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Abstract

Every organisation depends critically on reliable high-performance stor-
age. Driven by the high costs of maintaining and managing multiple local
storage systems, there is a trend towards virtualised multi-tier storage
infrastructures. The main limitation of such centralised solutions is their
inability to guarantee application-level Quality of Service (QoS) without
extensive and ongoing human intervention. This intervention is necessary
since delivered QoS can vary extensively both across and within storage
tiers, and also depends on the access profile of the data.

This paper presents the first steps towards the concrete realisation of
a self-managing virtualised storage system which automatically allocates
and migrates data throughout its lifecycle guided by user-provided QoS
hints. Specifically, we use the Logical Volume Manager (LVM) to create
a virtualised multi-tier storage infrastructure with variable performance
and reliability profiles. On to that, we place an enhanced (but backwards-
compatible) Linux Extended 3 Filesystem which we call ext3ipods and
which supports QoS metadata. We describe the kernel modifications nec-
essary to quantify the QoS provided by a given data layout, thus enabling
the subsequent development of intelligent data placement and migration
algorithms.

1 Introduction

Regardless of the nature of any contemporary organisation, information is in-
variably considered to be one of its most valuable assets. In practical terms,
this translates into the need for reliable, scalable and high-performance storage
infrastructures. The traditional approach to meeting these requirements is to
allocate separate storage solutions on a per-application basis. However, such
configurations not only incur a high management overhead (since system ad-
ministrators need to constantly monitor and configure many different systems),
but they also suffer from serious inefficiencies due to the overprovisioning of
resources such as storage capacity and power.

In an attempt to increase efficiency and reduce the total cost of ownership,
recent years have seen the emergence of a trend towards virtualised multi-tier
storage infrastructures [14]. These can be described as centralised storage sys-
tems organised into tiers, each of which is characterised by a set of attributes
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such as cost per gigabyte and power consumption. Each tier is capable of meet-
ing different Quality of Service (QoS) requirements with respect to data access,
such as performance, reliability and space efficiency. In the absence of an intelli-
gent storage fabric, the QoS requirements for each application and the attributes
provided by the tiers must be manually matched by storage managers and data
allocated accordingly, as illustrated in Figure 1.
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Figure 1: Human storage manager matching application QoS requirements in a
centralised multi-tiered storage system.

While this drastically reduces the cost of managing several local storage
systems, maintaining a centralised multi-tiered system is still a complex task.
This is due not only to the very different QoS requirements imposed by each
application, but also to QoS variation both across and within tiers. To see
this, consider the example of a 2.5 TB logical volume comprised of two distinct
RAID [13] arrays, each of which is made up of four 500 GB zoned SCSI disks1.
The first array is RAID5, providing greater performance and space, but smaller
reliability. The second array is RAID01, providing less space and performance,
but greater reliability.

Sequentially reading 100 MB blocks of data across this logical volume pro-
duces the data presented in Figure 2. While a difference in performance between
the two arrays is noticeable, it can be seen that the use of zoned disks causes
performance variations within tiers, forming what is termed a Zoned-RAID [10]
and complicating data allocation [9]. Needless to say, this performance profile
would likely differ under other access patterns, such as random I/O requests of
varying types and sizes. The latter is a particularly important concern when
working with Solid State Drives (SSDs). Another detail that should be taken
into account is the way data access evolves over its lifecycle; as an example, a
news story that is currently highly accessed might be much less popular in the
future, and may therefore not require high-performance storage.

This paper presents the first steps toward the practical realisation of an
intelligent storage fabric that autonomously allocates and migrates data in a
virtualised multi-tiered storage system using user-provided QoS hints. We aim
to improve on the mechanisms for fabric intelligence in current systems which
employ simple inter-tier migration policies based on access frequency, and which
are centred on capacity utilisation and failure recovery.

The remainder of this paper is organised as follows. Section 2 compares
our ideas to existing solutions and discusses the importance of matching data
placement to QoS requirements. Section 3 shows how we created a multi-tier
filesystem testbed, and discusses our rationale for placement of our intelligent
fabric at the filesystem level. Section 4 presents our first steps towards the

1More details about this experimental setup are discussed on Section 3.
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Figure 2: Sequential 100 MB reads on a multi-tier 2.5 TB logical volume.

implementation of a Linux filesystem that supports QoS awareness, along with
some auxiliary tools that we have developed. Section 5 concludes.

2 QoS Requirements in Storage Systems

Current solutions for the autonomous management of virtualised multi-tier stor-
age systems attempt to optimise average (or overall) system performance by
allocating, migrating and reconfiguring data layouts on the basis of data access
profiles [1, 2, 15]. These profiles usually consider the type of I/O (read or write),
the size of the requests and access frequencies, and sometimes also pay attention
to the cost involved in the reconfiguration process [4, 16]. However, it is impos-
sible to deduce the business-level importance of rapid access to data solely on
the basis of access profile. For example, a critical – but relatively infrequent –
real-time transaction (e.g. an algorithmic trade) may depend on rapid access to
tables in an RDBMS. Ignorant of this business need, current solutions would
likely place this data on a lower performance tier.

There are other QoS requirements that are not supported by current solu-
tions, but which may be important from a business perspective:

• Reliability: Access profiles are not sufficient to determine the reliability
requirements of data. As an example, temporary files, which may not
require redundancy, could be accessed in a similar manner to RDBMS data
files, which usually require the highest reliability available in the system.
Providing high reliability for the whole storage pool is an obvious waste
of resources. The reliability requirements of data may also evolve over
its lifecycle; for example, compliance logs may need to be kept on highly



reliable storage for a set amount of time, after which the requirement for
reliability lapses.

• Space efficiency: The efficient use of disk capacity is an important con-
cern, although it must frequently be traded-off against performance and
reliability. For example, RAID1 typically provides good reliability and
read performance at the cost of low space efficiency. On the other hand,
RAID0 provides good performance and space efficiency at the cost of low
reliability. Software-based solutions such as the use of lossless or lossy
compression algorithms may also be considered where performance is not
a primary concern.

• File growth likelihood: Intelligent data placement can be greatly fa-
cilitated by knowing the likelihood with which files stored in the system
are likely to grow. If the system is aware that the file is a static video file
that should not grow over time, another piece of data can be allocated in
a physical area immediately after its end. Usually, the operating system
would try to preallocate some space for that file to grow, in order to avoid
fragmentation [5]. Analogously, log files could have a greater space for
growth preallocated, since they are very likely to grow.

• Security sensitivity: As discussed, many systems migrate data in order
to improve overall average system performance. Data migration, however,
is usually done by copying files to a new physical location on the storage
system, updating pointers and abandoning the old data. This situation
could lead to a security hazard scenario [7, 8], where a disk that is no longer
in use – but still holds sensitive information – could be disposed of or
reallocated. If the storage system were to be aware of such particularities,
it could enforce data deletion upon migration.

Unlike systems that try to automatically identify what are the access profiles
and optimise data layout to improve average performance, our work introduces
a new approach. Our idea consists of allowing users to provide hints to the
storage system that make it aware of a wide variety of QoS-related requirements
as dictated by business needs. Figure 3 illustrates how we visualise a system
that uses these hints to intelligently map data in a multi-tier storage system.

Naturally, our system will also need to be aware of the QoS delivered by each
tier. This could be done either by measurement (e.g. to obtain performance
profiles) or by a system administrator (e.g. with regards attributes such as
reliability and power consumption). In the illustrated example, temporary files
and the database should reside on high performance disks, with the latter also
receiving the highest possible level of redundancy. The logs and archives, on
the other hand, should be allocated to tiers that offer reliable disk space but
less performance. Details on how candidate allocations can be compared and
evaluated will be discussed further in Section 4.

We note that the implementation of an intelligent fabric could take place
at several different levels. The following section discusses our motivation for
having the QoS definitions on a filesystem level, explaining the granularities
used in our work and how the multi-tier virtualised storage infrastructure was
defined and created.
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Figure 3: An intelligent fabric for mapping data in a multi-tier virtualised stor-
age system using QoS hints.

3 Towards a QoS-aware Virtualised Filesystem

To provide an experimental framework for the problem at hand, it is first nec-
essary to construct a multi-tiered logical volume capable of providing different
levels of performance, reliability and space efficiency. Further, a mechanism is
necessary to control data placement. This not only allows allocation and migra-
tion strategies to be applied, but also enables the evaluation of different data
layouts.

Concretely, our experimental environment consists of eight 500 GB Seagate
ST3500630NS zoned SCSI disks housed in an Infortrend A16F-G2430 RAID
enclosure that is connected via a dual fibre channel interface to a Ubuntu 7.04
Linux box with 4 GB of RAM and two dual-core AMD Opteron 2218 2.5 GHz
Processors. Using Linux’s Software RAID (MD) [12] version 2.5.6, it was possi-
ble to create two software RAID2 arrays of type 5 and 01 that were concatenated
using Logical Volume Manager (LVM) [11] version 2.02.06. This configuration is
illustrated in Figure 4 and the performance chart for 100 MB blocks sequential
reads was already presented in Section 1. The point where the I/O requests
are directed to the second RAID array is clearly apparent at the 1.5 TB logical
address.
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2We note hardware RAID could have been used; however, software RAID provides similar
performance while allowing for disk-level inspection and monitoring.



The next step is to decide where the intelligent fabric should be inserted into
the storage system architecture. As shown in Figure 5, we shall consider that
an application is the topmost level, imposing QoS requirements and accessing
storage through an operating system’s filesystem API. At the lowest level the
storage infrastructure provides the capability to deliver various levels of QoS.

Operating System

Filesystem

Storage Infrastructure

Application

Figure 5: Levels in a storage system architecture.

Ideally a solution should allow existing applications to run without modifica-
tion; this precludes insertion into the application layer. Similarly, modification
of the storage infrastructure layer is problematic since raw storage device inter-
faces do not currently support QoS flags; nor are they likely to do so for the
foreseeable future.

The operating system layer, and specifically the filesystem, provides the
natural home for our intelligent fabric through metadata attached to files and
directories. The latter can be used to inform intelligent kernel datablock al-
location without the need to modify either applications or storage devices. It
can also help an OS to evaluate the state of current data allocation, calculate
improved scenarios and migrate data to meet them.

To achieve this, we must provide mechanisms to add, modify or remove
file and directory hints that indicate QoS requirements for the data at hand.
Naturally, a convenient place to keep this metadata is in the filesystem itself.
In the same way, the filesystem should be enhanced with a means to store
metadata regarding the QoS profile of its underlying storage. This not only
enables persistence of such information, but also permits easy access to this
data by kernel datablock allocation algorithms.

To this end, the next section analyses the structure of the Linux Extended 3
Filesystem and explains how we have enhanced it to hold such attributes while
keeping the new filesystem compatible with the original one.

4 The Linux Extended 3 iPODS Filesystem

Named after the project3 that made this research possible, the Linux Extended 3
iPODS Filesystem (ext3ipods) is our proposed extension to the Linux Extended
3 Filesystem (ext3fs). So far this extension has taken place in three main steps.

3Intelligent Performance Optimisation of Virtualised Data Storage Systems (iPODS), EP-
SRC Grant EP/F010192/1.



Firstly, we have modified the existing ext3fs disk structure, defining how to
store QoS metadata in a way that maintains backwards compatibility. This
has been established as a prerequisite, since it is useful to be able to mount
existing filesystems with our new kernel implementation and hence evaluate
QoS gains or losses more easily. Secondly, we have provided a means for both
users and system administrators to update these new attributes. Finally, we
have considered what new tools and strategies within the kernel are necessary
to improve datablock allocation using the newly defined metadata. The next
three subsections deal with each of these steps respectively.

4.1 ext3ipods Disk Structure

To define how ext3fs should be modified to store the newly specified metadata,
we have initially studied what granularity should be used to define QoS require-
ments. Considering that applications usually use directories and files as their
main storage units, the filesystem’s inode has been chosen. Conveniently, this
already possesses a field, named flags, capable of holding such metadata. This
field is 32 bits long and is not currently used in its entirety, allowing us to use
the free space. ext3fs also supports an inode attribute extension that could hold
a greater amount of flags should this become necessary in the future.

The next modification is to define how to store the QoS characteristics pro-
vided by the virtualised storage infrastructure layer. Taking into account that
storage in ext3fs is divided into block groups [3], and that current allocation
algorithms use that unit to keep what it considers similar data grouped to-
gether [6], block groups are a natural choice for the granularity of such meta-
data. A control structure, named a block group descriptor, holds statistical
information for every block group (such as the number of free inodes or blocks)
and offers 96 bits of unused space in the latest implementation. This space will
be used by ext3ipods not only to hold the aforementioned metadata, but also
to store information on the effectiveness of current data allocation. This will be
discussed further in Section 4.3.
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Figure 6: Underlying structure of the ext3ipods filesystem.

Figure 6 illustrates the structure of a regular ext3fs, showing how this filesys-
tem is organised as an array of block groups, and highlighting the two parts of
the disk structure that have been modified in ext3ipods. Because the extra
metadata we introduce in the modified parts are stored in space that is unused
in ext3fs, an ext3ipods filesystem can easily be mounted as a regular ext3fs and
vice versa, maintaining compatibility.

We are currently using the extra metadata introduced into the inode flags to
denote desired performance, reliability and space efficiency. Each one of them



can be set on a directory or file to low, medium or high. When set on directories,
new child files automatically inherit the parent directory’s attributes. It is worth
mentioning that when a file is created, the kernel first allocates an inode and
then starts allocating datablocks as the contents start to be written. This gives
no opportunity for flags to be set on the inode, as the datablock allocator will
start to work immediately. By allowing new files to inherit flags from the parent
directory, this problem is easily solved.

Returning to the issue of the granularity for the QoS characteristics provided
by the storage layer, which has been assigned to block group units, we note that,
depending on the size of each datablock, the size of the block groups in the
filesystem will change. This happens because every block group holds a bitmap
that is a bit vector responsible for mapping which datablocks are available. Since
the bitmap is stored in exactly one datablock, the bitmap is able to address up
to eight times its own size, as shown in Table 1.

Block size Blocks addressed by bitmap Block Group Size
1,024 B 8,192 8 MB
2,048 B 16,384 16 MB
4,096 B 32,768 32 MB

Table 1: Relation between datablock, bitmap and block group sizes.

This issue brings an extra element to the choice of an adequate block size,
which is usually selected according to the expectations about the size of directo-
ries, files and the filesystem itself. As an example, if a 4 KB block size is chosen
for a filesystem that will host many small files and directories, a lot of internal
fragmentation should be expected, resulting in wasted space. With respect to
ext3ipods storage structures with several QoS variations within a tier (as is the
case in zoned RAIDs), or with many small tiers, using smaller block groups
should be considered to support a sufficiently fine grain for QoS characteristics.

4.2 User Space Utilities

To enable applications and users to manage regular ext3fs filesystems, a set of
user-space tools are provided by the developers. This set is named e2fsprogs

and includes filesystem checking tools, debugging utilities and user-space pro-
grams to communicate with the kernel. Two of the user-space programs are of
particular interest to this work: the lsattr and chattr inode attribute ma-
nipulation tools. Filesystem formatting tools such as mkfs do not require any
modifications since the initial disk structure of ext3ipods is identical to that of
ext3fs.

Through a set of predefined ioctl() calls, lsattr is capable of requesting
inode attribute information from the kernel; it then displays this information
to a user in the same fashion as the popular ls tool. To suit the new QoS
flags defined in this work, modifications on both sides of this interface had to
be made. The first one, on kernel code, was to extend the set of inode flags
only for files and directories (since other types of inodes, such as devices and
symbolic links are also supported). The masks controlling which flags can be
retrieved by users through ioctl() calls were also updated. The second one,



on the lsattr code, was to extend the tool’s set of flags to match those of the
kernel and to include user-friendly descriptions of the new QoS attributes.

Similarly to the listing attribute tool, modifications also had to be made to
chattr in order to allow user-space programs to alter inode flags. In a similar
way, the list of arguments accepted by chattr and the internal set of attributes
had to be augmented to cope with the new set of QoS flags. In the kernel code,
the mask for user-modifiable inode attributes was also updated.

4.3 The iPODS Filesystem Manager Kernel Module

While the above changes are enough to allow user-space programs to view and
manage inode flags, further kernel modifications are necessary to make actual
use of them. At this stage of the iPODS project, specific data allocation and mi-
gration strategies are yet to be defined. However, we have already implemented
a set of kernel operations to evaluate the current state of an ext3ipods filesys-
tem. These operations have been implemented as a loadable module named
ifm lkm and, to avoid modifying the kernel’s ioctl() interface, are called by
a user-space program through a special character device. To communicate with
ifm lkm, an application should open the device for reading and writing, write a
command and then read the response.

When opening the device, ifm lkm scans the mountpoint list for any mounted
ext3ipods filesystem and reads its superblock. At this stage, we are considering
that no more than one such filesystem will be mounted simultaneously. The
kernel module locks itself once the character device is opened in order to pre-
vent multiple user-space applications from issuing concurrent commands. Three
operations are currently available and a fourth is under development. These are:

• info: When issued with the request “info”, ifm lkm will reply with the
block size, the number of blocks per group and the total number of blocks
in the filesystem. From these, it is possible to derive other relevant data
such as size of blocks and the size of the filesystem itself. Other information
such as inode usage, the number of files and directories and available space
will be provided in the near future.

• getXX: When issued with the request “getXX”, where “XX” should ini-
tially be set to zero, ifm lkm will begin listing all the inodes in use in
the filesystem and their associated metadata. This includes the QoS flags
defined for each inode and the position of every datablock allocated to it.
Because datablocks for an inode can reside in a different block group from
the inode itself, this listing allows one to determine if datablocks with a
certain QoS definition are placed in unsuitable block groups. The reason
for the “XX” parameter to exist is due to the buffer size indicated on
read() system calls. When reading from a character device, the kernel
fills the user-space buffer with the requested data and then returns. User
space programs should then resume reading, by issuing repeating read()

calls, in order to finish fetching all available data. The “XX” parameter
will, in this case, be incremented internally by the kernel to indicate what
is the next inode to be evaluated.

• setXX:YY: When issued with the request “setXX:YY”, where “XX” indi-
cates a block group and “YY” a set of QoS flags, ifm lkm will promptly



validate the block group number, fetch the descriptor for that block group
and update its QoS metadata. The kernel buffer where this descriptor
resides is then marked as dirty, so that the Linux kernel memory manager
saves it back to the filesystem in a suitable manner.

• evalXX: The last command, “evalXX”, where “XX” indicates a block
group number and should be initially set to zero, is still under devel-
opment. Its purpose is to assess the quality of the current data layout
with respect to the desired QoS indicated in inode flags, and the actually
delivered QoS as indicated by the metadata stored within block groups.
When first called it will allocate two temporary arrays within the kernel;
the first one caches the QoS flags for each block group and the second
one stores the current QoS provided by each block group. These arrays
are needed due to the aforementioned fact that datablocks allocated to a
certain inode may reside in different block groups. After the evaluation
is completed, an indication of the quality of the match between desired
and achieved QoS of the underlying datablocks within a block group is
cached within the block group descriptor. The “XX” parameter can then
be updated in the same fashion as for the “getXX” operation.

As described above, the computation of the QoS match for a block group
is obtained by scanning all inodes in the filesystem. For every inode, the QoS
flags of the array of datablocks in use is compared to the QoS attributes of the
block group it resides in according to Equation 1. The result of this equation
are accumulated in a block group quality counter which, eventually, indicates
the quality of QoS matching.

∑

i∈(qnt)

∆i × mi (1)

In the equation, the set qnt stands for all quantitative QoS attributes defined
in the system (e.g. performance, reliability). ∆i indicates the difference between
the level of QoS requested by an inode and the one provided by a block group.
mi indicates a multiplier that could take place in the equation to prioritise some
attributes over others. As an example, performance could be more important
than reliability in some cases, and vice versa.

5 Conclusions

The trend towards virtualised multi-tier storage infrastructures continues un-
abated. However, since delivered QoS can vary massively both across and within
storage tiers, it remains a major challenge to ensure that applications receive a
QoS that is appropriate to their evolving business needs. Since manual interven-
tion by system administrators to place and migrate data appropriately incurs
very high overhead, this paper has presented our first steps towards the concrete
realisation of a centralised storage system capable of automatically and intelli-
gently placing and migrating data on the basis of QoS hints. Specifically, we
have presented backwards compatible extensions to the ext3fs Linux filesystem
that provide awareness of both the QoS requirements of files and directories and
the QoS delivered by the underlying datablocks; this facilitates a quantitative



assessment of the degree QoS match provided by a given data layout. This, in
turn, will subsequently be used in the development of intelligent data placement
and migration algorithms.

According to that, the next natural steps for our research is to extend the
work on how to evaluate data allocation in the ext3ipods filesystem. Once we
are able to evaluate and compare different allocation scenarios, it will be possible
to begin the studies on migration and the involved costs. Eventually, this will
lead to a complete solution for virtualised storage systems.
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