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ABSTRACT

Genealised Stothasic Peri nets(GSPNs)have bean widely used
to analyse the performane of hardware andsoftware systems.This
pape presentsnovel techniquefor thenumericd determinion of
resporse time densitiesn GSPNmockels Thetechniqueplaces no
structuralregrictions on the mocdkls that can be andysed, andal-
lows for the high-level specificationof multiple sourceand destna-
tion markings,jncluding any combindion of tangibleand vanishing
markings. The techniqueis implementedusing a scalalde parallé
Laplacetransform inverter thatemploys amodfied Laguareinver
sion techrique. We preseninumericéd results including a study of
thefull distribution of endto-erd responseime in a GSPN modé
of the Courier communication proto®l| software. The numeric
results arevalidatel agginst simulation.

1. INTRODUCTION

Genealised StochasticPetrinets(GSPNs)3] area popular graphi-

calmodelling formalismfor investigatingthe quditative and quan-

titative propertiesof complex corcurrentsysems Hardware and
software sydenstha have beenmodella succasfully with GSPNs
includecommunia@tion protols, parallel programsmultiproces-
sor menory cadesanddistributeddatabaes [15, 16].

The main objedive in the quariitative aralyss of GSPANs to date
hasbee to obtainthe equilibrium probability distribution of their
underlyingmarkings,particularly for modds with large reachabil-
ity graphs(e.g [6, 7, 5, 14]). Fromthis, standhrd resource-bsed
measuresan be derived, for example mean buffer ocaupandes,
systemavailablility and throughput.Expectedvaluesof variousso-
journ times (correspondig to the meantime taken for the netto
evolve from a givensource marking to a givendestination marking
in any numbe of trangtion firings) can alsobeobtainal in thisway.

The focus of the preent study however, is on the harderprob-
lem of calaulatingthefull distribution of suchresporse times. We
take asinputa GSPN model, atime rangeanda high-level descrip-
tion of the source and destinationmarkings,and give asoutput a
graph of the correspondig resporse time density We achieve this

in two mainsteps. First, we corstruct a systemof linear equdions
which can be solved to yield the value of the Laplace transbrm

of the response time densityfor arbitrary valuesof the (complex)

transformparameters. By workingin the Laplace domainwe are
able to exploit the propaty tha the Laplace transfom of theden

sity of a sum of indepexdentrandbm variables is the produd of

the Laplace transbrms of the densities of the individud random
variables.We thenderive the responseime densty curve from its

Laplacetransform by using a scalalle pardlel numeical transbrm

inverterbasedn a modfied Laguare method.

Therest of this paperis organisedasfollows. Sedion 2 introduces
definitions of relevant terminology Section3 derivesthe linear
sysemswhicharesolvedto yield the Laplacetransform of theden
sity of theresponse time between the spedfied sourceanddestina-
tion markings.Both single andmulti ple sourcemarkings are con
sidered the latter problem involving the assignmentof appropri-
ate weightsto each source markingto determinean uncmnditional
Laplacetransform. Inversionof the Laplacetransform to obtain the
responseime dersity is conddered in Section 4. Section5 details
acompletedistributedrespone time analysispipdine, the heart of
which is a highly scalalde distributedtransforminverter Section
6 preents results for two casestudies,namelya small contrived
GSMN anda comple«c GSPNmocel of a communicdion protocol.
Section 7 concludes and condders futurework.

2. PRELIMIN ARIES

GenerdisedStochatic Petrinetsareextensons of Plae-Trangtion
nets, which areuntimedPetrinetswith no transiton firing delays.
A PlaceTransitionnet is formally defined as [4]:

DEFINITION 1.
A Place-Trandtion netis a 5-tuplePN = (P, 7,1, 1", Mo)

wheee:

e P ={p1,...,pn} isafiniteandnonemptysetof places.

o T' = {t1,...,tm} is a finite and non-enpty set of transi-
tions

e PNT =1

e [7,I" : P x T — INy arethebadkward andforward inci-
derce fundions, respectivdy. If I~ (p,t) > 0, anarc leads
fromplacep to transtion ¢, andif I (p,t) > 0 thenan arc
leads fromtransitiont to placep.

e My : P — INg is theinitial marking definingthe initial
nunber of tokenson every place



A making is a vedor of integersrepresentinghe numberof to-
kenson each place in a Petrinet. The setof all makings tha
arereadablefrom the initial marking M, is known asthe state
space or reachability set of the Pdri net,andis denotedby R(Mp).
The connectionsbetween markingsin thereachalility setform the
reachakility graph Formally, if thefiring of atrarsition thatis en-
abledin marking M; resultsin marking M}, thenthe reachability
graph containsa dirededarcfrom marking M; to marking M/;.

GSPNS4[3] aretimed extengons of Place-Transitionnetswith two

typesof trangtions: immaliate trarsitions and timed transitions.
Onceenable, immedate transitionsfire in zero time, while timed
trangtionsfire after an exponentially distributed firing dday. Firing

of immedide transitionsthereforehas priority over the firing of

timedtransitions

Theformal definitionof a GSPNis asfollows [4]:

DEFINITION 2.
AGSHANisa4-tupleGSPN = (PN, T1,T>, W) where:

e PN = (P, T,1I,I", Myp)istheundelying Place-TFansition
net.

e T C T istheset of timedtransitions 71 # 0,

e 15 C T denotesthesetof immediatetransitions, 77 N1: =
0, T=T,UT>

o W = (wi,...,wr)isanarray whose entryw; is either

— a (possibly marking dependat) rate € IR™ of an ex-
ponential distribution spedfying thefiring delay, when
transtion t; is atimedtranstion, i.e. t; € T
or

— a (possbly markingdependat) weight € IR* spedfy-
ing the relativefiring frequemry, when transition ¢; is
animmediatetransition, i.e. t; € Ts.

Thereadability graph of a GSPNcontans two types of markings.
A vanishingmarking is onein which an immediate transitionis
enalbed. The sojourn time in suchmarkingsis zero. A tangible
markingis onewhich enables only timedtransitions.The sojoumn
time in such markingsis exponentidly distributed. We denotethe
set of readablevarishing markingsby V andthe set of readable
tangiblemarkingsby 7.

We define p;; to betheprobability tha j is thenext markingentered
aftermarkings, p;l to be themean sojourn time in marking i and
fori € T, qi; = wipij; 1.€. @5 is theinstantaneots transitionrate
into marking;j from markings.

3. RESPONSETIME EQUATIONS FOR GSPNS

Thefirst passge time from a single source marking 4 into a non-
emptysetof destination markingsj is:

T;;=inf{t >0: M(t) € j | M(0) =i}
whereM (t) isthemarkingof the Petri netattime ¢.

Let f,;(t) bethe probaility densityfunctionof 7;; and L,;(s) be
its Laplacetransformi.e.

Lis(s) = /0 T ettt

for comgex s with red partRe(s) > 0. We computethis Laplace
transformusng the first-gep analysis approachdesribed in the
next section, andinvertit numerically usingthe modfied Laguere
methoddescribed in Sedion 4.

3.1 Derivation for a single sourcemarking

The Laplacetransbrm of the (exponential) sojourn time densty
function of tangible marking i is u;/(s + p;). For a vanshing
marking, sojourntime is zero with probaility 1, giving a corre-
spondinglLaplacetransbrmof 1 for all s.

Since state holdingtimesareindeendat and the Markov propety
hdds at transtion firing instarts, afirst step andysis gives:

2okgi (sqﬁ—ﬁl) Liz(8) + 2Xkey (s?ﬁﬁJ ifieT
L'L;(s) =

ZkéfpikLk;(S) + Zke;Pik ifiey

Forexamplewhenj = {1},V = {2} andT = {1,3,4,5,...,n}
theabove equationscanbewritten as

S+ pr —qiz2 —qin L1j‘(5) 0
0 1 s —Don Lg}(s) P21
0 —{32 —q3n Lyz(s) | — | as
0 ; . : :
0 —qn2 5+ fin L,;(s) Gn1

@

In practice, we have foundthatnumericé problemscan arisewhen
solving these equationsif thereis a large differencein the magni-

tude of s relative to that of the rates ;. This is dueto the limita-

tions of finite predsion floating point arithmetic. However, poten

tial problanscan easilybe dete¢ed beforesolvingtheseequaions
and canoftenbereslvedby scding all transitionratesin themodel
by a condant factor. In pathologicd caseswhere the fastest and
slowest ratesin the modé differ by several ordersof magnitude,
the fager ratescantypically be replacedby immedide transitions
to agoodapproximation

3.2 Multi ple source markings
Whentherearemultiple source markings,denotedby the vedor 7,

the Laplace trandorm of the responsedime density at equilibrium
is:

Lyz(s) = ) arly(s)

kei

wherethe weight a, is the equilibrium probability thatthe mark-
ingis k € i at the startinginstant of the passage. This instantis
themomern of entryinto marking &; thus «y, is proportionato the
equilibrium probability of themarkingk in theunderlyingembed
ded (discrete-time) Markov chain (EMC) definedby the marking
of the GSPNat firing instarts. This EMC is chaacterisedby the
one-dep transtion probability matrix P with elementsp;; defined
in Section 2. Therefore,

T
> jei T

wherethevedor 7 is ary non-zerosolutionto 7 = 7 P.

O =



4. THELAGUERRENUMERICAL LAPLACE
TRANSFORM INVERSION TECHNIQUE

In [10], the Laguerremethodof [1] (sometims als referredto
asWeels' method)is modifiedto derive anefficient algaithm for
Laplacetransforminverson, which is particdarly suitedto a par
allel implementation. This methodrepresents function f(¢) in
termsof its Laplace transbrm L(s), asthesum

ft) = Z qnln(1)

n=0

where:

e the ¢, arethe Laguerre coeficients given by the Caucly
contourintegrd

-

=50

/ Qz)/="dz @
Cr

In Eq.2 Q(z) is theLaguerre generating functian givenby

- n_ 1+z
and C.- is acircle aboutthe origin of radusr (0 < r < 1)
suchthat Q(z) isandytic in {z : |z| < r}.

e thel,(t) aretheLaguerre fundions which canbecalailated
in anumerially stable way from thereaurson:

In(t) = (%) I (t) — <”; 1) In_s()

startingwith lo(t) = e~*/% andl: (t) = (1 —t)lo(t), see[1].

Since |1, (t)| < 1 for all n, the corvergene of the Laguere se-
ries depeus on the deay rate of ¢, asn — oo whichis in tum
determiné by the smootmessof f andits derivatives[1]. Slow
cornvergene of the ¢,, coeflicients canoftenbeimprovedby expo-
nentialdampeling and scaling usingtwo real parameterso and b
[17]. Heretheinversionalgorithmis apgdied to thefunction

Ffan(t) = e~ 7"f(t/b)

with f(¢) beingrecovered as:

f(t) = e fou(b).

If no suitablescding parameterscan befound,otherinverson meth-
ods such as the Euler method[2] may be usedinstead. While this
is a very robust methodtha canhandlediscontinuousfunctions it
doesinvolve substantiallymore computation— of the orderof 50
distinct evaluationsof L(s) for ead ¢ pointarerequired.

Traditionally, ead ¢,, coeficient is computed from Eq. 2 by nu-
mericalintegration,usingthe trapezoidd rule with 2n trapesids.
However, if we apply scalingto ensurethat ¢,, has decaedto (al-
mosg) zero by term po (say po = 200), we can insteadmalke use
of a congant numbe of 2p, trapemdidswhencalalatingeachg,,.
This allows us to cdculate each ¢,, with high accuracy while si-
multaneudy providing the opportunityto cache andre-use values
of Q(z). Since g, doesnot depend on ¢, ard each evaludion of
Q(z) involves asingle evaluation of L(s), we obtain the response
time dersity at an arbitrary numbe of ¢-values at the fixed cost
of solving just 2po linear sygems (of the form givenin Eq. 1).
Moredetals of thisapproab, including anagorithmfor determin-
ing suitable scalingparaméers canbefoundin [10].

5. RESPONSE TIME ANALYSER TOOL

We have implementeda resporse time analysispipelinefor GSPN
models as shavn in Fig. 1. Modds are specifiel in an enharced
form of the DNAmacaMarkov Chan Analyserinterface language
[12, 13]. AppendixA contairs an example specification for the
simple GSPNmodd discussd in the resultssection. From the
high-level model, a state spa@ generatorproduces the reachabil-
ity graph,along with alist of the sourceanddestination markings
tha matd their respetive high-level descriptions A steadystate
solver realsthereachdility graphard solves the set of spare lin-
ear equationscorrespondingo the EMC to compute appropriate
weightsfor the source markings as described in Secion 3.2.

Controlis thenpassedto thedistributedL aplacetransbrm inverter
which implementsthe masterslave model shavn in Fig. 1. The
inverteris written in C++ and uses the MessagePassing Interface
(MPI) [9] standardso it is portable to a wide variety of parallel
computersandworkdation clusters

Initially, the master simply runs through our modified Laguere
Laplace transform inversionalgorithm of Sedion 4 andnotesthe
distinctvalues of s atwhich L(s) will nesdto be evaluaged. Those
valuesof s for whichthereisno value of L(s) alreadystored in the
disk cacheareaddedto aglobd work queue.

At start-up, slave proces®rsreadinto memorythereachability grgph
as well as a list of the sourceand destinationmarkingsand the
weightsto apply to thedistribution for each sourcemarking. Each
slave processor then applies for an s-value from the globd work
gueue. The slave calalatesthe correspondingzalue of L(s) by
solvingasetof sparg linear equaions (of the form given in Eq. 1)
usingan appropriate iterative numerical methal; currently Gawss-
Sddel, SOR with dynamic parameter adjusment and Conjugate
Gradient Squared CGS) are supported Note that, for eachdiffer-
ent valueof s, it is only neesary for a slave processorto modfy
the diagoral elementsof its linear systemsoset-upis very rapid.

Slave procesersreturncompuedvaluesof L(s) tothemaster The
master storesthe returned valuein memoryand disk cachesand
immediatelyissues morework to thedavesif ary is available. The
disk cachestoresvaluesof L(s) usingboththe value of s and an
MD5 chedksum of the origind high-level modelfile (asprovided
by the UNIX utility md5sun) asthe key. This mechaiism avoids
redundantwork by ensurhg thatno slave will have to recompue a
valueof L(s) tha hasbeenpreviously compuedfor agiven model
at ary time in the past. It alo providesa convenientdistributed
checlpointing mechanism sotha parallé jobsthatare interrupted
canberapidly restartedvithoutlosingwork areadydone.

This masterslave architectue is highly scaldle, becausethe sin-
gle global work queuewith multiple serversensuresa goodload
baance and very high utilization of slave processors In addition,
there is no inter-slave communicdion and the amouwnt of maser-
slave communicaion requiredis low andindepedentof the num-
ber of markings.

When all values of L(s) have been computed, the masterruns
throudh the Laplace trarsform inversion algorithm again, thistime

peformingall calculgionsandobtainingary valuesof L(s) needed
from the memory cache. Theresultingpointson theresponséime

dendty curve are written to a disk file, and displayedusng the

GNUplot graph plotting utility .
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6. CASE STUDIES

6.1 Simple GSPN modd

Fig. 2 shows a small contrived GSPN modéd ard its corresponding
reachaility graph. We illustrate our technigie on this GSPN by
computingthe responseime dersity for the time taken to reach
markingswhereM (p2) > 0 from markingswhere M (p1) > 0.

Apperdix A showstheenhaacedDNAmaca input specifiationfile

for thisGSPN.The\ nodel clausedesribesthehigh-level GSPN
structurewhile the\ passage clause providesa high-level speci-

fication of the sourceand destination markingsard the time range
over which the performance analystwishesthe resulting response
time densty to be plotted. Of course, theinput file could be con-
structed auomaticdly by a Petri nettool so that usersnea only

provide the basicinformationgivenin the\ passage clause.

In this example there are three sourcemarkings,two of which

arevanishingand one of which is targible. As discusedin Sec-

tion 3.2, the Laplace trandorms of the passge time from these
sourcemarkings into the destination markings needto beweighted
acording to thenormalisedsteady stateprobailities of the source
markingsin the GSPNs EMC. Hence for sourcemarkings M; =

(1,0,2,0,0), M3 = (1,0,1,1,0) andMz = (1,0,0,2,0),

Li3(s) = arLy3(s) + asLyz(s) + asLg;(s)

wherei = {1,3,8},7 = {2,4,6}, a1 = 0.22952, a3 = 0.43660
andag = 0.33388 (to 5 s.f.).

Fig. 3 shows the resultingnumerical responsdime dersity. Also
shown is the responsdime dendty produced by a discrete-event
simulator. Thereis excellentagreenentbetweenthenumericdand
simulated densties.

For thissmadl example,asingleslave processor(aPCwith a1l 4GHz
Athlon proeessor and 256MB RAM) requiredjust 18 semndsto

calaulate the 1600 points plotted on the numeric resporse time

density No scalingwas requiredandwe setp, = 200, requiring

the solution of 402 setsof linearequaions (2 of which wereneces-
sary to deerminethatno scaling wasrequred, with the remaining
400usedto computethe g, coefficients).

6.2 Courier Protocol Sotware

We now apply our technigueto detemine an end-to-endesponse

time densityin a substantiated-life modd. The GSPNshavn in

Fig. 4 (originally presentedin [18]) mocels the ISO Application

Sesion and Transportlayers of the Courier sliding-windov com-

municaion protoml. Data flows from a sender (p1 to p26) to a
receiver (p27 to p46) via a network. The sende's trangport layer

fragmentsoutgoingdatapaclkets; this is modéled astwo pathsbe-

tween p13 andp35. Thepah viat8 cariiesall fragnentsbeforethe
lag onethroughthe network to p33. Acknowledgementdor these

fragmentsare sentbad to the sender(as signalledby thearrival of

atoken on p20), but no datais ddiveredto the higherlayersonthe
receiverside. Thepathvia t9 cariesthe last fragmentof eachmes-
sage block. Acknowledgemaetsfor thesefragmentsaregenerated
anda datatokenis deliveredto higher receiver layersvia t27.

Theaveragenumberof datapackets sentis determinedby theratio
of the weights on the immediatetranstions ¢8 and ¢9. This ratio,
known asthe fragmenation ratio, is givenby g1 : ¢2 (whereql
andq?2 aretheweightsassocidedwith transitionst8 andt9 respec-
tively). This numberof datapackets is geometricdly distributed

with parameterql/(q1 + ¢2). In our casestudy, we use afragmen
tation ratio of one

The transportlayer is further characteized by two important pa
rameers thesliding window size n (p14) and the transportspace
m (p17). For our example we set m = 1 andn = 1.Thetranstion
ratesr1,r2,...,r10 usedin theorigind modd [18] were obtained
by bendmarkinga working implementation of the protool. We
usedrates with the samerelative magnitudes, anddivided themall
by a factor of 5000to avoid the numeical problemsdiscussedin

Section3.1.

We wished to investigate the end-to-end responsdime from the
initiation of atransportiayer transmisionto the arrival of the cor-
respondiig ackrowledgemen packet. Congguertly we chose as
sourcemarkings thosemarkingsfor which M (p11) > 0, and as
destination markingsthosefor which M (p29) > 0. Thisis apgpro-
priatefor our slidingwindow sizeof n = 1 sincethere canbeonly
one outstandiig unaknowledgedpadet. If wewishedto calalate
the responsdime for sliding window sizesgreater than one, we
would need to augmat the state vector usedto describemarkings
to track the progress of a particular token throughthe Petrinet.

Thereachability graphcontans 29 010 markings, 11 700 of which
are tangible and 17 310 of which arevanishing. There are7 320
sourcemarkingsard 1 680 destinatiormarkings.Fig. 5 shows the
resultingnumerical responséime dendty. Themedian(50%quan
tile) and 95% quantile transmision times are also given. Once
again the numerical reallts arecomparedagainst a simulation, and
agreemat is excdlent.

For this example, the Laguerre scding algorithm [10] selected a
dampenirg paraméer of & = 0.008 with po = 200. A single
slave (a 1.4GHz Athlon processorwith 256MIB RAM) required24
minutes 15 seconls to calaulate the 200 points plotted on the nu-
merical responsgime densitygraph This required the solutionof
a total of 410 setsof linea equdions, 10 of which were nealed
to determines and the remainde used to conputethe ¢, coeffi-
cients. Using 8 slave PCs with the sameconfigurationdecreased
the required time to just 3 minutes23 secong (correspording to
an efficiengy of 96%). 16 slave PCsrequired2 minutesl? secads
(72% efficiengy). The<e resultsreflect the excdlent scdability of
our approad.

7. CONCLUSION

We have presentedin automatel numericé techniqueto compute
responsdime dendtiesin unrestrcted GeneralisedStochatic Peri

net modds. A complée responsetime analysispipelinehas been
implemental, including a high-level specification languageand a
distributed, scaldle and checlkpointedLaplace transforminverter

based on our own modfied Laguerremethod. We have applied the
pipelineto two casestudiesjncludingarealistic modé of commu

nication protoml| software,andobserved excellert agreenentwith

simulation.

Thesolutionof linearsystemson slave processas is currently per-
formedin-core,which would limit the solutioncgpacity of individ-
ud slave proces®rs to arourd 3 million stateson a 256MB ma
chine. We could easily increase this cgpacity to around20 million
statesby implementinga disk-basedsolver suchasthat described
in [7]. Furthe, groupsof slave proces®rscould be usedto jointly
solve very large sydems of around 100 million states or more by
implementinga pardlel disk-based solution method(e.g. [14]).
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It may betha vanishingstatesconstitutea large proportionof the
reachaility graph so that thar elimination would be beneficid.
Thisis routinein analysesof equilibrium marking probability dis-
tributions [4]. However, in our context, a brute-forceapplication
of traditiond on-thefly eliminaion techniques would destroy our
ability to specify vanishing statesassourceanddestinatiormark-
ings (asin the examge of Sedion 6.1). Furthey while it hasbeen
proved that elimination techniques presrve steady-date probabil-

\ nodel {

\ const ant { RR} { 2. 0}
\ const ant { W} {5. 0}

\'stat evector{

\type{short}{ p1,

p2, p3, p4, p5}

ities, it need to be establishedwhat furthe transformationsare \i ”ilt i_a|1{ 32 p2=opd=p5=o0
necesaryfor reponse time dendties. } pL =14 ps =2 pa=p2=p !
Not all responséimesof interest aresimplepassagetimes between \transition{t1}{
markings;they may berelatal to the progresf a particula token, \condition{pl > 0}
for example.Such casesrequireaugnentationof the statevectorto \action{ ) )
provide amears for trackingthesetokens ) next->pl = pl - 1; next->p2 = p2 + 1;
Finally, our peformance analysispipeline could be added as a \rate{RR}
moduleto extensble Petrinet tools, suchasthe Petri net Kernd
[11] and Medusa [8]. In fact, a modulewhich autonatically gen- \transition{t2}{
erateghe enhancad model specification shown in Apperdix A has t CO?_dl t l{ on{p2 > 0}
; action
alreadybeenwritten for Medusa. next->pl = pl + 1. next->p2 = p2 - 1:
}
8. ACKNOWLEDG EMENTS \rate{3. 0*RR}
Thanksto Jereny Bradley for his helpful commentson an earlier
draft of this menuscript. \transition{t3}{
\condition{pl > 0 & p4 > 0}
\action{
APPENDIX next->pl = pl - 1; next->p3 = p3 + 1;
A. ENHANCED DNAMA CA SPECIFI CATION next->p4 = p4 - 1, next->p5 = pS + 1;

Theinputspedficationfor the GSPNof Fig. 2 is given below.
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\transition{t4}{
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\action{
next->pl = pl + 1; next->p5
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\ passage{

\'source{pl > 0}

\ destination{p2 > 0}
\ met hod{ | aguerr e}

\'ti merange{0, 16, 0. 01}
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