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Abstract

Fork-join queueing networks model a network of parallel servers in which an arriving job splits into a number of sub-
tasks that are serviced in parallel. Fork-join queues can be used to model disk arrays. A response time approximation of
the fork-join queue is presented that attempts to comply with the additional constraints of modelling a disk array. This
approximation is compared with existing analytical approximations of the fork-join queueing network.

1 Introduction
Engineers of modern computer and communication systems need good analytical models to help predict performance
behaviour for a wide range of workloads. In many cases of practical interest, system workload can be abstracted as a
job stream, in which each job is split into many synchronised tasks, that are processed in parallel at various, possibly
heterogeneous, servers. Examples of such systems include disk arrays (where each logical I/O request becomes several
physical I/O requests spread across disk devices), multiprogramming and manufacturing systems.

Figure 1: Fork-join queueing model

Conceptually, such systems can be modelled as a fork-join queue within a closed queueing network (see Figure 1).
In a fork-join queueing system, each incoming job is split into N tasks at the fork point. Each of these tasks queues for
service at a parallel service node before joining a queue for the join point. When all N tasks in the job are at the front of
their respective queues, they rejoin (synchronise) at the join point.

It is difficult to model moments of job response time in a fork-join synchronisation analytically. Indeed, to date,
exact analytical results exist only for the mean response time of a two server system [4]. For more than two parallel
servers, approximations exist for the mean response time of homogeneous servers. Ideally a universal solution or accurate
approximation is needed to solve for moments of job response time in generic fork-join networks. The closest to this is
Varki’s modification of mean value analysis applied to closed fork-join networks [7], which approximates mean values
only.

In this case, fork-join queues are being studied specifically for the modelling of disk arrays. Therefore certain con-
straints on the fork-join model are preferable, for an accurate disk array model. Each disk in the array is modelled as one
of the parallel servers of the fork-join queue. The service time of a disk drive is dependent on the disk cylinder seek time
and rotational latency and is unlikely to be distributed exponentially. Hence, the disk array requires a fork-join model with
M/G/1 parallel queues. The service time distributions and mean service times on each disk are unlikely to be identical,
hence any analytical approximation must allow for heterogeneous parallel servers. Finally, a disk array could consist of
up to fifty disk drives so the analytical approximation needs to be capable of generating results quickly for a large number
of disks.



This paper makes some progress towards a good approximation of the response time distribution for a fork-join queue
from which the mean and further moments can be calculated. This is obtained by calculating the maximum cumulative
distribution function of a collection of random variables exactly. This result is applicable to a variety of different queues
with both homogeneous and heterogeneous servers. Section 2 outlines some of the other approximations for fork-join
queues. In Section 3 the analytical approximation for the response time distribution of a fork-join network is presented.
Section 4, compares this result with the other fork-join mean response time approximations discussed in Section 2, for
fork-join queues with either M/M/1 or M/G/1 parallel queues and homogeneous or heterogeneous parallel servers.

2 Background
In order to solve fork-join queueing networks analytically, most results assume that the parallel queues are independent
and identically distributed (iid). The arrival rate to the fork is λ and mean service rate for each queue is µ. Initially Nelson
and Tantawi [4] define bounds for the mean response time of an N -branch fork-join system of M/M/1 queues, RN . The
mean response time can then be approximated, based on the observation that both the lower and upper bounds of the
mean response time grow at the same rate as a function of the number of servers. By running simulations of the fork-join
network with different values of N , the mean response time approximation is calibrated to the following result:
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RN ≈
[
HN +

((
N∑

i=1

(
N

i

)
(−1)i−1

i∑
m=1

(
i

m

)
(m− 1)!

im+1

)
−HN

)
λ

µ

]
1

µ− λ
0 ≤ λ < µ N ≥ 2 (2)

This result can be extended to non-exponential service and arrival times, but in all cases, is only applicable for homo-
geneous servers.

Varki et al [8] present another approximation for the same conditions as equations (1) and (2),
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David [1] describes an upper bound for the mean of the maximum of a set of n iid random variables, Xi.

E[X(n)] ≤ µ +
σ(n− 1)√

2n− 1
(4)

where µ is the mean of X and σ is the standard deviation. Thomasian and Tantawi [6] adapt equation (4). Using
Nelson and Tantawi’s method of observing simulation results they present an analytical result for an approximation to the
mean response time of a fork-join queue with M/G/1 queues in parallel service. Their approximation proposes:

RN (ρ) ≈ R1(ρ) + σ1(ρ)FNαN (ρ) (5)

R1(ρ) and σ1(ρ) are the mean response time and standard deviation respectively for one M/G/1 queue with no fork-
join properties. FN is a constant dependent on the service time distribution of the parallel servers and αN (ρ) scales
according to observations from simulation results. αN (ρ) will have to be recalculated and hence resimulated for any
change of service time distribution.

Harrison and Zertal derive a method for finding the maximum of multiple random variables [3]. This gives an approx-
imation to a fork-join synchronisation, by modelling a similar network called the split-merge model exactly (figure 2). In
the split-merge model, a job splits into N tasks which are serviced in parallel. Only when all the tasks finish servicing and
rejoin can the next job split into tasks and start servicing. This will lead to a slower mean response times than its fork-join
equivalent.

Let fn(α, t) be a probability density function that describes the maximum of n independent, negative exponential
random variables, with parameters α = (α1, . . . αn). The following recurrence relation can be obtained for the Laplace
transform of fn(α, t), Ln(α, s).
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for 1 ≤ m ≤ n, where α\j = (α1, . . . αj−1, αj+1, . . . αm), L0(ε, s) = 1 and ε is the zero vector.



Figure 2: Split-merge queueing model

The kth moments, Mn(α, k) for fn(α, t), can be derived by differentiating equation (6) k times using Leibnitz’s
theorem and setting s to 0. A recurrence relation for approximating the mean value of the maximum of n independent,
non-negative random variables with means m = (m1, . . . , mn) follows. I(n, α,M) is the approximation function,
where, α = (m−1

1 , . . . ,m−1
n ), second moments M = (M1, . . . , Mn) and recurrence relation for k = 2, . . . , n,

I(k, α,M) =
1
k

k∑
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I(k − 1, α\i,M\i) + αiMiLk−1(α\i, αi)/2 (7)

I(1, α1,M1) = 1/α1

The result is exact if the n random variables are exponentially distributed.

3 The Maximum Order Statistic
An alternative to Harrison and Zertal’s method [3], is to find the mean of the maximum of a set of random variables by
utilising the properties of Order Statistics [5, 1].

Definition Any random variables, X1, X2, . . . , Xn can be reordered as X(1), X(2), . . . , X(n), where X(1) ≤ X(2) ≤
. . . ≤ X(n). Then X(1), X(2), . . . , X(n) are the order statistics of X1, X2, . . . , Xn.

The maximum of n random variables, using order statistics is X(n), the maximum order statistic. The mean value of
this maximum and further moments can be found if the cumulative distribution function (cdf) of X(n) is calculated.

FX(n)(x) = P (X(n) ≤ x) = ∀iP (X(i) ≤ x)

Thus, if X1, X2, . . . , Xn are iid with cdf F (x),

FX(n)(x) = (F (x))n

If the random variables are independent but not identically distributed, and Xi has cdf Fi(x),
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The mean of the maximum of n independent random variables is then
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If the random variables are iid, equation (8) simplifies to

E[X(n)] = n

∫ ∞

−∞
xf(x)(F (x))(n−1)dx (9)

Further moments, Mk, can be calculated,



Mk = E[Xk
(n)] = n
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These results always give exact solutions to the mean of the maximum random variable, immaterial to the distribution
of the random variables.

4 Results
To validate this analytical result, it is compared to simulation and analytical results from Harrison and Zertal [3]. The
simulations were run 100,000 times, giving 98% confidence bands of the order 0.01.

The two analytical results are the same for exponential random variables, since equation (7) is exact for exponential
random variables. Table 1 compares the two models and simulation results for an Erlang-k distribution, with parameter k.
The column HZ contains the results from the approximation in [3] and OS contains the results using equation (9). The
approximation suffers with low variance as N →∞, with a constantly increasing percentage error for larger N . Equation
(9) consistently delivers better percentage errors with no clear performance deficits.

N Exp-1 Erlang-2
Sim HZ % err OS % err

1 1.000 1.003 1.000 -0.334 1.000 -0.334
2 1.500 1.373 1.375 0.135 1.375 0.135
4 2.083 1.772 1.813 2.265 1.774 0.089
8 2.718 2.182 2.288 4.881 2.180 -0.078
16 3.381 2.588 2.786 7.648 2.587 -0.035

N Erlang-3 Erlang-4
Sim HZ % err OS % err Sim HZ % err OS % err

1 0.999 1.000 0.062 1.000 0.062 0.999 1.000 0.060 1.000 0.060
2 1.271 1.313 3.281 1.313 3.281 1.195 1.281 7.207 1.273 6.127
4 1.546 1.677 8.448 1.630 5.153 1.380 1.609 16.64 1.544 10.6230
8 1.806 2.074 14.84 1.945 7.147 1.555 1.966 26.43 1.808 13.993
16 2.061 2.488 20.74 2.254 8.562 1.716 2.339 36.30 2.063 16.820

Table 1: Comparison with Erlang (low-variance)

For a high variance situation, a Pareto distribution is used. Table 2 compares the models and simulation results for a
heavy tailed Pareto-β distribution. This has cdf FP (x) = 1− α(x + γ)−β , with α = γβ and γ = β − 1. The results are
consistently better for the maximum order statistic result than the approximation and are also significantly more accurate
than the low variance case.

N Exp-1 Pareto-4 Pareto-5
Sim HZ % err OS % err Sim HZ % err OS % err

1 1.000 1.004 1.000 -0.381 1.000 -0.381 0.994 1.000 0.614 1.000 0.614
2 1.500 1.579 1.750 10.82 1.571 -0.509 1.567 1.667 6.350 1.556 -0.707
4 2.083 2.327 2.625 12.81 2.319 -0.345 2.269 2.444 7.744 2.266 -0.132
8 2.718 3.261 3.577 9.698 3.255 -0.184 3.129 3.290 5.173 3.129 -0.001

16 3.381 4.394 4.571 4.027 4.395 0.023 4.153 4.174 0.512 4.149 -0.096

Table 2: Comparison with Pareto (high-variance)

4.1 M/M/1 Queues
Describing the mean response time as the mean of the maximum of a set of random variables used in equations (7) and (9)
are compared to the other mean response time approximations described in Section 2. All these approximations only apply
to M/M/1 queues. Since M/M/1 queues have both exponential arrival and service time distributions, the approximation in
equation (7) is exact and yields the same results as equation (9). Figure 3 compares the mean response time for a fork-join
network of M/M/1 queues using the method of finding the mean of the slowest queue (OS), with three of the response
time approximations described in Section 2. The results were calculated with a mean arrival rate, λ = 1 and a mean
service rate, µ = 1.1 for each server and the number of servers varying between 1 and 25. Equation (1) is the line NT,



equation (2) is VM and equation (3) is VMC. Equation (2) has significantly worse performance results than all the other
approximations, due to the presence of a double sum. All these results are compared to a simulation of the network, with
the line labelled SIM. The simulation is run 100,000 times and then each run is replicated 30 times, with either the mean
or median result chosen, depending on the range and frequency of results. All further simulations in this paper are carried
out with these standards applied, using the JINQS queueing network simulator [2].
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Figure 3: Mean response time RN for M/M/1 fork join-queue with N queues, λ = 1, µ = 1.1

The mean of the maximum order statistic, which gives exact results for a split-merge queue but only approximates
the fork-join model, performs worst out of all the approximations for the M/M/1 queue. This could be expected as the
split-merge model waits for all parallel servers to finish servicing before a new job begins service and will hence be
significantly slower than the fork-join model. However, although the accuracy of this result is worse than other models,
its strengths are in its potential. The three approximations it is compared with can only approximate fork-join queues that
consist of homogeneous M/M/1 queues. This result will therefore perform better with M/G/1 queues or fork-join queues
with heterogeneous servers. Additionally, the maximum order statistic provides a useful and easily computable response
time upper bound.

4.2 M/G/1 queues
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Figure 4: Mean response time RN for Erlang-2 M/G/1 fork-join queue with N queues, λ = 0.1, µ = 0.375

The benefits of this result become more apparent with an M/G/1 queue. The maximum order statistic is calculated by
inverting the Laplace transform of the response time for each individual queue using mathematical software. The approx-



imations defined for M/M/1 queues (equations (1), (2) and (3)) only apply for M/M/1 queues and the only approximations
that exist for M/G/1 queues are computationally intensive [9], or reliant on simulation results (equation (5)). Harrison and
Zertal’s method is an approximation to the split-merge queue, whereas this result is exact for the split-merge queue.

Figure 4 plots mean response time for an N server fork-join queue. The service time distribution has an Erlang-
2 distribution with mean 0.375 and arrival rate 0.1. The graph compares Harrison and Zertal (HZ), the mean of the
maximum order statistic (OS) and a simulation (SIM).

4.2.1 A Large Number of Parallel Queues

Disk arrays often consist of up to fifty individual disk drives. Any analytical approximation of a disk array needs to
quickly and accurately calculate the mean response time as the number of parallel queues increases. Finding the mean
of the maximum order statistic is computationally fast for a large number of parallel queues. However, simulating large
fork-join queues is very slow. Therefore, figures 3 and 4 only show results up to 25 disks. To show how these results
compare as the number of queues gets very large, tables are presented for the cases when there are 40 and 50 parallel
queues. Table 3 shows mean response times for the M/M/1 fork-join queue described above with arrival rate 1 and service
rate 1.1. Table 4 displays mean response times for the M/G/1 fork-join queue with Erlang-2 distributed service times,
arrival rate 0.1 and service rate 0.375. Both tables are labelled with the same key for the results as figures 3 and 4.

N Simulation Confidence Interval OS NT VM VMC
half width

40 32.195 1.201 42.785 31.055 29.196 28.263
50 32.450 0.684 44.992 32.42 30.171 29.469

Table 3: M/M/1 parallel queues with many servers

N Simulation Confidence Interval OS HZ
half width

40 10.0126 0.0160 11.481 14.521
50 10.406 0.0178 12.0054 15.27

Table 4: Erlang-2 M/G/1 parallel queues with many servers

4.3 Heterogeneous Servers
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Figure 5: Mean response time RN for an heterogeneous M/M/1 fork-join queue with N queues

Heterogeneous parallel servers in a fork-join queue create a situation in which approximating the response time with
the maximum order statistic is an improvement upon other analytical approximations for fork-join synchronisation. The



other fork-join approximations discussed in this paper are only applicable for homogeneous servers. Figure 5 measures
the mean response time for an M/M/1 fork-join queue with heterogeneous servers. It plots the mean response time for an
N branch fork-join queue in which each server has a mean service rate of 1.1 + 0.2i, where i = 0, 1, . . . , N − 1. The
line SIM represents a simulation for N = 1, . . . , 16 and the line OS is an approximation using the mean of the maximum
order statistic. To show that the approximations for fork-join queues with homogeneous servers cannot approximate the
heterogeneous result, two lines are plotted assuming homogeneous servers, using Nelson and Tantawi’s approximation
(see Equation (1)), which was shown in figure 3 to be the most accurate analytical approximation of M/M/1 fork-join
synchronisation. Firstly, we approximate the heterogeneous servers by assuming homogenous servers with the minimum,
and hence the slowest service rate, 1.1. This is displayed in the line NT µ = 1.1. Secondly in line NT, we define the
service rate of the homogenous servers as the mean of all the service rates on the heterogeneous servers.

The results using the order statistics method stay consistently closer to the fork-join simulation than in the homogenous
case. Furthermore, both attempts at approximating parallel systems with heterogeneous servers by modelling them as
homogenous servers have increasingly large percentage errors as N increases.
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Figure 6: Mean response time RN for an heterogeneous M/G/1 fork-join queue with N queues and an Erlang-2 service
time distribution, with mean 0.2 + 0.1N

Figures 6 and 7 compare simulation results with the mean of the maximum order statistic for M/G/1 heterogeneous
fork-join queues. Figure 6 charts the mean response time for N M/G/1 queues with an Erlang-2 distribution, but with a
mean service rate that varies according to N (µ = 0.2 + 0.1N ). Figure 7 keeps the mean service rate constant at 0.375,
but varies the service time distribution according to N . The service time distribution is Erlang-N + 1.
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Figure 7: Mean response time RN for an heterogeneous M/G/1 fork-join queue with N queues and a service time distri-
bution of Erlang-N + 1,with mean 0.375

In figures 5 and 6, the mean response time tends to a constant value as N increases. This is because queues are added
to the network with increasingly fast mean response times. The slow response times of the queues initially added to the
network have a larger effect on the overall mean response time of the fork-join network.



5 Conclusion and Future Work
This paper discusses existing analytical solutions to the fork-join network. We present an approximation using order
statistics and compare it to the existing methods. The use of the maximum order statistic enables a number of useful
features to the result, not available with the other approximations. The other approximations only calculate a value for
the mean response time, whereas using the result presented here, the response time density is derived, enabling not just
the mean, but all further moments and other statistical measures to be calculated. This approximation enables the features
needed for a performance model of a disk array.

The work presented above for solving fork-join synchronisation analytically can be improved. The approximation
discussed above is a pessimistic model of fork-join synchronisation. This raises the possibility of scaling the result down
to approximate fork-join synchronisation better. Thomasian and Tantawi [6] use the properties of order statistics to scale
their result; however this is done by first simulating the fork-join queue with the specified service time distribution. Our
aim is to scale the result without using simulation results. This would create a simple, fast and accurate approximation for
M/G/1 fork-join queues which would create a good performance model for disk arrays.

Other assumptions made in this fork-join approximation need to be considered. At present, the fork-join model splits
each job into exactly as many sub-tasks as there are servers. In disk arrays, however, an arriving job, or I/O request, will
split into more or less tasks than the number of servers or disks. Additionally, throughout this paper we assume a constant
Markovian arrival rate to the fork-join queue. The I/O request stream that sends requests to a disk array is unlikely to
have a constant arrival rate and would be better modelled with MMPP (Markov Modulated Poisson Process) arrivals. The
approximation discussed in this paper needs to be extended and tested to comply with these requirements.
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