
Optimising Hidden Stochastic PERT Networks

Tommi Pesu
Imperial College London

Department of Computing, Imperial College
London, South Kensington Campus, SW7 2AZ

London, United Kingdom
ttp09@imperial.ac.uk

William J. Knottenbelt
Imperial College London

Department of Computing, Imperial College
London, South Kensington Campus, SW7 2AZ

London, United Kingdom
wjk@imperial.ac.uk

ABSTRACT
This paper introduces a technique for minimising subtask
dispersion in hidden stochastic PERT networks. The tech-
nique improves on existing research in two ways. Firstly,
it enables subtask dispersion reduction in DAG structures,
whereas previous techniques have only been applicable to
single-layer split–merge or fork–join systems. Secondly, the
exact distributions of subtask processing times do not need
to be known, so long as there is some means of generating
samples. The technique is further extended to use a metric
which trades off subtask dispersion and task response time.

Keywords
Stochastic PERT, Subtask dispersion, Task response time

1. INTRODUCTION
Project Evaluation and Review Technique (PERT) is a

widely used scheduling technique in industry [1, 8, 2]. PERT
networks are DAG structures which define restrictions on
the completion times of activities comprising some overall
task. In stochastic PERT, the service times of activities are
represented by probability distributions instead of numerical
constants. Hidden in our context indicates that the user does
not know the underlying structure of the PERT network.

In parallel processing systems, there are two useful metrics
for describing performance: subtask dispersion [9, 7] (differ-
ence in time between the subtask that completes first and
the subtask that completes last) and task response time [5,
11] (time for all the subtasks of the task to complete). If sub-
task dispersion and task response time are both important,
a trade-off product metric can be used [10].

Minimising subtask dispersion in hidden stochastic PERT
networks is useful in scenarios where information is dis-
tributed to multiple competing parties and receiving the in-
formation before others gives an edge to a party. An exam-
ple of this happens in online games that require fast reflexes.
Players who have a lower than average lag have an advan-
tage, as they are able to react first to in-game events [12]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Valuetools ’16 October 26–28, 2013, Taormina, Italy
c© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

this example the underlying routing structure between the
computers taking part is a PERT-like network but the user
is typically not aware of its structure or the performance
characteristics of individual activities (in this case sending
a message between two routers). Here the server’s task is to
broadcast a message to the clients. This comprises in turn
several subtasks, each of which involves the delivery of the
message to one of the clients. The server wishes that all the
clients receive the information with a low subtask dispersion
and a low task response time. The server can control sub-
task dispersion and task response time by adding delays to
the transmission of messages. However, as the server does
not have control of the whole network, it can only add delays
to a limited set of neighbouring routers.

This paper presents a new technique for minimising sub-
task dispersion – or a trade-off product metric involving sub-
task dispersion and task response time – in hidden stochastic
PERT networks. The technique approximates subtask dis-
persion and task response time by simulation for a given
set of added delays – a decision made because analytical
techniques such as [6] cannot be applied when specifics of
the underlying PERT network are unknown. The Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) al-
gorithm [4], noted for its ability to cope with noise, is used
to minimise the approximation function.

2. PRELIMINARIES

2.1 Stochastic PERT
A stochastic PERT network is a DAG that describes a pro-

cessing network for completing a task. Figure 1 shows an
example. An activity is a edge between two nodes. Each sink
node in the PERT defines a subtask. A subtask is consid-
ered complete once all activities that can be used to reach it
from the source node are completed. The task is completed
when all activities in the PERT network are completed. The
service time of an activity is denoted by the probability dis-
tribution fn. Service of an activity cannot begin before all
activities pointing to the node where the activity starts from
have been serviced.

2.2 Task Response Time
Task response time measures the time it takes to service

all activities. As the user often does not know exact details
of the topology or service time distributions of activities in
the PERT network, the user is not able to construct a ana-
lytical solution to the problem. Therefore in this paper, task
response time is calculated via Monte Carlo simulation.



1 2 3

4 5 6

7 8

9 10

f1 f2 f3

f4 f5

f6 f7

f8
f9

Figure 1: An example of a stochastic PERT DAG

2.3 Subtask Dispersion
For a stochastic PERT network, subtask dispersion is de-

fined as the difference in time between the subtask that was
last to complete and the subtask that was first to complete.
It is possible to calculate subtask dispersion analytically, if
the exact details of the PERT network are known [9, 6].

However, we consider settings where the exact topology
and service time distributions are not known. Therefore cal-
culation of subtask dispersion is simulated via Monte Carlo
method, as was the case for task response time.

If it is possible to reschedule delays of the network to take
into account completion of activities in the PERT network
then the technique in this paper has the potential to generate
even better results. For an example of how this knowledge
can be used to reduce subtask dispersion see [7].

2.4 Trade-off Metric
It is possible to measure the overall performance of the

system with a trade-off metric defined as the product of
subtask dispersion and task response time [10], i.e.

T (d) = E[D]E[R] (1)

Here we extend this with a weight 0 ≤ α ≤ 1 which indi-
cates the relative importance of the two metrics:

T(d, α) = E[D]1−αE[R]α, 0 ≤ α ≤ 1 (2)

3. METHOD
The method presented here differs significantly from past

techniques used to reduce subtask dispersion. Past works
have focused on single-level parallel processing systems and
have assumed full knowledge of system parameters to con-
struct analytical functions which are minimised [9, 7, 10].
However, these techniques are manifestly unsuitable for ap-
plication in the context of hidden PERT networks.

Our new technique not only works on more general DAG
structures, but also does not require knowledge of the un-
derlying probability distributions of activity service times.
Instead it only needs to be able to randomly sample these. It
is assumed that the user has control over a subset of the ac-
tivities in the system Sc by being able to apply non-negative
delays before the processing of activities in that set.

The optimisation technique has two main phases. First,
subtask dispersion – for a given set of n subtasks and delays
for activities in Sc – is calculated via repeated simulation
of t tasks. When t is increased, accuracy increases at the
expense of computation effort and vice versa when it is re-
duced. Second, CMA-ES is applied on the approximation
function to find optimal delays. CMA-ES was chosen due
to it being considered something of a standard in blackbox
optimisation [3] which performs better in the context of non-
convex optimisation than many classical methods. This is
an important feature as the estimates generated via random
sampling contain noise.

Where it is desired to trade off subtask dispersion and task
response time, we can similarly apply CMA-ES to minimise
the penalty function T(d, α), i.e.

min
d≥0

T(d, α)

s.t. di = 0 i /∈ Sc
(3)

in which the two main components of T (d) are generated as
averages of Monte Carlo simulations of t tasks.

4. RESULTS
We apply our technique in the context of the stochastic

PERT network of Figure 1. It has three sources (1, 2, 3)
and two sinks (9, 10). The user-controlled activities have
distributions f1, f2 and f3.

Distributions of the fi are as follows1:

fi =



exponential(0.2) i=1
exponential(0.5) i=2
normal(1, 0.5) i=3
uniform(0.2, 0.7) i=4
power(3) i=5
normal(0.5, 1) i=6
power(2) i=7
uniform(0.75, 0.8) i=8
normal(5, 1) i=9

The durations of the two subtasks T9 and T10 can be de-
rived from the component activities as follows:

T9 = max(max(f1, f2) + f4, f3 + f5) + f6 + f8 (4)

T10 = f3 + f7 + f9 (5)

Method 1 Optimised task response time
The results for no delays were calculated using a zero delay

vector for 107 tasks. Metrics were averaged over 10 runs,
which resulted in the following:

Subtask dispersion: 3.300 time units
Task response time: 6.677 time units
Trade-off, α = 0.5: 4.694 time units

Method 2 Optimised subtask dispersion.
Here 1 000 samples per measurement point were taken.

The CMA-ES algorithm was run on the problem 10 times
and the subtask dispersion and task response time for each
set of delays was calculated via simulation of 107 tasks.

1For specifics about each function please refer to Python’s
numpy.random library.



Figure 2: Subtask dispersion with delay vectors (0, x, y) (left), (x, 0, y) (middle) and (x, y, 0) (right)

Figure 3: Task response time with delay vectors (0, x, y) (left), (x, 0, y) (middle) and (x, y, 0) (right)

Figure 4: Trade-off (α = 0.5) with delay vectors (0, x, y) (left), (x, 0, y) (middle) and (x, y, 0) (right)



Figure 5: Influence of α on optimisation metrics

This resulted in the following:

Subtask dispersion: 1.247 time units
Task response time: 8.711 time units
Trade-off, α = 0.5: 3.296 time units

Method 3 Optimised trade-off with α = 0.5.
Again 1 000 samples per measurement point were taken.

The CMA-ES algorithm was run on the problem 10 times
and the subtask dispersion and task response time for each
set of delays was calculated via simulation of 107 tasks.

This resulted in the following:

Subtask dispersion: 1.267 time units
Task response time: 7.233 time units
Trade-off, α = 0.5: 3.027 time units

Figures 2, 3 and 4 display how task response time, sub-
task dispersion and trade-off (α = 0.5) behave as the set
of delay vectors is varied. In each picture one of the three
delays of the controlling set Sc is set to 0 and the two oth-
ers are allowed to vary between 0 and 15 with a stepsize
of 0.1. The colouring of the image represents the result-
ing subtask dispersion (averaged over 1 000 samples) given
the corresponding delay vector. The black dots in the im-
ages show the solutions produced by the CMA-ES technique.
These are consistently located in the middle of the red band,
suggesting near-optimal results.

Figure 5 shows how metrics vary as α is varied. All three
metrics approach near-optimal values when α is between 0.2
and 0.8. When α approaches 1 the lowest possible task re-
sponse time is found; however, this comes at the expense of
subtask dispersion. Similarly, when α approaches 0 the low-
est possible subtask dispersion is found; however, this comes
at the expense of task response time.

5. CONCLUSION
Our method appears able to robustly control subtask dis-

persion in our case study hidden stochastic PERT network.
Broader experimentation could establish whether these promis-
ing results hold more generally. Procedures for obtaining
accurate confidence intervals should also be investigated.

6. REFERENCES
[1] V. Adlakha and V. Kulkarni. A classified bibliography

of research on stochastic PERT networks: 1966–1987.
INFOR: Information Systems and Operational
Research, 27(3):272–296, 1989.

[2] D. R. Fulkerson. Expected critical path lengths in
PERT networks. Operations Research, 10(6):808–817,
1962.

[3] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık.
Comparing results of 31 algorithms from the black-box
optimization benchmarking BBOB-2009. In Proc. 12th
Annual Conference Companion on Genetic and
Evolutionary Computation, pages 1689–1696, 2010.

[4] N. Hansen, S. D. Müller, and P. Koumoutsakos.
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[5] P. Harrison and S. Zertal. Queueing models of RAID
systems with maxima of waiting times. Performance
Evaluation, 64(7):664–689, 2007.

[6] P. G. Harrison and W. J. Knottenbelt. Passage time
distributions in large Markov chains. In ACM
SIGMETRICS Performance Evaluation Review,
volume 30, pages 77–85. ACM, 2002.

[7] T. Pesu and W. J. Knottenbelt. Dynamic subtask
dispersion reduction in heterogeneous parallel
queueing systems. Electronic Notes in Theoretical
Computer Science, 318:129 – 142, 2015.

[8] D. Sculli. The completion time of PERT networks.
Journal of the Operational Research Society,
34(2):155–158, 1983.

[9] I. Tsimashenka, W. Knottenbelt, and P. Harrison.
Controlling variability in split-merge systems. In Proc.
ASMTA 2012, pages 165–177, Grenoble, France, June
2012.

[10] I. Tsimashenka and W. J. Knottenbelt. Trading off
subtask dispersion and response time in split-merge
systems. In Proc. ASMTA 2013, pages 431–442,
Ghent, Belgium, July 2013.

[11] E. Varki. Response time analysis of parallel computer
and storage systems. IEEE Transactions on Parallel
and Distributed Systems, 12(11):1146–1161, 2001.

[12] S. Zander, I. Leeder, and G. Armitage. Achieving
fairness in multiplayer network games through
automated latency balancing. In Proc. 2005 ACM
SIGCHI ACE, pages 117–124, 2005.


