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ABSTRACT

Traditional methods for deriving performance models
of customer flow in real-life systems are manual, time-
consuming and prone to human error. This paper pro-
poses an automated four-stage data processing pipeline
which takes as input raw high-precision location track-
ing data and which outputs a queueing network model of
customer flow. The pipeline estimates both the structure
of the network and the underlying interarrival and service
time distributions of its component service centres. We
evaluate our method’s effectiveness and accuracy in four
experimental case studies.

INTRODUCTION

Stochastic models, especially queueing networks, have
been widely used to model and analyse the performance
and reliability of systems that involve the flow and pro-
cessing of customers via a network of service centres.
Indeed such models provide a powerful “virtual labora-
tory” for identifying and explaining bottlenecks in exist-
ing systems and for exploring the impact on performance
of proposed changes to those systems, e.g. changes in
customer flows, the number and allocation of resources,
system workload, scheduling policies and so on.

Traditionally, constructing a performance model is a
four step process: conceptualisation, parameterisation,
validation and analysis. The first two steps are essential
in building an accurate model, which in turn is crucial
in giving confidence in the output of subsequent steps.
However, they are typically time-consuming, expensive,
intrusive, labour-intensive, and prone to bias and other
errors. The limited amount and low quality of manually-
collected data often lead to an inaccurate picture of re-
source flows and poor estimations of model parameters.

In recent years, wireless location tracking technolo-
gies based on RFID (Radio Frequency Identification) and
UWB (Ultrawide-band) have been increasingly deployed
to collect real-time location tracking data. For example,
RFID has been applied in patient identification (Chen
et al., 2005) to enhance the efficiency and effectiveness of

management in hospital Emergency Departments. Com-
bined technologies, such as sensor networks and RFID,
have also been deployed, for example in a hospital blood
bag management system that continuously monitors the
temperature of stored blood bags as well as their loca-
tions (Kim et al., 2006). These technologies offer the
advantage of collecting large amounts of high-quality lo-
cation data in an inexpensive and non-intrusive way. This
data is a valuable input in building performance models
that can better characterise the operation of real systems.

Raw location tracking data usually contains noise and
other extraneous information; thus appropriate data pro-
cessing methods are necessary for extracting useful infor-
mation from it. Much research work (such as Gonzalez
et al. (2006a), Gonzalez et al. (2006b) and Gonzalez et al.
(2006c)) has been done in designing new data models
to facilitate RFID data warehousing and inferring high-
level information from RFID data, such as probabilis-
tic item flows. However, RFID data has some distinct
characteristics when compared to the location tracking
data collected by other location tracking technologies,
such as sensor networks. In the former case, the loca-
tion reads of an RFID-tagged item have strict spatial re-
lationships with the RFID readers, as a tagged item’s lo-
cation can only be known when it is scanned by an RFID
reader, the location of which is usually fixed. By con-
trast, in the latter case, the location data is a noisy and
frequently incomplete trace of the tagged entities’ geo-
graphical locations; spatial relationships and interactions
between tagged entities must be inferred on the basis of
proximity or otherwise.

The aim of our work is to automatically extract a
queueing network model of customer flow from observa-
tions of a real-life system gathered using a high-precision
location tracking system. To achieve this, we present
an approach based around a four-stage data processing
pipeline, whose initial input is raw location tracking data,
i.e. a spatiotemporal data set giving the observed loca-
tion of tags at various times. The first two stages of the
data processing pipeline remove irrelevant location infor-
mation and use tagged entities’ geographical locations to
infer high-level spatiotemporal relationships among cus-
tomer and server entities (including the presence of cus-
tomers in the service area of servers and customer move-
ments between servers). The third stage of the pipeline
extracts occurrence times of arrivals and departures of



customers at servers. The fourth stage uses these times
to estimate the underlying interarrival and service time
distributions of the original physical system, and also
infers routing probabilities from customer movements.
Together, these yield a parameterised queueing network
model of the real-life system.

For the purpose of evaluation, we conduct four case
studies corresponding to simple queueing systems with
known structure and parameters. Goodness of fit tests
are used to assess whether the extracted distributions of
interarrival time and service time exhibit the same prob-
abilistic characteristics as the real ones.

The remainder of this paper is organised as follows.
The next section introduces previous research literature
closely related to our work. This is followed by a brief
description and comparison of three common location
tracking technologies – RFID, WiFi and UWB, of which
UWB is our adopted technology. We then describe and
illustrate each stage of the developed data processing
pipeline, discussing issues encountered during imple-
mentation, before presenting four case studies. We con-
clude with a summary of our results and a discussion of
potential future work.

PREVIOUS WORK

Our work shares some high-level similarities with pre-
vious research efforts on mining RFID data. These re-
search efforts have been focused on efficiently extracting
flow information from massive RFID data sets through
innovation of data model design and data compression
techniques. For example, Gonzalez et al. (2006c) pro-
posed a new data model for data-warehousing RFID data
sets. Their goal was to enable the efficient storage and
high-level querying of such data sets, taking into account
the fact that several items may be aggregated into sin-
gle tagged units. Building on this work, Gonzalez et al.
(2006a) further presented a method to build up a ware-
house of item flows, which is referred to as flowcubes.
The flowcube is different from traditional data cubes in
that its measure is not a scalar aggregate but a flowgraph,
which is a tree-shaped graph that maintains the path in-
formation of the item flow. Each node in a flowgraph rep-
resents a location and edges between nodes correspond
to transitions between locations. Gonzalez et al. (2006b)
later presented a method to construct compressed prob-
abilistic workflows that describe the general movement
paths of items, as well as the significant exceptions. Al-
though our data bears different characteristics from RFID
data, our approach is also directed at devising a method
to extract flow information from location tracking data.

Workflow induction and process discovery are also
closely related research areas. These areas explore tech-
niques that can use event data, which records the activi-
ties of an on-going process, to build up a formal model
that describes the process’s behaviour. Cook and Wolf
(1995, 1996) proposed three methods, ranging from the
purely algorithmic to the purely statistical, to discover

and produce formal models corresponding to actual pro-
cess executions. In contrast to the finite state machine
approach of Cook and Wolf, Agrawal et al. (1998) pre-
sented an algorithm that uses existing execution logs to
model the workflow structure of a given business process
as a graph.

Other research work has been conducted in inferring
performance models from sample executions. Instead
of using pure statistical learning methods, Zhang and
Bivens (2007) and Zhang et al. (2007) incorporate do-
main knowledge into machine learning techniques such
as Bayesian networks and neural networks for response
time modelling. Sen et al. (2004) present a machine-
learning algorithm that can learn the underlying edge-
labelled continuous-time Markov chains of a stochastic
system based on sample execution trace data.

Our work seeks to develop a data processing method
that incorporates the strengths of statistical learning tech-
niques with the aim of extracting service and interarrival
time distributions and routing probabilities from location
tracking data; together these will specify a queueing net-
work model of customer flow with enhanced accuracy.

LOCATION TRACKING TECHNOLOGIES

Three common technologies that have been employed in
location tracking are RFID, UWB and WiFi. The var-
ious technologies used in real-time tracking have dis-
tinct characteristics which lend them to differing appli-
cations. RFID is usually passive, which means that a
RFID tag has to be scanned by a reader for its loca-
tion to be recorded. Tracking with WiFi typically pro-
vides an accuracy of the order of 2–7m in 2D while the
latest UWB-based systems provide greater accuracy of
around 15cm in 3D; the latter allows for detailed de-
tection of customer/server interactions and gives poten-
tial to model processes such as contact-based spread of
pathogens. WiFi-based systems are, however, often eas-
ier to deploy as they use hardware (WiFi access points)
that might already be installed.

UWB operates over the frequency range 3–10 GHz in
the U.S and 6–8.5 GHz in Europe (The Federal Com-
munications Commission, 2002). Interference with other
signals is prevented as UWB emits short-duration high-
bandwidth radio pulses at a low power making it par-
ticularly suitable for use in radio sensitive environments
such as hospitals. The low power does, however, limit
the range over which detection is possible but is still able
to penetrate walls. The short length of time over which a
pulse is emitted also means that a high density of devices
can be achieved in a given detection area. Calculation of
the location of a tag is performed using time difference
of arrival (TDOA) and angle of arrival (AOA) of the ra-
dio frequency pulses at different sensors (Ubisense) (cf.
Figure 1).



Figure 1: UWB-based sensors and tags (left) use a combination of angle-of-arrival and timed-difference-of-arrival trian-
gulation schemes to enable high-accuracy tag location tracking (right)

INFERRING PERFORMANCE MODELS FROM
HIGH-PRECISION LOCATION TRACKING DATA

Data Processing Pipeline
This paper presents an automated four-stage data pro-
cessing pipeline. The input to our pipeline is the raw
location data from a real-life physical system (gathered
via a high-precision UWB-based sensor network) and the
output is a queueing network describing customer flow in
that system. This queueing network is specified by rout-
ing probabilities and interarrival and service time distri-
butions estimated from the location data.

Figure 2 gives an overview of the data processing
pipeline. The input and output data of each stage are
stored as database tables, which are designed to facilitate
data querying and further manipulation. After each stage
is completed, the inputs from the previous stage can be
discarded.

Stage 1
Raw location tracking data is stored in theTraces table
as a stream of tuples of the form(tagName, type,
time, x, y, z, stderr) . tagName is a unique
identifier for each tag andtype refers to the category
a tag belongs to. In this research there are two types
of tagged entities of interest:Server andCustomer .
Server entities are those offering services or resources
in a system;Customer entities are those requesting ser-
vices or resources.time is the timestamp when the lo-
cation update took place; ideally this is a taken using a
high-resolution timer with millisecond resolution or bet-
ter. x , y , z are the locations of the tags expressed in a
Cartesian coordinate system.stderr expresses the lo-
cation tracking system’s estimate of how much the mea-
sured location might deviate from the actual location.

Using thetype field in the table, theTracestable can
be split into theServer Tracestable and theCustomer
Traces table, which store the location tracking data for
Server andCustomer entities, respectively. The data
stored in both tables is of the form(tagName, time,
x, y, z, stderr) and is sorted by time. Further-
more, in Stage 1, linear data interpolation is conducted

to fill out gaps in trace data when two contiguous loca-
tion updates for a tag take more than four times longer
than would be expected (in our case tags should update
their position four times a second).

Stage 2
After the first stage of the data processing, the data is still
very low-level. The main purpose of the second stage
is to extract relevant higher-level data. This includes at
what time a customer arrives at a server, when the server
finishes serving the customer and the number of cus-
tomers being served or queueing for service at a server
at a specific timestamp. We assume each server in the
system has a user-defined service area, which is a circu-
lar area with given radius. If a tag is detected within the
service area of a particular server at a given timestamp,
we assume that the customer entity that owns the tag is
either being served by the server or is waiting to be served
in the queue of the server. If the tag is found to be located
within user-specified entry or exit areas, the customer en-
tity corresponding to the tag is considered as entering or
leaving the system. In other cases, the customer entity is
assumed to be moving between servers and/or entry/exit
areas.

The outputs of the second stage of data processing are
Service Load Tracestables (one table for each server)
and oneCustomer Location Tracestable. The contents
of these two types of table are as follows:

Service Load Traces tablesThe data stored in
these tables is of the form(time, count,
〈customer list 〉) and is ordered by time. The
count field is the total number of the customer
entities that are located inside the server’s service
area at the given timestamp. The field〈customer
list 〉 maintains the tag IDs of the customer
entities. Table 1 gives an example of theService
Load Tracestable.

The main challenge in this stage of data processing
is that location tracking data in reality does not ap-
pear as a smooth trace describing the object’s path;



Figure 2: Four-stage data processing pipeline

time count customerlist
13.3163 1 Customer0
13.4882 1 Customer0
13.6633 0
13.8360 1 Customer1
13.9894 2 Customer1 , Customer0
14.1501 2 Customer1 , Customer0
14.3084 2 Customer1 , Customer0
14.4703 2 Customer1 , Customer0
14.6341 2 Customer1 , Customer0

Table 1: ExampleService Load Tracestable

noise and other artefacts such as radio reflections
might result in location updates with sudden de-
viation from the actual locations. The erratic lo-
cation updates might lead to the conclusion that a
customer entity has entered the service area when
in fact it has not. A window-based voting mech-
anism is therefore used to avoid this situation. In
each time window, defined as the time between two
Server location updates, there is one counter for
each entity that has visited the service area of a cer-
tain Server . Assume that there are more than one
location reads of a customer tag, sayCustomer1 ,
between two timestampst1 andt2. When checking
whetherCustomer1 was inside the service area
of a Server , sayServer1 , its counter value is
incremented by one ifCustomer1 is detected in-
sideServer1 ’s service area and decreased by one
if not. If at time t2 the value of the counter is posi-
tive, it means that there are more readings between
t1 and t2 supporting the notion thatCustomer1
is within Server1 ’s service area. If the counter’s
value is negative, thenCustomer1 is not included
in 〈customer list 〉.

Customer Location Traces table The data stored in
this table is of the form〈tagName, time,
location 〉 ordered by time. Instead of ex-
act Cartesian coordinates, the location informa-
tion is reduced into a higher-level description.
For example, as shown in Table 2, we can see
that Customer1 is moving at time 13.2983 and
Customer0 is within a service area ofServer3
at time 13.4027.

tagName time location
Customer1 13.2983 moving
Customer2 13.3847 moving
Customer0 13.4027 Server3
Customer1 13.4194 moving
Customer2 13.4405 moving
Customer0 13.4631 Server3
Customer1 13.5592 moving
Customer2 13.5816 moving
Customer0 13.6023 Server3
Customer1 13.6240 moving

Table 2: ExampleCustomer Location Tracestable

Stage 3
The major work in this stage is to detect arrival and de-
parture events from theService Load Tracestables and
calculate customer interarrival times and service times.
We process each record in eachService Load Traces
table and detect any differences in the〈customer
list 〉 fields between two contiguous records. For
example, if at timestampt1, the 〈customer list 〉
field is 〈Customer0, Customer1, Customer2 〉
and at the next timestampt2, the 〈customer list 〉
field is 〈Customer1, Customer3 〉, then betweent1
andt2 there might be one arrival event ofCustomer3
entering the service area and two departure events of
Customer0 andCustomer2 leaving the service area.

However, a missing tag ID in the〈customer list 〉
field does not necessarily represent “real” departure
events. Infrequent location updates or erratic location
reads of the tags between two contiguous timestamps
might contribute to this phenomenon. In this case, the
missing tag IDs should still remain in the〈customer
list 〉 field. In order to judge whether a real departure
event occurred, a look-ahead action is taken; this is es-
sentially a query to theCustomer Location Tracestable
to check whether the missing Customer entity shows up
again in the server’s service area within a certain amount
of time from the current timestamp. The amount of time
is based on the minimum time for a customer entity to
make a round trip from the current server to the entry/exit
areas and back to the current server, and is another user-
supplied input.

For arriving customers, it is assumed that database en-
tries represent true arrival events. This is because of the
window-based voting mechanism applied in the second
stage of data processing.

The next step after detecting a customer arrival or de-



parture event is to estimate the most probable time when
the event occurred. The estimation of departure event
occurrence time is the average of two values, both of
which are obtained from querying theCustomer Loca-
tion Traces table. The first value is called first disappear-
ance time. It refers to the first timestamp at which the
customer’s location is not inside the server’s service area
after it begins service. The second value is called the last
appearance time, which is the last timestamp at which
the departing customer remained in the service area be-
tween its service start time and the first disappearance
time. A similar approach is used to estimate arrival times
using the last time the customer was observed outside a
service area and its first appearance time within the ser-
vice area. We note the differences between the two times
were typically not as significant for arrivals as for depar-
tures, since the tags we use are designed to update their
positions more frequently whilst moving.

The outputs of the third stage are the extracted interar-
rival time and service time samples for eachServer .

Stage 4
The data stored in theCustomer Location Tracestable
can be seen as a stream of event logs that trace all the ac-
tivities of theCustomer entities in time order. Stage 4
uses this table to mine the structure of customer flow in
the system by a method that is a simplified adaptation
of the workflow mining methods proposed by Agrawal
et al. (1998). One feature worth noticing is that tags can
be “recycled” after the tracked customers leave the sys-
tem, so one tag ID can actually represent different cus-
tomers. It is therefore necessary to identify the entry and
exit points of customer flow in the system. The mining
process is basically a counting process. As each record
in the Customer Location Tracestable is processed, a
tracking table is used for recording all the possible paths
or sub-paths the customers have passed through so far,
and the number of customers that followed a specific
path. Table 3 gives an example of such a table. From
it we can conclude that in this specific system, 27 out of
28 customers first visitedServer1 while one customer
first visitedServer2 . Among the 27 customers, 19 cus-
tomers went on toServer2 next, while 8 proceeded to
Server3 . It is straightforward to estimate routing prob-
abilities from such a table.

path count nextFlow
Server1 27 Server1

Server2 ,
Server1
Server3

Server2 1
Server1 Server2 19
Server1 Server3 8

Table 3: ExampleCustomer Flow table

Having now identified the structure of a high-level
queueing network through routing probabilities, the next
step is to characterise the arrival process and service pro-

cess associated with each (single-server) queueing node.
We do this by fitting candidate distributions to the interar-
rival and service time samples generated in the previous
stage of the pipeline. Specifically, we use the samples’
coefficient of variation,cv, as a simple indicator of the
underlying distribution as follows:

• If cv ' 0, the underlying distribution is likely to be
deterministic.

• If 0 < cv < 1, the underlying distribution is likely
to be hypo-exponential.

• If cv ' 1, the underlying distribution is likely to be
exponential.

• If cv >> 1, the underlying distribution is likely to
be hyper-exponential.

Having thus selected a candidate distribution, we use
maximum-likelihood estimation to obtain distribution
parameters. We then conduct three different goodness
of fit tests, including Kolmogorov-Smirnov, Anderson-
Darling, and Chi-squared tests, to measure the compati-
bility of the sample with the experiment’s true probability
distribution function.

CASE STUDIES

In this section, we perform evaluation and analysis of
our data processing pipeline using four case studies. For
each case study, we designed an environment whose cus-
tomer flow resembles the one in a simple queueing sys-
tem with known parameters. We then staged experiments
where volunteers transported tags between single-server
service areas at times sampled from known distributions.
Positions of tags were continuously recorded using a
Ubisense Location Tracking System. Figure 3 illustrates
the structure and parameter settings of the approximated
queueing systems.

We use the first three case studies to show that ex-
tracted interarrival and service time distributions are sim-
ilar in statistical behaviour to the actual underlying dis-
tributions. We use the fourth case study to show how the
proposed data processing method copes when inferring
customer routing probabilities.

Results and Discussion
Figure 4 shows the historical paths of all tags during the
first of our experiments. The tags’ locations are colour-
coded; the red positions indicate when the tag was mov-
ing, while the blue locations are when it remained (al-
most) static. From this, we can infer the locations of the
service and entry/exit areas and the paths between them.

Service Time Distributions
Table 4 lists the coefficients of variation calculated from
the extracted service time samples in the first three case
studies, which are compared with the coefficients of vari-
ations of the actual underlying distributions.



Figure 3: The settings of the four case studies

Figure 4: Visualisation of the raw location tracking data from Case Study 1 to show moving tag positions (red dots) and
static tag positions (blue dots).
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Case Study 1: Cumulative histogram of the service time samples

Samples

(a) Case Study 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140

F
(X

)

X

Case Study 2: Cumulative histogram of service time samples,
 its best-fit distribution compared with the theoretical distribution
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Figure 5: Cumulative histograms of the extracted service time samples in the three case studies.

Case Study 2 Case Study 3
Kolmogorov-Smirnov Kolmogorov-Smirnov

test statistic 0.0855 0.0851
α 0.1 0.05 0.1 0.05

critical values 0.1526 0.1696 0.13 0.1444
rejected? No No No No

Anderson-Darling Anderson-Darling
test statistic 0.4121 0.4868

α 0.1 0.05 0.1 0.05
critical values 1.929 2.502 1.929 2.502

rejected? No No No No
Chi-squared Chi-squared

test statistic 4.671 5.325
α 0.1 0.05 0.1 0.05

critical values 9.236 11.07 10.64 12.59
rejected? No No No No

estimatedλ 0.0256 cust/sec 0.0213 cust/sec
actualλ 0.02833 cust/sec hyper-exponential with

λ1= 0.03333 (prob1=0.9)
λ2= 0.00667 (prob2=0.1)

Table 5: The results of three goodness of fit tests at significance levels 0.1 and 0.05 applied to the extracted service time
samples from Case Study 2 and Case Study 3. The null hypothesis is that the sample is extracted from an exponential
distribution. The estimatedλ is the rate of the best-fit exponential distribution (in cust/sec).

Case Study cv (estimated) cv (actual)
Case Study 1 0.17 0.00
Case Study 2 0.93 1.00
Case Study 3 1.15 1.57

Table 4: The coefficients of variationcv of the extracted
service time samples compared to their actual values

The designed probability distribution of the service
time for Case Study 1 is deterministic. The calculatedcv

is very low (0.17), suggesting that the service time distri-
bution is likely to be a deterministic distribution. Indeed,
the cumulative histogram obtained from the service time
samples is similar to a step function with an inflexion
point between 45 and 55 seconds (see Figure 5(a)), with
a sample mean of 51 seconds. This differs slightly from
the true value of 48 seconds, a deviation that is expected,
since the case study was executed under human control

with a slight delay when a customer finished being served
and began to leave the server’s service area.

Thecv of service time sample in Case Study 2 is very
close to the actual value 1, which is thecv of an expo-
nential distribution. The results of all three goodness of
fit tests (see Table 5) also accept that the null hypothesis
that the service time sample is extracted from an expo-
nential distribution. The estimated parameter of the best-
fit exponential distribution is 0.02561 (cust/sec), which
is close to the theoretical value 0.02833 (cust/sec), as
shown in Figure 5(b).

Thecv of the service time samples in Case Study 3 (see
Table 4) and the goodness of fit test results (see Table 5)
all indicate that the service time is very likely to be sam-
pled from an exponential distribution. However, the true
service time distribution should be a hyper-exponential
distribution with cv around 1.5. From Figure 5(c), we
can see that the shapes of the actual service time distri-



bution and the best-fit exponential distribution are very
similar to each other. Given the limited size of the ex-
tracted samples, it is reasonable to make the statistical
inference that the underlying distribution of the extracted
service time sample is likely to be an exponential distri-
bution withλ = 0.0213 cust/sec.

Case Study cv (estimated) cv (actual)
Case Study 1 0.89 1.00
Case Study 2 0.93 1.00
Case Study 3 0.87 1.00

Table 6: The coefficient of variationcv of the extracted
interarrival time samples compared to their actual values

Interarrival time
Table 6 shows the coefficients of variation calculated
from the extracted interarrival time samples in the first
three case studies. All of them are close to 1, which
means that we infer the interarrival time samples are
likely to be extracted from exponential distributions
(which in fact they are).

Table 7 presents the results of applying three goodness
of fit tests to the extracted interarrival time samples for
the three case studies. The results show that the hypothe-
sis that the underlying probability distribution of the sam-
ple is exponential cannot be rejected. It also compares
the estimatedλ of the best-fit exponential distribution
with the actual values.

Routing Probabilities

path count nextFlow
Server1 27 Server1

Server2 ,
Server1
Server3

Server2 1
Server1 Server2 19 Server1

Server2
Server3

Server1 Server3 4
Server1 Server2 Server3 4

Table 8: Customer flow analysis for Case Study 4

Table 8 shows the result of flow analysis (conducted in
the fourth stage of the data processing pipeline) for Case
Study 4. From the table, we can see that 19 out of 27
customers who completed service atServer1 went to
Server2 for service and only 4 went toServer3 for
service. In the actual setting, 70 percent of the customers
go to Server2 and 30 percent of the customers go to
Server3 afterServer1 . The experimental results dif-
fer from the actual probabilities because, as shown in Ta-
ble 8, the flow analysis discovers some nonexistent paths,
such asServer1 Server2 Server3 andServer2 .
This is due to the fact that some of the tags’ locations
were not updated regularly on account of the tags enter-
ing their “sleep” mode after being stationary for a period
of time (Ubisense).

CONCLUSION AND SUMMARY

This paper has presented a four-stage data processing
pipeline for extracting queueing models (specified in
terms of routing probabilities, interarrival time distribu-
tions and service time distributions) from high-precision
location tracking data. The pipeline gradually refines
noisy low-level data (e.g. entities’ Cartesian coordinates)
into high-level historical traces of customer and server
activities. From derived samples of customer interarrival
times and service completion times, a simple workflow
mining algorithm infers customer flow routing probabil-
ities and fits arrival and service time distributions. These
comprise a simple queueing network model of the moni-
tored system made up of single-server nodes.

Through four case studies conducted in this project,
the developed data processing method has shown moder-
ate success in extracting performance models that display
the true probabilistic features of the underlying system.
The success is especially obvious with systems of lower
levels of complexity and randomness.

In the future we intend to extend our methodology
to support advanced features such as multiserver nodes,
multiple classes of customer, customer priority schemes,
and sophisticated arrival processes (e.g. correlated input
traffic). We also wish to experiment with the application
of such techniques in the context of real-life systems (e.g.
healthcare environments).
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