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Abstract

Stochastic performance models are widely used to analyse the performance and reliability of

systems that involve the flow and processing of customers. However, traditional methods of

constructing a performance model are typically manual, time-consuming, intrusive and labour-

intensive. The limited amount and low quality of manually-collected data often lead to an

inaccurate picture of customer flows and poor estimates of model parameters. Driven by ad-

vances in wireless sensor technologies, recent real-time location systems (RTLSs) enable the

automatic, continuous and unintrusive collection of high-precision location tracking data, in

both indoor and outdoor environment. This high-quality data provides an ideal basis for the

construction of high-fidelity performance models.

This thesis presents a four-stage data processing pipeline which takes as input high-precision

location tracking data and automatically constructs a queueing network performance model

approximating the underlying system. The first two stages transform raw location traces into

high-level “event logs” recording when and for how long a customer entity requests service from

a server entity. The third stage infers the customer flow structure and extracts samples of time

delays involved in the system; including service time, customer interarrival time and customer

travelling time. The fourth stage parameterises the service process and customer arrival process

of the final output queueing network model.

To collect large-enough location traces for the purpose of inference by conducting physical ex-

periments is expensive, labour-intensive and time-consuming. We thus developed LocTrack-

JINQS, an open-source simulation library for constructing simulations with location awareness

and generating synthetic location tracking data.

Finally we examine the effectiveness of the data processing pipeline through four case studies

based on both synthetic and real location tracking data. The results show that the methodology

performs with moderate success in inferring multi-class queueing networks composed of single-

server queues with FIFO, LIFO and priority-based service disciplines; it is also capable of

inferring different routing policies, including simple probabilistic routing, class-based routing

and shortest-queue routing.
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Chapter 1

Introduction

1.1 Motivation

Stochastic models, such as queueing network and Petri nets, have been widely used to model

and evaluate the critical performance characteristics – availability, reliability, responsiveness

and efficiency – of systems in which a network of service centres process the flow of customers

requesting services and resources. Such models are mathematical abstraction of the underlying

systems; they not only identify bottlenecks existing in the systems and but also monitor if the

QoS (quality of service) targets are being satisfied. They are also a powerful “virtual labo-

ratory” for exploring the impact on performance given changes to those systems in customer

flows, the number and allocation of resources, system workload, scheduling policies and so on.

Stochastic models have seen a broad range of applications in computer network and telecom-

munication systems [15, 28, 122], public transportation systems [112, 114, 118, 55, 56, 110, 141],

healthcare systems [104, 101, 3, 8, 45, 139, 85, 22, 21] and manufacturing systems [32, 33, 80].

Traditionally, constructing a performance model involves four major steps: conceptualisation,

parameterisation, validation and analysis. The first two steps are essential in building an ac-

curate model and thus crucial in giving confidence in the output of subsequent steps. Many of

previous studies based their model construction on a prior knowledge of the system structure,

1
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assumptions made from human observations and manually-collected data [45, 104]. Some of

them largely simplified the model structure for the purpose of obtaining analytical closed-form

results. As a result, the generated models are limited to a very high level. It is difficult to use

such high-level models to identify hidden or previously-unknown bottlenecks in the system or

to capture the complex interactions among various entities in many real-life systems. Neither

can they reflect the changes of arrival and service rates dependent on the time of the day or

other conditions. Furthermore, traditional data collection techniques, such as time and motion

studies, involve tedious manual tasks such as inspection of video footage, questionnaires, man-

ual collection of timing data, personnel interviews, all of which may disrupt the natural entity

flow in the system. This data gathering process is not only time consuming, expensive, but,

more importantly, often introduces human bias and errors, which makes the constructed model

difficult to validate. For example, previous work on modelling patient arrival patterns and

response times in an Accident and Emergency department by S. Au-Yeung [22, 21] exemplified

the difficulties of model construction (particularly accurate parameterisation) and validation

using manually-collected data. While there was good agreement between mean response times

emerging from both the model and the data, the distributions of response times were not well

matched, and there was no straightforward way to identify the causes of discrepancies.

Over the past few decades, the advances in electronics and telecommunications have brought

a wide variety of technologies, such as video imaging system, inductive loop detectors and

weight-in-motion (WIM), that allow high-quality data to be collected automatically and con-

tinuously. In particular, thanks to the rapid development in wireless technologies, as well as the

popularisation of sensor-enabled mobile devices, we are approaching an era of the “Internet of

things” [18] – where a wide range of heterogeneous physical objects are linked through wireless

networks and able to communicate with each other. The physical world itself then becomes

a type of information system, churning out large amount of real-time observations for analy-

sis at much lower costs. These physical information networks/systems have become powerful

tools that help us not only gain a much enhanced understanding of our environment; but also

able to respond to changes, abnormality, insufficiency or inefficiency more promptly and with
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better “intelligence”. The unprecedented volume and high-quality of information captured by

these sensor-enabled networks, combined with theories/techniques in Data Mining, Machine

Learning and statistical inference, lay the foundation for many emerging research areas such as

“embedded intelligence” [71] or “people-centric sensing” [40], where computers can estimate,

understand and then predict human behaviour, as well as interactions among entities in the

environment, without minimal human intervention. For example, in response to the growing

ageing population, research efforts such as [115, 72, 121, 98] have been devoted to construct

sensor-enabled intelligent systems in domestic environments that can assist activities of daily

living (ADL); these studies aim to provide solutions ensuring the quality and safety of domestic

life for the elderly.

Real-time location tracking and location-aware services is another area that has received great

attention in both academia and industry, thanks to the emergence of enabling wireless posi-

tioning technologies. Over the past decade, GPS (global positioning system) has been the most

popular and widespread positioning system. In addition to traditional navigation, it has en-

abled numerous commercially successful applications offering location-based (or location-aware)

services. Examples include real-time traffic updates [136], local business search services [62],

nearest parking lot availability search [63], location-based business advertisements etc. How-

ever, due to the requirement of a clear sky view for receiving satellite signals, GPS fails to

function properly in many daily environments, such as indoor spaces or urban environment.

As people spend most of their time indoors, indoor tracking services, which require high data

precision and resolution, is expected to create unprecedented opportunities for business [52].

Accurate indoor positioning is more challenging as there are various obstacles (such as walls,

metal objects, mirror, furniture and human bodies) disrupting the propagation of electromag-

netic waves and causing multi-path effects. Only recently has indoor positioning reached the

sub-metre accuracy (e.g. Ubisense [131], active badge [135], Cricket [50, 117, 116]); we are thus

approaching the level of ubiquitous location-awareness. The deployment of real-time location

systems (RTLSs) in both outdoor and indoor environments have been growing at an astonish-

ing rate over the past decade. A wide variety of applications in areas across transportation,
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manufacturing, supply chain, urban planning and healthcare systems have taken advantage

of the rich location information collected by wireless location tracking systems to enhance

system efficiency and responsiveness, reduce wastes and improve personnel safety or security

[73, 13, 138, 41].

Motivated by the availability of high-precision location data and the much improved visibility it

offers to the underlying systems, this research aims to develop a data-processing methodology

that takes advantage of high-precision location tracking data obtained with real-time location

systems and generates a queueing network model that can accurately describe the underlying

system with minimum human intervention. Rather than relying solely on the modeller’s per-

ception of how the process “should” be, our approach for model construction is mainly driven

by observations from the actual process and the resulting models are thus more subjective.

Through automating the processes of conceptualisation, parameterisation and validation of per-

formance models, the time as well as human resources spent in the model construction pipeline

is expected to be largely reduced. Automation of model construction processes, continuously

fed with large amount of real-time observations, makes it possible to construct performance

models based on most recent updates from the monitored systems, instead of long-term his-

torical data. The generated models can thus reflect the most recent status of the system and

support fast decision-making in response to sudden changes in the system. As an ultimate goal,

we expect most applications of our methodology in managing systems with complex customer

flows, high volatility in customer demands and stringent response time requirements.

Raw location tracking data, defined in this research as a spatiotemporal dataset giving the

observed locations of tags at various times, usually contains noise and other extraneous infor-

mation. Appropriate data processing methodologies are thus necessary for extracting useful

information from it. Some previous research endeavours (such as [65], [66] and [67]) have been

made in designing new data models for RFID data warehousing and processing; such models

facilitate inferring high-level information, such as probabilistic item flows, from raw, low-level

RFID data. However, RFID is different from other wireless technologies such as sensor network
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in that the location of an RFID-tagged item is identified with the RFID reader that detects

it. This is because a tagged item’s location can only be known when it is scanned by an RFID

reader, whose location is usually fixed and known in advance. By contrast, in the latter case,

the location data is simply a time-stamped trace of tagged entities’ geographical locations. The

spatial relationships and interactions between tagged entities must be inferred on the basis of

proximity or otherwise. We argue that next few years will see increasing deployments of In-

ternet of things systems for entities tracking in large-scale systems. Recently the London City

Airport launched the pilot project taking advantages of multi-modal data collected through the

interconnected sensor network and data hub to track, understand and better manage passenger

flow and behaviour at the airport. The aim is to enable interactions with passengers at key

touch points across the airport through various location-specific services [97].

The developed methodology in this research is based around a four-stage data-processing

pipeline, which takes raw high-precision location tracking data as initial inputs and outputs

a queueing network model that can best describe the underlying systems (see Figure 1.1).

The final output queueing network model can be used as the base model for analytical or

simulation-based performance analysis; the application of the final output queueing network

model is however beyond the scope of this research. Since this is an extremely broad and chal-

lenging problem for customer-processing systems in general, for the present stage we restrict

ourselves to systems with multiple customer classes, single-server service and service disciplines

including FIFO, LIFO and priority-based. In terms of the customer flow structure, we only

consider three routing policies: probabilistic routing, class-based routing and shortest-queue

routing.

Although the ultimate goal of this research is to apply the developed methodology to per-

formance analysis of real-life systems, it is necessary, in the development process, to test the

accuracy of the data processing pipeline against a system whose underlying processes are fully

understood. As one can only has the “perception” of how the dynamics of a real-life system

should be, instead of the true reality, we can only evaluate our methodology through either
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Figure 1.1: The overview of the goal of this research

experiments or simulations. At the initial stage of this research, four experiments have been

conducted; in each of them a simple queueing network system with at most two service cen-

tres was designed. While the location data collected from the experiments are sufficient for

inferring the statistical characteristics in simple queueing systems with only one service centre,

it is not the case for scenarios with more service centres existing in the system [76]. The in-

stallation and execution of experiments are also time-consuming and labour-intensive. Under

tight constraints on hardware equipments and human resources, it is difficult to conduct long-

hour and large-scale experiments to collect sufficient data for inferring more complex features.

Model construction usually requires large amount of data for parameter estimation, especially

for systems involving multiple customer classes and multiple servers employing different service

disciplines. While expanding the variety of features the data processing pipeline can infer, we

also need location tracking data collected from systems with various settings on service times,

customer interarrival times, service disciplines and routing policies. This research is thus moti-

vated to develop LocTrackJINQS, a location-aware simulation tool that can rapidly produce

large amounts of location tracking traces from systems with different user-defined scenarios and
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settings. In addition to providing an efficient approach for generating location tracking data

for evaluation purpose, LocTrackJINQS can be easily extended for different applications or

general location-based research.

1.2 Objectives

The primary objects of this research include:

• To develop a methodology that takes high-precision location tracking data (either from

simulation or collected by a real-time location tracking system) as inputs and automati-

cally constructing a detail and realistic queueing network model for either a real-life or a

simulated customer-processing system. The inferred queueing network model should be

able to reflect:

– The structure of the customer flow in the system.

– The service time distribution at each service centre.

– The service discipline adopted at each service centre.

– The travelling time distribution between each pair of connecting service centres.

The methodology also identifies the approximate location and size of each service area;

it can further discover previously unknown bottleneck in the system.

• To develop a simulator tool that can generate spatiotemporal location data under differ-

ent user-defined settings regarding the system layout, service process (in terms of service

time and service discipline), customers’ interarrival time distributions and customer clas-

sifications. The tool does not only serve for the purpose of our research; it also aims to

facilitate general location-based research.
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1.3 Contributions

1.3.1 Inferring Queueing Network Models from High-precision Lo-

cation Tracking Data

In this research we have developed a methodology based around a four-stage data processing

pipeline. The initial input of the pipeline is raw high-precision location tracking data, either

collected by a RTLS or generated through simulation. The final output is an inferred queueing

network characterising the customer flow, customer arrival pattern (customer interarrival time)

and different time delays incurred in the system (service time and customer entities’ travelling

time between service centres).

The first stage of the data processing pipeline performs basic data cleaning and interpolation.

The second stage infers the approximate location of each service centre as well as the size of its

associated service area. This stage uses the geographical proximity of tagged customer entities’

to the approximated service areas’ locations to identify their spatiotemporal relationships and

decide if a customer entity is present in a particular service area or it is travelling between ser-

vice centres. The first part of the third stage extracts samples of service times in each service

area, samples of travelling times between each pair of service areas and samples of customer

interarrival time. By mining the tagged customer entities’ paths in the system, the second part

of this stage creates the initial structure of the queueing network model. The final stage of

the pipeline fits a hyper-Erlang distribution to each extracted time sample using the G-FIT

tool [130] and finalises the structure of the output queueing network accordingly. It also infers

routing policies and service disciplines adopted at each service centre. Together, these yield a

parameterised queueing network model representing the underlying system.

To evaluate the accuracy of the developed data processing pipeline, this research conducts

three case studies based on synthetic data generated through simulations of queueing systems
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with known system structure and parameters. In order to evaluate how the data processing

pipeline performs in the presence of noisy real-time location tracking data, another case study

is conducted based on location traces collected in an experiment environment. The inferred

probabilistic models for characterising customer interarrival time and service time are specified

as hyper-Erlang distributions. The goodness-of-fit test results presented in the case studies have

shown that our data processing pipeline can find the hyper-Erlang distributions that fit well

the extracted time delay samples. The first and second moments of the inferred hyper-Erlang

distributions are also within small deviations from the true values; which means that the inferred

hyper-Erlang distributions exhibit similar probabilistic characteristics as the true underlying

distributions. Simulation-based response time analysis is also conducted in the first three case

studies based on synthetic data to evaluate how well the inferred queueing network model can

approximate the real underlying system in terms of performance-related measurements and

response time distributions. The results have show that the inferred queueing network models

capture well the behaviour of the true underlying system.

1.3.2 LocTrackJIQNS

This thesis presents LocTrackJINQS, a flexible and extensible spatiotemporal simulation

tool for systems that involve the flow and processing of customers at multiple service centres.

Developed based on the multiclass queueing network simulation package JINQS, LocTrack-

JINQS retains the abstract model specification power of JINQS while providing additional

low-level information concerning entity movement such as entity physical location and its speed

of movement). Beside traditional performance metrics, LocTrackJINQS produces as output

a trace of each entity’s location in the system over time. It can thus be used to generate syn-

thetic location tracking data for location-based research or applications (e.g [76], [11], [12]).
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1.4 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 presents the theories and other materials relevant to this research. The first three

sections introduce fundamental theories in stochastic processes and especially with more

details in those closely related to this research, including Poisson process, Markov Chains

and Markov process. Some important results in queueing theory are also presented, fol-

lowed by introduction on several famous queueing network models. Section 2.4 covers

elementary theories in distribution fitting and maximum-likelihood parameter estima-

tion. Section 2.5 provides an overview of phase-type distributions and their applications

in modelling traffic with heavy-tailness, which has been found common in many domains,

especially in computer and network systems. The section then focuses on hyper-Erlang

distributions, which is the type of phase-type distribution used in this research for mod-

elling time delays incurred in a system; it also introduces G-FIT, the fitting tool employed

for finding the hyper-Erlang distributions that best fit the extracted time delay samples.

Section 2.6 provides a brief introduction and comparison of common wireless location

tracking technologies. The last part of the chapter presents previous research works most

relevant to this research; especially those related to workflow mining, large RFID database

mining as well as modelling real-life systems with queueing networks.

Chapter 3 presents the four-stage data processing pipeline developed in this research. It

first gives a general description of the initial inputs and final output of the pipeline and

the function of each stage. The following sections provide details on how each stage is

implemented, including the techniques adopted/adapted and the formats of the input and

output data.

Chapter 4 presents LocTrackJINQS, the spatiotemporal simulation tool developed in this

research for the purpose of generating location tracking data through simulation. It gives

an overview of its software architecture as well as the functionalities LocTrackJINQS

supports. It compares LocTrackJINQS with its predecessor JINQS and presents the
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major extensions implemented in LocTrackJINQS; before it summarises the required

user inputs for constructing simulations with LocTrackJINQS and generated simula-

tion outputs. The chapter is concluded with a simple example demonstrating the user

interface of LocTrackJINQS and how LocTrackJINQS can be used to simulate a

real-life system.

Chapter 5 The chapter begins with introduction of the methodology adopted in this research

for demonstrating the effectiveness and accuracy of the data processing pipeline. It then

presents four case studies, three based on synthetic location data and one based on real lo-

cation tracking data collected from an experiment environment. The chapter is concluded

with analysis and discussion on the case study results.

Chapter 6 concludes the thesis by summarising the achievements of this research, discussing

potential areas of application and highlighting opportunities for future work.

1.5 Statement of Originality and Publications

I declare that this thesis was composed by myself, and that the work it presents is my own,

except where otherwise stated. The following publications arose from work conducted during

the course of this PhD:

• European Conference on Modelling and Simulation (ECMS ’09) [76] presents the

early efforts in developing a methodology toward automated inference of queueing network

models from high-precision location tracking data. It introduces the very first version of

the four-stage data processing pipeline, based on which our methodology is developed.

The pipeline estimates the structure of the network, which is specified by routing prob-

abilities and characterises the underlying interarrival and service time distributions of

its component service centres. The paper also describes four case studies in which real

location tracking data is collected (using Ubisense RTLS [131]) in a controlled experiment

environment with previously-known parameter settings (e.g. customer arrival rate and
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service rates). The paper later presents evaluation results of our method’s effectiveness

and accuracy based on data collected from the case studies. Materials from this paper

can be found in Chapter 3 and Chapter 5.

• International ICST Conference on Performance Evaluation Methodologies and

Tools (VALUETOOLS ’11) [11] presents an automated technique which takes as input

high-precision location tracking data – potentially collected from a real-life system –

and constructs a hierarchical Generalised Stochastic Petri Net performance model of the

underlying system. [11] extends the four-stage data processing pipeline introduced by [76]

but adopts GSPN as its modelling formalism. Different from [76], [11] adapts DBSCAN

clustering technique to infer the locations as well as the sizes of the service centres,

instead of assuming they are previously-known; it is thus possible to identify the hidden

bottlenecks in the system. [11] uses hyper-Erlang distributions for modelling service

time at each service centre, time intervals between two contiguous customer arrivals and

customer travelling times between a pair of service centres; G-FIT is the tool it mainly

uses for distribution fitting. Materials regarding the application of DBSCAN clustering

to identify the possible service centre locations and how this research adapts G-FIT for

finding the best-fit hyper-Erlang distributions can be found in Chapter 3.

• International Workshop on Practical Applications of Stochastic Modelling

(PASM ’11) [75] presents our work in implementing LocTrackJINQS –a Java-based

location-aware simulation tool for multiclass queueing networks. It describes the features

LocTrackJINQS inherits from its predecessor JINQS and the major extensions im-

plemented in LocTrackJINQS for the purpose of providing information on low-level

entity movement during simulation. The paper gives an overview of LocTrackJINQS’s

software architecture, followed by discussion on the implementation issues. The paper

also illustrates the possible application of LocTrackJINQS by giving a case study of

airport custom queues, which exemplifies a multiclass queueing network with customer

class-based service time distributions. The paper is concluded with future possible addi-

tions to the current version of LocTrackJINQS. Most of the materials of [75] can be

found in Chapter 4.



Chapter 2

Background

2.1 Stochastic Processes

The behaviour of a system, or a process, can often be characterised by all the possible states

it may occupy and by describing how it moves from one state to another. Thus, a system or a

process can be represented by using a stochastic process, which is defined as follows:

Definition 2.1 (Stochastic Process). A stochastic process is a family of random variables

{X (t) , t ∈ T} defined on a probability space. The parameter t usually represents time and T is

the parameter space, which can be taken as a set of points in time. The set of values of X (t)

might take, usually called the state space, represents all the possible states the stochastic process

might enter at different time points ts.

A stochastic process is said to be stationary if its state evolution does not depend on the initial

time point. Let {X (t)} denote the state of a stochastic process at time t and such process is

said to be stationary if

Prob{X (t1) ≤ x1, X (t2) ≤ x2, ..., X (tn) ≤ xn}

= Prob{X (t1 + α) ≤ x1, X (t2 + α) ≤ x2, ..., X (tn + α) ≤ xn}

for all n and all ti and xi, where i = 1, 2, ..., n.

13
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When transitions of a stochastic process between states depend on the amount of time the

process has spent on the current state, such stochastic process is said to be non-homogeneous ;

otherwise, it is homogeneous.

2.1.1 Renewal Processes

A counting process {N (t) , t > 0}, is a stochastic process which counts the number of events

up to and including time t. We use the random variable Xn, n ≥ 1 to denote the time between

the occurrence times of event n− 1 and event n, which allows us to define a renewal process as

follows [126, 108]:

Definition 2.2 (Renewal Process). A counting process is a renewal process if the sequence of

the nonnegative random variables {Xn, n ≥ 1} that represents the time elapsed between events

are independently and identically distributed.

Let {N (t) , t > 0} be a renewal process with interrenewal periods {Xn, n ≥ 1} and let Sn

denotes the time at which the nth renewal occurs, i.e.,

S0 = 0, Sn = X1 +X2 + ...+Xn, n ≥ 1.

We also define here the parameter γ:

γ
def

=
1

E [X ]
(2.1)

There are two important results on the limiting behaviour of renewal processes, stated as follows

[126, 108]:

Proposition 2.1. The average number of renewals per unit time satisfies

N (t)

t
→ γ as t → ∞

Thus, γ is also called the rate of the renewal process.
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We use M (t) to denote the expected number of renewals of a renewal process by time t,

E [N (t)]. M (t) is also called the renewal function of such renewal process.

Proposition 2.2. The expected rate of renewals, M(t)
t

satisfies

M (t)

t
→ γ as t → ∞

The derivative of the renewal function M (t), denoted by m (t), is called the renewal density.

It can also be shown that

lim
t→∞

m (t) = γ

The results shown above hold for all renewal processes.

2.1.2 Poisson Processes

A Poisson process {N (t) , t ≥ 0} is a special type of continuous-time counting process, defined

as follows [126, 108]:

Definition 2.3 (Poisson Process). Let {N (t) , t ≥ 0} be the number of the events that occur

during the time interval (0, t]. A counting process {N (t) , t ≥ 0} is a Poisson process when it

possesses the following properties:

1. N (0) = 0.

2. Independent Increments: the number of events that occur in non-overlapping time

intervals are mutually independent.

3. Stationary Increments: the number of events that occur within any time interval only

depends on the length of the interval, regardless of the past history.
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4. For some sufficiently small h and some positive constant λ > 0,

Prob{One event in (t, t+ h]} = λh + o (h) ,

Prob{Zero event in (t, t+ h]} = 1− λh+ o (h) ,

Prob{More than one event in (t, t + h]} = o (h) ,

where lim
h→0

o (h)

h
= 0

The definition given by Definition 2.3 is equivalent to saying that:

1. A Poisson process {N (t) , t ≥ 0} with rate λ ≥ 0 and {N (0) = 0} is such that the number

of events that occur in any time interval of length t has a Poisson distribution as follows:

Prob{N (t) = n} = e−λt (λt)
n

n!
, n=0, 1, 2, ...

2. If the elapsed times between successive events are independently and identically expo-

nentially distributed with parameter λ ≥ 0, then the stochastic process {N (t) , t ≥ 0} is

a Poisson process.

It can be easily shown that for a Poisson process the expected number of renewals by time t,

denoted by M (t), is equal to λt and hence its renewal density m (t) = λ.

2.1.2.1 Poisson Arrivals See Time Averages (PASTA)

There are two different views of observing a queueing system: the view as seen by an arriv-

ing customer and that as seen at a random time point, i.e., at equilibrium. Normally these

two viewpoints would lead to different statistical outcomes. However, they are statistically

equivalent if the arrival process is Poisson and the system reaches equilibrium, which is called

PASTA (Poisson Arrivals See Time Averages) property. More formally, if pn is the probability

of the number of customers contained in the system at equilibrium and an is the probability of

an arriving customer finding that the system having n customers. The PASTA property says
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that an = pn. The PASTA property arises from the memoryless property of the interarrival

time distribution (exponential distribution) of a Poisson process and does not hold for other

stochastic processes.

2.1.3 Markov Chain and Markov Processes

A Markov process is a class of stochastic process that satisfies the Markov Property, which is

defined as follows [106]:

Definition 2.4 (Markov Property). Let {X (t) , t ∈ T and X (t) ∈ S} be a stochastic process

defined on the parameter set T and state space S. It is said to possess the Markov property if

it satisfies

Prob {X (t0 + t1) ≤ x | X (t0) = x0, X (τ) ,−∞ < τ < t0}

=Prob {X (t0 + t1) ≤ x | X (t0) = x0} , (2.2)

for any value of t0 and for t1 > 1. In other words, the evolution of a Markov process in the

future has limited dependency on the previous history of the process and the current state

X (t0) offers sufficient information for the future behaviour of the process.

In our work, we only consider Markov processes with discrete state space S, which means that

the values of X (t) are nonnegative integers. If the parameter set T is discrete then we call the

process a Markov chain or Discrete-time Markov Chain; if T is continuous, then the process is

called a Markov Process or Continuous-time Markov Chain.

2.1.3.1 Discrete-time Markov Chain (DTMC)

Since the parameter set T of a DTMC is discrete, we can represent the set T by the set

of nonnegative integers {0, 1, 2, ...}. Equation 2.2 defining Markov property, when applied to
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DTMC, becomes:

Prob {Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, ..., }

=Prob {Xn = xn | Xn−1 = xn−1} (2.3)

We denote this one-step transition probability Prob {Xn = xn | Xn−1 = xn−1} at time n− 1 as

pij (n). If the DTMC, with its state space S, is said to be time homogeneous, it satisfies

Prob {Xn = j | Xn−1 = i} = Prob {Xn+m = j | Xn+m−1 = i}

n = 1, 2, ... , m ≥ 0, i, j ∈ S

If a DTMC is time-homogeneous, we can write

pij = Prob {Xn = j | Xn−1 = i} , n = 1, 2, ... , i, j ∈ S (2.4)

Then the evolution of a time homogeneous DTMC can be described using a probability tran-

sition matrix P, defined as follows:

P n =




p00 p01 ... p0j ...

p10 p11 ... p1j ...

. . ... . ...

. . ... . ...

. . ... . ...

pi0 pi1 ... pij ...

. . ... . ...

. . ... . ...

. . ... . ...




.

The dimension of the probability transition matrix P is the size of the state space S. Throughout

this report, unless specified otherwise, we only consider time− homogeneous DTMCs.
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2.1.3.1.1 Chapman-Kolmogorov Equations Let pnij be the probability of a DTMC be-

ing in state j n steps after being in state i; it is also the (i, j) th entry of the n−step probability

transition matrix P n. According to Chapman-Kolmogorov equations,

pnij =
∑

k∈S

pmik p
n−m
kj (2.5)

We now define the vector

πn def

=

(
π0
0, π0

1 , ...

)
(2.6)

where each element πn
j (j ∈ S) represents the probability of the the Markov chain being in

state i at step n. The dimension of the vector πn is the size of the state space S. πn can then

be calculated as follows:

πn = π0Pn (2.7)

2.1.3.1.2 The Stationary Probability Distribution of a Ergodic DTMC A DTMC

is said to be ergodic if all the states are positive recurrent, aperiodic and in only one irreducible

set (the detailed definitions of positive recurrent, aperiodic and irreducibility can be found in

[126]). Let Nij (n) be the number of visits to state j n steps after the chain starts at state i.

If the chain is ergodic, Nij (n) can be seen as a renewal process. We define πj as the inverse

of the mean recurrence time for state j (which is equivalent to the γ defined in Equation 2.1).

We can show that given that all the states are aperiodic in a ergodic DTMC,

lim
n→∞

pnij = πj (2.8)

for any initial state i. That is, the probability of finding an ergodic chain in a specific state

i is invariant with time that is, stationary with time. The values of πi, i ∈ S are called

stationary probabilities of the Markov Chain. It can be easily shown that the vector of stationary

probabilities, denoted by π, satisfies the following equation:

π = πP (2.9)
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An important result on the the stationary probabilities is presented by the following proposition:

Proposition 2.3. The stationary probabilities of an irreducible Markov chain with one ergodic

set and state space S are unique and satisfy

πj =
∑

k∈S

πkpkj, j ∈ S (2.10)

and
∑

j∈S

πj = 1. (2.11)

That is, the stationary probabilities can be found by solving the linear equations shown in

Equation 2.10 subjecting to the normalisation condition shown in Equation 2.11.

2.1.3.2 Continuous-time Markov Chain (CTMC)

In a DTMC, the state transitions can only happen at discrete time steps, while in a CTMC

(or Markov process) the state transition may occur at any point in time. Analogous to the

probability transition matrix Pn of a DTMC at time step n, the state transitions of a CTMC

can be characterised by a generator matrix Q (t) at time t. Each entry of the generator matrix

Q (t), denoted as qij (t), defines the instantaneous rate that the chain changes from state i to

state j at time t. More formally, given a CTMC with state space S we define that

qij (t) = lim
τ→0

Prob {X (t+ τ) = j | X (t) = i}

τ
, i, j ∈ S (2.12)

The total rate out of state i at time t is

qi (t) =
∑

j∈S, j 6=i

qij (t) , ∀i ∈ S. (2.13)
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Therefore, the ith diagonal element of the generator matrix Q (t), which represents the transi-

tion rate corresponding to the chain remaining in the current state, is defined as follows:

qii (t) = −
∑

j∈S, j 6=i

qij (t) , ∀i ∈ S. (2.14)

If a CTMC is time homogeneous, Equation 2.12 and Equation 2.14 become

qij = lim
τ→0

Prob {X (t+ τ) = j | X (t) = i}

τ
, i, j ∈ S

qii = −
∑

j∈S, j 6=i

qij , ∀i ∈ S.

Consider a homogeneous CTMC and let Ti be the time the chain spends in state i until it

moves to another state (which is also called sojourn time or state holding time), we can use the

Markov property to prove that

Prob {Ti ≤ s+ t | Ti > s} = Prob {Ti ≤ t} (2.15)

Equation 2.15 is called the memoryless property. Since the only continuous probability distri-

bution that possesses the memory-less property is exponential distribution, it follows that the

state holding time (sojourn time) of a CTMC is exponentially distributed. That is, given a

state i of a homogeneous CTMC, the probability distribution of the state holding time in state

i is

F (Ti = x) = 1− e−µix, x > 0

where

µi =
∑

j 6=i

qij = −qii (2.16)

The results given by Equation 2.15 and Equation 2.16 do not hold in the case of nonhomogeneous

CTMC.
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2.1.3.2.1 The Stationary Probability Distribution of a Ergodic CTMC Similar

to the discussion on the stationary probability distribution in Section 2.1.3.1, the stationary

probabilities of a ergodic and time homogeneous CTMC with state space S, the stationary

probability πj is given by

πj = lim
t→∞

Prob {X (t) = j | X (0) = i}, i, j ∈ S (2.17)

The stationary probability vector, π = (π0, π1, ...), satisfies the following linear equations:

πQ = 0, (2.18)

∑

i∈S

πi = 1 (2.19)

Analogous to Proposition 2.3,

Proposition 2.4. For an irreducible and time homogeneous CTMC with only one ergodic set

in its state space S, the stationary probabilities are unique and can be found by solving the

following linear equations:
∑

i∈S

πiqij = 0, ∀j ∈ S (2.20)

subject to the condition that
∑

j∈S

πj = 1. (2.21)

2.2 Queueing Theory and Simple Queues

Queueing network is one of the most widely-used methods in stochastic modelling. It models

real-life systems as networks of one or more queues interacting with each other. A vast body

of related theory, called queueing theory, provides convenient tools for quantitative analysis on

the efficiency and effectiveness of the system of interest. We call entities that offer service or

resources as Servers. Those who enter a system requiring service or resources for some period

of time are called Customers. Some servers contain a buffer with limited or infinite capacity
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Figure 2.1: Two simple examples of queueing networks

where customers wait for service; this is called Queue. However, we can also refer to both server

and queue collectively as a Queue. Figure 2.1 shows a single-server queue, which is the simplest

queueing network and a simple 3-server queueing network.

2.2.1 Queueing theory

2.2.1.1 Kendall’s Notation

A queue can be described by characterising how customers arrive at the queue to request service

(customer arrival process) and how the server(s) serve customers (service process and service

scheduling discipline). Kendall’s notation offers a standardised way to characterise a queueing

system by using 6 variables A/S/k/c/N/Z in this notation. They have following interpretations:

• A indicates the customer inter-arrival time distribution; S stands for the service time

probability distribution. Some possible distributions include M for Markovian (Poisson

arrivals and exponential service times), E for Erlang, D for deterministic, and G for

general distribution

• k indicates the number of servers
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• c indicates the capacity of the system, which is the maximum number of customers the

system can hold. Customers who arrive when the system already contains c customers

are rejected from receiving service. It is assumed to be infinite if not specified

• N indicates the size of the customer population

• Z indicates the queue scheduling discipline.

2.2.1.2 Queueing discipline

The scheduling discipline determines how the customers are selected from the queue and taken

into service. There are several scheduling disciplines, listed as follows [126]:

• FCFS/FIFO (first come/in, first served/out). This discipline selects the customer who

has been waiting for the longest time as the next one to be served.

• LCFS (last come, first served). It takes the customer that last joins the queue for service.

• LCFS-PR (last come, first served, preempt resume). It is LCFS with the preempt resume

policy. Preempt resume policies usually classify customers into different priority classes.

If a customer of higher priority, say A, arrives while another customer with lower priority,

say B, is being served, the service of B will be interrupted. The server then serves A and

will resume its service to B later.

• SIRO (service in random order). The server choose the next customer in the queue to be

served at random.

• RR (round robin). In this scheduling discipline, when its service begins, each customer

is given a fixed amount of service time, which is called time slice. The customer’s service

will get interrupted if it is not completed before the time slice is expired. The interrupted

customer will go to the end of the queue waiting for its next turn to be served, until its

service gets completed. If the customer’s service is finished before the time slice ends, the

server will choose the next one at the head of the queue to be served.
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• PS (processor sharing). Process sharing discipline can be approximated by RR discipline

with the size of time slice approaching zero. All customers in the system are simultane-

ously in service and receiving the same fraction of the server capacity.

• PRIO (priority scheduling). In this scheduling discipline, each customer is assigned dif-

ferent priorities that determine the order in which they will be served. The server will

always select the customer with the highest priority from the queue.

2.2.1.3 Performance Measures

Given a queueing system, there are several measures often used to evaluate the effectiveness

of the underlying system; in this research the following performance measures are especially of

our interest:

• Mean queue length. This measure describes the average number of customers waiting for

service in the system at steady state.

• Response time and queueing time. The time a customer spends inside the system, from

the instance when it enters the system to the instance when it leaves the system, is defined

as response time or sojourn time. The response time is composed of two elements; the

time that the customer spends in the queue waiting to be served, called queueing time;

and the service time the customer receive.

• Utilisation. Given a single server queue, the utilisation is defined as the fraction of time

that the server is occupied. If customers arrive at the system at rate λ and the single-

server processes incoming customers at rate µ, then the utilisation is equal to λ/µ. In

the case of multiple-server queueing systems, the utilisation is calculated as λ/cµ, where

c is the number of the servers.
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2.2.1.4 Little’s Law

Given the following notations:

• λ denotes the average arrival rate of customers to the system

• N denotes the average number of customers in the system

• T denotes the average response time (also called sojourn time) in the system

Little’s law says that the relationship among λ, N and T when the system is in steady state

can be described using a simple equation as follows:

N = λT (2.22)

Little’s law may be applied to different individual parts within a queueing system, namely the

queue and the server. For example, given the average waiting time spent in the queue W , and

the average queue length Nq it follows from Little’s Law that

Nq = λW

It should be noted that the application of Little’s law is independent of the interarrival time

distribution, service time distribution, the number of servers in the system and the service

discipline. The law only requires that customers are not created or lost inside the system and

the system reaches its steady state. Little’s law can also be extended to higher moments. For a

queueing system in its steady state, let N denote the number of customers the system contains

and T denote the response time

E [N (N − 1) ... (N − k − 1)] = λkE
[
T k

]
(2.23)
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When k = 1, the Equation 2.23 is the Little’s law. The expression on the left-hand side of

Equation 2.23 is called the k-th factorial moment.

2.2.2 General birth-and-death process and M/M/1 queue

Let X (t) be a Markov Process with discrete state space; then X (t) is a birth-and-death process

if, for very small ∆t:

P {X (t + h)−X (t) = k|X (t) = n}

= λn∆t + o (∆t) , if k = 1

= µn∆t + o (∆t) , if k = −1

= o (∆t) , if |k| > 1

Please note that the last condition,

o (∆t) , if |k| > 1,

implies that the probability of more than one events occurring at the same time is approximately

zero. From the above definition it is clear that in a birth-and-death process, only the transitions

among neighbouring states are allowed.

2.3 Queueing Network

A queueing network is usually presented as a directed graph, where nodes represent service cen-

tres in the system; directed links, with associated routing policies, specify the paths customers

(also called jobs) follow when they move within the system requesting service/resources. The

state of the system is often represented by a tuple of nonnegative integers with each number
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specifying the number of customers occupying the corresponding server/queue at a given time

point. A queueing network may be open, closed or mixed, depending on whether a fixed pop-

ulation of customers remain within the system or not. An open queueing network has arrivals

from external sources as well as departures to external environment, while in a closed queue-

ing network no jobs/customers ever leave the network and the total number of jobs/customers

remain the same all the time.

Consider a network with M service centres; at service centre there are ni customers. The vector

n = (n1,...,nM) represents the state of the network and π (n) is the stationary probability

distribution of the network being in state n. Let π denote the stationary state probability

vector of the Markov process and Q the corresponding transition rate matrix, the stationary

state probability π can be solved using the linear system called global balance equations :

πQ = 0 (2.24)

However, only with certain special structures of the matrix Q can an exact solution of Equa-

tion 2.24 be obtained. A large class of queueing networks, either closed or open, has been shown

to have a straightforward and computationally efficient solution, often termed product form so-

lutions if the queues in the network are quasireversible. A queue is said to be quasireversible

if its current state, the past departures and the future arrivals are mutually independent. The

famous Burke theorem regarding quasireversibility of M/M/k queues is stated as follows:

Theorem 2.5. (Burke) Consider an M/M/k system (k can be a finite or infinite integer) with

arrival rate λ. The system is in steady state. Then the following hold true:

1. The departure process is also Poisson with rate λ.

2. The number of customers in the system at time t is independent of previous departure

times.

Product form solution of a queueing system of single customer class takes the follow form:
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π (n) =
1

G
V (n)

M∏

i=1

gi (ni) , (2.25)

where G is a normalising factor, n is the total network population, function V is defined in

terms of network parameters and gi is a function of state ni and depends on the type of service

centre i,1 ≤ i ≤ M . For open networks, G = 1; while for closed networks V = 1.

Similar formula is derived for queueing networks with multiple types of customers. To represent

different behaviours (in terms of arrival patterns and service demands) of various customer

types, a “chain” is used to gather the customers of the same type. A chain consists of a set of

classes that represent different stages of processing in the system for a given type of customer;

that is, a customer entity belonging to such type would move from one class to another along

the chain. For example, if customer entities of a certain type receives two successive services

from two service centres, the chain representing such behaviour connects one class to the other.

Let R denote the total number of chains; S denote the state of the network including the

number of customer entities at each service centre. The product form solution for the stationary

probability of state π in a multiclass queueing network is as follows:

π (S) =
1

G

R∏

r=1

Vr (Kr)

M∏

i=1

gi (ni) , (2.26)

where G is still a normalising factor, Kr is the total population from chain r in the network,

function Vr is defined in terms of network parameters; and function gi (ni) depends on the type

of service centre. Similarly G = 1 for open networks and V = 1 for closed networks.

2.3.1 Jackson Queueing Network

The first important result concerning product-form queueing networks was introduced by Jack-

son [81] for open queueing networks that satisfy the following conditions:
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• Each service centre consists of an infinite FCFS queue; there are ci exponential servers,

each with service rate µi.

• External customer arrivals at service centre i are Poisson with rate γi.

• After completing service at the service centre i, a customer would proceed to the next

service centre j with probability rij or depart forever from the system with probability

1−
∑M

j=1 rij .

The routing matrix R = [rij] defines the allowed transitions among different service centres

in the network. The total customer arrival rate to service centre i, denoted by λi, is given by

the sum of external arrivals (Poisson) to the service centre i plus arrivals from other internal

service centres. The following traffic equation is obtained:

λi = γi +

M∑

j=1

λjrji (2.27)

The Jackson theorem is stated as follows:

Theorem 2.6. (Jackson) For a Jackson network with effective arrival rate λi to service centre

i and assuming that λi < ciµi for all i (ci is the number of the servers at service centre i), the

following are true in steady state:

1. Each service centre behaves as if its customer arrival process were Poisson with rate λi.

2. The number of customers at any service centre is independent of the number of customers

at any other service centre.

In other words, the joint distribution of numbers of customers in a Jackson queueing network

can be calculated as the product of the marginal distributions at individual service centres in

the system. That is,

P (k) =

M∏

i=1

Pi (ki) , (2.28)
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where Pi (ki) is the probability distribution of having ki customers at service centre i; it is given

as if service centre i functions as an independent M/M/k type of queue. Thus,

P (k) =

M∏

i=1

(1− ρi)ρ
ki
i , where ρi =

λi

µi
(2.29)

2.3.2 Gordon and Newell networks

Similar product-form solutions are later introduced by Gordon and Newell [68, 69] for closed

queueing networks with only exponential, FCFS service centres. Consider a closed single-class

queueing network consisting M service centres. Let N =
∑M

i=1 ni and the state of the network

is again defined as n = (n1, n2, n3, ..., nM). The total number of states of the network is given

by




N +M − 1

M − 1


.

Let matrix P = [pij] be the stochastic matrix where its element pij is the fraction of departures

from service centre i that would go next to service centre j. A “visit ratio” for service centre i,

denoted by vi, is introduced to give the mean number of visits to service centre i relative to a

specific service centre. The visit ratios can also be taken as arrival rates normalised so that the

arrival rate at the reference service centre becomes 1. In the following context, this reference

service centre is service centre 1. Thus, the system traffic equation is:

v1 = 1 and vi =

M∑

j=1

vjpji, i = 1, 2,...,M . (2.30)

The equilibrium distribution is given by the following product form:

P (n) = P (n1, n2, ..., nM) =
1

G (N)

M∏

i=1

fi (ni) , (2.31)

where fi (ni) =
v
ni

i∏ni

k=1
µi(k)

, if service centre i is load dependent; and fi (ni) =
(

vi
µi

)ni

if service

centre i is load independent.
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2.3.3 BCMP queueing network

BCMP theorem, proved by Baskett, Chandy, Muntz and Palacios in their work [27], defines

the BCMP queueing networks with product form solutions for open, closed or mixed queueing

network models with multiple customer classes, different types service disciplines and service

time distributions. BCMP theorem considers four types of multiclass service centres; all of

them are quasireversible:

• Type 1: FCFS service discipline and identical exponential service time for each chain.

• Type 2: PS service discipline.

• Type 3: Infinite-server (IS) service centres.

• Type 4: LCFS-PR service discipline.

It is required that for types 2, 3, and 4, the service time distributions should have rational

Laplace transforms (e.g. phase-type distributions); the average service rate may depend on the

population along each customer chain. At each service centre, the service rate can depend on

its population or its population belonging to a particular chain; type 1 service centre can only

have its service rate dependent on the overall population. External arrivals in BCMP queue-

ing networks are Poisson. Let λ (n) and λr (Kr) denote the average overall arrival rate to the

network dependent on the total number of customers n in the network and on the population

Kr along chain r, respectively.

Let the routing matrix for chain r be P (r) =
[
p
(r)
ic;jd

]
. p

(r)
ic;jd denotes the probability of a cus-

tomer leaving service centre i in class c and entering service centre j in class d; p
(r)
ic;0 denotes

the probability of a customer leaving the network from being in class c at service centre i.

For chain r, the visit ratio at service centre i from customers in class c is denoted as vric. Thus,

the visit ratio at service centre i from customers following chain r is vir =
∑

c∈Cir
vric, where Cir
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is the set of classes at service centre i belonging to chain r; this is the traffic equation defined

for chain r.

The product form solutions for BCMP networks are given by Equation 2.25 and Equation 2.25,

where V (n) =
∏n−1

k=0 λ (k) for open queueing networks; and Vr (Kr) =
∏R

r=1

∏Kr−1
k=0 λr (k) for

closed queueing networks. Let µir be the service rate at service centre i for customer belonging

to chain r; and ρir =
vir
µir

. For service centres of type 1, 2, and 4, gi (ni) =
∏R

r=1
ρ
nir

ir

nir !
; while for

service centres of type 3, gi (ni) = ni!
∏R

r=1
ρ
nir

ir

nir !
.

2.4 Distribution fitting

2.4.1 Maximum Likelihood Method

In this section, we consider a probabilistic model, usually a probability density function p (x | Θ),

governed by a set of parameters Θ. There are also a set of N observations X ; each observa-

tion is represented by a data vector, i.e. X = (x1, ... ,xN). We assume that (x1, ... ,xN) are

independently drawn from the same probability density function p (x | Θ). The probability of

obtaining this set of data, given the chosen probability model p (x | Θ), where Θ is unknown,

is defined as follows:

P (X | Θ) =

N∏

i=1

p (xi | Θ) . (2.32)

The function P (X | Θ) is called the likelihood function, which is a function of the parameter

set Θ and where X is fixed. The idea behind the maximum likelihood method is to find the

values of Θ that maximise the likelihood function. That is, the maximum likelihood method is

to find Θ∗ that

Θ∗ = argmax
Θ

P (X | Θ) (2.33)
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Often it is analytically easier to work with Log (P (X | Θ)), which is called the log-likelihood

function. Θ∗ can be found by solving the equations that the first derivatives of the likelihood

or log-likelihood function with respect to the unknown parameters are equal to zero.

2.4.2 EM Algorithm

EM algorithm is a popular and efficient tool in finding the Maximum Likelihood (ML) esti-

mates of the parameters of the underlying probability distribution. It is essentially an iterative

procedure that gradually maximises the log likelihood function L (Θ | X ). Assume that after

ith iteration step, the estimates for the parameter set Θ is given by Θi and the log likelihood

function calculated based on Θi is L (Θi | X ). The EM algorithm finds the new parameter

estimates for i+ 1th step that are optimal for increasing the log likelihood function [35]. That

is, the algorithm is looking for the update estimate Θi+1 that maximises

L
(
Θi+1 | X

)
− L

(
Θi | X

)

EM algorithm is especially useful when dealing with cases where missing or hidden variables

or data are involved. Sometimes hidden variables are introduced on purpose in order to make

the maximum likelihood estimation of Θ tractable. Assume that X is the observed data set,

which is called incomplete data and a complete data set Z = (X ,Y) (where Y is the unob-

served hidden data set) exists. We then assume the probability density function of Z given the

parameter set Θ can be specified by the join probability density function p (x,y | Θ).

The following two sections describe the two major steps comprising each iteration step in EM

algorithm.
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2.4.2.1 Expectation step (E step)

This step determines the conditional expected value of the complete-data log-likelihood function

given the observed data X and the current estimate of the parameter set Θi. Here we define

EZ|X ,Θ〉 {L (Θ | Z)}

=EZ|X ,Θ〉 {L (Θ | X ,Y)}

=EZ|X ,Θ〉 {log P (X ,Y | Θ)}

=

∫

y∈Υ

log p (X ,y | Θ) f
(
y | X ,Θi

)
dy,

where Υ is the space of values the vector of unobserved data y can take and f
(
y | χ ,Θi

)
is

the marginal probability density function of the unobserved data given the observed data and

the current parameter estimate

2.4.2.2 Maximisation step (M step)

In this step, the EM algorithm finds an update estimate of that maximise EZ|X ,Θ〉 {L (Θ | Z)}.

That is, we are looking for

Θi+1 = argmax
Θ

EZ|X ,Θ〉 {L (Θ | Z)}

These two steps are repeated as necessary and continually increase the log-likelihood until the

algorithm converges to a local maximum of the log-likelihood function. The most widely used

application of EM algorithm is to estimate the parameters of mixture probability models, given

as follows [31]:

p (x | Θ) =
M∑

i=1

αipi (x | θi) ,

where Θ = (α1, ..., αM θ1, ..., θM ) such that

M∑

i=1

αi = 1 and pi is a density function with

parameter set θi.
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2.4.3 Statistical goodness-of-fit tests

The goodness-of-fit test is commonly used to evaluate the compatibility of a set of random

sample data with a theoretical probability distribution function. In other words, these tests are

used to estimate how well the assumed distribution(s) fit(s) to the given sample data. Three

most popular goodness of fit tests are Kolmogorov-Smirnov test, Anderson Darling test and

Chi-squared test, all of which test the following two hypotheses:

• H0: The given sample data are governed by the assumed probability distribution.

• H1: The given sample data are not drawn from the assumed probability distribution.

Different goodness-of-fit tests have different ways of calculating measures estimating the dis-

crepancy between collected data and the theoretical probability distributions being tested. Such

measures, called test statistics, are used in testing the two hypotheses mentioned above. If the

test statistics exceed critical values, which are calculated based on specified significance lev-

els (α), the null hypothesis H0 is rejected; otherwise, it is accepted that the given sample is

drawn from the assumed probability distribution. Section 2.4.4, Section 2.4.5 and Section 2.4.6

give an overview of Kolmogorov-Smirnov test, Anderson Darling test and Chi-squared test,

respectively.

2.4.4 Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is based on the empirical cumulative distribution function (ECDF )

of the random sample. Assume that we have N ordered i.i.d observations {X1, X2, X3, ..., XN};

the empirical CDF of which is defined as:

EN (i) =
n (i)

N
, (2.34)

where n (i) is the number of observations less than Xi.
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The Kolmogorov-Smirnov test statistic is referred to asD value; it calculates the largest absolute

vertical difference between the theoretical CDF and the empirical CDF calculated from the

sample:

D = max
1≤i≤N

{
F (Xi)−

i− 1

N
,

i

N
− F (Xi)

}
, (2.35)

where F is the theoretical cumulative distribution of the distribution being tested.

The Kolmogorov-Smirnov test is a non-parametric technique and the critical values are not

calculated based on any any distributional assumption (for example, the normal distribution

assumption is very common in statistical tests). However, its most serious limitation is that the

distribution being tested must be fully specified. Also, Kolmogorov-Smirnov cannot be used

for testing discrete distributions [109].

2.4.5 Anderson-Darling test

Anderson-Darling test is a modification of Kolmogorov-Smirnov test. Given a set of n ordered

observations {X1, X2, X3, ..., XN}, the Anderson-Darling test statistic is calculated as follows:

A2 = −N − S, (2.36)

where

S =
N∑

i=1

(2i− 1)

N
[ln (F (Xi)) + ln (1− F (XN+1−i))] , (2.37)

where F is the cumulative distribution function of the distribution being tested.

The differences between Anderson-Darling test and Kolmogorov-Smirnov test are [109]:

1. Anderson-Darling test gives more weight to the tail than does Kolmogorov-Smirnov test

(Kolmogorov-Smirnov is more sensitive near the centre of the distribution).
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2. Anderson-Darling test calculates critical values depending on specific distributions. This

means that critical values must be calculated for each different distribution being tested.

3. The types of distributions that can be tested using Anderson-Darling test are limited to

normal, lognormal, exponential, Weibull, extreme value type I, and logistic distributions.

2.4.6 Chi-square test

The Chi-square test procedure starts with grouping the observed data into different bins

(classes) in a frequency table. Given a data set of size N and the data are grouped into k

different bins, the Chi-square test statistic is calculated as follows:

χ2 =
k∑

i=1

(Oi −Ei)
2

Ei

, (2.38)

where Oi is the observed frequency of data falling in class i; that is, the number of observed

data grouped in class i. Ei is the expected frequency of group i calculated from the cumulative

distribution being tested as follows:

Ei = N
(
F
(
X i

u

)
− F

(
X i

l

))
,

where X i
u is the upper bound of class i and X i

l is the lower bound of class i. F is the cumulative

distribution function being tested and N is the size of the data set. The Chi-square test statistic

follows approximately a Chi-square distribution with k − p − 1 degrees of freedom where k is

the number of non-empty classes used to bin data and p is the number of estimated parameters

for the distribution being tested.

An advantageous feature of the Chi-square test over Kolmogorov-Smirnov test and Anderson-

Darling test is that it can be applied to both discrete and continuous distributions, while the

other two tests can only be used in the cases of continuous distributions. One of its major

disadvantages is that the testing results are sensitive to the way in which the sample data are
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binned and there is no optimal way of grouping the data. Another disadvantage is that the

Chi-square test requires a sufficient sample size in order for the Chi-square approximation to

be valid [109].

2.4.7 Model Selection Using AIC

Information theorists believe that, instead of a “single” working hypothesis (the best model) in-

ferred from the dichotomic results (significant or non-significant) of traditional null-hypothesis

tests, there are several “multiple working hypotheses” or “models”, that are well-supported by

the empirical data observed from the reality [39, 38]. Thus, a set of one or more candidate

models, with good empirical support, should be taken for considerations for making statistical

inferences from data. These candidate models can also be ranked by how “close” they are from

the true reality.

S. Kullback and R. A. Leibler’s seminal work [90] – based on the theoretical foundation of

Boltzmann’s entropy and the second law of thermodynamics – proposed a quantity to mea-

sure information lost when approximating model is used to approximate the full reality; such

quantity is called Kullback-Leibler information or K-L information. Assume a model g, over a

parameter space θ, is used to approximate f , which represents the full reality, the K-L infor-

mation I (f, g) is defined as:

I (f, g) =

∫
f (x) log

(
f (x)

g (x|θ)

)
dx

=

∫
f (x) log (f (x)) dx−

∫
f (x) log (g (x|θ)) dx

= Ef [log (f (x))]− Ef [log (g (x|θ))]

As the quantity Ef [log (f (x))] is a constant; hence, to compare models in the candidate model

set, only Ef [log (g (x|θ))] needs to be estimated. The model that is closest to the reality is the
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one with the least information loss (thus, the smallest I (f, g)), compared with the others in

the candidate model set.

Akaike [7] later introduced a model selection criterion based on K-L information, which is essen-

tially an estimate of Ef [log (f (x))] calculated based on the the maximum likelihood estimator

of θ. The criterion is called Akaike’s information criterion (AIC) and defined as:

AIC = −2log
(
L
(
θ̂ | data

))
+ 2K, (2.39)

where L is the likelihood function; θ̂ is the maximum likelihood estimator; and K is the number

of estimated parameters in the model. The derivations and related theoretical details can be

found in literature including

Another version of AIC, called adjusted AIC and denoted as AICc, is proposed by [127, 79] for

cases where sample sizes are small. Given the sample size n, AICc is defined as:

AIC = −2log
(
L
(
θ̂ | data

))
+ 2K+

2K (K + 1)

n−K− 1
. (2.40)

It is recommended that AICc, instead of AIC, should be used unless K/n is larger than about

40; when n is large, AICc will approximate AIC. Thus, in practice AICc is generally suitable

except for the cases where the underlying probability distribution is strongly skewed.

2.5 Phase-type Distributions and their applications in

traffic modelling

The central idea of traffic modelling is to construct analytical models that capture the most im-

portant statistical properties of traffic measurement data [130]. Traffic models not only provide

an approximation of system demands and capabilities based on previous history; it also enables

prediction of system performance under different traffic scenarios for the purpose of system
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design and management. Hence, accurate traffic modelling is vital to accurate performance

evaluation of the underlying systems.

One of the most widely used and oldest traffic model is the memoryless Poisson model; which

assumes the underlying distribution is exponential. However, such assumption may not be

applicable in the vast majority of real life systems. Over the last two decades, evidence has

been accumulated that traffic flows in many computer and wired/wireless network systems

(e.g Ethernet [93], World Wide Web traffic [51, 17]) exhibit properties including self-similarity,

fractality, and long-range dependency. Previous research has shown that self-similarity of traffic

in these systems can be attributed by the “heavy tails” observed in the distributions of data

objects transferred or stored in the system (such as file sizes stored on the Web servers and

data files transferred through the Internet [51]) or time delays involved in the system (such

as user “think” time [51] and users’ cell residence time [88] in wireless mobile networks). A

distribution of a random variable X is said to be heavy-tailed if

F (x) ∼ cx−α and 0 < α < 2, (2.41)

where F (x) = 1−F (x) and F (x) is the cumulative distribution of X . In addition, heavy-tailed

distributions have many applications in analyses of economic, financial and physical real-life

systems; for example, it has been found that distributions of healthcare utilisation such as

length of staying and inpatient costs generally are right-skewed with fat tails [64].

Previous studies have shown that distributions with such properties behave very differently

from the exponential distribution in that the probability of very large observations is non-

negligible [51, 120, 111]. Approximating such distributions by using the conventional Poisson

model would underestimate some important performance measures such as response time and

queue length [88, 120]. Thus, choosing appropriate statistical models to approximate obser-

vation data with heavy-tailness has gained great attention in the research area of analytical
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performance modelling.

Markovian Arrival Process (MAP) or Batch Markovian Arrival Process (BMAP) are stochastic

models often used to approximate distributions with high-variability, long-range dependence

or both [77]. Phase-type distributions, specified by a number of exponential phases and the

interactions among them, is one of the most widely-used MAP models in approximating distri-

butions exhibiting high variabilities. Phase-type distributions are “dense”; which means that

they can approximate arbitrarily closely to any positive real-valued distribution. Apart from

denseness, phase-type distribution are mathematically tractable. Exact solutions are often pos-

sible to obtain with phase-type distributions, either algorithmically or numerically, especially

when they are applied to problems where there are explicit solutions with exponential distribu-

tions. One can thus turn to the well-established performance analysis in the domain of CTMC

using phase-type distributions [19, 120].

2.5.1 Overview of phase-type distributions

Consider a Markov process MP on a finite state space, defined by {0, 1, 2, 3, ..., p}; state 0

is absorbing while the others are transient. The infinitesimal generator Q can be blocked

partitioned as follows:

Q =




0 0, · · · ,0

t T


 ,

where t is called the “exit vector”; its i-th component ti is the conditional intensity of the

absorption state 0 if the underlying MP is in state i. Matrix T is a p × p non-singular (thus,

invertible) matrix; p is the number of transient states. Given an initial probability π of the

MP with infinitesimal generator Q, the time to absorption of the MP is said to be phase-type

distributed. The basic statistical characteristics of a phase-type distribution with parameters

(π,T) are:
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• cumulative distribution function: F (x) = 1− πeTxe

• density function: f (x) = πeTx (−T · e)

• the n-th moment: mn = (−1)n · n!πT−ne ,

where e is a column vector of ones whose size is the total number of phases.

Based on the interaction among states in the Markov Chain whose absorption time defines the

phase-type distribution, several common classes of phase-type distributions are defined.

Acyclic Phase-type If the Markov chain whose absorption time defines a phase-type distri-

bution is acyclic (that is, no state visited more than once in the Markov chain), such

phase-type distribution is called an “acyclic” phase-type distribution.

Coxian A phase-type distribution is Coxian if it is acyclic; it has one unique initial non-

absorbing state; and for each state the next non-absorbing state is unique.

Hyperexponential A phase-type distribution is hyperexponential if it is acyclic; and for any

state the next state is the absorbing state. That is, a mixture of exponential distributions.

Erlang A phase-type distribution is Erlang if it is acyclic; there is one unique, non-absorbing

initial state; the sojourn time at each state is identically distributed and each state only

has one unique next state. An Erlang distribution with n phases is essentially the sum of

n i.i.d. exponential random variables.

Hyper-Erlang A hyper-Erlang distribution is a mixture of several Erlang distributions.

2.5.2 Fitting traffic measurements with phase-type distributions

Finding the parameters of the phase-type distribution that best fits the empirical measurement

data is essentially an optimisation problem. Phase-type fitting techniques can be classified based

on their optimisation criteria. Some of them are based on optimising only certain properties

of the distribution; for example, matching various moments of measurement data (e.g., [37],



44 Chapter 2. Background

[34], [86]) is the most widely-used method in this category. The others minimise the cross en-

tropy measures based on the maximum likelihood estimation (MLE) methods (e.g. [19], [120],

[88], [129]). Moment-matching techniques are computationally efficient; however, the tech-

niques are more suitable for phase-type distributions with only a limited number of exponential

phases [120, 86]. Despite MLE methods can be applied to a much wider variety of phase-type

distributions, MLE methods have short-comings that they fail to approximate accurately the

tails of distributions as the fitting procedures search for global maximum [19, 77]. However,

some MLE-based methods have been proposed to fit different partitions (e.g. body and tail)

of a given continuous distribution into several phase-type distributions in order to capture the

tail behaviour [120].

Among fitting methods proposed in either of these two categories, many are applied to only a

subset of phase-type distributions, instead of general phase-type distributions. Fitting general

phase-type distributions with the number of phases above two or three is too complex and

computationally costly [130]. Targeting at only a subset of distributions narrows down the

search space and thus makes it possible to develop algorithms with much better computational

efficiency. Acyclic phase-type models are proposed by [78, 34]; such class of distributions has

a canonical representation and the number of parameters for fitting is reduced to 2N , instead

of N2 +N in the general case. Other works such as use mixtures of phase-type distributions,

such as hyper-exponential or hyper-Erlang distributions, for approximating general distribu-

tions [86, 60, 88, 130].

Of particular relevance to our research is the use of EM algorithm, one of the most widely-used

MLE-based algorithms, to approximate long-tailed measured data sets or continuous distri-

butions by mixtures of phase-type distributions. Based on the algorithm proposed by [60],

[88] developed an EM-based algorithm to fit strictly monotone non-negative distributions into

hyper-exponential distributions. The developed algorithm is efficient and gives good fitting

results; however, hyperexponential distributions can only be used to approximate distributions

whose squared coefficient of variations are at least one. Thümmler et al. later extended the
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fitting procedure of [88] and developed G-FIT [130, 129], a distribution fitting tool that uses

mixtures of Erlang distributions (that is, hyper-Erlang distributions) to approximate general

non-zero distributions. Thümmler et al. showed that mixtures of Erlang distributions in theory

are as powerful as acyclic or general phase-type distributions once the numbers of phases reach

infinity. Thus, hyper-Erlang distributions can approximate a much broader set of non-negative

distributions compared to hyper-exponential distributions; while their reduced form allows for

an efficient fitting algorithm. There are several case studies in [130, 129] based on both syn-

thetic data and real traffic traces to demonstrate the effectiveness of G-FIT in approximating

empirical data, compared to the other methods such as PhFit [78].

2.5.2.1 Hyper-Erlang Distributions and G-FIT

This research adopts mixtures of Erlang distributions for approximating the general distri-

butions of time delays involved in a system; G-FIT is the fitting tool employed to find the

hyper-Erlang distribution that best fits a given data trace. The properties of mixtures of Er-

lang distributions are presented as follows.

The probability density function of an hyper-Erlang distribution with M Erlang branches, de-

noted by f (x;M ,R,A,Λ), is specified by three M-directional vectors; R = {ri, i = 1, 2, ...,M}

contains the number of phases for each Erlang branch; A = {αi, i = 1, 2, ...,M} defines the

weight (or the initial probability) for each Erlang branch; and Λ = {λi, i = 1, 2, ...,M} is a

vector with the rate of each Erlang branch in the mixture. The vector R is subject to the

constraint
∑M

m=1 αm = 1.

The probability density function is defined as:

fX (x) =
M∑

m=1

αm
(λmx)

rm−1

(rm − 1)!
λme

−λmx , (2.42)

and the cumulative distribution function is defined as:
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FX (x) = 1−
M∑

m=1

αm

rm−1∑

i=0

(λmx)
i

i!
e−λmx . (2.43)

The i-th moment E [X i] is given by

E
[
X i

]
=

M∑

m=1

αm
(rmx+ i− 1)!

(rm − 1)!

1

λi
m

. (2.44)

The total number of states of a hyper-Erlang distribution is therefore:

N =

M∑

m=1

rm (2.45)

Given a fixed state number N as input, G-FIT searches through all the possible combinations

of the number of branches m and the number of phases in each Erlang branch to find the

hyper-Erlang that generates the highest log-likelihood value and thus is considered as best-fit

to the empirical data trace. The total number of all possible settings of N -state hyper-Erlang

distributions is given by ϕN (N, 0) in [130], where:

ϕm (n, j) =

⌊n/m⌋∑

i=j

ϕm−1 (n− i, i) and ϕ1 (n, j) =





0 , if j > n,

1 , if j ≤ n.

The final output from G-FIT includes the total branch number M and three M-directional

vectors R, A and Λ for specifying the best-fit hyper-Erlang distribution.
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2.6 Wireless Real-time Location Systems

A positioning system determines the location of an object or individual in a particular space,

such as an enterprise facility, business premise or public building. Ideally the positioning is con-

ducted in real time, with the ability to track the location of the object as it move around a space.

The access to real-time location information has enabled numerous location-aware commercial

applications, as well as innovative research areas such as ubiquitous computing, “Internet of

things” [18], “embedded intelligence” [71] and “people-centric sensing” [40]. This section offers

a brief overview of wireless location techniques and currently popular location tracking systems.

Section 2.6.1 introduces the basic measuring principles and corresponding localisation methods

employed by most of the location systems nowadays for position determination; Section 2.6.2

gives an overview of some most popular wireless location solutions available in the industry.

2.6.1 Localisation Techniques

Localisation is the process of determining positions of tracked objects in the environment.

A location system usually applies one or multiple localisation techniques to locate objects;

the location information it offer can be absolute, relative or proximity. This section gives an

overview of basic principles for 2D/3D localisation techniques based on different measurements

(more details regarding localisation techniques for wireless positioning systems can be found in

[99, 113, 96]); three major types of localisation methods are introduced as follows: triangulation,

scene analysis (fingerprinting) and proximity.

2.6.1.1 Triangulation methods

Triangulation methods estimate a target’s location taking advantage of triangles’ geometric

properties. There are two types of triangulation methods: lateration and angulation. Lateration

derives an object’s position according to its distances from multiple reference points in the space;
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angulation locates an object by measuring angles relative to the reference points. Measurements

commonly used for for lateration localisation include:

Time of arrival (TOA) measures the absolute travel time of a signal from a transmitter to

a receiver. The distance of the target object is the signal travelling time multiplied by the

wave speed. TOA relies on precise time synchronisation among transmitters and receivers

in the system. Also, a receiver needs to know the absolute time when a signal pulse was

sent; thus it is necessary to attach a timestamp to the transmitted signal in order for the

signal travel distance to be estimated. TOA is particularly challenging to apply in indoor

environments where multipath conditions are common.

Time difference of arrival (TDOA). Instead of the absolute value of arrival time (TOA),

the time difference at which the signal arrives at different measuring units in the system

(TDOA) is measured to determine the relative position of the mobile transmitter. Using

time differences of TOA measurements offers the advantage that it is not relevant if clocks

at receivers and transmitters are not completely synchronised; neither does the receiver

need to know the absolute timestamp when the signal was transmitted.

Received Signal Strength (RSS). One of the major drawback of using TOA or TDOA for

position estimation is the requirement for line-of-sight between the transmitter and the

receiver; the measurement accuracy would be largely compromised in indoor environments

where radio propagation suffers much from multipath effect. An alternative approach is

to estimate the distance of the target object from multiple measuring units by calculating

the signal path loss due to propagation. The attenuation of transmitted signal strength

can be modelled using theoretical or empirical methods. However, the features of the

signal strength attenuation are site-specific and therefore the path loss model has to be

parameterised for different environments.

Round-trip time-of-flight (RTOF) measures the time-of-flight of the signal making a roundtrip

between a receiver and a transmitter. This method avoids the need for time synchroni-

sation between transmitters and receivers. The drawback of this method is the longer

measurement times required, which causes large location update latencies.
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Angulation localisation is based on the measurements of angle of arrival (AOA). AOA is defined

as the angle between the propagation direction of a radio-frequency wave incident on some fixed

reference direction, referred to as orientation. AOAs are measured against the orientation,

represented in degrees in a clockwise direction from the North [113]. There are two types

of angle-of-arrival measurement techniques; one is basically to make use of the anisotropy in

the reception pattern of an antenna; the second one estimates the AOA measurements from

the phase differences in the arrival of a wave front [99]. AOA-based position determination

requires as few as two measuring units in 2D and three measuring units for 3D positioning.

No time synchronisation between transmitters and receivers is required either. The accuracy

of AOA measurements is limited by the directivity of the antenna, shadowing and multipath

reflections; when the target object is far away, the accuracy of AOA-based methods would be

also compromised [70]. In addition, line-of-sight from the transmitter to the receiver is required

for AOA measurements [99].

2.6.1.2 Scene analysis methods, Fingerprinting

The quantity used by scene analysis methods is usually radio frequency RSSI; but it can also

be performed with audio or images [103]. Scene analysis methods usually comprise two stages:

offline stage and online stage. In the offline stage, a site survey is conducted to collect data

regarding the location coordinates/labels and construct mapping between various locations

and the features (that is, fingerprints) of received signals from the nearby base stations or

measuring units. Maps of fingerprints can be set up by either empirical measurements or

analytical modelling [103]. The online stage is to estimate a target’s location by comparing the

observed signal features with the closest location fingerprints predefined at the offline stage.

Fingerprinting performance can reach accuracy at metre level, depending on the numbers per

squared meters of base stations and calibration points where the fingerprints are taken. The

major drawbacks of fingerprinting methods is that radio fingerprinting is a costly process;

also, changes of settings in the environment might necessitate recalculation of predefined signal

fingerprints.
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2.6.1.3 Proximity methods, Cell of origin

Proximity, also called cell of origin (COO), is a simple positioning technique that determines an

object’s position by assuming it to collocate with the anchor point where the strongest signal

is received. Such method only provides symbolic relative location information and its accuracy

depends on the density of anchor points deployed in the space and signal range. Proximity

method is suitable for applications with low accuracy requirements, such as physical contact

detection, automatic ID recognition (e.g. RFID) and mobile network positioning systems [96].

2.6.2 Wireless Positioning Technologies and Systems

It is beyond the scope of this thesis to provide a complete overview of location positioning

systems available till now. Here we only give briefly introduction to some most common types

of location positioning systems, classified based on the underlying wireless technologies used

for location tracking: GPS-based systems; infra-red system; ultrasonic system; radio frequency

(RF) systems, including radio frequency identification (RFID), wireless local area networks

(WLANs) and ultra-wide band (UWB).

2.6.2.1 GPS-based

The global positioning system (GPS) is the most popular and widespread positioning tech-

nology in the world. The GPS system contains 24 to 32 satellites, also called space vehicles

(SVs), travelling along medium Earth orbit. GPS satellites continuously broadcast signals with

information including their current positions and the timestamp when the message is transmit-

ted. A GPS receiver employs a triangulation process to calculate its position using signals sent

from multiple GPS satellites. Data from at least four satellites are required to compute three

dimensional position (x, y, z) along with the timestamp. Resolution of position data can reach

1 to 5 meters with the GPS system.
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This technology is currently implemented in many mobile devices, thanks to the availability

of chip-size GPS receiver. It is foreseeable that in the near future the majority of the mobile

wireless devices will be equipped with real-time location information. However, GPS cannot

function well in the indoor environments. Attenuation and multipath reflections of the line-of-

sight (LOS) signal (or direct path) by the walls, floors, and surface of buildings are the main

factors preventing typical GPS receivers from functioning in the indoor environments or urban

spaces.

To address the failure of GPS for reliable indoor positioning, Locata Corporation, an Australia-

based company, developed a new positioning technology, named Locata [26, 23], for high-

precision positioning in both indoor and outdoor environments. Locata technology is based on

a type of ground-based time-synchronised pseudolite transceiver called LocataLite. Multiple

LocataLites can form a network called LocataNet. Such pseudolite transceivers emit GPS-like

signals that can be received by suitable mobile devices (a Locata) [24]; and allow single-point

positioning using carrier-phase measurements. It has been shown that Locata technology can

reach precision at centimeter level [25].

2.6.2.2 Infra-red

Infrared (IR) wavelengths are longer than that of visible light, but shorter than that of terahertz

radiation. There are three methods of using infrared signals for positioning [103]:

• use of active beacons

• infrared imaging using natural (i.e. thermal) radiation

• artificial light sources

The active beacon approach involves placement of fixed infrared receivers at known locations

throughout an indoor space, in order to detect the infrared beacons emitted by mobile devices

whose positions are unknown. One of the early and widely recognized IR indoor positioning
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systems is the Active Badge System [135] developed by AT&T Cambridge for positioning peo-

ple at room level. A small infrared beacon is carried by personnel being tracked and emits

short IR pulses with unique identifier codes every 10-15 seconds. One major disadvantage of

Active Badge is that it is not suitable for real-time applications as the location update rate is

more than 10 seconds [54].

Positioning using natural infrared radiation are known as passive infrared localisation. Sen-

sors, operating in the long wavelength infrared spectrum (8 µm to 15 µm, also known as the

thermography region), are able to detect objects in the surrounding from their natural thermal

emissions; thus, there is no need for active IR beacons. One example of passive IR location sys-

tem is IR.Loc, developed by Ambiplex [9]. Sensors in IR.Loc determine the angle of incidence

to a heat source; given multiple sensors installed at known locations, the location of a heat

source can be determined at a measurement rate of 50 Hz, with reported location accuracy up

to 20-30 centimeter at an operating range of 10 metre [103].

Optical IR indoor positioning systems are based on active IR light sources and IR sensitive

CCD (charge coupled device) cameras. Such approach has seen most applications in motion

detection [103]. The motion sensing device known as Kinect, developed by Microsoft for the

video game console Xbox, uses continuously projected infrared light to obtain 3D scene infor-

mation with a webcam style of infrared camera. People can be tracked simultaneously up to a

distance of 3.5 metre at a frame rate of 30 Hz with reported accuracy of 1 cm at 2 m distance.

The IR-based systems can reach high accuracy of positioning estimation. One of the major

advantages of using IR for positioning is that many existing devices (e.g. mobile phones, TV

sets, PDA, etc) are equipped with IR sources [70]. The system architecture is also relatively

simple, which does not require time-consuming and expensive installation and maintenance.

However, IR-based positioning systems do not work well in complex indoor environments due

to its requirement of line-of-sight and its inability to penetrate opaque obstacles.
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2.6.2.3 Ultra-sound

Ultra-sound is another media that can be used for position measurement. The relative distance

or range between two devices can be estimated from Time of Arrival (TOA) measurements

of Ultra Sound (US) pulses which travel from an US emitter to an US receiver. The Active

Bats system developed by AT&T Cambridge [20] and The Cricket system from MIT [116, 117]

are two most well-known ultrasound-based positioning systems. In both systems the relative

distance or range between two devices can be estimated from TOA measurements of US pulses,

along with triangulation methods.

The Active Bats system uses badges or tags that periodically emit ultrasonic pulses, which

send information to a matrix of receivers embedded on the ceiling at known locations. With

sufficient number of receivers installed, it is reported that the system can reach accuracy up

to 3 centimeter for 95 percent of the readings in a 3D location estimation scenario using 100

measurements within a 10m3 volume [54]. The major drawback of the Active Bats system is

the cost and complexity involved in installing receivers on the ceiling, which largely reduces the

scalability of the system.

The MIT Cricket system uses a combination of RF and ultrasound technologies to provide loca-

tion information to the tagged host devices [116]. Location beacons are mounted on the ceiling

or inside the wall; they not only publish information on an RF channel but also transmit con-

current ultrasonic pulses. Once listeners, which are attached to the tracked objects, receive RF

signals, they listen for the corresponding ultrasonic pulses. When the ultrasonic pulse arrives,

the listener obtains a distance estimate relative to the sender beacon by taking advantage of the

difference in propagation speeds between RF and ultrasound [50]. As the position is calculated

locally at the listener mounted on the tracked object, Cricket also provides the advantage of

protecting user privacy. The Cricket system can provide a position estimation accuracy of 10

centimetre and an orientation accuracy of 3 degree.
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2.6.2.4 Radio Frequency Identification (RFID)

Radio-frequency identification (RFID) is a non-contact identification technology using electro-

magnetic transmission to an RF compatible integrated circuit, to store and retrieve a tracked

object’s data such as its identification. An RFID system has several basic components, in-

cluding RFID readers (with antennas attached to it), RFID tags (or RFID transponders), and

the communication between them. When a RFID reader energises an antenna, the tags in its

coverage area would get activated and transmit their identification codes, possibly along with

other data, back to the reader. RFID can be taken as the next generation of barcodes; however,

unlike barcodes, it does not require line-of-sight reading and the identification can be conducted

meters away [134, 70].

RFID tags contain a unique identification number called an Electronic Product Code (EPC),

and potentially additional information of interest. There are two types of RFID tags: passive

and active. Passive tags operate without having their own power supply. When the RF signal

from a reader is received at a tag, electric current is induced at the tag’s antenna and powers its

IC to transmit response with information back to the reader. Passive RFID tags are smaller,

lighter and inexpensive. However the coverage range of passive RFID tags is limited, around 1-2

meters. Active RFID tags are small transceivers with internal batteries; they actively broadcast

signals to readers in proximity and can transmit over much longer distance as far as 100 meters

comparing to passive tags. Active tags are usually heavier and larger in volume; they are also

more costly and thus are suitable for tracking high value goods like vehicles, aircraft parts and

large containers of goods [96, 107].

Three primary frequency bands are being used for RFID [107, 134]:

• Low frequency (125/134KHz). Most commonly used for access control, animal tracking,

and asset tracking.

• High frequency (13.56 MHz). Used in cases where medium data rate is acceptable and
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read ranges under 1.5 metres.

• Ultra-high frequency (850–950 MHz). Offers the longest read ranges of up to about 3

meters and high reading speeds.

The most common positioning method used by RFID systems is the proximity method; that

is, the system collocates the presence of a person wearing an RFID tag with the RFID reader

that detects it. The accuracy of an RFID system is highly dependent on the density of reader

deployment. RFID technology has the advantage of requiring no direct line-of-sight. It can

detect tags at high speeds and RFID tags can be read in any environment. In addition, RFID

tags are cheap and thus offer a cost effective solution for positioning.

2.6.3 Ultra-wide band (UWB)

One of the common problems encountered in using RF-based positioning systems is that ac-

curacy is often compromised due to the the multipath distortion of radio signals reflected by

walls in indoor environments. The ultra-wideband (UWB) technology operates with signal

bandwidth either exceeding 20 percent of the centre frequency or at least 500 MHz. Due to the

large bandwidth, UWB signal is characterised by ultra-short duration pulses (less than 1 ns),

which are easy to distinguish from signals generated from multipath. The low frequency parts

of the UWB signal spectrum are able to penetrate building materials such as concrete, glass

and wood [102]. Greater precision of location readings up to 15 cm in 3D space can thus be

achieved, allowing for detailed detection of entities’ interactions in space and offering potential

to model processes such as contact-based spread of infectious agents. UWB requires no direct

line-of-sight; UWB sensors (tags) are also cheap and consume less power than conventional

RF-based sensors, making UWB-based positioning a cost-effective solution.

The Ubisense Company [131], which is founded by engineers from AT&T Cambridge, provides

a real-time tracking system based on UWB technology. Ubisense System comprises a network

of sensors which are deployed in the existing network infrastructure and grouped into several
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cells; each cell requires at least four sensors or readers and can cover an area of up to 400m2 [70].

Each sensor is assigned an IP address by a DHCP Server. One of the sensors in a single cell

takes the role as the master server, offering services to the other sensors in the same cell. Each

sensor determines the angle of arrival (AOA) and the time of arrival (TOA) of the incoming

RF pulses sent from a specific tag. Non-master sensors would take turn to send out messages

containing the AOA and TOA measurements of the tag to the master server. Calculation of

the location of a tag is performed using time difference of arrival (TDOA) and angle of arrival

(AOA) of the radio frequency pulses at different sensors [131]. The time delay of the position

estimations is short; the location update rate can be up to 20 times per second. The accuracy

offered by Ubisense can reach tens of centimeters. Ubisense system is also highly scalable;

throughout buildings or collections of buildings, an unlimited number of cells can be networked

together in a manner similar to cellular phone networks.

2.6.4 Wireless Local Area Network (WLAN)

The mid-range wireless local area network (WLAN) standard (IEEE 802.11 standard), also

called Wi-Fi, operates in the 2.4-GHz Industrial, Scientific and Medical (ISM) band. WiFi

has been proliferating as the primary standard for wireless LANs in enterprise facilities and

households worldwide [96]; most mobile devices, such as PDAs, laptops and mobile phones,

nowadays are Wi-Fi-enabled.

One of the issues shared by many positioning technologies is the proprietary nature of the read-

ers and tags; as well as the need for an infrastructure separate from the existing data network

in the facility. This makes deployment of positioning systems costly and difficult to scale. It is

thus attractive to use an existing WLAN infrastructure for indoor positioning by simply adding

a location server.

The received signal strength indication (RSSI) values of the transmitted RF signals recorded

at different WLAN access points (APs) are used to estimation the targets. RSSI values depend
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to a large extent on the propagation environment and it is difficult to correctly model the re-

lationship between RSSI values and any given position in the space. As a result fingerprinting

methods, based around simple comparison of empirical measurements without developing a

theoretical model have become more favorable than analytical modelling [103].

WLAN-based positioning typically covers ranges from 50 metres to 100 metres; line-of-sight is

not required. The accuracy of location estimations based on the WLAN signal strength is af-

fected by various factors in indoor environments including movement and orientation of human

body, the overlapping of APs, walls, doors, etc [96]. The accuracy of typical WLAN positioning

systems using RSSI is approximately 3 to 30 metres, with an update rate in the range of few

seconds.

Ekahau is a completely software-based WiFi-based positioning system that utilises existing Wi-

Fi access points installed in a facility and radio cards already present in the user devices [57].

The Ekahau system consists two major parts: site survey and positioning engine. Site survey is a

program that conducts site calibration before the real-time position estimations; the positioning

engine conducts real-time location tracking. The accuracy of Ekahau positioning system can

achieve 1 metre, if there are three or more overlapping APs.

2.6.5 Location-aware applications

Wireless location tracking technologies have been rapidly deployed across the business world to

enhance productivity and reduce associated costs and inefficiencies. There has been particularly

great interest in areas such as supply chain management, healthcare systems and transporta-

tion. Many leading-edge companies such as Wal-Mart, Proctor & Gamble, and Unilever have

either started adopting or experimented with RFID-enabled processes at different locations

(e.g. factories, transportation facilities, retailer warehouses and store shelves) along their man-

ufacturing and supply chain systems. These projects have indicated the potential of RFID

in identifying sources of inefficiencies, errors or disruptions within the supply chains and thus
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offering opportunities for improvement [87, 92, 13]. RFID has also been applied in patient

identification [44, 133] to enhance the efficiency and effectiveness of management in hospital

Emergency Departments. Combined technologies, such as sensor networks and RFID, have

also been deployed, for example in a hospital blood bag management system that continuously

monitors the temperature of stored blood bags as well as their locations [89]. [105] also identifies

various key wireless sensor technologies adopted in Intelligent Transportation Systems (ITS) for

the purposes of reducing congesting, achieving cost savings to stakeholders, enhancing safety,

monitoring environmental impacts etc. These technologies offer the advantage of collecting

large amounts of high-quality location data in an inexpensive and non-intrusive way. This data

provides an unprecedented level of transparency to complex systems or processes which cannot

be achieved visually or through manually-collected data. It is thus a valuable input in building

performance models that can better characterise the operation of real systems and provide an

enhanced understanding of complicated or highly-volatile processes.

2.7 Other Related Work

2.7.1 Workflow Mining

A large portion of our work, especially the part of mining customer flow structures, is closely

related to the research area of workflow mining and process discovery. A workflow model, which

specifies the order in which different tasks are conducted in a given system, is the basis of a

variety of business process management systems such as ERP (Enterprise resource planning),

CRM (Customer relationship management), supply chain management, and B2B [132]. To

eliminate potential model bias introduced by the lack of full knowledge of the underlying pro-

cess, research works in workflow mining and process discovery utilise collected runtime event

data (or transactional data), which records the activities of an on-going process in time order,

to build up a formal model that describes the process’s behaviour or to identify the problems

in the process. For the purpose of analysing software processes, [137] proposed an event-based
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model, which uses different types of events to mark important time points during different ac-

tivities in a process, such as the BEGIN and END events of an activity. [47, 48] later proposed

three methods, ranging from the purely algorithmic to the purely statistical, to discover and

produce formal models corresponding to actual process executions. In contrast to the finite

state machine approach of [47, 48], [4] presented an algorithm that uses existing execution logs

to model the workflow structure of a given business process as a graph.

Gonzalez et al. further extended works in workflow induction from event logs to mining RFID

data in order to extract commodity flow structures in manufacturing and supply chain systems.

These studies have been focused on innovating data model structures and data compression

techniques in order to efficiently extract from massive RFID datasets flow information includ-

ing commodity flow structures, transition probabilities and duration distributions at various

locations along a supply chain. [67] proposed a new data model for warehousing RFID data

sets. Targeted at applications in supply chain management, their goal was to enable the ef-

ficient storage and to facilitate high-level analysis of such data sets. They achieve large data

compression by taking into account the fact that in a typical supply chain several items may be

aggregated into single tagged units and certain path segments of little interest can be ignored

or merged. Built on this work, [65] further presented a method to build up a warehouse of

item flows, which is referred to as flowcubes. The flowcube is different from traditional data

cubes in that its measure is not a scalar aggregate but a flowgraph, which is a tree-shaped

graph with its nodes representing locations and edges between nodes corresponding to tran-

sitions between locations. The flowgraph maintains not only the path structure of item flows

but also path-related information, including duration (i.e. the time an item spend at a certain

location) and transition probabilities. [66] later presented a method to construct compressed

probabilistic workflow models which not only capture the general movement paths of items and

time they spent at different locations but also the significant deviations. This workflow model

takes into account the observations that the probability of an item spending certain amount

of time at its current location and the probability of the item moving to another particular

location can be both affected by the time it has spent on the previous locations in the path.
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This is different from traditional Hidden Markov Models (HMM), where time spent on previous

states is independent from the current state’s duration and transition probabilities.

This research adopts similar data-processing methodologies with previous research works in

mining workflow patterns from observation data, especially [137, 65, 67, 66]. Raw location

tracking data, in the form of (x, y, z) Cartesian coordinates, are gradually reduced and refined

into high-level descriptions similar to event logs, which record in time order entities’ activities

in the system and their spatial relationships with each other. This helps extract time durations

of customer entities interacting (i.e. requesting services) with server entities. A tree-like struc-

ture, similar to the flowgraph proposed in [65], is employed during customer flow mining to keep

track of paths taken by customer entities; tree nodes, representing service centres in the sys-

tem, maintain customer entities’ sojourn time traces and their next destinations after departure.

However, general location tracking data can be different from RFID data in that many location

systems output entities’ location updates as absolute locations; while RFID systems collocate a

tracked entity with the reader, whose location is known in advance, that detects it. That is, one

can directly identify from RFID data if two entities are in proximity to each other according to

their location updates around the same time. Many location systems, however, output absolute

location data, which is often in the form of coordinates relative to certain reference points. In

this case, the starting and ending timings of interactions among entities (e.g. a doctor treating

a patient) need to be inferred based on their proximity to each other.

2.7.2 Constructing Queueing Models for Performance Analysis of

Real-life Systems

Queueing models have been frequently adopted to help organisations such as transportation,

call centres and telecommunication, determine capacity levels required to respond to demands

in a timely fashion. Many of these studies focus on constructing analytical models with closed-
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form solutions for important performance measures, such as response time, queueing time and

utilisation of resources [8, 32, 45, 139, 3, 59, 104, 49]. In order to obtain tractable solutions, the

structures of the queueing network models in these studies are usually high-level abstraction

of the underlying processes; which takes the form of a number of inter-connected nodes, rep-

resenting “stages” a customer entity goes through during its stay in the system. For example,

most of the previous research works modelled processes in healthcare systems by assuming that

patients would progress through a series of conceptual phases – patients arrive, waiting, receive

treatment before they are discharged (e.g. [49, 104]). Poisson models are commonly adopted

in many of these studies for approximating the service and customer arrival processes. This

assumes the time gaps between two contiguous events are exponentially distributed [8, 94] with

time-stationary rates. Such analysis offers an efficient way to predict the performance measures

of the system as a whole and gives key insights to the utilisation of various resources in the

system; which is valuable for high-level strategic planning.

Nonetheless, queueing network models do not provide complete and in-depth understanding

of complex processes often encountered in real-life systems. Approximating the system with

only few stages makes the resulting models fail to reflect detailed interactions among differ-

ent entities involved in the systems [46, 53]. What constitutes a “stage” in such high-level

models might not always have a clear correspondence in real-life systems and can change with

time [104]. The assumptions made in basic queueing theory – stationary Poisson arrival and

exponential service time – are hardly realistic [119, 80, 8]. There have been evidences showing

that in many real-life systems, service times might not follow exponential distributions; they

might also be varied with time and thus non-stationary. For example, patients arrival rates

in many healthcare systems have exhibited seasonality and might have sudden surges within a

short time window [8, 94, 74, 21]. In addition, analytical performance models give steady-state

results results; it is not clear and difficult to verify if a given real-life system would ever reach

steady-state [8, 80]. Although some previous studies on modelling real-life systems resort to

discrete-event simulation (DES) when addressing complex problems with many interacting ele-

ments and time-varying features [45, 46, 140, 36], building a realistic simulation model typically



62 Chapter 2. Background

requires considerable input data for calibration and parameterisation. It also takes a significant

amount of time for conducting on-site observational studies for custom logic development and

data collection [94].

Another challenge frequently encountered in modelling real-life systems, either analytical or

simulation-based, is the difficulty to obtain sufficient, high-quality and detailed data for model

conceptualisation and parameterisation. Long-hour, labour-intensive observational studies are

often required in order to obtain high-level understanding of customer flows in the system [104,

46, 49]; review of historical data from existing data management system, either electronic

or paper-based, involves tremendous manual efforts and often introduces human bias and er-

rors. As consequence, many existing studies base their models on little data; for example,

[3, 104, 140] only obtain two days, seven days and one month, respectively, of observations.

It has been shown that lack of detailed data makes it difficult to develop models that pro-

vide good agreement with empirical performance measurements [45, 46]. The work of [22, 21]

on modelling patient arrival patterns and response times in an Accident and Emergency de-

partment exemplified the difficulties in accurate parameterisation and validation using data

collected through existing technologies. The developed model only reaches good agreement in

mean response times; the distributions of response times were not well matched and there was

no straightforward way to identify the causes of discrepancies.

Moreover, many existing studies are case-study based; the developed models are tailored to

the specific customer flow structures, as well as service and customer arrival patterns in the

case-study organisations [49, 36, 3]. The processes involved in model development, including

field studies, data collection, model conceptualisation, parameterisation and validation, are

largely manual and rely on modeller’s domain knowledge of the underlying systems. Models

constructed using such methodology are difficult to apply to other organisations without ardu-

ous human efforts for model restructuring and re-parameterisation.
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There are other related research works dedicated to inferring important queue statistics from

sample executions collected. [91] applied order statistics and developed an O (N5) (where N is

the number of times when service completion immediately followed by service commencement

during the busy period) algorithm to deduce queue statistics (e.g., transient expected queue

length, mean waiting time in the queue and the probability distribution of the number of cus-

tomers in queue seen by a random customer’s arrival) solely from transactional data (i.e., times

of service commencement and service completion during the busy period). Larson’s algorithm

assumes Poisson arrival process and that during the busy period service of the next customer

begins immediately after service completion of the previous customer. [30] later developed an

improved O (N3) algorithm to deduce transient queue lengths and the waiting times of cus-

tomers during the busy period from the same type of transaction data as in [91]. The algorithm

is further generalised to the cases of Poisson arrival processes with time-varying arrival rates as

well as the cases of arrival processes with arbitrary distributions. An O (N) on-line algorithm

is also developed to update the estimate of queue length after each customer departure. These

studies do not attempt to infer service processes – service time distributions and service disci-

plines. The applicability of these studies is limited to simple queueing systems with only one

server queue and where the arrival process is assumed to be Poisson.



Chapter 3

Inferring Queueing Networks from

High-precision Location Tracking Data

3.1 Introduction

This research presents a methodology that takes raw location tracking data – collected ei-

ther from a real-life customer-processing system or through simulation – as initial input; and

automatically infers a queueing network model that can accurately characterise the physical

customer flow and the service and arrival processes of the underlying system. This research has

restricted the types of systems that can be inferred to those with multiple customer classes,

single-server service and service disciplines including FIFO, LIFO and priority-based. For the

customer flow structure, only probabilistic, class-based and shortest-queue routing policies are

considered in this research.

Our approach is based on the four-stage data processing pipeline, as demonstrated in Figure 3.1.

The input and output data of each stage are stored as database tables, which are designed to

facilitate data queries and data processing for the following stage. After each stage is completed,

the inputs from the previous stage can be discarded. Stage 1 performs basic data preprocessing

and smoothing. The second stage has two parts. The first part infers the locations of service

64
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centres in the system and their approximate sizes. The second part estimates when a tagged

customer entity enters or leaves a particular service centre based on their proximity to each

other; it also infers the evolution of population inside each service centre. Stage 3 mines all

the extracted customer paths that have been observed inside the system and infers the basic

structure of the customer flow and the routing policies associated with each branching point.

Samples of all the time delays incurred in the system, including service times at each service

centre, time intervals between customer arrivals at the system and customer travelling times

between each pair of connecting service centres, are also extracted in Stage 3. At the final

stage we fit a hyper-Erlang distribution to each extracted time-delay sample using the G-FIT

tool [130, 129]; we infer the service discipline employed at each service centre by comparing

the orders of customer arrivals and those of customer departures. With information extracted

above, a fully-parameterised the queueing network model that best describes the underlying

system is constructed as the final output of the data processing pipeline.

3.2 Stage 1

In this research we assume a typical location update reading from an RTLS is of the form

(tagName, type, time, x, y), as exemplified in Table 3.1. tagName is a unique identifier for

each entity in the system and type indicates the category a tag belongs to. This category is

application specific and it can be used as an indicator for further information regarding the

particular tag. For example, if we have multiple customer classes, type can be used to identify

the customer class of the particular tag. time is the timestamp of each location update and x,

y are the location of the tag in a 2D Cartesian coordinate system.

Location tracking data in reality does not appear as a smooth trace describing the object’s

path. Many RTLS systems only offer the “best effort” to meet the location update frequency

requirements, usually specified by the system manager as the the time gap between two con-

tiguous location updates. As what we observed through experiments with real-time location

tracking system (Ubisense RTLS), the actual location update frequency for a particular tag
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Figure 3.1: Overview of the four-stage data processing pipeline
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Table 3.1: Example of raw location trace table after Stage 1

tagID type time x y
SERVER1 SERVER 150.311 11.496 1.409
CUST011 CUSTOMER01 150.405 3.277 3.513
CUST010 CUSTOMER02 150.654 11.437 1.602
CUST011 CUSTOMER01 150.935 3.277 3.515
CUST010 CUSTOMER02 150.982 11.449 1.595
SERVER1 SERVER 151.231 11.501 1.422
CUST011 CUSTOMER01 151.278 3.273 3.509

fluctuates from time to time, depending on whether the tag is static or moving, and more of-

ten, on whether there are many other tags competing for update time slots. Also, due to noise

and other artefacts, location updates collected from RTLS systems contain many erratic reads

with sudden deviation from the tag’s actual movement path. At this stage, we first filter out

location reads that are beyond the monitored area. We then conduct simple linear interpola-

tion of location updates and calculate for each tagged entity its velocity curve as the average

velocity for each time interval between consecutive readings. That is, if the distance between

two location readings at times ti and ti+1 is di+1, the corresponding point on the raw velocity

curve is ((ti + ti+1)/2, di+1/(ti+1 − ti)).

3.2.1 Output

The output of the first stage is smoothed time-ordered location traces with additional velocity

information; the data is of the form (tagName, type, time, x, y, vx, vy), where vx and

vy refers to the tagged entity’s velocity along x and y axis, respectively. Table 3.2 gives an

example of the output smoothed location traces from Stage 1.

Table 3.2: Example of location trace table after Stage 1

tagID type time x y vx vy
SERVER1 SERVER 150.311 11.496 1.409 -0.239 -0.104
CUST011 CUSTOMER01 150.405 3.277 3.513 0.004 0.000
CUST010 CUSTOMER02 150.654 11.437 1.602 0.031 -0.016
CUST011 CUSTOMER01 150.935 3.277 3.515 -0.007 -0.009
CUST010 CUSTOMER02 150.982 11.449 1.595 0.031 -0.017
SERVER1 SERVER 151.231 11.501 1.422 0.002 0.002
CUST011 CUSTOMER01 151.278 3.273 3.509 -0.007 -0.008
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3.3 Stage 2

Given the smoothed location trace outputted from Stage 1, Stage 2 transforms the primitive

low-level location data (in Cartesian coordinates) into high-level descriptions of the tagged

entities’ movements in the system (e.g. a tagged customer entity arriving at or departing from

a particular service centre). Stage 2 comprises two sub-stages. The first part applies DBSCAN

clustering algorithm [58] on low-speed location data points in order to infer the approximate area

of each service centre and other previously-unknown bottlenecks in the system. Based on the

proximity between a customer entity and a particular service centre, the second part estimates

when the customer entity entered the service centre requesting service (either being served or

waiting for service) and when it left. The outputs from Stage 2 include two database tables:

customerevents and serverpopulation; customerevents records the estimated timestamps

when customer entities enter or leave a service area; serverpopulation keeps track of changes

in each service centre’s population (or queue) with time.

3.3.1 Inferring locations of service centres

In this research, we assume that server entities are mostly static in the system; therefore, when

customer entities are interacting with the server entities, either receiving or waiting for service,

they stop or move at very slow speeds relative to the static server entities. Figure 3.2 displays

the raw location data readings collected by a RTLS over a period of time; the readings are

presented as dots which are colour-coded based on the tracked entities’ speeds. The colour

ranges from blue, representing speeds close to or equal to zero; to red, representing speeds of

or above a certain threshold. We can observe from Figure 3.2 that the regions or “clusters”,

where location readings gather closely together with very low speeds, suggest possible areas for

service areas and other unknown bottlenecks. This means that by discovering these low-speed

clusters of location readings, we are able to pinpoint the locations and approximate sizes of

possible service areas and other previously-unknown bottlenecks.
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Figure 3.2: Visualisation of the raw location tracking data collected by a RTLS system to show
location updates in red dots when the tagged entities are moving and in blue dots when they
are static.

This is achieved through a two-step processing technique (see Figure 3.3). The first step is

to filter out those customer entities’ location readings with relatively high speeds compared to

static server entities. The second step applies DBSCAN clustering algorithm to the remaining

dataset to identify the areas with high data concentration as possible locations of service areas

and other bottlenecks.

3.3.1.1 Velocity Filtering

At this step, we first use the output from Stage 1 (see Table 3.2) to calculate each tagged entity’s

speeds at different timestamps over its sojourn in the system. We assume that except for the

time when a tagged customer entity is inside a service area, it is travelling with a constant speed

from one service area to another. Thus, the time-ordered speed curve of a tagged customer en-

tity has several high plateaus, which corresponds to its relatively high-speed movements among

service areas; and the low-speed plateaus lying between capture its low-speed movements when

the customer entity is requesting service inside one or more service areas in the system. Most

of the data points with below-than-average speeds would be concentrated around zero with a
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Figure 3.3: An overview of velocity filtering and DBSCAN clustering processes
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Figure 3.4: An example of a customer entity’s low-speed data point distribution and the valley
point that is taken as the threshold for velocity filtering

small number of outliners, as shown by Figure 3.4, where low-speed data points are plotted in

descending order by value. From Figure 3.4 we observe that the data points grouped close to

zero have much smaller variation, contributing to a flatter line; while the outliners data points

are more deviated from each other and make a much steeper line. These outliners mostly con-

tain noisy data or the data points collected when the customer entity is accelerating to leave a

service centre or decelerating while entering a service centre. We use an indicator called speed

change rate, defined as the difference of two values in an ordered list divided by the number of

data points between them, to measure changes of slopes in different segments of the speed curve.

An iterative approach is developed to find out the first transition point, referred to as “valley

point”, where the speed curve first experiences abrupt change of slope (i.e. speed change rate).

Such “valley point” is used as a threshold that differentiates the part with speed data points

homogeneously close to zero and the outliners. Please note that this approach can be applied to

datasets where the majority of data points are similar to each other (i.e. with small variations)

and a few outliners with values largely deviated from the average.
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The filtered low-speed data points are first sorted in descending order by their values. The

average speed change rate, which is the average slope of the sorted speed curve as shown in

Figure 3.4, for the entire sorted low-speed dataset is then calculated, denoted as SpeedChall.

The iterative method searches for the range of data points where the “valley point” most likely

takes place. The search starts with the largest data points within a certain window size; the

data point of the smallest value in the subset is denoted as pmin. The speed change rate between

pmin and any other data point within this window is calculated. If all the speed change rates

calculated are above SpeedChall, it means this subset of data points only include the outliners

and might not contain the valley point; then the search moves on to the next window of data

points. The same process continues until we find the the “smallest” data value at which the

speed change rate relative to the pmin in the subset changes from above the SpeedChall to below

the SpeedChall; such point pinpoints the potential value of the valley point. The window size

of data to examine at each iteration is at the user’s discretion. In this research we choose the

window size to be ten percent of the dataset size. Such choice is largely heuristic. It is based on

the observation that outliners are usually of the small percentage of the entire sorted low-speed

dataset and using such window size the valley point can be found within a few iterations in

most cases.

3.3.1.2 DBSCAN clustering location traces

After the locations readings with higher speeds have been filtered out, the density-based clus-

tering algorithm DBSCAN is applied to group the remaining location readings. Those data

points are likely to be captured when the tagged entities are in the the approximate locations

and sizes of service centres, as well as other hidden bottlenecks in the system. In the following

subsections we follow the notations introduced by [58]: Eps-neighbourhood of a point p in a

dataset D, denoted by NEps(p), is defined as

NEps(p) = {q ∈ D | dist(p, q) ≤ Eps};
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Figure 3.5: 4-th distance plot with its first valley point identified

that is, the set of points in D that lie in a circular area of radius Eps around the point p.

DBSCAN algorithm requires two user-input parameters: MinPts and Eps; these two inputs

define the “sparest” cluster in the dataset. MinPts is to decide the minimum number of data

points inside NEps(p) to make p fulfill the core point condition; a core point is a data point that

resides inside of a cluster, as opposed to a border point which is at the border of the cluster

(please refer to [58] and [123] for further explanations). The radius Eps of the NEps(p) with

only MinPts number of data points inside is the distance between p and its MinPt− th nearest

neighbour.

In this research we follow the recommendation by [58] to use four as the value of MinPts;

larger values do not produce any significant difference in results and are also computationally

prohibitive [58]. For each of the remaining data points in the filtered dataset, we compute its

distance from the fourth nearest neighbours (called 4th− dist); then we sort the calculated

4th− dist values in descending order, as shown in Figure 3.5. According to [58] and [123], the

first “valley point” of the 4th− dist graph, as shown in Figure 3.5, is chosen to be the Eps

input parameter to the DBSCAN clustering algorithm.

Instead of manually selecting the first “valley point” from the 4th− dist graph as in [58], this



74 Chapter 3. Inferring Queueing Networks from High-precision Location Tracking Data

research applies the same technique used to find the filtering threshold in the low-speed curve

to automatically find the valley point in the 4th− dist curve. Also note that if the data points

are stored in a linear data structure, the brutal force of finding a single point’s kth-nearest

neighbour within a dataset of size n would take n comparisons and the total computation

complexity would reach O(n2). In our implementation, we use KD-tree data structure [29]

and to store the filtered location readings; which allows the time complexity of a kth-nearest

neighbour search to go down to only O(log(n)) on average.

3.3.2 Generation of event table

At the end of the clustering step, each low-speed location data point is either assigned a clus-

ter label or classified as noise. To identify when a customer entity enters or leaves the whole

system being monitored, “artificial” clusters, representing the entry areas and exit areas in the

system, are created and the data points falling in these areas are retrieved and assigned the

corresponding cluster labels.

Here we assume if a customer entity and a server entity occur in the same clusters around the

same time, the customer entity is interacting with the server entity; that is, either receiving

service or waiting to be served. Thus, the overlapping time period when the location data

points from a customer entity are clustered together with those from a particular service entity

can be used to approximate the duration when a customer entity stays inside this server entity’s

service area. Our current implementation assumes that each cluster, except those added later

to represent exit and entrance areas, either represents a service centre containing a server entity

(called server cluster) or a developing system bottleneck. Please note here that we assume no

multiple server entities existing in the same service centre.

The location data points from all the tracked entities are first traversed in time order. When

a customer entity’s data point is assigned a cluster label different from the previous one, it is

considered that the customer entity might have left a service centre and entered another one.
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However, a change in cluster labellng does not necessarily represent a real customer departure

or arrival event. Noise and other artefacts might cause location updates to have sudden de-

viation from the true locations. More importantly, although velocity filtering in the previous

stage has screened out most of the location data points captured when customer entities are

travelling, it does not guarantee that the remaining data points are “only” those captured when

customer entities are requesting service in service centres, despite their relatively high proximity

to server entities locations. This is because the speed threshold used to filter out a customer

entity’s data points with higher-than-average speeds is decided solely based on its own speed

trace, independent of the other entities. If a customer entity was passing through a service

centre at a speed below its average, it is possible that its location updates around that time

are clustered together with those from the server entity in the service centre; while in reality it

did not request any service inside the service centre. The velocity filtering algorithm does not

work well either when a customer entity’s speeds throughout the data collection period does

not exhibit much variation (that is, the speed curve is very flat). In this case, most of the

customer entity’s location data points would not be filtered out and very likely be grouped into

a closest cluster.

As mentioned above, a customer entity normally has zero or very small relative speed to a

certain server entity if it is actually requesting its service. This is considered as a “common

feature” shared by the majority of the data points clustered together with those from server

entities. As we have assumed that the server entities are mostly static, we can apply the ve-

locity filtering technique described previously to find out the speed threshold for each cluster.

We use it to rule out data points that are not “similar” to those captured during the time

when customer entities are requesting service from the server entity. A customer entity is only

considered to be “inside” a service centre demanding service when its data points have speeds

below this “similarity” threshold.

To judge whether a real departure event occurred, a look-ahead action is taken; this is essen-

tially to examine the cluster labels of the next few (in time order) data points from the same
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customer entity within a certain time window. The size of the time-window is user-defined and

should be based on the estimated minimum time for a customer entity to make a round trip

from the current service centre to the entry/exit areas or any other service centre and then

back to the current service centre again. A voting mechanism is then applied to count how

many data points within this time-window have the same cluster labels as the previous one;

that is, to support the hypothesis that the customer entity still remains in the previous cluster.

Only if the majority of the data points within the time-window do not share the same clus-

ter label as the previous one can the change in the cluster label represent a real departure event.

The next step after confirming a customer entity’s arrival or departure event is to estimate

the most probable time when the event occurred. The departure event occurrence time is

approximated by averaging two values, both of which are obtained from querying the location

trace table. The first value is called the last appearance time, which is the last timestamp

when the customer entity is still considered requesting service in the service centre (i.e. the last

timestamp of the customer entity’ low-speed data point being clustered together with the service

entities’). The second value is called first disappearance time; which is the first timestamp,

after the last appearance time, when the customer entity is either moving at a speed larger

than the velocity threshold of the cluster or it is physically outside the service centre’s range. A

similar approach is used to estimate arrival times using the last time the customer was observed

outside a service centre and its first appearance time within the service centre.

3.3.3 Output

After this stage the processed data can be stored into two database tables: customerevents

table and serverpopulation table

• customerevents table. As exemplified by Table 3.3, the customerevents table records

each tagged customer entity’s path of movement as well as the timing and location of its

activities during its sojourn time within the system. Since only the customer arrival and
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departure events are relevant in deriving performance metrics, we use these two types of

events to represent a customer entity’s activities inside a system. Thus, instead of the

Cartesian coordinates in the raw location traces, in the customerevents table a customer

entity’s locations are represented by the tag IDs of the service centres it has visited. Beside

the tag IDs of service centres, we use “ENTRY” and “EXIT” to identify the entrance and

exit areas in the monitored system, respectively. A customer entity’s path started when

the customer entity left the entrance area and ended when it arrived at the exit area.

• serverpopulation table. The table serverpopulation contains data fields (serverID,

time, count, customers) (see Table 3.4) and the data is ordered by time. The count

field is the total number of the customer entities that are located inside the service centre,

which belongs to the server identified as serverID. The field time, records the time-

stamp at which the population inside a certain service centre is updated. The customers

field maintains a list of the customer entities’ tag IDs in the service centre. If (S1, t1,

c1, 〈list1 〉) and (S1, t2, c2, 〈list2 〉) are two contiguous updates of population in the

service centre of server S1, there are c1 customer entities, whose tag IDs are listed as in

〈list1 〉, inside SERVER1’s service centre from t1 to t2. Table 3.4 gives an example of the

serverpopulation table.

Table 3.3: Example of customerevents table

customerID type location time event type
CUST010 CUSTOMER02 SERVER1 140.550 ENTRY

CUST011 CUSTOMER01 ENTRY 170.671 DEPARTURE

CUST010 CUSTOMER02 SERVER1 160.230 DEPARTURE

CUST011 CUSTOMER01 SERVER1 200.888 DEPARTURE

Table 3.4: Example of records stored in the serverpopulation table

serverID time count customerlist
SERVER1 138.003 1 CUST004

SERVER1 140.550 2 CUST004, CUST010
SERVER1 153.950 1 CUST010

SERVER1 160.230 0
SERVER1 200.888 1 CUST011
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3.4 Stage 3

Stage 3 is implemented as two parallel processes, each taking data stored in one of the output

tables from Stage 2 as inputs. The outputs from this stage include an initial structure of the

queueing network representing the system, as well as time delay samples of three types – cus-

tomer interarrival time, customer travelling time between a pair of connecting service centres

and service time at each service centre.

The first part processes the table customerevents to discover customer behaviour, which is

described by the customer flow structure, customer arrival process to the entire system and cus-

tomer travelling time among service centres. The inferred customer flow structure outputted

from this part is specified by the routing policy associated with each branching point; it is

the “blueprint” for constructing the final output queueing network. Measurements of customer

interarrival time at the system and customer travelling time among service centres are also

extracted; they will be used in the later stage for parameterising the probabilistic models rep-

resenting the customer arrival process and customer travelling time delays. The second part

uses the information from serverpopulation to extract service time samples at each service

centre.

3.4.1 Customer flow structure mining and extraction of travelling

time and interarrival time samples

The data stored in the customerevents table can be seen as a time-ordered stream of event

logs recording customer entities’ activities, especially their interactions with service entities,

in the system. Stage 3 adapts a simplified version of the method proposed by [4], which is

basically a counting process for workflow mining from event logs, to discover the structure of

customer flow in the system. One point to note is that tags can be “recycled” after the tracked

customer entities who carry them leave the system, so a single tag ID may represent different
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customer entities at different timings. We use the events where a customer entity left the entry

area and entered the exit area to mark the beginning and the end of a customer entity’s path

in the system, respectively.

Before the customer flow mining process, records from each customer entity in the cus-

tomerevents table are processed one by one. The path each customer has travelled in the

system is constructed and represented as a chronologically-ordered string of server entities’ tag

IDs whom the customer entity has requested services from. For example, after the customer

entity CUSTOMER0 entered the system it first requested services from server entity S1 and then

from server entity S2 before it left the system; the string that represents its travelling path

is “ ENTRY S1 S2 EXIT”. Once all the customer paths are constructed, we conduct customer

flow mining by using a tree-like data structure, called customer flow graph, to keep track of

all the possible routes customer entities have taken in the system. The customer flow graph

is essentially a directed graph with nodes representing service centres in the system connected

together by directed edges showing how customer entities move around the system. Each node

in the customer flow graph maintains the number of visiting customers from each customer

class, as well as their arrival and departure times.

To extract customer arrival times at the whole system, we identify the timings when customer

entities leave the system’s entry area. As we assume that the arrival processes of different

customer classes are independent from each other, for each customer class customer interarrival

time is the time gap between two contiguous customer arrivals to the system from the same

customer class. For each pair of connecting service centres, we also measure how long customer

entities have spent in travelling between them. It is defined as the time elapsed after the

customer entity has left one service centre before it entered the next one.
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3.4.1.1 Routing policies mining

Three types of routing policies can be inferred by the data processing pipeline – probabilistic

routing, class-based routing and shortest-queue routing. At the departure of a customer entity,

if its next destination is decided based on its assigned customer class, it is called class-based

routing; if the customer entity goes for the service centre with the shortest queue length, com-

pared to the other possible destinations, it is called shortest-queue routing; if the routing follows

certain probabilistic distribution, it is called probabilistic routing.

After the customer flow mining process, for each branching point in the customer flow graph

a frequency count table is generated, as exemplified in Table 3.5. The frequency count table

can be seen as two two-way contingency tables; which summarise respectively the numbers of

customer entities who go for the next destination categorised by two variables – customer class

or whether the destination service centre has the shortest queue. Table 3.5 gives an example

of such frequency count table for a branching point from server entity S1 to any of the three

service entities S2, S3, S4. There are, for example, 30 customer entities that have taken the

path from S1 to S2 with all of them classified as CUSTOMER0; 10 out of these 30 customer entities

chose S2 as their next destination because S2 had the shortest waiting queue compared to S3

and S4.

Table 3.5: Example of a frequency table for different possible routing types along a single link
with multiple branches

Link CUSTOMER0 CUSTOMER1 CUSTOMER2 Shortest routing count Total count
S1->S2 30 0 0 10 30
S1->S3 20 0 10 5 30
S1->S4 1 30 3 4 34

We then conduct Chi-square contingency table analysis (see [6] and [5] for theories regarding

one-way and two-way categorical contingency table analysis) to test if either of these two vari-

ables show strong association with the choice of next destinations. If the Chi-square test results

show that one of the variables has strong statistical association (at significance level 0.05) with
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which path the customer entities were taking, the routing policy corresponding to the variable

would be taken as the most-likely routing policy. If none of the Chi-square test results reject

the null hypothesis, we assume the routing of customers only follows certain probability dis-

tribution and is independent of the customers’ classifications or the conditions of the possible

destinations.

In the case where Chi-square test results indicate that both variables have significant association

with the choice of the next destination, we calculate the percentages of customer entities that

take the “right” paths if one of the candidate routing policies is the true one. For example,

as shown in Table 3.5 there are 19 out of 94 customers who left S1 would choose their next

destination because it has the shortest queue; if the shortest-queue routing is the true routing

policy, around 20% of the customers are following the “right” path. This percentage is called

the “success rate” of a candidate routing policy; high success rate of a particular candidate

policy means most of time the customers indeed are routed based on such policy. To calculate

the success rate for class-based routing policies is less straightforward. Given a set of customer

classes there will be multiple combinations of possible class-based routing. We only choose

the one best supported by the observed frequency counts; in the case shown in Table 3.5, the

most possible class-based routing would be CUSTOMER0 going to S2, CUSTOMER1 going to S4

and CUSTOMER2 going to S3 (according to which destination that have been chosen the most

frequently within a customer class). The routing policy with the higher success rate (that is,

better supported by the observed data) is chosen to approximate the underlying routing policy.

3.4.2 Extracting service time traces and inferring service disciplines

3.4.2.1 Extracting service time trace at each service centre

For each service centre, we process observations of its population at different timestamps (as

recorded in table serverpopulation) and retrieve those timestamps of customer departure

or arrival events by detecting differences in the 〈customer list〉 fields between contiguous
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records. For example, if at timestamp t1, the 〈customer list〉 field is 〈CUST000, CUST001,

CUST002〉 and at the next timestamp t2, the 〈customer list〉 field is 〈CUST001, CUST002〉,

then at t2 there is one departure event of CUST000 leaving the service centre; vice versa for

detecting occurrence of a customer arrival event.

One of the assumptions we have made about service process is that service preemption is not

allowed at a service centre; but there is no other assumption regarding the service disciplines.

Another assumption made is that if the service centre is empty at the arrival of a customer

entity, the customer entity will receive service immediately and its service time would be its

departure time minus the arrival time. Otherwise, it will be served at the departure of the

previous customer entity and the service time is estimated as the difference between the previous

departure time and the customer entity’s own departure time. Table 3.6 shows a snapshot of

service centre SERVER1’s records between timestamp 12.423 and 24.308. From the table, we

observe that the population at the service centre SERVER1 is first empty; then a customer entity

CUST000 arrived at timestamp 13.316 and left the service centre at timestamp 15.488. Thus,

the service time Customer0 has received from SERVER1 is estimated as 15.488− 13.316, which

is 2.172. From the following records shown in Table 3.6, we observe that the customer entity

CUST002 left the service centre at timestamp 20.150, which can be assumed to be the service

start time for the customer entity CUST004; with the departure time of CUST004 as 24.308, the

service time for CUST004 is then estimated as 24.308− 20.150 = 4.158.

Table 3.6: Example of records in serverpopulation table from a server entity with tag ID
SERVER1

serverID time count customerlist
SERVER1 12.423 0
SERVER1 13.316 1 CUST000

SERVER1 15.488 0
SERVER1 16.836 1 CUST002

SERVER1 18.989 2 CUST004, CUST002
SERVER1 20.150 1 CUST004

SERVER1 24.308 0
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3.4.2.2 Inferring service disciplines

Our data processing pipeline can infer if the server entity adopts one of the following service

disciplines – FIFO, LIFO and priority-based. For inferring priority-based service discipline, it

is assumed that the priority is decided based on the customer class and each customer class

is assigned a different priority order; if two customer entities are of the same customer class

(thus, of the same priority), they are served based on FIFO principle.

By observing the population evolution with time inside a service centre (as recorded in the

serverpopulation table), we are able to extract the orders in which customer entities arrive

at and depart from a service centre. Given the order of customer entities arriving at a service

centre, its service discipline decides the order of customer entities’ leaving the service centre.

To decide which service discipline is the most likely one adopted in a service centre, we use a

“scoring” scheme to rank the candidate service disciplines by how accurate they are in gener-

ating customer departure patterns compared with the real observed ones.

One thing to note is that the service discipline is only applied when there are more than one

customer entities queueing and competing for service. In cases where the service centre is

empty (that is, no customer queueing) or only one customer entity is waiting to be served, the

first incoming customer entity or the only customer entity in queue will be the next one to get

served, respectively. In addition, as we assume no service preemption, the timing when the

next customer entity is selected to be served (i.e. when the service starts) is approximated by

the timing when the previously-served customer entity left the service centre. That is, only

when a customer departure event takes place and at the same time the population inside the

service centre is larger than one does the server entity employs the associated service discipline

to select the next customer to serve.
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While mining the records in serverpopulation table, a list of customer entities’ tag IDs, ar-

ranged in the order of their arrivals, is maintained for each service centre to keep track of its

population evolutions as time proceeds; this is referred to as the customer incoming order list

in the following context. At the occurrence of a customer departure event with population in

the service centre larger than one, we apply different candidate service disciplines to“predict”

the next customer entity in the queue to be served. As there is no service preemption, the

next-to-be-served customer entity should also be the next one that leaves the service centre.

We then decide which service policy selects the “right” customer entity to serve when the next

customer departure event is observed at the service centre. The one that has made the right

prediction would get one score and the one that scores the highest over the entire data collection

period is the most likely service discipline applied by the service centre.

Table 3.7 shows an example of serverpopulation with the lists of customer entities inside

the service centre SERVER1 between timestamp 12.423 and 24.308. When the customer entity

CUST002 arrived at SERVER1 at 13.316, the service centre is empty and thus CUST002 was offered

service immediately. While CUST002 was receiving service, customer entity CUST004 arrived at

15.488, followed by the arrivals of CUST005 and CUST006. As CUST002 left the service centre at

20.150, there were more than one customer entities remaining in the queue and the customer

incoming order list is (CUST004, CUST005, CUST006). If the true service discipline is FIFO the

next customer entity to be served would be the first one on the customer incoming order list,

which is CUST004; and the last one on the list, which is CUST006, if the service discipline is

LIFO. Assume there are two customer classes CLASS0 and CLASS1; and CUST004 belongs to

CLASS1 while the rest are of CLASS0 class. If the service discipline is priority-based depend-

ing on the customer class, there are two possibilities: CLASS0 has higher priority than CLASS1

(denoted as (CLASS0, CLASS1)) or the other way around (denoted as (CLASS1, CLASS0)). If the

priority-based discipline (CLASS0, CLASS1) is applied, CUST005 will be the next one that gets

served; and CUST004 in the case of (CLASS0, CLASS1). At timestamp 24.308, another departure

event took place and it was CUST005 that left the service centre. In this case, the service disci-

pline candidate (CLASS0, CLASS1) gets one score.
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Table 3.7: Example of records in serverpopulation table from a server entity with tag ID
SERVER1

serverID time count customerlist
SERVER1 12.423 0
SERVER1 13.316 1 CUST002

SERVER1 15.488 2 CUST002, CUST004
SERVER1 16.836 3 CUST002, CUST004, CUST005
SERVER1 18.989 4 CUST002, CUST004, CUST005, CUST006
SERVER1 20.150 3 CUST004, CUST005, CUST006
SERVER1 24.308 2 CUST004, CUST006

3.4.3 Output

At the end of the Stage 3, an initial structure of the customer flow is extracted, which is specified

as a network of server nodes, representing service centres in the system, connected with each

other by directed links. At each branching point there is an inferred routing policy associated

with it. This serves as the blueprint for constructing the final output queueing network model

in the following stage. In addition, this stage extracts samples of time delays involved in the

system, including service times and customer travelling times among service centres, as well as

customer interarrival time.

3.5 Stage 4

3.5.1 Performance traces distribution fitting

After time traces (service time, travelling time and customer interarrival time) are extracted

in Stage 4, the final stage of the data processing pipeline uses G-FIT [130, 129] to identify the

best-fit hyper-Erlang to each of the traces. In the following context, we use HErD to denote a

hyper-Erlang distribution; the number of branches in HErD is denoted asm; for the i-th branch

its weight is denoted as αi, the number of phases as ri and the rate as λi. A HErD is thus

specified by three m-dimensional vectors: R = {ri, i = 1, 2, ..., m}; A = {αi, i = 1, 2, ..., m};
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Λ = {λi, i = 1, 2, ..., m}. The total number of states in a HErD , denoted as N , is the sum of

the numbers of phases in all branches.

For a given trace, we run G-FIT with a range of possible state numbers, normally from 5 to 15

(the hyper-Erlang with state number above 10 has displayed good fitting results according to

[130, 129]). Given a fixed state number N , G-FIT searches through all the possible combina-

tions of m and r to find the corresponding Λ that generates the highest log-likelihood and thus

is considered as best-fit to the empirical data trace.

In order to make the search process more efficient, the squared coefficient of variation c2v is used

as guidance to narrow down the search space for the optimal setting of m and R based on the

recommendations by [130, 129]. If the extracted samples have a c2v less than one, we use HErD

with no more than three Erlang branches. For traces with c2v larger than one we limit our

search to hyper-Erlang distributions with at least N − 2 branches. Note that when the branch

number reaches N , the HErD becomes a hyper-exponential distribution, which display good

fitting performance for heavy-tailed distributions with large squared coefficient of variations.

The other modification we made is the use of adjusted Akaike Information Criterion (AICc)

criterion as the measure for selecting the best-fit HErD model to avoid data over-fitting (please

refer to Chapter 2 for an introduction on model selection based on AIC). As the number of

parameters being estimated in a HErD mainly depends on the number of branches m, by using

AICc, instead of log-likelihood, as the selection criterion, the best-fit HErD would be the one

with the smallest branch number among those with highest log-likelihood values.

To further cut down the computation time, before the distribution-fitting process we first

identify customer classes that might have received the same or very similar service qualities (in

terms of service time distributions) at each server centre. This is decided based on the testing

results of Mann-Whitney U test, which tests if two sets of data points are likely sampled
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from the same or similar distribution. Mann-Whitney U test is chosen over the traditional

Student t-test for the same purpose because it can be applied to cases where sample sizes are

small or samples do not follow a normal distribution; these are often the cases in most real-life

applications. We then combine service time observations sampled for different customer classes

if the Mann-Whitney U test fails to reject the null hypothesis that they come from the same

distribution. By doing so, we are able to decrease the number of G-FIT runs and thus the total

computation time of the distribution-fitting process. Another advantage of such approach is

that in general larger sample sizes lead to better precision when estimating parameters using

statistical methods.

3.5.2 Output

The final step of Stage 4 is to construct a multiclass queueing network best representing un-

derlying system. The basic structure of the output queueing network model is similar to the

customer flow structure inferred at Stage 3. Single-server queues are created corresponding

to service centres in the system and they are connected to each other by links directing the

customer flow based on the inferred routing policies. Service process at each service centre

is parameterised according to the inferred service discipline and the hyper-Erlang distribution

best-fit to the extracted service time samples. Similarly, the customer arrival process to the

whole system is specified by the best-fit hyper-Erlang distribution characterising the time gaps

between two contiguous customer arrivals at the system.

To model customer travelling times incurred between a pair of connecting service centres, for

each link we insert an “internal” infinite-server node, which is a server node that has infinite

resources and can offer service to arriving customers immediately (that is, no queue needed);

its service time distribution is specified as the hyper-Erlang distribution best characterising

the extracted travelling time samples along the corresponding link. However, the “internal”

infinite-server node modelling the customer travelling time along a certain link is not an entirely

independent server node. It acts more like a “delegate” node to the server node at the end



88 Chapter 3. Inferring Queueing Networks from High-precision Location Tracking Data

of the link. The introduction of such internal infinite server node is due to the fact that its

“service”, which models the travelling time, is only triggered if the corresponding link is chosen

based on the associated routing policy. While probabilistic routing and class-based routing are

respectively based solely on some probabilistic distribution and the customer entity’s classifi-

cation, some of the routing policies, such as shortest-queue routing, depend on the condition of

the destination server node. Thus, the internal infinite server node along a link basically can be

seen as the delegate of the server node at the end of the link; it receives the incoming customers

and forwards them to the server node it represents. The other nodes can make inquiries at it

about the condition (such as the number of customer entities waiting) at the end server node

before they forward customer entities. Figure 3.6 illustrates a queueing network model derived

from location tracking data collected in an example system.

The constructed queuing network model that represents the underlying system can be used for

further performance analysis through either analytical or simulation approach. Although the

applications of the final output queueing network model are beyond this research, this research

has developed a simulation tool – LocTrackJINQS, which can take in a queueing network

specification, create simulation, and generate performance-related statistics including first and

second moments of response times at each service centre and the whole system, mean queue

length and utilisation of each service centre. The following chapter will give a detailed intro-

duction of LocTrackJINQS, which is later used in the case studies discussed in Chapter 5

for evaluating the data-processing pipeline.

3.6 Summary

This chapter introduced the four-stage data process pipeline developed in this research for

inferring queueing network models based on high-precision location tracking data. The first

stage of the data processing pipeline performs basic data cleaning and interpolation. The
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Figure 3.6: Example of a queueing network model as final output of the data processing pipeline

second stage transforms the low-level location data into high-level, time-ordered descriptions

of customer entities’ activities in the system. It first infers the approximate locations and

ranges of each service centre as well as the size of its associated service area. This stage

uses the proximity of tagged customer entities’ geographical locations to the approximated

service areas’ locations to identify their high-level spatiotemporal relationships; for example

if a customer entity is present in a particular service area or it is travelling between service

centres. The first part of the third stage extracts samples of service times in each service area,

samples of customer travelling times between each pair of service areas and samples of customer

interarrival time. By mining the tagged customer entities’ paths in the system, the second part

of this stage creates the initial structure of the queueing network model. The final stage of

the pipeline fits a hyper-Erlang distribution to each extracted time sample using the G-FIT

tool [130] and finalises the structure of the output queueing network model accordingly. It also

infers routing policies and service disciplines adopted at each service centres. Together, these

yield a parameterised queueing network model of the real-life or simulated system.
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LocTrackJINQS: A Location-aware

Simulation Tool for Multiclass QN

Models

4.1 Introduction

Discrete-event simulation (DES) models are computer models built to mimic the dynamic be-

haviour of a real-life process as it evolves with time. They provide visualisation and quantitative

performance analysis of the system under different scenarios. DES models systems as a network

of queues where state changes occur at discrete points of time; they are generally stochastic with

randomness introduced by using statistical distributions for sampling event occurrence times

or other system behaviour. Specific attributes are assigned to each entity, which determine

what happens to them throughout the simulation. DES models have long seen its use in both

academic and business applications for system performance modelling and evaluation, workflow

analysis, process improvement, asset/personnel management etc. By using DES models deci-

sion makers can rapidly experiment with different “what-if” scenarios and compare them at a

fraction of the cost of real implementation in the system. Compared to analytical approach,

DES models are flexible and able to deal with variability and uncertainty; many of the existing

90
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DES software packages offer graphical interfaces to facilitate visual demonstration of system

bottlenecks and abnormalities.

Several simulation software tools, such as SIMUL8 [125], WITNESS [100], Enterprise Dynam-

ics [1], MANUPLAN [128], JMT [124], are offered to help managers of different types of service

provision systems identify system bottlenecks and gain better insights into the implications of

different resource or personnel investments on overall system performance. However, very few

existing simulation tools are designed to support location-based research. Most of them do not

simulate individual entities’ physical movements in a real-life system; nor do they maintain

entities’ low-level location data during simulation. For conducting location-based research or

developing location-aware applications, the availability of large amount of location data gener-

ated in various scenarios is necessary. It is also important that the data are generated from a

well-understood system so that the developed methodologies or applications can be evaluated

or tested against the “reality”. Although real-time location data can be collected through lab-

oratory experiments, the process can be time-consuming, labour-intensive; the installation of

real-time location systems may be prohibitively costly as well. Thus, this research is motivated

to develop an in-house location-aware simulation tool that can rapidly produce large amounts

of location tracking traces from different user-defined scenarios and settings.

LocTrackJINQS, developed in this research to support our location-based research ([76] and

[11]), is an open-source simulation library that offers functionalities for simulating a real-life

customer-processing system as a queueing network while providing low-level location informa-

tion for each tracked entity (see Figure 4.1). The user can not only specify the high-level

features of the network such as the customer flow structure and distributions characterising

different time delays (e.g. service time and customer interarrival time) incurred in the system;

but also low-level information such as service entities’ geographic locations and customer enti-

ties’ physical moving speeds and paths.
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(a) A real-life system

(b) A real-life system

Figure 4.1: An example of simulating a real-life system using LocTrackJINQS: Figure 4.1a
demonstrates how a customer processing system is represented as a high-level queueing network
with low-level location information; Figure 4.1b shows a screen shot of the simulation in progress
and the generated location traces.
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LocTrackJINQS is an extension of JINQS, a Java simulation library for multiclass queue-

ing networks developed by [61]. JINQS provides a suite of primitives that allow developers

to rapidly build simulations for a wide range of stochastic queueing network models. It offers

not only simplicity for simulation construction but also flexibility for application-specific func-

tionalities through the use of inheritance [61]. However, JINQS only allows the creation of

high-level simulations of abstract queueing networks and does not support realistic low-level

features found in the physical world. This limitation makes it difficult to support simulations

that can approximate entities’ physical movements in a real-life system, where entities’ trav-

elling time might significantly influence the overall system response time. LocTrackJINQS

retains the abstract high-level model specification power of JINQS while providing additional

low-level models of entity movement. LocTrackJINQS also provides primitives for generat-

ing synthetic location tracking data that potentially contain location reading errors and missing

data, which are commonly encountered in location observations collected from actual real-time

location tracking systems. This eliminates the need for the heavy upfront investment and

long-running observation periods that an RTLS installation requires, which benefits research

involving mining large location tracking datasets or for developing location-based applications.

The remainder of the chapter first gives an overview of the new functionalities supported by

LocTrackJINQS, compared to its predecessor JINQS. Section 4.3 presents the software

architecture of LocTrackJINQS and important additions as well as modifications made to

JINQS for implementing the new features. Section 4.4 outlines user inputs required for con-

structing simulations using LocTrackJINQS; and outputs generated from simulation. At

the end of the chapter a case study is presented to demonstrate how one can use LocTrack-

JINQS to build up a model simulating a real-life system.
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4.2 JINQS and Major Extensions in LocTrackJINQS

LocTrackJINQS inherits many features from JINQS. In both JINQS and LocTrack-

JINQS, there are two main Java packages: network and tools [61]. Classes in network are

used to define the structure of queueing networks. Package tools provides utility classes for

setting up simulations, defining common families of probability distributions and calculating

performance metrics. The two packages have been designed to be easily extensible; developers

can add on application-specific features only by subclassing those existing classes and overrid-

ing the inherited methods [61].

JINQS supports simulations of queueing networks with features including multiple servers,

multiple customer classes and various queueing disciplines (e.g. FIFO, LIFO, priority-based and

service preemption); these are also supported by LocTrackJINQS. Inherited from JINQS,

LocTrackJINQS provides primitives for maintaining performance measurements at each

service point as well as for the whole network. Two types of measurement variables are main-

tained – customer-oriented (e.g. mean response time) and system-oriented (e.g. mean queue

length and mean overall population in the system) [61]; the summary of all the measures would

be outputted at the end of a simulation.

Extended from the features mentioned above, there are three main distinguishing features

implemented in LocTrackJINQS:

• Support for location-aware simulations. JINQS only supports construction of high-level

QN simulations, where each entity has no physical geographical location in the system

and entities travel from one server to another instantaneously. LocTrackJINQS intro-

duces location-related features to support more realistic simulations of real-life customer

processing systems. In particular, each entity in the queueing network is assigned a ge-

ographical location represented in a 2D Cartesian coordinate system; entity movements

occur along user-defined paths at speeds sampled from a user-specified distribution.
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• Generate location updates. One of the applications of LocTrackJINQS is to support

research on mining agent flow patterns. It thus offers the ability to generate synthetic,

yet reasonably realistic, location tracking data traces from its simulations.

• Graphic user interface. LoctrackJINQS offers a graphical interface (defined in pack-

age gui) for setting up the simulation environment, specifying related parameters and

monitoring the simulation process visually.

Other than the new features mentioned above, LocTrackJINQS supports two additional

routing policies other than probabilistic routing. One is class-based routing, where customer

entities follow certain branching paths depending on their belonging classes; the other one is

shortest-queue routing, where customer entities would choose the servers with shortest queues

as their next destinations.

4.3 Implementation

4.3.1 Queueing Network Structure

In JINQS, a queueing network comprises three main types of entities, defined by Node, Link

and Customer classes (see Figure 4.2). A network is structured as a collection of Nodes con-

nected together by directed Links. The network is populated by Customers, which move among

different Nodes along the connecting Links and request service or resources at one or more Nodes.

A subclass of Node, called Source, represents entry points where Customers are injected into

the network according to a user-specified interarrival time distribution; Sink nodes are where

Customers exit the network.

LocTrackJINQS defines queueing networks in a similar way, but introduces the entities’ ge-

ographical locations (specified as 2D Cartesian coordinates) and allows meaning to be assigned

to entities’ relative distance (e.g. defining how close a customer must be to a server in order to
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Figure 4.2: UML diagram of important classes in JINQS

be served). LocTrackJINQS further extends the notion of Node to include any space that

a Customer entity might enter and stay for a period of time before departing for its next des-

tination. This is implemented as an interface called INode, which defines the basic functions

for accepting and forwarding Customer entities. Classes implementing this interface include

the entry and exit points of the system, defined by Source and Sink classes (as in JINQS),

respectively; a Server (comprising one or more service points and a corresponding service area

within which Customer entities can request and receive service) or a cluster of servers (known

as a MultiQueueingServer) which share a common queue. Figure 4.3 gives an overview of

INode and the important classes implementing INode.

LocTrackJINQS uses three classes (all implementing the INode interface) – Server and its

subclasses InfiniteServer and QueueingServer – to define three basic types of service points

in a system (see Figure 4.3). Service points are currently assumed to have fixed locations.

Their service areas are assumed to be circular (the radii are user-specified) due to the fact that

a Customer entity’s proximity to a service point is used as the criterion to decide whether the

Customer entity has entered the service point’s service area, either being served or queueing

for service.
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Figure 4.3: UML diagram of the important classes implementing INode interface in Loc-

TrackJINQS
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An instance of the Server class provides no “service” to the customers; after it accepts a

Customer entity to its service area, it immediately forwards Customer entities to their next

destinations (selected probabilistically from outgoing links). An InfiniteServer entity pro-

vides immediate service (i.e. no waiting time) to incoming Customer entities; the service time

for each served Customer entity follows a user-specified distribution. A QueueingServer pro-

vides a limited pool of service points. Thus incoming Customer entities must queue for service

if all the service points within the same service area are busy.

Like JINQS, LocTrackJINQS supports multiple customer classes, allowing for simulations

of scenarios where interarrival time distributions, service time distributions, routing probabil-

ities and service priorities are class-dependent. Queueing discipline is priority-based and may

be FIFO, LIFO or random within customer classes of equivalent priority.

The class MultiQueueingServers supports simulations of some commonly-seen scenarios in

daily life, where several geographically-separated service points share one or more common

queueing areas (an instance of the QueueingArea class); examples of these types of systems

include post-office counters or hospital treatment rooms with patients waiting in a common

waiting area.

In order to simulate Customer entities travelling from one location to another, LocTrack-

JINQS introduces classes PhysicalLink and TransportLink as subclasses of Link (as shown

in Figure 4.4). Instead of the abstract connection that a Link provides, a PhysicalLink repre-

sents the physical path that Customer entities follow when moving between two INode entities.

A path is composed of several line segments connected to each other by break points. Un-

like JINQS, where the forwarding of Customers between two Node entities takes place in no

time, a call to the moveCustomers() function of a TransportLink updates the locations of the

Customers following the link based on each Customer entity’s speed and direction of movement.
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Figure 4.4: UML diagram of Link, PhyscialLink and TransportLink

4.3.2 Generating Synthetic Location Tracking Data

4.3.3 New Event classes

Like JINQS, LocTrackJINQS follows the discrete-event simulation model. Under this

model, a time-ordered diary of simulation events is maintained and time “hops” to the next

event of interest. Processing (or invoking) an event may result in other events being added to the

event diary. In both JINQS and LocTrackJINQS the Event class and its subclasses define

possible events, such as a customer arrival event or a service completion event. We introduction

two new subclasses of the Event class to support the location-based features implemented in

LocTrackJINQS:

• TransportCustomersEvent class. The triggering of such an event invokes the method

moveCustomers() of each TransportLink entity. By scheduling such an event to occur on

a regular basis (e.g. every few milliseconds), we are able to simulate customer movement

at a high resolution.

• TagReadEvent classes. When such an event is triggered, it invokes the updateTagReads()
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method defined in NetworkMonitor. According to their update rates, the “read” loca-

tion of the tags (i.e. their true location adjusted according to user-defined error/noise

distributions) are output to the trace file.

4.3.4 Graphic User Interface

To facilitate the creation and visualisation of location-enhanced simulation models, Loc-

TrackJINQS includes a graphical user interface. This allows users to easily lay out the

topology of the queueing network model and specify the parameters of a customer processing

system and without having to write codes, as required by JINQS. Figure 4.5 and Figure 4.6

show several screenshots of the GUI, demonstrating how to construct a queueing network sim-

ulation using LocTrackJINQS GUI.

4.4 User Inputs and Simulation Outputs

4.4.1 User Inputs

To set up a location-aware simulation using LocTrackJINQS, users need to provide following

inputs:

• Locations of entries and exits, where customer entities enter and leave the system, re-

spectively.

• Locations of service centres in the system, as well as the radii of their service areas (which

are assumed to be circular).

• Number of customer classes.

• For each service centre:

1. The number of active server entities in the service centre.
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(a) Selecting types of nodes to create

(b) Specifying the settings for a server node

Figure 4.5: Screenshots of LocTrackJINQS GUI : Figure 4.5a demonstrates how a user
creates different types of nodes in the queueing network; Figure 4.5b shows how to specify
settings (e.g. service time distribution, service discipline and number of server entities) for a
server node
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(a) Adding a directed link between a pair of server nodes

(b) Creating a physical customer path with several turning points

Figure 4.6: Screenshots of LocTrackJINQS GUI : Figure 4.6a demonstrates how a user
creates directed links connecting different of nodes in the queueing network; Figure 4.6b shows
that a user can introduce break points on a created directed link, representing turning points
of a physical customer path.
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2. The service discipline employed in the service centre. Supported service disciplines

include FIFO, LIFO, priority-based and service preemption.

3. Service time distributions. Several built-in probability distributions are provided

in LocTrackJINQS, including: uniform, deterministic, Gaussian, exponential,

Cauchy, Erlang, Pareto, Weibull, Gamma, Geometric, and mixtures of Erlang dis-

tributions (including mixtures of exponential distributions).

• Customer interarrival time distribution for each customer class.

• Topology of the simulated queueing system:

1. Directed links connecting pairs of service centres.

2. In the presence of branching points, where there are several outgoing links from a

service centre, associated routing policies should be specified. LocTrackJINQS

supports probabilistic, customer-class based and shortest-queue routing policies.

• Customer entities’ velocities. The assigned velocity can be customer-class dependent.

• Parameters regarding outputting location updates:

1. Location update rates for different types of entities being tracked in the system (e.g.

server entities or customer entities).

2. Distribution of deviations of location readings from tracked entities’ real positions;

this is to simulate data errors.

• Simulation parameters, including simulation duration and the length of warm-up period.

4.4.2 Simulation Outputs

As JINQS, outputs from LocTrackJINQS include statistics of important performance mea-

sures obtained from the simulation, including:
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• First three moments of customer queueing time and system response time experienced by

customer entities at each service or during their staying at the system; the same metrics

are also calculated within each customer class.

• Mean queue length at each service centre.

The validation of performance measures outputted by LocTrackJINQS has been conducted

by [10]; which compares the performance metrics from simulation of a single M/M/1 queue

system with those calculated from analytical formula.

During the simulation, LocTrackJINQS will output the location trace in the form of (tagName,

type, time, x, y). tagName is the unique identifier of the tag attached to a tracked entity

in the system; the type field is used to categorise tracked entities. The categorisation can be

tailored to specific applications; for example, if we have multiple customer classes, type can be

used to denote the class a particular tagged customer entity belongs to. time is the timestamp

of the outputted location update and x, y are the location of the tag in a 2D Cartesian coor-

dinate system.

4.5 Software Demonstration

To demonstrate the new capabilities implemented in LocTrackJINQS we present a case

study simulating a real-life scenario, described as follows:

The city council recently opened up a new job centre in a busy commercial area. The job centre

is currently staffed with five employees; one receptionist, two advisors and two assistants. The

high-level topology of the job centre is depicted in Figure 4.7. Once visitors arrive at the

reception of the job centre (represented as N3), they are directed to different advisors (N4 and

N5) based on their visiting purposes, which can be one of the followings:

• National insurance number application. Referred to as NIN.
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• Job consultancy. Referred to as JOB.

• Benefit claims. Referred to as BEN.

After meeting with advisor N4, JOB and BEN visitors will continue to submit documents with

either one of the two assistants (represented as N6 and N7), depending on who has the shorter

queue in the front. While a small percentage of the NIN visitors would be sent to advisor N4,

the rest will select randomly either one of the assistants N6 and N7 for form submission.

Figure 4.7: Job centre customer flow structure

The speed of all customers in this simulation environment is assumed to follow a deterministic

distribution with a mean 0.9. The remaining parameters of the simulation – i.e. interarrival

time and service time distribution for each customer class – are listed in Table 4.1.

Table 4.2 shows the calculated mean response time, its variance, and the mean queue length

experienced by different customer classes at each service centre and for the whole system.
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Service Centre Settings
Service Centre N3 N4 N5 N6 N7

Service discipline FIFO (NIN,JOB/BEN) FIFO FIFO FIFO

Service time
D Er HErD HEr HEr

(NIN)
(15) (8, 0.65) λ = (0.5, 0.2) λ = (0.75, 0.1) λ = (0.75, 0.1)

r = (7, 3) r = (7, 3)
ω = (0.55, 0.45) ω = (0.55, 0.45)

Service time D Er N/A Er
(JOB) (10) (8, 0.65) (5, 0.35) (5, 0.35)

Service time D Er N/A D D
(BEN) (10) (8, 0.65) (7.0) (7.0)

Interarrival time
NIN: Exp (0.02)
JOB: Exp (0.03)
BEN: Exp (0.03)

Table 4.1: Service and arrival processes specification

Table 4.2 shows the performance measures outputted by LocTrackJINQS, including: the

mean and variance of response times experienced by all customers and by different customer

classes at individual service centre and during their staying in the entire system; mean queue

length at each service centre; utilisation at each service centre. As shown by Table 4.2, visitors

classified as NIN experience longest response time on average, followed by JOB and then BEN.

In general, visitors across different customer classes spend most time in the system at the

reception area, represented as N3 in Figure 4.7; the utilisation of the receptionist also reached

0.9, twenty percent above the second highest one, 0.75 at N4 (representing one of the advisor

in the job centre). This indicates the reception might be the major bottleneck of the system;

and it is worth investigating the possibility of adding another staff at the reception to expedite

the visitor processing time.

4.6 Summary

To address the lack of open-source simulation tools that can support location-based research,

this research developed its in-house location-aware simulation tool –LocTrackJINQS – that

simulates a system as a network of queues with user-specified service processes and customer

arrival processes. As its predecessor JINQS, LocTrackJINQS supports high-level queueing

network simulations; however it also simulates entities’ physical movements during their sojourn
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System N3 N4 N5

Aggregate µrt 165.394 90.991 25.567 34.414
σ2
rt 7328.935 6314.373 307.249 507.999

NIN µrt 175.735 90.453 17.213 34.414
σ2
rt 7306.065 6245.327 50.204 507.999

JOB µrt 171.438 95.094 26.291 N/A
σ2
rt 7193.812 6331.521 312.782 N/A

BEN µrt 152.508 87.245 25.132 N/A
σ2
rt 7206.800 6312.711 307.510 N/A

nq N/A 6.37 0.81 0.19
ρ N/A 0.90 0.75 0.49

N6 N7

Aggregate µrt 15.059 15.722
σ2
rt 151.210 186.378

NIN µrt 21.588 22.731
σ2
rt 323.920 342.764

JOB µrt 16.227 16.248
σ2
rt 92.250 95.209

BEN µrt 10.087 9.675
σ2
rt 66.464 66.305

nq 0.14 0.10
ρ 0.56 0.421

Table 4.2: Mean (µrt, in seconds) and the variance (σ2
rt, in seconds 2 ) of the response time for

different customer classes at each service centre. nq and ρ represent the mean queue length and
utilisation at each service centre, respectively

in the system and maintains individual entities’ low-level location information. Along with

important performance measures (including moments of customer queuing and sojourn times;

mean queue lengths; utilisation of each server entity), LocTrackJINQS also outputs location

traces over the simulation period.
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Case Studies

This research takes a simulation-based approach for evaluating the developed data processing

pipeline. The ultimate goal for our methodology is to apply with location tracking data col-

lected from real-life systems. However, for the purpose of evaluating the accuracy of the data

processing pipeline, it is necessary to have full knowledge of the underlying system in order to

estimate how well the inferred queueing network approximates the true system behaviour. As

it is extremely unlikely to obtain a complete picture of dynamics in real-life systems, controlled

laboratory experiments and simulation are more feasible options. In the preliminary stage of

this research, we conducted several experiments where Ubisense RTLS was employed to collect

location tracking data in a controlled environment with predefined system settings (including

service time distributions and customer interarrival time distributions) [76]. The work in [76]

has demonstrated our early-stage data processing pipeline could capture the statistic properties

(such as first and second moments) of the underlying service and customer arrival processes.

Though it was difficult to stage larger-scale and long-hour experiments with more complex sys-

tem settings, due to the limits on hardware and personnel resources. Such constraints also make

the experiment approach less flexible as it is time-costly to conduct experiments for multiple

times. Thus, using synthetic data generated from simulation is a much more appealing option

for the purpose of evaluation at the current stage of this research.

108
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Figure 5.1: Illustration of the simulation-based evaluation methodology in this research

This chapter first presents three case studies with synthetic location tracking data generated

by the in-house simulation tool LocTrackJINQS. As demonstrated in Figure 5.1, we first

use LocTrackJINQS to simulate a user-specified queueing network system and generate syn-

thetic location tracking data from it. The generated location traces will serve as inputs to the

data processing pipeline. The inferred queueing network model outputted from the pipeline is

then compared against the true system settings. The first case study is a simple queueing net-

work system with four single-server queues with service times following different distributions

and customer flows are routed based on certain probability distribution. The second case study

presents a more complicated scenario where multiple customer classes are considered and differ-

ent service disciplines, including FIFO, LIFO and priority-based, are applied at different server

centres. Case study 3 is a simplified version of the real-life scenario presented in Chapter 4.5,

with higher level of complexity of customer flow routing policies and offering different service

qualities, in terms of serving priorities and service time distributions, for different customer

classes. Each case study simulates a medium-size system for 3000 time ticks, equivalent to

about 10 hours in reality, with around 400 customer visits. This setting is common in many

real-life systems such as a post-office, city hall, shopping mall, sport centre or a small hospital.

This is also to evaluate how well the data processing pipeline would perform with datasets of
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moderate sizes. The location update error has been set to be normally distributed with a mean

of 0.05 m and a standard deviation of 0.01 m.

At the end of the chapter, the fourth case study is also presented with real location tracking

data collected in one of the experiments conducted in the preliminary stage of this research.

This is to demonstrate the performance of the data processing pipeline with real location track-

ing data containing data noise or errors with unknown distributions.

For each of the case studies, we first present the system settings, including the system customer

flow structure specified in terms of the routing policies; the distribution settings for service time

at each service centre and the customer interarrival time to the whole system. We then conduct

Kolmogorov-Smirnov test estimating the fitness of the best-fit hyper-Erlang distribution to the

extracted sample; we compare the first and second moments of the best-fit hyper-Erlang distri-

bution and the corresponding theoretical distribution. To demonstrate the inferred queueing

network models indeed capture the underlying systems’ performance features, for the first three

case studies we use LocTrackJINQS to construct simulations based on the inferred queueing

network settings, compute the key performance measures (including first and second moments

of response time, mean queue length and utilisation at each service centre) and compare them

with the ones generated from the simulation based on the true underlying model. Each sim-

ulation lasts 1 000 000 time ticks with warm up time 50 000 time ticks. The chapter is then

concluded by analysis and discussion on the case study results.

For the convenience of presentation, we use the following notations to specify the distributions

characterising time delays involved in a system:

• D (t): deterministic distribution with parameter t.

• Exp (λ): exponential distribution with rate λ.

• Er (λ, r): Erlang distribution with rate λ and phase length r.
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• HExp (λ,ω): hyper-exponential distribution with two parameter vectors (λ) and (ω).

The dimension of λ and ω vectors is the number of exponential branches; the values of

each dimension in λ and ω specify the rate and the weight associated with each branch.

• HErD (λ,ω, r): hyper-Erlang distribution with three parameter vectors λ, ω and r. The

definitions of parameters λ and ω are similar to those defined forHExp with one additional

parameter vector r, which specifies the number of phases at each branch.

5.1 Case Study 1: Simple Queueing Network

5.1.1 System settings

Figure 5.2 depicts the customer flow structure of the system designed for the first case study: a

simple queueing network with four single-server queues offering service based on FIFO discipline

and service time distributions specified in Table 5.1.

Figure 5.2: Customer flow structure of system for case study 1
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Service Centre Settings
Service Centre S3 S4 S5 S6

Service Centre FIFO FIFO FIFO FIFO

Service time

Er Er HErD D
(3, 0.6) (5, 1.0) λ = (0.7, 0.3, 0.2) (5.0)

r = (7, 2, 3)
ω = (0.4, 0.25, 0.35)

Interarrival time Setting Exp (0.1)

Table 5.1: Service and arrival processes settings for case study 1

5.1.2 Distribution fitting results

Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 display the distribution fitting

results comparing the best-fit hyper-Erlang distributions found by G-FIT to the corresponding

extracted time delay samples and the theoretical distributions. In all cases except service time

at S6 (see Figure 5.7), K-S test results suggest that the extracted time delay samples follow the

best-fit hyper-Erlang distributions. The first moment and second moment (expressed as squared

coefficient of variation, denoted as c2v) of the best-fit hyper-Erlang distributions are compared

against the theoretical values (specified between parentheses); the percentage of errors for both

moments are also calculated. The differences in first moments between the fitting hyper-Erlang

distributions and the theoretical ones in all cases are as small as less than two percent; and

mostly below one percent difference in second moments.
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Best-fit HErD
λ = (0.088, 1.422)

r = (1, 4)
ω = (0.969, 0.031)

K-S test p = 0.919
K-S statistic = 0.0323

H0 not rejected
First moment 11.021 (11.021)

(error%) −3.21× 10−5%
c2v 1.030 (1.034)

(error%) −0.625%

(b)

Figure 5.3: Comparing the best-fit hyper-Erlang distribution with the extracted sample and
the theoretical distribution for customer interarrival time to the system in case study 1
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r = (4, 10)
ω = (0.799, 0.201)

K-S test p = 0.997
K-S statistic: 0.023
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First moment 5.154 (5.154)
(error%) −9.18× 10−5%

c2v 0.332 (0.334)
(error%) −0.536%

(b)

Figure 5.4: Comparing the best-fit hyper-Erlang distribution with extracted sample and theo-
retical distribution for service time at service centre S3 in case study 1
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Best-fit HErD
λ = (1.035)
r = (5)

ω = (1.0)

K-S test p = 0.820
K-S statistic = 0.043

H0 not rejected
First moment 4.830 (4.830)

(error%) −1.24× 10−4%
c2v 0.197 (0.2)

(error%) −1.308%

(b)

Figure 5.5: Comparing the best-fit hyper-Erlang distribution with extracted sample and theo-
retical distribution for service time at service centre S4 in case study 1

5.1.3 Inferred queueing network model and response time analysis

The structure of the inferred queueing network is presented in Figure 5.8. As mentioned in

Chapter 3, the customer travelling time between a pair of connecting service centres is modelled

by an infinite server node, whose service time distribution follows the hyper-Erlang distribution

best fit to the extracted customer travelling time sample. These additional infinite server nodes

are labelled with IDs starting with IS. In Figure 5.8 the inferred routing probabilies are also

specified at each branching point, which are similar to the designed customer flow structure
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K-S test p = 0.807
K-S statistic = 0.064
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First moment 9.545 (9.545)
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Figure 5.6: Comparing the best-fit hyper-Erlang distribution with extracted sample and theo-
retical distribution for service time at service centre S5 in case study 1
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Best-fit HErD
λ = (16.279)
r = (80)
ω = (1.0)

K-S test p = 1.55× 10−32

K-S statistic = 0.370
H0 not rejected

First moment 4.914 (5.000)
(error%) −1.7%

c2v 0.013 (0.000)
(error) 0.013
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Figure 5.7: Comparing the best-fit hyper-Erlang distribution with extracted samples and the-
oretical distribution for service time at service centre S6 in case study 1

shown in Figure 5.2. Figure 5.9b lists the first and second moments of the response times, as

well as mean queue length and utilisation at each service centre generated through simulation

of the inferred queueing network; the simulation results based on the true underlying system

settings are specified next in parentheses.
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Figure 5.8: Inferred queueing network model for case study 1
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(a) Response time distributions generated through simulation

System S3 S4 S5 S6

Aggregate µrt 66.721 (72.716) 7.945 (8.336) 5.837 (6.369) 12.894 (14.735) 5.997 (6.341)

cv2rt 0.032 (0.033) 0.494 (0.551) 0.274 (0.315) 0.567 (0.483) 0.123 (0.132)

nq N/A 0.25 (0.33) 0.06 (0.1) 0.09 (0.14) 0.19 (0.12)

ρ N/A 0.45 (0.50) 0.31 (0.38) 0.29 (0.38) 0.4 (0.47)

(b) Mean (µrt, in seconds) and the squared coefficient of variation (cv2rt) of customer response time at
each service centre in case study 1. nq and ρ represent the mean queue length and utilisation at each
service centre, respectively

Figure 5.9: Response time analysis for case study 1
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5.2 Case Study 2: Multiclass Queueing Network with

Different Service Disciplines

5.2.1 System settings

Figure 5.10: Customer flow structure of system for case study 2

Service Centre Settings
Service Centre S3 S4 S5 S6

Service discipline (CUSTOMER1,CUSTOMER0) (CUSTOMER1,CUSTOMER0) LIFO FIFO

Service time settings
Er HExp ErD D

(CUSTOMER0)
(3, 0.6) λ = (0.1, 0.35) (5, 1.0) (8.0)

ω = (0.75, 0.25)

Service time settings
as above HErD HErD Er

(CUSTOMER1)
λ = (0.85, 0.3) λ = (0.7, 0.3) (5, 0.9)

r = (4, 2) r = (6, 3)
ω = (0.7, 0.3) ω = (0.65, 0.35)

Interarrival time
CUSTOMER0: Exp (0.1)
CUSTOMER1: Exp (0.05)

Table 5.2: Service and arrival processes specification for case study 2
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As depicted in Figure 5.10 the customer flow structure of the system in the second case study

is similar to that of case study 1. In addition, case study 2 introduces two customer classes –

CUSTOMER0 and CUSTOMER1 – with CUSTOMER1 enjoying higher priority over CUSTOMER0. The

four service centres in the system employ different service disciplines as listed in Table 5.2.

5.2.2 Distribution fitting results
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(error%) 8.077%
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(error%) 16.007%

(b)

Figure 5.11: Comparing the best-fit hyper-Erlang distribution with extracted sample and the
theoretical distribution for interarrival time of CUSTOMER0 in case study 2
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First moment 26.154 (25)
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c2v 1.091 (1.000)

(error%) 9.064%

(b)

Figure 5.12: Comparing the best-fit hyper-Erlang distribution with extracted sample and the
theoretical distribution for interarrival time of CUSTOMER1 in case study 2
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Figure 5.13: Comparing the best-fit hyper-Erlang distribution with extracted sample and the-
oretical distribution for service time at service centre S3 in case study 2

Figure 5.11 and Figure 5.12 demonstrate the distribution fitting results for customer interarrival

times from two different customer classes – CUSTOMER0 and CUSTOMER1. Figure 5.13 presents the

fitting results for service time at service centre S3 for both CUSTOMER0 and CUSTOMER0 classes.

Note here that the data processing pipeline extracts service time samples separately for each

individual customer class. The Mann-Whitney U test result comparing the service time sam-

ples from these two customer classes has failed to reject the null hypothesis that they are from

the same distribution; thus they are combined into one single sample before the distribution

fitting step. This agrees with the service setting for S3 in case study 2.

Please note here that Figure 5.14 only displays the comparison between the extracted samples

and the best-fit hyper-Erlang distribution. While the theoretical service time settings are differ-

ent for CUSTOMER0 and CUSTOMER1, the result of Mann-Whitney U test comparing the extracted

samples for service times of CUSTOMER0 and CUSTOMER1 suggests that there is no significant dif-

ference (at significance level 0.05) between the underlying distributions of these two samples.

We argue that the data extraction error should not be the main cause for the data processing

pipeline failing to discover the distinctions of service demands from these two customer classes.

Figure 5.17a and Figure 5.17b compare the histograms of service time samples extracted by the

data processing pipeline and the actual samples generated from the simulation for CUSTOMER0
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and CUSTOMER1; both of them display high resemblance to each other and the K-S test results

also failed to reject the null hypothesis that the extracted service time sample is significantly

different (at significance level 0.05) from the simulation-generated one in both cases. As the

extracted service time sample for CUSTOMER0 only contains 132 data points and the extracted

sample is even smaller, 62 for CUSTOMER1, the extracted service time samples might not be

large enough to exhibit the distinction between service time distributions for these two cus-

tomer classes.
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r = (2, 2, 2)
ω = (0.264, 0.674, 0.062)

K-S test p = 0.906
K-S statistic: 0.0398

H0 not rejected
First moment 7.596(N/A)

(error%) N/A
c2v 1.216(N/A)

(error%) N/A

(b)

Figure 5.14: Comparing the best-fit hyper-Erlang distribution with extracted sample and the-
oretical distribution for service time at service centre S4 in case study 2

Figure 5.15, Figure 5.16, Figure 5.18, Figure 5.19 show the distribution fitting analysis for

service times at service centres S5 and S6. Except service time for CUSTOMER0 at S6 (which is

a deterministic case), the K-S test results have shown in general good fitness to the extracted

service time samples. The first moments of the best-fit hyper-Erlang distributions are within

less than 10% of difference from the theoretical values in all cases; larger error rates are ob-

served for second moments, but most of time they are still below 15%.
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Figure 5.15: Comparing the best-fit hyper-Erlang distribution with extracted sample and theoretical distri-
bution for service time for CUSTOMER0 at service centre S5 in case study 2
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Fitting results on service time
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λ = (0.269, 0.956)

r = (3, 8)
ω = (0.435, 0.565)

K-S test p = 0.806
K-S statistic: 0.081
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First moment 9.580 (9.071)
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c2v 0.271 (0.244)
(error%) 11.101%

(b)

Figure 5.16: Comparing the best-fit hyper-Erlang distribution with extracted sample and the-
oretical distribution for service time for CUSTOMER1 at service centre S5 in case study 2

5.2.3 Inferred queueing network model and response time analysis

Figure 5.20a shows the customer flow structure of the output queueing network model, which in

general agrees with the true probabilistic settings of the underlying system. Figure 5.20b lists

the total scores each candidate service discipline obtains in predicting correctly the next cus-

tomer to be served at each service centre when there are more than one customers in queue. The

most likely service discipline is the one with the highest score (in bold face in Figure 5.20b);

it shows that the data processing pipeline has selected the correct service disciplines. From
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(a) Histograms of the extracted service time sample and the true sample generated by the simulator
for CUSTOMER0 at S4
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(b) Histograms of the extracted service time sample and the true sample generated by the simulator
for CUSTOMER1 at S4

Figure 5.17: Figure 5.17a and Figure 5.17b show that the extracted service time samples for
CUSTOMER0 and CUSTOMER1 have similar distributions with the synthetic ones generated by the simula-
tion; two-sample K-S test results also fail to reject the null hypothesis that the extracted service time
samples for CUSTOMER0 (p-value= 0.998, K-S statistic= 0.046) and CUSTOMER1 (p-value= 0.984, K-S
statistic = 0.081) are not significantly different at significance level 0.05 from the synthetic samples.

Figure 5.21c, we observe that the performance measures generated by simulation based on the

inferred queueing network in general share similar scale of quantities comparing to those gener-

ated by simulation based on the true underlying system settings. Figure 5.21a and Figure 5.21b

also show that the response time distributions of the inferred queueing network indeed follow

the trend of those of the theoretical system for both customer classes.
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Figure 5.18: Comparing the best-fit hyper-Erlang distribution with extracted sample and the-
oretical distribution for service time for CUSTOMER0 at service centre S6 in case study 2
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Figure 5.19: Comparing the best-fit hyper-Erlang distribution with extracted sample and the-
oretical distribution for service time for CUSTOMER1 at service centre S6 in case study 2
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(a) Inferred queueing network structure

Server ID S3 S4 S5 S6

FIFO 59 40 0 90
LIFO 11 7 12 0

(CUSTOMER1,CUSTOMER0) 81 55 5 67
(CUSTOMER0,CUSTOMER1) 44 67 1 71

(b) Compare the scores of candidate service dis-
ciplines in predicting correctly the following cus-
tomer to be served; the one with the highest
score (in bold text) is selected.

Figure 5.20: The inferred queueing network and the inferred service time discipline at each
service centre in case study 3
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(b)

System S3 S4

Aggregate µrt 75.480 (79.338) 9.020 (9.679) 15.555 (14.979)
cv2rt 0.106 (0.102) 0.801 (0.723) 1.359 (1.424)

CUSTOMER0 µrt 82.194 (87.823) 9.903 (10.831) 17.059 (17.496)
cv2rt 0.092 (0.082) 0.888 (0.749) 1.413 (1.350)

CUSTOMER1 µrt 62.249 (62.718) 7.425 (7.383) 12.813 (9.847)
cv2rt 0.076 (0.062) 0.390 (0.361) 1.017 (0.922)

nq N/A 0.46 (0.54) 0.51 (0.53)
ρ N/A 0.54 (0.59) 0.48 (0.51)

S5 S6

Aggregate µrt 10.240 (8.410) 13.909 (13.949)
cv2rt 1.040 (0.683) 0.451 (0.386)

CUSTOMER0 µrt 8.379 (6.930) 14.856 (14.833)
cv2rt 1.164 (0.735) 0.399 (0.346)

CUSTOMER1 µrt 13.566 (11.282) 12.050 (12.136)
cv2rt 0.764 (0.481) 0.554 (0.462)

nq 0.46 (0.54) 0.57 (0.72)
ρ 0.40 (0.38) 0.63 (0.66)

(c) Mean (µrt, in seconds) and the squared coefficient of variation (cv2rt)
of the response time for each customer class at each service centre in
case study 2. nq and ρ represent the mean queue length and utilisation
at each service centre, respectively

Figure 5.21: Response time analysis for case study 2
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5.3 Case Study 3: Queueing Network with Different

Routing Policies

5.3.1 System settings

Figure 5.22: Customer flow structure of system for case study 3

Service Centre Settings
Service Centre S3 S4 S5 S6 S7

Service discipline (CUSTOMER0,CUSTOMER1) FIFO FIFO FIFO FIFO

Service time
D N/A HErD Er Er

(CUSTOMER0)
(4.5) λ = (0.6, 1.5, 0.05) (6, 0.75) (3, 0.65)

r = (4, 7, 1)
ω = (0.30, 0.35, 0.35)

Service time
ErD HErD N/A as above HErD

(CUSTOMER1)
(3, 0.6) λ = (1.0, 0.3) λ = (0.75, 0.1)

r = (4, 2) r = (4, 1)
ω = (0.7, 0.3) ω = (0.65, 0.35)

Interarrival time
CUSTOMER0: Exp (0.05)
CUSTOMER1: Exp (0.1)

Table 5.3: Service and arrival processes specification for case study 3
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In this case study, the customer flow structure is a slightly simplified version of the one pre-

sented in Section 4.5. This is to demonstrate the capability of our data processing pipeline in

inferring a simple real-life scenario with service centres supporting multiple customer classes,

class-based service qualities and different routing policies.

As shown in Figure 5.22 after the customers pass through the service centre S3, they are directed

to different destinations according to the their classifications – CUSTOMER0 and CUSTOMER1 in

this case. Later the CUSTOMER0 visitors would choose either of the two service centres S5 and

S6 based on certain probability distribution as their last stops before leaving the system; while

CUSTOMER1 visitors tend to choose the service centre with the shortest queue length. Table 5.3

shows the specifications of the time delays involved in the system.

5.3.2 Distribution fitting results
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Extracted sample
Fitted distribution
Theoretical distribution

Fitting results on customer
interarrival time (CUSTOMER0)

Best-fit HErD
λ = (0.081, 0.955, 0.764)

r = (2, 2, 7)
ω = (0.630, 0.153, 0.217)

K-S test p = 1.000
K-S statistic = 0.023

H0 not rejected
First moment 17.918 (20)

(error%) −10.41%
c2v 0.875 (1.000)

(error%) −12.48%

Figure 5.23: Comparing the best-fit hyper-Erlang distribution with extracted sample and the
theoretical distribution for for the interarrival time of CUSTOMER0 in case study 3

As presented by the figures listed below (see Figure 5.23, Figure 5.24, Figure 5.25, Figure 5.26

Figure 5.27, Figure 5.28 Figure 5.29, Figure 5.30 , Figure 5.31), K-S test results again show that

the best-fit hyper-Erlang distributions in general have good fitness to the extracted time-delay
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Fitted distribution
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Fitting results on customer
interarrival time (CUSTOMER0)

Best-fit HErD
λ = (0.104)
r = (1)

ω = (1.0)

K-S test p = 0.996
K-S statistic = 0.022

H0 not rejected
First moment 9.609 (10)

(error%) −3.915%
c2v 1.000 (1.000)

(error%) 0.00%

Figure 5.24: Comparing the best-fit hyper-Erlang distribution with extracted sample and the
theoretical distribution for interarrival time of CUSTOMER1 in case study 3

samples; the fitting hyper-Erlang distributions also match well in first and second moments

with those calculated from the true underlying distributions. We are also able to distinguish

the case (see Figure 5.29) where the service demands from visitors belonging to CUSTOMER0 and

CUSTOMER1 types are following the same distribution.
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Empirical data
Fitted distribution
Theoretical distribution Fitting results on service time

for CUSTOMER0 at S3

Best-fit HErD
λ = (18.012)
r = (80)
ω = (1.0)

K-S test p = 3.313e− 18
K-S statistic = 0.348

H0 rejected
First moment 4.44138482378806 (4.5)

(error%) −1.30%
c2v 0.0125 (0.00)

(error%) N/A

Figure 5.25: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER0 at service centre S3 in case study 3
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Best-fit HErD
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r = (1, 3, 12)
ω = (0.110, 0.833, 0.057)

K-S test p = 0.999
K-S statistic= 0.020
H0 not rejected

First moment 4.513 (4.615)
(error%) −2.224%

c2v 0.326 (0.333)
(error%) −2.235%

Figure 5.26: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER1 at service centre S3 in case study 3
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Extracted sample
Fitted distribution
Theoretical distribution

Fitting results on service time
for CUSTOMER1 at S4

Best-fit HErD
λ = (0.455, 0.902)

r = (2, 4)
ω = (0.462, 0.538)

K-S test p = 0.688
K-S statistic: 0.040
H0 not rejected

First moment 4.416 (4.800)
(error%) −8.000%

c2v 0.364 (0.476)
(error%) −23.406%

Figure 5.27: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER1 at service centre S4 in case study 3

5.3.3 Inferred queueing network model and response time analysis

Figure 5.32a presents the structure of the queueing network model outputted by the data

processing pipeline and the most likely service discipline employed at each service centre. Please

note here that the routing of customer entities from the server node S4 depends on the queue

lengths of nodes S6 and S7, rather than the connecting infinite server nodes IS5 and IS6 (as

infinite server nodes do not have queue). As shown in Figure 5.32b, the service discipline that

scores the highest at S3 is priority-based discipline with CUSTOMER0 enjoying higher priority
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Fitted distribution
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Best-fit HErD
λ = (0.044, 0.761)

r = (1, 4)
ω = (0.331, 0.669)

K-S test p = 0.888
K-S statistic: 0.044
H0 not rejected

First moment 10.923 (10.633)
(error%) 2.725%

c2v 1.971 (1.701)
(error%) 15.888%

Figure 5.28: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER0 at service centre S5 in case study 3
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Extracted sample
Fitted distribution
Theoretical distribution

Fitting results on service time for
CUSTOMER0 and CUSTOMER1 at S6

Best-fit HErD
λ = (0.795)
r = (6)
ω = (1)

K-S test p =, 0.937
K-S statistic: 0.033
H0 not rejected

First moment 7.544 (8.000)
(error%) −5.701%

c2v 0.167 (0.167)
(error%) 0.0%

Figure 5.29: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for both CUSTOMER0 and CUSTOMER1 at service centre
S6 in case study 3

than CUSTOMER1; FIFO is applied in the rest of the service centres. Note that service centres S4

and S5 only receive one type of customers (due to the class-based routing at S3) and thus the

two priority-based service disciplines share the same scores as FIFO (because we have assumed

that customers of the same class would be served based on FIFO discipline). Figure 5.33c

displays the response time statistics and performance-related measurements from simulation

based on the outputted queueing network model; most of these values again do not have large

discrepancies from those generated by simulation based on true system settings.
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K-S statistic: 0.078
H0 not rejected

First moment 4.615 (4.615)
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c2v 0.300 (0.333)
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Figure 5.30: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER0 at service centre S7 in case study 3
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Best-fit HErD
λ = (0.080, 0.679)

r = (1, 4)
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K-S test p = 0.787
K-S statistic: 0.058
H0 not rejected

First moment 7.238 (6.967)
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Figure 5.31: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time for CUSTOMER1 at service centre S7 in case study 3
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(a) Inferred queueing network structure

Server ID S3 S4 S5 S6 S7

FIFO 114 26 61 34 26
LIFO 27 0 12 0 0

(CUSTOMER1,CUSTOMER0) 104 26 61 23 20
(CUSTOMER0,CUSTOMER1) 167 26 61 31 18

(b) Compare the scores of candidate service dis-
ciplines in predicting correctly the following cus-
tomer to be served; the one with the highest
score (in bold text) is selected.

Figure 5.32: The inferred queueing network and the inferred service time discipline at each
service centre in case study 3
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Inferred QN model
True underlying system

(b)

System S3 S4 S5

Aggregate µrt 67.597 (65.879) 11.535 (10.518) 6.016 (7.165) 34.101 (25.926)
cv2rt 0.182 (0.123) 0.964 (0.793) 0.496 (0.644) 1.352 (1.472)

CUSTOMER0 µrt 75.788 (68.869) 6.979 (6.934) N/A 34.101 (25.926)
cv2rt 0.300 (0.0.239) 0.165 (0.173) N/A 1.352 (1.472)

CUSTOMER1 µrt 63.103 (64.404) 14.034 (12.286) 6.016 (7.165) N/A
cv2rt 0.072 (0.056) 1.569 (0.778) 0.496 (0.644) N/A

nq N/A 1.13 (0.88) 0.17 (0.23) 1.32 (0.74)
ρ N/A 0.72 (0.68) 0.45 (0.48) 0.62 (0.53)

S6 S7

Aggregate µrt 11.755 (12.009) 11.535 (10.518)
cv2rt 0.346 (0.314) 0.964 (0.793)

CUSTOMER0 µrt 13.148 (13.277) 6.979 (6.934)
cv2rt 0.357 (0.315) 0.165 (0.173)

CUSTOMER1 µrt 11.270 (11.635) 14.034 (12.286)
cv2rt 0.332 (0.307) 1.569 (0.778)

nq 0.34 (0.303) 1.13 (0.88)
ρ 0.63 (0.61) 0.72 (0.68)

(c) Mean (µrt, in seconds) and the squared coefficient of variation (cv2rt) of the
response time for each customer class at each service centre in case study 3. nq and
ρ represent the mean queue length and utilisation at each service centre, respectively

Figure 5.33: Response time analysis for case study 3
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Figure 5.34: The deployment of the experiments for Case Study 1, 2 and 3

5.4 Case Study 4: Experiment Data

This section presents a case study where our proposed data processing methodology is evalu-

ated using real location tracking data collected from a real-time location system. The location

observations were captured during one of the four experiments conducted at preliminary stage

of this research. For each experiment, we designed an environment whose customer flow resem-

bles the one in a simple queueing system with known service time and customer interarrival

time distributions. During the experiment volunteers transported tags between single-server

service areas at times sampled from known distributions; the positions of tags were continuously

recorded using a Ubisense Location Tracking System with four readers. Section 5.4.1 gives a

more detailed description of how experiments were conducted and the settings of the experiment

chosen for case study 4; followed by the analysis of the results are discussed in Section 5.4.2.

For this case study, as we did not collect exact response times during the experiment, here we

only compare the inferred customer interarrival time and service time distributions to the real

experiment settings.

5.4.1 Experiment design and settings

Figure 5.34 illustrates the deployment of the experiments. The dash lines in the figure depict

the designed customer flow of the experiment system. There is a single imaginary entry/exit
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point, which is the location at which the volunteers (that is, customers) are considered arriving

at or departing from the system. Once the volunteers “leave” the system, they return the tags

they are holding at the entry/exit point. The main challenge in conducting the experiments is

to direct volunteers for how long they should wait in front of a server, when they should leave

a server’s service area and which server they should move to, based on the designed customer

flow structure and customer interarrival time and service time distributions. A simple alarm

program is developed for this purpose. This program will pop out an alarm message when

a certain amount of time is elapsed after the user presses the ”start” button. This amount

of time gap is generated according to the probability distribution specified by the user. At

each server’s location and the entry/exit point, there is a computer with this alarm program

installed to instruct volunteers to leave their current location when the alarm message pops

out. Figure 5.35 shows the historical paths of all tags during one of the experiments. The tags’

locations are colour-coded; the red dots indicate when the tag was moving relatively fast, while

the blue dots indicate when it remained (almost) static. From this, we can observe that tagged

entities are clustered at low speeds around the locations of server entities and the entry/exit

areas; as well as customer entities’ moving paths between them.

Here we use data from one of the experiments to demonstrate how the data processing pipeline

performs with real location tracking data. The system settings of the experiment is shown in

Figure 5.36; it is essentially a simple single-queue server with exponentially-distributed service

time and customer interarrival time. The experiment lasted around one hour (3357 seconds) and

about 65000 rows of location data are collected; about 60 service time and customer interarrival

time samples are extracted respectively.

5.4.2 Results

As demonstrated by Figure 5.37 and Figure 5.38, K-S test results show again that the best-fit

hyper-Erlang distributions have good fitness to the extracted time delay samples. The fitting

hyper-Erlang distribution for service time at Server1 exhibits good agreement to the theoretical
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Figure 5.35: Visualisation of the raw location tracking data from one experiment showing
moving tag positions (red dots) and static tag positions (blue dots).

Figure 5.36: Experiment system settings
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values of the first and second moments, with both less than 5.00% difference. In the case of

fitting the customer interarrival time distribution, larger deviations from the theoretical values

are observed; around 15.00% of difference in the first moment and 10.00% of difference in the

second moment. Identifying a customer entity’s arrival time to the system is more difficult

under the experiment depolyment where the customer entities leave the tags at the exit/entry

area for recycling after their departure from the system. Update rates in the Ubisense system

can be varied in response to tag activity; when stationary, tags would get into a “sleep mode”,

not transitting signals, in order to conserve power [131]. As the recycled tags were kept idle at

the entry/exit area, we have observed tags’ locations were not updated frequently in the area

and therefore might miss the location information when tags were attached to another arriving

customer and started moving again.
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H0 not rejected
First moment 53.018 (46.147)

(error%) 14.89%
c2v 0.896 (1.00)
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Figure 5.37: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for customer interarrival time

5.5 Discussion

5.5.1 Time delay sample extraction and distribution fitting

The distribution fitting results from the case studies show that the adapted version of G-FIT is

able to effectively find the hyper-Erlang distributions with good fitness to the extracted sam-
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Figure 5.38: Comparing the best-fit hyper-Erlang distribution with extracted samples and
theoretical distribution for service time at service centre Server1

ples. In most of the cases, the K-S test results suggest that the extracted samples follow the

best-fit hyper-Erlang distributions; the cumulative distributions of the best-fit hyper-Erlang

curves also follow closely to the cumulative histogram from the extracted samples. There are

few exceptions (for example, Figure 5.18), where the K-S test results reject the null hypothe-

sis. However, in these cases the underlying distributions are deterministic and to approximate

a deterministic distribution the total phase length of an Erlang distribution can reach up to

infinity. In our adapted version of G-FIT, we set the upper limit of the state space to be 80 for

samples showing small variability (i.e. c2v < 0.01) and the best-fit hyper-Erlang distributions

in these cases all reach 80. Thus, the limit set on the G-FIT’s searching space might be the

main cause for failing to find the hyper-Erlang distributions with good fitness to the extracted

samples in the case of deterministic distributions. As the extracted samples in these cases have

c2v close to zero and their means lie within a small error range around the theoretical ones;

instead of raising the state space limit of G-FIT to an even larger number, when outputting

the final inferred queueing network model a deterministic distribution with its mean equal to

the sample mean is used to replace the best-fit hyper-Erlang distribution.

Although in the majority of cases G-FIT did not find the best-fit hyper-Erlang distributions

exactly the same as their corresponding theoretical distributions, when comparing their first
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moments and c2v we also have observed rather small discrepancies, with less than fifteen percent-

age of difference in most of cases. The CDF curves of the best-fit hyper-Erlang distributions

in general follow well those of their corresponding theoretical distributions. One thing worth

noting is that in the presence of unknown sources of data noise and errors, the data processing

pipeline can still capture with moderate accuracy the statistic properties of the service and

customer arrival processes. This is demonstrated by case study 4 with location data collected

through experiment.

However we reckon several causes, listed as below, contributing to the best-fit hyper-Erlang

distributions deviating from their corresponding theoretical distributions:

• Small sample size. Statistical inference methods are subject to bias when the sample size

is small. In many cases where the best-fit hyper-Erlang distributions show larger discrep-

ancies with the theoretical ones (for example, see Figure 5.11, Figure 5.15, Figure 5.16

Figure 5.19 and Figure 5.23 ), the extracted sample sizes tend to smaller between 100 to

200; comparing to 250 to 400 in those cases where the best-fit hyper-Erlang distributions

match well with the corresponding theoretical distributions.

• Sample extraction bias. We have found it challenging to extract the service time samples

due to the difficulties of estimating when the service to a customer entity starts and ends.

At the moment we assume that the service time for a customer entity starts from the

departure of the previous customer entity and ends at its own departure. However, in

reality there is a time gap between the end of service and the departure of the customer

when the customer entity is moving to leave the service centre; furthermore this time gap

varies among different customer entities, depending on their locations inside the service

centres when receiving service, as well as on their individual speeds. This uncertainty is

difficult to avoid completely and hence contributes to the bias in extracted service time

samples.
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By applying Mann-Whitney U test on the extracted samples for different customer classes. we

are able to differentiate cases where different customer classes have different service demands or

different arrival behaviour (for example, see Figure 5.11, Figure 5.12, Figure 5.15, Figure 5.16);

and those cases where different customer classes only enjoy different service priorities but not

in terms of service times (see Figure 5.13 and Figure 5.29 for example). Although for the

service times at server S4 Mann-Whitney U test fails to tell that underlying distributions of

the service demands from CUSTOMER0 and CUSTOMER1 are different, it is due to the fact that the

extracted samples are not large enough to display the difference. The results shown above also

have demonstrated the effectiveness and accuracy of G-FIT in finding the best-fit hyper-Erlang

distribution given samples of sizes less than 400 (some of the extracted samples for an individual

customer class are even as small as around 100). Using the squared coefficient of variation as

guidance to narrow down the search space of G-FIT does not compromise the performance of

G-FIT. The best-fit hyper-Erlang distributions in general matches well the first and second

moments of the theoretical distributions; this mean that they serve as decent approximation to

the theoretical distributions.

5.5.2 Customer flow routing

The results from the first three case studies has demonstrated that the data processing pipeline

is able to learn the customer flow structure, specified by the routing scheme at each branching

point, of the underlying system. However, as shown in Figure 5.8, Figure 5.20a and Figure 5.32a,

the routing probabilities do not match exactly those designed for the case studies. Besides the

probabilistic behaviour of the underlying system, another explanation is that branches that

are traversed by only less than one percent of the customer entities are not included in the

final customer flow structure. Most of time these ”rarely-visited” customer paths result from

infrequent location updates and small service times. We have found that the data processing

pipeline has difficulty detecting whether a customer entity has received service inside a service

centre if its service time is very small (e.g less than 0.1 seconds), especially when the customer

entity’s locations are not updated frequently enough. In this case, the customer entity would
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be considered never having visited the service area and going directly to its next destination;

thus an “incorrect” customer path would be discovered. This problem happens even more often

if there are many tagged entities simultaneously existing in the system competing for update

time slots of the location tracking systems. Hence, to avoid constructing a customer path which

is not well-supported by the data collected, these less-traversed customer paths are removed

when constructing the final queueing network.

5.5.3 Response time analysis

As demonstrated by the response time analysis in each case study with synthetic data, the key

performance-based measurements, including first and second moments of customer response

times, mean queue lengths and utilisation at each service centre, generated by simulation

based on the inferred queueing network models mostly share similar scales in mean values

and variations with those generated from simulation based on true system settings. Thus, the

queueing network models outputted from our data processing pipeline are able to characterise

the important performance-related features of the underlying system and thus serve as decent

approximation to the underlying system, especially if the inference is supported by sufficient

data samples.

5.5.4 Computation Time

In this section, we take the case study 4 (with experiment data) as example to discuss the com-

putation complexity required by different stages of the data processing pipeline. Please note

here that all the case studies presented above were ran on a personal computer with Intel R©Core

i5-2435M CPU 2.4GHz running 32-bit operating system. There are around 65000 data points

in the data set.

We have observed that the second stage, especially the part involving DBSCAN clustering,

requires substantial amount of computation time, comparing to other stages along the data
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processing pipeline. To process the location tracking data collected from the experiment, DB-

SCAN clustering and inferring service centre locations takes 389689 milliseconds; while mining

the customer flow structure and extracting time delay samples at Stage 3 takes around 95215

milliseconds and the service time distribution fitting and constructing the final inferred queue-

ing network model at Stage 4 takes only 4248 milliseconds. That is to say, DBSCAN clustering

contributes almost 80% of the computation time along the data processing pipeline.

The longer computation time at Stage 2 can be attributed to multiple neighbourhood queries

required for each data point in the DBSCAN clustering algorithm. The computation time

of DBSCAN is thus O (N ∗ r (k)), where r (k) denotes the computation complexity of k-th

nearest neighbor retrieval. Theoretically, using tree-shaped spatial index structures such as

KD tree or R∗ tree can enhance the efficiency of data access in a spatial database, cutting

down r (k) to O (logN) (compared to O (N2) with a linear index structure). However, such

complexity improvement cannot be achieved in cases where datasets are simply too large or

data distributions are particularly dense in certain regions [16]. The latter case is expected in

our data sets, as dense regions (that is, clusters) correspond to approximate locations of service

centres and potential bottlenecks. There have been research works existing in modifying or

parallelising the original DBSCAN algorithm to improve the computation complexity [16, 95].

However, we argue that for the data processing pipeline to be applied for rapid decision support

in real-life systems it is necessary to adopt on-line clustering approach in the next phase of this

research; more detailed discussion on this respect will be presented in Chapter 6.

5.6 Summary

This chapter presented four case studies to evaluate the performance and accuracy of the de-

veloped data processing pipeline; the first three case studies are based on synthetic location

data generated using LocTrackJINQS and the last one is based on real location data col-

lected from one of the experiments conducted in the preliminary stage of the research. Results
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from all four case studies demonstrated that the developed data processing pipeline is able to

derive queueing network performance models that reflect the true probabilistic features of ser-

vice and arrival processes for a range of multiclass customer-processing systems. The K-S test

results have shown that the adapted version of G-FIT can effectively identify the hyper-Erlang

distributions with good fitness to the extracted time delay samples; their first and second mo-

ments in most of cases agree with those of theoretical distributions. Through simulation, we

also show that the inferred queueing network approximates well the true underlying system

in terms of response time distributions and common performance measurements such as mean

queue length and utilisation of each service centre. Most notably, when the data processing

pipeline is evaluated against real location tracking data in case study 4, the data processing

pipeline still could capture, with decent accuracy the behaviour of the service and customer

arrival processes, despite data issues such as noise and infrequent updates.
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Conclusion

6.1 Summary of Thesis Achievements

6.1.1 Develop a methodology for inferring a queueing network model

from high-precision location tracking data

This thesis has presented a four-stage data processing pipeline for deriving queueing network

models from high-precision location tracking data. The inferred queueing network model is

specified in terms of routing policies, interarrival time distributions, service time distributions

and service disciplines. The first stage takes in the raw location tracking data and performs

basic data cleaning and interpolation. The second stage uses DBSCAN clustering algorithm

to approximate the locations and sizes of the service centres and other potential bottlenecks

existing in the system. It gradually refines the low-level location tracking data into high-level

“event logs” describing the interactions among customer and server entities based on their

proximity to each other. The third stage mines the tagged customers’ movement paths and

constructs the basic structure of the customer flow as well as the routing policy associated with

each branching point. This stage also extracts samples of service times at each service centre,

customer interarrival times at the system and travelling times between each pair of connecting

service centres. At the fourth stage we use an adapted version of G-FIT tool [130] to find the
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hyper-Erlang distributions that can best characterise the extracted time delay samples. By

observing the customer entities’ incoming orders and departure orders we infer the most likely

service discipline applied at each service centre. The final output of the pipeline is a queueing

network model constructed in accordance to the inferred customer flow structure, routing poli-

cies, service discipline at each service centre, as well as distributions that characterise different

time delays involved in the system (including service times, customer interarrival times and

customer travelling times).

6.1.2 Implementation of LocTrackJINQS

This research also presented LocTrackJINQS, a location-aware simulation tool developed

based on the discrete-event simulation library for queueing networks, JINQS. It inherits many

characteristics from JINQS, such as extensibility and simplicity for simulation construction, but

incorporates low-level location information, including physical locations and movement speeds

of tracked entities in the system. To facilitate general location-based research and applications,

LocTrackJINQS provides functionalities for generating synthetic location tracking data from

a user-defined queueing system. LocTrackJINQS also provides a graphical user interface to

support visual construction of queueing network simulation.

6.1.3 Evaluate the accuracy of the developed data processing pipeline

This research carried out four case studies to evaluate the performance and accuracy of the

developed data processing pipeline in deriving queueing network models for a range of multi-

class customer-processing systems. The developed data processing pipeline has performed with

moderate success in extracting queueing network performance models that reflect the true

probabilistic features of service and arrival processes in the underlying system. This is true

even when the data processing pipeline is applied to real location tracking data containing

many noise and errors. The K-S test results in the case studies have shown that the adapted

version of G-FIT can effectively identify the hyper-Erlang distributions with good fitness to the
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extracted time delay samples; their first and second moments in most of cases match well with

those of theoretical distributions. Furthermore, through simulation-based evaluation, we show

that the inferred queueing network approximates well the true underlying system in terms of

response time distributions and key performance measurements such as mean queue length and

utilisation at each service centre.

6.2 Applications

The most direct applications of our work should be in performance analysis of small-scale spe-

cialised systems where the entities involved can be tagged with sensor tags. Systems whose

underlying processes are complex, highly volatile and difficult to understand with only visual

observations or manually-collected data will see most benefits of adopting our methodology for

system performance evaluation and planning. Such systems include healthcare systems, sport

centres, shopping malls, museums, restaurants, or special event venues. The methodology can

also be applied to various aspects in enterprise environment, such as supply chain, manufactur-

ing systems or warehouse, to identify the wastes, inefficiencies, insufficiencies or abnormalities

in the system.

With the prevalence of sensor-enabled vehicles and personal mobile devices, the “Internet of

things” has expanded beyond specific domains to large-scale, community-level environments,

such as urban space. Massive, multi-modal and real-time observational data collected through

these devices provide opportunities to study large-scale human movements and interactions

among human, objects and the surroundings. Our data processing pipeline should tap such

data sources to address many previously challenging issues in terms of large-system management

and planning. For example, we can combine location data collected from multiple sources such

as GPS data from private car users, sensor records collected through sensor-enabled public

bicycles or smart card readers in the public transport system and infer a performance model that

characterises the utilisation of different transportation facilities by urban dwellers or identify
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the “hot spots” where congestion takes place in real time.

6.3 Future work

Our work has demonstrated the possibilities of inferring simple queueing systems with well-

defined structures. Here we propose several issues we should address in the following phases:

extend the current data processing pipeline to incorporate systems with more complex features;

extend the functionalities of LocTrackJINQS to support more real-life features; work toward

an online methodology where the parameterisations of the inferred queueing network models

would “evolve” with latest incoming data streams under memory constraints. Ultimately, we

hope to experiment with the application of such techniques in the context of real-life systems.

6.3.1 Extend the variety of features that can be inferred

At the present stage, our data processing pipeline is only capable of inferring queuing models

for a limited variety of customer processing systems; we assume single-server service with no

queue capacity limits and with service disciplines including only FIFO, LIFO and priority-based

and with no service preemption. The routing of the customer flow at each branching point is

also restricted to follow only one of the three routing policies: probabilistic routing, class-based

routing and shortest-queue routing.

In the near future, we plan to further extend the data processing pipeline to incorporate more

features, including:

• Multiple-server queues.

• Multiple servers sharing an external queueing area. This feature is seen in many real-life

systems in our daily life; for example, the common patient waiting room outside different

treatment rooms in a hospital; or the waiting area at the city council for people with

different requests.
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• Queues with limited capacity. The incoming customers will be turned away when the

queue has reached its maximum capacity.

• More types of service disciplines. Include service preemption and longer/short service

time first.

• Hybrid routing policies. Routing of customer entities may depend on more than one

routing policies; for example, at a branching point with three branches, thirty percent of

the customers would take the first branch, while the rest seventy percent would choose

either of the other two branches based on shortest-queue policy (in this case the routing

scheme is a combination of probabilistic routing and shortest-queue routing).

6.3.2 Extensions on LocTrackJINQS

Possible future work in extending the functionalities of LocTrackJINQS includes multi-

dimensional customer classifications (e.g. a customer can belong to more than one classes based

on multiple class definitions), as well as customer speed settings (e.g. customers would slow down

when approaching a service area). We also plan to relax some of the current restrictions. For

example, instead of having fixed locations, server entities can move around providing service

to customers (e.g. nurses visiting hospitalised patients); the queueing area can be of arbitrary

shapes (e.g. linear, rectangle) other than being circular.

6.3.3 Online data processing pipeline

Currently our data processing pipeline is based on an offline approach. This means that the

inferred queuing network model can only describe the underlying system according to the his-

torical data set and not able to reflect time-varying characteristics unless the pipeline is run

again on the latest data set. It would be a major drawback as the inferred queueing network

will be slow to react to sudden changes in the monitored environment, while the major values

of location tracking data lie in its ability to reflect on real-time basis the latest status of any
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tracked entity.

The following step would be to adopt an online and more flexible clustering algorithm for dis-

covering service centres’ locations. The DBSCAN clustering algorithm, adopted as part of the

current version of data processing pipeline, is a static offline one. It assumes the definition of

a “dense” area, in terms of the parameters Eps and MinPts, does not change with time; to

redefine it one must apply the algorithm again on the new dataset. In reality, the “dense” areas,

usually where service centres and possible system bottlenecks are located, might grow, fade or

displace themselves with time. The other drawback of DBSCAN clustering algorithm is that it

assumes the cluster structures across a system are uniform and can be characterised globally

using the same parameters Eps and MinPts; while it is often found that in a single system

some dense areas might appear “thinner” than the others [14]. Furthermore, an offline cluster-

ing algorithm is usually memory-heavy, requiring loading all the data at once; this is especially

not feasible with real-time location tracking data, which comes in large amount in short pe-

riod of time. Existing online density-based clustering algorithms, such as CluStream [2] and

DenStream [42], offer memory-light solutions that work with streaming data. Both methods

keep a set of “micro-clusters” with a simple summary of their statistics (normally including

the data density and first/second moments of distances in each dimension to the origin); these

micro-clusters are taken as potential “seeds” forming parts of bigger clusters. The locations

and sizes of these “micro-clusters” can evolve with new incoming data; the clustering can be

applied directly on these micro-clusters periodically to discover the latest cluster structure in

the system.

Another issue in this aspect is that the inference process for characterising those time delays

involved in the system are also static. Currently we assume a “best-fit” model characterising

the time delay involved in the system; however, the chosen model might have the best fitness to

the data collected thus far, while other candidate models might better approximate the “true”

underlying distribution in reality. Instead of conducting distribution fitting frequently, we can

maintain a set of possible models that are well-supported by the data already collected. We
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weight these candidate models based on their relative “distance” from the reality according

to their respective calculated AIC numbers; the output model is the weighted average of the

outputs from the members in the candidate model set, rather than from only the single model

chosen as the best. With new data coming in, we periodically conduct goodness-of-fit tests

to check the fitness of the candidate model set to the most recent dataset. Only when above

certain percentage of the members in the candidate set fail the goodness-of-fit test do we re-

conduct the distribution fitting process to find a new set of candidate model. This approach

allows us to avoid the bias created by selecting a single model that might fit well a subset of

the data but not the whole reality; it also allow us to gradually update our model outputs

responding to the latest data.

6.3.4 Investigate different filtering and smoothing techniques for lo-

cation tracking data

Currently we use simple methods such as location interpolation, window-based voting method

and look-ahead action to handle errors and missing found in the data. However, these meth-

ods might not be adequate when coping with tracking data collected from physical sensoring

devices, which are notoriously noisy, containing much higher percentages of missing and un-

reliable location readings. Thus, we should develop a more systematic approach to filter and

smooth out raw location tracking data. For example, we can filter out the noise based on the

velocity trace of the tracked entities. If a tag’s location update has large deviations from the

other updates within a small time-window, thus creating a velocity jump, it’s very likely that

this data point is an erroneous reading and can be ignored. Previous research efforts in prepro-

cessing noisy sensor data (especially RFID and GPS data) should be further investigated. For

example, [83, 82] proposed a five-stage pipeline framework for sensor data cleaning, based on

the assumption that sensor data are largely homogeneous (i.e. without location readings con-

tradicting against each other) if it is collected within a small time frame and from the sensors

located in proximity; [84] later developed an adaptive model for cleaning RFID data, which can

automatically and continuously adjust smoothing window sizes based on the observed location
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readings; [43] presented a data-driven framework for smoothing GPS data, which is generaliza-

tion of the classical weighted moving average technique, taking into account both the object’s

trajectory and its speed trend.

6.3.5 Support more complex customer flow structures

The current workflow mining algorithm simply summarises the paths followed by the customer

entities in the system. The generated workflow cannot express many stochastic features that

are common in real-life systems. For example, the probability of a customer entity taking a

certain path might be based on its previous trajectory in the system. It would also be an

interesting topic to identify the frequently-followed paths in the system, the exceptions to the

frequently-followed paths and the conditional probabilities (e.g. on time spent on previous

locations in the path) of these exceptions.

6.3.6 Applications to real-life systems

We hope in the future to carry out experiments with real location tracking data collected from

a real-life system where the underlying processes are unknown. We are particularly interested

in an A&E unit of a hospital, where the performance requirements are high and the manually-

collected data are not sufficient for constructing a performance model with good approximation

to the reality. This will help us identify the practical difficulties or problems we overlook

previously, especially in the aspects of raw location data cleaning, time-varying characteristics

and complex customer routing structures, when applying our developed methodology to a real-

life system and make further improvements or adjustments accordingly.
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