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ABSTRACT
Probability distributions of response times are important in the de-
sign and analysis of transaction processing systems and computer-
communication systems. We present a general technique for deriv-
ing such distributions from high-level modelling formalisms whose
state spaces can be mapped onto finite Markov chains. We use
a load-balanced, distributed implementation to find the Laplace
transform of the first passage time density and its derivatives at
arbitrary values of the transform parameter s. Setting s = 0 yields
moments while the full passage time distribution is obtained using a
novel distributed Laplace transform inverter based on the Laguerre
method. We validate our method against a variety of simple densi-
ties, cycle time densities in certain overtake-free (tree-like) queue-
ing networks and a simulated Petri net model. Our implementation
is thereby rigorously validated and has already been applied to sub-
stantial Markov chains with over 1 million states. Corresponding
theoretical results for semi-Markov chains are also presented.

1. INTRODUCTION
Quantiles for message transmission times and other response times
are required in the design of computer-communication systems and
are often specified in on-line transaction processing benchmarks.
However, their calculation in analytic models has proved problem-
atic over a period of many years and simulation estimates are ex-
pensive to provide, especially in the tail. The Laplace transform of
(first) passage time density can be determined for arbitrary contin-
uous time Markov chains (CTMCs) as the solution of a set of linear
equations, but this route is expensive and has only been numerically
tractable for small chains. This is because there is an equation for
every state in the chain and the set of equations have to be solved at
every point required in the Laplace domain. An alternative to using
Laplace transforms is uniformization [5], but this technique does
not readily generalize to semi-Markov chains, unlike the present
study. One approach to these computational problems is to develop
approximate techniques for calculating response time distributions,
but these will be difficult to validate in the light of the above obsta-
cles. However, even a small increase in the complexity of systems
of general structure that can be analysed exactly would help to val-
idate new approximate methods.

Our contribution is to apply recent results on the solution of very
large Markov chains to this problem. We can presently solve chains
with over 100M states for their steady state probability distribution
using a combination of probabilistic techniques in the representa-
tion of states (through hashing) and a load-balanced, parallel linear
solver [17, 16]. The problem of finding the value of the Laplace
transform of a passage time density at a given point requires simi-
lar computational resources. We obtain passage time densities from
a checkpointed, distributed Laplace transform inverter which typi-
cally evaluates the transform at several hundred points. There are
also simpler ways to parallelise than to use parallel solution tech-
niques for solving linear equations. In particular, if enough points
are known at which the Laplace transform needs to be computed
(specifically at least as many points as there are processors), a lin-
ear equation solver algorithm can be run on each processor inde-
pendently. Obtaining moments is an easier problem, requiring the
solution of just one set of linear equations – given by the derivatives
of the Laplace transform at the origin – for each moment. Hence
100M state chains can be solved for passage time moments using
existing tools.

Using our techniques significant models can be solved for response
time distributions. We validate our inversion algorithm by compar-
ing with exact results for simple densities and overtake-free queue-
ing networks. These results can be obtained by analytically invert-
ing the Laplace transform of response time density. This yields a
solution in the time domain, which can be implemented efficiently
to provide directly the density function of response time at high
accuracy. In this way, our general method for numerically eval-
uating passage time distributions in Markov chains can be tested
rigorously. A further application is a Petri net model describing the
readers/writers problem, which is validated by simulation.

2. FIRST PASSAGE TIMES
2.1 First passage time equations
Consider a finite, irreducible, continuous time Markov Chain with
n states {1, 2, . . . , n} and generator matrix Q. If X(t) denotes the
state of the CTMC at time t (t ≥ 0), then the first passage time
from a source state i into a non-empty set of target states	j is:

Ti�j(t) = inf{u > 0 : X(t + u) ∈ 	j |X(t) = i} (∀t ≥ 0)

For a stationary time-homogeneous CTMC, Ti�j(t) is independent
of t, so:

Ti�j = inf{u > 0 : X(u) ∈ 	j |X(0) = i}

Ti�j is a random variable with an associated probability density



function fi�j(t) such that

Pr(a < Ti�j < b) =

∫ b

a

fi�j(t)dt (0 ≤ a < b)

Our aim is to determine fi�j(t). In effect, this involves convolving
state holding times over all possible paths (including cycles) from
state i into any of the states in the set	j. By shifting the problem into
the Laplace domain we can exploit the basic transform property that
the transform of a convolution of two functions is the product of
the transforms of those functions [2]. Another important advantage
of working with Laplace transforms is that we can derive arbitrary
moments of fi�j(t) by evaluating derivatives of Li�j(s) at s = 0 (see
Section 2.2). From the transform we can recover the value of fi�j(t)
at any t by using one of several algorithms for numerical transform
inversion. Examples of well-known numerical inversion algorithms
include the Euler, Post-Widder, Gaver and Laguerre methods [3, 4,
1, 2]. These algorithms compute fi�j(t) at a given t by evaluating
Li�j(s) at several values of s.

In general, the value of Li�j(s) can be computed by solving a set of
n linear equations that are derived using a first-step analysis:

Li�j(s) =

∫ ∞

0

e−stfi�j(t)dt

= E[e
−sT

i�j ]

=
∑
i′ /∈�j

−qii′

qii
E[e

−s(Si+T
i′�j)

] +
∑
i′∈�j

−qii′

qii
E[e−s(Si)]

=
∑
i′ /∈�j

qii′

(s− qii)
Li′�j(s) +

∑
i′∈�j

qii′

(s− qii)

i.e.

(s− qii)Li�j(s) =
∑
i′ /∈�j

qii′Li′�j(s) +
∑
i′∈�j

qii′ (1)

where Si ∼ Exp(−qii) is the sojourn time in state i (1 ≤ i ≤ n).

Expressing this system of n linear equations in standard matrix-
vector form (Ax = b) yields:



s− q11 −q12 · · · −q1n

0 s− q22 · · · −q2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s− qnn







L1�j(s)
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L3�j(s)

...
Ln�j(s)




=




0
q21
q31

...
qn1




(2)

where 	j = {1} in this case.

The problem can also be readily extended to multiple initial states.
In particular, if the probability distribution of the initial states is
known – typically the equilibrium distribution – the problem re-
duces to that of weighting the first passage time densities for each
initial state.

2.2 Moments
The nth moment of the first passage time between a given source
state i and set of target states	j is

Mi�j(n) = (−1)n
dnLi�j(s)

dsn

∣∣∣∣
s=0

This can be found by differentiating (1) n times at s = 0 and solv-
ing a similar set of equations, for n ≥ 0:

−qiiMi�j(n) =
∑
k/∈�j

qikMk�j(n) + nMi�j(n− 1) (3)

for i /∈ 	j and Mi�j(n) = 0 for i ∈ 	j. For n = 0, we have Mi�j(0) =
1 and so each set of moments can be computed iteratively.

3. EXTENSION TO SEMI-MARKOV CHAINS

3.1 Problem definition
Consider a Markov renewal process {(Xn, Tn) | n ≥ 0} where Tn

is the time of the nth transition (T0 = 0) and Xn ∈ S is the state
at time T+

n . Let the kernel of this process be

R(n, i, j, t) = P (Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i)

for i, j ∈ S. The continuous time semi-Markov process (CTSMC)
defined by the kernel R is then Y (t) = Xn where n is the non-
negative integer for which t ∈ [Tn, Tn+1). We consider time
homogeneous CTSMCs, in which R(n, i, j, t) is independent of
n; we write it R(i, j, t). The first passage time between a given
source state i and set of target states 	j then has a density function
with Laplace transform Li�j(s) given by the following equations,
analogous to (1) for Markov chains,

Li�j(s) =
∑
k/∈�j

r∗ik(s)Lk�j(s) +
∑
k∈�j

r∗ik(s) (4)

where r∗ik(s) is the Laplace-Stieltjes transform of R(i, k, t), i.e.

r∗ik(s) =

∫ ∞

0

e−stdR(i, k, t)

Here, Laplace transform inversion has higher complexity in gen-
eral since all of the coefficients in the linear equations are complex
functions of s. However, if Xn+1 depends only on Xn and not
Tn+1 − Tn (i.e. the next state depends only on the current state,
not the holding time in the current state),

R(n, i, j, t) = pijHi(t)

where pij = P (Xn+1 = j | Xn = i) is the state transition proba-
bility between states i and j andHi = P (Tn+1−Tn ≤ t |Xn = i)
is the state i holding time probability distribution. Thus, in the
special case of a Markov process, pij = −qij/qii and Hi(t) =
1 − eqiit. Denoting the Laplace-Stieltjes transform of Hi(t) by
h∗

i (s), we then get

Li�j(s)/h
∗
i (s) =

∑
k/∈�j

pikLk�j(s) +
∑
k∈�j

pik (5)

The complex numbers then only appear in the diagonal elements of
the matrix equations and the analysis mirrors that of the Markovian
case.

3.2 Moments
Assuming the derivatives of r∗ik(s) exist at the origin, we write

mik(n) = (−1)n dnr∗ik(s)

dsn

∣∣∣∣
s=0



for the nth moment of the holding time in state i with next state k.
Hence we get, using Leibnitz’ rule,

Mi�j(n) =
∑
k/∈�j

n∑
r=0

(
n
r

)
mik(r)Mk�j(n− r) +

∑
k∈�j

mik(n)

=
∑
k/∈�j

n∑
r=1

(
n
r

)
mik(r)Mk�j(n− r) +

∑
k/∈�j

pikMk�j(n) +
∑
k∈�j

mik(n) (6)

for i /∈ 	j and Mi�j(n) = 0 for i ∈ 	j, where pik = r∗ik(0) ≡
mik(0). The first and third terms on the right hand side will be
known prior to the iteration, facilitating a straightforward iteration
that solves a set of linear equations at each step.

When state holding times are independent of the next state, we have

mik(n) = pikmi(n)

where mi(n) = (−1)n dnh∗
i (s)

dsn

∣∣∣
s=0

is the nth moment of the

holding time in state i. Instead of Eq. 6, we now have, by dif-
ferentiating Eq. 5, the simpler

Mi�j(n) +
n∑

r=1

(
n
r

)
Mi�j(n− r)ui(r) =

∑
k/∈�j

pikMk�j(n) (7)

where ui(r) = (−1)r dr

dsr [1/h∗
i (s)]

∣∣∣
s=0

We can calculate the ui(r)

as follows. Dropping the subscript i for now, let y(s) = 1/h∗(s).

Denote the jth derivative of y(s) by y(j) ≡ djy
dsj (j ≥ 0) and h∗(j)

similarly. Then, differentiating r times the equation y(s)h∗(s) = 1
yields

r∑
j=0

(
r
j

)
h∗(j)y(r−j) = 0

for r ≥ 1, so that

h∗y(r) = −
r∑

j=1

(
r
j

)
h∗(j)y(r−j)

Setting s = 0 and recalling that h∗(0) = 1, we obtain

ui(r) = −
r∑

j=1

(
r
j

)
mi(j)ui(r − j) (8)

ui(0) = 1

This simple recurrence allows all of the ui(r) terms to be pre-
calculated for every i ∈ S and required moments r ≥ 0.

4. PASSAGE TIME DENSITIES
4.1 The Laguerre Method for Laplace Trans-

form Inversion
The Laguerre method [1] (sometimes also referred to as Weeks’
method) represents a function f(t) in terms of its Laplace trans-
form L(s) as the sum

f(t) =

∞∑
n=0

qnln(t)

where:

• the qn are the Laguerre coefficients, given by the Cauchy
contour integral

qn =
1

2πi

∫
Cr

Q(z)/zn+1dz (9)

In Eq. 9 Q(z) is the Laguerre generating function given by

Q(z) =
∞∑

n=0

qnz
n = (1 − z)L

(
1 + z

2(1 − z)

)
(10)

and Cr is a circle about the origin of radius r (0 < r < 1)
such that Q(z) is analytic in {z : |z| < r}.

• the ln(t) are the Laguerre functions, which can be calculated
in a numerically stable way from the recursion:

ln(t) =

(
2n− 1 − t

n

)
ln−1(t) −

(
n− 1

n

)
ln−2(t)

starting with l0(t) = e−t/2 and l1(t) = (1 − t)l0(t) [1].

4.2 Convergence of the Laguerre Series
As noted in [1], |ln(t)| <= 1 for all n and t and ln(t) approaches 0
as n → ∞. However, the latter rate of convergence is very slow so
the convergence of the Laguerre series effectively depends on the
decay rate of qn as n → ∞. If f is continuous and has continuous
derivatives, convergence of the Laguerre coefficients is rapid. In
the context of Markov chains, this is typically the case since pas-
sage time densities are smooth functions, namely weighted convo-
lutions of exponential densities. However, lack of smoothness in f
and in its derivatives (for example in the context of semi-Markov
chains) can lead to particularly slow convergence of the Laguerre
coefficients [12].

Slow convergence of the qn coefficients can often be addressed by
exponential damping and scaling using two real parameters σ and
b [18]. The idea is to apply the Laguerre inversion algorithm to the
function:

fσ,b(t) = e−σtf(t/b)

Then f(t) can be recovered as:

f(t) = eσbtfσ,b(bt).

The corresponding Laguerre generating function for fσ,b(t) is

Qσ,b(z) =
b

1 − z
L

(
b(1 + z)

2(1 − z)
+ bσ

)
.

Suitable scaling parameters can be automatically determined using
the simple algorithm presented in Fig. 1. This algorithm is based
on the heuristic observations in [1] that increasing b (up to a given
limit) can significantly lower the ratio |qn|/|q0|, and our own ob-
servation that excessive values of the damping parameter σ can lead
to numerical instability in finite precision arithmetic.

It may be that no suitable scaling parameters can be found (because
of discontinuities in the underlying response time distribution or its
derivatives for example). In this case one alternative is to use the
Euler Laplace transform inversion method [3] instead. The Euler
method is able to handle discontinuities well but requires substan-
tially more computation – of the order of 50 distinct evaluations of
L(s) for each t point are required.



σ = 0
b = 1
while |q200| > 10−10 or |q201| > 10−10 do begin

if σ = 0 then
σ = 0.001

else
σ = 2σ

if σ > 0.2 then begin
b = b + 4
if b > 10 then

terminate(“no suitable parameters were found”)
σ = 0

end
end

Figure 1: Algorithm for automatically determining scaling pa-
rameters

4.3 Computing the Laguerre coefficients
The most computationally intensive part of the Laguerre algorithm
is the computation of the qn coefficients. Making the change of
variable z = reiu in Eq. 9 gives

qn =
1

2πrn

∫ 2π

0

Q(reiu)e−inudu

This integral can be approximated using the trapezoidal rule using
p trapezoids so that

qn ≈ 1

2prn
(Q(r) + (−1)pQ(−r) +

2

p−1∑
j=1

Re(Q(re2πji/p)(e−2πnji/p)))

In [1] p = 2n trapezoids are used when calculating qn, with a sug-
gested value of r = (0.1)4/n. However, if we apply the scaling
procedure of Section 4.2 to ensure that qn has decayed to (almost)
zero by term p0 (say p0 = 200), we can instead make use of a
constant number of 2p0 trapezoids and a constant r = (0.1)4/p0

when calculating each qn. This allows us to calculate each qn with
the same or higher accuracy as in [1] while simultaneously provid-
ing the opportunity to cache and re-use values of Q(z). Since qn

does not depend on t, and each evaluation of Q(z) involves a sin-
gle evaluation of L(s), we can therefore obtain the response time
distribution at an arbitrary number of t-values at the fixed cost of
solving just 2p0 linear systems (of the form given in Eq. 2).

5. IMPLEMENTATION OF A COMPLETE
PASSAGE TIME ANALYSIS PIPELINE

5.1 Architecture
We have implemented a complete passage time analysis pipeline,
as shown in Fig. 2. Models are specified in an enhanced form of
the DNAmaca Markov Chain Analyser interface language [14, 15].
This interface language supports the specification of Queueing net-
works, stochastic Petri nets, stochastic Process Algebras and other
high-level formalisms that can be mapped onto Markov chains.

From the high-level input model, DNAmaca’s state generator uses
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Figure 2: Passage time analysis pipeline showing the detailed
operation of the distributed Laplace transform inverter

a probabilistic algorithm based on 3-level hashing [17] to produce
the generator matrix Q of the model’s underlying Markov chain, as
well as a list of the initial states (with their corresponding weight-
ings) and the target states.

Control is now passed to the distributed Laplace transform inverter,
which implements the master-slave model shown in Fig. 2. The
inverter is written in C++ and uses the Message Passing Interface
(MPI) [9] standard so it is portable to a wide variety of parallel
computers and workstation clusters. Both the Laguerre (with the
modified kernel for calculating the Laguerre coefficients described
in Section 4.3) and Euler inversion algorithms are supported.

Initially, the master simply runs through the Laplace transform in-
version algorithm (Laguerre or Euler) and notes the distinct values
of s at which L(s) will need to be evaluated. Those values of s for
which there is no value of L(s) already stored in the disk cache are
added to a global work queue.

At start-up, slave processors read into memory the generator ma-
trix Q, as well a list of the initial and target states. Each slave
processor then applies for an s-value from the global work queue.
The slave calculates the corresponding value of L(s) by solving
a set of sparse linear equations (of the form given in Eq. 2) using
an appropriate iterative numerical method; currently Gauss-Seidel,
SOR with dynamic parameter adjustment and Conjugate Gradient
Squared (CGS) are supported.

The solution of the above linear systems are currently performed in-
core, which limits the solution capacity of an individual slave pro-
cessor to around 3 million states on a 256MB machine. However,
this solution capacity could easily be increased to around 20 million
states by implementing an out-of-core solution method such as the
disk-based method described in [7]. Further, groups of slave pro-
cessors could be used to jointly solve very large systems of around
100 million states or more by implementing a parallel disk-based
solution method such as that described in [16]. Note that, for each
different value of s, it is only necessary for a slave processor to
modify the diagonal elements of its linear system so setup is rapid.



Slave processors return computed values of L(s) to the master. The
master stores the returned value in memory and disk caches and im-
mediately issues more work to the slaves if any is available. The
disk cache stores values of L(s) using both the value of s and an
MD5 checksum (i.e. a 128-bit collision-resistant fingerprint) of
the original high-level model file (as provided by the UNIX util-
ity md5sum) as the key. This mechanism avoids redundant work
by ensuring that no slave will have to recompute a value of L(s)
that has been previously computed for a given model at any point
in the past. It also provides a convenient distributed checkpointing
mechanism so that parallel jobs that are interrupted can be rapidly
restarted without losing work already done.

5.2 Density functions
When all values of L(s) have been computed, the master runs
through the Laplace transform inversion algorithm again, this time
performing all calculations and obtaining any values ofL(s) needed
from the memory cache. The resulting points on the passage time
distribution curve are written to a disk file, and displayed using the
GNUplot graph plotting utility.

5.3 Moments
The moments analyser uses Eq. 3 to generate and solve a set of
linear equations for each moment required. These are solved se-
quentially on a single PC, since the nth moment depends on the
(n− 1)th moment. As before, for very large chains of the order of
100 million states, we could apply a parallel linear equation solver.
Note that, for semi-Markov chains, the calculation of the nth mo-
ment requires all moments from 1 to n− 1.

5.4 Scalability
The distributed Laplace transform inverter described above is highly
scalable for two reasons. Firstly, tqhe amount of communication
performed is minimal and depends only on the number of slave
processors used (and not on the problem size). Secondly, The sin-
gle global work queue with multiple servers ensures a good load
balance and very high utilization of slave processors.

For moment calculations, scalability is not applicable unless a par-
allel linear equation solver is used. If this is the case, scalability is
not as impressive because of the higher communication load [16].

6. SIMPLE NUMERICAL RESULTS
6.1 Erlang-3
We begin by validating our analyser on a very simple example. On
the left in Fig. 3 is a simple 3-stage Erlang distribution with param-
eter λ = 2. The closed-form analytical expression for the cycle
time density function in this system is well-known to be

f(t) = λ3t2e−λt/2!.

As shown on the right in Fig. 3, the numerical cycle time density
determined by our tool matches this analytical result. The moments
analyser calculates the first three moments of the passage time as
1.5, 3 and 7.5 respectively, agreeing with their theoretical values
exactly.

6.2 Branching Erlang
We now move on to a slightly more complicated example which
shows the ability of the analyser to cope with bimodal passage time
curves. Fig. 4 shows a system with two alternative branches, each
of which is selected with equal probability. One branch is a 3-stage

Erlang distribution with parameter λ1 = 1.0; the other is a 12-
stage Erlang distribution with parameter λ2 = 2.0. The analytical
expression for the cycle time density in this case is:

f(t) =

(
λ3

1t
2e−λ1t

2!
+

λ12
2 t11e−λ2t

11!

)
/2

Agreement between numerical and analytical results is once again
excellent, as shown on the left in Fig. 5. The moments analyser
again correctly calculates the first three moments of the passage
time as 4.5, 25.5 and 166.5.

To validate the analyser for a case where the initial and target states
are different, we consider the passage time from the first to the last
stage in the upper branch (i.e. from the stage marked light green
to that marked dark red). This has an Erlang-11 distribution, as
confirmed by the numerical and analytical passage time distribution
shown on the right in Fig. 5. The corresponding first three moments
are 5.5, 33 and 214.5.

7. MORE COMPLEX APPLICATIONS

7.1 Cycle times in queueing networks
We now consider, as a more complicated example, cycle times in
closed tree-like Markovian queueing networks with first come first
served queueing discipline at each node [10]. These are charac-
terised by a unique root node and unique paths to a set of leaf nodes
from each of which departures proceed to the root. Hence the term
“tree-like”, an instance of overtake-free [13, 8] networks. The re-
sponse time density function in this type of network can be found
analytically, while the networks can be complex and the number of
states in the underlying Markov chain can be made arbitrarily large
by increasing the number of nodes or the customer population. It
is therefore ideal for validation of our passage time analyser which
works directly on the underlying Markov chain.

In this section we derive the response time density function in the
time domain and use this in the following section for validation.
Consider a closed tree-like network with M nodes and population
N , in which node i has service rate µi and visitation rate (propor-
tional to) vi, 1 ≤ i ≤ M . The routing probability from node i
to node j �= i, i.e. the probability that a customer leaving node i
next visits node j, is pij(1 ≤ i, j ≤ M ). Let G be the network’s
normalising constant function for the joint equilibrium state proba-
bilities, i.e. at population n,

G(n) =
∑

∑M
i=1 ni = n
ni ≥ 0

M∏
i=1

xni
i

where xi = vi/µi. Without loss of generality, the root node is
numbered 1 and we define the cycle time random variable to be
the elapsed time between a customer’s successive arrival instants at
node 1. Then we have the following result [10, 13, 8].

THEOREM 1. For the above closed treelike network, the Laplace
transform of the cycle time density function, conditional on choice
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of path z = (z1, z2, . . . , zm) (m ≤ M ) is

L(s|z) =
1

G(n− 1)
×

∑
∑M

i=1 ui = n− 1
ui ≥ 0

M∏
i=1

xui
i

m∏
j=1

(
µzj

s + µzj

)uzj
+1

where z1 = 1, zm is a leaf node and pzizi+1 > 0 for 1 ≤ i ≤
m− 1.

Without loss of generality, we take zi = i for 1 ≤ i ≤ m, i.e. we
consider the path 1, . . . ,m. First, we can simplify the summation
giving L(s|z) by partitioning it over the state space according to
the total number of customers, c, at servers in the overtake-free
path 1, 2, ...,m. This gives:

L(s|z) =
1

G(n− 1)

n−1∑
c=0

Gm(n− c− 1) ×

∑
∑m

i=1 ni = c
ni ≥ 0

m∏
i=1

xni
i

m∏
j=1

(
µj

s + µj

)nj+1

where Gm(k) is the normalising constant of the whole network
with servers 1, . . . ,m removed and population k ≥ 0, i.e.

Gm(k) =
∑

∑M
i=m+1 ni = k
ni ≥ 0

M∏
i=m+1

xni
i

Now, the Laplace transforms in the inner sum are products of the
Laplace transforms of Erlang densities. Moreover, their coeffi-
cients are geometric. Such transforms can be inverted analytically.
In the simplest case, all the servers on the overtake-free path are
identical, i.e. have the same rate, and the inversion can be done by
inspection [11]. In the case that the µi are all distinct (1 ≤ i ≤ m),
the density function is given by the following theorem, modified
from that of [10].

THEOREM 2. If the servers in an overtake-free path (1, 2, ...,m)
have distinct service rates µ1, µ2, ..., µm, the passage time density
function, conditional on the choice of path, is
∏m

i=1 µi

G(n− 1)

n−1∑
c=0

Gm(n− c− 1) ×
m∑

j=1

e−µjt∏
1≤i�=j≤m(µi − µj)

c∑
i=0

(vjt)
c−i

(c− i)!
Km(j, i)

where Km(j, ·) is the normalising constant function for the sub-
network comprising only nodes in the set {1, . . . ,m}\{j} with
the ratio xk = vk/µk replaced by

vk−vj

µk−µj
for 1 ≤ k �= j ≤ m, i.e.

Km(j, l) =
∑

∑m
i=1 ni = l

ni ≥ 0;nj = 0

m∏
k = 1
k �= j

(
vk − vj

µk − µj

)nk

Km(j, l) is just a normalising constant that may be computed effi-
ciently, along with Gm(n− c−1) and G(n−1), by Buzen’s algo-
rithm [6]. Thus we define the recursive function k, for real vector

y = (y1, . . . , ya) and integers a, b (0 ≤ a ≤ M, 0 ≤ b ≤ N−1)
by:

k(y, a, b) = k(y, a− 1, b) + yak(y, a, b− 1) (a, b > 0)

k(y, a, 0) = 1 (a > 0)

k(y, 0, b) = 0 (b ≥ 0)

Then we have

Gm(l) = k(xm,M −m, l) (0 ≤ l ≤ n− 1)

G(n− 1) ≡ G0(n− 1) = k(x,M, n− 1)

Km(j, l) = k(wj ,m− 1, l)

where x = (x1, . . . , xM ),xm = (xm+1, . . . , xM ) and, for 1 ≤
j ≤ m,

(wj)k =

{
(vk − vj)/(µk − µj) if 1 ≤ k < j
(vk+1 − vj)/(µk+1 − µj) if j ≤ k < m

7.2 Numerical validation
We now use the distributed tool described in Section 5 to numeri-
cally compute the cycle time density for a path in the closed tree-
like network shown in Figure 6. The results are then compared with
the analytical results of the previous section.

p12 p13 p14

q1

q2 q3 q4

q5 q6

Figure 6: A tree-like network and its routing probabilities

This network has six servers with rates µ1, . . . , µ6, non-zero rout-
ing probabilities as shown and variable customer population. Thus
the visitation rates v1, . . . , v6 for servers 1 to 6 are respectively
proportional to: 1, p12, p13, p14, p12, p14.

The graph on the left in Fig. 7 presents the numerical and ana-
lytical cycle time distributions for an 18 customer system. Here
{µ1, µ2, µ3, µ4, µ5, µ6} = {3, 5, 4, 6, 2, 1} and {p12, p13, p14} =
{0.2, 0.5, 0.3}. In order to track a tagged customer through the
system, the state vector is augmented by 3 extra components: the
queue containing the tagged customer, the position of the tagged
customer in that queue, and the cycle sequence number (an alternat-
ing bit, flipped when the tagged customer joins q1). Because of the
job observer property (see, for example, [11] pp. 241), the initial
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Figure 7: Numerical and analytical cycle time distribution for the tree-like queueing network of Fig. 6 with 18 customers (left) and
numerical and simulated cycle time distribution for 18 customers in the same queueing network when overtaking between q3 and q6
is introduced (right).

states are weighted according to their steady state probabilities in
the same network with population 17. The Markov Chain underly-
ing the augmented model has 1 211 364 states and 8.5 million tran-
sitions, and the numerical cycle time distribution was calculated in
26 minutes using 32 slave PCs (each of which has a 1.4GHz AMD
Athlon processor and 256MB RAM). No scaling was required and
59 Laguerre coefficients were used. Agreement between the nu-
merical and analytical cycle time distributions is excellent, with
relative errors of under 0.0001% well into the tail. The correspond-
ing first three moments of the cycle time can be calculated by the
moments analyser in 5 minutes 3 seconds on a single PC, and are
6.12717, 53.3067 and 612.887.

The graph on the right of Fig. 7 shows the effect of introducing an
overtaking path between nodes 3 and 6 such that p36 = 0.9 and
p31 = 0.1. The resulting distribution cannot be calculated with
known theory, but can be numerically determined using our tech-
nique. The numerical results compare favourably with a simulated
cycle time curve. Now the corresponding cycle time moments are
calculated in 3 minutes 53 seconds as 13.5, 245.717 and 4812.96.

7.3 Applications to Stochastic Petri nets
passive
readers

active
readers

active
writer

passive
writern

n
n

n

semaphore

Figure 8: A Stochastic Petri net of the readers-writers problem

Our approach can equally be applied to other high-level formalisms
whose state spaces map onto Markov chains. As an example, Fig. 8

shows a Petri net model of the readers-writers problem. Fig. 9
shows the resulting distribution and moments of the cycle time for
various numbers of readers. The well-known problem of writer
starvation as the number of readers increases is very evident. A
simulation of the cycle time distribution is used to validate our re-
sults for the case of 2 readers.

8. CONCLUSION
We have developed numerical algorithms based on Laplace trans-
forms which compute moments and density functions of first pas-
sage time distributions in large Markov chains. Hitherto progress
in this area has been limited and the problem largely unattempted
due to a lack of widely available computing power. Using contem-
porary high-performance parallel computer systems together with
tailored linear solvers, the moments of passage times can now be
obtained for Markov chains with over 100 million states. Further-
more, our highly scalable and checkpointed distributed algorithm
of Section 5.1 makes it possible to compute passage time density
functions for systems with 20 million states, using only a vanilla
networked PC cluster. This degree of scalability is made possi-
ble by our choice of the Laguerre algorithm for Laplace transform
inversion, which uniquely uses a relatively small number of pre-
computed Laplace transform evaluations at every t point. We have
further reduced the number of pre-computed evaluations required
through our customized computation of the Laguerre coefficients
described in Section 4.3. The alternative approach of using uni-
formization to compute passage time densities is much less scalable
(being based on matrix multiplication operations) and does not ex-
tend to semi-Markov processes.

We have successfully implemented a complete passage time analy-
sis pipeline and validated our results on Markov chains arising from
both queueing networks and Petri nets. In our examples, we have
used an in-core linear solver to deal with Markov chains of up to
1.2 million states on a 256MB machine. With the implementation
of a standard out-of-core linear solver, 20 million states would be
attainable; above this a parallel linear solver is needed.
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Figure 9: Distribution of writer cycle time for various numbers of readers (n) (left) and corresponding cycle time moments (right)

Using state vector augmentation, response times specified in a high-
level formalism can be analysed by mapping onto first passage
times in the underlying Markov chain. We have tool support for
specifying augmented state vectors, initial and target states, and
the range of t-values over which the density should be computed.

Finally, we have shown in principle how to extend the theory to
semi-Markov chains. This should find application in, amongst other
areas, the analysis of passage times in Generalized Stochastic Petri
net models.
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