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ABSTRACT
This paper investigates various ways in which the triple trade-off
metrics between task response time, subtask dispersion and en-
ergy can be improved in split-merge queueing systems. Four ideas,
namely dynamic subtask dispersion reduction, state-dependent ser-
vice times, multiple redundant subtask service servers and restart-
ing subtask service, are examined in the paper. It transpires that all
four techniques can be used to improve the triple trade-off, while
combinations of the techniques are not necessarily beneficial.
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1 INTRODUCTION
In real world applications quite often there are multiple criteria
by which one may wish to be as good as possible. There is also a
catchphrase saying “choose two out of three: fast, good and cheap”,
indicating that it is very difficult to satisfy all criteria. In this paper
we investigate split–merge systems, a particular variety of parallel
queueing systems that have three desired qualities. First we wish
the system has a low subtask dispersion [6, 7, 9, 10] (difference in
completion time between first and last subtasks to complete), low
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task response time (difference between task arrival and comple-
tion of service) and low energy usage. This paper discusses four
techniques, which are compared with the method from [9].

Having a low subtask dispersion is important in many kinds
of systems. For example in some online games it is important to
have quick reflexes. If the lag between players varies too much the
game becomes unfair as the players with lower lag are able to react
faster and therefore are more likely to win. If subtask dispersion is
reduced the playing experience will be more fair. This problem is
analysed in [12].

A similar situation exists when trading on the stock market.
Some actors in the industry have microwave links between the
different exchanges, which allow them to be faster than people
using fibre optic links. As a result a buy order spread over multiple
exchanges may lead to high dispersion and a buyer may be front run
by the high frequency traders. This means that the high frequency
trader buys stock right before it arrives to the second exchange and
then immediately sells it back to the customer at a slightly higher
price.

Sec. 2 and 3 focus on two techniques, which are both based on
dynamically adding delays so as to reduce the variation between
the fastest and the slowest subtasks. The first technique inserts
delays before the service of fast subtasks to make them take longer
to complete with the ideal outcome that all subtasks complete at
the same time. We will first show the mathematical formulation for
dynamic subtask dispersion as introduced in Pesu and Knottenbelt
[7]. The second technique is to select the delays inserted in front
of subtasks based on the queue length of the system. Delays are
determined with the help of Bayesian optimisation.

Sec. 4 introduces two techniques that use replication of subtask
servers and service restart of subtasks. These techniques work best
when the underlying subtask service time distribution has high
variance, more precisely subtask service restart is beneficial only
if the service time distribution is heavy-tailed. In addition, such
tasks must be idempotent, i.e. replication, abortion and restart of
the task must not have undesired side effects, such as a duplicated
trade or transaction. Both methods are applicable only if tasks can
be shifted, duplicated and repeated with no harm.

It is possible to use dynamic subtask dispersion if the time to
transmit information that a sibling subtask has finished is small
compared to the service time of subtasks. State-dependent delays
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have very little prerequisites and can be used almost always as they
only require knowledge of the queue length.

We find that restarting subtasks and replicating service of sub-
tasks is very helpful in cases where the subtask service time has
high variance. However, formulating guidelines as to which of the
methods to use best is not straightforward as it will depend on the
system-specific parameters. Our results indicate that combining the
two redundancy techniques is not necessarily able to further im-
prove results. We attribute this to the fact that both techniques work
by reducing the variance of the subtask service time distribution.

2 TRADE-OFFS USING DYNAMIC SUBTASK
DISPERSION

In this section we first introduce the split–merge queueing model
and then investigate how the trade-off delay scheme introduced
in [9] can be improved by substituting the subtask-dispersion tech-
nique with the improved delay scheme introduced in [7].

Figure 1: Visualisation of the split–merge system

In a split-merge system each time a new task enters service it
is split into N subtasks. Those subtasks are served by N different
parallel servers. Upon completion, the subtasks are reassembled into
one task for further processing. This situation is illustrated in Fig. 1.
Some of the parallel servers will finish processing their subtask
much earlier than others which leads to undesired dispersion in the
completion time of the subtasks. To avoid this, different measures
can be taken. The most straightforward solution is to insert a delay
before each subtask. These delays are specified in a delay vector d.

The dynamic version of the algorithm sets delays to 0 once a
sibling subtask completes service. In the regular algorithm delays
are kept constant until completion of all subtasks. Sec. 2.1 and 2.2
discuss the dynamic algorithm. The regular subtask dispersion al-
gorithm is from the paper [10]. For the dynamic algorithm intuition
dictates that subtask dispersion should be reduced if delays are cut
after a sibling subtask has completed. Similarly it dictates that task
response time should decrease if delays are decreased.

An example of a potential operation by the algorithm is shown in
Fig. 2. The advantage of dynamic subtask padding is shown by the
results for an example in Fig. 3. We observe that removing delays
once a sibling subtask finishes can dramatically reduce subtask
dispersion.

The next subsection defines the optimisation problem that must
be solved to determine suitable delays that minimise subtask dis-
persion. In Sec. 2.2 we formulate the corresponding optimisation
problem for minimising the task response time. Finally, at the end
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Figure 2: An example of processing a task in a three server
split–merge system
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Figure 3: Dynamic and regular subtask dispersion tech-
niques: A two server exp(λ = 1), exp(λ = 2) example

of Sec. 2.2 we combine both into the formulation of the trade-off
between task response time and subtask dispersion. The trade-off
is specified in Eqn. (14).

2.1 Dynamic Subtask Dispersion
A technique to minimise dynamic subtask dispersion has been
introduced in [7]. We briefly revisit the result here. This section
introduces how subtask dispersion of a split-merge system can be
computed for a given set of delays d.

Let T (i, t , d) be the probability that subtask i is the first to fin-
ish at time t . Then Er (i, t ′, d) is the expected completion time of
the remaining subtasks, given that subtask i finished at time t ′.
G j (t , t ′, dj) is the probability distribution of a subtask, given that a
sibling subtask has finished already. Fi (t) and fi (t) are the cdf and
pdf of service time of ith subtask.

Those terms can be used to compute subtask dispersion for a
given set of delays d. To minimise dispersion a set of delays d must
be found that minimise the Disp(d) function.

Disp(d) =
N∑
i=1

∫ ∞

0
T (i, t , d)Er (i, t , d)dt (1)

where
T (i, t , d) = fi (t − di )

∏
j,i

[1 − Fj (t − dj )] (2)
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and

Er (i, t ′, d) =
∫ ∞

0
[1 −

∏
j,i

G j (t , t ′,dj )]dt (3)

with

G j (t , t ′,dj ) =
{

Fj (t) if t ′ < dj
Fj (t + (t ′ − dj )|t > 0) otherwise (4)

subject to conditions
N∏
i=1

di = 0 (5)

and
∀i di ≥ 0 (6)

The Disp(d) function is used in the next section in the trade-off
definition in Eqn. (14).

2.2 Dynamic Padding to Optimise Task
Response Time and Dispersion

In this section we first derive an expression for the task response
time in a split-merge system when using dynamic delay padding.
Then we combine this result with the expression for dispersion
derived in the previous section to formulate the trade-off between
task response time and dispersion, which is one of the main results
of this paper.

The task response time of a split–merge system can be computed
using the Pollaczek–Khinchine (PK) formula known for M/G/1
queues. The split–merge queue is very similar to a M/G/1 queue,
because the time to complete all N subtasks can be seen as the
service time of a task in the M/G/1 queue as shown below:

Resp(λ, d) =
ρ + µλVar[X(N )]

2(µ − λ) + µ−1 (7)

Here the arrival rate of incoming tasks is λ when the time be-
tween arrival of tasks is exponentially distributed, the task ser-
vice rate is µ, ρ is the utilisation of the system given by λ/µ, and
Var[X(N )] is the variance of the service time of last subtask to
complete, equivalently the variance of the service time of the task.

We will now derive the mean and variance of the task service
time. The first step is to derive a probability distribution for the
service time of a task, which is shown below:

f (t , d) =
N∑
i=1

∫ t

0
T (i, t ′, d)E(i, t ′, t − t ′, d)dt ′ (8)

The function T (i, t , d) calculates the probability that subtask i is
the first to finish at time t given the subtask delay vector d.

T (i, t , d) = fi (t − di )
∏
j,i

[1 − Fj (t − dj )] (9)

The function E(i, t ′, t , d) describes the probability that the re-
maining subtasks finish in time t . It takes as priori i , which is the
number of the subtask that finished first and the time t ′ when it
finished.

E(i, t ′, t , d) = d

dt

∏
j,i

G j (t , t ′,dj ) =
∑
j,i

дj (t , t ′,dj )
∏
k,i |j

Gk (t , t ′,dj )

(10)

The function G j (t , t ′,dj ) renormalises the jth subtask service
distribution to take into account that a sibling subtask has finished
at time t ′. If no other subtask has started service it immediately
starts service. If the subtask has begun service the service time
probability distribution is renormalised to take into account that it
did not finish before time t ′.

G j (t , t ′,dj ) =
{

Fj (t) if t ′ < dj
Fj (t + (t ′ − dj ) | t > 0) otherwise (11)

Once the probability distribution of the service time of a task has
been defined its mean and variance can be derived in a standard
way:

µ−1 = E(X(N )(d)) =
∫ ∞

0
t f (t , d)dt (12)

Var[X(N )](d) =
∫ ∞

0
(t − µ)2 f (t , d)dt (13)

After deriving the mean and variance of the response time the
algorithm from paper [9] can be applied. The optimal delay vector
d can be found by solving the following optimisation problem:

argmin
d≥0

Resp(λ, d)Disp(d) (14)

When solving the equation in practice, the integrals are solved
using numerical integration techniques and the minimisation of
Eqn. (14) can be done using an optimisation algorithm such as
Nelder–Mead.

Details on how to solve Eqn (14) are discussed in Sec. 5.1. This
trade-off is evaluated in Sec. 6.1.

3 STATE-DEPENDENT DELAY VECTORS
While Sec. 2 has focused on how the trade-off between subtask dis-
persion and task response time can be optimised using a technique
which ignores system load, this section introduces the concept of
state-dependent delay vectors, i.e. where the delay vector is deter-
mined based on how many tasks are currently in the queue waiting
to be served.

3.1 Background
There is a large body of research on state-dependent M/G/1 and
M/M/1 queues [1, 5, 8], as well as analytical solutions. However the
analytical solutions contain Laplace transforms, infinite sums and
recursive equations which make computation of accurate results
very difficult. We were unable to produce a stable and quick enough
computations so that we could perform optimality search over
the function in sufficiently high dimensional space. We therefore
adopted numerical techniques.

Our intuition is that delays should be small when the queue
length is large and delays should be larger for a short queue. Re-
ducing delays of subtasks may increase subtask dispersion for the
corresponding task, but it benefits the response time of all subse-
quent tasks in the queue.

Next we present a two-step technique to find optimal delays
for different queue lengths. A naïve search would optimise on an
O(N ×m) dimensional search space, where N is number of subtasks
andm is the number of tasks in the queue for which a unique delay



VALUETOOLS 2017, December 5-7, 2017, Venice, Italy Tommi Pesu, Jani Kettunen, William J. Knottenbelt, and Katinka Wolter

vector is specified. Our technique reduces this to a O(max(n,m))
dimensional search space. The search space reduction is especially
necessary as our objective function evaluations are expensive.

3.2 The Algorithm
With the first step of the algorithm we wish to construct a function
that takes one parameter and then maps to a delay vector which
optimises the product of expected subtask dispersion and expected
task response time:

f (λ, d) = Resp(λ, d)Disp(d) (15)

Tsimashenka’s trade-off technique [9] can be used to determine
an optimal delay vector for a given λ. Varying λ from 0 until utili-
sation of the system is 1 gives us a parametric curve of delays, as
shown in Fig. 4. We can see that at low utilisations relatively large
delays are added in order to reduce subtask dispersion, while at high
utilisations, the system concentrates on the protection of response
time by minimising delays. If the technique does not produce a
clear line, regression analysis can be applied.

Figure 4: Showing the parametric curve of delays of the
form (0,x,y). Formed by application of Tsimashenka’s trade-
off technique [9] for varying range of utilisation, on a three
server split–merge system exp(λ = 1), exp(λ = 5), exp(λ = 10)

The second step of our algorithm makes application of delay
vectors state-dependent by mapping queue length thresholds onto
points on the parametric curve of delays. The objective function
of our optimisation takes as input an m element vector. The ith
element of the vector is a real number in the same range as λ in
the previous step. The ith element maps to a delay vector via the
parametric curve of delays, using interpolation between evaluated
points where necessary. This delay vector is applied when there
are i tasks waiting in the queue. If there are more thanm tasks in
the queue, the last element of the vector is used.

In the objective function, the split–merge system is simulated
with a large number of tasks to obtain an estimate of the product
of mean subtask dispersion and mean task response time when ap-
plying state-dependent subtask delays using them element vector.

Due to the noisy nature of the optimisation function we chose
Bayesian optimization, a well-established technique for optimizing
noisy, non-convex functions. GpyOpt [2] was used for implement-
ing the Bayesian optimisation.

Experimental setup and results for this technique are presented
in Sec. 5.1 and 6.1, where it used in Methods 3 and 4.

4 ENERGY METRIC AND SERVICE TIME
MANIPULATIONS

This section introduces subtask service restart and subtask service
replication as potential techniques for improving trade-offs between
performance metrics in parallel queueing systems. It also introduces
the energy metric as a necessary addition to the previously-used
metrics for two reasons. Firstly, energy consumption considerations
are typically a critical consideration in large scale service delivery.
Secondly, if there is no cost associated with service restart and
replication, it is often possible to arbitrarily improve performance
in terms of subtask dispersion and task response time by increasing
the number of server replications without a limit.

4.1 Server Replication

Figure 5: Changes in cumulative probability distribution of
subtask service time when the number of servers is varied
from 1 to 6.

Given a non-deterministic service time distribution with high
variance and assuming no correlation between consecutive service
attempts, it is possible to improve the service time of a subtask
using multiple servers. Several copies of the subtask are served in
parallel by these servers and the result of the fastest server is used.
An example of how server replication improves service time can
be see in Fig. 5.

The cumulative distribution function of the minimum service
time of n subtasks can be calculated in the following way:

Fn (t) = 1 − (1 − F (t))n (16)
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The corresponding probability density function is the following:

fn (t) = n(1 − F (t))n−1 f (t). (17)

Details on how server replication is used are discussed in Sec. 5.2.
This technique is evaluated in Sec. 6.2.

4.2 Service Restart
An alternative to serving redundant copies of subtasks is to use
service restart if service has not completed by a given target time τ .
Restart comes with a time cost c . Restart will not always provide
an improvement in terms of service time. However, there exists a
class of service time distributions where the conditional remaining
service time of a job increases as time progresses. It has been shown
that the average service time of such tasks can be decreased by
periodically restarting service [11].

Figure 6: Comparison of a hyper-exponential distribution
with/without service restart. τ = 0.2, c = 0.05, f (x) =
0.5 exp(λ = 1.0) + 0.5 exp(λ = 0.2)

The new probability density function of service time is:

fτ (t) =
{

(1 − F (τ ))k f (t − k(τ + c)) if k(τ + c) ≤ t < k(τ + c) + τ
0 otherwise

(18)
for k = 0, 1, 2, . . ..

The corresponding cumulative distribution function is:

Fτ (t) =


1 − (1 − F (τ ))k (1 − F (t − k(τ + c))) if k(τ + c) ≤ t
< k(τ + c) + τ

1 − (1 − F (τ ))k+1 otherwise
,

(19)
for k = 0, 1, 2, . . ..

The higher moments of a probability distribution with heavy
tail can be decreased when service restart is incorporated. The new
distribution will then be similar to a geometric distribution. This
improves both task response time of the system and subtask disper-
sion. An example of the effect of service restart on a distribution
can be seen in Fig. 6.

Details on how server restart is used are also discussed in Sec. 5.2.
This technique is evaluated in Sec. 6.2.

4.3 Energy Metric
This section introduces the energy metric, which measures how
much energy is consumed by a split–merge system. Split–merge
systems in practice come at the energy cost of running several
servers. Improving performance may likely increase the energy
cost. This paper uses the following cost function:

Energy(n) =
N∑
i=1

ni (λ/µiCH + (1 − λ/µi )CL) (20)

The constants defined in the equation are as follows. The rate
of incoming tasks is λ, the service rate of subtask i is µi . The idle
operational cost of a server is CL , while the cost for service, restart
and cool down isCH . The number of servers serving the ith subtask
is ni , the number of subtasks each task is split into is N .

4.4 Trade-off Metric
Energy trade-off metrics have been investigated in the past [3, 4].
For computing the triple trade-off between subtask dispersion, task
response time and energy the third power of the product, the RDE3
metric is used. This is because we found that the RDE and RDE2

metrics sometimes indicate that an infinite replication would be
optimal (see appendix for analysis). The trade-off is computed by
first applying the multiple servers and/or restart transforms to the
subtask service time distributions. Then the subtask dispersion,
task response time and energy cost are derived. The optimal delay
vector d, server replication factors n and server restart intervals τ
can be found by solving the following optimisation problem:

argmin
d≥0,n,τ

Resp(λ, d)Disp(d)Energy3(n), (21)

In our example we allow each subtask to have up to 10 replicated
servers (including the original). For each possible server configu-
ration (i.e. for every permutation of n) we ran the Nelder–Mead
algorithm 50 times, using random start vectors for τ and d. Finally,
we selected the n,τ and d that minimised Eqn. (21).

Details on how the triple trade-off is used in our experiments
are presented in Sec. 5.2. The trade-off is evaluated in Sec. 6.2.

5 EXPERIMENTAL SETUP
5.1 Exploring response time and dispersion
This section explains the methods used in the results of Sec. 6.1.

5.1.1 Method 1. For this method, analytical formulas (22) and
(7) were used to find the delay vector which optimises the product of
subtask dispersion and task response time, according to the method
presented in [9].

5.1.2 Method 2. This method uses the concept of dynamic
subtask dispersion from Sec. 2.1 and dynamic delay padding from
Sec. 2.2 to find the delay vector which optimises the trade-off be-
tween task response time and subtask dispersion. For computation
of subtask dispersion and task response time we use Eqn. (1) and (7).

5.1.3 Method 3. This method uses the state-dependent delay
vectors introduced in Sec. 3 to optimise the trade-off between sub-
task dispersion and task response time. No dynamic delay padding
is used.
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5.1.4 Method 4. This method uses the state-dependent delay
vectors introduced in Sec. 3 to optimise the trade-off between sub-
task dispersion and task response time. In this method dynamic
delay padding is applied.

5.2 Exploring response time, dispersion and
energy

This section explains the methods used in the results of Sec. 6.2.
All methods the results were computed analytically. For comput-

ing subtask dispersion we used the formula from [9]:

Disp(d) =
∫ ∞

0
1 −

N∏
i=1

Fi (x − di ) −
N∏
i=1

(1 − Fi (x − di ))dx (22)

Task response time is computed with the PK formula of Eqn (7).
Optimisation is done by applying the formulas from [9] for sub-

task dispersion and task response time. For the computation of
energy metric we used the results from Sec. 4.3. If service restart
was used we transformed the distributions with the formula in
Sec. 4.2. If server replication was used we transformed the distri-
butions with the formula in Sec. 4.1 and allowed each subtask to
have up to 10 servers. We then individually computed the optima
for each case and chose the best server configuration.

6 RESULTS
We performed two experiments, the first using the Subtask Disper-
sion vs. Response Time trade-off, and the second using the Response
Time vs. Subtask Dispersion vs. Energy trade-off.

6.1 Subtask Dispersion vs. Response Time
trade-off

We use a three-server split–merge system with exponentially dis-
tributed incoming tasks that have an arrival rate of λ = 0.78 tasks
per time unit. The subtask service times are distributed as:

X1 ∼ Exp(λ = 1)
X2 ∼ Exp(λ = 5)
X3 ∼ Exp(λ = 10)

Method 1The resulting delays for the subtasks are: d = (0, 0, 0.068).
Corresponding performance metrics are:

Task response time: 5.286 time units
Subtask dispersion: 0.946 time units
Trade-off: 4.999 (time units)2

Method 2The resulting delays for subtasks are: d = (0, 0.019, 1.879).
Corresponding performance metrics are:

Task response time: 5.437 time units
Subtask dispersion: 0.867 time units
Trade-off: 4.718 (time units)2

Method 3 and 4 The results can be seen in Fig. 7, 8 and 9. The
number of delays in the figures indicate how many delays there are
to choose from when picking the delay based on a queue length.

The results indicate that the dynamic subtask dispersion tech-
nique introduced in Sec. 2 is better than the technique introduced
by Tsimashenka [9]. Method 2 is able to produce a 6% decrease
in the trade-off cost function when compared against Method 1.

Figure 7: Trade-Off Results of Methods 3 and 4

Figure 8: Task Response time of Methods 3 and 4

Figure 9: Subtask Dispersion of Methods 3 and 4
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When Methods 3 and 4 were compared against their single delay
vector counterpartsMethods 1 and 2, the state-dependent delay
vectors introduced in Sec. 3 reduced the trade-off cost functions by
4% and 25% respectively.

6.2 Response Time vs. Subtask Dispersion vs.
Energy Trade-Off

In our example case we have a split–merge system with Poisson
task arrivals at rate λ = 1.05 tasks per time unit. The energy metric
cost for high utilisation is 1.0 energy units and low utilisation cost
is 0.15 energy units. The cost of a restart is 0.1 time units. Subtask
service times are distributed as:

X1 ∼ Erlang(k = 5, λ = 10)
X2 ∼ Uniform(a = 0.25, b = 0.3)
X3 ∼ 0.5 ∗ Exp(λ = 1) + 0.5 ∗ Exp(λ = 5)

Method 1 No service restart or multiple servers were used. The
resulting delays for subtasks are: d = (0.0, 002, 0). Corresponding
performance metrics are:

Task response time: 5.729 time units
Subtask dispersion: 0.637 time units
Energy Cost: 1.677 energy units
RDE3 Trade-off: 17.226 units

Method 2 Subtask server replication factors n = (2, 1, 4) and
no subtask restart was used. The resulting delays for subtasks are:
d = (0, 0.028, 0.233). Corresponding performance metrics are:

Task response time: 0.633 time units
Subtask dispersion: 0.174 time units
Energy Cost: 2.314 energy units
RDE3 Trade-off: 1.362 units

Method 3 No multiple subtask service servers were used. Op-
timal restart subtask service for subtask 3 was (τ3 = 0.363). The
resulting delays for subtasks are: d = (0, 0.046, 0). Corresponding
performance metrics are:

Task response time: 2.241 time units
Subtask dispersion: 0.511 time units
Energy Cost: 1.577 energy units
RDE3 Trade-off: 4.495 units

Method 4 Subtask server replication factors n = (2, 1, 4). The
optimal restart subtask service for subtask 3 was (τ3 = ∞). The
resulting delays for subtasks are: d = (0, 0.028, 0.233). The corre-
sponding performance metrics are:

Task response time: 0.633 time units
Subtask dispersion: 0.174 time units
Energy Cost: 2.314 energy units
RDE3 Trade-off: 1.362 units

The results indicate that using multiple servers as described in
Sec. 4.1 does improve the subtask dispersion, task response time,
and energy consumption. Our results show a huge 92% drop in cost
associated with the triple trade-off metric as shown by comparison
of Method 1 andMethod 2. Also it can be seen that the subtask
service restart in Sec. 4.2 is also a considerable decrease at 73% as
shown by comparison of Method 1 and Method 3. However no

further improvement was to be gained with the combination of sub-
task service restart and multiple servers as is shown by Method 2
and Method 4 arriving at the same value and the optimisation
choosing to not utilise the subtask restart.

7 CONCLUSIONS
This paper introduced three metrics for measuring the performance
of a split–merge system and four techniques that can be used to
improve the trade-off of those systems.

From the results in Sec. 6.1 it can be seen that dynamic subtask
dispersion control is better than the regular subtask dispersion
technique of [9]. Also in the same section it can be observed that the
state-dependent delays introduced in Sec. 3 decrease the trade-off
cost when comparedwith a single delaymodel. The state-dependent
delays result in particular is promising as it can be applied in many
contexts when optimising between two or more metrics.

From the results in Sec. 6.2 it can be seen that using multiple
servers and subtask service reduction are both able to reduce the
cost of the trade-off metric defined in Sec. 4.4. However their com-
bination is not able to further reduce the cost, as the combination
of the techniques failed to deliver an improvement when compared
to subtask service replication alone.

An interesting avenue of further research will be to investigate
extending our techniques from split–merge queueing systems to
fork–join queueing systems. In fork–join systems tasks are queued
at the subtask level, which improves task response time, as subtasks
from the next task can begin service before all the sibling subtasks of
the current task have finished. However, their analysis is generally
acknowledged as being considerably harder on account of the lack
of a synchronisation point at the start of every task.
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A RESPONSE TIME, SUBTASK DISPERSION
AND ENERGY CONSUMPTION TRADE-OFF
MINIMUM PROBLEMS

This section shows that optimal RE and DE sometimes have trivial
solutions indicating an infinite number of servers. As a consequence
RDE2 will also suffer from the same problem. Therefore our experi-
ments use the product RDE3. The following split–merge example
is used: X1 = Exp(µ1 = 1),X2 = Exp(µ2 = 2)

A.1 Task Response Time and Energy
Consumption Trade-Off as n approaches∞

The minimum of two exponentially distributed random variables is
exponentially distributed with the µs given below:

µmin = µ1 + µ2 (23)

Duplicating service server n times results in a service rate of nµ.
Given that the variance of an exponential distribution is µ−2, the
variance with n duplicated servers is (nµ)−2.

Substituting nµ for µ into the Pollaczek–Khinchine formula re-
sults in the following Task Response Time and Energy trade-off:

Resp(λ) = λ/(nµ) + nµλ(nµ)−2
2(nµ − λ) + (nµ)−1 (24)

Energy(n) = kn (25)
Multiplying the two metrics and simplifying we obtain:

Resp(λ)Energy(n) = kλµ−1

(nµ − λ) +
k

µ
(26)

From this it is apparent that when the number of servers n → ∞
the Trade–Off approaches k/µ, which is the optimal.

A.2 Subtask Dispersion and Energy
Consumption Trade-Off as n approaches∞

When using dispersion technique from [7] the optimal strategy
is the have the slower subtask server finish service first and only
then begin work on the second subtask. Assuming we duplicate
the faster server n times results in the following subtask dispersion
and energy usage:

Disp(n) = 1
nµ

(27)

Energy(n) = 1 + n (28)
Multiplying the two metrics and simplifying we obtain:

Disp(n)Energy(n) = 1 + n
nµ
=

1
nµ
+

1
µ

(29)

From this it is visible that when the number of servers n → ∞
the Trade–Off approaches µ−1, which is the optimal.
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