
Truncation of Passage Time

Calculations in Semi-Markov Models

Marcel C. Guenther Nicholas J. Dingle
Jeremy T. Bradley William J. Knottenbelt ∗

Abstract

Calculation of passage time distributions in large semi-Markov models
can be accomplished by means of a previously-presented iterative algo-
rithm, the core of which is repeated sparse matrix–vector multiplication.
The algorithm’s performance is therefore highly dependent on the number
of multiplications of matrix and vector elements that must be performed
during each iteration. At the same time, the products of matrix and
vector elements that are very small contribute little to the overall result
of the multiplication. In this paper, we investigate the effect of ignor-
ing these values on both the performance and accuracy of the iterative
passage time algorithm. We show that in the models we analyse here
this truncation significantly reduces the number of multiplications which
must be performed, and hence significantly reduces the running time of
the algorithm, with little effect on the accuracy of the final result.

1 Introduction

Semi-Markov Processes (SMPs) are an extension of Markov processes which al-
low for generally distributed sojourn times [12, 13]. Although the memoryless
property no longer holds for state sojourn times, at transition instants SMPs
still behave in the same way as Markov processes (that is to say, the choice of
the next state is based only on the current state) and so share some of their
analytical tractability. In prior work [4, 6] we have presented an iterative nu-
merical algorithm for the calculation of passage time densities and distributions
in structurally-unrestricted semi-Markov models. The kernel of this algorithm
is repeated sparse matrix–vector multiplication, and its running time is there-
fore heavily influenced by the number of multiplications of individual vector and
matrix elements which are performed during each iteration.

In analysing very large semi-Markov models with state spaces of the order of 107

states, we encountered the phenomenon of numerical underflow. In accordance
with the IEE 754 floating point standard, the Intel families of processors do
not by default round floating point numbers which are smaller than double

∗Department of Computing, Imperial College London, 180 Queens Gate, London SW7
2BZ, UK {mcg05,njd200,jb,wjk}@doc.ic.ac.uk

precision to zero but instead continue to represent them at reduced precision [8].
Our experience in analysing very large semi-Markov models, as well as that of
the authors of [11], is that this default behaviour imposes a large performance
overhead on applications in the presence of underflow (in our experience, slowing
computation down by a factor of up to 200). Furthermore, for our algorithm it
was not necessary to represent such very small values explicitly; the convergence
criterion is typically 10−8 or 10−16, and so vector elements of of extremely small
magnitude, e.g. 10−100 or smaller, contribute negligibly to the final result and
could be set to 0 without affecting the overall accuracy.

In this paper we investigate the effect of more aggressive truncation of vector
elements on the performance and accuracy of our iterative passage time algo-
rithm, inspired by our experiences of overcoming these underflow problems. We
have observed above that the number of complex multiplications performed at
each iteration has a major impact on the running time of our algorithm, and
this stems from the fact that floating point operations are some of the most ex-
pensive CPU instructions to perform. For example, an integer add on an Intel
Core Duo takes 1 clock cycle while a floating point add takes 3 [8].

Our first optimisation is therefore to modify the implementation of our algo-
rithm to ignore vector elements which are 0 when multiplying them with matrix
elements as such values obviously contribute nothing to the final result. In our
earlier implementation the vector was stored in a dense fashion with all values,
including zeros, explicitly represented, and so to avoid the overhead of having
to check each value before use we employ a sparse vector storage scheme. We
demonstrate that this reduces the total number of multiplications conducted.

We also investigate the effect of raising the threshold of zeroing vector elements
to 10−32. Again, we show that this reduces the total number of multiplications
compared to both the original and modified implementations, and also show that
it reduces the elapsed running time of the algorithm. Furthermore, we present
results which show that the accuracy of the passage time distributions calculated
for the models considered in this paper is not affected by this truncation.

The remainder of this paper is organised as follows. Section 2 presents back-
ground theory on semi-Markov processes and summarises an iterative numerical
algorithm from [4, 6] for the calculation of passage time densities and distribu-
tions in such processes. Section 3 introduces the idea of truncating values in this
algorithm during calculation and presents results to demonstrate that this im-
proves the algorithm’s performance without significantly affecting the accuracy
of the final result. Finally, Section 4 concludes and considers future work.

2 Background

2.1 Semi-Markov Processes

Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn is the time of
the nth transition (T0 = 0) and χn ∈ S is the state at the nth transition. Let
the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined
by the kernel R, is related to the Markov renewal process by:

Z(t) = χ
N(t)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have
taken place by time t. Thus Z(t) represents the state of the system at time t.
We consider only time-homogeneous SMPs in which R(n, i, j, t) is independent
of n:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for any n ≥ 0
= pijHij(t)

where pij = IP(χn+1 = j | χn = i) is the state transition probability between
states i and j and Hij(t) = IP(Tn+1−Tn ≤ t | χn+1 = j, χn = i), is the sojourn
time distribution in state i when the next state is j. An SMP can therefore be
characterised by two matrices P and H with elements pij and Hij respectively.

2.2 Iterative Passage Time Algorithm

Consider a finite, irreducible, continuous-time semi-Markov process with N
states {1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time
t (t ≥ 0) and that N(t) denotes the number of transitions which have occurred
by time t, the first passage time from a source state i at time t into a non-empty
set of target states ~j is defined as:

Pi~j(t) = inf{u > 0 : Z(t + u) ∈ ~j,N(t + u) > N(t), Z(t) = i}

For a stationary time-homogeneous SMP, Pi~j(t) is independent of t:

Pi~j = inf{u > 0 : Z(u) ∈ ~j,N(u) > 0, Z(0) = i} (1)

Pi~j has an associated probability density function fi~j(t). The Laplace transform
of fi~j(t), Li~j(s), can be computed by means of a first-step analysis. That is, we
consider moving from the source state i into the set of its immediate successors
~k and must distinguish between those members of ~k which are target states and
those which are not. This calculation can be achieved by solving a set of N
linear equations of the form:

Li~j(s) =
∑

k/∈~j

r∗ik(s)Lk~j(s) +
∑

k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (2)

where r∗ik(s) is the Laplace–Stieltjes transform (LST) of R(i, k, t) from Sec-
tion 2.1 and is defined by:

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t)

Eq. 2 has matrix–vector form Ax = b, where the elements of A are general
functions of the complex variable s. For example, when ~j = {1}, Eq. 2 yields:

1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)

L1~j(s)
L2~j(s)
L3~j(s)

...
LN~j(s)

=

r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

We now describe an iterative algorithm for generating passage time densities
that creates successively better approximations to the SMP passage time quan-
tity Pi~j of Eq. 1 [4, 6]. We approximate Pi~j as P

(r)

i~j
, for a sufficiently large value

of r, which is the time for r consecutive transitions to occur starting from state
i and ending in any of the states in ~j. We calculate P

(r)

i~j
by constructing and

then numerically inverting [1, 2, 3] its Laplace transform L
(r)

i~j
(s).

Recall the semi-Markov process Z(t) of Section 2.1, where N(t) is the number
of state transitions that have taken place by time t. We formally define the rth
transition first passage time to be:

P
(r)

i~j
= inf{u > 0 : Z(u) ∈ ~j, 0 < N(u) ≤ r, Z(0) = i} (3)

which is the time taken to enter a state in ~j for the first time having started in
state i at time 0 and having undergone up to r state transitions.

P
(r)

i~j
is a random variable with associated Laplace transform L

(r)

i~j
(s). L

(r)

i~j
(s) is,

in turn, the ith component of the vector:

L(r)
~j

(s) =
(
L

(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s)

)

representing the passage time for terminating in ~j for each possible start state.
This vector may be computed as:

L(r)
~j

(s) = U
(
I + U′ + U′2 + · · ·+ U′(r−1)

)
e~j (4)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of
U with elements u′pq = δp 6∈~j upq, where states in ~j have been made absorbing.
Here, δp 6∈~j = 1 if p 6∈ ~j and 0 otherwise. The initial multiplication with U in

Eq. 4 is included so as to generate cycle times for cases such as L
(r)
ii (s) which

would otherwise register as 0 if U′ were used instead. The column vector e~j has
entries ek~j = δk∈~j , where δk∈~j = 1 if k is a target state (k ∈ ~j) and 0 otherwise.

From Eq. 1 and Eq. 3:

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s)

This can be generalised to multiple source states ~i using, for example, a nor-
malised steady-state vector α calculated from π, the steady-state vector of the

embedded discrete-time Markov chain (DTMC) with one-step transition prob-
ability matrix P = [pij , 1 ≤ i, j ≤ N], as:

αk =
{

πk/
∑

j∈~i πj if k ∈~i

0 otherwise

The row vector with components αk is denoted by α. The formulation of L
(r)
~i~j

(s)
is therefore:

L
(r)
~i~j

(s) = αL(r)
~j

(s)

= (αU + αUU′ + αUU′2 + · · ·+ αUU′(r−1)) e~j

=
r−1∑

k=0

αUU′k e~j (5)

Note that the central operation in Eq. 5 is repeated sparse matrix–vector mul-
tiplication; we begin by calculating the vector ν(0) = αU and then repeatedly
multiply this with the matrix U′ such that ν(k) = ν(k−1)U′ (k ≥ 1) until the
calculation converges.

In practice, convergence of the sum L
(r)
~i~j

(s) =
∑r−1

k=0 αUU′k can be said to have
occurred if, for a particular r and s-point:

|Re(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε and |Im(L(r+1)
~i~j

(s)− L
(r)
~i~j

(s))| < ε (6)

where ε is chosen to be a suitably small value, say ε = 10−16.

2.3 Case Study: Semi-Markov Models

Throughout this paper we use two semi-Markov models as running examples.
The Voting model is a model of a distributed voting system with voters, failure-
prone voting booths and failure-prone central servers [4, 6]. The Web-server
model represents a web content authoring system, and contains a number of
clients, authors web servers and a write buffer [6]. Both models were originally
represented in a high-level Semi-Markov Stochastic Petri Net (SM-SPN) [5]
form, from which semi-Markov processes of varying sizes can easily be generated.
Further detail can be found in [9].

3 Truncation of Passage Iteration Vector Values

We observe that the passage iteration vector, ν(k), often contains a high pro-
portion of elements with very small complex values. These contribute little to
the updated values in ν(k+1) but these multiplications still require as much time
to be computed as for the larger values in ν(k); indeed, in the presence of nu-
merical underflow they can take substantially longer. We therefore study the
impact of truncating (i.e. setting to zero) these small elements on the accuracy
and performance of the iterative passage time analysis algorithm.

Definition 1. We define a negligibly small complex number s as one for which
|Re(s)| < ε2 and |Im(s)| < ε2, where ε > 0 is the precision of the iterative
passage time solver in Eq. 6.

Setting an element in ν(k) to zero can create an error that is larger than the
absolute value of the truncated element. This is because of the cascading ef-
fect of the sparse matrix–vector multiplication. Any non-zero element in ν(k)

which corresponds to a non-target state contributes to the value of at least
one other entry in ν(k) during the next iteration. As many states have more
than one outgoing transition the value of one element in the ν(k) vector usu-
ally contributes to the sums of a large percentage of the elements in ν(k+m)

since the number of states a single state can reach in m state transitions can
be exponentially high. It is thus important to restrict truncation to elements
whose absolute values are much smaller than our required precision; otherwise
truncation might have a negative impact on the accuracy of the results of the
passage time calculation [10].

3.1 Methodology

In the following analysis, we distinguish between three implementations of the
iterative passage time algorithm:

• SMARTA: The original implementation from [4], which was later devel-
oped as the Semi-Markov Response Time Analyser (SMARTA) tool in [9].
In SMARTA, every element of ν(k), including zeros, is explicitly repre-
sented in a dense vector, and multiplications with U′ elements are carried
out even when the corresponding vector element is zero. This provides
our baseline for comparison.

• SPARSE: A new implementation in which ν(k) is stored as a sparse
vector. Under this scheme only elements which are non-zero are stored
in the vector and hence multiplications of U′ elements with vector values
which are zero will not occur.

• TRUNC: A second new implementation which extends the sparse vector
implementation to actively truncate negligibly small complex numbers.

We assess the effect of truncation on the performance and accuracy of the itera-
tive algorithm by conducting passage time analysis on the semi-Markov models
described in Section 2.3 for a range of state-space sizes up to 1 100 000 states
with ε = 10−16. It would be too expensive to check all values in ν(k) on every
iteration to determine if they should be rounded to zero, and so we instead
choose to perform truncation every 25 iterations to minimise this overhead.

3.2 Performance

We evaluate the effect of truncation on the performance of the iterative passage
time algorithm in two ways. Firstly, we consider the total number of complex

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 1e+06 750000 500000 250000 100000

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

Number of states

Voting model: SMARTA
Voting model: SPARSE

Voting model: TRUNC

(a) Voting model

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 1e+06 750000 500000 250000 100000

N
um

be
r

of
 m

ul
tip

lic
at

io
ns

Number of states

Web-server model: SMARTA
Web-server model: SPARSE

Web-server model: TRUNC

(b) Web-server model

Figure 1: Absolute number of complex multiplications carried out by the three
implementations for the Voting (top) and Web-server (bottom) models across a
range of state space sizes.

Voting model Web-server model
O(no. of states) SPARSE TRUNC SPARSE TRUNC

100 000 45% 27% 86% 32%
250 000 48% 21% 87% 28%
500 000 46% 17% 88% 25%
750 000 44% 9% 89% 25%

1 000 000 25% 7% 90% 21%

Table 1: Percentage of complex multiplications needed by the two new imple-
mentations of the iterative passage time algorithm relative to SMARTA.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 n

on
-z

er
o

el
em

en
ts

 in
 v

ec
to

r

Percentage of iterations performed

Voting model
Web-server model

Figure 2: Percentage of non-zero elements in ν(k) during iterative solution. Re-
sults were calculated for both models with approximately 250, 000 states without
truncation of negligible values.

multiplications carried out during analysis. Figure 1 shows the total number
of complex multiplications required by each of the three implementations to
solve the Voting and Web-server models for a range of state space sizes, and
Table 1 summarises these figures as percentages. These results demonstrate that
truncation significantly reduces the amount of complex multiplication needed
for the iterative passage time algorithm. Furthermore, we can observe that in
both models the saving becomes larger as we increase the size of the model,
which implies that truncation is likely to be scalable for SMPs in general.

Of particular interest is the difference in performance of the SPARSE imple-
mentation between the Voting and Web-server models. In the Voting model
it performs approximately half the number of multiplications of SMARTA, but
for the Web-server model the saving is only of the order of 10%. We believe
this is due to the particular passage time selected for analysis; in the example

Voting model Web-server model
(1 100 000 states) (1 000 000) states

Method Run-time % of SMARTA Run-time % of SMARTA
(seconds) run-time (seconds) run-time

SMARTA 5 475 100% 10 024 100%
SPARSE 4 756 87% 18 120 180%
TRUNC 2 167 40% 5 370 54%

Table 2: Running times for the three implementations on two specific models.

chosen for the Voting model there is only a single start state, and hence the
vector α contains only one non-zero entry, while for the Web-server example
there are multiple start states. The passage time in the Voting model also has
more target states, and because these are made absorbing to ensure only first
passage times are calculated this renders a larger proportion of the state space
unreachable. As shown in Figure 2, therefore, the vector ν(k) fills in much faster
in the Web-server example, and hence the savings from only storing non-zeros
elements of ν(k) are smaller. The solution for the Web-server model also takes
more iterations than for Voting models with the same number of states, and
this further increases the number of multiplications performed. We will con-
duct further experiments with a range of passage time measures to investigate
the effect that the proportion of source and target states has on vector fill-in.

Secondly, we compare the running times of the three different implementations.
Table 2 shows the time taken to conduct iterative passage time analysis for two
specific models on an Intel Core2 Duo 2.66GHz. In both models 165 Laplace
transform samples were calculated with a convergence precision ε = 10−16. Note
that as described in [9] SMARTA is a parallel program featuring a master-slave
architecture; to allow comparison with the serial SPARSE and TRUNC imple-
mentations it was run with a single slave process that performed all complex
multiplications itself.

Once again the performance of SPARSE stands out. For the Voting model it
displays a lower running time than SMARTA, but for the Web-server model it
actually takes longer than the original implementation. We believe this is due
to the added overhead of accessing and maintaining the sparse representation
of ν(k) over the explicit dense representation over the vector in SMARTA. As
observed previously, ν(k) appears to fill in faster and take more iterations to con-
verge for the Web-server model compared to the Voting model, and this added
overhead of extra non-zeros outweighs the savings of not performing multipli-
cations with vector elements which are zero. In contrast, for the Voting model
the saving in multiplications is greater than the overhead of the sparse repre-
sentation. These results are particularly encouraging as previous attempts to
use sparse vector representations in the numerical solution of stochastic models
have experienced slowdowns of up to 4 orders of magnitude [7].

We also note that TRUNC displays better performance than SPARSE and
records a lower running time than the original SMARTA implementation for
both models. It is noticeable, however, that the percentage of time saved is
lower than the percentage reduction in number of complex multiplications for
the same model.

Voting model Web-server model
(1 100 000 states) (1 000 000) states

Method Run-time % of SMARTA Run-time % of SMARTA
(seconds) run-time (seconds) run-time

SMARTA 5 475 100% 10 024 100%
SPARSE-M 5 285 97% 10 282 103%
TRUNC-M 5 190 95% 9 419 94%

Table 3: Running times for the implementations which mimic sparse storage of
ν(k) on two specific models.

We also compare the running times of the sparse vector storage implementa-
tions (with and without truncation) against modified versions of SMARTA to
determine whether or not the extra overhead of the sparse representation of ν(k)

outweighs the savings in the number of multiplications which must be performed.
To accomplish this we implemented two variants of SMARTA which retained
the dense vector storage of the original implementation but attempted to mimic
a sparse vector storage scheme by checking each vector value prior to multi-
plication and only proceeding if it was non-zero. This yielded approximately
the same number of complex multiplications when calculating the passage times
in the two models as the sparse matrix implementations, but did not have the
same overheads in managing and accessing the vector.

Table 3 contains the running times for these two additional implementations,
which are denoted SPARSE-M and TRUNC-M for those which mimic SPARSE
and TRUNC respectively. We no longer observe the dramatic slow-down ob-
served in the Web-server model for SPARSE, but the need to check every el-
ement of the dense vector prior to multiplication clearly imposes an overhead
of its own (approximately 1 clock cycle per comparison, compared with the
5 clock cycles required to perform a floating point multiplication [8]). In the
case of SPARSE-M and the Voting model this overhead appears larger than
the overhead of maintaining the sparse representation of ν(k), which can prob-
ably be attributed to relatively small number of non-zero elements in ν(k) for
that model. For the Web-server model, the SMARTA-M implementation out-
performs the SPARSE implementation but is still slower than SMARTA. When
truncation is employed (in TRUNC-M) we see that the there is a small time
saving compared to SMARTA, but that this saving is much smaller than in the
sparse vector implementation of TRUNC. Clearly, therefore, the savings in the
number of multiplications which arise from storing the vector in sparse form do
outweigh the extra storage and accessing overheads.

3.3 Accuracy

Comparing the first 32 decimal places of the samples of the first-passage time
distributions produced by the three implementations using the Kolmogorov–
Smirnov statistic, we found that in all cases the maximum absolute difference
between the distributions was 0. Hence we conclude that for the examples
considered our truncation technique does not appear to have a negative impact
on the accuracy of the first-passage time distribution.

4 Conclusion

We have presented numerical optimisations to our previously-published iterative
passage time algorithm for the calculation of passage time densities and distri-
butions in semi-Markov processes. Through case studies of two semi-Markov
models of varying sizes, we have demonstrated that it is possible to discard
negligibly small values during computation, which reduces the number of multi-
plications that must be performed and hence the running time of the algorithm.
Furthermore, our results suggest that this can be done without affecting the ac-
curacy of the final result to at least 32 decimal places, at least for the examples
considered in this paper.

In the future we will investigate further improvements to our truncation tech-
nique. We will seek to reduce its overhead and thus reduce the overall time
required, with the aim that the time saving be brought more into line with the
saving in the number of complex multiplications. This might be accomplished
by relaxing Definition 1 or by increasing the frequency with which we remove
negligibly small values from ν(k). We will also revisit our investigation in [6] of
the convergence behaviour of the iterative algorithm to determine what differ-
ence truncation of negligibly small values makes. Finally, it would be interesting
to attempt to improve performance further by exploiting the multiple floating
point units and/or vector processing units found on modern multi-core CPUs.

References

[1] J. Abate, G.L. Choudhury, and W. Whitt. On the Laguerre method for nu-
merically inverting Laplace transforms. INFORMS Journal on Computing,
8(4):413–427, 1996.

[2] J. Abate and W. Whitt. The Fourier-series method for inverting transforms
of probability distributions. Queueing Systems, 10(1):5–88, 1992.

[3] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of
probability distributions. ORSA Journal on Computing, 7(1):36–43, 1995.

[4] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Dis-
tributed computation of passage time quantiles and transient state distri-
butions in large Semi-Markov models. In Proceedings of the International
Workshop on Performance Modeling, Evaluation and Optimization of Par-
allel and Distributed Systems (PMEO-PDS’03), Nice, April 26th 2003.

[5] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Perfor-
mance queries on semi-Markov stochastic Petri nets with an extended Con-
tinuous Stochastic Logic. In Proceedings of 10th International Workshop
on Petri Nets and Performance Models (PNPM’03), pages 62–71, Urbana-
Champaign IL, USA, September 2nd–5th 2003.

[6] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson. Hypergraph-
based parallel computation of passage time densities in large semi-Markov
models. Linear Algebra and its Applications, 386:311–334, 2004.

[7] P. Buchholz and P. Kemper. Compact representations of probability distri-
butions in the analysis of superposed GSPNs. In Proceedings of the 9th in-
ternational Workshop on Petri Nets and Performance Models (PNPM’01),
pages 81–90, Washington DC, USA, September 2001.

[8] Intel Corporation. Intel 64 and IA-32 architectures optimization reference
manual. Technical Report 248966-018, March 2009.

[9] N.J. Dingle. Parallel Computation of Response Time Densities and Quan-
tiles in Large Markov and Semi-Markov Models. PhD thesis, Imperial Col-
lege London, United Kingdom, 2004.

[10] N.J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, Second
edition, 2002.

[11] O. Lawlor, H. Govind, I. Dooley, M. Breitenfeld, and L. Kale. Performance
degradation in the presence of subnormal floating-point values. In Proceed-
ings of the International Workshop on Operating System Interference in
High Performance Applications, September 2005.

[12] R. Pyke. Markov renewal processes: Definitions and preliminary properties.
Annals of Mathematical Statistics, 32(4):1231–1242, December 1961.

[13] R. Pyke. Markov renewal processes with finitely many states. Annals of
Mathematical Statistics, 32(4):1243–1259, December 1961.

