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Abstract. Epidemic modelling is fundamental to our understanding of
biological, social and technological spreading phenomena. As conceptual
frameworks for epidemiology advance, it is important they are able to
elucidate empirically-observed dynamic feedback phenomena involving
interactions amongst pathogenic agents in the form of syndemic and
counter-syndemic effects. In this paper we model the dynamics of two
types of epidemics with syndemic and counter-syndemic interaction ef-
fects in multiple possibly-overlapping populations. We derive a Markov
model whose fluid limit reduces to a set of coupled SIR-type ODEs. Its
numerical solution reveals some interesting multimodal behaviours, as
shown in our case studies.
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1 Introduction

You think because you understand ‘one’ you must also understand ‘two’,
because one and one make two. But you must also understand ‘and’...

Rumi (13th century Persian Poet)

Epidemics of various kinds have been an important focus of study throughout
human history. As health care standards have risen and information technology
has advanced over the past half century, our preoccupation with epidemics of a
biological nature has lessened while our obsession with epidemics of a social and
technological nature has dramatically increased. This has been accompanied by
a growing realisation that many of the epidemiological techniques used in the
modelling of biological diseases can be readily transplanted into social and tech-
nological domains such as content and information diffusion, rumour spreading,
gossiping protocols and viral marketing.

There is one recent but crucial respect in which our conceptual understand-
ing of biological epidemics has advanced dramatically. In particular, it has be-
come increasingly realised that it is important to study the interplay between
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pathogenic agents and between pathogenic agents and their environment. The
corresponding field of study is known as synepidemiology in which the subjects
of study are syndemics and counter-syndemics [35]. A syndemic is a set of mu-
tually reinforcing health problems whose combined impact is more devastating
than sum of the health problems in isolation (e.g. the risk developing tubercu-
losis is estimated to be between 12–20 times high for people with HIV [21]),
while a counter-syndemic concerns a set of mutually inhibiting health problems
whose combined impact is not as high as the sum of the health problems in iso-
lation (e.g. studies suggest that a measles infection can temporarily inhibit the
replication of the HIV virus [27]). Very lately, there has been a growing aware-
ness that syndemics may also exist in a technological context: e.g. the purchase
of a smartphone may make the purchase of the corresponding accessories and
applications more likely [30].

In this paper, we extend the well-known Susceptible-Infected-Recovered (SIR)
compartmental epidemiological model to support the interplay of multiple inter-
acting epidemics. Our focus is on a scenario of two potentially-interacting epi-
demics spreading across a set of overlapping subpopulations. In this context, we
derive a Markov model which describes the state changes of an individual with
respect to each epidemic and whose transition rates incorporate syndemic and
counter-syndemic interactions. The fluid limit of this Markov model reduces to
a set of coupled SIR-type ODEs, the solution of which describes the evolution
of the number of individuals infected by each epidemic.

The remainder of this paper is organised as follows. Section 2 presents an
historical perspective on conceptual frameworks and modelling efforts pertinent
to the field of epidemic modelling in the biological, social and technological
domains. Section 3 presents our approach in extending the SIR model to support
interacting epidemics, while Section 4 presents case studies of two interacting
SIR epidemics propagating through two intersecting populations with various
degrees of overlap. Section 5 concludes and considers avenues for future work.

2 Background

Human societies have been ravaged by biological epidemics throughout his-
tory with recurrent deadly outbreaks of bubonic plague, smallpox, yellow fever,
cholera and influenza [38]. As shown in Fig. 1, the predominant early theories
of disease causation were mostly supernatural, astronomical or religious, with
causal agents including evil spirits, planetary motion and divine retribution.
From the Middle Ages until Victorian times, it was also believed that if one
inhaled miasmas – toxic vapors that emanated from swamps or decaying or-
ganic matter – disease would result [32]. Progress towards a more scientific and
data–based approach began to be made from 1600 onwards with the collection
of the first public health statistics, by John Graunt (1620–1674) [11] and others.
One of the most famous studies was by John Snow of the 1854 London Cholera
epidemic [36] in which he identified a particular water pump as the likely source
of the outbreak.
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Fig. 1. The historical development of conceptual frameworks for epidemics

Predictive mathematical models for epidemics were relatively slow to develop,
despite their utility in understanding, managing and forecasting epidemics. One
of the earliest was by Daniel Bernoulli who carried out a study of the effects of
smallpox vaccination in 1766 [9]. But arguably the most significant breakthrough
came with the compartmental disease models proposed by Kermack and McK-
endrick in 1927 [19]. These elegantly express disease dynamics as coupled ODEs.
The most well-known model is the Susceptible-Infected-Recovered (SIR) model.
SIR features a closed population of individuals divided into three evolving sub-
populations: S(t) tracks those susceptible to become infected by the disease at
time t, I(t) tracks those infected by the disease with rate β and R(t) tracks those
who have recovered from the disease at rate γ.

The science of epidemiology has made rapid advances in recent times and
has moved from monocausal studies of infectious diseases to multifactor studies
of chronic diseases (e.g. obesity). It has become increasingly realised that many
diseases feature a complex web of interconnected risk factors (the so-called web
of causation), which may include relationships with other diseases and relation-
ships between diseases and the environment. The latter point of view is central to
the science of synepidemiology [12]. Related mathematical models have been con-
currently evolving, with some studies of the dynamics of two possibly-dependent
co-infections in single populations [4, 25].

Of course it is not only disease which spreads in an epidemic fashion and
researchers have proved adept at progressively transplanting the corresponding
theory into sociological and technological domains, especially those related to in-
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formation diffusion. In the middle of the 20th century, spreading-process models
for rumours, ideas and memes were proposed for the first time [5,7,13], followed
by mathematical models of how information spreads under mass media dissem-
ination [17, 23]. Various networks have subsequently come under the spotlight
including computer networks [14], vehicular networks [39], mobile and ad-hoc
networks [20], peer-to-peer file-sharing networks [22], mobile networks [34], wire-
less sensor networks [2,6] and social networks [8,16]. More recently, mathematical
models were developed to yield insights into the dynamics of emerging infectious
diseases from social and technological network data [3, 15, 18, 28, 29, 31]. There
have also been studies analysing how user behaviour varies within user commu-
nities defined by a recommendation network [24], which creates viral marketing
effects as well as studies about the role of centrality and influence in information
diffusion within social networks [1, 26,33,37].

3 Epidemic Model

We focus on two interacting SIR (susceptible, infected, recovered) processes liv-
ing on a finite set of overlapping subpopulations Pi constituting a population
P = ∪iPi. For notational convenience, we introduce the partition P of the pop-
ulation P induced by the overlapping sub-populations. For each part p in the
partition, let its neighbourhood N (p) be a set of parts which includes p. More-
over, the size of the population of part p is denoted by n(p).

Remark 1. The neighbourhood of any part will be used to relate an individual’s
view-of-the-world to its infection rate. To make this concrete, consider a simple
example where there are two subpopulations with a non-empty intersection.
These overlapping subpopulations induce a partition with 3 parts: the two parts
of individuals that belong to one subpopulation and not to the other, and the
part corresponding to the intersection. As individuals in the intersection belong
to both sub-populations, their neighbourhood includes all parts. The individuals
that only belong to a single sub-population only see their own sub-population.
Their neighbourhood therefore consists of their own part and the intersection.

Any individual of the population is susceptible to, infected by or recovered
from any of two epidemics. The state of an individual is described by a pair
(k, `), with k, ` ∈ {s, i, r}, where s, i and r stand for susceptible, infected and
recovered, respectively and where k and ` refer to the first and second epidemic,
respectively. We consider a Markovian epidemic model and its fluid limit. At
any point in time, the state of the Markov chain is described by the number of
individuals in the different states and in the different parts.

Prior to introducing the Markov chain, some additional notation is required.
Let xp(k,`) be the number of individuals of part p that are in state (k, `), and let

x be the vector with elements xp(k,`), for p ∈ P and k, l ∈ {s, i, r}. The state

space X of the Markov chain is defined as the set of vectors x such that,

xp(k,`) ∈ N = {0, 1, 2, . . .} ,
∑

k,`∈{s,i,r}

xp(k,`) = n(p) for all p ∈ P.
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Fig. 2. Transition rates for an individual in part p.

Moreover, let ep(k,`), for p ∈ P and k, l ∈ {s, i, r} be the obvious unit vectors

of the state space X . The following parameters describe the transition rates
for changing states. An (s, s)-individual in part p gets infected by the first and
second epidemics with rates β1f

p
1 (x) and β2f

p
2 (x), respectively. Here, fp1 (x) and

fp1 (x) are the fractions of individuals that are infected by epidemic 1 and 2 in
the neighbourhood of p ∈ P,

fp1 (x) =

∑
q∈N (p)

(
xq(i,r) + xq(i,s) + xq(i,i)

)
∑
q∈N (p) n(q)

, (1)

fp2 (x) =

∑
q∈N (p)

(
xq(r,i) + xq(s,i) + xq(i,i)

)
∑
q∈N (p) n(q)

. (2)

If such an individual is already infected by or has already recovered from the
other epidemic, the infection rate is modified. An (s, i) individual in part p
gets infected by the first epidemic with rate (β1 + ∆1)fp1 (x), while an (s, r)
individual gets infected by the first epidemic with rate (β1 + ∆̄1)fp1 (x). Modified
infection rates are defined likewise for the second epidemic. Finally, the recovery
rates of an individual from epidemic 1 and 2 are constant and equal to γ1 and
γ2, respectively. For clarity, the transition rates for an individual in part p are
depicted in Figure 2. The infinitesimal generator A of this Markov chain is:

Ag(x) =
∑
p∈P

(
β1f

p
1 (x)xp(s,s)[g(x− ep(s,s) + ep(i,s))− g(x)]

+ β2f
p
2 (x)xp(s,s)[g(x− ep(s,s) + ep(s,i))− g(x)]

+ (β1 +∆1)fp1 (x)xp(s,i)[g(x− ep(s,i) + ep(i,i))− g(x)]

+ (β2 +∆2)fp2 (x)xp(i,s)[g(x− ep(i,s) + ep(i,i))− g(x)]
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+ (β1 + ∆̄1)fp1 (x)xp(s,r)[g(x− ep(s,r) + ep(i,r))− g(x)]

+ (β2 + ∆̄2)fp2 (x)xp(r,s)[g(x− ep(r,s) + ep(r,i))− g(x)]

+ γ1x
p
(i,s)[g(x− ep(i,s) + ep(r,s))− g(x)]

+ γ1x
p
(i,i)[g(x− ep(i,i) + ep(r,i))− g(x)]

+ γ1x
p
(i,r)[g(x− ep(i,r) + ep(r,r))− g(x)]

+ γ2x
p
(s,i)[g(x− ep(s,i) + ep(s,r))− g(x)]

+ γ2x
p
(i,i)[g(x− ep(i,i) + ep(i,r))− g(x)]

+ γ2x
p
(r,i)[g(x− ep(r,i) + ep(r,r))− g(x)]

)
, (3)

for x ∈ X . Due to the considerable size of the state space X , even for modest
population sizes, direct computation of either transient or stationary distribu-
tions is quite forbidding. As we are mainly interested in the dynamics when
the population is large, we focus on the fluid limit of the process. However, the
original Markov chain will also be simulated and compared with the fluid limits.

More specifically, we consider a sequence of Markov chains with generators
AN such that the population size is N for the Nth Markov chain and we keep
track of the fractions of populations, such that components of the state space
XN of the Nth Markov chain live on a lattice with step size 1/N , and the unit
vectors have size 1/N as well. By contrast, the transition rates increase by N
as we need to translate from population fractions to population sizes. Setting
ε := 1/N , we get the following generator:

Aε−1g(x) = ε−1
∑
p∈P

(
β1f

p
1 (x)xp(s,s)[g(x− εep(s,s) + εep(i,s))− g(x)]

+ β2f
p
2 (x)xp(s,s)[g(x− εep(s,s) + εep(s,i))− g(x)]

+ (β1 +∆1)fp1 (x)xp(s,i)[g(x− εep(s,i) + εep(i,i))− g(x)]

+ (β2 +∆2)fp2 (x)xp(i,s)[g(x− εep(i,s) + εep(i,i))− g(x)]

+ (β1 + ∆̄1)fp1 (x)xp(s,r)[g(x− εep(s,r) + εep(i,r))− g(x)]

+ (β2 + ∆̄2)fp2 (x)xp(r,s)[g(x− εep(r,s) + εep(r,i))− g(x)]

+ γ1x
p
(i,s)[g(x− εep(i,s) + εep(r,s))− g(x)]

+ γ1x
p
(i,i)[g(x− εep(i,i) + εep(r,i))− g(x)]

+ γ1x
p
(i,r)[g(x− εep(i,r) + εep(r,r))− g(x)]

+ γ2x
p
(s,i)[g(x− εep(s,i) + εep(s,r))− g(x)]

+ γ2x
p
(i,i)[g(x− εep(i,i) + εep(i,r))− g(x)]

+ γ2x
p
(r,i)[g(x− εep(r,i) + εep(r,r))− g(x)]

)
. (4)

We can deduce the (candidate) fluid limit by Taylor expansion of this gen-
erator around ε = 0, from which we find a limiting generator of the form
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Âg = h(x) · ∇g, for a certain 9|P|-dimensional vector function h. Note that
a generator of this form corresponds to a deterministic process satisfying the
system of differential equations ẋ(t) = h(x(t)).

In order to prove this limit rigourously, it needs to be checked that both the
pre-limit processes and the limit process are Feller processes [10], which basically
boils down to checking the so-called Hille-Yosida conditions. We believe that a
careful proof of this statement falls outside the scope of this paper, but remark
that due to the compactness of the state space (in the prelimit as well as in the
limit), the proof is not as involved as is sometimes the case. Below we detail
the set of differential equations, where we have dropped the dependence of t for
notational convenience.

After some manipulations we find the following fluid limit which not only
generalises syndemics in a single population but also epidemics on a stratified
population:

ẋp(s,s) = −β1yp1x
p
(s,s) − β2y

p
2x

p
(s,s)

ẋp(i,s) = β1y
p
1x

p
(s,s) − (β2 +∆2)yp2x

p
(i,s) − γ1x

p
(i,s)

ẋp(s,i) = β2y
p
2x

p
(s,s) − (β1 +∆1)yp1x

p
(s,i) − γ2x

p
(s,i)

ẋp(i,i) = (β2 +∆2)yp2x
p
(i,s) + (β1 +∆1)yp1x

p
(s,i) − (γ1 + γ2)xp(i,i)

ẋp(r,s) = γ1x
p
(i,s) − (β2+∆̄2)yp2x

p
(r,s)

ẋp(r,i) = (β2+∆̄2)yp2x
p
(r,s) + γ1x

p
(i,i) − γ2x

p
(r,i)

ẋp(i,r) = (β1+∆̄1)yp1x
p
(s,r) + γ2x

p
(i,i) − γ1x

p
(i,r)

ẋp(s,r) = γ2x
p
(s,i) − (β1+∆̄1)yp1x

p
(s,r)

ẋp(r,r) = γ1x
p
(i,r) + γ2x

p
(r,i)

yp1 =

∑
q∈N (p)

(
xq(i,s) + xq(i,i) + xq(i,r)

)
∑
q∈N (p) ν(p)

yp2 =

∑
q∈N (p)

(
xq(s,i) + xq(i,i) + xq(r,i)

)
∑
q∈N (p) ν(q)

,

for p ∈ P. The fractions yp1 and yp2 were introduced in the set of ODEs to simplify
notation: ypi (t) is the fraction of individuals that are infected by epidemic i in
the neighbourhood of p.

4 Case Studies

With the ODEs established we now focus on some numerical examples. To limit
the number of parameters, we investigate the spread of two epidemics, say e1
and e2, on two intersecting populations. For both epidemics, the spreading and
recovery parameters are set to βi = 0.4 and γi = 0.1 (i = 1, 2), respectively.
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There are two populations. Population P1 constitutes 30% of the total popula-
tion. The population P2 constitutes 70% of the total population. The fraction
of the individuals in the intersection of both populations – referred to as the
degree of overlap – is denoted by ν and assumed to be 0.01% unless indicated
otherwise. For a fixed ν, 30%− ν/2 and 70%− ν/2 of the individuals are in P1
and not in P2 and in P2 and not in P1, respectively.

For all case studies ∆̄1 = ∆1 and ∆̄2 = ∆2. Epidemic e1 begins in the
non-intersecting population P1 at time 0, and epidemic e2 begins in the non-
intersecting population P2 at time 0. The initial number of infected individuals
is 1% for each epidemic, and no individuals are infected by both epidemics at
the start. With the parameters fixed, we now investigate how spreading of the
epidemics is affected by (i) the size of the intersection, (ii) syndemic effects and
(iii) counter-syndemic effects.

Case Study 1: Influence of Degree of Overlap Fig. 3 shows the influence
of the degree of overlap ν between the populations on the spread of e1 and e2.
We see that the smaller the intersection, the more significant the delay of the
propagation of the epidemics between the populations. With values of ν above
1%, the results are increasingly indistinguishable from epidemics spreading in a
single population. The multimodality of the spread over time is quite apparent.
The epidemics first reach their peak in the population in which they originated.
Only after sufficiently many individuals in the intersection are affected, spreading
in the other population starts, reaching its peak considerably later, even though
the spreading mechanism is exactly the same in both populations and for both
epidemics. Finally note that the first peak of e2 is considerably higher than the
first peak of e1 while the opposite is observed for the second peak which is in
line with the sizes of the populations the epidemics originate from.

Case Study 2: The Impact of Syndemic Effects Fig. 4 shows how syndemic
effects affect the evolution of the epidemics. We consider three cases. For ∆1 =
β = 0.4 and ∆2 = 0, the second epidemic reinforces spreading of the first.
Specifically, if an individual is infected by the second epidemic, its infection rate
for the first epidemic is doubled. For ∆2 = β = 0.4 and ∆1 = 0, the first epidemic
reinforces spreading of the second in a similar manner. Finally, for ∆1 = ∆2 =
β = 0.4, both epidemics reinforce each other. For ∆1 = 0, ∆2 = 0.4 for e1
corresponds to the case where there are no syndemic effects on e1. Comparison
with the other e1 curves clearly reveals the syndemic effects. Particularly note
that when both epidemics reinforce each other, the peak of e1 is sooner and a
little higher. This is explained by the fact that e1 affects the spread of e2 which
in turn reinforces the spread of e1. Similar observations apply to e2.

Case study 3: The Impact of Counter-syndemic Effects Fig. 5 shows the
impact of counter-syndemic effects. We consider three cases. For ∆1 = −β =
−0.4 and ∆2 = 0, an individual infected by the second epidemic is immune to the
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Fig. 3. Evolution of the fractions of infected, susceptible and recovered individuals for
epidemics e1 and e2 and for different sizes of the intersection ν as indicated.
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first epidemic. For ∆2 = −β = −0.4 and ∆1 = 0, an individual infected by the
first epidemic is immune to the second epidemic. Finally, for ∆1 = ∆2 = −β =
−0.4, immunity works both ways. As similar effects apply for both epidemics, we
focus on e1. Clearly, for ∆2 = −β = −0.4 and ∆1 = 0, the first epidemic is not
affected by syndemic effects. Hence, the e1 curve for ∆2 = −β = −0.4 and ∆1 =
0 can be used as reference. Comparing this curve with the other e1 curves clearly
illustrates counter-syndemic effects. In fact, the second peak of the epidemic is
no longer present. This is explained by noting that this peak was reached in the
population where the second epidemic originates. By the time the first epidemic
reaches this population, most of its individuals are already immune. Finally,
note that a large proportion of the population remains susceptible to the first
epidemic.

5 Conclusion

It is important that the sophistication of mathematical modelling techniques
keeps pace with our evolving understanding of the dynamics of epidemic pro-
cesses, especially as they become applied in myriad domains beyond the bio-
logical. Our present paper has made some progress in this direction by consid-
ering models of syndemic and counter-syndemic interactions between two SIR
epidemics in multiple overlapping populations. The results from this kind of
analysis can give insights into epidemic forecasting and optimal strategies for
managing the response to outbreaks.

Much more remains to be done. For example, while the present work targets
fluid limits, other scalings leading to diffusion limits may shed light on the vari-
ance of outcomes. In addition, our populations are assumed to be static when a
more realistic model might assume some dynamic movement of individuals be-
tween populations (practically realised as facilities to join and leave populations).
Practical case studies could also be carried out in application areas ranging from
computer viruses to extreme ideologies.
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