 25 s on a single PC and 1 min 12 s on 32 PCs (i.e.
4.53 times faster, corresponding to an efficiency of
14.2%). The speedup trend for the PC cluster is shallow
but linear in trend, suggesting that speedup will continue
to improve for an even larger number of processors.
Adding extra workstations also boosts solution capacity
through additional RAM. Note that the results pre-
sented for the PC cluster were gathered at times when
the network and processors were most likely to be idle
(e.g. late at night) and have been averaged over several
runs to minimize the impact of any external interference.
Not only does our distributed algorithm exhibit

scalability but it is also efficient in absolute terms—
using a technique based on Laplace transform inversion
to calculate the same passage time density requires
1566 s ð26 min 6 sÞ on 32 PCs [21].

5.2. A tree-like queueing network

The second example we consider is a cycle time in the
closed tree-like queueing network of Fig. 6. This
network has six servers with rates m1;y; m6 and non-
zero routing probabilities as shown. Thus the visitation
rates v1;y; v6 for servers 1–6 are, respectively, propor-
tional to: 1; p12; p13; p14; p12; p14: For this example, we set
fm1; m2; m3; m4; m5; m6g ¼ f3; 5; 4; 6; 2; 1g and
fp12; p13; p14g ¼ f0:2; 0:5; 0:3g:
Analytical results for the cycle time density in this

type of overtake-free, tree-like queueing network with
M servers and population n are known [20,21]. For
interested readers, the corresponding algorithm is given
in Appendix A. To compute the cycle time density in this
network in terms of its underlying Markov Chain using
0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ef
fic

ie
nc

y

processors

AP3000
PC cluster

model with k ¼ 7 on the AP3000 and a PC cluster.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920916
the uniformization technique described in this paper
requires the state vector to be augmented by 3 extra
components so that a ‘‘tagged’’ customer can be
followed through the system. The extra components
are: the queue containing the tagged customer l; the
position of the tagged customer in that queue k (with
kX0), and the cycle sequence number c (an alternating
bit, flipped whenever the tagged customer joins q1). For
this augmented system with n customers, the underlying
Markov chain has 12 nþ5

6


 �
states. Source states are those

in which l ¼ 1; k ¼ n1 � 1 and c ¼ 0 while target states
are those in which l ¼ 1; k ¼ n1 � 1 and c ¼ 1; where n1
is the queue length of q1:
For a small six customer system with 5544 states, Fig.

7 shows the resulting transposed P0 matrix and
associated hypergraph decomposition produced by
hMETIS for a 4 processor decomposition. Statistics
p12 p13 p14

q1

q2 q3 q4

q5 q6

Fig. 6. A tree-like network and its routing probabilities.

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

P1

P2

P3

P4

Fig. 7. Transposed P0 matrix (left) and hypergraph-partitioned matrix (rig
about the per-iteration communication associated with
this decomposition are presented in Table 2. Around
90% of the non-zero elements allocated to each
processor are local, i.e. they are multiplied with vector
elements that are stored locally. The remote non-zero
elements are multiplied with vector elements that are
sent from other processors. However, because the
hypergraph decomposition tends to align remote non-
zero elements in columns (well illustrated in the 2nd
block belonging to processor 4), reuse of received vector
elements is good (up to 74%) with correspondingly
lower communication overhead. The communication
matrix on the right in Table 2 shows the number of
vector elements sent between each pair of processors
during each iteration (e.g. 181 vector elements are sent
from processor 2 to processor 4).
Moving to a more sizeable model, the queueing

network with 27 customers has an underlying Markov
Chain with 10 874 304 states and 82 883 682 transitions.
This model is too large to partition using a hypergraph
partitioner on a single machine (even one with 2GB
RAM), and there are currently no parallel hypergraph
partitioning tools available. Consequently a lesser
quality graph-based decomposition produced by the
parallel graph partitioner ParMETIS (running on
the PC cluster) was chosen. The options chosen
were to use the parallel partitioning algorithm, a
successive folding level of 300 [33] and weights on
both vertices and edges. It must be noted that this
decomposition still offers a great reduction in commu-
nication costs over other methods available: a 16-way
partition has an average of 95.8% local non-zero
elements allocated to each processor and a reused
received non-zero element average of 30.4%. Table 3
shows the per-iteration communication overhead for
randomized (i.e. random assignment of rows to parti-
tions), linear (i.e. simple in-order allocation of rows to
processors such that the number of non-zeros assigned
to each processor is the same) and graph-based
allocations. The graph-based method is clearly superior,
0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

x

ht) for the tree-like queueing network with 6 customers (5544 states).



ARTICLE IN PRESS

Table 2

Communication overhead in the queueing network model with six customers (left) and interprocessor communication matrix (right) for each

processor in a 4 processor decomposition

Processor Non-zeros Local (%) Remote (%) Reused (%) 1 2 3 4

1 7022 99.96 0.04 0 1 — 407 — 4

2 7304 91.41 8.59 34.93 2 3 — 16 181

3 6802 88.44 11.56 42.11 3 — — — 12

4 6967 89.01 10.99 74.28 4 — 1 439 —

Table 3

Per-iteration communication overhead for various partitioning meth-

ods for the queueing network model with 27 customers on 16

processors

Partitioning method Communication overhead

Messages Volume (MB)

Randomised 240 450.2

Linear 134 78.6

Graph-based 110 19.7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30

f(
t)

t

numerical f(t)
analytical f(t)

Fig. 8. Numerical and analytical cycle time densities for the tree-like

queueing network of Fig. 6 with 27 customers (10 874 304 states).

N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 917
both in terms of number of messages sent and
(especially) communication volume.
Fig. 8 compares the numerical and analytical cycle

time densities for the queueing network with 27
customers. Agreement is excellent and the results agree
to an accuracy of 0.00001% over the time range plotted.
The numerical density is computed in 968 s ð16 min 8 sÞ
for 875 iterations using 16 PCs. The memory used on
each PC is just 84 MB: It was not possible to compute
the density on a single PC (with 512 MB RAM) but the
same computation on a dual-processor server machine
(with 2 GB RAM) required 5580 s ð93 minÞ:

5.3. Evaluation

Partitioning a sparse matrix for parallel sparse
matrix–vector multiplication using hypergraph parti-
tioning aims to reduce the amount of data which much
be exchanged at each step. A key consideration,
however, is how much time is saved by doing this—in
particular, is it quicker to simply naı̈vely partition the
matrix by row and then do the multiplications at higher
cost than it is to calculate a hypergraph partition and
then use it in the multiplications?
Table 4 compares the partitioning time and multi-

plication time for hypergraph-partitioned and linear
row-striped matrix–vector multiplication on the two
different architectures described in Section 5.1 for the
analysis of the FMS model. On both architectures we
observe that the run-time for hypergraph-partitioned
matrix–vector multiplication is lower than that of linear
row-striped multiplication for all numbers of processors.
It is also noticeable that hypergraph-partitioned multi-
plication scales far better than linear row-striped multi-
plication on the PC cluster. On the AP3000, where the
network is faster and the processors slower, the
difference is still observed but does not favour the
hypergraph-partitioned scheme as much.
Note, however, that for large numbers of processors

(typically, 8 or more) the time to perform the multi-
plication and the partitioning is higher for the hyper-
graph scheme than the row-striped scheme. We offer
three observations regarding this: firstly, a current area
of research is the development of a scalable parallel
hypergraph partitioner and so we can expect the
overhead of calculating the partition to reduce.
Secondly, for a given model and set of target states,
the hypergraph partition is reusable (so if we wish to
calculate a response time from a different set of source
states or over a different time range we do not need to
recalculate the partition). Finally, in the example
presented here several hundred successive matrix–vector
multiplications are performed, but in other techniques
for response time density calculation (e.g. [7]) many
millions of such operations are performed, thus reducing



ARTICLE IN PRESS

Table 4

Run-times for hypergraph and linear row-striped parallel sparse matrix–vector multiplication

p Hypergraph partitioning (s) PC time (s) AP time (s) Row-partitioning time (s) PC time (s) AP time (s)

1 N/A 325.0 1243.3 N/A 325.0 1243.3

2 66.96 258.7 630.5 6.07 635.3 817.4

4 197.12 197.1 328.2 5.61 569.4 484.9

8 266.39 143.0 182.3 5.65 388.3 283.0

16 323.29 114.6 99.7 5.92 362.9 163.0

N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920918
the relative overhead of the hypergraph partitioning
step.
6. Conclusion

We have developed a scalable, parallel, uniformiza-
tion-based algorithm that computes passage time
densities in very large Markov chains (over 107 states).
The method has been validated using both simulation
and exact analytical results, and found to be extremely
accurate. This capability facilitates the detailed analysis
of quality of service in non-trivial high-level models
previously considered intractable. In view of the
scalability achieved, it would be possible to extend the
approach to even larger state spaces—perhaps by two
orders of magnitude. This could be accomplished by
employing a disk-based algorithm [15] together with the
increased RAM and processing power that would be
provided by more nodes.
Key to our scalability are the graph and hypergraph

partitioning schemes employed. Our results suggest an
important area for future research, viz. development of
scalable algorithms for parallel hypergraph partition-
ing—for preliminary work in this area see [48]. Apart
from the objective described above, this would find
application in the computation of equilibrium state
probabilities in very large Markov chains, as well as in
other fields such as VLSI design.
Acknowledgments

The authors would like to thank Jeremy Bradley,
Tony Field, Paul Kelly and David Thornley for their
helpful comments and advice and the Imperial College
Parallel Computing Centre for the use of the AP3000
distributed-memory parallel computer. We would also
like to thank the anonymous referees for their con-
structive and considered suggestions.
Appendix A. Analytical cycle time calculation in the tree-

like queueing network

If the servers in a closed tree-like queueing network in
an overtake-free path ð1; 2;y;mÞ ðmpMÞ have distinct
service rates m1; m2;y; mm; the passage time density
function, conditional on the choice of path, isQm

i¼1 mi

Gðn � 1Þ
Xn�1
c¼0

Gmðn � c � 1Þ

�
Xm

j¼1

e�mj tQ
1piajpmðmi � mjÞ

Xc

i¼0

ðvjtÞc�i

ðc � iÞ! Kmðj; iÞ;

where Kmðj; lÞ; Gmðn � c � 1Þ and Gðn � 1Þ are normal-
izing constants that may be computed efficiently by
Buzen’s algorithm [9]. If we define the recursive function
k; for real vector y ¼ ðy1;y; yaÞ and integers
a; b ð0papM; 0pbpN � 1Þ by
kðy; a; bÞ ¼ kðy; a � 1; bÞ

þ yakðy; a; b � 1Þ ða; b40Þ;

kðy; a; 0Þ ¼ 1 ða40Þ;
kðy; 0; bÞ ¼ 0 ðbX0Þ;

then

GmðlÞ ¼ kðxm;M � m; lÞ ð0plpn � 1Þ;
Gðn � 1Þ ¼ kðx;M; n � 1Þ;
Kmðj; lÞ ¼ kðwj;m � 1; lÞ;

with xi ¼ vi=mi; x ¼ ðx1;y; xMÞ; xm ¼ ðxmþ1;y; xMÞ
and, for 1pjpm;

ðwjÞk ¼
ðvk � vjÞ=ðmk � mjÞ if 1pkoj;

ðvkþ1 � vjÞ=ðmkþ1 � mjÞ if jpkom:

(

References

[1] J. Abate, W. Whitt, The Fourier-series method for inverting

transforms of probability distributions, Queueing Systems 10 (1)

(1992) 5–88.

[2] M. Ajmone-Marsan, G. Conte, G. Balbo, A class of generalised

stochastic Petri nets for the performance evaluation of

multiprocessor systems, ACM Trans. Comput. Systems 2 (1984)

93–122.

[3] F. Bause, P.S. Kritzinger, Stochastic Petri Net Theory, Verlag

Vieweg, Wiesbaden, Germany, 1995.

[4] M. Benzi, M. Tuma, A parallel solver for large-scale Markov

chains, Appl. Numer. Math. 41 (2002) 135–153.

[5] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam,

1973.

[6] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-

Holland, Amsterdam, 1989.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920 919
[7] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, H.J. Wilson,

Hypergraph-based parallel computation of passage time densities

in large semi-Markov processes, in: Proceedings of the Fourth

International Conference on the Numerical Solution of Markov

Chains (NSMC ’03), Urbana-Champaign, IL, September 2003,

pp. 99–120.

[8] P. Buchholz, M. Fischer, P. Kemper, Distributed steady state

analysis using Kronecker algebra, in: Proceedings of the

Third International Conference on the Numerical Solution of

Markov Chains (NSMC ’99), Zaragoza, Spain, September 1999,

pp. 76–95.

[9] J.P. Buzen, Computational algorithms for closed queueing

networks with exponential servers, Comm. ACM 16 (1973)

527–531.

[10] U.V. Catalyürek, C. Aykanat, Hypergraph-partitioning-based

decomposition for parallel sparse-matrix vector multiplication,

IEEE Trans. Parallel Distributed Systems 10 (7) (1999) 673–693.

[11] U.V. Catalyürek, C. Aykanat, PaToH: a multilevel hypergraph

partitioning tool, Technical Report BU-CE-9915, Version 3.0,

Department of Computer Engineering, Bikent University, An-

kara, Turkey, 1999.

[12] G. Ciardo, A.S. Miner, A data structure for the efficient

Kronecker solution of GSPNs, in: Proceedings of the Eighth

International Conference on Petri Nets and Performance Models

(PNPM ’99), Zaragoza, Spain, September 1999, pp. 22–31.

[13] G. Ciardo, K.S. Trivedi, A decomposition approach for stochastic

reward net models, Performance Evaluation 18 (1) (1993) 37–59.

[14] Transaction Processing Performance Council, TPC benchmark C:

standard specification revision 5.2, December 2003.

[15] D.D. Deavours, W.H. Sanders, An efficient disk-based tool for

solving large Markov models, Performance Evaluation 33 (1)

(1998) 67–84.

[16] D.D. Deavours, W.H. Sanders, ‘‘On-the-fly’’ solution techniques

for stochastic Petri nets and extensions, IEEE Trans. Software

Eng. 24 (10) (1998) 889–902.

[17] C.M. Fiduccia, R.M. Mattheyses, A linear time heuristic for

improving network partitions, in: Proceedings of the 19th

IEEE Design Automation Conference, Las Vegas, NV, 1982,

pp. 175–181.

[18] W. Grassman, Means and variances of time averages

in Markovian environments, Eur. J. Oper. Res. 31 (1) (1987)

132–139.

[19] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel

Programming with the Message Passing Interface, MIT Press,

Cambridge, MA, 1994.

[20] P.G. Harrison, Laplace transform inversion and passage-time

distributions in Markov processes, J. Appl. Probab. 27 (1990)

74–87.

[21] P.G. Harrison, W.J. Knottenbelt, Passage time distributions in

large Markov chains, in: Proceedings of ACM SIGMETRICS

2002, Marina Del Rey, CA, June 2002, pp. 77–85

[22] B. Hendrickson, R. Leland, A multilevel algorithm for partition-

ing graphs, in: Proceedings of ACM/IEEE Supercomputing

Conference, ACM/IEEE, New York, December, 1995.

[23] B. Hendrickson, R. Leland, S. Plimpton, An efficient parallel

algorithm for matrix–vector multiplication, Internat. J. High

Speed Comput. 7 (1) (1995) 73–88.

[24] H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi terminal binary

decision diagrams to represent and analyse continuous time

Markov chains, in: Proceedings of the Third International

Conference on the Numerical Solution of Markov Chains (NSMC

’99), Zaragoza, Spain, September 1999, pp. 188–207.

[25] J. Hillston, A compositional approach to performance modelling,

Ph.D. Thesis, University of Edinburgh, 1994.

[26] Ng Chee Hock, Queueing Modelling Fundamentals, Wiley, New

York, 1996.
[27] G. Karypis, V. Kumar, A fast and high quality multilevel scheme

for partitioning irregular graphs, Technical Report #95-035,

University of Minnesota, 1998.

[28] G. Karypis, V. Kumar, hMETIS: A Hypergraph Partitioning

Package, Version 1.5.3, University of Minnesota, November 1998.

[29] G. Karypis, V. Kumar, METIS: A Software Package for

Partitioning Unstructured Graphs, Partitioning Meshes, and

Computing Fill-Reducing Orderings of Sparse Matrices, Version

4.0, University of Minnesota, September 1998.

[30] G. Karypis, V. Kumar, Multilevel k-way hypergraph paritition-

ing, Technical Report #98-036, University of Minnesota, 1998.

[31] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme

for irregular graphs, J. Parallel Distributed Comput. 48 (1) (1998)

96–129.

[32] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning

scheme for irregular graphs, Technical Report #96-036, Uni-

versity of Minnesota, 1998.

[33] G. Karypis, K. Schloegel, V. Kumar, ParMETIS: Parallel Graph

Partitioning and Sparse Matrix Ordering Library, Version 3.0,

University of Minnesota, September 2002.

[34] W.J. Knottenbelt, Generalised Markovian analysis of timed

transition systems, Master’s Thesis, University of Cape Town,

Cape Town, South Africa, July 1996.

[35] W.J. Knottenbelt, Parallel Performance Analysis of Large

Markov Models, Ph.D. Thesis, Imperial College, London, United

Kingdom, February 2000.

[36] W.J. Knottenbelt, P.G. Harrison, Distributed disk-based solution

techniques for large Markov models, in: Proceedings of the

Third International Conference on the Numerical Solution of

Markov Chains (NSMC ’99), Zaragoza, Spain, September 1999,

pp. 58–75.

[37] W.J. Knottenbelt, P.G. Harrison, M.A. Mestern, P.S. Kritzinger,

A probabilistic dynamic technique for the distributed generation

of very large state spaces, Performance Evaluation 39 (1–4) (2000)

127–148.

[38] B. Krishnamurthy, An improved min-cut algorithm for partition-

ing VLSI networks, IEEE Trans. Comput. 33 (5) (1984) 438–446.

[39] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to

Parallel Computing: Design and Analysis of Algorithms, Benja-

min/Cummings Publishing, Menlo Park, CA, 1994.

[40] M. Kwiatkowska, R. Mehmood, Out-of-core solutions of large

linear systems of equations arising from stochastic modelling, in:

Proceedings on Process Algebra and Performance Modelling

(PAPM ’02), Copenhagen, July 2002, pp. 135–151.

[41] M. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic

symbolic model checker, in: Lecture Notes in Computer Science,

Vol. 2324: Proceedings of the 12th International Conference on

Modelling, Techniques and Tools (TOOLS 2002), London, UK,

Springer, Berlin, 2002, pp. 200–204.

[42] B. Melamed, M. Yadin, Randomization procedures in the

computation of cumulative-time distributions over discrete state

Markov processes, Oper. Res. 32 (4) (1984) 926–944.

[43] A.S. Miner, Computing respone time distributions using stochas-

tic Petri nets and matrix diagrams, in: Proceedings of the 10th

International Workshop on Petri Nets and Performance

Models (PNPM 2003), Urbana-Champaign, IL, September

2003, pp. 10–19.

[44] J.K. Muppala, K.S. Trivedi, Numerical transient analysis of finite

Markovian queueing systems, in: U.N. Bhat, I.V. Basawa (Eds.),

Queueing and Related Models, 1992, pp. 262–284.

[45] A.T. Ogielski, W. Aiello, Sparse matrix computations on parallel

processor arrays, SIAM J. Scient. Comput. 14 (3) (1993) 519–530.

[46] A. Reibman, K.S. Trivedi, Numerical transient analysis of

Markov models, Comput. Operat. Res. 15 (1) (1988) 19–36.

[47] W.J. Stewart, Introduction to the Numerical Solution of Markov

Chains, Princeton University Press, Princeton, NJ, 1994.



ARTICLE IN PRESS
N.J. Dingle et al. / J. Parallel Distrib. Comput. 64 (2004) 908–920920
[48] A. Trifunovic, W.J. Knottenbelt, Towards a parallel algorithm for

multilevel k-way hypergraph partitioning, in: Proceedings of the

Fifth Workshop on Parallel and Distributed Scientific and

Engineering Computing (PDSEC 2004) Santa Fe, NM, April 2004.

Nicholas Dingle obtained an M.Sc. degree with Distinction in

Computing Science from Imperial College London in 2001 and is

currently completing his Ph.D. thesis at the same institution. His

research centres around techniques for the performance analysis of

models of very large concurrent systems, with a particular focus on the

use of parallel and distributed approaches for extracting response time

densities and quantiles.

Peter Harrison is currently a Professor of Computing Science at

Imperial College London, where he became a lecturer in 1983. He

graduated at Christ’s College Cambridge as a Wrangler in Mathe-

matics in 1972 and went on to gain a Distinction in Part III of the

Mathematical Tripos in 1979, winning the Mayhew prize for Applied

Mathematics. He obtained his Ph.D. in Computing Science at Imperial
College London in 1979. He has researched into analytical perfor-

mance modelling techniques and algebraic program transformation for

some twenty years, visiting IBM Research Centers for two summers in

the last decade. He has written two books, had over 150 research

papers published and held a series of both national and international

research grants. The results of his research have been exploited

extensively in industry, forming an integral part of commercial

products such as Metron’s Athene Client-Server capacity planning

tool.

William Knottenbelt completed his B.Sc. (Hons) and M.Sc. degrees in

Computer Science at the University of Cape Town in South Africa

before moving to London in 1996. He obtained his Ph.D. in

Computing from Imperial College London in February 2000, and

was subsequently appointed as a Lecturer in the Department of

Computing in October 2000. His research interests include stochastic

performance modelling and parallel computing. He has also done

consultancy work for a number of companies including ICL Fujitsu,

LogicaCMG and iTouch PLC.


	Uniformization and hypergraph partitioning for the distributed computation of response time densities in very large Markov mode
	Introduction
	Response time densities via uniformization
	First passage times
	Uniformization

	Partitioning sparse matrices for parallel processing
	Graph partitioning
	Hypergraph partitioning

	Parallel algorithm and tool implementation
	Numerical results
	The FMS generalized stochastic Petri net model
	A tree-like queueing network
	Evaluation

	Conclusion
	Acknowledgements
	Analytical cycle time calculation in the tree-like queueing network
	References


