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ABSTRACT
Generalised Stochastic Petri nets(GSPNs)have been widely used
to analysetheperformanceof hardwareandsoftwaresystems.This
paper presentsanovel techniquefor thenumerical determination of
response time densitiesin GSPNmodels. Thetechniqueplaces no
structuralrestrictions on the models that canbe analysed, andal-
lowsfor thehigh-level specificationof multiplesourceand destina-
tionmarkings,includingany combinationof tangibleandvanishing
markings.The techniqueis implementedusing a scalable parallel
Laplacetransform inverter thatemploysamodified Laguerre inver-
sion technique. We presentnumerical results, includinga study of
thefull distribution of end-to-end responsetime in a GSPN model
of the Couriercommunicationprotocol software. The numerical
results arevalidated against simulation.

1. INTRODUCTION
Generalised StochasticPetrinets(GSPNs)[3] areapopulargraphi-
calmodelling formalismfor investigatingthequalitativeandquan-
titative propertiesof complex concurrentsystems. Hardware and
softwaresystemsthat havebeenmodelledsuccessfully with GSPNs
includecommunicationprotocols, parallel programs,multiproces-
sor memory cachesanddistributeddatabases [15, 16].

The main objective in the quantitative analysis of GSPNs to date
hasbeen to obtaintheequilibrium probability distribution of their
underlyingmarkings,particularly for models with largereachabil-
ity graphs(e.g. [6, 7, 5, 14]). Fromthis, standard resource-based
measurescan be derived, for examplemeanbuffer occupancies,
systemavailablility and throughput.Expectedvaluesof variousso-
journ times(corresponding to the meantime taken for the net to
evolve from agivensourcemarking to agivendestination marking
in any number of transition firings)can alsobeobtained in thisway.

The focus of the present study, however, is on the harderprob-
lem of calculatingthefull distribution of suchresponse times.We
takeasinputaGSPNmodel,a timerangeandahigh-level descrip-
tion of the source anddestinationmarkings,and give asoutput a
graph of thecorresponding response time density. We achieve this

in two mainsteps. First, we construct a systemof linear equations
which can be solved to yield the value of the Laplace transform
of the response time densityfor arbitraryvaluesof the (complex)
transformparameter � . By working in theLaplacedomainwe are
able to exploit theproperty that theLaplace transform of theden-
sity of a sum of independentrandom variables is the product of
the Laplace transforms of the densities of the individual random
variables.We thenderive theresponsetime density curve from its
Laplacetransform by using ascalable parallel numerical transform
inverterbasedon amodified Laguerremethod.

Therest of this paperis organisedasfollows. Section 2 introduces
definitions of relevant terminology. Section3 derives the linear
systemswhicharesolvedto yield theLaplacetransform of theden-
sity of theresponse time between thespecified sourceanddestina-
tion markings.Both single andmultiple sourcemarkingsare con-
sidered, the latter problem involving the assignmentof appropri-
ate weightsto each source markingto determineanunconditional
Laplacetransform. Inversionof theLaplacetransform to obtain the
responsetime density is considered in Section 4. Section5 details
a completedistributedresponse time analysispipeline, theheart of
which is a highly scalable distributedtransforminverter. Section
6 presents results for two casestudies,namelya small contrived
GSPN anda complex GSPNmodel of a communication protocol.
Section7 concludesandconsiders futurework.

2. PRELI MIN ARI ES
GeneralisedStochastic Petrinetsareextensionsof Place-Transition
nets, which areuntimedPetrinetswith no transition firing delays.
A Place-Transitionnet is formally definedas [4]:

DEFINITION 1.
A Place-Transition netis a 5-tuple�����	�
������������������������
where:

� ��� ���! �#"#"#"$� �&% � is a finiteandnon-emptysetof places.

� '� ��(  �#"#"#"#� (*) � is a finite and non-empty set of transi-
tions.

� �,+-.�0/ .
� � � ��� �21 �4357698 : � are thebackward andforward inci-

dence functions, respectively. If �;�<� � � ( �>=	? , an arc leads
fromplace

�
to transition

(
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leads fromtransition
(
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� � �01 �B6C8 : � is the initial marking definingthe initial
numberof tokensonevery place.



A marking is a vector of integersrepresentingthe numberof to-
kenson each place in a Petri net. The set of all markings that
are reachablefrom the initial marking ��� is known as the state
spaceor reachability set of thePetri net,andis denotedby DE�
���F� .
Theconnectionsbetween markingsin thereachabil ity setform the
reachability graph. Formally, if thefiring of a transition thatis en-
abledin marking ��G resultsin marking �IH , thenthe reachability
graphcontainsadirectedarcfrommarking ��G to marking�IH .
GSPNs[3] aretimedextensions of Place-Transitionnetswith two
typesof transitions: immediate transitions and timed transitions.
Onceenabled, immediate transitionsfire in zero time, while timed
transitionsfireafter an exponentially distributed firing delay. Firing
of immediate transitionsthereforehas priority over the firing of
timedtransitions.

Theformal definitionof aGSPNis asfollows [4]:

DEFINITION 2.
A GSPN is a 4-tuple J�K&�����	�
���L��  ���M#�#N.� where:

� �����	�
����������O���P��������� is theunderlyingPlace-Transition
net.

�   RQ  is theset of timedtransitions,   TS�0/ ,
� �MVUW denotesthesetof immediatetransitions,   +-�M@�
/ , .�2  OX �M

� NY�	�
Z  �#"#"#"#��Z\[ ]�[^� is anarraywhoseentry Z�G is either

– a (possibly marking dependent) rate _,8 `�� of an ex-
ponential distribution specifying thefiring delay, when
transition

( G is a timedtransition, i.e.
( GO_a  

or

– a (possibly markingdependent) weight _b8 `�� specify-
ing the relativefiring frequency, when transition

( G is
an immediatetransition, i.e.

( G<_a�M .
Thereachability graph of a GSPNcontains two types of markings.
A vanishingmarking is one in which an immediate transitionis
enabled. The sojourn time in suchmarkingsis zero. A tangible
markingis onewhich enables only timedtransitions.Thesojourn
time in such markingsis exponentially distributed. We denotethe
set of reachablevanishing markingsby c andtheset of reachable
tangiblemarkingsby d .

Wedefine
� G^H tobetheprobability that e is thenext markingentered

aftermarkingf , g �
 
G to be themean sojourn time in marking f and,

for f�_hd , ijGkH��lg�G � G^H ; i.e. ijGkH is theinstantaneous transitionrate
into markinge from markingf .
3. RESPONSETI ME EQUATIONS FOR GSPNS
The first passage time from a singlesource marking f into a non-
emptysetof destination markingsme is:

 GonH �2p^qsr ��( =b? 1 �t� ( ��_ me-u$�v�w?����2f$�
where�t� ( � is themarkingof thePetri netat time

(
.

Let x GonH � ( � betheprobability densityfunctionof  GonH and y G
nH �z��� be
its Laplacetransform,i.e.

y GonH �{�����
|
�
} �!~�� x GonH � ( �
� (

for complex � with real partRe�z���@=0? . We computethis Laplace
transformusing the first-step analysisapproachdescribed in the
next section,andinvert it numerically usingthemodified Laguerre
methoddescribed in Section 4.

3.1 Derivation for a singlesourcemarking
The Laplacetransform of the (exponential) sojourn time density
function of tangible marking f is g�G����z���lg�G�� . For a vanishing
marking, sojourntime is zero with probability 1, giving a corre-
spondingLaplacetransformof � for all � .
Sincestateholdingtimesareindependent andtheMarkov property
holdsat transition firing instants,afirst step analysis gives:

y GonH �{�����
���� nH ���w�~��!� � y � nH �z���!� � � nH ���
�~��!� � if fR_ad
���� nH � G � y � nH �z���!� � � nH � G � if fR_ac

For example,when me\� � �j� , c�� ��� � anddt� � ���$�j���P�$�j�#"#"#"#�����
theaboveequationscanbewrittenas:

����g  �� i  M��#�#� � i  �%
? � �#�#� � � M %
? � i���M��#�#� � i�� %
? ...

. . .
...

? � i % M��#�#������g %

y  nH �z���y M�nH �z���y �*nH �z���
...

y % nH �{���
�

?� M  
i��  

...
i %� 

(1)

In practice, wehave foundthatnumerical problemscan arisewhen
solving these equationsif thereis a largedifferencein themagni-
tude of � relative to thatof the rates g�G . This is dueto the limita-
tionsof finite precision floatingpoint arithmetic. However, poten-
tial problemscan easilybe detectedbeforesolvingtheseequations
andcanoftenberesolvedby scaling all transitionratesin themodel
by a constant factor. In pathological caseswhere the fastest and
slowest ratesin the model differ by several ordersof magnitude,
the faster ratescantypically be replacedby immediate transitions
to agoodapproximation.

3.2 Multi ple sourcemark ings
Whentherearemultiple source markings,denotedby thevector mf ,
the Laplace transform of the responsetime densityat equilibrium
is:

y nGFnH �z����� � � nG
  � y � nH �z���

wheretheweight   � is theequilibriumprobability that themark-
ing is ¡W_ mf at the startinginstant of the passage.This instantis
themoment of entryinto marking ¡ ; thus   � is proportional to the
equilibrium probability of themarking ¡ in theunderlyingembed-
ded (discrete-time)Markov chain(EMC) definedby the marking
of the GSPNat firing instants. This EMC is characterisedby the
one-step transition probability matrix � with elements

� G^H defined
in Section2. Therefore,

  � �
¢£ �
H � n G ¢£ H

wherethevector
¢£ is any non-zerosolutionto

¢£ � ¢£ � .



4. THE LAGUERRE NUMERICAL LAPLA CE
TRANSFORM INVERSI ON TECHNIQUE

In [10], the Laguerremethodof [1] (sometimes also referredto
asWeeks’ method) is modifiedto derive anefficient algorithm for
Laplacetransforminversion, which is particularly suitedto a par-
allel implementation. This methodrepresentsa function x&� ( � in
termsof its Laplace transform y��z��� , asthesum

x&� ( ���
|
%�¤ � i

%�¥�% � ( �
where:

� the i % are the Laguerre coefficients, given by the Cauchy
contourintegral

i % � �� £ f ¦s§
¨ �w©��z��©

%
�
 
��© (2)

In Eq.2
¨ �w©�� is theLaguerregenerating function givenby

¨ �
©����
|
%�¤ � i

% ©
%
�	�{� � ©��
y �@��©� �{� � ©�� (3)

and ª¬« is a circle about theorigin of radius  (?W®	L®v� )
suchthat

¨ �
©�� is analytic in
� © 1 u ©Pus®W&� .

� the
¥�% � ( � aretheLaguerre functions, which canbecalculated

in anumerically stableway from therecursion:

¥�% � ( ���
� � � � � (

�
¥�%
�
 � ( � � � � �

�
¥�%
� M#�
( �

startingwith
¥ �F� ( ��� } �&� � M and

¥� � ( ���	�{� � ( � ¥ ��� ( � , see[1].

Since u ¥�% � ( �{uV¯°� for all � , the convergence of the Laguerre se-
ries depends on the decay rate of i % as �±6�² which is in turn
determined by the smoothnessof x and its derivatives [1]. Slow
convergence of the i % coefficients canoftenbeimprovedby expo-
nentialdampening andscaling usingtwo real parameters³ and ´
[17]. Heretheinversionalgorithmis applied to thefunction

xFµ·¶ ¸z� ( ��� } � µ � x�� ( ��´j�
with x&� ( � beingrecovered as:

x�� ( ��� } µ¹¸ � xFµ·¶ ¸z�
´ ( �z"
If nosuitablescaling parameterscanbefound,otherinversionmeth-
ods, such as theEuler method[2] maybeusedinstead. While this
is a very robust methodthat canhandlediscontinuousfunctions, it
doesinvolve substantiallymorecomputation– of the orderof 50
distinct evaluationsof y��{��� for each

(
pointarerequired.

Traditionally, each i % coefficient is computed from Eq. 2 by nu-
mericalintegration,usingthe trapezoidal rule with

� � trapezoids.
However, if we apply scalingto ensurethat i % has decayedto (al-
most) zero by term

� � (say
� �º� � ?¹? ), we can insteadmake use

of a constant number of
�*� � trapezoidswhencalculatingeach i % .

This allows us to calculateeach i % with high accuracy while si-
multaneously providing theopportunityto cacheandre-use values
of
¨ �
©&� . Since i % doesnot depend on

(
, and eachevaluation of¨ �w©�� involves a single evaluationof y��z��� , we obtain theresponse

time density at an arbitrary number of
(
-values at the fixed cost

of solving just
�*� � linear systems (of the form given in Eq. 1).

Moredetails of thisapproach, includinganalgorithmfor determin-
ing suitablescalingparameters, canbefoundin [10].

5. RESPONSE TIME ANALYSER TOOL
We have implementeda response time analysispipelinefor GSPN
models, as shown in Fig. 1. Models arespecified in an enhanced
form of theDNAmacaMarkov Chain Analyserinterfacelanguage
[12, 13]. AppendixA contains an examplespecification for the
simple GSPNmodel discussed in the resultssection. From the
high-level model,a state space generatorproduces the reachabil-
ity graph,along with a list of thesourceanddestination markings
that match their respective high-level descriptions. A steady-state
solver readsthereachability graphand solves theset of sparse lin-
ear equationscorrespondingto the EMC to computeappropriate
weightsfor thesourcemarkings, asdescribed in Section 3.2.

Controlis thenpassedto thedistributedLaplacetransform inverter,
which implementsthe master-slave model shown in Fig. 1. The
inverteris written in C++ and uses theMessagePassing Interface
(MPI) [9] standard,so it is portable to a wide variety of parallel
computersandworkstation clusters.

Initially, the master simply runs throughour modified Laguerre
Laplace transform inversionalgorithm of Section 4 andnotesthe
distinctvalues of � at which y��z��� will needto be evaluated.Those
valuesof � for which thereisno valueof y��z��� alreadystored in the
diskcacheareaddedto aglobal work queue.

At start-up,slaveprocessorsreadintomemorythereachabilitygraph
as well as a list of the sourceand destinationmarkingsand the
weightsto apply to thedistribution for each sourcemarking. Each
slave processor thenapplies for an � -value from the global work
queue. The slave calculatesthe correspondingvalue of y��z��� by
solvingasetof sparse linear equations(of the form given in Eq.1)
usinganappropriate iterative numericalmethod; currentlyGauss-
Seidel, SOR with dynamic parameteradjustment and Conjugate
GradientSquared(CGS)are supported.Notethat, for eachdiffer-
ent valueof � , it is only necessary for a slave processor to modify
thediagonal elementsof its linearsystemsoset-upis very rapid.

Slaveprocessorsreturncomputedvaluesof y��z�#� to themaster. The
master storesthe returned value in memoryand disk cachesand
immediatelyissuesmorework to theslavesif any is available. The
disk cachestoresvaluesof y��z��� usingboth the value of � and an
MD5 checksum of the original high-level modelfile (asprovided
by theUNIX utility md5sum) asthekey. This mechanism avoids
redundantwork by ensuring thatno slave will have to recompute a
valueof y��z��� that hasbeenpreviouslycomputedfor agiven model
at any time in the past. It also providesa convenientdistributed
checkpointingmechanism sothat parallel jobs thatare interrupted
canberapidly restartedwithout losingwork alreadydone.

This master-slave architecture is highly scalable, becausethe sin-
gle global work queuewith multiple serversensuresa good load
balance and very high utilization of slave processors. In addition,
there is no inter-slave communication andthe amount of master-
slave communication requiredis low andindependentof thenum-
ber of markings.

When all values of y��z��� have been computed, the masterruns
through theLaplacetransform inversionalgorithm again, this time
performingall calculationsandobtainingany valuesof y��z��� needed
from thememory cache.Theresultingpointson theresponsetime
density curve are written to a disk file, and displayedusing the
GNUplot graphplottingutility .
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6. CASE STUDIES
6.1 SimpleGSPN model
Fig. 2 shows a small contrived GSPN model and its corresponding
reachability graph. We illustrate our technique on this GSPN by
computingthe responsetime density for the time taken to reach
markingswhere�v� �&� ��=b? from markingswhere �t� � �¹��=W? .
Appendix A showstheenhancedDNAmaca input specificationfile
for thisGSPN.The\model clausedescribesthehigh-level GSPN
structurewhile the\passage clause providesa high-level speci-
ficationof the sourceand destination markingsand thetime range
over which theperformanceanalystwishesthe resulting response
time density to beplotted. Of course, the input file couldbecon-
structed automatically by a Petri net tool so that usersneed only
provide thebasicinformationgivenin the\passage clause.

In this example, there are three sourcemarkings,two of which
arevanishingand oneof which is tangible. As discussed in Sec-
tion 3.2, the Laplace transforms of the passage time from these
sourcemarkings into thedestination markingsneedto beweighted
according to thenormalisedsteadystateprobabilities of thesource
markingsin theGSPN’s EMC. Hence, for sourcemarkings �  �
�{�j��?P� � ��?P��?�� , ���¿�	�{�j��?P�$�j�$�j��?�� and��À¿�Á�{�j��?P��?P� � ��?�� ,

y nGFnH �{�����    y  nH �z���!�   ��y �*nH �z���!�   À�y À*nH �z���
wheremf@� � �j�$�j�$Âj� , meE� ��� ���P�$Ãj� ,    �0?P" �¹�jÄ � � ,   ���0?P" ���¹Ã¹Ã�?
and  À¿�W?P"^�¹�¹�¹Â¹Â (to 5 s.f.).

Fig. 3 shows the resultingnumerical responsetime density. Also
shown is the responsetime density produced by a discrete-event
simulator. Thereis excellentagreementbetweenthenumerical and
simulateddensities.

For thissmall example,asingleslaveprocessor(aPCwith a1.4GHz
Athlon processor and256MB RAM) requiredjust 18 secondsto
calculate the 1600 pointsplottedon the numerical response time
density. No scalingwas requiredandwe set

� �5� � ?¹? , requiring
thesolutionof 402setsof linearequations(2 of whichwereneces-
sary to determinethatno scaling wasrequired, with theremaining
400usedto computethe i % coefficients).

6.2 Courier Protocol Software
We now applyour techniqueto determine anend-to-endresponse
time densityin a substantialreal-life model. TheGSPNshown in
Fig. 4 (originally presented in [18]) models the ISO Application,
Session and Transportlayersof the Courier sliding-window com-
munication protocol. Data flows from a sender (

� � to
�&� Ã ) to a

receiver (
�&�¹Å

to
� ��Ã ) via a network. The sender’s transport layer

fragmentsoutgoingdatapackets; this is modelled astwo pathsbe-
tween

� �¹� and
� �¹� . Thepath via

( Â carriesall fragmentsbeforethe
last onethroughthe network to

� �¹� . Acknowledgementsfor these
fragmentsaresentback to thesender(assignalledby thearrival of
a token on

�&� ? ), but nodatais deliveredto thehigherlayerson the
receiverside.Thepathvia

($Ä
carriesthelast fragmentof eachmes-

sage block. Acknowledgements for thesefragmentsaregenerated
andadatatokenis deliveredto higher receiver layers via

($�¹Å
.

Theaveragenumberof datapacketssentis determinedby theratio
of the weights on the immediatetransitions

( Â and
($Ä

. This ratio,
known asthe fragmentation ratio, is given by iÆ� 1 i � (where iÆ�
andi � aretheweightsassociatedwith transitions

( Â and
(#Ä

respec-
tively). This numberof datapackets is geometrically distributed,

with parameteris�j�¹�wiÆ�<�5i � � . In ourcasestudy, weuseafragmen-
tation ratioof one.

The transportlayer is further characterized by two important pa-
rameters: thesliding window size � (

� ��� ) and the transportspaceÇ (
� � Å ). For our example,weset Ç �Á� and �W�	� .Thetransition

rates Æ�j�� � �#"#"#"#��s��? used in theoriginal model [18] wereobtained
by benchmarkinga working implementationof the protocol. We
usedrates with thesamerelative magnitudes, anddivided themall
by a factor of 5000to avoid the numerical problemsdiscussedin
Section3.1.

We wished to investigate the end-to-end responsetime from the
initiation of a transportlayer transmissionto thearrival of the cor-
responding acknowledgement packet. Consequently we chose as
sourcemarkings thosemarkingsfor which �t� �  z �a=t? , and as
destination markingsthosefor which �t� � M��F�@=A? . This is appro-
priatefor our slidingwindow sizeof �b�	� sincetherecanbeonly
oneoutstanding unacknowledgedpacket. If wewishedto calculate
the responsetime for sliding window sizesgreater than one, we
would needto augment thestatevector usedto describemarkings
to track theprogress of aparticular token throughthePetrinet.

Thereachability graphcontains
�¹Ä ?���? markings, �¹� Å ?¹? of which

are tangible and � Å �¹��? of which arevanishing. There are
Å � � ?

sourcemarkingsand ��Ã¹Â�? destinationmarkings.Fig. 5 shows the
resultingnumerical responsetimedensity. Themedian(50%quan-
tile) and 95% quantile transmission times are also given. Once
again thenumerical results arecomparedagainst a simulation,and
agreement is excellent.

For this example, the Laguerre scaling algorithm [10] selected a
dampening parameter of ³È�É?P" ?¹?�Â with

� �2� � ?¹? . A single
slave (a 1.4GHz Athlon processorwith 256MB RAM) required24
minutes15 seconds to calculatethe 200 pointsplottedon the nu-
merical responsetime densitygraph. This required thesolutionof
a total of 410 setsof linear equations, 10 of which were needed
to determine³ and the remainder used to computethe i % coeffi-
cients. Using 8 slave PCs with the sameconfigurationdecreased
the required time to just 3 minutes23 seconds (corresponding to
an efficiency of 96%).16 slavePCsrequired2 minutes17 seconds
(72% efficiency). These resultsreflect the excellent scalability of
our approach.

7. CONCLUSION
We have presentedan automated numerical techniqueto compute
responsetimedensities in unrestrictedGeneralisedStochastic Petri
net models. A complete responsetime analysispipelinehas been
implemented, including a high-level specification languageand a
distributed,scalable andcheckpointedLaplace transforminverter,
based on our own modified Laguerremethod. We have applied the
pipelineto two casestudies,includingarealistic model of commu-
nicationprotocol software,andobserved excellent agreementwith
simulation.

Thesolutionof linearsystemsonslaveprocessors is currently per-
formedin-core,which would limit thesolutioncapacityof individ-
ual slave processors to around 3 million stateson a 256MB ma-
chine. We couldeasily increase this capacity to around20 million
statesby implementinga disk-basedsolver suchasthatdescribed
in [7]. Further, groupsof slave processorscould beusedto jointly
solve very large systems of around100 million states or moreby
implementingaparallel disk-based solution method(e.g. [14]).
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It may bethat vanishingstatesconstitutea largeproportionof the
reachability graph, so that their elimination would be beneficial.
This is routinein analysesof equilibrium markingprobabilitydis-
tributions [4]. However, in our context, a brute-forceapplication
of traditional on-the-fly elimination techniques would destroy our
ability to specify vanishing statesassourceanddestinationmark-
ings(asin theexample of Section 6.1). Further, while it hasbeen
proved thatelimination techniques preserve steady-state probabil-
ities, it needs to be establishedwhat further transformationsare
necessaryfor response timedensities.

Not all responsetimesof interest aresimplepassagetimesbetween
markings;they may berelated to theprogressof aparticular token,
for example.Suchcasesrequireaugmentationof thestatevector to
provideameans for trackingthesetokens.

Finally, our performance analysispipeline could be added as a
moduleto extensible Petri net tools, suchas the Petri net Kernel
[11] and Medusa [8]. In fact, a modulewhich automatically gen-
eratestheenhanced model specification shown in Appendix A has
alreadybeenwritten for Medusa.
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APPENDIX
A. ENHANCED DNAMA CA SPECIFI CATION
Theinput specificationfor theGSPNof Fig. 2 is given below.

\model{

\constant{RR}{2.0}
\constant{VV}{5.0}

\statevector{
\type{short}{ p1, p2, p3, p4, p5 }

}

\initial{
p1 = 1; p3 = 2; p2 = p4 = p5 = 0;

}

\transition{t1}{
\condition{p1 > 0}
\action{

next->p1 = p1 - 1; next->p2 = p2 + 1;
}
\rate{RR}

}

\transition{t2}{
\condition{p2 > 0}
\action{

next->p1 = p1 + 1; next->p2 = p2 - 1;
}
\rate{3.0*RR}

}

\transition{t3}{
\condition{p1 > 0 && p4 > 0}
\action{

next->p1 = p1 - 1; next->p3 = p3 + 1;
next->p4 = p4 - 1; next->p5 = p5 + 1;

}



\weight{1.0}
}

\transition{t4}{
\condition{p5 > 0}
\action{
next->p1 = p1 + 1; next->p5 = p5 - 1;

}
\rate{2.0*RR}

}

\transition{t5}{
\condition{p3 > 0}
\action{
next->p3 = p3 - 1; next->p4 = p4 + 1;

}
\rate{VV}

}
}

\passage{
\source{p1 > 0}
\destination{p2 > 0}
\method{laguerre}
\timerange{0,16,0.01}

}

B. REFERENCES
[1] J. Abate, G.L. Choudhury, andW. Whitt. On theLaguerremethod for

numerically invertingLaplacetransforms. INFORMSJournal on
Computing, 8(4):413–427, 1996.

[2] J. Abateand W. Whitt. TheFourier-seriesmethod for inverting
transformsof probability distributions.QueueingSystems,
10(1):5–88,1992.

[3] M. Ajmone-Marsan,G. Conte, and G. Balbo. A class of Generalised
StochasticPetri Netsfor theperformanceevaluation of
multiprocessorsystems. ACM TransactionsonComputerSystems,
2:93–122,1984.

[4] F. BauseandP.S.Kritzinger. Stochastic Petri net theory. Verlag
Vieweg, Wiesbaden,Germany, 1995.

[5] P. Buchholz,M. Fischer, andP. Kemper. Distributedsteady state
analysis using Kroneckeralgebra.In Proceedings of the3rd
International Meeting on theNumerical Solutionof Markov Chains
(NSMC ’99), pages76–95,Zaragoza,Spain,September 1999.

[6] G. CiardoandA.S.Miner. A datastructure for theefficient
Kroneckersolutionof GSPNs. In Proceedingsof the8th
International ConferenceonPetri Netsand PerformanceModels
(PNPM’99), pages22–31,Zaragoza,Spain,September1999.IEEE
ComputerSociety Press.

[7] D.D. Deavoursand W.H. Sanders.An efficient disk-based tool for
solving very largeMarkov models. In LectureNotesin Computer
Science1245: Proceedingsof the9th InternationalConferenceon
Modelling, Techniquesand Tools (TOOLS’97), pages58–71,St.
Malo, France,3–6June1997. SpringerVerlag.

[8] N.J.Dingle. Production of theextensiblePetri neteditor/animator
Medusa.Master’s thesis, Imperial College,September 2001.

[9] W. Gropp,E. Lusk, andA. Skjellum. UsingMPI: PortableParallel
Programmingwith theMessagePassingInterface. MIT Press,
Cambridge,Massachussetts, 1994.

[10] P.G. Harrison andW.J.Knottenbelt. Passagetimedistributionsin
largeMarkov chains.In Proc.ACM SIGMETRICS2002, MarinaDel
Rey, California, June2002.

[11] E. Kindler andM. Weber. ThePetriNetKernel. In K. H. Mortensen,
editor, Tool Demonstrationsat the21stInternationalConferenceon
theTheoryand Applicationof Petri nets, pages71–75.Aarhus,
Denmark, June2000.

[12] W.J.Knottenbelt. GeneralisedMarkoviananalysisof timedtransition
systems. Master’s thesis, University of CapeTown, CapeTown,
SouthAfrica, July1996.

[13] W.J.Knottenbelt. Parallel PerformanceAnalysisof LargeMarkov
Models. PhDthesis, Imperial College,London,UnitedKingdom,
February2000.

[14] W.J.KnottenbeltandP.G. Harrison. Distributed disk-based solution
techniquesfor largeMarkov models. In Proceedingsof the3rd
InternationalMeeting on theNumerical Solutionof Markov Chains
(NSMC’99), pages58–75,Zaragoza,Spain,September1999.

[15] J.L. Peterson. Petri Netsand theModeling of Systems. Prentice-Hall,
EnglewoodCliffs, New Jersey, 1981.

[16] W. Reisig. A Primerin Petri NetDesign. SpringerVerlag, 1992.

[17] W.T. Weeks. Numericalinversion of Laplacetransformsusing
Laguerrefunctions.Journalof theACM, 13:419–426,1966.

[18] C.M. Woodsideand Y. Li. PerformancePetri netanalysis of
communicationprotocolsoftwareby delay-equivalent aggregation.
In Proceedings of the4th International Workshop on Petri netsand
PerformanceModels, pages 64–73, Melbourne,Australia,2–5
December 1991. IEEEComputerSocietyPress.


