University of London
Imperial College London
Department of Computing

Performance Trees:
A Query Specification Formalism
For Quantitative Performance Analysis

Tamas Suto

Submitted in partial fulfilment of the requirements for tregdee of
Doctor of Philosophy in Computing of the University of Londand
the Diploma of Imperial College, August 2008

Abstract

Real-life systems are often plagued by unanticipated padace problems caused by
subtle bugs and bottlenecks. It is thus essential for systesigners and engineers to
have an understanding of their fundamental performanceactaistics, both before and
after implementation. Stochastic modelling and analysspectively provide the means
to abstract systems as mathematical descriptions and iteedprantifiable measures of

interest from them.

A major, and so far largely unaddressed, challenge is theifsgaion of complex per-
formance queries on models in an accessible manner thathdbescrifice expressive-
ness. This thesis attempts to address this challenge mdirding Performance Trees,
a new formalism for the graphical specification of comple@@nance queries on sto-
chastic models. Performance Trees are designed to be dbedss providing a more
intuitive approach to query specification, expressive hpdpable to reason about a far
broader range of concepts than current alternatives, siklenby supporting additional
user-defined concepts, and versatile through their agplityeto multiple modelling for-
malisms. Performance Trees are presented in the contextgdraus formal framework

that defines the syntax, typing and quantitative semantioperators.

Prototype tool support is implemented in the form of a moddkhe PIPE2Petri net tool,
which provides graphical user interfacing and Performdmee query design capabilities.
Query evaluation is supported by a set of integrated paeaitdistributed analysis tools,

and realised by the distribution of computations onto ackdd Grid cluster.

The practical application of Performance Trees is dematesdrin the context of case
study analysis scenarios of an electronic voting systenonéine transaction system and

a hospital’'s Accident & Emergency unit.

Acknowledgements
| would like to express my deepest appreciation and gragitad

Dr William J. Knottenbelt, my supervisor, for his conscients supervision, continuous
support, motivation and enthusiasm, and for making me Havéést time of my life as a

Ph.D. student;

Dr Jeremy T. Bradley, my co-supervisor, for his generousgasibnal guidance, support

and mentoring;

The AESOP research group, for providing such a pleasantraaliieictually stimulating

social environment;

My friends and colleagues, for their support and for making Ph.D. such a truly enjoy-

able, enriching and memorable experience;

Dalal Alrajeh, Douglas de Jager, Dorian Gaertner, Richargddda, Jaspreet Shaheed,
Dr David Thornley, Maria Grazia Vigliotti and Silvana Zamussta, for being a constant

source of delightful and refreshing entertainment;

David McBride, Nick Dingle, Jay Jayasundera, Matt Johnsanai$ McRobert, Simon
Tagg and Duncan White, for their kind help and expert tech@daice throughout my

time at the Department of Computing;

The Department of Computing at Imperial College London, fovating first class facil-

ities and a well-equipped, comfortable and productive wigylenvironment;

The Engineering and Physical Sciences Research Councilefargusly supporting my

research;

My family, for their never-ending support, encouragemenrt lve, and for giving me the

opportunity to fulfill my dreams.

Dedication

| wish to dedicate this thesis to my parents, who are the basttchild could ever hope

for, and whom | love above all.

“It is an immutable law in business that words are words, exptaons are explanations,
promises are promises, but only performance is reality”

Harold S. Geneen CEO of ITT Corporation (1959-1972)

Vi

Contents

Abstract i
Acknowledgements iii

1 Introduction 1
1.1 Motivation. 1
1.2 Objectives 4
1.3 Contributions 5
1.3.1 The Performance Tree Formalism 5
1.3.2 Formal Characterisation of Performance Trees 5
1.3.3 Tool Support for Performance Trees 6
1.3.4 Application of Performance Trees in Case Study Scesari. . . 6
1.4 ThesisOutline. 6
1.5 Publications 8

1.6 StatementofOriginality 11

2 Background 12
2.1 StochasticModelling 21
2.1.1 Markov and Semi-Markov Processes 13

2.1.2 StochasticPetriNets 22

viii

CONTENTS

2.1.3 Stochastic Process Algebras
2.1.4 QueueingNetworks
2.2 Performance Query Specification
2.2.1 Performance Query Classification
2.2.2 Logical Specification Formalisms
2.2.3 Graphical Approaches
2.2.4 Tool-specific Specification Languages
2.2.5 Comparison of Techniques
2.3 Techniques of Performance Analysis
2.3.1 Probabilistic Model Checking
2.3.2 Numerical Analysis.
2.3.3 Simulation L.

2.3.4 Comparison of Techniques

2.4 Tool Support for Performance Analysis

2.4.1 Tools for Performance Analysis

3 Performance Trees

3.1 A Novel Representation Formalism for Performance Qserie
3.1.1 Motivations
3.1.2 Overview
3.1.3 Query Specification with Performance Trees

3.2 The Power of Performance Trees
3.2.1 Accessibilityo
3.2.2 EXpressiveness

3.2.3 Extensibility

CONTENTS

3.24 Versatility

3.3 Performance Treesin Action

4 Formal Characterisation of Performance Trees

4.1 SYyNtax e e e e

411 ValueNodeSyntax

4.1.2 OperationNodeSyntax

4.1.3 Textual Representation
4.2 TYPING . . o e e e

4.3 Quantitative Semantics e

5 Tool Support for Performance Trees

5.1 PIPEZ A Tool for GSPN-based System Modelling and Analysis

5.1.1 Model Editor

5.1.2 AnalysisModules

5.1.3 Performance Query Editor L.

5.2 An Integrated Evaluation Environment for Performanees

5.2.1 AnalysisClient

5.2.2 AnalysisServer

523 AnalysisTools

5.2.4 AnalysisCluster

5.3 Parallel and Distributed Evaluation of Performanceri@ge.

CONTENTS

6 Case Studies 141
6.1 Electronic Voting System oL 141
6.2 Online Transaction System 147
6.3 Hospital Accident & Emergency Unit 156

7 Conclusion 167
7.1 Conceptual Contributions 671
7.2 Practical Contributions 168
7.3 Applications 169
7.4 Future Work 171

A Case Study Model Descriptions 173
A.1 Electronic Voting System Lo 173

A.1.1 DNAmacaModel 173
A.l.2 PEPAModel 176
A.2 Online Transaction SystemModel 177
A.2.1 DNAmacaModel 177
A2.2 PEPAModel 196
A.3 Hospital Accident & Emergency UnitModel 197
A.3.1 DNAmacaModel 197
A.3.2 PEPAModel 212
Bibliography 213

List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16

2.17

of Figures

A DTMC with transition probabilites 18

A DTMC with transient, absorbing and recurrent states. 20
AnergodicDTMC 20
A Place-Transitionnet, 22
Firing of a Place-Transitonnet 23
Astochastic Petrinet 4 2
A generalised stochastic Petrinet 25

A simple open queueingnetwork L. 32

A graphical representation of a logical constraint ostey reliability,

using a7 -formula [BradleyO3c] 40
A graphical representation of a logical constraintesponse-time, using
aP-formula[BradleyO3c] 40
An Lg representation of the example TCTLquery 42
A StoChartexample 43
The process of model checking 54
GreatSPNuserinterface o 67
DNAmacamodule interaction 69
HYDRAtool architecture L 70
SMARTAool architecture 71

Xii LIST OF FIGURES
2.18 Grid-enable®RISMtool architecture 74
3.1 Anexample Performance Treequery 79
3.2 Anperformance measure qUErY v et i e 3 8

3.3 The performance measure query of Figure 3.2 convertedaimperfor-
mance requirement query e e e 84

3.4 An example of Performance Tree macro expansion, usdtdaralcula-

tion of the Coefficient of Variation 58
3.5 Usage of the Coefficient of Variation macro in a perforneameery . . . 85
3.6 Producer-Consumer System 86
3.7 Actionlabelexample 87
3.8 Taggedcustomerquery e e 90
3.9 AnOnline Transaction System 92
3.10 A guery addressing a passage time distribution 93

3.11 A query addressing the probability of a passage ocguwmithin a time
interval 94

3.12 A query addressing the percentile of a convolution af passage time
densities 95

3.13 A guery addressing the transient probability of a sydteing in a given
stateatagiventime 95

3.14 A guery addressing the states that the system can oet@pgiven time
with some probability L 96

3.15 A query aggregating multiple independent queriesdtddtess the aver-
age occurrence of an action, the steady-state probabflityeosystem,
and states that conform to a certain steady state prolyat@tjuirement . 96

3.16 A guery addressing basic arithmetic operations 97

4.1 |lllustration of how multiple probability values can mapto the same
time value in steady-state distributions 113

LIST OF FIGURES

Xiii

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

GSPN Model Designer Interface
GUI of the Performance Query Editor module
PQE GUI showing a newly drawn operationnode
GUI showing a fully constructed Performance Tree query.
Natural language-based performance query constructia
Performance analysis environment architecture
Initiation of a performance query evaluation request.....
Query evaluation progress tracker interface

Visualisation of performance queryresults

GSPN model of an Electronic Voting System

125

.126

127

129

132

133

. 134

134

.. 142

A query addressing the 9(ercentile of a passage from the state where

no voters have voted to the state where all voters have voted.
Probability density of the time taken for all voters toed&oted

A query addressing the probability with which all votease voted within

I5mIinuUtes e

A query addressing the average number of broken polhitg and servers
atsteady-state

Steady-state distribution of the number of broken pgllinits in the vot-

INgSystem

Steady-state distribution of the number of broken ssrire the voting

6.10 A query addressing the distribution of time taken foustemer to select

an item from the product catalogue after having entered #iesite . . .

143

149

Xiv

LIST OF FIGURES

6.11 Probability density of the time taken for a customerles an item from
thecatalogue 150

6.12 Probability distribution of the time taken for a custaro select an item
fromthe catalogue 150

6.13 A query addressing the probability with which an ordas been con-
firmed within 10 minutes of a customer having entered the iteh s . . 151

6.14 Passage time density for an order having been placathattustomer has
enteredthesite 152

6.15 A query addressing a constraint on th& @rcentile of the convolution
of two passage time densities for a customer to enter tharsitgoroceed
to the checkout and to provide their billing information dedve the site
or return to the product catalogue 531

6.16 Passage time density for a customer to have arrivee atckout, start-
ing from the moment of their arrival atthe website 154

6.17 Passage time density for a customer to have left the igglstrting from
the moment when they have provided their billing informatio 154

6.18 Convolution of the passage time densities of Figure &tbFigure 6.17 . 154

6.19 A query addressing the average rate of occurrence tdroess entering
the web site, the average number of customers browsing taéogae,
and the average number of customers at the checkout155

6.20 Steady-state distribution of the number of customens$ing the product

catalogue L e 155
6.21 Steady-state distribution of the number of customigttseacheckout . . . 155
6.22 GSPN model of a hospital's Accident & Emergency unit 157

6.23 Compound performance query addressing percentilesefge time den-

sities and steady-state probability distributions 159
6.24 Passage time density for walk-inpatients 160
6.25 Passage time density for ambulance patients 160

6.26 Steady-state probability distribution of idlenurses. 160

LIST OF FIGURES XV

6.27 Steady-state probability distribution of idle dostor 160

6.28 Performance query addressing the average numbel@fisataiting for
a doctor and the average rate of occurrence of surgeries 161

6.29 Steady-state probability distribution of the numkigratients waiting for
adoctor 162

6.30 Performance query addressing a modified version of kh&btvernment
targetfor A&QE units 163

6.31 Density of the time taken for patients to enter and I¢aeeA&E unit . . 164
6.32 Definition of the macro representing the concept of Caefft of Variation 164

6.33 Usage of the macro for the calculation of the CoefficiéMaoiation with
aspecifiedargument 165

6.34 Passage time density for the first a patient to recowbeaA&E unit . . . 166

XVi LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Over the last few decades, we have witnessed scientific ahdaéogical advancement on
an unprecedented scale. This has had an enormous impaanamityr We find ourselves
surrounded by complex computer systems supporting andgexesmning many aspects of
our lives. Due to this strong dependence on technologyaibigsic necessity that systems
function correctly and reliably, while also exhibiting gbperformance. However, due to
the inherent complexity of today’s systems, the predicbbtheir performance is often
difficult. Performance-related analysis provides a rigsravay to address this problem by
examining, among others, critical system characterissiagsh as availability, reliability,
responsiveness and efficiency.

A system is generally considered to be available if it hadaitéd and is not undergoing
maintenance. Many systems are required to be availabletas ahd as consistently
as possible in order to serve customers who expect and retptmuous availability.
Web servers and eCommerce infrastructures are good exaofpsesh systems. It is
imperative that measures of availability be accessiblgstesn engineers to enable them
to anticipate and eliminate undesired service interrunstio

Reliability, the probability of a system performing a spesffunction without failure un-
der given conditions for a specified period of time, is paitticly crucial to systems that
either support mission-critical applications or are exgob® extremely high user demand.
Nuclear power plant and airspace control systems are clasamples of the former, and
local area and telephone networks of the latter kind of systelt is generally consid-
ered unacceptable for such systems to fail unexpectedhaliiél/-oriented analyses are

1

2 Chapter 1. Introduction

essential to gaining an insight into the likelihood of systailure.

Responsiveness is an indicator of the speed with which sgstespond to requests. Users
invariably want to be able to interact with highly respoessystems in order to maximise
their perceived productivity. Often, a more responsiveaesyscan have a greater effect
on overall user satisfaction than the fast completion of sspeiated request. There-
fore, good system design also takes responsivenessaiiteriaccount and benefits from
responsiveness-oriented system analysis [Powell02].

Efficiency, an indicator of the actual performance of systemompared to their possi-
ble performance, is also an important system property feigiers and engineers to
consider. This is so because it is often a requirement fdesysto operate at peak ef-
ficiency, especially in industry, where complex IT systemgport the large majority of
business operations. Businesses often find themselvesitiropesvhere they may be in a
strategically more advantageous position than a compgiitaply because their systems
perform more efficiently. An investment bank’s electromading platform is a fitting
example, since even a minor difference in terms of its efficygecompared to a that of
another bank’s systems can make an big difference in eankifjiciency, as a measure
of performance, is also very relevant in the context of seryrovision, since efficient
systems have higher throughput and are as a result, on ayedalg to serve customers
more promptly.

Quiality of Service (QoS) [Meyer80] can be thought of as a mesathat represents a par-
ticular level of performance and characterises factord sscavailability, reliability and
responsiveness of systems or services. QoS-orientedrpenice analysis has a wide
range of applications in helping service providers to got@ certain levels of service.
Telecommunications and network providers, for instanes;, heavily on performance
analysis to ascertain whether or not expected levels of Qe®eing provided to cus-
tomers, while the health care sector employs performanaf/sia to monitor whether
government-set QoS targets are being met consistentlyygung04].

For engineers to be able to design systems that conformitb @S requirements, ac-
cessible ways of modelling them and analysing their peréoroe are necessary. Analysis
is traditionally carried out by creating a model of a systémorder to mathematically
abstract its behaviour in a way that is amenable to analgsconstructing a query that
defines performance properties of interest. Performanegagiare then evaluated on the
applicable model to obtain a quantifiable performance metrsuch as that addressed by
the query‘ln a hospital waiting room, what is the steady-state disttibn of the number

of patients waiting to be treated?> or to determine whether the system conforms to a

1.1. Motivation 3

particular QoS requirement — as set out in the quarna mobile communications net-
work, is the time taken to send an SMS message between two Isdedsé¢han 5 seconds
with more than 95% probability?”

In performance analysis, stochastic models (see Sectlyratz needed to represent real-
life systems, since they are able to take into account théiinsic probabilistic nature
and mirror their essential behaviour, while omitting distéhat would unnecessarily in-
crease the complexity of evaluation. An important advamtagusing models for the
performance analysis of real-life systems is that if a systan be solved analytically, it
is typically relatively simple to obtain performance measufrom it. This also allows
for a more accurate evaluation of performance aspects titamable from prototypes or
simulations. Hence, good models can provide the best apmtytfor observing trends
that emerge from a system’s behaviour.

After constructing a stochastic model of a system, its perémce can be analysed by
specifying and evaluating performance queries, of whigrdhare mainly two kinds.
Queries that aim to verify conformity to QoS constraints@kedperformance require-
mentqueries, while queries that aim to obtain metrics that attarsse model performance
in some way are callegerformance measumgueries. Performance requirement queries
have traditionally been expressed in formulae of stocbémgics (see Section 2.2.2) and
evaluated by model checkers (see Section 2.4.1), whilepeance measure queries have
been specified in tool-specific languages (see Section)2aBdevaluated by quantitative
analysers.

We have identified certain aspects of the traditional peréorce analysis process that
represent significant research opportunities and whicle pavvided the motivation for
the present research:

1. There is a strict separation between the specificatioredbpnance requirement
and performance measure queries. At present, no unifiedoanvent exists for
their common specification, and certainly none for their swn evaluation. Hence,
gueries consisting of both performance measared requirement-oriented con-
cepts cannot be specified or evaluated.

2. Current performance query specification formalisms lackessibility. That is, they
require specialist knowledge and expertise to be usedtetfg which is often not
compatible with the background knowledge of typical systsigners and en-
gineers. This is the case with logical formalisms and t@aesfic languages, for
example, as also noted by [Grunske08a]. Furthermore, lgr@Magical paradigms

4 Chapter 1. Introduction

may also seem esoteric to many industrial users, and diteosspecific specifi-

cation languages have little in common with one anothers Ty be one of the
reasons why many industrial users rather resort to sinaumgtior the purposes of
performance analysis.

3. The scope of expressiveness of current performance gpegyfication formalisms
is overly constrained. This is because such formalisms smbport the specifica-
tion of a few, relatively basic, performance propertiesl da not provide the means
to reason about more advanced concepts (such as distnbutiensities, convolu-
tions, moments and percentiles, for example). Logicalasgntations are concise
and rigorous, but they are specific to performance veriboatind hence not appli-
cable in a wide range of scenarios. Tool-specific languagsslra able to address
performance measures, but they are limited in terms of espreness by the tools
that implement and support them.

1.2 Objectives

The research presented in this thesis has two main objective

1. To develop a novel performance query specification fosmathat

e is accessible to system designers and engineers by prgvédsimple and
intuitive approach to query construction;

e enables the expression of performance queries utilisimgaats related to
both performance requirement specificataord quantitative measure extrac-
tion;

e expands on the expressiveness of current query specificatimalisms by
supporting a wider range of performance concepts than piiggmssible.

2. To implement an integrated performance analysis enwigott that provides tool
support for the accessible design of stochastic system Isnagel performance
gueries (using the newly developed specification formgliand is able to eval-
uate them in a large-scale parallel and distributed fasbioma Grid-based com-
putational back-end that harnesses the power of a rangedafaded performance
analysis tools.

1.3. Contributions 5

1.3 Contributions

1.3.1 The Performance Tree Formalism

This thesis introduceBerformance Treesa novel graphical performance query speci-
fication formalism that enables the expression of complesriga containing both per-
formability requirements and quantitative measures. dPerdnce Trees support a wide
range of concepts, applicable to stochastic system matialsare likely to be familiar to
system designers and performance engineers. They repegsalternative to traditional
approaches to query specification, which have so far mostiy lbased on complex logi-
cal and textual formalisms. Performance Trees ease thegsaognificantly by providing

a convenient and accessible way of specifying performaneeeg with their visual hier-
archical tree structure that allows performance queriégtoomposed graphically.

Their abstract state specification mechanism equips Peafoze Trees with a certain de-
gree of versatility that other formalisms often do not have,allowing queries to be
defined over a number of different modelling formalisms. sTthiesis presents Perfor-
mance Trees in the context of generalised stochastic Ragi(@SPNs) and the stochas-
tic process algebra PEPA. The formalism is also capable toh@&ing customer-centric
performance measures from such models, which allow queries specified that involve
reasoning about individual customers. In addition, Penforce Trees do not place any
artificial constraints on the size of models that can be shlsmce they are evaluated by a
set of analysis tools, whose inherent solution capacitgrdahes the scope of evaluation.

Performance Trees are an extensible formalism. Throughsthef parameterised macros,
custom performance concepts can be incorporated into tled agailable operators and
reused in other queries. Such user-defined macros are ectestifrom the set of basic
Performance Tree operators. New operators, represerdutigamal performance con-
cepts distinct from the ones that are already available beaimcorporated into the for-
malism, provided that evaluation support in the form of gsial tools is also integrated
into the underlying analysis framework.

1.3.2 Formal Characterisation of Performance Trees

We also present a formal characterisation, which includesyntax, typing and quanti-
tative semantics of Performance Tree operators.

6 Chapter 1. Introduction

1.3.3 Tool Support for Performance Trees

Tool support for the graphical specification of Performanhiee queries is realised by an
enhanced version of the open-source Petri net e®BE2 which enables the graphi-
cal specification of GSPN models. We have implemented thifPeance Query Editor
module to provide an interactive graphical interface thiatas users to design Perfor-
mance Tree queries on system models defineBIPE2 submit these for evaluation,
track evaluation progress, and visualise obtained residdisuch, the module also serves
as the client front-end to a sophisticated performanceyaisaénvironment that enables
the parallel and distributed evaluation of Performance=Tqaeries on GSPN models.
With the Performance Query Editor modufiPE2has been extended to provide a single
point of access to Performance Tree-based query speaficatid evaluation.

The analysis environment’s evaluation back-end consisésserver that communicates
with PIPE2to coordinate the evaluation of queries, and a Grid-basetpatational re-
source pool that integrates high performance hardware amderange of specialised
performance analysis tools. The evaluation back-end wsgsmg to ensure that queries
that have been evaluated already are not processed agamewdleation is requested on
the same model. Evaluation results are stored on disk aridved in case of repeated
requests. Integrated smart scheduling ensures that, vposseble, Performance Tree
gueries are evaluated concurrently.

1.3.4 Application of Performance Trees in Case Study Scenarios

This thesis also presents the practical application ofdPerdince Trees in GSPN-based
case study performance evaluation scenarios, includingjentronic voting system, an
online transaction system and a hospital’s Accident & Emecy unit.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents relevant background material. An overview offestic modelling
is given, describing low- and high-level formalisms for tiestract representation
of real-life systems. Traditional approaches to perforoeaguery specification are
also discussed by providing an overview of performance ygakssification and

1.4. Thesis Outline 7

considering logical, graphical and tool-specific langsag€lassical methods of
performance analysis are then considered, with partieutgshasis on probabilistic
model checking, numerical analysis methods and simulattenally, a summary
of the most relevant currently available tools for perfont@analysis is provided.

Chapter 3 introduces Performance Trees, a novel formalism for theesgmtation of
performance queries. An introduction to the formalismgetbgr with a description
of its structure and the set of available operators is git@tiowing that, the power
of Performance Trees is highlighted by discussing theiessibility, expressive-
ness, extensibility and versatility, and demonstratirejrtpractical application on
a number of example performance analysis scenarios.

Chapter 4 details the formal characterisation of Performance Trééspresent the syn-

tax, typing and quantitative semantics of Performance operators, which to-
gether form the formalism’s theoretical framework.

Chapter 5 discusses the modelling and analysis of real-life systanas integrated par-
allel and distributed performance analysis environmehts €nvironment consists
of a number of interacting software and hardware compon@hE?2, a Java-based
open-source Petri net design tool, serves as the usegfgcaphical interface and
provides functionality for the specification of GSPN systamdels and Perfor-
mance Tree queries. It interacts with the Analysis Sertiercbordinating compo-
nent of the analysis environment. The Analysis Server dpémquery evaluations
and outsources computations to a number of specialisedlgdaand distributed
tools, which carry out computations on a dedicated anatjaier. Following the

description of the analysis environment’s architectune, dnalysis process is dis-
cussed in detail.

Chapter 6 presents case study evaluation scenarios to demonsteaphcation of Per-
formance Trees. Analyses of an electronic voting systemprdime transaction
system and a hospital’s Accident & Emergency unit are diesdri

Chapter 7 concludes the thesis by summarising and evaluating theetieal and prac-

tical contributions, discussing areas of application efasearch and highlighting
opportunities for future work.

Appendix A provides detailed descriptions of the models used in the sagly evalua-
tions.

8 Chapter 1. Introduction

1.5 Publications

The publications summarised below have arisen as part ségarch carried out during
the course of this Ph.D.

1. Workshop on Process Algebra and Stochastically Timed Actities (PASTA05)
[Suto05] describes early efforts aimed at finding an acbéssind user-friendly
approach to the specification of QoS-related performangeinements. The idea
presented in this paper considers the development of andeddorm of stochastic
logic, to serve as the underlying theoretical frameworkdarser-facing graphical
performance query specification front-end. This grapHicadt-end intends to pro-
vide a layer for visual query composition and to hide fromubker the complexities
involved in the specification of logical performance queri®ueries defined in the
graphical formalism are proposed to be translated intotthehastic logic for eval-
uation purposes. The paper also introduces the idea dfinglthe greatly extended
computational power that can be provided by a Grid infrastne for performance
analysis by distributing, parallelising and optimisingphgable model-checking
computations on a dedicated Grid-based analysis cluster.

2. Workshop on Process Algebra and Stochastically Timed Actities (PASTA06)
[SutoO6a] departs from [Suto05]'s original idea of usingextended stochastic
logic for performance requirement representation, bwtimstand expands on the
concept of graphical performance specification. The papsyduces Performance
Trees, a novel formalism for the graphical specificationeaf@mance queries on
stochastic models. Performance Trees represent perfoentpreries as visualised
hierarchical tree structures, and aim to provide an adolessliternative to stochas-
tic logics, the thus far prevalent means of performanceirement specification.
The range of Performance Tree operators allows the expresdiperformance
requirement-oriented queries and also provides the abditspecify quantitative
measures of interest on stochastic models. Material frasnghper appears in
Chapter 3.

3. International Symposium on Modelling, Analysis and Simulaton of Computer
and Telecommunication SystemgMASCOTS’06) [Suto06b] expands on work
presented in [Suto06a] by investigating and classifyirgdtiferent kinds of per-
formance queries that may be of relevance to system designerengineers, and
describing how Performance Trees can be used as a queryicgpiem formal-
ism that is able to express performance requirements amorp@amnce measures at

1.5. Publications 9

the same time. The paper introduces the ability of Perfoomairees to reason
about passage time distributions and densities, tranar@hsteady state measures
and moments. It also presents the syntax and type systeneftorance Trees
and provides an outline mapping from concepts that can beessed by the sto-
chastic logic CSL to Performance Tree operators. The paperilflistrates how
semi-Markov passage time computation algorithms, baseduomerical Laplace
transform inversion, can be directly applied to the resotubf a case study Perfor-
mance Tree query on a GSPN model of a voting system. Mateoad this paper

is used in Chapters 3, 4 and 6.

4. International Conference on the Quantitative Evaluation ofSystemqQEST’07)
[Suto07] expands on work presented in [Suto06b] by solidgythe theoretical
foundations of Performance Trees through the provisioruahtjtative semantics,
which define the mathematics underlying individual Perfance Tree operators.
The paper also focuses on illustrating differences in teofnsxpressiveness be-
tween Performance Trees and CSL, and presents a case stimynagice query
specification on a GSPN model of a hospital's Accident & Ereany unit. Mate-
rial from this paper forms part of Chapter 4.

5. International Workshop on Parallel and Distributed Methods in Verification
(PDMC’08) [Brien08b] describes the first realisation of anlestion environment
for Performance Trees. In particular, the paper presertgsislef the architecture
and implementation of this environment, comprising of amiside model and per-
formance query specification tool, a server-side diste@valuation engine, and a
dedicated Grid cluster. The evaluation engine combineaiiagytic capabilities of
a number of distributed tools for steady state, passageamddransient analysis,
and also incorporates a caching mechanism to avoid redticdliulations. The
paper describes the analysis process and demonstratesioritext of a case study
of a hospital's Accident & Emergency unit how this analysiwwieonment allows
remote users to design models and performance queries ph&ssoated, yet easy-
to-use framework, and subsequently evaluate them by rangghe computational
power of a Grid back-end. Material from this paper can be foarChapter 5.

6. SPEC International Performance Evaluation Workshop(SIPEW’08) [Bradley08]
considers recent developments in the analysis of stochaisicess algebra mod-
els, which allow for transient measures of very large motielse extracted. By
performing so-called fluid analysis of stochastic procégstaa models, it is now
feasible to analyse systems@f10'°??) states and beyond. This paper extends the
type of measure that can be extracted with fluid analysispagsents a systematic

Chapter 1. Introduction

transformation of a PEPA model that enables the extractiomeasures analogous
to response times. It also presents a case study, which dimwsesponse time
measures can be extracted from a PEPA model of a health cstesrsyMaterial
from this paper is presented in Chapter 3.

7. International Conference on the Quantitative Evaluation ofSystemgQEST’08)
[Dingle08b], a tool paper, builds on [Brien08b] and presehgsevaluation of Per-
formance Tree queries on stochastic models in the context oftegrated parallel
and distributed analysis environment. The graphical ugerface to this environ-
ment is implemented in thelIPE2tool, a Java-based open-source Petri net editor,
which provides query design capabilities and control ovwesry evaluation. Eval-
uation is coordinated by the Analysis Server, which is respme for the schedul-
ing of jobs on a Grid-based computational cluster that it a number of spe-
cialised parallel and distributed analysis tools. Matdr@m this paper appears in
Chapter 5.

8. IEEE Transactions on Software Engineering(submitted for publication) [Suto08a]
builds on material presented in [Dingle08b] and addressetegration of Perfor-
mance Trees into a parallel and distributed performanclysis@nvironment. The
paper describes how support for tagged customers in sysiaielsmand the ap-
plication of Performance Trees in their context is realisédalso reasons about
how Performance Trees can be used to query system modets drasige stochas-
tic process algebra PEPA, and presents a case study penicgresialuation of a
hospital’'s Accident & Emergency unit — demonstrating sorine capabilities of
the analysis environment. Material from this paper is ipooated into Chapters 5
and 6.

9. ACM SIGMETRICS Performance Evaluation Review (Special Issue)invited
paper) [Suto08b] builds on [Brien08b] and [Dingle08b], anscdsseIPE2 an
open-source tool for GSPN-based system modelling and sisaBIPE2was orig-
inally developed as a platform-independent Petri net edicsupport the design of
complex GSPN-based system models. Subsequently, it haseipdanced with a
number of analysis modules and has evolved into a versatite-énd for a sophis-
ticated parallel and distributed performance evaluatimrirenment. WithPIPE2,
users are able to design and evaluate complex performamcesy expressed in
the Performance Tree formalism — primarily aimed at pertortoe property veri-
fication and performance measure extraction. The papeida®an overview of
PIPEZs features and discusses details of its underlying evaluanvironment.
Material from this paper is detailed in Chapters 5 and 6.

1.6. Statement of Originality 11

10. International Conference on Parallel, Distributed and Grid Computing for
Engineering (PARENG’09, invited book chapter) [Knottenbelt09] deseskhow
Performance Trees attempt to address the challenge ofyapgatomplex perfor-
mance queries on models of systems in a way that is both aloleessd expressive.
It elaborates on their ability to provide more intuitive guepecification, to reason
about a broader range of concepts than current alternatvessipport additional
user-defined concepts, and to express queries on multiglerlying modelling
formalisms. The paper describes in detail tool support tsfdPmance Trees, and
presents a natural language-based query builder inteldaB¢PE2 Details on par-
allel and distributed query evaluation of Performance Tqeeries are given, and
their application is demonstrated in the context of a casgysof an online trans-
action system. The flexibility of the formalism is furthelustrated by extensions
that permit the specification and monitoring of Service Lé&greements. Material
from this paper has been used in Chapters 3 to 6 and Appendix A.

1.6 Statement of Originality

| declare that this thesis was composed by myself, and teatdhk it presents is my own,
except where otherwise stated.

Chapter 2
Background

This chapter provides an overview of background matergl igrelevant to the research
presented in this thesis. Specifically, it discusses s&ithaodelling, methods and tools
for performance analysis, traditional approaches to perdmce query specification and
performance evaluation in Grid environments.

2.1 Stochastic Modelling

It is generally of great interest to system designers anthepgs to have an understanding
of the way in which systems behave. There are two approabheare primarily used for
the investigation of factors that have an effect on criteyatem properties: experimen-
tation and analysis. Experimentation is generally considlexpensive, time-consuming
and unreliable, due to a lack of coverage of all possible ates. It can, however, be
useful for thorough explorations of the effect that speqgiecrameters have on system
behaviour. Analysis, in contrast, is cheap, effective aeplethdable. In order to enable
tractable analyses of systems, mathematical models tsaaabsystem behaviour need
to be constructed. These are quantitative system desariptinat approximate reality by
making simplifying assumptions and omitting non-essémtédails. If a model can be
solved analytically, it is typically relatively simple tdotain performance measures from
it. Because of this, good models provide the best means fatiitevery of trends that
can provide an understanding of qualitative aspects oésygerformance. However, the
necessary restrictions on the level of detail embedded mefswften result in inaccurate
representations of absolute performance. Neverthelelsgive performance is usually a
more than satisfactory measure, since it can be used tdigatesdifferent configurations

12

2.1. Stochastic Modelling 13

of the same system [Mitrani98].

Mathematical models come in different flavoulBeterministic modelgredict a single
outcome from a given set of possible outcomes, wslitechastic modelpredict a set of
possible outcomes, weighted by their likelihoods. Sined-liee systems exhibit random-
ness, modelling tools that are needed to study them cometfresiomains of probability
theory. Stochastic models are used widely in many areaseafdkural and engineering
sciences, since they can represent the behaviour of batrehand man-made systems.

2.1.1 Markov and Semi-Markov Processes
Random Variables

Most stochastic models are expressed in terms of randorablas. A random variable
represents the outcome of a random experiment and is therefaracterised by its prob-
abilistic outcome. Random variables can represent, foant®, the number of customers
in a system, the time a customer takes to traverse a systerpyaportion of time that
there are fewer thah customers in a system, etc. A random variabldissreteif it can
only have a finite number of values, aoontinuousotherwise.

Definition A random variablex on a sample spac§ is a functionx : S — R that
assigns a real numbexs) to each random outcomec S [Nelson95].

Values of random variables can be specified probabilisyicesing distribution functions.
For a discrete random variablg, the probability mass function (pmfyy (z), gives the
probability of the random variable being equal to some value

fx@)=PX=x)= Y P(s) (2.1)
X(s)==

For continuous random variables, tpeobability density function (pdf)f(z), is the
derivative of a random variable’s probability distributid®(z):

f(x) = —F(x); (2.2)

Informally, a pdf can be thought of as a smoothed-out versianhistogram. If enough
values of a continuous random variable are sampled, progueihistogram depicting

14 Chapter 2. Background

relative frequencies of output ranges, then this histogrélhresemble the random vari-
able’s probability density, assuming that the output rarege sufficiently narrow. Values
of a pdf are not probabilities themselves, but instead, rikegral of a pdf over a range
of possible valuesa, b] gives the probability of the random variable falling withimat
range.

The probability that a random variablg, takes on a value that does not exceed a given
number,z, is given by thecumulative distribution function (cdff'(z):

fo(t), if X is discrete

t<x

- (2.3)
/ f(t) dt, if X is continuous

The pdf can also be used for the expression of the probability random variabley,
taking on a value in the intervad, b}:

Pla<X<b) — /bf(x) da (2.4)

A random variable is characterised completely by its prdigllistribution or its prob-
ability density function. However, it is sometimes desiealand sufficient for practical
purposes, to describe a random variable by its summargtstat[TrivediOZ2].

One important measure of a random variablgjs its expectation £(X), which is for-
mally defined as:

Z zip(x;), if X is discrete

E(X) = (2.5)
/ zf(x) dz, if X is continuous

Exponential distributionare a very important type of probability distribution, whiarise
naturally when modelling the time between independenttsvdiat happen at a constant
average rate. A random variablg, taking on non-negative real values, is said to be
exponentially distributed if its cdf has the form:

Fx) = 1—e™ 2>0 (2.6)

2.1. Stochastic Modelling 15

This function depends on a single parameler; 0, which is called theate. The corre-
sponding pdfis:

flz) = X 2>0 (2.7)

Exponentially distributed random variables are commordgdito model random time
intervals with arbitrary lengthsXx may represent the service of a job, the duration of
a communication session, the interval between consecatmals, etc. An important
property of the exponential distribution is that its futgm®gress does not depend on its
past. This is also known as timeemoryless propertyAnother way of expressing this
property is to say that the probability of an activity condimy for another interval of
length at leasy, given that it has already lasted for time is independent of. The
following equation [Nelson95] clarifies the reason for this

PX>z+y | X>2x) = %}f(;w:@—)\yzp(x>y) (2.8)

Stochastic Processes

Definition A stochastic process a set of random variablgs((¢) : ¢t € 7}, indexed by
the time parameter

Typically, 7 represents a set of points in time, axd) the value of the stochastic process

at timet, which is also referred to as idate The state space of the process is the set
of all possible values that(¢) can assume. Stochastic processes are classified according
to time, and we say that they aglescrete-or continuous-timgdepending on whethéf

is discrete or continuous. For continuous-time stochgsticesses] = R*. Stochastic
processes offer a way to capture complex forms of dependegteyeen sets of random
variables, which is why stochastic models make use of thehweltake the random
variableX(t) to be the total number of customers that have arrived at @msysver the

time period|0, t], X(¢) is called acounting processA special type of such a process is a
renewal process.

Definition Let 51,55, 55,... be a sequence of independent, identically distributed ran-
dom variables, such that< F(S;) < co. We refer to the random variablg as thei’"
holding time We define the:'" jump timeas

16 Chapter 2. Background

Jo =S (2.9)

The intervalg J,, J,,+1] are calledenewal intervals Then, the random variablg given

by
Xy =max{n:J, <t}, t>0 (2.10)

is called arenewal procesfiNelson95]. In the context of real-life systems, we may khin
of the holding times{.S; : i > 1} as the elapsed time before a system breaks for the
i" time since the last breakdown. In this context, the jump $ifng, : n > 1} record

the successive times at which the system breaks, and thwakpecess, records the
number of times the system has broken down by timé&enewal processes are often
found embedded in other stochastic processes, most ndfiaiokov processes [Pyke61a].

When attempting to build a realistic stochastic model of esptaf scenario, dependencies
need to be taken into account. For example, purchases mtdesatpermarket next week
may depend on the satisfaction with purchases made up wmiil or a shop’s inventory
on a particular day depends on the stock level on the predaysas well as on customer
demand; or the number of customers awaiting service at kityatepends on the number
of waiting customers in previous time periods. Dependeneresure realistic models, but
at the same time make probability calculations very diftiouleven impossible.

The more independence is exhibited by a model, the greaggpdhsibility for explicit
calculations, but the more questionable the level of reatisat is inherent to the model.
Hence, when constructing a model, the challenge lies in taiaing dependencies that
ensure sufficient realism, but which at the same time do n&emeathematical tractabil-
ity infeasible. In most cases, the future behaviour of assysepends to some extent on
its past. That is, the statas, andX,,,, at two different moments in time, are dependent
random variables. A particular class of stochastic prqgoebssch exhibits the Markov
property, has a limited form of state dependency [Nelson95]

Definition The Markov propertystates that given the current state of a stochastic pro-
cess,X,, the distribution of any future stat&,, does not depend on the past history of
the processy, : p < n. In other words, the present state of the process contditiseal
information about its past that is needed to determine iisréuevolution [Nelson95].
Formally,

IP(XnJrl :] ’ Xn — Z'n,Xn,1 - Z'nfl, e ,X() — Z()) -]P(Xn+1 :j | Xn - Zn) (211)

2.1. Stochastic Modelling 17

Processes that exhibit the Markov property, caMatkov processesre among the most
important tools of probabilistic modelling, since they reatkependencies manageable.
Markov processes whose state space is discrete, are teferessMarkov chains The
dynamic behaviour of Markov processes is characterisetidyransitions between their
states and the times spent in them. Generally, teege holding timesalso often called
sojourn times represent the periods where some form of processing inggkace in
the systems being modelled by the Markov processes. Inasintransitions represent
events in the system. The Markov property ensures that apaimy, the distribution of
time until the next state change is independent of the tintb@fprevious state change.
Since the only probability distribution function that elshis this property is the expo-
nential distribution, we know that sojourn times are expuiadly distributed in Markov
processes [Mitrani98].

Discrete-Time Markov Chains

Definition A discrete-time Markov chain (DTMG$ one whose parameter space is dis-
crete, i.e. a stochastic sequengk,, | n = 0,1,2,...}, that satisfies Equation 2.11 for
n € IN. The possible values of,, form a countable sef, called the state space of the
DTMC. Changes of state occur at discrete time intervals [Baét]seO

The evolution of a DTMC is described by so-calleke-step transition probabilitie;;,
of the chain moving to statgat timen + 1, given that it is in state at timen:

pij = P(Xpy1 = J | Xp = 1) (2.12)

In the case ofime-homogeneous Markov chajitise behaviour of a system does not de-
pend on when it is observed, since transition probabillietsveen states are independent
of the time at which transitions occur, and hence do not changr time [Hillston04]:

pij = PXnp1 = J [X =) = PXogmi1 = J | Xogm = 1) = pij (2.13)

wheren = 1,2,..., m >0, i,j € S. One-step transition probabilities can be specified
compactly in the form of a transition probability matri®, which completely charac-
terises a time-homogeneous DTMC:

18 Chapter 2. Background

-Poo Po1 Po2
Pio P11 P12
P=: : : (2.14)
Pio Pi1 D2

Indices range over the state space, and since the chaimablgvinas to be in some state
at any observed instant, all rows®fsum to 1:

[e.o]

Y py=1; i=01,.. (2.15)

j=0

An equivalent description of the one-step transition philiees can be given by a di-
rected graph called th&tate-transition diagramA node labelled in the diagram repre-
sents state of the DTMC, and an arc going from nodé¢o nodey, labelledp;;, implies

that the one-step transition probabilitysis = IP(X,,+1 = j | X,, = 7). An example
state-transition diagram can be seen in Figure 2.1.

172 172
3/10 12

2/10
\/Y o

7/10

Figure 2.1: A DTMC with transition probabilities

The probability of a DTMC to be in statg n steps after being in staiecalled then-step
transition probability is given by the Chapman-Kolmogorov equation:

By = PXoyn =4 [Xon =1) = > _pipls™; 0<m<n (2.16)
keS

To indicate that the chain can move directly from state statej, we writei — j if
pi; > 0. The operation of the chain can be envisaged as followsaritssat time&) in some

2.1. Stochastic Modelling 19

statei, € S. At the next time unit or step, the chain moves to a neighlogustate; with
probability p;,;,, provided that, — i,. It is possible that this move is immediately back
to the state itself, which we refer to aself-loop This procedure is repeated, so that at
stepn, the chain is in some staig, whereig — i; — ... — i, 1 — i,. A sequence of
states satisfying this arrangement is callgzhth We writei ~> j if there exists a path of

n steps betweenandj, and: ~» j if there exists a path from stat¢o statej [Nelson95].

The classification of states depends on the structure of tkd chain. A state is
calledabsorbingif i 4 7, for any statej = i. Once entered, the system will stay in state
1 forever. A state is calledtransientif starting from it, there is a positive probability
that the chain will never return to it. If, for example, a stakexists, such that~» j but

Jj 7 i, theni is transient. A transient state can only be visited a finiteber of times
with probability 1. A state is calledecurrentif the probability of eventually returning to
itis 1. In such a case, clearly,—~ j andj ~ i and we say that statésnd;j communicate

A Markov chain isirreducibleif all states communicate with each other, otherwise it is
reducible

We call a sequence of states starting and ending at state-cycle If the expected
number of steps in aircycle is finite, we call statépositive recurrentotherwise state

is said to benull recurrent If the i-cyclei ~ i exists only whem = kd for some values

of k£ and a fixed value off > 1, then state is said to beperiodic with periodd. This
indicates that the state can only return to itself after sora#tiple of d steps. States that
are not periodic are calleaberiodic States that are positive recurrent and aperiodic are
calledergodic Models whose states are all ergodic, are themselvesfatasas ergodic.
Most Markovian models that arise in applications are ircgiole and ergodic [Nelson95].

Figures 2.2 and 2.3 demonstrate these concepts. State @ureR.2 is an example of
a transient state and state 3 that of an absorbing stateesSa# and 5 are examples
of recurrent states, and the sub-chain consisting of thtesesss irreducible. The chain
shown in Figure 2.3 is positive recurrent and aperiodicckeaargodic [Nelson95].

Continuous-Time Markov Chains

Continuous-time Markov chains (CTMCs) are used to model systehere changes of
state can occur at arbitrary moments, and where intervégele®@ those changes can be
of arbitrary length.

Definition A continuous-time Markov chais a stochastic sequen¢&(t) | ¢ > 0}, with
X(t) € S, whereS is the discrete state space of the process. By the Markov pypiee

20 Chapter 2. Background

N NS
@Hi\@ G-
—D =0

Figure 2.2: A DTMC with transient, ab- Figure 2.3: An ergodic DTMC
sorbing and recurrent states

evolution of the CTMC after a given momentlepends only on the state at that moment,
X(t), and not on the past behaviour [Mitrani98]:

P(X(t) = 2 | X(tn) = T, ..., X(to) = 70) = P(X(t) = 2 | X(t) = 2) (2.17)

for any sequencey, tq,...,t,, such thatt, < ¢t; < --- < t, < t. The evolution of
a CTMC is described by generator matrixQ, whose every element; represents the
infinitesimal rate of moving from stateto statej, wherei # j:

doo qo1 qo2
qi0 qi11 412
Q=|: = (2.18)
dio --- Qi

The behaviour of a typical CTMC can be described as follows fitocess enters a state
7, and remains in that state for a random period of time, disteid exponentially with
parameterq;;, whereq; = — Z ¢i;- At the end of that period, the process moves to a

different statej # i, with somg%robabilitwij. The Markov property implies that if at
any moment, the process is observed in statee time that it will sojourn in that state
is independent of the time that has already been spent inrtilaBly, the next state to
be entered depends only on the current state, and not omtlespent in it or on any
previous states.

A CTMC also has an embedded DTMC (EMC), which describes theviairaof the
chain at state-transition instants, i.e. the probabihgt the next state ig given that the
current state i$ [DingleO4a]. The EMC of a CTMC has a one-step transition maR)

2.1. Stochastic Modelling 21

with entries

0, ifi=j
ij = g 2.19
b {q—f if i j. (219)

—qii’

Semi-Markov Processes

Definition A semi-Markov process (SMIpyke61b, Howard71] is a generalisation of a
Markov process, which allows generally distributed sajotimes. It changes states in
the same way as a Markov process, but spends time in any sstalted by a random
variable that depends on the state that the process cyri@tupies and on the state
to which the next transition will be made. Hence, the menesylproperty no longer
applies to state sojourn times; however, at transitioramtst SMPs behave like Markov
processes, since the choice of the next state is only baste @urrent state.

Consider a Markov renewal proce§sx,,, 7;,) : n > 0}, whereT,, is the time of then'®
transition andy,, € S the state at the' transition. Let the kernel of this process be:

R(n,i,j,t) = P(Xpy1 =, Tps1 — Tp < t | Xo = i) (2.20)

wherei, j € S. The continuous-time SMPRZ(t) : ¢t > 0}, defined by the kernek, is
related to the Markov renewal process by:

Z(t) = Xng (2.21)

whereN (t) = max{n : T,, < t} is the number of state transitions that have taken place
by time¢. Thus, Z(t) represents the state of the system at timaNe consider only
time-homogeneous SMPs in whiét(n, i, j, t) is independent ofi:

R(i,j, t) = IP(XH-H - j, Tn+1 - Tn S t | Xn = Z) for anyn > 0

2.22
pijHij(t) (2.22)

wherep;; = IP(X,+1 = j | X,, = ©) is the state transition probability between statasd
J,andH;;(t) = IP(Th41 — T, < t|Xnt1 = J,X,, = 1) is the sojourn time distribution

in state; when the next state is The state holding time is the amount of time that passes
before making a transition from one state to another.

22 Chapter 2. Background

An SMP can thus be characterised by the matrResidH with elements;; and H;;
respectively. In contrast, DTMCs have state holding times &éne equal to a unit time (a
step) and independent of the next state transition [BraéleyO

2.1.2 Stochastic Petri Nets
Petri Nets

Petri nets (PNs)Petri62,Peterson77,Agerwala79,Peterson81,Reisig@&d89,Bause02]
are a formalism for the description of concurrency and symisation in distributed sys-
tems. PNs have a convenient graphical representation {gaesR2.4), which consists
of the following componentsplaces drawn as circles, model conditions or resources.
A place may represent a phase in the behaviour of a particolaponent, for exam-
ple. Places may contatokens drawn as black dots, which are identity-less markers, and
whose presence on a place indicates that the correspormhdgion or local state holds.
Transitions drawn as rectangles, model activities within systemseéffatt a change in
system state. Transitions are enabled and can fire (seeeRAdi)rwhen each of the places
connected to it through unidirectional arcs contains atleae token. Tokens move be-
tween places according to the firing rules imposed by tramsit Upon firing, a transition
removes a number of tokens from each of its predecessorgdackdeposits a number of
tokens on each of its successor places. The number of tobeambve and deposit by a
transition are specified by annotations on its incoming artdang arcsArcsrepresent
connections between places and transitions, and defineelgonships between local
states or conditions and events. An arc from a place to aiti@msndicates the local
state in which the event can occur. An arc to a place from aitian indicates the local
transformations that will be induced by the event [Hillsddh

O—[—0
Sz
P 9
O——O

Figure 2.4: A Place-Transition net

2.1. Stochastic Modelling 23

token transition place

Figure 2.5: Firing of a Place-Transition net

Thestate(or marking of a system modelled by a PN is identified by the number ofriske
on each place in the net. A PN is defined by its structure anchiialidistribution of
tokens, the initial marking. Theeachability sebf a PN is the set of all possible markings
that it may be in, having started from the initial marking asigberving the firing rules.
The simplest type of a PN is a Place-Transition net (P-T net):

Definition A Place-Transition neis a 5-tuplePN = (P, T, 1", 1, M,), where

e P=np4,...,p,Iis afinite and non-empty set of places,
o T'=1ty,...,t, is afinite and non-empty set of transitions,

PNT =0,

I=,I": P x T — Ny are the backward and forward incidence functions,

e My : P — INg is the initial marking.

P-T nets are bipartite graphs, meaning that places can erdginected to transitions and
vice versa. Backward and forward incidence functions speabé connection between
places and transitions. If (p,¢) > 0, an arc leads from plageto transitiont, hence,]~

is called the backward incidence function of transitiorit attaches a weight to the arc
leading fromp to ¢, which means that transitianis only enabled when plagecontains
at least as many tokens as specified by the weight. Firingadesseéxactly this amount of
tokens orp. Similarly, I (p, t) specifies the number of tokens created on plaitecase
of firing ¢ [Bause02].

Stochastic Petri Nets

PNs are useful in qualitative analysis, where functiondlavéour is analysed, but since
they do not incorporate any notion of time, PN-based perémre analysis of systems

24 Chapter 2. Background

is not possible. Quantitative performance analysis reguihe temporal behaviour of
systems to be represented by models. Therefore, traditRia have been extended
to incorporate timing information. Among the most widegmr®f timed and stochastic
extensions of Petri nets aséochastic Petri nets (SPNgyatkin81, Molloy81, Molloy82].
These are PN formalisms to which random variables have beeedato represent the
duration of activities or the delay until the occurrence \ar&s.

Definition The continuous-timstochastic Petri neSPN = (PN, A) is formed from the
P-T netPN = (P, T,1-,1", M) by adding the seh = (A4, ..., \,,) to the definition.

A; Is the transition firing rate of transition The sojourn time in a state depends on which
transitions are enabled, and is exponentially distribut#ld a parameter that is the sum
of the individual firing rates of enabled transitions.

An example of a stochastic Petri net can be seen in Figure 2.6.

Transition Rate

ty A
ty A2
I3 A3
t5 As

Figure 2.6: A stochastic Petri net

Generating a Markov process from an SPN is simple, sincedaehability graph of
an SPN’s underlying P-T net and the state-transition dragpha Markov process are
isomorphic, i.e. the number of states and the connectiotsire of both graphs are the
same. However, many SPNs can result in Markov processesaba very large number
of states, which can make analysis infeasible [Bause02].

2.1. Stochastic Modelling 25

Generalised Stochastic Petri Nets

Generalised stochastic Petri nets (GSPNs) [Ajmone Mars&mdone Marsan95] extend
SPNs by supporting immediate transitions, which fire in Zer@ upon being enabled,
and timed transitions, which have an associated expoheigiay. Enabled immediate
transitions fire before timed transitions [Hillston04].

Definition A generalised stochastic Petri nista 4-tupleGSPN = (PN, Ty, Tz, W),
where

e PN = (P, T,I ,I", My) is the underlying P-T net,

e T, C T isthe set of timed transition$} # 0,

e T, C T denotes the set of immediate transitiohsN 7, = 0,7 = T, U T,
o W = (ws,...,wy)is an array where eaah, € R*

1. is a (possibly marking-dependent) rate of an exponedisédibution specify-
ing the firing delay when transitiofy is a timed transition, i.€,; € T3, or

2. is a (possibly marking-dependent) weight, specifying riblative firing fre-
guency when transitioty is an immediate transition, i.e.€ T;

An example of a GSPN can be seen in Figure 2.7, which showsl tiraesitions as hollow
rectangles and immediate transitions as filled rectangles.

1
p Transition Rate / Weight

tl w1
2} Wo
|:| ts A3
2} Wy
l
2 l

ls Ws
p3

tﬁ /\6
Figure 2.7: A generalised stochastic Petri net

GSPNs do not directly describe a CTMC, since immediate triansiffire in zero time,
and hence the sojourn time in markings that enable immethateitions is not expo-
nentially distributed. However, since the probability dfanging from one marking to

26 Chapter 2. Background

another is independent of the time spent in a marking, GSkeblsrithe semi-Markov pro-
cesses. In models that contain immediate transitions,ghehability graph will contain
instantaneous transitions that have no delay. Markingsetiable immediate transitions
are calledvanishing statesbecause they are never observed, even though the stachasti
process sometimes visits them. Markings that enable timaitions are callethngi-

ble states since the stochastic process sojourns in such markingarnf@xponentially
distributed length of time [Bause02].

Semi-Markov Stochastic Petri Nets
Semi-Markov stochastic Petri nets (SM-SPNSs) [Ciardo94, BsdBb] are extensions of

GSPNs that support arbitrary marking-dependent holdime-tlistributions, and that gen-
erate an underlying semi-Markov process rather than a Mavkacess.

Definition A semi-Markov stochastic Petri neta 4-tupleSMSPN = (PN, P, W, D),
where

e PN = (P, T,I",1I", My) is the underlying P-T net,

P: T x M — Z, denotedp,(m), is a marking-dependent priority function for a
transition,

W: T x M — R*, denotedv,(m), is a marking-dependent weight function for a
transition, to allow the implementation of probabilistizaice,

e D:TxM— (Rt — [0,1]), denotedi;(m, r), is a marking-dependent cdf for the
firing time of a transition.

M is the set of all markings for a given net. In addition, SM-SRMplement extended
net-enabling functions:

e cy : M — P(T) is a function that specifies net-enabled transitions of argiv
marking. A transition is net-enabled if all preceding pkbave occupying tokens.

e cp : M — P(T) is a function that specifies priority-enabled transitiorenf a
given marking. It selects only those net-enabled transstinat have the highest
priority, i.e.ep(m) = {t € ey(m) : pt(m) = max{py(m) : t' € ey(m)}}. Fora

2.1. Stochastic Modelling 27

given priority-enabled transition, € £p(m), the probability that it will be the one
that actually fires after a delay sampled from its firing dbsttion d;(m, r), is

wy(m)

IP(t € ep(m) fires) = 5 wn ()
t'cep(m) Wt

(2.23)

The choice of which priority-enabled transition is fired inyagiven marking is
made by a probabilistic selection based on transition wsigfi his mechanism

enables the underlying reachability graph of an SM-SPN tanlapped directly
onto a semi-Markov chain.

SPNs and GSPNs can be easily expressed as SM-SPNs. To sgpe@BN in the SM-
SPN formalism, we lej, represent the exponential firing rate of a transitignn the
SPN. Then we have:

e p(m) =0forallt,m,
o wy(m) = p, for all m,

o di(m,r) =1 —e "7, whereuy> = > treen (m) Py 1-€. the sum of the firing rates
of the enabled transitions.

For GSPNs, the situation is very similar, except that the @diate transitions have pri-
ority over the timed transitions. The translation distiisipes between timed transitions

(t € Ty, having rateu,) and immediate transitiong € 75, having a probabilistic weight
¢;). Then we have

0 ifteT) e ift e
pe(m) = _ wy(m) = ' _ ! (2.24)
1 |ft€T2 Ct |ft€T2

1—e " ifteT
di(m,r) = (2.25)
H(r,0) ift € T,

Where (= = diccp(m) Yopce, (m) Hr With 85 = 1 if condition B is true and 0 otherwise,
andH (r, a) is the Heaviside function with step tinae

28 Chapter 2. Background

2.1.3 Stochastic Process Algebras

Process algebras are abstract languages used for thecgtemifand design of concurrent
systems. Systems in process algebras are modelled agicolésuf entities, called agents,
which execute actions. Actions are the building blocks aofcpss algebras, and are used
to describe sequential behaviours that may occur condilyren

The development aftochastic process algebras (SPAs)s originally motivated by prob-
lems posed by the performance analysis of large computec@mdnunication systems.
The complexity of many modern systems results in very largea@amplex models. This
is problematic both in terms of model construction and soiytand has led to an in-
terest in alternative approaches to modelling that endigecteation of smaller models.
Finding techniques for the solution of large Markov chair®ge state spaces are finite
but exceedingly large has been a major focus of performamalysis research for many
years. Standard numerical techniques are not able to capesary large models, which
is why compositional approaches to model construction anhdien that allow the sepa-
rate solution of submodels have become popular. SPAs alibsystems to be modelled
separately, although models must be considered as singfieefor the purposes of anal-
ysis. Subsystem models can be simplified in a way that theathwetegrity of the model
is not affected in order to make analysis feasible.

PEPA

The Performance Evaluation Process Algebra (PERK)IIston94] was originally de-
veloped as a high-level description language for Markowcesses. It extends classical
process algebras by associating exponentially distribdédays with actions. An implicit
choice is associated with each set of actions by the assoimpfithe race condition,
which leads to a clear relationship between a process agabdel and a Markov pro-
cess. In this manner, it is possible to extract performaneasures from underlying
Markov processes.

In PEPA, a system is described as an interaction of compsrbkat engage in activi-
ties. Componentsorrespond to identifiable parts of the system, or rolessibé&haviour,

and represent the active units within a system. A composdthaviour is defined by
the activities in which it can engage. PEPA uses the tactivity to make a distinction

between the usual process algebra notion of “instantanactien” and the general be-
haviour of the system. Every activity in PEPA has an assediduration that is governed
by an exponentially distributed random variable andetion type Since an exponential

2.1. Stochastic Modelling 29

distribution is uniquely determined by its parameter, theation of an activity may be
represented by a single real number parameter, calleddtndty rate It may be any
positive real number, or the distinguished symbolwhich is treated as the unspecified
rate. It is assumed that each discrete action within a sysemiquely typed, and that
there is a countable set, of all possible action types. Thus, the action types of afPEP
term correspond to the actions of the system being modelfdtiere are several activ-
ities within a PEPA model that have the same action type, they represent different
instances of the same action by the system. There are sitgsatihen a system is carrying
out some action (or sequence of actions), the identity otiwis unknown or unimpor-
tant. To capture such situations, the distinguished ad{ipa 7 is used. Activities of
this type are private to the component in which they occuraedilso not instantaneous.
Each instance of an activity with-aaction type has an associated duration, just like any
other type. However, unlike other types, multiple instancer-type activities within a
PEPA model do not necessarily represent the same actiorelsysitem [Clark07].

The syntax of PEPA is defined by means of the following grammar
P = (a,7).P | P+Q | PQ | P/L | A

An activity, a € Act, is described by a paii,), wherea € A is the type of the action
andr € R* is the parameter of the exponential distribution descgbia duration. A
small but powerful set of combinators is used to model compéhaviours [Hillston04]:

e Prefix (.): models the sequential behaviour of a component, whegfeatedly
undertakes one activity after another, to eventually retarthe beginning of its
behaviour.

e Choice(+): models a choice between two possible behaviours. Thnéce is
represented as the sum of the possibilities. A race comdgi@assumed to govern
the behaviour of simultaneously enabled actions. The coatis nature of the
probability distributions ensures that the actions carocotr simultaneously. The
rates of actions are chosen to reflect their relative praitiabi

e Cooperation(D;ﬂ): models scenarios where components need to synchrorese ov
a set of actions. Actions in the cooperation set requirerth@vement of all coop-
erating components. The parallel combindtas used when multiple components
behave completely independently and there is no cooperbgowveen them|| is
equivalent to I>§ .

30 Chapter 2. Background

e Abstraction(/): enables the hiding of actions, in order to make themgbeuo
the component(s) involved. The duration of hidden actisn®t affected, but their
type becomes hidden, represented.aSomponents cannot synchroniseron

e Constant(A): is a component whose meaning is given by a defining equation
def

A = P, which gives the constant the behaviour of the comporenThis is the
mechanism of assigning names to components or behaviours.

One of the major advantages of PEPA over standard paradignspécifying stochas-
tic performance models is the inherent apparatus for réagabout the structure and
behaviour of models. The formality of the process algebra@gch allows us to assign
a precise meaning to every language expression, whichesfiiat once we have a de-
scription of a given system, its behaviour can be deducezhzatically. The semantics of
PEPA associate derivation graphwith models, which describes all possible evolutions
of every component. Derivation graphs are analogous tdedality graphs of GSPNs.
Hence, the Markov process underlying a PEPA model can bénebttalirectly from the
derivation graph. Components in PEPA correspond to statkseivities correspond to
transitions in the underlying CTMC. A state of the CTMC is asatad with each node
of the graph, and transitions between states are definedrnsydasing the rates that are
labelling arcs [Hillston04].

Solution techniques used to compute quantitative resat$EPA and GSPN models
are identical — based on the numerical solution of the upoeyICTMC. Starting from
a PEPA (GSPN) model, the associated derivation (reachghiraph is obtained and
reduced to the corresponding CTMC. This CTMC is then solved nicaly to compute
steady-state probabilities. State space explosion, henviesva major problem for models
in both paradigms [Donatelli95].

2.1.4 Queueing Networks

A frequent application area for probability and stochaptiocesses is queueing theory.
A queueconsists of an arrival process, a buffer where customerg aemvice, and one
or more servers, representing a resource that is used byceattmer for some period
of time. Queues can be characterised by six attributesarineal rate, the service rate
thenumber of serverghe capacity of the bufferthe customer populatioand thequeue-
ing discipline The first five of these characteristics may be representecissy using
Kendall’'s notation [Kendall53] for classifying queues.this notation, a queue is repre-
sented as\/S/c/m/N:

2.1. Stochastic Modelling 31

e A stands for the customer arrival distribution/ denotes memoryless (exponen-
tial), G general and) deterministic distributions. Identifiers for other dibtritions
may also be used.

e S represents the service time distribution. Service timdéstime that a server
spends serving a customer.

¢ cdenotes the number of servers available to provide semwitteetqueue.

e m specifies the capacity of the buffer, which customers negditaf a server is
not available. The buffer capacity is assumed to be infintedfault. Customers
who arrive when the buffer is full may be lost or blocked.

N indicates the customer population, which is also infinitelbfault.

The last two classifiers may be omitted in the default case qlieueing disciplingle-
termines how a server selects a customer from the queue Xoseesice. For example,
the discipline might bdirst-come-first-served (FCFSyvhich serves the customer who
has been waiting for the longest time ndast-come-first-served (LCFSyhich ensures
that the customer who has just joined the queue is served rstiom-selection-for-
service (RSS)which selects customers for service from the queue at rapngaority
(PRI), which assigns customers priorities that determine therardwhich they will be
served, omprocessor sharing (PSyhich shares the service capacity by all customers in
the queue [Cooper81, Hillston04].

If we are modelling interactions of devices that jobs vigitjgentially, it is natural to
model the system as@ueueing network (QNA QN is a directed graph, in which de-
vices or resources of the system are represented by nodles, service centreswhich
themselves are queugSustomersrepresenting the jobs in the system, flow through the
system and compete for its resources. Depending on the defoaresources and the
service rate that customers experience, contention ovesauirce may arise, leading to
the formation of a queue of waiting customers. It is assurhatdfter service at one ser-
vice centre, customers progress to other service centlésying a pattern of behaviour
that corresponds to tasks that they aim to achieve. The atdtee system is typically
represented by the number of customers occupying each setliee centres at a given
point in time. Arcsin a QN represent the topology of the system, and togethérrauitt-

ing probabilities determine the paths that customers can take through tix®riet A
network may beopen closedor mixed depending on whether a fixed population of cus-
tomers remain within the system or not. Customers may arrom or depart to some

32 Chapter 2. Background

external environment, or there may be classes of customtrnshe system that exhibit
open and closed patterns of behaviour, respectively [MOEp

Arrivals Departures
to queue from queue

Departures
from system

Arrivals
to system \ /
> >

/ N

Server Buffer

Figure 2.8: A simple open queueing network

A large class of queueing networks has been shown to havaigtgtorward and compu-
tationally efficient solution. Although this class exclsd®me interesting and important
system features, when applicable, it allows performancasones to be derived without
resorting to the underlying Markov process. The solutioswth models, often termed
product form solutionsallows individual queues within a network to be considesep-
arately. Relatively simple algorithms exist for computingsnperformance measures
based directly on the parameters of the queueing networniforfence questions of in-
terest that may arise in such networks include the expectstimer response time, the
expected amount of time waiting for service or the maximuroughput of the system,
for example.

2.2 Performance Query Specification

In the previous section, we have presented an overview fdrdift formalisms that can

be used for the modelling of real-life systems. This sectimtusses the next step in
the analysis process: performance query specificatiorer Atfie creation of a stochastic
model, aspects of performance need to be specified withdegamwhich the modelled

system is to be analysed. This is achieved by constructirggradl specification that

defines performance properties and measures of intereésgirthto be extracted from the
model. Such specifications are commonly referred tpeformance queries

2.2. Performance Query Specification 33

A performance query is constructed in two stages. Initialystem designers or engi-
neers who wish to analyse some system create performandegjunuitively in natural
language. Once a query has been established in this mahneeds to be translated
into a formal representation. Such a formal representaté@mus to be able to express the
concepts that appear in the query, and has to be understaetelgnt analysis tools.

2.2.1 Performance Query Classification

Performance queries can be categorised in two ways. Fiestlystinction can be made
regarding the type of answer that a query is aiming to obtharthis sense, queries can
either be performance requirement or performance measiirgeg [Suto06b].

A performance requiremeimtescribes a property related to stochastic behaviour that m
be satisfied by a system model. Such requirements haveidraliy been phrased in
terms of stochastic logic formulae, which can be verified togisastic model checking
tools. These tools establish whether or not requirememrtsatisfied by a model, and
deliver appropriatges/ no answers.

A performance measunmepresents a quantitative measure that can be extractedafro
model. Such measures can include for example response istnibutions and densities,
their convolutions, raw moments and percentiles, meanttrfalure, system throughput,
etc. Their evaluation is enabled by specialised quantéatnalysis tools.

In addition, performance queries can be classified accgritithe concepts that they
express. The three main categories that are relevant fainkds of systems that we are
considering are steady-state, transient state and patiseggueries. Queries that do not
fall into any of the above categories are classified as maawsbus queries.

System states can be uniquely identified by state labels;hndnie atomic propositions
that are associated with certain constraints on the statervef the underlying model.

Steady-State Queries

Steady-state queries target the relative frequency o statupancy for a set of states
within a model. Long-run averages of resource-based nsetsiach as availability or
utilisation, can be expressed using steady-state measiites idea of the long-run is
based on the assumption that the system eventually reaghéddoeum. Examples of
different types of steady-state query are as follows:

34 Chapter 2. Background

“What is the steady-state probability of the system beirgniy one of the states identified
by labels{‘processing’, ‘processed’, ‘waiting?”

This query aims to obtain a distribution that representsldhg-term probability of a
system being in a set of states, while the next query seeks @ states that satisfy a
specified constraint.

“Out of the set of states identified by labdlstart’, ‘stop’, ‘error’ }, which have a steady-
state probability that is greater thain12?”

A measure that can be indirectly derived from the steady gteobability distribution is
the average rate of occurrence of an action. This is exptesghe following query:

“What is the productivity of the system, defined as the sunheimean firing rate of
action ‘processed at A’ multiplied by 100, and the average 1@af occurrence of action
‘processed at B’ multiplied by 200?”

Transient State Queries

Transient state queries address the probability of a sybkng in a particular set of
states at time. They can be used to assess system reliability, since tleelde to reason
about the likelihood of systems entering a failure mode aréiqular time, as shown in
the following query:

“Is the probability that the system is in one of the error s&identified by label§aborted’,
‘failed’ } at time instantl0 greater than0.87?”

This is an example of a transient state requirement querye whie following is a tran-
sient state measure query that is interested in the statesatisfy certain transient state
conditions, rather than in the probability with which thestgm is in a given set of states.

“What possible states can the system occupy at time inggantth probability exceeding
0.2?”

Passage Time Queries

The power to reason about response times is an essentiatiagt in providing QoS
guarantees in almost all concurrent and distributed systeroluding mobile phone net-
works, Web and database servers, embedded systems, stk treeding platforms and

2.2. Performance Query Specification 35

health care systems. Passage time queries are typicafiyl fimeanalysing system re-
sponsiveness, since they address the time that a systemttakeve from one state to
another, and reliability, since they are able to reason tdiioe to failure scenarios.

For passage time queries, we refer to states that a passadgregia in asstart states
while states that it terminates in are caltadget statesCertain specification formalisms
used for passage time queries support multiple start agdttarates, in which case it is of
interest to find the shortest time that a system requiresnwptzie the passage between
the two sets of states. In case of multiple start states,dbsgge from each possible start
state is weighted by the relative probability of the pasdagginning in that state. The
following are examples of passage time queries:

“What is the distribution of time for the system to reach ang of the states identified by
labels{‘completed:; ‘aborted’}, given that it has started in one of the states identified by
labels{‘start’, ‘restart’ }?”

This passage time measure query specifies a cdf as the parfoermeasure of interest.
The next query addresses the expected time that the sysé&sls ttecomplete the passage:

“What is the expected time of the system entering one of ttoe states identified by
labels{‘crashed’, ‘aborted}, given that it has started in one of the states identified by
labels{‘ready’, ‘paused}?”

The evaluation of this passage time measure query reqheesatculation of the first mo-
ment of the passage time density. The following passagergmgarement query attempts
to verify whether a passage occurs between two sets of stétd@s a given time with
certain probability:

“Having started in one of the states identified by labgislle’, ‘initialised’ }, does the
system enter any of the states identified by labgieocessed’, ‘cancelled’ within 10
time units with probability betweeh9 and(0.987?”

Miscellaneous Queries

It is possible to convolve multiple passages to obtain adsipgssage. Scenarios in which
this might be applicable in practice are of the type when gesy®volves from a stateto

a stateh, which is defined by the passage frarto b, and then evolves further from stdte
to stater, defined by the passage franto c. The convolution of the two passages results
in a single passage fromto c. This concept is demonstrated by the following query:

36 Chapter 2. Background

“What is the average time required to complete the passadieett by the convolution
of the passage from the start state identified by label ‘systady’ to the target state
identified by label ‘waiting’ with the passage defined by thetstiate that is identified by
label ‘processing’ and the target state that is identifiedddyel ‘idle’?”

Of additional interest to performance engineers is thetgld reason about moments of
passage time densities and distributions in order to oletgiected values and variances
for example. The following query illustrates these consept

“What is the variance of the passage time defined over the state that is identified
by label ‘new customer’ and the target states identified Inela{‘customer processed’
‘customer left}?”

Queries relating to response time quantiles are partigulaportant, since they are in-
creasingly used as key QoS metrics in Service Level Agretsndile following query,
which corresponds to a UK Government target, involves aoesptime quantile:

“Is it true that patients of an Accident & Emergency unit aees, treated and discharged
in under 4 hour98% of the time?”

Queries can be extended to include further restrictionscesa change of state in a system
is effected by an action, it may be of interest to specify acdehcludedor excluded
actions in order to observe the dynamic behaviour of the systenyiged that certain
actions do or do not occur. For example:

“What is the probability of the passage from the start statentified by label ‘customer
arrived’ to the target state identified by label ‘customédt’leompleting in71 time units,
provided that action ‘customer pays’ occurs and that actaustomer does not pay’ does
not occur along the passage?”

Passage time queries can be constrained even further bgghgement that a given set
of states should be avoided during the passage. Such stattsrmedexcluded states
The following query incorporates such a constraint:

“What is the probability of the passage from the start statentified by label ‘patient
admitted’ to the target state identified by the label ‘patistovered’ completing il
time units, provided that the states identified by lak&latient comatose’, ‘patient’s heart
stopped} are avoided along the passage?”

Performance queries can consist of multiple performanqgeirements and measures,
and independent performance queries can be composeddogetha single query. Such
compound queries could take the following form:

2.2. Performance Query Specification 37

“Is the probability of a passage from the start state ideatifby label ‘item ordered’ to
the target state identified by label ‘item delivered’ contipig in 50 time units less than
0.88, and what is the density of time that it takes to complete thssage?”

2.2.2 Logical Specification Formalisms

Probabilistic techniques, and probabilistic logics intjgatar, have been popular in the
past for the specification and verification of propertiesysteams that exhibit uncertainty.
Probabilistic logics are widely used in model checking (Seetion 2.3.1), due to their
ability to express relevant performance properties cehgisigorously and in a verifiable

manner, while also supporting the composition of simpleigisento more complex ones.

Continuous-time probabilistic logics come in many différéavours. Among them are
CSL [Aziz96, Aziz00, Baier00, Katoen01, BaierO3CSL [Hermanns00] ancsCSL
[Baier04] for Markovian modelsCSRL [Baier00] for Markov reward model€;SLand
eCSL [Bradley03c] for semi-Markov models, ameCSLfor process algebras.

Many of these logics are popular in academic circles; howéveir use in industry is lim-
ited — mostly because of their obfuscating nature, steepilegacurve and limitations in
terms of expressiveness with regards to quantitative pednce properties. These limita-
tions are a result of stochastic logics only being able toesgpperformance requirement
queries, but not performance measure queries. Dependinigeovariant of stochastic
logic, they are also constrained to reasoning about s{adés;, action- and reward-based
concepts only. Below, we present an overview of two majortsdetic logic variants.

CSL

CSL, the Continuous Stochastic Logic, is able to express pedoom measures by se-
lecting states and paths from Markovian systems that meatlgistate and passage time
criteria. CSL operates on CTMCs on the state level, and exg@eséormance require-
ments as formulae. These can be of two types: state formrdaria or falsein a specific
state, while path formulae ateie or falsealong a specific path of the underlying model.
The logic has the ability to express steady-state, patbebasd nested constraints. The
syntax for these constructs is as follows:

o = tt]al-o|ono| Splo) | Pple)

def
E X0 | ocUUTo

38 Chapter 2. Background

tt represents a truth value, while atomic propositioa AP (AP being the set of atomic
propositions) holds in state if o is labelled witha. Sp(o) asserts that the aggregate
steady-state probability for the states satisfyinlies in p, whereasPp () expresses a
constraint on the probability to lie in the rangewith which paths satisfy.. Paths are
defined byy and can take the foriA7 o or o, U™ 05. The X7 o path formula asserts that
a transition is made to a state at some time, € 7, while o; U7 0, asserts that is
satisfied at some time instant within the intervalwhile o, holds at all preceding time
instants.

The semantics of the logic are expressed by stating the twomsliunder which a single
states satisfies each clause obaformula. This is expressed by the satisfiability relation
s = 0. The clause: is a label, and a statesatisfies that label it € £(s). Thus, using
the negation and conjunction clauses in combination witkellang allows whole sets of
states to be defined witheaformula. The set of states specified in this manner is writte
Sat(c) = {s € S| s|= o}. The formal semantics of CSL are defined as [Baier03]:

5 tt for all s
s a iff @ € L(s)
s -0 iff siEo

0'1/\0'2 iﬁS}ZUl/\S):O'Q
Sp(o) iff II; € p whereJ = Sat(o)
Pp(p) iff IP(o € Path(s) | o=) €p

B [| R | I I |

wherell; is the steady-state probability of being in any of the statef andPath(s) is
the set of all paths starting from Further, a pathy satisfies a path formula, as follows:

Y E Xo iff Y[l o
v E ogUToy ff FteT (WAt oy AV < t,YQ = oy)

wherey[1] is a state immediately succeeding the start state ofdt is the state that the
system is in at time on the path). The X’ path operator is often referred to as the ‘Next
State’ operator and asserts that the next transition wilhb€ele to ar state. The time-
bounded Until formular, U7 o, asserts that, is satisfied at some time instant within the
interval T and thatr; holds at all preceding time instants.

To illustrate how a performance query is represented in C8hsider the following:

“Starting from statess, is the probability of a 3-processor system being down witl@in 1
time units after having continuously operated with at lea&t processors at most{,?”

2.2. Performance Query Specification 39

In CSL, this query is expressed by the following formula:
s = P<o.o1((ups V up,) YL0:10] down)

An example of nested constraints is demonstrated in theviollg scenario. A robot is
moving in ann x n grid from the bottom left corner to the top right corner. ldie a
Boolean state variable thattgie when the robot is communicating, and tetindy be
two integer-valued state variables recording the curedtion of the robot [Younes05].
We want to express and subsequently verify the followingprty:

“Does the robot reach the top right corner of the grid within.me units, with prob-
ability at least 0.9, while maintaining at least a 0.5 probéiiof periodically (every 9
time units) communicating with a base station?”

This is expressed in CSL with the following formula:

Px090(Psos(tt U communicate) U1 corner)

eCSL

eCSL the extended Continuous Stochastic Logic, is an extendi@ta that operates
on SM-SPNSs. In contrast to other logical formalisms, eCSLrajgs at the model level,
rather than at the state-transition level. It was desigoneskpress a broader spectrum of
performance requirements than CSL, including a richer adigmssage time quantities
and constraints on transient state distributions. eCSL doesupport compound formu-
lae in order to simplify the representation mechanism, atdduces separate layers for
the specification of sets of states and of performance iexit&rhe power of eCSL lies
in its ability to express, in a single compound logical fofayuhe reliability, availability
and response time requirements of semi-Markovian systding.syntax of eCSL is as
follows:

e | =0 | o Ao | p|N]
= it | e | wne | Splo) | T (0, 0) | Pylo, o)

p[N] identifies a marking of the SM-SPN by specifying the conatrthat placep con-
tains NV tokens.S, (o) holds if the steady-state probability of occupying the Sedtates
identified by lies in the range. The formulaZ] (o,, o3) is satisfied by a set of start
states if the probability of occupying states at timet, while not having visited states

40

Chapter 2. Background

in the set denoted by,, lies inp for all timest € 7. The expressio®] (o1, 03) holds
for a set of start states if the time taken to complete thegueest the set of target states
identified byo,, while not having passed through the set of states marked yes in

the ranger with probabilityp € p.

1

Probability

&

Time

Figure 2.9: A graphical representation
of a logical constraint on system relia-
bility, using a7 -formula [Bradley03c]

,,,

Probability

Time

Figure 2.10: A graphical representation
of a logical constraint on response-time,
using aP-formula [Bradley03c]

Figure 2.9 shows an example of a reliability constrdlﬁt (01, 09) that reasons about the
transient distribution in the shaded area. It expressesetiilgrement that the probability
of system failure should lie within the regid®, over the time regiorz,. If any part of
the transient function oveR, lies outside the regiof®,, the property fails. Figure 2.10
shows an example response time constl’aﬁﬁ;t(al, o) Which reasons about a passage
time distribution. It expresses the requirement that tistr@uld exist a response time
ranget’ € R, with probability of occurrence’ € R,. This is applied to the cdf of a
passage time; thus if the shaded region does not interseatdfy the property is not
satisfied.

As an example of how eCSL is applied, consider the followingrgu

“Does the system reach the set of states that is identifiedbydkens on placg, within
10 seconds with at least 90% probability, given that it hastethfrom one of the states
that is identified by 35 tokens on plageand 10 tokens on plagg, and has not reached
any state in the set of states that are identified by havindgérton place?”

eCSL expresses this query with the following formula:

Sat(p[35] A ps[10]) = Prs) (p2[175], ps[1])

Thep, [m] expressions define sets of states on the SM-SPN model. Fanags the con-

2.2. Performance Query Specification 41

straintp; [35] A ps[10] selects all markings of the model that have 35 tokens on place
and 10 tokens on plagg. Simple formulae can be composed to form compound queries,
which can be verified on a model. The generic formula belowvshaow formulae can

be defined, in which availability, reliability and responigee properties must hold simul-
taneously:

mpE Sp(o1) A 713;2(02,03) A Pg;(a4,a5)
Wd \—,—/

availability reliability response time

2.2.3 Graphical Approaches

To our knowledge, no graphical formalism has been develsoefhr for performance
guery specification on stochastic system models.

The closest we can get to such a formalism, purely in termgalgcal specification
ability, is Ly [Lee97], a specification language for high-lebelhavioural propertie®f
real-time systems. Note that; is only able to address behavioural properties of systems,
and not performance properties; however, its underlyingcept of representing system
properties graphically is similar to what one might expecée in a graphical query spec-
ification language for performance properties. [Lee97hidies a common drawback of
property specification with stochastic logics, namely floatnulae representing proper-
ties of even moderate complexity are generally hard to wtded, and hence, usually
only experts in formal methods are able to apply them prgpérk has been developed
as a potential solution to this drawback. The language is fbéxpress queries on sys-
tem models defined in the real-time process algebra ACSR fAldsPusing a two-level
guery construction mechanism. Experts create patternartpstochastic logic formu-
lae, which are then mapped onto graphical templates thatdedain details from users.
Users specify properties of their systems in graphical iggethrough the use of these
templates, and subsequently, templates are translatethiit corresponding stochastic
logic equivalents during query evaluation.

To illustrate the application of. z, consider the following behavioural propertjfter
eventa, we observe event and then event. We require thab happens between 2 and 5
time units after, and thatc happens between 4 and 10 time units afteand between 3
and 10 time units aftesi. In the stochastic logic TCTL [Alur91], this property would be

42 Chapter 2. Background

expressed by the following formula:
Oa = 2.0(b = y.(x € [2,5] AO(e A (x € [3,10] Ay € [4,10]))))

This is clearly a rather complex expression, which is onlamiegful to expertsL ; facil-
itates the expression of the same property with an equialehsimpler representation,
as shown in Figure 2.11.

al |~ evenruaﬁyL‘—|”"*"”?*"” [2,5] —{ b!}+{ eventually
e within [4,10]
within [3,10] —

Figure 2.11: AnLy representation of the example TCTL query

There exist various approaches to graphpsaformance propertgpecification; however,
these are mostly semi-graphical in nature and formalismsahly support performance
property annotations on system specifications, rather ti@rability to specify perfor-
mance queries directly. These approaches are based on UillUnified Modelling
Language [OMGO7].

[Lopez-Grao04] usddML activity diagrams for system representation and the ST
file for annotating performance requiremeni®vo kinds of UML behavioural diagrams
are particularly applicable to performance modellingtesthart diagrams, which model
the life cycle of objects in the system, and activity diagsamhich characterise system
behaviour by describing activities. Activity diagrams apecialisations of UML state
machines, whose main purpose is the expression of the @hteontrol flow of a process,
as opposed to statechart diagrams which are often drivertbynal events. Combining
the use of statecharts and activity diagrams, all pathsegbtitential system dynamics can
be modelled. In this approach, the SRIPApr ob>> and<<PAr espTi ne>> tags are
used, which allow the annotation of routing rates and adioations, respectively. Such
annotations are attached to transitions in activity diagan order to allow the assign-
ment of different action durations that depend on a decisiane annotations are added
to the model wherever an action is executed, and probalaihtyotations are supplied
whenever a decision needs to be made, such as in the predegueard conditions for
example. Systems are modelled by means of the two kinds gfatizs, and performance
requirements are specified according to the SPT profile. Hearam is then trans-
lated automatically into a labelled GSPN (LGSPN), an extensf the GSPN formalism.
LGSPN models are subsequently composed, in order to obsangke analysable perfor-
mance model of the system for a particular scenario, whidetermined by the diagrams

2.2. Performance Query Specification 43

that have been modelled. These scenario description modalshen be analysed or
simulated using various well-established GSPN tools taiabperformance metrics of
interest.

[Jansen05] useStoCharts, a QoS-oriented extension of UML statechart diaagrwhich
enhances the basic statechart formalism with general tetagysland probabilistic choice,
to build stochastic automata that can be analysed by siionlathe two extensions have
been added to provide software engineers with a simple walesaribe probabilistic
properties of stochastic systems. System models creatadSioCharts can be reduced
to generalised SMPs (GSMPs), which are amenable to disevet& simulation-based
evaluation. If only exponentially distributed delays ased, the models can be reduced
to CTMCs, which can then be solved with respect to steady-stadetransient mea-
sures, using efficient numerical solution techniques. l&tstic model checking is another
method that can be applied to the resulting GSMP or CTMC modelsrder to verify
performance-related properties. An example StoChartesyspecification is shown in
Figure 2.12. The example shows the workflow of a car damagessss who assesses
on behalf of an insurance company whether a damaged cardsheuépaired or not and
whether a garage offers an acceptable price for the rephimsng delays in the model
are indicated byifter annotations on transitions, and parallelism is demoretray the
statesRepair and Report.

Physical
0.3 assessment
start Contacting after(EXP[1m])
garage o
assessment

after(EXP[10m])

Negotiating
with garage

after(EXP[3d])
after(UNIF[10m, 20m])

4 N

) P
Repair
0.98 0.02

Waiting for »| Checking Repair
invoice invoice finished
after(EXP[3d])

after(UNIF[30m, 90m])

Writing Report
*——> report finished

Figure 2.12: A StoChart example

[Lopez-Grao04] and [Jansen05] represent the latest develdprim graphical perfor-

44 Chapter 2. Background

mance property specification, and clearly highlight thednfe a new formalism that
is not only able to reason about a wide range of performanneegds, but that is also
completely independent of underlying system specification

2.2.4 Tool-specific Specification Languages

Most quantitative analysis tools combine the ability to miggrobabilistic systems and

to analyse resulting models according to a set of supporeiimance measures and
criteria. Many tools implement their own proprietary laages for performance query
specification; therefore we provide below a brief overvieinthe tool languages of a

representative range of analysis tools.

The DNAmaca Specification Language

The DNAmacaspecification language [Knottenbelt96], used by EidAmaca SMARTA
and HYDRAtools (see Section 2.4.1), provides a flexible high-levetlet@escription
that is used by a state space generator as a basis for theuotiost of a CTMC of the
model. Functional properties, such as invariants, thatabe checked during the state
generation process can be specified with general C++ expnsssn addition to a variety
of performance measures relating to model states andticarssi

Model Specification

A model descriptiorspecifies the initial state of a system, the components ohargé
state, and the conditions on and effects of transitions &etvstates.

nodel _description = \nodel {

{state vector | initial _state | transition_declaration |
constant | help_value | invariant | state_output_function |
primary_hash_function | secondary_hash_function |
addi ti onal _headers}*}

Thestate description vectaronsists of a set of components that together describeea stat
of the system. Each unique value of these components comdspo a state. Ami-
tial statemust be specified for reachability analysis purposes thr@sgignments to the

components of the state vector.

2.2. Performance Query Specification 45

state_vector = \statevector{
{<variable type> <identifier> {,<identifier>}x;}x

}

initial _state = \initialstate{{<assignnment>}+}

Transitionsdescribe how a system changes state. Possible transitmmsaf particular
state are specified by describing enabling conditions g elements of the state vec-
tor, an action to be taken if the transition has executedjefoa timed transitions or
relative weight for instantaneous transitions, and anoojati priority, which allows tran-

sitions of the same kind (immediate or timed) to take prened®ver one another.

transition_declaration = \transition{<identifier>}{
\ condi ti on{<bool ean expessi on>}
\acti on{{<assi gnnment >} x}
\rate{<real expression>} | \weight{<real expression>}
\priority{<non-negative integer>}

Performance Measure Specification

Performance results provide a mapping from low-level tsdike state probabilities and
transition rates to higher-level concepts, such as thrpuigbr mean buffer occupancy.

Performance measuresn generally be classified as state or count measures.

per formance_neasures = \perfornance{
{state_measure | count_neasure}x*

}

state_neasure = \stateneasure{<identifier>}{
\estimator{{nean | variance | stddev | distribution}+}
\ expr essi on{<real _expressi on>}

}

count _neasure = \count nmeasure{<identifier>}{
\ esti mat or { nean}
\ precondi ti on{<bool ean_expr essi on>}
\ post condi ti on{ <bool ean_expr essi on>}
\transition{all | {<identifier>}*}

}

A state measures used to determine the mean and variance of a real expnebsidis

defined at every state in the system, e.g. the average nurhib@kems on a particular

46 Chapter 2. Background

place of a GSPN or some transition’s enabling probabilitye hean, variance, standard
deviation and distribution of state measures can be cordp#tecount measurés used
to determine the mean rate at which a particular event oceugs the rate at which a
transition fires. The occurrence of an event is specified byeagmdition on the current
state, a postcondition on the next state, and transitiatditie during the transition from

the current to the next state.

The HYDRA Specification Language

The specification language of th&Y DRAtool [Dingle04a] is an extended version of the
DNAmacaspecification language. Syntax has been added to allow firession of first
passage time and transient performance measuregpaBeage timgueries, users need
to specify conditions that identify the source and targatest of the passage, as well as
the time range to which the calculation should be restricldte time range is specified
by an initial valuet, an incremental step and a maximum value. The source anet targ
conditions are expressed as Boolean expressions in terrhe efdments of the model’s
state vector. Conditions faransientmeasures are expressed in a similar fashion.
passage_time_neasure = \passage{

\ sour cecondi ti on{ <Bool ean expressi on>}

\'t arget condi ti on{ <Bool ean expressi on>}

\t_start{<real expression>}

\'t _stop{<real expression>}
\'t_step{<real expression>}

transi ent _state _nmeasure = \transient{
\ sour cecondi ti on{ <Bool ean expressi on>}
\'t arget condi ti on{ <Bool ean expressi on>}
\t_start{<real expression>}
\'t _stop{<real expression>}
\t_step{<real expression>}

The SMARTA Specification Language

The SMARTAspecification language [Dingle04a] is an extensiobfAmacas specifi-

cation language that, in order to express semi-Markov shaifows the specification of

2.2. Performance Query Specification 47

transitions whose state holding times are not constraioethtexponential distribution.
The specification language was designed for the descripi@M-SPNs, but is able to

specify any semi-Markov chain.

Transitionsare specified in the same way as weighted transitions iD¥&macaspec-
ification language, but it is in addition also necessary tecdbe the firing time density
function associated with each transition. These densitgtfans are described in terms
of their Laplace transforms. Users are also required toigeost C++ function that re-
turns the value of the firing time density function’s Lapla@nsform at a giver-value.
Several macros are defined by default that encode the Lajptat#orms of common fir-
ing time distributions. Steady-state specification is astflAmaca and passage time
specification is as foadHYDRA
transition_declaration = \transition{<identifier>}{

\ condi ti on{ <Bool ean expressi on>}

\acti on{{<assi gnnent >} *}

\ wei ght { <real expression>}

\priority{<non-negative integer>}
\'soj our nti meLT{<functi on>}

The PRISM Specification Language

The PRISM tool (see Section 2.4.1) uses its own proprietarguage for the expression
of properties on DTMCs, CTMCs and Markov decision processes.ldilguage is very

reminiscent of CSL, and its basic syntax is defined by theviotig grammar:

prop =true | false | expr | !prop | prop & prop |
prop | prop | prop => prop |
P bound [pathprop] | S bound [prop]

bound rr=<p | <=p | >=p | >p |

pathprop ::= X prop | prop U prop | prop Utine prop
Fprop| Ftime prop| Gprop | Gtine prop

time r=>=t | <=t | [t t]

whereexpr evaluates to a Boolea®, bound [pat hpr op] evaluates tdrue if the

probability with whichpat hpr op is satisfied lies within the bound representedbbyind;

48 Chapter 2. Background

S bound [pat hprop] evaluates tdrue if the steady-state probability qir op lies
within the bound represented Ipound; p evaluates to a double in the ranfgel]; X
pr op evaluates tdrue if prop holds in the next statepr opl U prop2 evaluates
to true if pr opl holds throughout untipr op2 holds;propl U prop2 evaluates to
trueif pr op1 holds throughout within the time constraint specified byre, after which
pr op2 holds;F pr op evaluates torueif pr op eventually holdsE ti me prop eval-
uates tatrue if pr op eventually holds within the time constraint specifiedthyne; G
pr op evaluates tarueif pr op always holdsG ti ne pr op evaluates tarueif pr op
always holds within the time constraint specified toyne; andt evaluates to a non-

negative double or integer.

PRISM identifies states of the model that correspond to ecesituiations by specifying
an expression that evaluates to a Boolean value. Such anssigéypically contains
references to variables and constants from the model tohwhrielates. The states cor-
responding to this expression are those for which the egmesvaluates torue. A
property is evaluated with respect to a single state of a méde the syntax given above,
all properties evaluate to Boolean values, i.e. for any metigks, a property is either
true and hence satisfied, or false and hence not satisfiedh&drasic operators of the
logic (i.,e.t rue, false, expr, !, & |, =>)thesemantics are as for classical

propositional logic:

t rue is true in all states,

f al se is not true in any state,

expr is true if the PRISM expressiaxpr evaluates to true,

I prop istrue ifpr op is not true,

propl & prop2istrue if bothpr opl andpr op?2 are true,

propl | prop2istrue if eitherpr opl orprop2 is true,

propl => prop2istrueifpropl impliesprop2.

2.2. Performance Query Specification 49

PRISM is able to specify properties of the following types:
“From an initial state, is the probability that more than 5rers occur within the first 100
time units less than 0.17?”

"init" => P<0.1 [F<=100 numerrors > 5]

“When a shutdown occurs, is the probability of system recpbeing completed in be-
tween 1 and 2 hours without further failures occurring gredtean 0.75?”

"down" => P>0.75 [!"fail" U1,2] "up"]

“In the long-run, is the probability that an inadequate nuentof sensors are operational
less than 0.017?”

S<0.01 [num sensors < mn_sensors |

“What is the probability that process 1 terminates beforeqass 2 does?”
P=? [!proc2 _terminate U procl_ term nate]

“What is the long-run probability of the queue being morertt¥b% full?”

S=? [queue_size / max_size > 0.75]

PRISM allows the computation of the values of such propeftiea range of parameters

and plot graphs of the results using experiments.

2.2.5 Comparison of Techniques

Logical Specification Formalisms

Logical property specification formalisms define perforecgproperties over stochastic
models. They do not characterise systems themselves, wathenot modelling for-
malisms. They are processed by model checking tools that cat a verification of their
performance specifications on models. These verificatianaly either evaluate tges

or no.

50 Chapter 2. Background

In addition to these common characteristics, each stachlagfic variant has its own
specialty. CSLexpresses state- and path-based steady-state and passageoperties

on the state level of CTMCs, whieCSLis able to express steady-state, transient state and
passage time properties on the model level of SM-SPNSs.ditrgts to ease the property
specification process by aligning it with a high-level madidgl formalism. However, it is

not able to reason about system actions.

Logical specification formalisms were designed for the \&pgcific purpose of model
checking. Hence, their expressiveness is constraineddiy dhea of application. Un-
like most graphical specification languages, they do notmoenmodel specification and
performance annotations, but rather only operate as mesioce property specification
mechanisms. They allow sophisticated and complex perfecemeaequirement queries to
be formulated, which is not possible with graphical forreads. In addition, they enable
guery specification through concise formulae, whereas mirast, graphical languages
can be complex and confusing, and generally need to be rédacgme intermediary

representation before they can be used for analysis.

Graphical Approaches

[Lee97] presents i, a graphical specification language for behavioural priogsewhich

attempts to alleviate the challenges involved in speaiysoch properties in stochastic
logics. It allows users to construct queries using higlellgwvaphical templates. Queries
are eventually translated into stochastic logic for evadugpurposes. The strength of this
approach is its graphical specification mechanism and egmepower. It's weakness is
that it is dependent on stochastic logics and that it is oblg # reason about behavioural

properties.

[Lopez-Grao04] adapts the SPT profile to UML activity diagrafmerformance infor-
mation is integrated into the UML model description, as & pinevious case, and models
are converted into LGSPNs, which can be solved for steaatg-gsind transient measures

in the traditional manner. The same advantage and disaaty@aapplies as before.

[Jansen05]'s specification of system models v@tloChartscontains additional timing

2.2. Performance Query Specification 51

information and probabilistic choice. Similarly to the yieus two approaches, perfor-
mance information is incorporated into the model. Modetsraduced to GSMPs that
allow steady-state and transient state solutions of syste®mmilar arguments with re-

gards to expressiveness apply as before.

Tool-Specific Languages

The DNAmacaspecification language and its extensions HitfDRAand SMARTAde-
scribe models and performance measures concisely in C+axsyhhe main purpose of
DNAmacds specification language is the concise description ofr&tstic system models.
In addition, it provides users with the ability to specifyraal number of performance
measures, which are to be obtained from the model. The Igegexdensions fodYDRA
and SMARTAprovide support for the specification of additional perfarmoe measures.
SinceDNAmaca, HYDRAandSMARTAare command-line tools, their specification lan-
guages were primarily designed with functionality, ratttean with user-friendliness in

mind. However, they are certainly powerful with regardshieit intended purpose.

In contrast, the simplicity and relative ease of use of PRESMOperty specification lan-
guage makes it appealing to a large audience. It has synuotilarities to stochastic
logics, but is clearer and more intuitive to understand as®d As a result, it has also been
incorporated into other tools. A great advantage lies irxtensibility, since its syntax
can be extended to cater for additional properties thatebe integrated into tools in the
future. This is a very important characteristic, which feample stochastic logics do not
possess due to their syntactic restriction. Another a@ggis the language’s concise and
rigorous nature, which is derived from stochastic logitsspriginal inspiration. However,
due to the similarity to stochastic logics, users have t@becfamiliar with the language

before being able to use it comfortably and effectively.

When contrasting tool-specific languages with stochastiecs one usually finds that
tool-specific languages either tend to be in some form basedazhastic logics, or that
they share no commonalities with them. PRISM’s property sigation language is a

good example of one that was inspired by stochastic lograsD&NAmMacss specification

52 Chapter 2. Background

language that of one that was not. Tool-specific languages ¢t€nd to be more intuitive
than stochastic logics, since they have more freedom ingkeifscation of properties,
and as such can make the syntax more digestible to users.| kloelgkers that use sto-
chastic logics for property specification purposes inddyidave their own tool-specific

languages for specifying stochastic logic formulae.

At present, tool-specific languages have an inherent adgarwhen compared to graphi-
cal approaches in that they allow for greater expressiwiies to their ability to specify
as much detail as needed, whereas graphical approachesuaiet o performance anno-

tations on system models that impose a serious restrictidhedr level of expressiveness.

2.3 Techniques of Performance Analysis

In the previous sections, we have seen popular methodsmpedormance modelling for
the mathematical representation of real-life systems,agmiloaches to the specification
of performance queries on stochastic system models. Thi®egrovides an overview
of the most widely-used methods for the evaluation of penforce queries on stochastic

models.

2.3.1 Probabilistic Model Checking

Verification is the process of ensuring the correctness stesys. It is a major challenge
in the process of system development, and hence also antamppart of performance
analysis. Simulation and testing are the two most widedusethods for system verifi-
cation, but in the case of complex asynchronous systense teehniques are only able to
analyse a limited number of possible behaviours. Simulatand test runs are often very
time-consuming and may need to be carried out a number oktlméore informative

conclusions can be reached [Clarke Jr.01].

An attractive alternative iformal verification which carries out an exhaustive analysis

of all possible behaviours of a system, and leaves no ermodesign flaws undiscov-

2.3. Techniques of Performance Analysis 53

ered. There are numerous approaches to formal verificationwgver, model checking
in particular has found widespread acclaim and adoptModel checkings the process
of verifying a behavioural property of a system over a giveydei through the exhaus-
tive enumeration of all reachable system states and thevimeina that result in them.

Compared to other approaches, model checking has a numbistin€tladvantages:

e The verification process is fully automated and requiressas intervention. Users
are only required to provide a description of a system in trenfof a stochastic
model, together with a performance query that specifiesgutigs to be checked.
Equipped with these, a model checker is able to perform cdatipas to obtain

results indicating whether or not the properties are satidfy the model.

o If properties are satisfied, the model checker terminatéds thve answetrue. Oth-
erwise, a counterexample is produced, which highlightseaago where the prop-
erty does not hold. Such error traces are useful to modedierse they may provide

insights into the root causes of unexpected behaviour.

e It is possible to check partial specifications for systenrexiness, which makes
it possible to avoid the modelling of complete systems, i$ i desirable in an

evaluation scenario.

However, model checking suffers from the same problem ddadkovian systems: state
space explosion. This problem occurs when the model has amangonents that perform
transitions in parallel. In such a case, the number of stdtdse model usually grows ex-
ponentially with the number of components. Hence, the miaallenge in model check-
ing is the tackling of the state space explosion problem.prbeess of model checking a

system is shown in Figure 2.13, and can be summarised aw$ollo

1. System Modelling:A system firstly needs to be represented mathematicallyen th

form of a model.

2. Property SpecificationBefore verification can commence, the model checker has

to be informed of the properties of interest that are to béiedr They are generally

54

Chapter 2. Background

Model
(system behaviour specification)

N

Query
(system property specification)

Figure 2.13: The process of model checking

Answer
Model Checker |—»| (Yes, if model satisfies property
Counterexample, if not)

et

specified in some logical formalism. For hardware and safvggstems, temporal
logics are used, which are able to express the behaviowhltexn of systems over

time.

. Verification: The verification process is automatic; however, it doesluezesome

degree of human interaction, mostly in the form of analysiagfication results.
Formally, verification can be stated as follows: given aipalar property, ex-

pressed as a temporal logic formplaand a modelM/ with initial states, decide if

M, sk p.

While model checking is a powerful tool for designers and eegis wishing to verify

their systems, it is not the method of choice for purely giiatite performance analysis,

since model checkers are unable to provide direct quamétegsults that relate to system

performance. Realising this, the model checking commuraty &tempted to diversify

the process to also support a limited form of quantitativeysis by investigating qualita-

tive and quantitative model checking algorithms for pralstic systems. In a qualitative

setting, the aim is to check whether a property holds witlbahbdlity 0 or 1, whereas in a

guantitative setting, it is to be verified whether the praligtof a certain property being

satisfied meets given lower or upper bounds, which are diftesrom0 and1.

Much research has been carried out on verification methagsdbabilistic logics. Prob-

abilistic extensions of modal and temporal logics and aataprocedures for verifying

the satisfaction for such logics have been developed. Tdresmainly based on reducing

the calculation of the probability of formulae being saésdfto a linear algebra problem.

2.3. Techniques of Performance Analysis 55

2.3.2 Numerical Analysis

Steady-State Analysis

Performance analysis is often concerned with the behawbsystems over an extended
period of time. Hence, the primary objective of a modellahes calculation of the prob-
ability distribution of a model of a system over the statecep@ as it settles into a reg-
ular pattern of behaviour. Intuitively, this means that gggtem has been running for a
long time and its behaviour no longer exhibits any trendsis Pphobability distribution
is commonly referred to as treteady-state distributioand is very useful for deriving

performance measures based on subsets of states where@mfit®os hold.

Since we may have to choose an initial state for a model rahgdday considering the
long-term probability distribution we can balance out aosni of bias that could possibly
have been introduced by the chosen start state. Underrcedaditions, the more steps
the system takes, the less it matters what state it was iredtrtte when it started. We
assume that when the effects of initial bias have worn o, df5stem is irsteady state
This does not imply that it is stuck in a particular state andbbmger evolves; rather that it
is assumed to exhibit regularity and predictability in iehhviour. It continues to change
state, but the probability of observing it in any given siateo longer a function of time.
This is reflected by the absence of change in the probabibtyilbution. Systems that are
able to reach steady state are said to be stable [Hillstdhi@4nio8].

Let 7;(¢) denote the probability that an irreducible, aperiodic a@ntethomogeneous
Markov procesq X(¢)} is in statej at timet. In the limit, when the observation instant
is infinitely far removed from the starting point, the probigy of finding the system in
statej is independent of the initial state. Steady state has beehee at time when for
all statesj and allr > 0 we have thair;(t + 7) = 7;(¢), i.e. the time at which the system
is observed does not influence the probability of it being pagicular state. Therefore,

we denote steady-state probabilities without the timeawdei by ;:

7 = lim P(X(t) = j | X(0) = 1) (2.26)

t—o0

56 Chapter 2. Background

fori,7 = 0,1,.... When the limiting probabilitiesr; exist, they represent the steady-
state distribution of the Markov process. A steady-stag&ribution,{r; : j € S}, exists

for every time-homogeneous, finite and irreducible Markmcpss [Hillston04].

In steady statey; is the proportion of time that the process spends in gtatéence, at
a moment in time, the probability of a transition occurrihgttmoves the system from
statei to statej is given by the probability that the model is in statenultiplied by the
instantaneous probability of the system making a tramsitiom state: to statej, m;q;;,
which is also called thprobability fluxfrom statei to statej. In order for equilibrium to
be maintained, the total probability flux into a state hasg@fual to the total probability
flux out of the state. Otherwise, the probability distribatiover the set of states would

change. Hence, for any stateve have:
Zﬁjqﬁ = WiZQz‘j (2.27)
j j

The left hand side of Equation 2.27 represents the flux irgte st while the right hand
side represents the flux out of it. Equations of this form fbstates: € S are collec-
tively calledglobal balance equationsSince the the sum of elements in every row of the

generator matrix is zero, i.e.Z ¢;; = 0, Equation 2.27 can also be written as:
j

Y g =0 (2.28)
J

Together, ther; values represent the steady-state probability distobutind are not
known in advance. If there are states in the state space,such equations need to
be solved to find the unknowns. However, due to redundancy inherent in the ezpusti
not enough information is available to solve them uniquElyrming a row vector out of

ther; values, we can express Equation 2.28 in matrix equation &&m
mTQ =0 (2.29)

Since{,} represents a probability distribution, we also know thatribrmalisation con-

2.3. Techniques of Performance Analysis 57

dition applies:

omo=1 (2.30)

Together with Equation 2.30, we now have 1 equations for. unknowns, which enables
us to obtain a unique solution. When the state space of aruciielé Markov process is
finite, the process is always recurrent non-null, and tloeeefEquations 2.29 and 2.30

always have a solution [Ross82].

There are mainly two types of solution methods for calcofatihe steady-state distri-
bution. Direct methodsbtain an exact solution after a finite number of steps, wdsere
iterative methodgroduce approximate solutions. Direct methods are gdpexabropri-
ate when the state space of the model is not particularlg langl when the corresponding
state transition matrix is not sparse. Direct methods adse the advantage that they im-
pose an upper bound on the time taken to obtain a solutiorontrast, iterative methods
are appropriate when the state transition matrix is largkesparse, since the methods pre-
serve the sparsity of the matrix. Iterative methods redase storage and computational

resources, but at the same time often require a long timertgecge towards a solution.

From the steady-state solution, several measures of gtteaa be calculate&tate-based
measuresare those that correspond to the probability of a systemgbieira particular
state, or a set of states, that satisfy some condition. Grachgles of state-based mea-
sures are utilisation or the distribution of the number aftomers in a systenRate-based
measuresire those that correspond to the predicted rate at whicliseeeour. An exam-

ple of such a measure is throughput.

Transient Analysis

Another important class of performance analysisassient analysiswhich aims to find

the probability of a system being in a certain state at time

Steady-state probabilities refer to system behaviourerdhg run, while transient prob-
abilities consider the system at a fixed time instant. Teartsanalysis is more meaningful

than steady-state analysis when systems need to be evhliditerespect to their short-

58 Chapter 2. Background

term behaviour. In the analysis of systems that have to reo@erational during a certain
period of time, such as on-board navigational computeradaan airplanes or satellite
control systems, for example, possible questions mayerétathe probability of systems
failing at some point. In scenarios like these, modellexsha calculate measures within
a relatively short time interval. Results obtained from ttemdy-state solution, which
characterise system behaviour in the long run, are not iapfiroximations for the de-
sired measures and could lead to substantial errors. Mesa#hat can be derived from

transient state probabilities are often referred tonatantaneous measures

The process ofiniformisationhas classically been used to conduct transient analyses of
CTMCs [Jensen53, Grassman87,Reibman88]. The transientdgatbution of a CTMC
is defined as the probability of the process being in one of#ief states/ at timet,

given that it has started in statat time O:
miy(t) = P(X(t) € J| X(0) =1) (2.31)

whereX(t) denotes the state of the CTMC at timeTransient uniformisation takes ad-
vantage of the fact that for any given ergodic CTMC a corredpgnDTMC can be
constructed, which yields a steady-state probability setttat is identical to that of the
CTMC. In a uniformised CTMC, the probability that the CTMC is in atstin.J at time

t is calculated by conditioning oV (¢), the number of transitions that occur in a given

time interval[0, t] in a DTMC [Bolch98, Bradley06]:

ma(t) = Y _TP(X(t) € J | N(t) = m)P(N(t) = m) (2.32)

m=0

Other approaches for the calculation of transient measuist such as Laplace transform—
based methods (see [Dingle04a] for details), but we do natider them further here.
Passage Time Analysis

Passagdor responsgtimesare important QoS metrics of stochastic systems that descri

the time that systems take to enter for the first time one ot affarget states, given

2.3. Techniques of Performance Analysis 59

that they have started in one of a set of start states

Passage time analysis empowers modellers to ask a wide canglevant and informa-
tive performance questions that address the evolution sterys between two distinct
moments in time. Some of the most important areas of its egidn are reliability test-
ing, efficiency analysis and the verification of conformity SLAs. During reliability
testing, system engineers query models to obtain probabileasures representing the
likelihood of their systems failing within certain periodktime by entering an error state.
Efficiency analysis addresses the amount of time that arsytstiees to perform a partic-
ular task, and considers these times an indicator of systeponsiveness. In Markovian
models, passage times are mainly calculated using twodisapproaches. The first is

based on uniformisation, and the second on a Laplace trenmsfethod.

Uniformisation-based Analysis

Uniformisation has classically been applied to the trartsa@alysis of CTMCs, but it can
also be used for the calculation of passage time densitgsedescribed in [Melamed84,
Muppala92, Bolch98, Miner03]. It transforms a CTMC'’s stateh&ve the same mean
holding time by allowing invisible transitions from statesthemselves. The interval
between a moment where a CTMC enters stasad the first subsequent moment when

it enters one of the states Jjhis called thdirst passage tim&om to J and is defined as:

Py = inf{t >0 : X(t) € J,N(t) > 0,x(0) = i} (2.33)

where N(t) denotes the number of state transitions that have occuyréignle ¢. Note
that this approach only calculates the first passage timsitgeand does not consider
repeated visits to target states. The density of the padsagebetween statesand j

in the uniformised chain can be expressed as the sum ofstage Erlang state holding
time densities, weighted by the probability of the CTMC mayvirom statei to statej

in exactlyn hops, such that < n < m. This result can also be generalised for multiple
start states, by additionally providing a probability distition across them. The pdf of

the response time between the non-empty set of source statesthe non-empty set of

60 Chapter 2. Background

target stated in the uniformised chain is given by [BradleyO6]:

_ m nt" 1e—qt (n) 234
fra(?) Z — 1 Zﬂk (2.34)

n=1 TL keJ
where

(D) = 7 () p’ (2.35)
with

T .
ifkel
71',(60) —{ 2™ (2.36)
0 otherwise

P’ is a modified transition probability matrix with all targeéates made absorbing. The
7, Values are the steady-state probabilities of the correlpgrstatet from the CTMC'’s

embedded Markov chain.
Laplace Transform-based Analysis

Similarly to the uniformisation-based approach, the fitspan the Laplace transform-
based method is the calculation of the first passage timatgerighe system that has
started in stateé entering any state out of the set of target stateblence, it is necessary
to calculate the convolution of state holding time densitieer all possible paths from
statei to J. This approach takes advantage of the favourable propetitheLaplace
transform For a given real-valued functiof(t), > 0, the Laplace transform, denoted
by L{f(t)}, f*(s) or L(s), is defined as [Nelson95]:

L)) = f7(s) = L(s) = / et (e (2.37)

In essence, the Laplace transform converts a function frenreal-valued time domain
(t space) to the complex-valued Laplace domahsgace). Due to its algebraic prop-
erties, operations that are complextispace become simple kspace. The following

properties of Laplace transforms are particularly useful:

e The differentiation of a function in-space corresponds to the multiplication of the

2.3. Techniques of Performance Analysis 61

Laplace transform of the function byin s-space:

L{f' ()} = sf*(s) (2.38)

e The integration of a function inspace corresponds to the division of the Laplace

transform of the function by in s-space:

L{ /O F(ryary =2 *is) (2.39)

e The convolution of two functions im-space corresponds to the product of their

individual Laplace transforms isrspace:
L{(fog)(t)} = f"(s) xg"(s) (2.40)

e Then'™ moment of a probability density functiof(t) of the continuous random

variableX in t-space can be obtaineddrspace by calculating:

E(X™) = (=1)"f*"(0) (2.41)

After carrying out Laplace transform-based calculatioesults need to be numerically
inverted, in order to convert them back irttgpace. The calculation of the passage time
density function is therefore achieved by calculating tlaglace transform of the con-
volution of the state holding time densities over all patleaeeni and J, and then

numerically inverting the resulting function [Harrisorj02

L) = 3 (S5) L) + Y (1) (2.42)

kdJ q rey 0 i

When there are multiple source states, denotefl liye Laplace transform of the passage

time density at steady state is [Bradley03d]:

LIJ(S) = Z akLkJ(S) (2.43)

62 Chapter 2. Background

where the weighty, is the probability at equilibrium that the system is in state [at

the starting instant of the passage, and is given by:

i—k if kel

ﬂ‘.

=1 5 ! (2.44)
0 otherwise

Comparison of Approaches

Uniformisation is generally much faster than the Laplaems¢form-based method, ex-
cept in the case of very small models. However, the Laplaoestorm method is easier
to extend to semi-Markov systems with generally distridugeate holding times, and it
preserves the ability to reason about vanishing sourceagdttstates. Uniformisation
is unable to support the latter kind of reasoning, sincesfang states are assumed to be

eliminated during state space generation.

2.3.3 Simulation

The simulation approach of analysing a model is an altar@#bi the analytical approach,
where system analysis is purely theoretical. Stochastidatspwhich are solved analy-
tically for performance measures, are mathematical atigires of systems. In contrast,
stochastic simulation models can be regarded as algodthbstractions, which repro-
duce the behaviour of systems that they represent when texectvlodelling complex

systems theoretically requires many simplifications, amerging models are often not

accurate representations of reality.

Simulation, on the other hand, does not require as many gyimgi assumptions, which
eliminates this problem. As simulation models are run nathan solved, performance
measures are observed rather than derived. However, & sbgkrvation is generally
not sufficient, and multiple simulation runs are often regdifor results to be conclusive.
Simulation models may in certain circumstances offer grefieedom in the modelling

of important aspects of system behaviour than other appesaand they also enable

2.3. Techniques of Performance Analysis 63

models to be considered whose state space exceeds anatgtitability.

Simulation models allow the modeller in theory to repressistems at arbitrary levels
of detail; however, in practice there is a trade-off betw#enrealism of the model and
the time that it takes to produce a statistically significamt. In simulation models, the
state space is generated during execution by the modelsséhess, which eliminates
the need to store it all at once, as is often required by thé/tiece approach. At the

same time, simulation models can sometimes be very timsteoimg to create, since the
specification process involves writing and debugging picaéy complex code. Simula-

tion models are also expensive to evaluate, because siarulains require substantial
computational resources, and a number of them are usualiseary in order to obtain

relevant metrics [Hillston04].

Simulation models are complex computer programs, whichbeatteveloped in any pro-
gramming language. Most often, a system model is constiugther in the form of a
computer program or as some kind of input to simulator sa#wahe process of simu-

lation usually takes place in the following order:

1. Problem definitioninputs and constraints on decision variables are identifinesh,
the measure of system performance is defined, followed byl¢kelopment of a

preliminary model structure that relates inputs and thesmesof performance.

2. Data collection and analysisA method used for the collection of data is defined,
taking into account the fact that regardless of the chosethadethe decision of

how much data to collect effects a trade-off between costandracy.

3. Development of simulation modebufficient knowledge of a system needs to be
acquired in order to develop an appropriate conceptual @giddl model. This is

then followed by a more detailed simulation model.

4. Model validation, verification and calibratiorialidation ensures that models cor-
respond to reality, and verification establishes whethair implementation corre-
sponds to the conceptual model. Thus, validation addrébseguestiorils the

right system being built?"whereas verification is concerned with the questisn

64 Chapter 2. Background

the system being built right?’Finally, calibration ensures that data generated by

the simulation matches actual observed data.

5. Input and output analysidiscrete event simulation models typically have stochas-
tic components that replicate the probabilistic behavadsystems. Accurate input
modelling requires a close match between an input modelfandriderlying prob-
abilistic mechanism of a system. Input data analysis moalelslement (e.g. an
arrival process or service times) in a discrete event sitimmagiven a data set that
was collected on the element of interest. Error checkingifopmed on input data,
and simulation experiments are carried out to derive canmhs from simulated

system behaviour.

6. Sensitivity estimationProvides the means for modellers to understand which rela-

tionships are meaningful in complicated models.

7. Reporting:Ensures the provision of relevant simulation results to efleds.

2.3.4 Comparison of Techniques

Probabilistic Model Checking

The main purpose of probabilistic model checking is thefigaiion of behavioural prop-
erties of system models. Systems are modelled as Markovaregses, which are the-
oretical abstractions that are solved in order to obtaifiopeance results. Models are
generally solved with numerical analysis techniques, @ting to criteria defined in per-
formance queries. Queries are expressed in formulae diastc logics, and are able to
reason about state- and path-based constraints, as wédlaaly state measures. Proba-
bilistic model checking is interested in obtainipgs / ncanswers, which indicate whether
or not certain properties defined in performance queriesaisfied by the model. Spe-
cialised model checkers support and automate the verdicgtiocess. One of the main
limitations of probabilistic model checking is that veryda models cannot be verified,
due to the state space explosion problem, and that quardifaerformance measures

cannot be extracted from models.

2.4. Tool Support for Performance Analysis 65

Numerical Analysis

Numerical analysis applies mathematical solution tealesgto Markovian and semi-
Markovian models in order to derive performance measureggefest. Similarly to prob-

abilistic model checking, systems are modelled and suleselyusolved. Unlike proba-

bilistic model checking, numerical analysis is not resgédcto verification-style analyses,
but is able to extract a wide range of performance metrias fnoodels. Some assump-
tions about systems are required, especially with respetiet timing of events, but the
resulting models are relatively easy to solve, as they aglly on simple linear algebra
techniques. A number of dedicated analysis tools existitigiement numerical solution

techniques, and they can be used in many diverse applicat@marios. On the down-
side, complex models with very large state spaces can oftebenanalysed by currently
available numerical algorithms due to the state space siplgoroblem that imposes

computational resource requirements that exceed avéyabi

Simulation

Simulation differs from the previous two approaches mainlyhat it abstracts systems
algorithmically, and observes results of runs to obtaimeses. Simulation models are
generally speaking less sensitive to the size of the staisesgnd allow for less simplified
models to be analysed than other approaches, which makekaton models widely ap-

plicable and very powerful. However, their design and ekeawcan be time-consuming,
and the evaluation of the trustworthiness of results isirequhrough the calculation of

confidence intervals.

2.4 Tool Support for Performance Analysis

2.4.1 Tools for Performance Analysis

Below, we present some of the more well-known tools for pentonce analysis. Some

of the tools are exclusively model checkers or quantitasimalysers, while others are

66 Chapter 2. Background

equipped for a more versatile application by featuring supfor both model checking

and quantitative analysis.

GreatSPN

GreatSPNthe Graphical Editor and Analyser for Timed and Stochd2atri Nets [Chi-
ola95], is a software package for the modelling, validatiod performance evaluation of
distributed systems, represented by GSPNs and their @aaxtension, stochastic well-
formed nets. The tool provides a framework for timed Pettibssed modelling, and
implements efficient algorithms to enable the analysis ohglex large-scale systems.
GreatSPNconsists of a number of separate tools that collaboratesicdnstruction and
analysis of Petri net models. Different analysis moduleslzarun on different machines
in a distributed environment, and the modular structureéheftbol makes it receptive to

the addition of new analysis modulgSreatSPNs main features are:

e Thegraphical user interfacésee Figure 2.14) enables the graphical editing of Petri
net models and the representation of structural properiiesnables the defini-
tion of timing and stochastic specifications, parametedspanformance measures,
provides menu-driven interaction with individual anatysnodules, and presents
performance results in a graphical fashion. In additiorfiedttures an interactive

simulation and token game for Petri nets with priorities ardbitor arcs.
¢ Itallowsstructural propertiegor nets with priorities and inhibitor arcs to be checked.
e It useslinear programmingor the calculation of performance bounds of GSPNs.

e Its integratedVlarkovian solverdor steady-state and transient performance evalua-

tion exploit efficient sparse matrix-based numerical tégphes.

e |t featuressimulation module$or interactive event-driven simulation. In coopera-
tion with the GUI, they provide graphical model animatioealrtime updating of

performance measures and arbitrary rescheduling of events

e The well-formed coloured net modukpports the construction of coloured and

2.4. Tool Support for Performance Analysis 67

symbolic reachability graphs, and their conversion intoped Markov chains. The

module supports steady-state and transient analysis,lbasrsmulation.

e Support for CSL model checking on GSPN moidaisalised by interfaces RISM
andETMCC[D’Aprile04]. Interfacing withPRISMis realised by a translation of
GSPNs into the state-basB&®RISMinput language on the net level. CSL formulae
that express performance requirements are specifi@RiiSMs graphical inter-
face. When interfacing witE TMCGC model checking is realised by the translation
of GSPN models to CTMCs. A translator creates a CTMC from the G&ieblel
in the format that is expected lyTMCC and users specify propertieseETMCC

arrival

* | Define Printarea

Figure 2.14:GreatSPNuser interface

DNAmaca

DNAmaca[Knottenbelt96] is a Markov chain steady-state analysat it able to solve
models with up taO(10%) states. It features model and performance measure specifica
tion in its input language, and provides support for the detepperformance analysis

sequence by enabling model specification, state spaceajemerfunctional and steady

68 Chapter 2. Background

state analysis and the computation of performance measthiedool consists of a num-

ber of components, whose interaction is also illustratdeéigure 2.15:

e Theparser moduldgranslates high-level model descriptions into C++ classes.

e A state space generates formed for each model by linking the corresponding C++
class with common library routines. The state space gemeuaes a probabilis-
tic exploration algorithm, incorporating vanishing statinination, to generate all
reachable tangible states. The infinitesimal generatorixnaescribing transition

rates between tangible states, is also generated.

e Thefunctional analysechecks the generator matrix for Markov chain irreducibil-

ity, which is a necessary precondition for a stationaryritigtion solution.

e Thesteady-state solvatetermines the stationary distribution by solving the et o

global balance equations for the model.

e Theperformance analysas formed by linking user code with common library rou-
tines. It uses the steady-state solution in combinatioh stidtte space information
to calculate performance measur@&N\NAmacais able to calculate state and count
measures. A state measure is used to determine the mean reanttegeof a real
expression that is defined at every state of a system. A coaasumne is used to

determine the mean rate at which a particular event occurs.

HYDRA

HYDRA|Dingle04a] facilitates the parallel and distributed ais& of very large Markov
models for passage time and transient state measures tthtbaguse of uniformisa-
tion [Grassman87, Reibman88)Y DRAbuilds onDNAmacaechnology, and in addition
supports parallelised performance measure computating state-of-the-art hypergraph
partitioning algorithms [Trifunoi04], which enable the efficient distribution of sparse

matrix-vector operations across a number of processors.

2.4. Tool Support for Performance Analysis 69

Model
‘ Results

Description

State Space | . Performance
Generator State Space Analyser

R Steady State

Solution

Transition
Matrix

1

‘ Functional = -~ Steady State

i " ‘ Common Librry

Analyser Salver

Figure 2.15:DNAmacamodule interaction

Figure 2.16 show$lYDRAs architecture. At the beginning of the analysis process, a
high-level model is specified DMNAmMac& model specification language. Following that,
HYDRAs state generator produces the generator matrix of therlyiag Markov chain,
together with a list of start and target states in the casepzEssage time analysis run.
Uniformisation is then applied to transform the generatatrir, which is subsequently
partitioned using hypergraph algorithms. Distributedsage time and transient analysis

modules are then invoked to calculate desired performamtaas.

SMARTA

SMARTADIngle04a] is a parallel and distributed MPI-based senairkdv response time
analyser that incorporat€®NAmacatechnology. It performs iterative numerical analyses
of passage times in very large semi-Markov models (inclgd@sPNSs), using Laplace

transform inversion and hypergraph partitioning techagju

SMARTAs tool architecture is shown in Figure 2.17. The passage amalysis process

70 Chapter 2. Background

AN AT Steady
LS -0 Enbancod State-Space
¢/ e » High—-LeveJ’ enerator
—4 -0 Specification Solver
p. J L. vy L. S - A
Y ' ™ 4 ™ 4 ™

Matrix Distributed
Uniformizer | __ |Hypergraph | _ | pesponse
And | Partitioner o Time
Transposer Calculator

. S o) L. S A

Figure 2.16:HYDRAtool architecture

is similar to that ofHYDRA Passage time results are provided in the form of text files,

which can be parsed by GNUplot for graph visualisation.

SHARPE

SHARPE the Symbolic Hierarchical Automated Reliability and Periance Evaluator
[Hirel00], supports the construction and analysis of penfance, reliability, availability
and performability models. Among otheSHARPEsupports Markov and semi-Markov
chains and GSPNs, and large models can be constructed #ydgganising hierarchical
model composition. It also provides flexible mechanismsctunbining results, so that

models can be used in hierarchical combinations.

SHARPHEhas a graphical user interface, whose major componentsmoelal editor that
allows graphical model definitions, and an extensive ctidacof visualisation routines
to analyse output results. The interface also provides b-leiegl input format to the
SHARPEsyntax. Users are able to create Markov chain-based mogealgfining un-
derlying probability matrices. The GUI provides a way totplesults, and supports the
exporting of data into Excel spreadsheets. The interfacewvdten in Java to make the

tool architecture-independent and portable.

2.4. Tool Support for Performance Analysis 71

-

wEAL J Enhanced State DTMC Distributed
J~ | gl _ | DNAmaca Space Steady Laplace
B s high-level State Transform [
—'iﬁ“[".,“fl specification Generator Solver Inverter
™

partitioned g ”
matrix
files

I i Hypergraph
Partitioner

slave proces.
groups

master
disk
cache
filter

LT inverter
I

ke P N Usy with
et 3 L(s)
evaluation

LT inverter s-value work queue
with no
L(s)
evaluation

master 32 :O O
processor s 2} L(s n)

M e e s

master
disk cache

Figure 2.17:SMARTA0ol architecture

M 6bius

Mobius[Clark01] is a tool for modelling the behaviour of complex qauer and net-

work systems and for studying their reliability, availayiland performance. Its funda-
mental assumption is that no modelling formalism can evethbesingle best approach
to constructing all different kinds of system models. Mamyrain-specific modelling

languages and techniques for analysing models, such asasiomy state space explo-
ration and analytical solution, are needed to study impbggstem behaviour. Therefore,
Mobiusdefines a broad framework into which new modelling formasismd model solu-

tion methods can be integrated to collaborate with the sa&trefddy supported formalisms
and techniques. This flexibility allows engineers and d@énto represent systems with
modelling languages that are appropriate to their specibblpm domains, and accu-
rately and efficiently solve systems using solution techegjthat are best suited to their

size and complexity. Time- and space-efficient discret@tesenulation and numerical

72 Chapter 2. Background

solution, operating on Markov processes, are both supghdvtébius main features are:

e Support for multiple graphical and textual modelling lages Model types in-
clude SPNs, CTMCs with extensions and SPAs. Models are catstiwith the
appropriate level of detail and customised to the speciti@beur of the system of

interest.

e Ability to define customised system measimabe form of detailed expressions,
based on nodes and activities in models. Such measures lagen tee reliability,
availability, performance and security. Measurementsheaoonducted at specific

time points, over periods of time, or when systems have eghsteady state.

e Study of system behaviour under a variety of operating ¢mmdiis possible, since
system functionality can be defined by model parameterss&han be observed
across a wide range of values in order to study system balrathat could be

challenging to measure with prototypes.

o Distributed discrete event simulati@mables the evaluation of custom measures us-
ing efficient simulation algorithms. Systems are execugp@atedly as simulation
runs, either locally or across remote clusters in a distedbumanner, and statistical

results of measures are gathered.

e Numerical solution techniqueare used for obtaining exact solutions for many
classes of models. Advances in state space computationesredagion techniques
enable the solution of models with tens of millions of statasich could previously

only be solved by simulation.

PRISM

PRISM[Kwiatkowska02] is a tool for the formal modelling and argily/of probabilistic

systems, defined by DTMCs, CTMCs, Markov decision processeis dbst- and reward-
based extensions, PEPA and SBML, the Systems Biology Marknguage. It enables
the automated analysis of a wide range of quantitative ptigseof such models. Sym-

bolic data structures and algorithms, based on Binary DetiBiagrams (BDDs) and

2.4. Tool Support for Performance Analysis 73

Multi-Terminal Binary Decision Diagrams (MTBDDs) are used édficient model repre-
sentation, enabling the analysis of large-scale modeladtiition,PRISMalso supports

discrete event simulation for generating approximate fizdive results.

Models are described using the state-bdRtSMlanguage, a probabilistic variant of the
Reactive Modules language. Its fundamental components adeles and variables, and
a model is composed of a number of modules that can interéicieach other. A module
contains a number of local variables, and the values of thasables at any given time
constitute the state of the module. The global state of theatie determined by the local
state of all modules. The behaviour of each module is desttiily a set of commands,

which take the following form:

[1] guard -> prob_1 : update_ 1 + ... + prob_n : update_n;

A guard is a predicate over all variables in the model. Upsldescribe transitions that
the module can make if the guard conditions are satisfiedfranditions are performed
by updating variables in the affected module. Each updastsassociated with a prob-
ability or rate which is assigned to the corresponding itexms The following example

shows the description of a module:

nodul e ML
X : [0..2] init O;
[T x=0 -> 0.8:(x’=0) + 0.2:(x’=1);
[1] x=1 & y!=2 -> (x' =2);
[] x=2 -> 0.5:(x ' =2) + 0.5:(x" =0);
endnodul e

PRISMs property specification language (see Section 2.2.4)wallthe expression of
PCTL and CSL formulae, as well as cost- and reward-based taiargiproperties. The
tool takes as input a description of a system, from which fistucts a model and com-
putes the set of reachable states, and a property speoifi¢dg that defines which prop-
erties need to be verified on the model. Model constructi@hreachability calculation
are implemented with space-efficient symbolic represemsat Model checking is car-
ried out using a combination of reachability-based conmpartaand the solution of linear

equation systems.

74 Chapter 2. Background

PRISMhas been extended to interface with Grid clusters and caitrg@mputations on
them [ZhangO05]. After the calculation of the probability tntaand initial vector for a
model, they are exported to files and transferred to rematesys. Following this, the
job submission component submits a model checking job todhete system. Users
are able to monitor job progress through a dedicated mamg@omponent. Once a job
completes remotely, the result vector is transferred bBEdSMuses the Globus Toolkit
as the basis of its Grid middleware, which implements filegfar, job management and
monitoring. The Midlands eScience Cluster [MeSC] serveBRESMs underlying Grid

computational infrastructure. Figure 2.18 shddRISMs enhanced Grid-enabled archi-

tecture.
(& ™ Prism Kernel =
System Modules | '
Decription Parser - - ™
- - Sparse |MTBDD| Hybrid Parallel | Results
Engine | Engine | Engine Engine (States, Probabilities)
r/ 3 i §

PCTL PCTL : \
Properties |\ Parser (;UDD Py,
I
4 ™

GSI
Job Job Data

L Submission | Monitor Transfer |

User’s Desktop

Remote System

7

\-| f I'G SI Y)
/) _OpenSSH
& s N
L GSI J

Globus Toolkit 4

WS-GRAM

Figure 2.18: Grid-enabledRISMtool architecture

PRISMs high-level modules, such as the GUI and parser, are writtdava, while low-
level code and libraries were implemented in C++. The tool lmamun with a GUI or

from the command line.

Chapter 3

Performance Trees

Systems engineers are faced with high expectations tordasidbuild systems that meet
end-user operational performance requirements. Thisastecplarly challenging task for
large-scale, high-throughput distributed systems, ssatiuster computers and telecom-
munication networks for example. An established pipelioedetermining whether a

given system meets its expected performance is to

(a) construct a mathematical model that replicates its\dehig using some stochastic

modelling formalism (as presented in Section 2.1),

(b) express applicable performance-related queries ms@f requirements and mea-

sures, using a stochastic logic or other methodology (segoBe2.2), and

(c) apply specialised stochastic model checking or quetivé analysis software (see

Section 2.4) to resolve queries.

This chapter addresses step (b) of the process by intraglarformance Trees, a graphi-
cal formalism for the specification of performance requieetrand quantitative measure-

based queries on stochastic system models.

We begin by presenting the motivations for the developmémhe formalism and give

a brief overview of its main features. We then discuss thecitre of Performance Tree

75

76 Chapter 3. Performance Trees

gueries, and introduce the set of currently available dpesa Once the fundamentals
have been established, we highlight the power of Perforedinees by elaborating on
their accessibility, expressiveness, extensibility amdatility. Finally, we provide exam-
ples of Performance Tree query specification to demonsinatese and applicability of

the formalism.

3.1 A Novel Representation Formalism for Performance

Queries

3.1.1 Motivations

To study the behaviour and observe various interestinggrtigs of real-life systems,
engineers construct stochastic models that represemnsysnathematically, in a man-
ner that is amenable to analysis. To analyse system modhgsieers need to construct

performance queries that specify performance propentigfameasures of interest.

As Section 2.2 has shown, a number of different approache®edaken for the spec-
ification of performance queries. For a number of reasowghsstic logics have been
among the most widely-used methods for performance regeiné specification. Due to
their logical nature, they have well-defined syntactic&tiees and semantics, and their
formulae are able to express performance properties in @smrrigorous and systemat-
ically verifiable manner. However, their use among systegsigtkers is rather limited in
practice, due to their inherent complexity and restrictegressive power. The concise-
ness and nested nature of stochastic logic formulae hadarey to obscure questions
being asked. In addition, an expert understanding is oftguired to translate perfor-
mance requirements expressed in natural language intcalogirmulae. For these rea-
sons, stochastic logics are perceived as esoteric by malugtimal users and have not

gained wide acceptance in such circles.

Modern Service Level Agreements (SLAS) include incredgimgpmplex performance

properties. Hence, system designers need to establiskdglag design-time whether

3.1. A Novel Representation Formalism for Performance @geri 77

their systems are going to meet QoS requirements set out Bg.SWith current ap-
proaches to performance query specification, such as sticchagics for example, many
performance properties of interest cannot be addressetbdumitations in expressive-
ness. Such properties often relate to quantitative pedoo®m measures that need to be

extracted from system models directly.

Traditionally, it has only been possible to reason aboufoperance measures with tool-
oriented and graphical query specification languages. [&ogluages were developed for
individual quantitative analysers, and are therefore wspgcific and limited in terms of
their expressiveness and application. Generally, thepairexclusively query specifica-
tion languages, but ones that also incorporate model spatodfin capabilities. The same
applies to most graphical languages, which generally omhotate system specifications

with performance information.

In summary, no single formalism has been available so fantbald enable the concise
and accessible expression of performance requirenatperformance measures in a
single query. As such, the combined expressive power okntiapproaches to perfor-
mance query specification is not sufficient for many of the en&wphisticated analysis

scenarios.

3.1.2 Overview

To cater for these requirements and to overcome the afot@ned shortcomings of cur-
rent approaches to query specification, we have develBpgdrmance TreefSuto06a,
Suto06b, Suto07], a graphical formalism for compositiggexformance query specifica-
tion that enables the reasoning about performance regeisnand the direct extraction
of quantitative performance measures. Performance Topp®g elegant query composi-
tion, are easily visualised as hierarchical tree strustuard provide a general framework
that allows for the expression of a wide range of performgmogerties in a uniform
manner. In addition, they are applicable in the context eésd modelling formalisms,
including SPNs, QNs and SPAs, due to the use of an abstraetsgiacification mech-

anism. Moreover, Performance Trees are extensible, dither parameterised macro

78 Chapter 3. Performance Trees

mechanism that uses existing operators to construct wfered performance concepts,
or by the incorporation of new operators. Hence, Performdiees represent an acces-

sible, powerful and versatile alternative for performaqguery specification.

Performance Tree queries are constructed from a rich smect operators, visualised
graphically as tree nodes, which represent performanceepts and properties that are
familiar to users with an engineering background. The ceteo§operators can be ex-

tended dynamically to include support for additional udefined concepts.

Currently, Performance Trees are able to reason about sgtatdyand passage time prop-
erties by specifying applicable probability distributsoand densities. Queries are able to
address properties that are derived from these distribsitesd densities, such as mo-
ments, percentiles and convolutions. In addition, prdiiggs with which passages take
place in a given amount of time and the transient probalnlityystems being in a set of
states at a given point in time can also be expressed. PenfmenTrees allow the rea-
soning about mean rates of occurrence of system actionst ataies that have certain
steady state probabilities, and about states that a systaroacupy at a given point in
time with a certain probability. In addition to performanegated concepts, it is also pos-
sible to specify Boolean and arithmetic operations and coisqas, as well as macros,
which condense possibly very complex user-defined perfocen@roperties into single

Performance Tree nodes.

The power of Performance Trees is provided without saangicomputational tractabil-
ity, since all operators either impose a trivial computadiidburden or are backed up by

known numerical algorithms that are amenable to scalalvkdipbimplementation.

3.1.3 Query Specification with Performance Trees

While Performance Tree queries can also be expressed inuakéatm, the formalism
was primarily designed for graphical user-level speciitzat A visualised instance of a
Performance Tree query consists of a set of nodes that fonerarthical tree structure

when connected by arcs, as shown in Figure 3.1.

3.1. A Novel Representation Formalism for Performance @geri 79

density / distributiomn

start states

start

target

Figure 3.1: An example Performance Tree query

Nodes in a Performance Tree query can be of two kinds: operati value nodesOp-
eration nodegepresent performance concepts and behave like functiakis,g one or
more child nodes as arguments and returning a result. Childsxcan be other operation
nodes that return a value of an appropriate typeabue nodeswhich usually represent
states, functions on states, actions, numerical valueserigal ranges and Boolean val-
ues. Complex queries can be easily constructed from basmepts by linking nodes

together and forming query trees.

Arcs connect nodes and represent hierarchical orderings betitheen. Arcs emanating
from a node are referred to as that node’s ‘outgoing arcsl, lanconnecting a node’s
outgoing arc to another node, a parent-child relationshiprmed. In general, only oper-
ation nodes have outgoing arcs, since only they requiret ipprameters to be supplied,
which are represented by the nodes that connect to them. iBpohparameters can
either be required or optional, which is determined by therapon node that they are
assigned to. Since every performance concept or operamesented by an operation
node requires an input to operate on, operation nodes alnayesat least one outgoing
arc. Nodes that are connected to operation nodes througlotitgoing arcs are called
‘child nodes’. Value nodes (with the exception of the Rangdenavhich is a special case)
have no outgoing arcs. Arcs are annotated with labels, wi@phesent roles that child

nodes have for their parent nodes.

The top node of a Performance Tree query represents thelloestat of the query. The
result’s type is determined by the output type of the top reodeild node. Table 3.1 pro-

80 Chapter 3. Performance Trees

vides an overview of the currently available PerformanaeeToperators, further details

of which will be discussed in Chapter 4.

3.2 The Power of Performance Trees

The power of Performance Trees can be summarised by thevfoidour attributes:

3.2.1 Accessibility

One of the main motivations for the development of Perforceafnrees was the need
for an accessible performance query specification meamaiscessibility implies intu-
itive ease of use that enables users to specify performaopenies in a straightforward

manner.

Due to the area of application of Performance Trees, a ceat@ount of statistical and
engineering background is necessary for the understaradidguse of the formalism;
however, such a background is normally characteristic efténget audience of system
designers and engineers. Performance Tree queries ateuod®d from a set of operators
that represent well-known performance concepts, and thaaih resemblance of oper-
ation nodes to functions in a programming language and vaddes to their arguments

contributes to making the use of Performance Tree operators natural.

Performance Trees ensure ease of use through their graphicae, which allows for
convenient visual composition of performance queries.irTierarchical tree structure
provides a pleasant alternative to the obfuscating natisgohastic logic formulae, and
simplifies the interpretation of queries. The ability tonegent Performance Tree queries
in natural language is an additional aid to the visual cositon and intuitive verifica-
tion of performance queries. Section 5.1 introduces a ablamguage-based translation
mechanism that is featured in the tool supporting Perfoonadmee-based query specifi-
cation. It provides users with continuous feedback on therablanguage equivalent of

gueries that are in the process of construction. Due to thetaste of Performance Tree

3.2. The Power of Performance Trees

81

Textual GraphicalDescription

? The result of a performance query.

Mult Concurrent evaluation of multiple independent queries.

PTD Passage time density, calculated from a given set of stertaaget states.
Dist Passage time distribution obtained from a passage timetgens

Perctl Percentile of a passage time density or distribution.

Conv Convolution of two passage time densities.

Probininterval

ProbinStates

Moment
FR
SS:P

SS:S
StatesAtTime

Ininterval

Macro

@

Num
Range
Bool
States
StateFunc

Actions

Pre—=e)

iy
¥
L 1S)
K2

E]

m
<

i

Q@
e @
Prelpipp]

xe[x1,x2]

Macro

*
+= 5N

Range

Bool

States

StateFunc

Actions

|-
=

Probability with which a passage takes place in a certainuamaf time.

Transient probability of a system being in a given set ofestat a given point
in time.

Raw moment of a passage time density or distribution.

Mean occurrence of an action (mean firing rate of a trangition

Probability mass function yielding the steady-state pbillig of each possi-
ble value taken on by a StateFunc when evaluated over a gareri states.

Set of states that have a certain steady-state probability.
Set of states that the system can occupy at a given time.

Boolean operator that determines whether a numerical yalugthin an in-
terval.

User-defined performance concept composed of other opgrato

Boolean operator that determines whether a set is included ¢orresponds
to another set.

Boolean disjunction or conjunction of two logical express.
Boolean negation of a logical expression.

Arithmetic comparison of two numerical values.

Arithmetic operation on two numerical values.

A real number.

A range of real numbers, defined by a lower and an upper bound.
A Boolean value.

A set of system states.

A real-valued function on a set of states.

A set of system actions.

Table 3.1: Description of Performance Tree operators

82 Chapter 3. Performance Trees

queries, it is also relatively simple to translate a perfamge query expressed in natural
language into Performance Tree form. Section 5.1 proviéésild of a query construc-
tion mechanism supported by the tool, which allows userstmd queries step-by-step

in natural language, and construct the equivalent Perfocendree queries automatically.

3.2.2 EXxpressiveness

Perhaps the most distinctive advantage that Performarmees Tiave over other approaches
to performance query specification is their ability to exgsréoth performance require-
ments and performance measures in a single query. Perfoenfaees are able to reason
about a wide range of performance concepts from the realmpmoperty verification and
measure extraction. At present, no other formalism is ablaffer similar levels of ex-

pressiveness.

As summarised in Table 3.1, Performance Trees are able t@®x@ wide range of
performance-related concepts and operations in theiregievlodellers are able to aggre-
gate multiple independent query trees into single queoienable parallelised evaluation
that results in a significantly reduced overall computatiore when compared to indi-

vidual sequential query evaluations.

Performance Tree queries allow modellers to reason abspbnse times by extracting
full passage time densities and corresponding distribgtfoom system models. Beyond
the information that they already provide, passage timsitiea and distributions can be
used to calculate percentiles, convolutions and raw masn€ryerators are available that
address the probabilities with which passages occur imgaeounts of time, the proba-
bilities with which systems are in sets of states at certaintp in time, and the states that
systems can be in at given points in time with given probidi Steady-state probability
distributions for sets of states can be extracted from systedels, and it is also possible
to reason about system states that satisfy certain steatdypgobability constraints. In

addition, mean rates of occurrence of actions (mean firitgsraf transitions in a Petri

net context) can also be extracted from system models. &tdradithmetic operations

and comparisons can be performed on operators that repragerrical values. Boolean

3.2. The Power of Performance Trees 83

operations, such as conjunctions, disjunctions and regatcan be applied to nodes that
represent Boolean values, while membership operators chikeether numerical values
are contained within intervals, and whether sets are imtlud or correspond to other
sets. Together, these operators ensure a high degree a$tsmgifon in terms of reason-

ing ability provided to modellers.

Every performance measure query whose result is a numeehts can be transformed
into a performance requirement query by inserting a redatomparison operator between
the Result node and its sub-node. This has the effect of charlye return type of the
guery from a numerical to a Boolean value. To visualise thigept, consider the perfor-
mance measure query of Figure 3.2, which considers the tsgppbamount of time taken
for some passage to occur. Figure 3.3 shows how this is dealverto a performance

requirement query by using thelnterval operator.

start target

Figure 3.2: A performance measure query

Performance Trees are able to replicate most of the expessss of the stochastic logics
CSL and eCSL through their ability to reason about model staRaths in CSL can
be represented as passages in Performance Trees by spesifit, target and excluded
states. Steady-state measures can be expressed withrdtBedarmance Tree operators.
Thus, Performance Trees are able to cater for the needs ¢fstoobastic logic-oriented
users, and offer in addition significantly broader expressess through the availability

of a wide range of miscellaneous operators.

84 Chapter 3. Performance Trees

moment,//density / distribution

start target

Figure 3.3: The performance measure query of Figure 3.2ectew into a performance
requirement query

3.2.3 Extensibility

The Performance Tree formalism can be extended in two watyerehrough the use of

a macro mechanism or by the definition of new operators.

A Performance Tree macro is a shorthand representation séadefined performance
concept. Since certain performance properties that systedellers may wish to express
are not supported by the standard set of operators, Penficani&ees offer the means to
define such properties using a combination of standard tgsrd he formalism includes
a special Macro operator that represents user-defined makrdhis way, performance
properties that are defined by complex hierarchical tregesitres can be represented by a
single node in a Performance Tree query. Since macros esgrpsrformance concepts,
they can be parameterised according to the needs of diffaraalysis scenarios. The
PIPE2 tool stores macro definitions alongside model descriptiarsch allows Macro
nodes to be reused multiple times within the same query,em among multiple queries
on the same model. Figure 3.4 shows an example macro definituch represents the

concept of “Coefficient of Variation”.

The Coefficient of Variation is defined as the ratio of the staddleviation to the mean.

3.2. The Power of Performance Trees 85

density

1.0 density

Figure 3.4: An example of Performance Tree macro expanssey for the calculation
of the Coefficient of Variation

The X node, labelled “density”, is the argument that needsetesupplied to the macro.
This needs to be a passage time density, from which the sthddsiation and the mean
can be calculated. This argument is substituted in placéefatgument nodes in the

macro during evaluation. Figure 3.5 illustrates the usdgheomacro in a performance

query.

Coefficient of Variation
densit:

start target

Figure 3.5: Usage of the Coefficient of Variation macro in dqrenance query

Another way of extending the expressiveness of Perform@rees is to incorporate op-
erators representing new concepts into the set of stangemiors. The formalism can
be extended in this way without any restrictions; howewver,analysis of performance
gueries that use such operators to be successful, toottesakiation support needs to be

integrated into the supporting Performance Tree analysisa@ment (see Section 5.2).

86 Chapter 3. Performance Trees

3.2.4 \Versatility
Abstract State and Action Specification

Performance Tree queries are not restricted to a singleriyimg modelling formalism,
unlike a number of other query specification languages, asdctochastic logics for in-
stance. Modelling formalisms reason about system statésaetions differently. To
ensure versatility, Performance Trees feature an abstat specification mechanism
that supports the reasoning about system states in perficergueries througstate la-
bels A state label is a user-defined string that identifies sesgstem states through a set
of associated constraints on the underlying system thad@peopriate to the modelling

formalism used.

producers consumers

[K produce consume
produced l consumed

Ol®

l products
pause

reset
consumer

reset
producer

[Pause
l producer consumer ITI
producer consumer
idle idle

Figure 3.6: Producer-Consumer System

To visualise this concept, consider the States nodes in€igb that have state labels
‘start’ and‘target’. For the GSPN model of a Producer-Consumer System in Fig@re 3.
the modeller could define the state labels for the start ag@tatates with the following

constraints:

'start’ = (#(producer$ == 4) A (#(consumerg== 2)
‘target’ = (#(productg == 3)

For GSPNSs, a set of states can be specified using conjunerahdisjunctions of con-

structs of the forni{#(placenamer< =), where# (placenamerepresents the number of

3.2. The Power of Performance Trees 87

tokens on place ‘placename’ ande {<, <,==,>, >}. Hence, in the above state label
definitions, the set of system states in which there are fokerts on place ‘producers’
and two tokens on place ‘consumers’ is identified by the déditel ‘start’, while the set

of states in which there are three tokens on place ‘prodigigéntified by the state label

‘target’.

System actions are identified lagtion labels The difference between state and action
labels is that action labels correspond to the actual nafmastions (or transitions in the
context of SPNs) of the underlying system models. Hencg,dbaot use constraints for
the unique identification of actions. Figure 3.7 shows haswttean rate of occurrence of
action ‘produce’ is represented. The Actions node idestifiee transition in the model

through the action labgbroduce’.

produce

Figure 3.7: Action label example

This kind of state and action selection can be adapted terdift modelling formalisms
by changing constraints appropriately. This is presentedea next section in the context
of SPAs.

Application to Stochastic Process Algebras

As an example of how Performance Trees can be used with nragié&rmalisms other
than GSPNs, we present their application on a system mofdieledein the stochastic
process algebra PEPA (see Section 2.1.3). Both GSPNs and R&fAthe ability to
accurately reflect the behaviour of real life systems, withglight difference that GSPNs
are state-based, while PEPA is action-oriented. GSPNseaiyegood at representing the

evolution of systems, while PEPA is useful when systems nedsk constructed from

88 Chapter 3. Performance Trees

a set of sub-components that interact in some way. A GSPN isuaivrepresentation,

while PEPA is not.

A number of Performance Tree operators reference the wmgdystem model directly
through their sub-nodes, which can represent sets of stateslividual actions. In or-
der for Performance Tree queries to be applicable to PEPAetapthey need to be able
to reference states and actions unambiguously. States A Rtbdels can be identi-
fied through state vectors whose elements are the countsr@intdy enabled compo-
nents. Since PEPA is action-oriented, referencing actioRerformance Tree queries is

straightforward. They can be addressed by referring to haef@itions directly.

To provide an example, consider the Producer-Consumer r8ystedel of Figure 3.6.
Let us translate this GSPN into PEPA by making PEPA compaermortespond to places
of the GSPN:

producers = (producer;).produced

produced = (pause producer-).producer idle

producer idle £ (reset producerr;).producers

producty = (producer,).products

products, = (consumers).products_,

consumers = (consumerg).consumed

consumed £ pause consumer;).consumer idle

def

(
(
(
(
products = (producer,).products
(
(
(
consumer idle = (

reset consumers).consumers
The system equation is given by:

(producer$4| || consumerg]) products

{produce,consume}

We can now identify a set of states uniquely by defining a stattor that contains all

3.2. The Power of Performance Trees 89

enabled components of the model, as shown in the examplerbelo

(producers, producers, produced, producer idle, consunuenssumer idle, products

This state vector identifies a set of states in which pmoducers one produced one
producer idle oneconsumersoneconsumer idleand oneproducts components are en-
abled. Since potentially there may be a large number of edad®mponents in a PEPA
model, it is possible to use a more convenient alternativatiom for specifying sets of
states for PEPA models. In line with the approach presemt¢Hillston05], we aggre-
gate the model and represent its states in numerical vextor fSuch a vector is of length
equal to that of the state vector, i.e. the total number offgmments of the system, and has
integer elements, each of which indicates the number ofticpkar enabled component.
Given that the state vect@producers, produced, producer idle, .) contains all compo-
nents that can possibly be enabled, the corresponding maheector for the example
above would bé2, 1,1, ...).

Support for Customer Tracking

The dynamic behaviour of GSPNs is characterised by theioreahd destruction of to-
kens representing customers and resources in systemsisTaieindistinguishable from
one another, which implies that it is often not possible tpregs performance properties
that reason about individual customers. However, it is irgma to be able to express
such properties, since questions of the t{iseghe probability of a customer being served

within 1 minute greater than 95%2ften arise in QoS requirements.

For GSPN-based system analyses, Performance Trees dafability to reason about
tagged customers [Dingle08a] by using an approach derieoed the QN tagged tokens
technique of [Mitrani98]. To use tagged tokens in GSPNgaaearcs of the GSPN need
to be tagged to indicate the permissible flow of tagged tokdnsa GSPN, there can
only ever be a single tagged token, which represents theidhudil customer that is being
observed. A GSPN with a tagged token contains two types &f asgular and tagged

arcs. Tagged tokens may only flow along tagged arcs, whe@asahtokens can be

90 Chapter 3. Performance Trees

transported along both regular and tagged arcs. Additistnattural restrictions require
that tagged arcs only have weights of 1, and that any tranditiat has a tagged input arc
should also have a tagged output arc in order to preservagiged token. To incorporate
into performance queries properties that relate to thetipasof the tagged token, the
(tag@(placename)onstruct is used in the definition of state labels to idgraif system

states in which the tagged token is located at place ‘planehaAnalysis tools forming

part of the evaluation environment (see Section 5.2) fofdP@ance Trees incorporate

tagged token-based analysis capabilities.

start target

Figure 3.8: Tagged customer query

For our running example, consider a simple passage timdtgensery of the form of
Figure 3.8. Here, we wish to express the quémthe Producer-Consumer System, what
is the density of time taken to reach a system state where adgggducer is idle and
there are no consumers available, provided that the systesrstarted in a state where
the tagged producer was available, along with three other poads, as well as two
consumers?” This query necessitates the ability to reason about anithdaV customer.

Hence, we define appropriate start and target states foatgage as follows:

‘start’ = (tag@(producers)) (#(producer$ = 4) A (#(consumers= 2)
‘target’ = (tag@(producer idle))\ (#(consumers= 0)

Section 4.3 provides a detailed explanation of the absstaté specification mechanism
during the discussion of the States and StateFunc opergdess [Dingle08a] for a full

description of the semantics for and analysis of tagged®ke GSPN models.

Customer tracking in PEPA is realised by adding locationfaneass to stochastic probe

specifications [Argent-Katwala07a], which provides thaitgtio identify individual model

3.3. Performance Trees in Action 91

components within PEPA models for selective instrumenatDetails of this technique

are given in [Argent-Katwala07b].

3.3 Performance Trees in Action

To demonstrate the applicability of Performance Trees atfire, let us consider an on-
line transaction system that serves as a company’s eléctetailing platform for selling
products through their corporate web site. A GSPN model isf glistem is shown in

Figure 3.9 and operates as follows.

Customers arrive at the web site with a certain rate, and ptbt® browse the online

product catalogue. At any point, they can decide to leavevitte site and navigate to an
unrelated page on the Web. While browsing the cataloguepimess can select items or
jump straight to the checkout page, in case they are regicustomers who have already
selected an item previously. Once an item has been selecigdmers can either proceed

to the checkout or continue to browse the catalogue.

At the checkout, they are either required to register if theyvisiting the web site for the
first time, or to log in if they happen to be returning custosnehlternatively, they can
decide to return to the product catalogue to search for ntenasi before proceeding to
the placement of an order. Once customers have registedledged in, they are asked
to provide the address to which the order is to be delivereevadl as the billing details.

Once an order has been confirmed, customers are taken bdekgooduct catalogue.

Below, we demonstrate the expressive power of PerformareesToy posing a number

of performance queries in natural language and expredsang &s Performance Trees.

92

Chapter 3. Performance Trees

: not at enter
A

site
entered

go elsewhere
transactionT

aborted
>

A -
>
uit site
site site a A
browse
catalogue
browsing quit browsing
catalogue l
select — jump to
item l checkout
H< Q —>
item . .
back to browse selected l quit selecting
from select
go to
checkout ITI
|_|4 '
= -
back to browse checkout quit checking out
from checkout
log in [] register
L] quit
logged in registered registration
l Y -
provide provide quit login
address ; details
address Q >
rovided
P quit address info
l provision
provide
billing info
billing info >
rovided
P quit billing info
provision
confirm
order ——1
-) >
back to browse |_| leave site

from confirm

order confirmed

Figure 3.9: An Online Transaction System

3.3. Performance Trees in Action 93

NL Query: “From the moment that a customer has entered the web site édfirtt
time, what is the distribution of time required for them tces¢lan item

from the product catalogue?”

PT Query: Shown in Figure 3.10, with relevant state labefmdd as:

‘start’ = (tag@(site entered))
‘target’ = (tag@(item selected))
‘excluded’ := (tag@(transaction aborted))

L2]
L]

density)|

il

-~
target states| axcjuded stdtes
.

)
™ A

start target excluded

Figure 3.10: A query addressing a passage time distribution

NL Query: “What s the probability of some product having been ordesithin 20
minutes after 4 customers entering the site at the same #éintenone

having left in the meantime?”

PT Query: Shown in Figure 3.11, with relevant state labelsdd as:
‘start’ = (#(site entered) == 4)\ (#(order confirmed) == 0)
‘target’ := (#(order confirmed)}> 1)

‘excluded’ := (#(transaction aborted} 1)

94

Chapter 3. Performance Trees

start states

start

target states

excluded states
~

-~

Dsmles “

target excluded 0.0 20.0

Figure 3.11: A query addressing the probability of a passageirring within a time

interval

NL Query:

PT Query:

NL Query:

PT Query:

“Is the 97"" percentile of the convolution of two passage time densities
less than 4.71 minutes, where the first passage is considenedtiie
point when a customer has entered the web site to when they dre at t
checkout, and the second passage is considered from themhtirata
user has provided their address to when they have confirmeordeg

assuming that all throughout the user has not aborted thesaation?”

Shown in Figure 3.12, with relevant state labefsdd as:

‘startl’ = (tag@(site entered))
‘targetl’ = (tag@(at checkout))

‘start2’ = (tag@(address provided))
‘target2’ .= (tag@(order confirmed))
‘excluded’ := (tag@(transaction aborted))

“Is the probability of at least 2 customers being at the clwetlat time
instant 14 minutes greater than 74%, provided that 4 custsrhave

entered the site at time 0?”

Shown in Figure 3.13, with relevant state labefsdd as:
‘startt = (#(site entered) == 4)
‘target’ := (#(at checkout}> 2)

3.3. Performance Trees in Action 95

startl

target states

| | target states
excluded states; excluded states

targetl
lJ targ etz
excluded excluded

Figure 3.12: A query addressing the percentile of a conwwiubf two passage time
densities

observed states

start target 14.0 0.74 1.0

Figure 3.13: A query addressing the transient probabilita gystem being in a given
state at a given time

NL Query: “Are the states that the system can be in at time instant 3@it@gwith
at least 80% probability contained within the set of stateslmich there

are no customers browsing other web sites?”

PT Query: Shown in Figure 3.14, with relevant state labelsdd as:

‘all customers on web site’ := (#(not at site) == 0)

96 Chapter 3. Performance Trees

Figure 3.14: A query addressing the states that the systemocaipy at a given time with
some probability

NL Query: “What is the average rate of customers entering the site; vikdhe
steady-state probability distribution of the number oftousers at the
checkout; and which states of the system have a steady-sbatdity
greater than 0.2, given that the system has started in a statdich 4

customers were browsing other web sites at time 0?”

PT Query: Shown in Figure 3.15

state function

| StateFunc

enter site #(at checkout)

Figure 3.15: A query aggregating multiple independent iggethat address the average
occurrence of an action, the steady-state probabilityeétistem, and states that conform
to a certain steady state probability requirement

This query makes use of the Mult operator to combine muliipdependent performance

3.3. Performance Trees in Action 97

gueries into one. The notation ‘#(at checkout)’ annotatiregStateFunc node represents
the number of tokens on place ‘at checkout’ in the contexthef GSPN model of the
Online Transaction System. Details of its use are givengaloith the explanation of the

semantics of the StateFunc node in Section 4.3.

To demonstrate that Performance Trees are also able tdyspasic arithmetic queries,

consider the following:

NL Query: “What is 5 minus 3 multiplied by 6 and raised to the power of 2?”

PT Query: Shown in Figure 3.16

num. value X

Figure 3.16: A query addressing basic arithmetic operation

Chapter 4

Formal Characterisation of

Performance Trees

In this chapter, we present a formal characterisation oP#rdormance Tree formalism.
We describe its syntax, which defines the valid use of Pedone Tree operators, and
provide a textual representation framework that serves aft@rnative to graphical query
specification. We discuss the typing of Performance Treeadpes, used to verify the type
safety of node assignments within queries, and detail aéiné semantics, which define
the mathematical interpretation of operators. This chragides not aim at suggesting or
describing specific solution strategies or algorithms foplementers, but rather serves
the purpose of rigorously clarifying the semantics of Perfance Tree operators in the
context of (semi-)Markovian modelling formalisms. It lislon material presented in

[Suto06b] and [Suto07].

4.1 Syntax

The syntax describes the nature of Performance Tree valdesrand defines possible
sub-node types for Performance Tree operators, therebplissting rules according to

which performance queries are constructed. In the texwfaltion, individual sub-nodes

98

4.1. Syntax 99

of operators are separated by commas, multiple instancgefiodes are represented by

the "™ superscript notation, and choice is indicated hy.’

4.1.1 Value Node Syntax

TheNum node represents a real value. Depending on which operatida is its parent
within a query, the value it represents is interpreted ciffdly. It can represent a real

number, a percentile, the rank of a moment, a probabilitytona value.

The Rangenode represents a range of real numbers. It is an exceptibe wonvention
of value nodes not having sub-nodes, as it requires two sdesito define the range that
it represents. Nevertheless, it is considered a value mhdeto the fact that it is simply a

basic type consisting of a pair of real numbers.

Range = (Numy

TheBool node represents a Boolean value, tree or false

The Statesnode represents a set of states. State labels are used ritfyitg sets of

states of the model. Section 4.3 also gives details on tie Isiaelling mechanism.

The StateFuncnode represents a user-defined real-valued function ondd stttes. As
a sub-node of the SS:P operator, it is used to define critagadon which a steady-state

probability distribution is to be calculated.

TheActions node represents a set of actions. As mentioned earlieoydetbels are used
for the identification of individual actions within the mdd®etails of the action labelling

mechanism are given in Section 4.3.

100 Chapter 4. Formal Characterisation of Performance Trees

4.1.2 Operation Node Syntax

The? operator represents the result of a performance query,sathe itopmost node of
every query tree. If its sub-node is an operation or valuenitdepresents whatever the
sub-node evaluates to. However, in case its sub-node is trddeé, it represents the set

of values to which the Mult node’s sub-nodes evaluate.

? := Mult | PTD | Dist | Perctl | Conv | Probininterval| ProbinStates
| Moment | FR | SS:P | SS:S| StatesAtTime| Ininterval | Macro
| C |V/A |- |>= | @ | Num | Range| Actions | States| Bool

TheMult operator allows multiple independent queries to be defimadlganeously and
combined into a single performance query. It representsahef results that these queries
evaluate to individually. The operator requires at least, tout can have arbitrarily many,

sub-nodes.

Mult .= (PTD | Dist | Perctl | Conv | Probininterval | ProbinStates|
Moment | FR | SS:P | SS:S | StatesAtTime| Ininterval | Macro
| € | V/A | = |>= | @ | Num | Range | Actions | States |

Bool)?*

The PTD operator represents the density of time that elapses darpagsage between
two sets of states. To specify the passage, the set of sththarset of target states need
to be provided as sub-nodes. Optionally, a further sub-noalebe provided to represent

the set of states that are excluded from the passage.

PTD .— (States| SS:S | StatesAtTime}3

The Dist operator represents the cumulative distribution functomresponding to an
underlying density function. The distribution is obtainfedm the passage time density
or convolution of two passage time densities (which in teofriss type is also a density)

that is represented by the sub-node.

Dist .= PTD | Conv

4.1. Syntax 101

The Perctl operator represents a percentile of a passage time densiistobution. The
operator requires two sub-nodes: one sub-node specifyimghwpercentile is to be cal-
culated, and the other sub-node representing a densitybdigon or convolution of two

passage time densities.

Perctl := Num, (PTD | Conv | Dist)

The Conv operator represents the convolution of two independenbaiitity density
functions into a single density function. The operator has sub-nodes, which can

either be passage time densities or convolutions thenselve

Conv .= (PTD, PTD) | (Conv, PTD) | (Conv, Conv)

The Problininterval operator represents the probability with which a passagens-
pleted in a certain amount of time. The operator has two fudest a passage time
density or a convolution, which defines the passage, andearamge, which defines the

time interval during which the passage is to be completed.

Probininterval .= (PTD | Conv), Range

The ProbInStatesoperator represents the probability of a system being in efstates
at a particular instant in time, given that it has startedoims initial state at time 0. The
operator has two sub-nodes, the first of which representsethef states that the system
occupies at the observation instant, and the second of wlpriesents the time instant of

interest.

ProbIinStates :— (States| SS:S| StatesAtTime), Num

The Moment operator represents a raw moment of a passage time densityordent
generating function can provide us with multiple metriégsce we can derive any number
of central moments, which can provide valuable insight b nature of the passage.

The operator has two sub-nodes. The first sub-node specifiehwnoment is to be

102 Chapter 4. Formal Characterisation of Performance Trees

calculated (e.g. tha”¢ moment), while the second sub-node specifies the passage tim

density, distribution or convolution that the moment isccddted from.

Moment := Num, (PTD | Conv | Dist | SS:P)

TheFR operator represents the average rate of occurrence of dasians. The opera-

tor's sub-node specifies the actions of interest.

FR .— Actions

The SS:Poperator represents a probability mass function yieldiregsteady-state prob-
ability of each possible value taken on by a StateFunc whaluated over a given set of
states. The operator has one required and one optionalalé-ithe required sub-node
represents a state function, which imposes constrainth@cdlculation of the steady-
state distribution. The optional argument represents ¢heokstates, over which the
distribution is to be calculated. If this sub-node is notyided, the calculation defaults

to the entire state space of the model.

SS:P .= StateFunc, (StateSS:S | StatesAtTime)

The SS:Soperator represents the set of states whose steady-stagepity lies within a
certain range. The operator has a single sub-node, whiahedefie acceptable range for

the steady-state probability.

SS:S = Range

The StatesAtTime operator represents the set of states that the system capyoata
given time instant with probability lying within a certaiange, given that it has started
in an initial state at time 0. The operator has two sub-nodes: representing the time

instant of interest and one representing the probabilitgesof relevance.

StatesAtTime := Num, Range

4.1. Syntax 103

Thelninterval operator represents the Boolean value that determines &rreetiumeri-
cal value is within a certain interval. It has two sub-nod@se representing the numerical
value that is to be tested, and one representing the nurheainge that is to be tested

against.

Ininterval .= (Perctl | Probininterval | ProbIinStates| Moment | FR | &),

Range

TheMacro operator represents a user-defined performance conce tiedined by the
composition of basic Performance Tree operators. A Macdei@as as many arguments
as the macro that it represents. Whenever Macro nodes repoeseepts that are appro-

priate as arguments to other operators, they can be usebd-a®das.

Macro .= (PTD | Dist | Perctl | Conv | Probininterval | ProbinStates|
Moment | FR | SS:P | SS:S | StatesAtTime| Ininterval | Macro
| € | V/A | = | | @ | Num | Range | Actions | States |

Bool)°-*

The C operator represents a Boolean value that expresses wheplaeti@lar set of
states is included in or corresponds to another set of stdtesrefore, it has two sub-

nodes, both of which represent sets of states.

C .— (States| SS:S| StatesAtTime)

The VvV /A operator represents a Boolean disjunction or conjuncti@nagion. It has two

sub-nodes, both of which represent Boolean values.

V/A .= (Ininterval | C | V/A | = | | Bool)?
The — operator represents a Boolean negation. It has a singlemildy-which represents
the Boolean value that is to be negated.

- .= Ininterval | C | V/A | = | | Bool

104 Chapter 4. Formal Characterisation of Performance Trees

The <1 operator represents an arithmetic comparisen. € {<,<,==,>,>}. The
operator has two sub-nodes, both of which represent the meathealues that are to be

compared.

D] .= (Perctl | Probininterval | ProbinStates| Moment | FR | & |
Num)?

The & operator represents an arithmetic operationc {+, —, %, /,’}. Therefore, both

sub-nodes of the operator represent numerical values.

O .= (Perctl | Probininterval | ProbinStates| Moment | FR | & |
Num)?

4.1.3 Textual Representation

Performance Tree queries are mainly specified graphidaliythey can also be repre-
sented in a textual manner. A textual representation carrdxigal when writing out
queries, in which case graphical query descriptions mayrdctical. Performance

Tree nodes are represented textually as tuples of the form:

(role, node(. .))

wherenodeis the textual form of the Performance Tree node being repted, as spec-
ified in Table 3.1. Every node has an associated role, whichpsesented by the string
role. Roles are used by operator nodes to classify sub-nodesr &xémple, a PTD node
has multiple sub-nodes of type States, a distinction neets imade regarding the sub-
node representing the set of start states, and the nodesegpirey the set of target states.
In the graphical representation, the label of an arc commgetvo nodes indicates the role
that the sub-node has from its parent node’s point of viewe dihly operator node that

does not have a role is the ? node.

In the case of operation nodes, hierarchies apparent inrdghigal representation are
translated into textual form by using the above notationgwetifying sub-nodes within

enclosing brackets of a node:

4.2. Typing 105

(role, opnode((role, subnode()),...))

For value nodes, the textual form is as follows:

(role, valnode(value))

wherevalue represents the numerical or Boolean value, state or actlwel, lar state
function that is represented by the value node. The Range hodever, is an exception.
Even though it is considered a value node, it requires sulesito define the numerical

range. Therefore, it is represented in the same way as aatapenode.

To visualise this concept, consider the Performance Treeyqef Figure 3.15. It can be

expressed in textual form as:

?(query, Milt(
(queryl, FR((action, Actions(enter site)))),
(query2, SS:P((state function, StateFunc(#(at checkout))))),
(query3, SS:S((prob. range, Range((from Num(0.87)),
(to, Nun(1.0))))))))

4.2 Typing

Every Performance Tree node within a query has a type, argtrineture of Performance
Tree queries is dependent on type compatibility betweeresold is therefore important
to have formal typing defining the rules according to whiclerigs can be constructed.

The following domains are used for the description of Penimmce Tree operators:

S the state space (set of all states) of a model
A . the setof actions of a model
AP . the set of atomic propositions

B = ({true, falsg

106 Chapter 4. Formal Characterisation of Performance Trees

We consider the following basic types for Performance Trees

num . x € R, i.e. areal value

range . [x,y] € R x R, i.e. arange of real values
bool . be B,ie.aBoolean value

actions : {a:.A},i.e.asetofactions

states . {s: S}, i.e. asetof states

statefunc : (AP — R), i.e. areal-valued function on a set of states identified by
state label
probfunc : (R — R), i.e. a probability distribution or density function

mult : {(num | range | bool | actions | states | probfunc¥-*}

With these basic types in mind, we introduce the notation:

node + (subnodetype)nodetype

which expresses that a valid sub-node of the Performane&eopreratonodehas the type
subnodetypeand thatnoderepresents an operation whose result has the nyppetype

Using this notation, we define the typing for Performancee$ras follows:

? = (num | range | bool | actions | states | probfunc | mult) : (num

| range | bool | actions | states| probfunc | mult)

Mult = (num | range | bool | actions | states| probfunc}* : mult
PTD = (states}- : probfunc

Dist = (probfunc): probfunc

Perctl = (numx probfunc): num

Conv = (probfung? : probfunc

Probininterval ~ (probfuncx range): num

ProbInStates = (statesx num): num

Moment = (numx probfunc): num

FR = (actions): num

4.3. Quantitative Semantics 107

SS:P = (statefuncx states). probfunc

SS:S = (range): states

StatesAtTime F (numx range) states

Ininterval = (numx range): bool

Macro = (num | range | bool | actions | states | probfuncy-* :
(num | range | bool | actions | states| probfunc)

C = (states) : bool

V/A = (bool) : bool

- = (bool): bool

D = (numy : bool

= = (numy : num

Num () :num

Range = (numy : range

Bool = () : bool

Actions = () : actions

States = () : states

StateFunc = () : statefunc

4.3 Quantitative Semantics

This section describes the formal mathematical meaningnlyidg Performance Tree
operators. This meaning is presented in the context of (etarkov models and Laplace
transforms where applicable. Efficient and/or scalablerdlgmic implementations are
available for most operators, and are presented in [Kno&i®6, Dingle03, Dingle04b,

Bradley03a, Bradley03b, Bradley03d, Bradley04, Au-Yeung04].

Throughout this section, we will adhere to the followingatainal conventions:

e Scalar values are denoted by lowercase and sets by uppésttase

e Eval(nodg is a function that evaluate®de a Performance Tree node, and returns

the result.

108 Chapter 4. Formal Characterisation of Performance Trees

e L5 : S — 247 is alabelling function that assigns atomic propositiorelalfrom
AP to astate fron®, i.e. L(s) returns the set of labels that are associated with state

S.

e L, : A— AP is a labelling function that assigns a label (an atomic pstjmmn)
from AP to an action from4, i.e. L(a) returns the label that is associated with

actiona.

e Rng(R) is a function that converts the numerical range- [z, y] into the Perfor-

mance Tree representation “Range((from, Nu)j((to, Numgy)))”.

4.3.1 Value Node Semantics

Num operator

The Num operator represents a real value. Its evaluatiddsyie

EvalNum(humVa)) = numVal

wherenumVale R.

Range operator

The Range operator represents a range of real values. Itsaéeal yields:

Eval(Range((fromsubnode(A)), (to, subnode@)))) = [rq,79]

wheresubnode ndsubnodere valid sub-nodes of the operator, according to the syntax

of Section 4.1. We also have thaval(subnode(A)) = r, andEval(subnodeB)) = rs.

Bool operator

The Bool operator represents a Boolean value. Its evaluatsbtsy

4.3. Quantitative Semantics 109

Eval(Bool(boolva)) = boolval

whereboolVal e 5.

States operator
The States operator represents a set of system states.

A number of Performance Tree operators have sub-nodesdpedsent sets of states.
Therefore, an elegant and formalism-independent way afifsfireg model states is needed.
Our approach to state identification uses atomic proposittbat can be combined with

Boolean connectives. A valid compositiamof atomic propositions is given by:

a = true|a|-alara

wherea € AP is used as a state label (see Section 3.2.4). The conjurentidtor dis-
junction of state labelg identifies a set of states for whidls € S : s|= L}, given that

the semantics of = L are defined as:

sk=true forall s sk A iff sz A
sEA iff Ae Lg(s) s=EANB iff s=EA N sEB

Thus, the evaluation of the operator yields:

Eval(StatesgtateLabel) = {s}

wheres € S ands |= stateLabel

StateFunc operator

The StateFunc operator represents a user-defined functiaset of states, which returns

areal value.

The syntax of state function A is defined as:

110 Chapter 4. Formal Characterisation of Performance Trees

A = r|f(A)|AopA

wherer € R, f: (R — R) is a user-defined real-valued function ammp € {+, —, *, /,
<, <, ==, >,>}. The semantics of a state function A are defined in terms dithetion

sfEvalA, s), which calculates the value of state function A for a patticstates:

sfEvalr, s) = r foralls
sfEval f(A), s) = f(sfEvalA,s))
sfEvalA; op A,,s) = sfEvalA;,s) op sfEvalAs,s)

The expressiont(a), wherea represents an expression derivable from a state vector, as
appropriate to the modelling formalism used, is a specthimce off(A) that is inter-
preted slightly differently, depending on the underlyingderlling formalism. Its context-

dependent evaluation is defined as:

sfEval#(a),s) = the number of tokens on plaedn states
(if model is a GSPN)

sfEval#(a),s) = the number of: components in state
(if model is PEPA)

sfEval#(a),s) = the number of customers in the queue at semverstates
(if model is a QN)

Thus, the evaluation of the operator yields:

Eval(StateFuncftatefunctiol) = sfEvalstatefunctions)

e for all s € S in the context of SS:P¢fate functionStateFuncgtatefunctioi))

o for all s € Eval(Statesgtate3) in the context of SS:Pgfate function
StateFuncgtatefunctio)), (states Statesgtate$))

Actions operator

The Actions operator represents a set of system actionsomscare identified by action

labels, and the evaluation of the operator yields:

4.3. Quantitative Semantics 111

Eval(Actions(@ctionLabe)) = {a}

wherea € A andactionLabel= L 4(a).

4.3.2 Operation Node Semantics

? Operator

Unlike other Performance Tree operators (with the excepiidche Mult operator), the ?
operator does not represent an operation, but rather the Waht its subnode evaluates

to. Evaluation of the operator yields:

Eval(?((querysubnodé?)))) = Eval(subnodéAd))

wheresubnodas a valid subnode of the operator, according to the synt&egtion 4.1.

Mult Operator

Similarly to the ? operator, the Mult operator does not repné an operation, but rather

a vector of the values that its sub-nodes evaluate to. Evatuaf the operator yields:

Eval(Mult((queryl,subnode(d)), (query2,subnodegB)), ...)) =
(Eval(subnode(A)), Eval(subnodegB)), Eval. . .))

wheresubnode ndsubnode2re valid sub-nodes of the operator, according to the syntax

of Section 4.1.

PTD Operator

The PTD operator represents a passage time density funttsavaluation yields:

Eval(PTD((startsubnode(A)), (target,subnodeB)), (excludedsubnodeC)))) =
f]JK(t)

112 Chapter 4. Formal Characterisation of Performance Trees

wheresubnodelandsubnodezare required sub-nodes of the operator, andnode3ds

an optional subnode of the operator, according to the syoft&ection 4.1. f;;x(t) is

the probability density function aP; ;x, the first passage time from a set of source states
I ={seS:skE A} toasetoftarget states = {s € S : s|= B}, provided that the
set of excluded states = {s € S : s|= C'} is not encountered along the passage. That
is, the first time the system enters a statd jigiven that it has started in one of the states
in I and has not been in any state/in and at least one transition has occurred. In the

context of (semi-)Markov processes, this is defined as:
Py =inf{t >0:Z(t)e J, Z(0) € [,Vk.0O <k <t(Z(k) & K),N(t) >0}

whereZ(t) is a Markov renewal process, andt) is the number of state transitions that

have taken place by time

Dist operator

The Dist operator represents a passage time distributizetin corresponding to a pas-

sage time density. Its evaluation yields:

Eval(Dist((densitysubnodéA)))) = F(t) = /0 t fa(r) dr

wheresubnodas a valid subnode of the operator, according to the synt&eation 4.1,
and fa(t) is the pdf of Pa, the random variable corresponding to the first passagedfme

the passage defined by A.

Perctl operator

The Perctl operator represents a percentile of a passagedemsity or distribution. Its

evaluation yields:

Eval(Perctl((percentilesubnode(d)), (density/distributionsubnodefB)))) = =

4.3. Quantitative Semantics 113

wheresubnode hndsubnodeare valid sub-nodes of the operator, according to the syntax

of Section 4.1.

Eval(subnode(A)) = p is the percentile that is to be calculated (e.g. when seekiag

95 percentilep = 95).

If subnodeds of type PTD or Conv therevalsubnode@)) = f5(t), where f(t) is
the probability density function oPg, the random variable corresponding to the first

passage time of the passage defined by B. Th&n) = / fe(t) dt = b

100" , Where
F(x) represents a probability value at time — the time value that represents thié

percentile of the probability distribution.

Alternatively, if subnodeas of type Dist or SS:P theBvalsubnode@)) = F'(t), where

F(t) is a probability distribution function. Whesubnode2s of type Dist, we have that
F(t) = 1%, whereF'(t) represents a probability value at time: being the time value
that is thep'® percentile of the probability distribution. When calcutatia percentile of
a steady-state probability distribution, in casdnode2s of type SS:P, the distribution’s
non-continuous nature can result in the same time valuglretnirned for a number of
probability values (see Figure 4.1). Hence, we ha\e) = p; wherep; < F(t) < po

p
andp, < —
P1 = 100 < pa.

—————

\/

Figure 4.1: lllustration of how multiple probability valse&an map onto the same time
value in steady-state distributions

Conv operator

The Conv operator represents the convolution of two pasgageaiensities. Its evaluation

114 Chapter 4. Formal Characterisation of Performance Trees

yields:

Eval(Conv((densitylsubnode(A)), (density2,subnode@B)))) =
Fog= [fgtt=m)ar

wheresubnode ndsubnodere valid sub-nodes of the operator, according to the syntax

of Section 4.1Evalsubnode(A)) = f(¢), andEvalisubnode@)) = ¢(t).

Probininterval operator

The Problininterval operator represents the probabilityh wihich a passage takes place

in a certain amount of time. Its evaluation yields:

Eval(Probininterval((densitysubnode(A)), (time rangesubnodefB)))) =

/tl Y

wheresubnode andsubnodere valid sub-nodes of the operator, according to the syntax
of Section 4.1Eval(subnode(A)) = f(¢), andEval(subnode@B)) = [t1, to].

ProbinStates operator

This operator represents the probability of a system odogpyset of states at a particular
moment in time, having started in an initial state at time @alEation of the operator

yields:

Eval(ProbinStates((observed statesbnode(A)), (time instantsubnodeB)))) =

W]J(t)

wheresubnode ndsubnodezre valid sub-nodes of the operator, according to the syntax
of Section 4.1. We have = {s}, wheres is the initial state of the systenevalsubnodel
(A)) = J, andEval(subnodefB)) = t. 7;; is the transient state distribution of the system,
and is defined as;; = IP(X(t) € J | X(0) € I), whereX(t) is the state of the system at

time instantt.

4.3. Quantitative Semantics 115

Moment operator
The Moment operator represents a raw moment of a passagdeimséy or distribution.

Then'™ moment of a real-valued functiof{z) of a real variable about a valeés defined

as:

= [= or) ds

o0

The moments about zero are usually referred to simply asatienoment®f a function.
Then'™® raw moment of a probability distribution functiof(z) is the expected value of

the random variabl&™. The moments about its mean,where

= [= @) da

o0

are calledcentral momentsand they describe the shape of the function. Raw moments
can be used to calculate central moments. The first centralenbis zero, the second
central moment is the variance, and its square root is thedatd deviation. Further
measures, such as skewness and kurtosis, can be calcutatedhe third and fourth

central moments.

Evaluation of the operator uses the Laplace transform ndettmm [DingleO4a] and

yields:

Evall(Moment((momentsubnode(A)), (density/distributionsubnodefB)))) =
(—1)"L™(0)

wheresubnode andsubnodere valid sub-nodes of the operator, according to the syntax
of Section 4.1. We have th&valisubnode(A)) = n, EvalsubnodefB)) = f(¢) and
L(s) = L{f(t)} is the Laplace transform of(¢).

116 Chapter 4. Formal Characterisation of Performance Trees

FR operator

The FR operator represents the average rate of occurreracsatfof system actions. In
the context of SPNs, this corresponds to the average firtlegofaa transition. Evaluation

of the operator yields:

EvalFR((actionssubnodéA)))) = > > Ru(s)m,

a€B s:enablesy

wheresubnodas a valid subnode of the operator, according to the synt&eation 4.1,

Eval(subnodéA)) = B, andR,(s) is the rate of occurrence of actiarn states.

SS:P operator

The SS:P operator represents the probability mass fungideing the steady-state prob-
ability of each possible value taken on by a StateFunc whaluated over a given set of

states.

Given a state function A, which associates a real value wignyestate of the system, the
SS:P operator represents the steady-state probabilitybdison with which A takes on

particular values.

The operator has a required and an optional subnode. Thieedgubnode is an operator
that represents state function A, and the optional subneplesents a set of states that
are to be considered. If the optional subnode is not provittedsteady-state distribution
is calculated over all the states of the system. If, howeterprovided, the distribution
is calculated only over the set of states represented byghenal subnode. Evaluation

of the operator yields:

Eval(SS:P((state functiosubnode(A)), (statessubnode@B)))) = IP(Z4 =r)

wheresubnode ndsubnode2re valid sub-nodes of the operator, according to the syntax

4.3. Quantitative Semantics 117

of Section 4.1.7 4 represents the value of state functidron a state, and

Z ms iff r € {sfEvalA,s): s= B}
P(Zp=1) = st'\s/éfA:,ij:r

0 otherwise

74 IS the steady-state probability of statdf the optional subnode has not been provided,
B represents the set of all states of the model, i.es B. sfEvalA, s) is defined by the

semantics of the StateFunc operator.

SS:S operator
The SS:S operator represents the set of states that havieim cteady-state probability.

Its evaluation yields:

Eval(SS:S((prob. rangsubnode(A)))) = {s 1S pr<ms < p2}

wheresubnodels a valid subnode of the operator, according to the synt&eafion 4.1;
Eval(subnode(A)) = [p1, p2] andr, is the steady-state probability of stateDue to our
assumption that models have irreducible state spacesp#uifisation of the set of start

states is not required, as these have no impact on the result.

StatesAtTime operator

The StatesAtTime operator represents the set of stateshinatystem can occupy at a

given time instant with a certain probability. The evaloatof the operator yields:

Eval(StatesAtTime((time instansubnode(A)), (prob. rangesubnodefB)))) =
{5 cJ | p Spg(t) < pz}

wheresubnode hndsubnodeare valid sub-nodes of the operator, according to the syntax

of Section 4.1,

e Eval(subnode(d)) = t,

118 Chapter 4. Formal Characterisation of Performance Trees

e Eval(subnodefB)) = [p1, p,

andr;; is the transient state distribution of the system, and isxddfasr;; = IP(X(t) €
J | X(0) € I), wherel = {s}, with s being the initial state of the system at time 0, and

X(t) being the state of the system at time instant

Ininterval operator

The Ininterval operator represents a Boolean value thatrdetes whether a numerical

value lies within a given interval. Evaluation yields:

Eval(Ininterval((num. valuesubnode(A)), (range,subnodefB)))) =
true iff . <n <nry

false otherwise

wheresubnode andsubnodere valid sub-nodes of the operator, according to the syntax
of Section 4.1, and we also have tlatal(subnode(A)) = n, andEval(subnodeB))

= [Tl,’l“g].

Macro operator

The Macro operator defines custom performance conceptsmgsositions of other oper-

ators.

In this way, it is able to represent a large number of diverser-defined concepts. Its
semantics are similar to that of the ? operator, since therd/laperator represents an

entire hierarchy of operators. Thus, its evaluation yields

EvalMacro((macrosubnodéA)))) = EvalisubnodéA))

wheresubnodas the topmost operator of the hierarchy represented by e d/bperator.

Evaluation of the operator takes place recursively.

4.3. Quantitative Semantics 119

C operator
The C operator represents a Boolean value that determines wieettedtris a subset of

another set. Its evaluation yields:

true iff s; C sy
Eval(C((set 1,subnode(d)), (set 2,subnodeB)))) =
false otherwise

wheresubnode hndsubnodeare valid sub-nodes of the operator, according to the syntax
of Section 4.1. We have th&lval(subnode(A)) = s;, andEval(subnodeB)) = s-.

v/ operator
TheV /A operator represents the logical disjunction or conjumabiftwo Boolean values.
For the case when it represents a logical disjunction, éuation yields:

Eval(v((bool value 1subnode(A)), (bool value 2 subnodefB)))) =

true iff b, == true or b, == true

false otherwise

For the case when it represents a logical conjunction, atietion yields:

Eval(A((bool value 1subnode(A)), (bool value 2 subnodefB)))) =
true iff b, == true and b, == true

false otherwise

wheresubnode andsubnodere valid sub-nodes of the operator, according to the syntax
of Section 4.1, and in both casEsal(subnode(A)) == b,, andEval(subnodeB)) ==
bs.

- operator

The — operator represents the logical negation of a Boolean vétkievaluation yields:

120 Chapter 4. Formal Characterisation of Performance Trees

true iff b= false
Eval(—((bool value subnod€A)))) =

false otherwise

wheresubnodas a valid subnode of the operator, according to the synt&ection 4.1,
andEval(subnodéA)) = b.

D operator

Ther< operator represents a Boolean value that is the result ofithengtic comparison
of two numerical values with standard numerical compargoerators. Its evaluation for

the various cases yields:

Eval(<((num. value 1subnode(A)), (num. value 2subnode@B)))) =
true iff n; >xny

false otherwise

wheresubnode andsubnodere valid sub-nodes of the operator, according to the syntax
of Section 4.1. We also have tHaval(subnode(A)) = n,, EvalsubnodefB)) = n,, and

b oe{<, <, ==,>>}.

& operator

The® operator represents a numerical value that is the resutt afitnmetic operation on
two numerical values, using standard arithmetic operaitssevaluation for the various

cases yields:

Evall®((num. value 1subnode(A)), (num. value 2subnodefB)))) = n; @ no

wheresubnode ndsubnode2re valid sub-nodes of the operator, according to the syntax
of Section 4.1. We also have tHatal(subnode(A)) = n,, EvalsubnodefB)) = n,, and
SONS {+7 —, %, /7A}'

Chapter 5

Tool Support for Performance Trees

This chapter introduces tool support for Performance Based query specification and
evaluation by describing a prototype performance anabsironment that enables the
graphical creation and parallel and distributed evalmatibcGSPN-based system models
and Performance Tree queries. We introdateE2, a platform-independent open-source
Petri net tool, which serves as the graphical front-end i® ¢hvironment. We discuss
how PIPE2 facilitates the convenient creation of GSPN-based systeaets, and how
we implement support for the interactive graphical and ratianguage-based specifi-
cation of Performance Tree queries in a new analysis modMéealso describe a range
of state-of-the-art parallel and distributed performaancalysis tools, which supply per-
formance query evaluation capabilities to the analysisreninent. We conclude with
a discussion of how we distribute performance queries tdicgige analysis tools for
evaluation on a dedicated Grid-based analysis clusterefdhfrom [Brien08b, Suto08a,

Suto08b, Bradley08, Dingle08Db] is incorporated into thiater.

121

122 Chapter 5. Tool Support for Performance Trees

5.1 PIPE2: A Tool for GSPN-based System Modelling

and Analysis

PIPE2 [PIPE, Bonet07, Suto08b] is a Java-based open-source todtdohastic sys-
tem modelling and performance analysis. It was originakyedoped as a platform-
independent Petri net editor to support the creation andpukation of potentially com-
plex GSPN models through a simple and intuitive graphical ugerface. Subsequently,
it has been further enhanced by the integration of a numbanaifysis modules, and has
as a result of our work evolved into a versatile front-enddiointegrated parallel and dis-
tributed performance evaluation environment. WRIPE2, users are now able to design
system models, visually create complex queries that addaneslels in terms of perfor-
mance properties of interest, and evaluate them to obtkEvenet performance metrics or

to establish the validity of certain performance propettie

5.1.1 Model Editor

PIPE2provides a graphical user interface (shown in Figure 5.1 alows the creation,
editing, saving and loading of GSPN models that conform ¢oRbtri Net Mark-up Lan-
guage (PNML) [PNML] document interchange format. PNML dealPIPE2to import
and manipulate models created externally, and allows GhL-based tools to do so
with models created iRIPE2

Models are drawn on a canvas using features from a drawinlgailodGSPN models are
constructed from graphical components representing pla@nsitions, arcs and tokens.
Nets of arbitrary complexity can be drawn and annotated adtfitional user information.
Besides basic model design functionality, the designerfaxte also provides additional
visual features, such as zoom, export, tabbed editing aintbéion. The animation mode
is particularly useful for aiding users in the intuitive Waxation of the behaviour of their

models, since it enables them to visualise models in action.

5.1. PIPE2 A Tool for GSPN-based System Modelling and Analysis 123

File View Draw Animate Help

ent Petri Net Editor 2.6: Accid % T
O]s| sa|® (2] [RO[0[0[¢[%]% @ [- (] 5o [-]o @] [vatidae]
ﬁAnavals Module Manager : New Petri net 1.xml |’ Accident & Emergency Unit (extended modeD.xml |
¢ [Available Modules] =
[} GSPN Analysis
D Simulation (Not ready)
D Classification
D Rasponse Time Analysis
[} DNAmaca (Mot raady
D Comparison
D Performance Query Editor /_‘\4 H'
D State Space Analysis ‘\‘J Ll
D Imvariant Analysis
D Reachability Graph
D Passage Time Analysis For Tagged Met
D Passage Time Analysis
D Steady State Analysis
D Clock Watcher Simulation (Not ready)
D Firing Counter Simulation (Mot ready)
D Place Watcher Simulation (Mot ready)
D Tagged Net Converter
D Incidence & Marking
D DNAmaca for tagged net
[Find Madula

i fall il healthy

araiting for doctor see doctor

recover

surgery done

being assessed

to lab waiting for lab do lab tests test done evaluate results

4]

Figure 5.1: GSPN Model Designer Interface

5.1.2 Analysis Modules

PIPE2is equipped with a number of specialised analysis modubgsperform structural
and performance-related analyses on GSPN models. A patiet teft of the canvas en-
ables users access to the currently available modulest@talianalyses examine models
in terms of their topology, and are able to verify whether e@spects of their qualitative
behaviour are in accordance with expectations derived fremeal-life systems that are
to be modelled. Performance analyses are aimed at invigstjgaodels from their op-
erational point of view, and are therefore able to providepge insights into quantitative
aspects of their behaviour. At present, modules exist fercthssification and compar-
ison of SPN models, for the derivation of their reachabigitaphs, for the analysis of
their state spaces, invariants, incidence matrices an&ings; and for simulation and

interfacing with theDNAmacatool (see Section 2.4.1).

124 Chapter 5. Tool Support for Performance Trees

Structural Analysis Modules

Model Classification ModuleClassifies GSPN models based on their structure into the
following categories: state machine, marked graph, fregcelnet, extended free choice

net, simple net and extended simple net.

Model Comparison ModulgCompares two GSPN models based on attributes determined

by users as comparison criteria.

State Space Modul€onstructs a graph of all reachable states, which is useetéordine

properties of GSPN models, such as liveness, boundedneéexatence of deadlocks.

Incidence & Marking Module Determines and displays the forward and backward in-
cidence matrices, the marking matrix, and the set of enatoéatsitions of the GSPN

model.

Reachability Graph ModuleProvides a visual representation of all possible tramsiti
firing sequences of the GSPN model, and informs users abasilpe states that the

model can enter.

Performance Analysis Modules

Simulation ModuleStudies the performance of models by investigating thesgyenum-

ber of tokens per place, using a Monte Carlo simulation-bapgdoach.

Steady-State Analysis Modul@alculates state and count measures from the steady-state

distribution via an interface to tieNAmacasteady state analyser.

Passage Time Analysis Modul€alculates probability densities for the time taken for a
system represented by a model to complete a user-definealgeaga an interface to the

SMARTApassage time analyser.

GSPN Analysis ModuleCalculates analytically the average number of tokens ocegla

token density and the throughput of timed transitions.

5.1. PIPEZ2 A Tool for GSPN-based System Modelling and Analysis 125

5.1.3 Performance Query Editor

As part of our present worlRIPE2has been extended with tierformance Query Ed-
itor (PQE) module [Brien08b, Suto08b, Dingle08b], which allows thepdriaal design

and subsequent parallel and distributed evaluation of texgerformance queries, ex-
pressed as Performance Trees. It implements an easy-grajseical user interface for

the construction of performance queries, which is showngare 5.2.

Performance query Faitor men

File Edit View Tools Analysis Help

CS[S[8® (o 8] [+ <hor [[@] [cm

Information -
The node on the canvas is the topmost node in a Performance Tree query and represents the overall result of the query,

The required argument can be any operation hode.

~Performance Query

[New Query 1xml

Tree Editor rText Query Editor \
~Query Builder

[[J mu[?u l/’”lflﬂﬂ%\i@i‘l = ﬁ»ﬂjﬂ\u\
“1"'*;1 CJL = V.U\” <<<<<< + i [Num ” P«anga][m smsj[f‘:waanJ[nm Hmm]

Figure 5.2: GUI of the Performance Query Editor module

Graphical Query Specification

Like the model editor, the largest part of the PQE’s GUI isuged by the canvas, the
drawing area that serves as a container for the graphicapaoemts of a performance
query. Users construct Performance Tree queries on thasarsmg the functionality

of the query designer toolbar, which is located below thezaan\When a toolbar button

126 Chapter 5. Tool Support for Performance Trees

representing a Performance Tree node is selected, it bedoigidighted, indicating that
an instance of the node it represents is to be drawn onto thasat the location of the

mouse click. This is illustrated in Figure 5.3.

‘Performance Query Cditor. == N

File Edit View Tools Analysis Help

Qs ® (o @« b [[e] mmean

Information—

| The Steady-State Probability node represents the steady-state probability distribution of an arbitrary state function over a set of states,

The required arguments are a ser of states and a function on that set of states, The operator returns a probability distribution.

Lt}
state function states
\
\

~Performance Query

[New Query Lxml

Tree Editor | Text Query Editor |
~Query Builder

] R) (N) D e) () b e () (1)
Wall[cJ“Lﬂ]HIvm]“l <<<<<<) e) (o)) (o) (e e)

Figure 5.3: PQE GUI showing a newly drawn operation node

When an operation node is drawn onto the canvas, a numbersdi@ealso created, which
emanate from the bottom of the node. Arcs either appear ms@alashed lines, and are
annotated by labels. A solid arc indicates that a requirbensde is to be provided to the
operation node via the arc connection. A dashed arc indicatg an optional sub-node
can be provided to the operation node in addition by conngdtito the arc. An arc label
represents the role that the sub-node connected to the afothhe operation node. In
the case of Figure 5.3, the node that will be connected to iithavah the label ‘state
function’ will be considered by the SS:P node to represeiai@ $unction. As a further
illustration of the concept, consider the left-bottomm®tdtes node in Figure 5.4, which

is connected to an arc with label ‘start states’. This cotiorandicates that its PTD

5.1. PIPEZ2 A Tool for GSPN-based System Modelling and Analysis 127

parent node considers the states represented by the Stdetordefine the start states of

the passage.

Queries can be rearranged at will, as each individual gcapbbmponent on the canvas
can be manipulated independently. Nodes can be repositialigconnected from arcs
or deleted. The PQE is initialised with a canvas that by defaantains a single Result
node with an outgoing arc, as illustrated by Figure 5.2. @sare constructed by linking
nodes together, with the hierarchy eventually terminaitinifpe Result node. Each query
has a single Result node. Figure 5.4 shows a fully construeggtbrmance Tree query
on the PQE GUI.

Performance Query EQItor == fractal licali=alisl

File Edit View Tools Analysis Help

alelele@ (2 @]« <[] o] o

|Matural language equivalent of the current tree:

"Is it true that the probability with which a value sampled from the passage time density defined by the set of start states identified by label 'start’ and the set
of target states identified by label target' lies within the range of Oto 5 lies within the range of 0.98t0 1 7"

~Performance Query

|' New Query 1.xml query.xml |

excluded states
start states .~ 13rget states| RN

| States

start target 0.0 5.0

L4l

4 I Il [¥]

Tree Editor | Tex1 Query Editor |

O 8 I D))))) () e) () (]
e (2 (=] Do] o] (] () L] ()) [] ()

Figure 5.4: GUI showing a fully constructed Performance=Tqaery

To provide additional support for query specification, tl@gEPmodule also incorporates
an automatic query interpretation mechanism that trags|Rerformance Tree queries
into their natural language equivalent on-the-fly, as aqseare being constructed. This

is a particularly useful feature for users of the tool who rewefully accustomed to Per-

128 Chapter 5. Tool Support for Performance Trees

formance Trees. The natural language representationemntid@m to intuitively verify
whether the performance query that they are constructingsjeonds to the query that
they have originally intended to express. On the GUI, a panatéd above the canvas
displays the query’s natural language equivalent. Thig@dso serves as a general infor-
mation interface, which provides users with usage inswuastfor individual Performance
Tree nodes when they are selected. The natural languagsespation is colour-encoded
to represent the hierarchy within the query, which is imraggly apparent in Performance

Tree form.

To ensurevalid performance queries, on-the-fly type compatibility vatiida is carried
out during the construction of Performance Tree querieseter node assignments are
attempted. When users want to assign a node as a sub-node peratian node, they
attempt to connect the operation node’s outgoing arc todlde nAt this point, a compar-
ison between the type of the node and the types of acceptaltiesles is performed. If
the node’s type forms part of the set of acceptable sub-ngustthe node assignment is
considered valid and the arc connection is established dtieés not, the node cannot be

assigned to the operation node.

To ensurecompleteperformance queries, a complete structural validation pédor-
mance query is effected when users have finished its cotisiniand have requested its
evaluation. At this point, it may be the case that a strudijukalid Performance Tree
has been constructed, but that certain required argumewmésriot been specified. Thus,
a validation mechanism needs to verify whether a valid tiembchy exists, whether all
operation nodes’ required sub-nodes have been providedyibether value nodes have
been properly defined. Only when all of these validatioreciat have been satisfied do

performance queries proceed to evaluation.

Natural Language-based Query Specification

The construction of Performance Tree queries becomesmatice users are accustomed
to the hierarchical tree structure-based representatidihave become comfortable with

the concepts that Performance Tree nodes represent. Nefesg, it may initially be more

5.1. PIPE2 A Tool for GSPN-based System Modelling and Analysis 129

convenient and intuitive to new users to specify perforneagqueeries in natural language.

[Grunske08a] and [Grunske08Db] introduce the idea of usipgtgern system for com-
mon probabilistic properties, together with a structuredlish grammar for aiding users
in the query specification process. We have devised a siapjgroach and implemented
a guided query specification mechanism in the PQE moduladietsed on a structured
grammar and that allows Performance Tree queries to berootet incrementally in
natural language [Wang08]. Figure 5.5 shows the naturguage query specification
interface located below the canvas. Here, a drop-down meda gext area take the place
of the query builder toolbar, which is provided to users a&sdafault option for Perfor-
mance Tree query construction. The drop-down menu is the p@int of interaction
for users, and is updated dynamically to continuously adfselection of currently valid
expressions that can be used to further extend the partiatigtructed query. Once a

selection has been made, the Performance Tree query isedpatatordingly.

BErrormance Guary Eairor =i el il fimitlfiesl]

File Edit View Tools Analysis Help

O/ Sl® [] [+ s] [@] [mmeam

Information

|Matural language equivalent of the current tree:

|"What is the passage time density of an unspecified passage ?"

~Performance Query

[New Query 1.xml

E
start states target state

il I [o]

Tree Editor [Text Ouery Editor \
~Text Query Editor-
|——5e|en == |V| Undo

What is the the passage time density of the passage defined by [states] and [slates] Reset Query
Query Done |

Figure 5.5: Natural language-based performance quenyrcmtion

130 Chapter 5. Tool Support for Performance Trees

This mechanism provides users with the comfort of a very Enapd straightforward
guery specification mechanism. At the same time, due to tt@ratic construction of
Performance Trees that correspond to the specified natmrguége queries, users are
aided in their familiarisation with the direct graphicaksffication of Performance Tree

gueries.

5.2 An Integrated Evaluation Environment for Perfor-

mance Trees

To provide users with a complete toolset that is able to desygtem models, specify
performance queries on them in the form of Performance Ti@ad evaluate these in
order to obtain relevant results, we have developed a sog#ted performance analysis

environment that supports all of this functionality in ategrated manner.

Our analysis environment consists of a number of intergaaftware component®IPE2

serves as a graphical front-end to users, which allows tleecatry out model design,
performance query specification and evaluation tasks imaetoent manner. For query
evaluation purposefIPE2 interfaces with an analysis server, which collectively reoo
dinates a number of parallel and distributed analysis f@ash of which specialises in
different types of analyses. From a user’s perspectivaepallysis functionality is handled
by PIPE2 and the seamlessness of its integration with the analysisomment creates
the illusion of all analysis functionality being a featurktbe tool. Computations are
carried out by the analysis tools on a dedicated analys&eariuwhich is configured as
a Grid resource. The advantage of using a Grid cluster folysisapurposes is that it
can incorporate a large number of heterogeneous resourttesreby enabling it to sup-
port large-scale computations — and that it can be easignetd. Most importantly,
however, a Grid cluster is administered by sophisticatedidiewvare, which provides a

complete suite of cluster and job management capability.

At present, we are able to analyse models whose size doesccetd)(10%) states.

Overall evaluation capacity is ultimately determined aedde constrained by the indi-

5.2. An Integrated Evaluation Environment for Performanieaes 131

vidual capacities of the analysis tools that implementeatibn support. As tools with
enhanced solution capacity are introduced into the enwea, its overall evaluation

capacity increases accordingly.

Figure 5.6 illustrates the individual components of thelgsia environment and their
interactions. The analysis environment consists of twonnperts. One part encom-
passes client-side components that users are directlyseggo and that are implemented
in PIPE2 and another part contains server-side components thiatrpeanalysis tasks
and that users are not directly aware of. These include ttedyAis Server, which deals
with requests fronPIPE2and interacts with analysis tools, the analysis tools tiedves,
which carry out a range of specialised analyses, and thgssa&luster, which provides

the underlying computational hardware infrastructure.

5.2.1 Analysis Client

PIPE2has the role of the client within the analysis environmend ia its only user-facing

component. It is the gateway to the functionality providgdhe analysis environment’s
other components, and allows users to create system mauktpplicable Performance
Tree queries. It initiates query evaluation by communingathodel and query data to the
Analysis Server for further processing. As soon as the Asis$erver has obtained eval-

uation resultsPIPE2obtains and presents them to users in a visually accessdieen

Figure 5.7 illustrates how users can initiate the evalmatiba fully constructed Perfor-
mance Tree query by clicking on the ‘Evaluate Query’ buttonttoee GUI. Figure 5.8
depicts the performance query evaluation tracker interfatich shows a replica of the
query tree, in which every node is annotated with a statusamat that follows a conven-
tional traffic light colouring scheme. On initial submissjdhe status indicator of every
node of the tree is red, indicating that the nodes have nat beleeduled for evaluation
yet. Once evaluation has commenced, the indicators pulgelow, signalling that their
nodes have been submitted to the analysis tools for praxesais results for nodes are
obtained byPIPE2 the status indicators of the respective nodes turn grel@s.ifidicates

to users that they can click on nodes to visualise resultis. i¥possible while other eval-

132 Chapter 5. Tool Support for Performance Trees

e N
) PIPE2
/ GSPN Editor
_
Analysis Modules
Client
User Side
)
\ Performance Query Performance Tree Performance Tree Result Presentation
Editor Module Editor Evaluator Interface
Server Communication Interface \' \
. J
e N
Analysis Server
Client Communication Interface
Query Analysis
l Thread
N
Dependency Creation of Subtree Translation of Subtrees into Result Data
Analysis Analysis Threads Analysis Tool Languages Processing
Job Scheduling & Submission Interface '
- J
Server
Side
4 N\
Disk-based Model &)
Query Cache 4_1 ’_> File System
4 N\

DNAmaca I [HYDRA] [SMARTA] [MOMA]
[CONE] PERC PROBI
Analysis

Tools
.
¥
(]
Analysis
Sun GridEngine Job Management System Cluster
64 Processor
Cores
. J
. J

Figure 5.6: Performance analysis environment architectur

5.2. An Integrated Evaluation Environment for Performanieaes 133

uations are still in progress. Using an example of a pereeotia passage time density,

Figure 5.9 shows how graph-based results are visualis&dRiy2

Eile Edit View Tools Analysis Help —
(o]]| [[E] 2] e [o] @)
e

Natural language equivalent of the current tree:

AL I

"What is the 38.0th percentile of the passage time density of the passage defined bythe set of start states identified by label 'start' and the set of target states
idantified by label 'target 7'

e Query

New Query 1.xmi

density | distribution

start target

Tree Editor | Text Query Editor

Query Builder

)) 8 () (R))) () () o e (0] (]
[ete) (=] (] o e o) [) (o] (o) (e (e (o] ()

Figure 5.7: Initiation of a performance query evaluatioguest

5.2.2 Analysis Server

The Analysis Server is responsible for the processing oluatian requests issued by
PIPE2 and the coordination of the subsequent performance quaiyaion process. It
is deployed at the analysis cluster’s primary host, and méicoously available to accept
incoming analysis requests. The Analysis Server proceksee requests by decompos-
ing performance queries into subtrees and sending thegetiaised analysis tools for
evaluation. The Analysis Server is also responsible fosipgson evaluation results to

PIPE2for visualisation.

134

Chapter 5. Tool Support for Performance Trees

Performance Query Evaluation' Progress racker

start target

‘ All nodes sent for evaluation

Figure 5.8: Query evaluation progress tracker interface

Performance Querny Evaliation Progress Tracker

Evaluation % Cumulative distribution

Passage Time Results

9B.0th Percentile {5 159398

Probahility
=oEEE S8 &

— Passage Time Results (COF)

Save Graph H Save Points

Analysis process finished successiully. Click Operation Nodes 1o view resulls OK

Figure 5.9: Visualisation of performance query results

5.2. An Integrated Evaluation Environment for Performanieaes 135

5.2.3 Analysis Tools

The evaluation of quantitative measures defined in Perfocedree queries is ultimately
carried out by a set of analysis tools that are invoked by thalysis Server. At present,
tools are available for the calculation of steady-stateteantsient measures, passage time
densities and distributions, as well as their convolutiomements and percentiles. Itis the
integration of these analysers with the evaluation envirent that enables the evaluation

of Performance Tree nodes. Tools currently forming parhefanalysis environment are:

DNAmacdKnottenbelt96] — a Markov chain steady-state analysdrdha solve models
with up toO(10%) states. It supports model and performance measure sp#offitaits
proprietary input language, performs functional and stesidte analyses, and computes
performance statistics, such as the mean, variance andbstadeviation of expressions
computed on system states. In addition, it also calculatsnmmates of occurrence of
actions. The raw distribution from which these performasiegistics are calculated can
also be obtainedDNAmacais used for the evaluation of the SS:P and FR Performance

Tree operators.

SMARTA[DingleO4a] - a distributed MPI-based semi-Markov resgotisie analyser
that performs iterative numerical analyses of passagestimeery large semi-Markov
models (including GSPNSs), using hypergraph partitioning aumerical Laplace trans-
form inversion techniquesSMARTAIs suitable for the analysis of the PTD and Dist

operators on GSPN models where start and target statesrasivay.

HYDRA[DingleO4a] — a distributed Markovian passage time analyfs&t uses hyper-
graph partitioning and uniformisation techniqué$YDRAIs suitable for the evaluation
of the PTD and Dist Performance Tree operators, and alsorésatransient analysis capa-

bilities that are useful for the evaluation of the Probln&taand StatesAtTime operators.

MOMA [Brien08a] — amn*® order raw moment calculator for GSPN models that uses
a Laplace transform-based methoBfOMA is used for the evaluation of the Moment

Performance Tree operator.

CONE [Brien08a] - a performance analyser that, together VBMARTA evaluates

136 Chapter 5. Tool Support for Performance Trees

the convolution of two passage time densities using a Lapleensform and Laguerre
inversion-based approacfCONE is used for the evaluation of the Conv Performance

Tree operator.

PERC[Brien08a] — a performance analyser that calculates peleemif passage time
distributions and densities, and works in conjunction MARTAPERCIis used for the

evaluation of the Perctl Performance Tree operator.

PROBI[Brien08a] — a performance analyser that calculates thegibty of a passage
time lying within a certain interval, and borrows functidibafrom SMARTAPROBI s

used for the evaluation of the Probininterval Performane= Dperator.

For more details on the individual performance analysistamnsult Section 2.4.1.

5.2.4 Analysis Cluster

Camelot the computational cluster forming the backbone of theyamslenvironment,

consists of 16 dual-processor dual-core nodes, each ohwhia Sun Fire x4100 with
two 64-bit Opteron 275 processors and 8GB of RAM. Nodes areected with both

Gigabit Ethernet and Infiniband interfaces. The Infinibaalokic runs at 2.5Gbit/s, and
is managed by a Silverstorm 9024 switch. Job submissiomidled by Sun GridEngine
(SGE), a Grid management middleware that configures andses@amelotas a compu-

tational Grid resource. Clients submit sequential and [er@PI) jobs to SGE via the

Distributed Resource Management Application APl (DRMAA).

5.3 Parallel and Distributed Evaluation of Performance

Queries

Users interact witiPIPE2 to design system models and performance queries. The tool

also enables them to initiate the automatic evaluation dbpmance queries through the

5.3. Parallel and Distributed Evaluation of Performance s 137

single click of a button, and provides them with a convenasaiuation progress tracking

and visual result feedback mechanism.

When a user requests a query’s evaluatRI?,E2 establishes a connection with the Anal-
ysis Server in the background, which resides on the anatysster’s primary host and

is responsible for the coordination of the distributed eatibn of performance queries.
The Analysis Server delegates the processing of indiviqualies to dedicated analysis

threads, in order to be able to serve multiple simultaneegsests without delay.

Analysis threads process serialised versions of systeneisi@hd performance queries
that have been submitted to the Analysis ServePIRE2 They construct an internal
representation of the data, based on input formats reghyréide analysis tools that need
to be invoked for the evaluation of query nodes. All of ourlsagse theDNAmacainput
language (see Section 2.2.4), together with tool-specitiensions. Hence, models are
translated intdNAmacamodel files, which are then extended with tool-specific synta
that specifies performance criteria according to whichwatadn is to be carried out.
Analysis threads decompose queries into a set of subtraelk,af which consists of a
single query node. They subsequently create individugldreéhreads for each subtree to
initiate and coordinate their evaluation. Once a helparatithas been created, it submits
the subtree that it is responsible to process for evaluatidhe form of an analysis job
to SGE. Analysis jobs consist of analysis tool invocatiofquests. As already discussed
in Section 5.2.3, different analysis tools are invoked anahalysis cluster, based on the
type of subtrees. Threads communicate with SGE via a DRMAArfate. SGE has
built-in scheduling algorithms that are used to distriates onto available processors on

the analysis cluster.

Once evaluation jobs have been scheduled on the analysteicAnd analysis tools have
been provided with the required input data, evaluation cenuas. Analysis tools parse
the supplied model files that also contain performance atialu criteria, and compute
the requested performance measures. In case the evalabi@ubtree is conditional on
results to be obtained from the evaluation of other subttbegob is suspended until all
required inputs have become available. Performance Tregsglhave the advantage that

they can be evaluated in a distributed fashion. During etadn, parallelism takes place

138 Chapter 5. Tool Support for Performance Trees

on two levels. Firstly, certain tools are able to carry o évaluation of Performance
Tree nodes in a parallelised manner. Secondly, if two nod#snathe query tree are

independent of one another, they can be evaluated by topkrailel.

To avoid redundant work and thus reduce response time, thiy/gia Server incorporates
a disk-based caching mechanism that stores performancg exsduation results, so that
subsequent evaluation requests for already evaluatedequmr the same model can be
served with results immediately. In order to differentiatween multiple queries on
the same model, a hash of the model description and the pefame query specification
is calculated for each query, using an algorithm with a very probability of clashes
(e.g. MD5). This hashing is used to create a two-level stingcin which the computed
performance measures can be stored. Before any computakies place, a cache look-
up for the hash of the given model is performed. If a match isméh the hash of the
current query is compared to all hashes of queries in theectat have been evaluated
on that particular model. A match indicates that the quesylte can be retrieved from
the cache. No match means that the query needs to be evalUsird can configure the
analysis with regards to the number of processors that de tesed during evaluation
and also whether or not caching should be enabled. For meaéddef this mechanism,

see [Harrison02, Brien08a, Brien08Db].

Passage time analysis on a GSPN model is performed as dsburiSection 2.3.2. When
PTD and Dist nodes are to be evaluatsYJARTAis invoked to calculate applicable pdfs
and cdfs. For the computation of passage time densitigsibdisons and convolutions,
an interesting issue arises when displaying graphs. Resaphg are often required to
show data only within time ranges of relevance, i.e. onhhwithe time bounds in which
relevant probability fluctuations occur. An algorithm fbetautomatic determination of
the time range of interest over which pdfs and cdfs shouldlbiepl has been devised.
The algorithm establishes at what time vatuslfs approach 1 within somebound. In
the context of passage time queries, the probability of @athing target states is nearly
0 beyond this point, and not likely to be of interest. Ontas been found, pdfs and cdfs

are plotted between 0 arid

Steady-state performance statistics for the GSPN modeleaineed byDNAmMacahrough

5.3. Parallel and Distributed Evaluation of Performance s 139

generating and solving a CTMC that corresponds to the modehswviour at the state-
transition level. Steady-state probability distribusoand high-level performance mea-
sures, such as throughput and mean buffer occupancy camibedieom these CTMCs,

as shown in Section 2.3.2. These measures correspond t&kthadSS:P Performance

Tree operators.

The calculation of raw moments of passage time densitieslistributions, which is used
for the evaluation of the Moment operator, is performedW®MA. Percentiles of pas-
sage time densities and distributions are calculatedERR G while their convolutions are
determined byCONE PROBIis used for obtaining the probability of a passage occurring

in a given time period, as represented by the Probinintepatator.

Trivial computations, such as arithmetic and boolean djgera.and comparisons do not
require dedicated analysis tools; therefore support femthhas been integrated into the
Analysis Server. At presenBIPE2allows the use of the ProbInStates, SS:S and States-
AtTime operators in the specification of performance gehewever, analysis function-

ality catering for their evaluation has yet to be integrated the analysis environment.

When jobs have completed, threads forward their resuR3R& 2 for visualisation to the

user.

To give an indication of the overall performance of the eaibn environment, Table 5.1
provides a comparison of observBMARTAuN times for the calculation of passage time
densities on two models of differing sizes, as originallgganted in [DingleO4a]. These
run times are appropriate indicators, as passage timetgeasiulations are generally the
most time-consuming of query evaluation operations, amté&eontribute most signifi-
cantly to overall evaluation time. Calculations may be ealout by a varying number
of processors, and Table 5.2 shows the observed gain inagvaiuspeed, based on the
actual number of processors used. It is apparent that thesigpéficant improvement in
terms of evaluation performance can be achieved with malkat$ave a large number of

states.

140 Chapter 5. Tool Support for Performance Trees

Model No. of Run times
Name States 1 Proc.\ 2 Proc.\ 4 Proc.\ 8 Proc.\ 16 Proc.\ 32 Proc.

Courier 29010 542.7 293.6 | 170.6 | 145.6 166.6 232.8
FMS | 2519580 | 27593.8 | 13790.2 | 6961.3 | 3548.9 | 1933.4 | 1079.7

Table 5.1: Run times in seconds for the evaluation of passage densities using
SMARTA

Model Gain in evaluation speed

Name | 1 proc.| 2 proc.]| 4 proc.| 8 proc.| 16 proc.| 32 proc.

Courier 0% | 45.9% | 68.6% | 73.2% | 69.3% | 57.1%
FMS 0% 50% | 74.8% | 87.1% 93% 96.1%

Table 5.2: Percentage-wise gains in evaluation speed wdrapared to query evaluation
with a sigle processor

Chapter 6

Case Studies

This chapter explores the applicability of Performancee$rby presenting a number of
performance evaluation case studies. We specify Perfaen@ree queries on models
of an electronic voting system, an online transaction systad a hospital’'s Accident &

Emergency unit. We evaluate them and discuss obtainedsesul

6.1 Electronic Voting System

Below, we present a model of an electronic voting system widakdowns and repair

[BradleyO3c]. The voting system is modelled by a GSPN, as showigure 6.1.

In the model, voters are processed by polling units, andsvate processed by voting
servers. \Voters can only vote when a polling unit is avadakind a vote can only be
counted if a voting server is ready. Once a vote has been gsedethe polling unit that

has dealt with the voter casting the vote becomes availabldpes the voting server that
has processed the vote. Polling units and voting serversuféer breakdowns, but can

also be repaired.

We will now specify a number of performance queries to obtasnght into various per-

formance aspects of the system, with parameters of the niaded 100 voters (CC =

141

142 Chapter 6. Case Studies

not_voted ﬂ
(<) —

polling_units ™\ H pollers_broken
@‘ MM U MM
X T ﬁ‘

CcC

t9 1 2 H

CcC t8 'U
|

servers_broken

NN U NN
servers\f ﬁ
: :vote_taken U

()
U voted

Figure 6.1: GSPN model of an Electronic Voting System

100), 10 polling units (MM = 10) and 10 servers (NN = 10). GSPahsition rates are

specified in theDNAmacamodel description in Section A.1.1.

Query 1

With this query, we attempt to gain an appreciation of theedpeith which the voting
system processes voters. To this end, we are interesteawirke how many minutes it
takes for the system to process all voters with 90% prolighirovided that nobody has

voted yet at time O.

The Performance Tree that corresponds to this query is shiokigure 6.2. We represent
the evolution of the system from the moment when no voter bssdwet to the moment
when all voters have voted as a passage with the PTD operepwesenting a passage
time density. This operator requires start and target statde supplied as arguments,
defined by state labels. We us® voters have votedis the label for the set of start states
and‘all voters have votedas the label for the set of target states. The constraintatba
associated with these state labels, and through which teetstates are identified, are

as follows:

6.1. Electronic Voting System 143

‘no voters have voted’ := (#(notvoted) == 100\ (#(polling_units) == 10)A
(#(servers) == 10)
‘all voters have voted’ := (#(voted) == 100)

PErrormanceIGUETy EdTor e et NG T uery i

e] @ @ (@] 2] <o [+ @] e

Matural language equivalent of the current tree:

"What is the 90.0th percentile of the passage time density definad by the set of start states identified by label 'no votars have voted' and the set of target states
\d ntified by labe I al\ voters ha\re vote d 2

HE eI

Pnrfurmln(z Quer-

" voting-query-1.xml

I

~
excluded states
~

target states|

~
~
~

States

no voters have voted all voters have voted

|4l

il I [+]

Tree Editor | Texa Query Editor |
~Query Builder

O ES oz e e e
b (=] (2] Hl 1“ ====== [eciee) Q] [msumumjwnm1\\1mJ\

Figure 6.2: A query addressing the'9@ercentile of a passage from the state where no
voters have voted to the state where all voters have voted

This query can at present not be expressed by any other gpecyfisation formalism.
This is due to the fact that the sought result is a percentéegpassage time density, which

is a quantitative measure that only Performance Trees éed@mbxpress.

Evaluation of the query results in the generation of a stpsee of 218526 states and
1132483 transitions. Once evaluation has completed, wadrotite probability density
function of the passage between the start and target statekpwn in Figure 6.3. During
the evaluation of the Perctl operator, this density is usezhtculate the 90 percentile,
which is found to bd 7.5 minutes. That is, 90% of the time, it tak&€s5 minutes until all

voters have voted.

144 Chapter 6. Case Studies

0.3

" Passage time density

Probability
o
i
o

01 | \
\

0.05 |- /" \

| |) |
0 5 10 15 20 25 30
Time (minutes)

Figure 6.3: Probability density of the time taken for allexst to have voted

Query 2

Having already obtained an indication of the performanddefoting system, we would
like to further assess its efficiency by specifying a perfance query that is interested in
obtaining the probability with which all voters have sugfally voted within 15 minutes

of the opening of the polling stations.

In Performance Tree form, this query is represented as shofigure 6.4. In this query,
we use the same passage as in the previous query to represeyistem transitioning

from the initial state to the state in which all voters haveedo

This query cannot be expressed in other specification fasmal due to the need to

reason about a passage time density, which at present ofdrfance Trees are able to.

During evaluation, the passage time density for all voterkdve voted is calculated,
which is the same as for the previous query (shown in Figu8e &.this query were to be
evaluated after the previous query has already been egdluhe Analysis Server would
realise that the passage time density that is to be calcukatdentical to the density that
has already been calculated for the previous query, ancehesalts would be retrieved
from the cache. During the evaluation of the ProbIninteogdrator, the probability with
which all voters have voted within 15 minutes is calculatedTthe passage time density.
This probability is found to be.483. Given that 15 minutes is a very short period of time

to process 100 voters, the fact that all voters can be preddssthe system almost 50%

6.1. Electronic Voting System 145

PErformance Query Editor == voting query-2mmi;

Eile Edit Yiew Tools Analysis Help

Qlella® s @] <] fow) e uman

Matural language equivalent of the current tres:

A

"What is the probability with which a value sampled from the passage time density defined by the set of start states identified by label 'no voters have votad'
and the set of target states identified by label ‘all voters have votad' lies within the range of Oto 15 7"

Performance Query

New Query L.xml r voting-query-2.xml |

start states,” Larget states

States

no voters have voted all voters have voted 0.0 15.0

ol Il [¥

Tree Editor | Text Query Editor |

Cx; HV\‘H[@\\@“V”'“MIIE@EJ“) b e (0] (=)
) ol) e))

Figure 6.4: A query addressing the probability with whichvaters have voted within 15
minutes

of the time indicates that it is rather efficient.
Query 3

To assess the reliability of the voting system, we are istecein the average number of

broken polling units and broken servers on the long run.

We specify this as a Performance Tree query as shown in F@&reln this query, we

make use of the Mult operator, which allows us to specify coomal performance queries.

This query cannot be expressed in other specification fasmal due to the need to
compute the expectation of a steady-state probabilityildigton, which at present is not

supported by any other formalism.

This is the first performance query in our case study so factrabe evaluated in parallel.

The Mult operator combines two independent queries intq wgch implies that they

146 Chapter 6. Case Studies

PErormancelquery Eaitor oty rauery 2 o e

ile Eiljig Inulsjﬂa@s Help
Olet[=]® o (@] 2]] o o

"What is the result of the independent evaluation of:
1. the mean of the steady-state probability distribution of the state function #(pollers_broken) applied over the set of all states in the model, and
2. the mean of the staady-state probakility distribution of the state function '#(servers_brokzn) applied over the set of all states in the model 7"

A |»

Performance Query

New Query L.xml r voting-query-2.xml |

query 3/

1 I [¥

Tree Editor | Text Query Editor |

({2 e v v o f o e e e e =
o) (L] ()| Qo] o] (v] (o) (o] (potind (o] (e]

Figure 6.5: A query addressing the average number of bro&iing units and servers at
steady-state

can safely be evaluated in parallel, since there are no deperes between them. During
evaluation of the query, we obtain the steady-state prdibathistribution for the number
of broken polling units, as shown in Figure 6.6. From thigribsition, we also obtain
the average number of broken polling units, which is founde0.567. Evaluation also
produces the steady-state probability distribution fernbmber of broken servers, which
is shown in Figure 6.7. The average number of broken sergefsund to be0.196.
Considering these results, we can confidently claim that ttmg system is reliable,

since on average, a low number of polling units and servdrs fa
Query 4

To obtain another indication of system reliability, we fardate a performance query that

aims to obtain the expected time until two voting servershiaoken down.

The Performance Tree equivalent of this query is shown inr€i@.8; relevant state labels

6.2. Online Transaction System 147

08 4 08

0.6 B 0.6

Probability
Probability

04 R 04

0.2 B 0.2

.
0 2 4 6 8 10 0 2 4 6 8 10
Number of broken polling units Number of broken voting servers

Figure 6.6: Steady-state distribution of Figure 6.7: Steady-state distribution of
the number of broken polling units inthe the number of broken servers in the vot-
voting system ing system

are defined as:

‘all servers operational’ := (#(notvoted) == 100)\ (#(servers) == 10)\
(#(polling_units) == 10)

‘2 servers broken down’ := (#(serverbroken) == 2)

In the performance query, we represent with a passage timatgehe moving of the
system from the state where all voting servers are opeg@dttora state where two voting
servers are broken. This is shown in Figure 6.9. This funatepresents the probability
density of the time it takes for two servers to break downegithat all servers have been
operational at the time when observation has commencech tr®density we can obtain
the expected time until two voting servers break down. Thisie is found to be3.33

minutes, which indicates that the system is fairly robust.

6.2 Online Transaction System

In this case study, we revisit the Online Transaction SyspérBection 3.3, the GSPN
model of which is shown in Figure 3.9. We will evaluate soméhaf queries presented
earlier, along with several new queries. We parametersenbdel with eight customers,
all of whom are initially assumed to be browsing randomly be Internet. Transition

rates for the GSPN are specified in bBAmacamodel description in Section A.2.1.

148 Chapter 6. Case Studies

I] LT === ot
File Edit View Tools Analysis Help
IDIDDDD\ || IIIM% Jall o)
ral language equivalent of the =
"Wha the of the pa g time density defined by the of start s s identified by label 'all servers operational’ and the set of target statas idantified ||=)
byl k \ b oke d own' [+

Prf ‘ormance Q

" New Query 1.xml I'Wu ng-query-3.xml

4 I il T¥]

Tree Editor | Text Query Editor |

rQuery Builder
Ex:g]van])

A I 20) 5

Figure 6.8: A query addressing the expected time until twiingoservers have broken
down

0.03

"Passage time density ——

0.025 -

0.02

0.015

Probability

| | | | | | | |
0 10 20 30 40 50 60 70 80 90
Time (minutes)

Figure 6.9: The probability density of the time needed foo twoting servers to break
down

6.2. Online Transaction System

149

Query 1

In our first query, we are interested in the distribution ofdifor a customer to select an
item from the catalogue, starting from the moment when treaetentered the web site,
and assuming that they have not left in the meantime. Thi®earseful for assessing the

design quality of the web site, from the point of view of hovgiacustomers are able to

navigate to the product catalogue.

The Performance Tree corresponding to the query is showiguré-6.10, and applicable

state labels are defined as:

‘customer entered’ := (tag@(site entered))
‘item selected’ = (tag@(item selected))

‘aborted’ = (tag@(transaction aborted))

PErTornance QUEry EtTormmnor

File Edit View Tools Analysis Help

wlslsla® (s @] <] sfow -] @] [mmeam

Matural language equivalent of the current trea:

"What is the cumulative distribution function calculated from thea passage time density defined by the set of start states identified by label 'customer entered’
and the set of target states identified by label 'item selected’ which avoids the the set of excluded states jdentified by labe| 'aborted’ ™

HEI L

Performance Query

" ots-query- Lxml

target states| axcluded stdtes

(=]

customer entered item selected aborted

il I [+]

I

[al

Tree Editor | Texa Query Editor |

~Query Builder

) 0 1) S) e e

))

o (0] (2]

] N e 7 [oy

(=] (o) () (o)

(e (] o] (Lo] (e

Figure 6.10: A query addressing the distribution of timeetakor a customer to select an

item from the product catalogue after having entered thesiteb

This query cannot be expressed by other specification fesmalat present, due to the

need to reason about a probability density and distribuéienvell as individual customers

150

Chapter 6. Case Studies

in the system.

Evaluation of the query yields a state space of 213 928 sat2 580 864 transitions. To

obtain the distribution that we are interested in (see EE@ut2), the passage time density

needs to be calculated first. This is shown in Figure 6.11.

" Passage time density ——

Probability
°
S
8
———
//

. .
0 10 20 30 40 50 60
Time (in minutes)

Figure 6.11: Probability density of the
time taken for a customer to select an
item from the catalogue

T T
Passage time distribution ——

08 [

//
06 /

Probability

/
f
/
04 /

02 /

Figure 6.12: Probability distribution of
the time taken for a customer to select an
item from the catalogue

Query 2

With this query, we are aiming to assess the speed with whistomers make purchases
at the web site by obtaining the probability of an order beataged within 10 minutes of
a customer having entered the web site, provided that they hat left and returned in

the meantime.

The Performance Tree equivalent of this query is shown inf€i§.13, and relevant state

labels are defined as:

‘customer entered’ := (tag@(site entered))

‘order confirmed’ := (tag@(order confirmed))

‘aborted’ .= (tag@(transaction aborted))

This query can also not be expressed using other formaliduesto the need to obtain
the probability with which a passage occurs in a given amotitime, and the necessity
to reason about a single customer’s flow through the systehesd features are only

supported by Performance Trees at present.

Evaluation obtains the passage time density of an ordegh®aced by a customer after

6.2. Online Transaction System 151

Eile Edit Yiew Tools Analysis Help

O] e® o @] <] <fow o) @] mumeam

"What is the probability with which a value sampled fromthe passage time density defined by the set of start states identified by labsel ‘customer entered’ and
the set of target states identified by labsl 'order confirmed’ which avoids the the set of excluded states identified by label ‘aborted’ lies within the range of O to
07

A >

Performance Query

New Query L.xml r ols-query-2.xmi

start states .~ target states

~
excluded stafes
~

customer entered order confirmed aborted 0.0 10.0
il Il \.\E
Tree Editor | Text Query Editor |
~Query Builder
[—] I \
S HV\‘H[@H@\HV'\\MIIE@EJ“ b bt (0] ()
I e e e

Figure 6.13: A query addressing the probability with whichoeder has been confirmed
within 10 minutes of a customer having entered the web site

having entered the web site. This is shown in Figure 6.14 mRtts density, we find
that the probability of the order being placed by a customérim10 minutes i9.176.

The fact that only 17.6% of visitors complete an order withthminutes may indicate
that either most visitors only browse the web site withoutchasing anything or that
customers generally take a while to browse the catalogumdebmmitting themselves

to a purchase.

Query 3

With this query, we want to find out whether in 90% of the cadles time that it takes
a single customer to enter the web site and proceed to théaie@nd to provide their
billing information for the order to complete and eitherveahe site or return to the
catalogue is less than 15 minutes, provided that they havaburted the transaction in

the meantime.

152 Chapter 6. Case Studies

" passage time density

0.04 |- /

003 | [

Probability

0.02

oo1f |

I I I I N
0 10 20 30 40 50 60
Time (in minutes)

Figure 6.14. Passage time density for an order having beeglafter a customer has
entered the site

The Performance Tree equivalent of this query is shown inifeig.15, and state labels

used in the query are defined as:

‘startl’ = (tag@(site entered))

‘targetl’ := (tag@(at checkout))

‘start2’ = (tag@(billing info provided))

‘target2’ = (tag@(not at site)y (tag@ (browsing catalogue))
‘aborted’ := (tag@(transaction aborted)))

This query cannot be reproduced by any other specificationdlism, since it requires
the ability to reason about passage time densities, thegeptdles and convolutions,

which are features specific to Performance Trees at the ntomen

When the aim is to focus only on parts of a particular passadelenegard a period of
time in between, convolutions are useful. In this query, veecaly interested in how long
it takes the customer to reach the checkout from the momeeney have entered the
web site and how long it takes them to either leave or retutheéccatalogue after they
have provided their billing information. We are not inteegkin the amount of time that

elapses between them reaching checkout and providingliiieig information.

Hence, during evaluation we calculate the passage timetgdosa customer to arrive
at the checkout, starting from their arrival at the site, la®as in Figure 6.16. We also

calculate the passage time density for the same customevio |bft the web site or

6.2. Online Transaction System 153

Eile Edit Yiew Tools Analysis Help

Gl ela® o @] <] <fow o) e umamn

"ls it true that the 90.0th percentile of the convelution of the passage time density defined by the set of start states identified by label 'startl’ and the set of
target states identified by label targetl' which avoids the the set of excluded states identified by label 'aborted’ and the passage time density defined by the
set of start states identified by label 'start2’ and the set of target states identified by label target2' which aveids the the set of excluded states identified by
label ‘aborted'is less than 15 7"

A I»

Performance Query

New Query L.xml ots-query-3.xmi

~
start states - Larget states| . . 4o ﬂ;l“ target states| axcjuded Slaﬁs‘
~

‘ ke]HH“‘/\]H[@H[é]“hjrl“uli[.":j."‘j’a‘]“ “[:M“["‘P‘%“JH[E(XN)I]H[H_“ ”
”‘Gl"ﬂle] [=]” [=]“[VIA] f»‘-‘*-f]l *--.‘.f-“] [Num]“ Range] [M]H[States ”[an] [Boal] I Macro ”

Figure 6.15: A query addressing a constraint on thé pércentile of the convolution of
two passage time densities for a customer to enter the stpraceed to the checkout and
to provide their billing information and leave the site otura to the product catalogue

returned to the product catalogue from the moment when theg provided their billing
information, as shown in Figure 6.17. These calculatiomslzacarried out in parallel,
since they are independent. We convolve the two densitiespesent the combined
passage time density of the two independent passages.sidtiswn in Figure 6.18. We
then calculate the 90 percentile of this convolved density, which we find to 4316.
This indicates that 90% of the time, it takes a customer nmaae L5 minutes to enter the
site and proceed to the checkout, and to provide their gilliiormation and leave the

site or return to the product catalogue. Therefore, thetrethe query ifalse
Query 4

With this query, we aim at assessing the popularity of the wiéb by looking at the
average rate at which visitors enter the site. We also wdimdaeut how many of the vis-

itors are not only looking around, but are in fact searchorgafproduct in the catalogue.

Chapter 6. Case Studies

Passage time density ——

Passage time density ——

Probability

| ~— N
~— S
N 0
0 10 20 30 40 50
Time (in minutes)

. .
0 10 20 30 40 50
Time (in minutes)

Figure 6.16: Passage time density for a Figure 6.17: Passage time density for a
customer to have arrived at the checkout, customer to have left the web site, start-
starting from the moment of their arrival ing from the moment when they have
at the web site provided their billing information

02

T
Passage time density

0 10 20 30 40 50
Time (in minutes)

Figure 6.18: Convolution of the passage time densities airei§.16 and Figure 6.17

Hence we are also interested in the average number of custdmmsvsing the catalogue.
In addition, to find out how many customers make purchaseslafbwsing the catalogue
on average, we are also interested in obtaining the avenag®er of customers at the

checkout. The Performance Tree that represents this gsishoivn in Figure 6.19.

No other specification formalisms are currently able to egpithis query, due to the need

to reason about the average throughput of a transition andxpected values of steady-

state probability distributions.

As the query consists of three independent sub-queriesatialinked together by the

Mult operator, it can be evaluated in parallel. Its evahmfinds the average number of

visitors entering the web site to Ibel04 persons per minute.

Considering the size of our model's population (there arétgigople in the system at

6.2. Online Transaction System

Eile Edit Yiew Tools Analysis Help

Q[eet]at @] o]] <= [x] @] [mmmsann]

"What is the result of the independent evaluation of:
1.the average rate of occurrence of the action identified by label 'enter site’, and

| 2. the mean of ths steady-state probability distribution of the state function '#(browsing catalogue) applied over the set of all states in the model , and
3. the mean of the staady-state probakility distribution of the state function '#(at chackout) applied over the set of all states in the model 7"

A0 T

Performance Query

New Query L.xml r ots-query-4.xmi ‘

enter site

[»

il Il

Tree Editor | Text Query Editor |

~Query Builder

%
W= _"3?] MO

[

xel) H =

A & Ol H

) (i)

Figure 6.19: A query addressing the average rate of ocatgrehcustomers entering
the web site, the average number of customers browsing taegae, and the average

number of customers at the checkout

08

06 -

Probability

04

02

Number of customers browsing the catalogue

Figure 6.20: Steady-state distribution of
the number of customers browsing the
product catalogue

08

Probability

0.4

L L
0 1 2 3 4 5 6 7 8
Number of customers at the checkout

Figure 6.21. Steady-state distribution of
the number of customers at the checkout

any given time), this appears in relative proportion to beasonable approximation of

the traffic that a web site on the Internet might experiendee Jteady-state distribution

of the number of visitors browsing the catalogue is shownigufe 6.20, from which

156 Chapter 6. Case Studies

the average is calculated to bet32 persons per minute. Similarly, Figure 6.21 shows
the steady-state distribution of customers at the checkdhith produces an average of
0.913 persons per minute. This shows that the majority of visiten® are browsing the
catalogue also end up purchasing something eventuallys, Tewusiting our interpretation
of the results for Query 2, we can now see that most visitoqsulohase goods; however,

it takes them more than 10 minutes to browse the productozataland place an order.

6.3 Hospital Accident & Emergency Unit

In this case study, we will construct and analyse perforraaqeries on a modified ver-

sion of the hospital Accident & Emergency (A&E) unit modesfimtroduced in [SutoQ7].

The GSPN model of the A&E unitis shown in Figure 6.22. The nhdescribes a system
with the following behaviour. An initial number of healthydividuals fall ill at a certain
rate, and it is pessimistically assumed that they will needdit an A&E unit at a local
hospital. Individuals who have fallen ill either go to theshdal themselves, in which
case they are categorised as walk-in patients, or place argency call in acute cases
to request an ambulance. In this case, they are classifieshlaglance patients. After
having entered A&E, walk-in patients are asked to wait uhtly can be seen by a nurse
for initial assessment. Ambulance patients are loaded amitolley, on which they wait
until a nurse becomes available to attend to them. Nursesssasnbulance patients with
priority. After initial assessment, patients proceed tat veeeither be seen by a doctor, be
taken for emergency surgery, or be sent for laboratory.t€stse a patient is discharged,

they are optimistically assumed to be healthy.

The model is parameterised with N, D and A, which denote the number of tokens on
placeshealthy nursesdoctorsandambulancesrespectively. For our case study scenario,
we use the configuratio = 8, N = 2, D = 2andA = 1. GSPN transition rates are

specified in thdONAmacamodel description in Section A.3.1.

6.3. Hospital Accident & Emergency Unit 157

discharge

patient

patient
recovered

recover

treated surgery tests

healthy @ by doctor Q @ O done O df;u:

/docto&
] [

discharge
treated |
patient

evaluate
results

see | I perform
doctor lab tests
surgery
fall = waiting
i to be
treated
complete / \ complete
assesgment L] [] emergency

assessment

. \ / ambulance
patient patient
ill being bei
d eing
assesse assessed

/mrse\
see
] [

] emergency
nurse

waiting O O trolley
room

vk . [b

arrival arrival
in transit O @ ambulances
— 0
patient
awaiting
ambulance

emergency
] |

cal

nurse

Figure 6.22: GSPN model of a hospital’s Accident & Emergetnaiy

158 Chapter 6. Case Studies

Query 1

With this query, we aim to compare treatment times betweelk-imaand ambulance
patients. Ambulance patients receive prioritised atbentluring the first stages of their
stay at the A&E unit, as indicated by higher rates for certansitions in the model that
deal with ambulance patients, egmergency callload patienf ambulance arrival see
emergency nursandcomplete emergency assessnisaé Section A.3.1). We would like
to ascertain whether this initial prioritisation has a prajed effect on patient treatment
times. If it does, most ambulance patients would be dis@thfgpm the hospital more
promptly than regular walk-in patients. Hence, we speciigdormance query to address
the 90" percentile of the density of time taken for a walk-in patinkeave the hospital,
considering from the moment of arrival. The query also asleles the same percentile of
the density of time taken for an ambulance patient to leagéntspital, considering from
the moment when they have called for an ambulance. If it ic#se that the time value
that is the 96" percentile for walk-in patients is greater than that for atabce patients,
we know that ambulance patients receive prioritised camtfhout their stay at the A&E
unit. In addition, to assess the efficiency of the A&E unit, are also interested in the

steady-state probability distribution of idle nurses aondtdrs.

The Performance Tree equivalent of this query is given irufedg.23. To obtain the
passage time density for a single patient to proceed thré&fb, we need to tag an
individual customer in our model to track their progress. eRkeht state labels for the

model are defined as:

‘patient in waiting room’ = (tag@(waiting room))
‘patient awaiting ambulance’ := (tag@(awaiting ambulance))
‘patient healthy’ = (tag@(healthy))

This query cannot be expressed by any other specificatiomalgam, since Performance
Trees are currently the only formalism able to reason aldmifperformance concepts

forming part of this query.

Parallelisation is possible when evaluating the arithcnetimparison operator, since its

two sub-trees are independent of each other, and also whé&raéng the SS:P operators

6.3. Hospital Accident & Emergency Unit 159

Eile Edit Yiew Tools Analysis Help

Slelzlaeals o o) ol o)

FISTLY QETTIEd Dy UNE SET 0T STart STATES [OertEd Dy 1an &l Patari i Waltig Toof ard e SELoT
target states identified by label 'patient healthy' is greater than the 20.0th percentile of the passage time density defined by the set of start states identified by
label 'patient awaiting ambulance’ and the set of target states identified by label 'patient healthy', and

2. the steady-state probability distribution of the state function '#inurses) applied over the set of all states in the model , and

3. the steady-state probability distribution of the state function '#idoctors) applied over the set of all states in the model 7!

Performance Query

New Query L.xml hospital- query-1.xml |

TS TUTFUE Tar e oo,

AL T

[

#(doctors)

patient in waiting room patient healthy ~ patient awaiting ambulance patient healthy

ol Il [¥

Tree Editor | Text Query Editor |

e van v v vy
[c]”[=]“[V:’l\] | [—]|

~Query Builder

€N

=

22 (3
() (2]

=

(s

e (o] (=)
Lo (]

<=2

=

=3

Figure 6.23: Compound performance query addressing pdeseot passage time densi-
ties and steady-state probability distributions

that are connected by the Mult operator, since they are gxi#gnt sub-queries.

The evaluation of this query results in the generation oagestpace of 1 355 166 states
and 5483010 transitions for the model. Evaluation deteesithe result of the first part
of the query to béalse indicating that ambulance patients do not benefit fromrtised
care throughout their stay at the A&E unit. This is the caseabse the 90 percentile
of the passage time density for walk-in patients (see FigLZé) was found to b&2.764
minutes, while the 90 percentile of the passage time density for ambulance patjsee
Figure 6.25) evaluated t8.986 minutes. This result implies that an initial prioritisatio
has no overall effect on how patients are dealt with on thg lom. This conclusion can
also be derived intuitively by comparing the two densitied aoting that there is only a

marginal difference between them.

The result of the second part of the query is the steady-ptateability distribution of
idle nurses (see Figure 6.26), while the result of the thuid-guery is the steady-state

Chapter 6. Case Studies

"Passage time density ——

Probability

Figure 6.24. Passage time density for
walk-in patients

"Passage time density ——

0.005 / B
0 L L L L L L L L

Figure 6.25: Passage time density for
ambulance patients

probability distribution of idle doctors (see Figure 6.2These results indicate that both

nurses are idle more than half of the time, while doctors ag fairly busy. Given that

the number of patients is somewhat modest, this outcome isnexpected.

1

08

06

Probability

04

02

0 L L
0 2 4 6 8 10
Number of idle nurses

Figure 6.26: Steady-state probability dis-
tribution of idle nurses

Query 2

1

08

06

Probabilty

04

02

0 L
0 2 4 6 8 10
Number of idle doctors

Figure 6.27: Steady-state probability dis-
tribution of idle doctors

With this query, we would like to gain an appreciation of tliieceency of doctors at the
A&E unit by assessing the average number of patients thatvaiteng for a doctor. In
addition, we are also interested in the average rate of sagg® assess how frequently

critical care is provided at the A&E unit. The Performanceéequivalent of this query

is shown in Figure 6.28.

This query can at present only be expressed by Performames,Tdue to the need to

reason about a steady-state distribution and its mean.

6.3. Hospital Accident & Emergency Unit 161

Eile Edit Yiew Tools Analysis Help

G e(a® o @] <] <fow o) @] mumeam

"What is the result of the independent evaluation of:
1. the mean of the steady-state probability distribution of the state function '#(waiting for doctor) applied over the set of all states in the model, and
2.the average rate of occurrence of the action identified by label 'surgery' ?"

A |»

Performance Query

| New Query Lxml |

actions|

surgery

#(waiting for docton) L

Tree Editor | Text Query Editor |
~Query Builder

N[Es:[van]ya] v v
o) (L]] v e i) (Ln)|

) b

(o) (o] foeed

I
[

Bt () (=)
el

4 !‘\

(e]

(=)

Figure 6.28: Performance query addressing the averagearwhpatients waiting for a
doctor and the average rate of occurrence of surgeries

The query can be evaluated in parallel, as the Mult operaionects two independent
sub-queries. Hence, the evaluation of the mean of the st&tatly distribution can take

place at the same time as the evaluation of the average rategdries.

During the evaluation of the query, a state space of 698 %&2stand 5863 182 tran-
sitions was generated. The reason for the state space bealtpisthan that generated
previously is that for this query it is not necessary to tagtamers. Figure 6.29 shows
the steady-state distribution of the number of patientsimgafor a doctor, whose average
was calculated to bé.25. It appears that the average number of patients waiting for a
doctor is relatively low, which indicates that doctors aealthg with patients efficiently,
since waiting patients are not accumulating. Results forsteady-state distribution of
idle doctors that we have obtained during the evaluatiomefprevious query (see Fig-
ure 6.27), show that doctors are kept relatively busy. Tapgsrts our interpretation of

the results of this query. From the evaluation of the secamtigs the query, we find that

162 Chapter 6. Case Studies

the average rate of occurrence of surgerigs(i59 operations per hour. The fact that the
average rate of surgeries is very low might be an indicatooritfe fact that only a small
proportion of hospital patients have injuries severe ehdogequire immediate surgery.
Therefore, we conclude that critical care only needs to beiged in a very small number

of cases.

0.8 -

0.6 -

Probability

04

Number of patients waiting for doctors

Figure 6.29: Steady-state probability distribution of thenber of patients waiting for a
doctor

Query 3

In this query, we establish a requirement for the A&E unégtisg that 98% of the time,
all patients should be seen, treated and discharged withitoar. The Performance Tree

equivalent of this query is shown in Figure 6.30, with apgiiile state labels defined as:

‘patient admitted” = (tag@(waiting room))/ (tag@(trolley))
‘patient discharged’ := (tag@(healthy))

Other query specification formalisms are not able to exptieissquery, as it requires
reasoning about a passage time density and the probabithywhich a passage occurs

within a given time period.

Due to the requirement of this query to reason about taggetdiers, state space gener-
ation results in the same number of states and transitiofos #ee first query. Evaluation
of the query yields a probability density function for thené taken for patients to enter
A&E, be seen, treated and discharged. This is shown in Fig®® The probability with

which this passage takes place within one hour (i.e. 60 reg)us$ calculated to b@863,

6.3. Hospital Accident & Emergency Unit 163

Perrormance Query Editor == HospItal query=2 i

Eile Edit Yiew Tools Analysis Help

Gl ela® o @] <] <fow o) e mmamn

Matural language equivalent of the current tres:

A

"ls it true that the probability with which a value sampled from the passage time density defined by the set of start states identified by label ‘patient admitted’
and the set of target states identified by label ‘patient dischargad’ lies within the range of 0 to 60 lies within the range of 9810 17"

Performance Query

New Query L.xml r hospital- query-3.xml |

I»

num. value,

ol Il [¥

Tree Editor | Text Query Editor |

e a7 o e) e e =
) (o o i)) ())) e) ()

Figure 6.30: Performance query addressing a modified verdithe UK Government
target for A&E units

which does not lie within the probability intervgl.98, 1], as set out by the query. Hence,
the result of the query i&lse since patients are not seen, treated and discharged within

an hour 98% of the time.

Query 4

With this query, we aim at obtaining the Coefficient of Vawatithe ratio of the standard
deviation to the mean) of the time that it takes for the firsspa to recover from surgery
at the A&E unit.

This query can be specified using the Performance Tree magcbanism. The macro
definition for the concept of Coefficient of Variation is shownFigure 6.32, and its
usage with the argument applicable to this query is predant&igure 6.33. Relevant

state labels are defined as:

164 Chapter 6. Case Studies

' Passage time densit)‘/

0.025 -

0.02

0.015

Probability

0.01

0.005

| | | | | | | |
0 10 20 30 40 50 60 70 80 90
Time (in minutes)

Figure 6.31: Density of the time taken for patients to entet leave the A&E unit

‘everyone healthy’ = (#(healthy) == 8)\ (#(nurses) == 2)\
(#(doctors) == 2 (#(ambulances) == 1)

‘first patient recovered’ := (#(patient recovered) == 1)

Macro Editor

Macro Edit View Help
-Information—

| Matural language equivalent of the current tree:

"The macro rep nting the q y(h at aims to find out what is the 2nd raw moment of the argument called 'density’ minus the mean of the argument
| called 'densi Jt the power of 2 raised to the power of 0.5 divi it ed by the of the argument called 'density 7
Macro Definition =

(LN [ESvanjyD et () (=)
o) (2] (2] (o] o (o] (]

Macro Name: [Coefficient of Variation |

e

Description: [This macro reprasents the Coafficient of Variation of a passage time density representad by the argument 'density |

Figure 6.32: Definition of the macro representing the cohoégoefficient of Variation

This query can only be expressed by Performance Trees, dhe teed to reason about

concepts that only they are able to express.

6.3. Hospital Accident & Emergency Unit

165

File Edit Yiew Tools Analysis Help

Gl E® o 8 [« sfo [-|@] o

Natural language equivalent of the current tree:

| healthy' and the set of targer states identified by label first patient recoverad'?"

"What is the Coefficient of Variation determined by the passage time density of the passages defined by the set of start states identified by label 'avaryons

Ty

e Query

[hospital-query-4-1.xmi

everyone healthy first patient recovered

Tree Editor | Text Query Editor

-Quiery Builder

G S 10)))) (2] (55 e e [0] (B
Levent) (L2 | a] (o e (i) [m) (e] (Lt] [] [

Figure 6.33: Usage of the macro for the calculation of the fBmeit of Variation with a

specified argument

This query is a good example of how caching can be used toaserevaluation speed,

since the mean of the passage time density is used twice. iOmee been evaluated, the

result can be retrieved from the cache when it is be calalidte second time. During

the evaluation of the query, the same number of states ansiticms were generated as

for the first query. The density of time for the first patienhive recovered is shown in

Figure 6.34. Its mean and variance are found t21¢982 minutes and 005.51 minutes,

respectively. From these values, we obtain the Coefficientaation as beind.5743.

166

Chapter 6. Case Studies

Probability

0.04

0.035 -

0.03 |-

0.025 -

0.02

0.015 -

0.01

0.005

T T T
Passage time density

I
10

I
20

I
30

I I
40 50
Time (in minutes)

I I
60 70 80 920

Figure 6.34: Passage time density for the first a patientdover at the A&E unit

Chapter 7

Conclusion

7.1 Conceptual Contributions

The main contribution of the work presented in this thesithes introduction and de-
velopment of the Performance Tree formalism — a new apprtatie specification of

performance queries on models of real-life systems.

Until recently, performance queries have mostly been §pdavith complicated textual
languages that require specialist knowledge to be usedattyrPerformance Trees offer
an accessible graphical alternative that assumes onlyi@dragineering background and
that enables users to specify performance queries irglytiwithout the need to learn
complicated syntax or sophisticated abstract conceptforifence queries are specified
as hierarchical tree structures, consisting of a set of sidkat represent performance
concepts and values, and a set of arcs that connect them.i@rechical node structure
resembles that of a computer program in the way in which noéesesenting perfor-
mance concepts behave like functions that take inputs aulipe an output, and the way
in which nodes representing values are interpreted assripwuch functions. This hi-
erarchical structure makes the specification of Performdmee queries rather intuitive,
and also allows queries to become arbitrarily complex, evailthe same time maintaining

a reasonable level of clarity and manageability from a ggawint of view.

167

168 Chapter 7. Conclusion

The Performance Tree formalism incorporates a wide ranggpefators, which allow
performance queries to express concepts used in classichbstic property verification
and to address quantitative performance measures of nelev&urrently, Performance
Trees are able to reason about passage time densities aralidsns, their convolutions,
moments and percentiles, steady-state distributionssigat probability measures, sets
of states that satisfy certain steady-state or transi@figiility constraints, mean rates of
occurrence of actions, and standard logical and arithropgcations and comparisons. To
the best of our knowledge, Performance Trees are the firsy gpecification formalism
to support this level of expressiveness, which can be fudkiended by using a macro
mechanism to define custom performance concepts as comobimat basic Performance

Tree operators, or by incorporating new stand-alone opeat

Performance Trees are versatile in terms of the modelshbgtdan express queries on.
Due to their abstract state and action specification meshgriRerformance Trees can be

used with a wide range of modelling formalisms that are basextate-transition systems.

We have introduced the Performance Tree formalism togetiiera syntax that defines
the appropriate use of its operators, a framework that defoperator types and pre-
scribes applicable compatibility requirements, and gtetite semantics that rigorously

establish their underlying mathematical meaning.

7.2 Practical Contributions

To enable the use of Performance Trees in real-life anasgsinarios, we have incorpo-
rated software support for the formalism iRPE2 a model specification tool that forms
part of a parallel and distributed performance analysisreninent to provide accessible

performance query specification and scalable automateddagican capabilities.

PIPEZ2is an open-source platform-independent Petri net editoicmsupports the design
and analysis of GSPN-based system models. We have impletharRerformance Tree
qguery editor in the form of #IPE2 module to enable the graphical and textual speci-

fication of performance queries. This module serves at theedane as a front-end to

7.3. Applications 169

the analysis environment, which allows users to submityaigjobs for evaluation, and
which visualises obtained results. We have also implendeateatural language-based
query translation mechanism, which aids users in the iméuwerification of their queries
during the specification process. In addition, a guidednaatanguage-based query spec-

ification mechanism that constructs query trees autonigtisaalso available.

Alongside extensions tBIPE2 we have developed an integrated analysis environment
to enable the fully automated analysis of system models)owit requiring manual in-
tervention. The environment consists of a humber of differdomponents:PIPE2
which provides the graphical interface and single point afess to users; the Analy-
sis Server, which manages and coordinates analysis jobst @f specialised parallel
and distributed analysis tools, which perform numericallgses to calculate requested
performance measures; and a Grid-based analysis clustieh provides the supporting

computational infrastructure.

To illustrate the applicability of Performance Trees in4lda analysis scenarios, we have
presented a number of case studies in which we have speacifteéwvaluated complex
performance queries on system models with the help of ouysiseenvironment. We
have analysed models of an electronic voting system, aneiiansaction system and a

hospital’s Accident & Emergency unit.

7.3 Applications

Performance Trees represent an accessible and verstiteadive to existing approaches
to performance query specification. Their broad expresss®, which combines a wide
range of performance concepts from a number of specificaionalisms, and their ex-

tensibility, which allows them to be adapted to custom asialyequirements and scenar-

i0s, makes them an attractive choice and a valuable assgitensengineers.

Performance Trees can be used for the specification of peafuze queries on stochastic
models in scenarios where systems can be representeddypatsd stochastic modelling

formalisms, such as stochastic Petri nets, stochastiepsalgebras and closed queueing

170 Chapter 7. Conclusion

networks. It is also often necessary to evaluate the effigierh processes represented
as workflows. Since workflows can be modelled stochasticBiyformance Trees lend

themselves to their analysis very naturally.

Numerous industries depend on the reliable operation aadaimal performance of
systems that support their activities, such as computerbaisthess-specific systems.
Manufacturing, for example, is heavily reliant on machynevhose efficiency and relia-
bility are of strategic importance. Hence, performancdyamsis essential. The telecom-
munications industry, as a further example, is governeddy Quarantees that are agreed
upon with customers in Service Level Agreement contratts.therefore important to be
able to predict compliance with SLAs. Similarly, financiastitutions critically depend
on the reliability and performance of their systems (esgdciatabases and trading plat-
forms), and thus consider performance analysis to be ofsttimmportance. Public health
care institutions, furthermore, require response timdyaera of patient flow models to

help improve patient-perceived QoS amidst ever-growimgise demand.

Performance Trees also have the potential to not only peocaigvay of verifying com-
pliance with SLA-related QoS requirements on models beiim@ementation, but to
provide a way to monitor compliance with QoS requirementsngusystem operation.
It is possible to extract performance properties from rogrsystems directly by assign-
ing monitoring agents to them, which are self-containetige components that act as
passive measurement data collectors. By sampling perfagniaformation in this way,
instead of deriving it through numerical analysis, resoffgerformance queries represent
a significantly more accurate reflection of actual systematielir. Ambiguity is often

a considerable problem in QoS requirement specificatiod itais often unclear during
analysis what system properties are being observed. Feafme Trees have the potential
to serve as a unifying framework that supports the (alsorablanguage-based) specifi-
cation of performance properties on real-life systems aed model representations at
the same time. The problem of ambiguity will be overcome lgyahility of Performance
Trees to define in an unambiguous manner what exactly is me@agured. This enables
system designers to compare real-life systems with cosrepg models in an accessible

way in order to locate possible performance bottlenecks.

7.4. Future Work 171

These are only a few selected examples of areas in whichrRexfwe Trees could be
used effectively, but they give a good indication of the ptitd for the application of

Performance Trees in other industrial scenarios.

7.4 Future Work

For the near future, we envisage the implementation of arsatpols for the evaluation
of the ProbInStatesSS:$ StatesAtTimeMacro and C operators. Although they form
part of the set of basic Performance Tree operators, thepreaently not be evaluated,
due to a lack of tool support. Performance queries that reabout individual tagged
customers can already be evaluated manually; howB\NBE.2s graphical Performance
Tree constraint specification mechanism for sets of staedsto be extended to enable

the automated evaluation of queries addressing taggeonoass.

The extension of the current level of expressiveness obRagnce Trees will also need
to be addressed, to cater for analysis scenarios that estherability to reason about
concepts of performance that are currently not supportedxisting operators. Such
extensions will require minor enhancement$tPE2to support the graphical specifica-
tion of queries that use the new operators, and supportiatysia tools will need to be

integrated into the analysis environment to cater for teeguation.

To provide users with more flexibility in terms of the moddigt they can query with
Performance Trees, the Analysis Server will be integratét wther front-ends, such
as thePEPA Plug-in[Tribastone07], for example. Furthermore, in an effort tp-s
port global collaboration, our analysis environment wil integrated withPerformDB
[Argent-Katwala06, Argent-Katwala07a], an online datsdaf performance models and
related performance results. This will facilitate the aw&bed storage and retrieval of

models specified iIRIPE2 and enable users to globally share their models and results

In addition, existing analysis tools will be further enhaddo support the evaluation
of performance queries on models of even greater compléxétg presently possible.

An expansion of the hardware infrastructure that providesdomputational resources

172 Chapter 7. Conclusion

to our analysis environment will also take place. This wal tealised by interlinking
our analysis cluster with multiple globally dispersed rases to increase the analysis
environment’s ability to cope with very large system modékst necessitate extremely

resource-intensive computations.

Appendix A

Case Study Model Descriptions

A.1 Electronic Voting System

A.1.1 DNAmaca Model

The DNAmacamodel that corresponds to the GSPN model of Figure 6.1 is\dietow:

\ model {

\constant {no_of voters} {100}
\constant{no_of pollers}{10}
\constant{no_of servers}{10}

\constant{rate_t1}{1.0}
\constant{rate_t2}{1.0}
\constant{rate_t3}{0.03}
\constant{rate_t4}{0. 2}
\constant{rate t5}{0. 3}
\constant{rate_t 6}{0. 01}
\constant{rate_t 7}{0. 2}
\constant{rate_t 8}{0. 3}
\constant{rate_t9}{0. 00001}

\statevector{\type{short}{
NOT_VOTED, VOTED, POLLI NG UNITS, VOTE TAKEN, SERVERS
SERVERS BROKEN, POLLERS BROKEN}

}

\initial{
NOT_VOTED = no_of voters;
VOTED = 0;

173

174 Appendix A. Case Study Model Descriptions

POLLING UNITS = no_of pollers;
VOTE_TAKEN = 0;

SERVERS = no_of _servers;
SERVERS BROKEN = 0;

POLLERS BRCKEN = O0;

}

\transition{t1}{
\ condi tion{
NOT_VOTED > 0 && POLLING UNITS > 0

}
\acti on{
next - >NOT_VOTED = NOT_VOTED - 1;
next - >VOTED = VOTED + 1,
next - >POLLING UNI TS = POLLING UNITS - 1;
next - >VOTE_TAKEN = VOTE_TAKEN + 1;
}
\rate{
(NOT_VOTED < POLLING UNITS) ?
(rate_t1 *= (doubl e) NOT_VOTED)
(rate_t1 + (doubl e) POLLI NG_UNI TS)
}

}

\transition{t2}{
\condi ti on{
VOTE_TAKEN > 0 && SERVERS > 0
}

\action{
next - >VOTE_TAKEN = VOTE_TAKEN - 1;
next - >PCLLI NG UNI TS = POLLI NG UNI TS + 1;
}
\rate{
rate t2 = (doubl e) SERVERS
}

}

\transition{t3}{
\condi ti on{
POLLING UNITS > 0

}
\acti on{
next - >PCLLING_ UNI TS = POLLING UNITS - 1;
next - >POLLERS_BROKEN = POLLERS_BROKEN + 1;
}
\rate{
rate t3 * (doubl e) POLLI NG UNI TS
}

}

\transition{t4}{
\condi ti on{
POLLERS_BROKEN > 0
}
\acti on{
next - >POLLING_UNI TS = PCLLING UNITS + 1;

A.1. Electronic Voting System 175

next - >POLLERS_BROKEN = POLLERS_BROKEN - 1;
}

\rate{
rate_t4 = (doubl e) POLLERS BROKEN
}

}

\transition{t5}{
\ condi tion{
POLLERS _BROKEN > PP-1

}

\acti on{
next - >POLLERS BROKEN = POLLERS BROKEN - PP;
next - >POLLI NG UNI TS = POLLI NG UNI TS + PP;

}

\rat ef
rate_t5

}

}

\transition{t6}{
\condi tion{
SERVERS > 0
}

\acti on{
next - >SERVERS = SERVERS - 1;
next - >SERVERS_BROKEN = SERVERS BROKEN + 1;
}
\rate{
rate_t6 * (doubl e) SERVERS
}

}

\transition{t7}{
\ condi tion{
SERVERS BROKEN > 0
}
\action{
next - >SERVERS_BROKEN = SERVERS BRCKEN - 1;
next - >SERVERS = SERVERS + 1;
}
\rate{
rate t7 = (doubl e) SERVERS BROKEN
}

}

\transition{t8}{
\condi tion{
SERVERS_BROKEN > SS-1

}

\acti on{
next - >SERVERS BROKEN = SERVERS BROKEN - SS;
next - >SERVERS = SERVERS + SS;

}

\rate{

rate t8

176 Appendix A. Case Study Model Descriptions

}
}

\transition{t9}{
\condi ti on{
VOTED > W-1

}
\acti on{
next - >VOTED = VOTED - W
next - >NOT_VOTED = NOT_VOTED + VWV,
}
\rate{
rate t9
}

}
}

A.1.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Figaris given below:

not _voted = (vote, rl1).voted
voted = (reset, r2).not_voted
vote taken = (process vote, r3).polling_ units

polling units = (vote, rl).vote_taken +
(polling_unit_breakdown, r4).pollers_broken

pol | ers_broken = (polling_unit_repaired, r5).polling_units +
(all _polling_units_repaired, r6).polling_units

servers = (process_vote, r3).servers +
(server _breakdown, r7).servers_broken

servers_broken = (server_repaired, r8).servers +
(all _servers_repaired, r9).servers

voters = not_voted[CC
pollers = polling_units[MJ
voting_servers = servers[NN

Voting_System = (voters <vote> pollers) <>
(voting_servers <process_vote> vote_ taken)

A.2. Online Transaction System Model 177

A.2 Online Transaction System Model

A.2.1 DNAmaca Model

The DNAmacamodel that corresponds to the GSPN model of Figure 3.9 isigiedow:

\ model {
\ constant {no_of customers}{8}

\constant{rate_enter_site}{0. 6}

\constant{rate quit_site}{0.03}
\constant{rate_go_el sewhere}{0. 8}
\constant{rate_browse_cat al ogue}{0. 7}
\constant{rate_quit_browsing}{0.02}
\constant{rate_select _item{0.7}
\constant{rate_junp_to _checkout}{0. 1}
\constant{rate _back to browse from select}{0. 2}
\constant{rate_quit_sel ecting}{0.02}
\constant{rate_go_t o_checkout}{0. 6}
\constant{rate_back to_browse_ from checkout}{0. 1}
\constant{rate_quit_checki ng_out}{0. 01}
\constant{rate | og in}{0. 3}
\constant{rate_register}{0.5}

\constant {rate_provi de_address}{0. 9}
\constant{rate_quit_|ogin}{0.01}
\constant{rate_provi de_detail s}{0. 9}
\constant{rate_quit_registration}{0.01}
\constant{rate_provide billing_info}{0.9}
\constant{rate_quit_address_info_provision}{0.01}
\constant{rate_confirmorder}{0. 9}
\constant{rate_quit_billing_info_provision}{0.01}
\constant{rate_back to browse fromconfirn}{0.5}
\constant{rate_ | eave_site}{0.5}

\ st at evect or{
\type{short}{
NOT_AT_SI TE, SI TE_ENTERED, BROWSI NG _CATALOGUE
| TEM _SELECTED, AT_CHECKOUT, LOGGED I N, REG STERED,
ADDRESS_PROVI DED, BI LLI NG_I NFO_PROVI DED,
ORDER_CONFI RVED, TRANSACTI ON_ABORTED, tagged_| ocation

}
}

\initial{
NOT_AT_SITE = no_of custoners;
S| TE_ENTERED = 0;
BROWSI NG CATALOGUE = 0;
| TEM SELECTED = 0;
AT _CHECKQUT = 0;
LOGGED I N = 0;
REG STERED = O0;

178 Appendix A. Case Study Model Descriptions

ADDRESS_PROVI DED = 0;

Bl LLI NG | NFO _PROVI DED = 0;
ORDER_CONFI RVED = 0O;
TRANSACTI ON_ABORTED = 0;
tagged_| ocation = O;

% enter_site

\transition{TO}{
\condi ti on{
(tagged_l ocation != 0 & NOT_AT_SITE > 0) ||
(tagged_location == 0 & NOT_AT _SITE > 1)

}
\action{
next->NOT_AT_SI TE = NOT_AT_SI TE - 1;
next->SI TE_ ENTERED = SI TE ENTERED + 1;
}
\rate{
(tagged_I| ocation == 0)
?
(rate_enter_site * ((double)(NOT_AT SITE - 1)) =*
(((doubl e) (NOT_AT_SITE - 1)) / ((doubl e)NOT_AT_SITE)))
(rate_enter_site = ((double)(NOT_AT _SITE)))
}

}

\transition{TO_tagged}{
\condi ti on{
(tagged_l ocation == 0) && (NOT_AT_SITE > 0)

}
\action{
next - >NOT_AT_SITE = NOT_AT SITE - 1;
next - >SI TE_ENTERED = S| TE_ENTERED + 1;
next - >t agged_| ocation = 1;
}
\rat ef{
NOT_AT_SITE > 1
?
(rate_enter_site * ((double)(1)) * (((double)(1)) /
((doubl e) NOT_AT_SI TE)))
rate _enter_site
}
}
%quit_site

\transition{T1}{
\ condi ti on{
(tagged_location !'=1 & & SI TE ENTERED > 0) ||
(tagged |l ocation == 1 && SI TE ENTERED > 1)

A.2. Online Transaction System Model 179

\acti on{
next->SI TE_ ENTERED = SI TE ENTERED - 1;
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;

}

\rate{
(tagged | ocation == 1)
2
(rate_quit_site » ((double)(SI TE ENTERED - 1)) =*
(((doubl e) (SI TE_ENTERED - 1)) / ((double)SI TE ENTERED)))
(rate quit_site = ((double) (Sl TE ENTERED)))

}

}

\transition{T1_t agged}{
\condi tion{
(tagged _location == 1) && (SI TE_ENTERED > 0)

}
\acti on{
next->SI TE_ENTERED = SI TE_ENTERED - 1;
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;
}
\rate{
SI TE_ ENTERED > 1
?
(rate_quit_site = ((double)(1l)) * (((double)(1)) /
((doubl e) SI TE_ENTERED)))
rate_quit_site
}

}

% br owse_cat al ogue

\transition{T2}{
\condi ti on{
(tagged_location !'= 1 && SI TE_ ENTERED > 0) |
(tagged location == 1 & & SI TE ENTERED > 1)

}

\acti on{
next->SI TE_ENTERED = SI TE_ENTERED - 1;
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE + 1;

}

\rate{

(tagged_l ocation == 1)
?
(rate_browse_catal ogue * ((double)(SI TE ENTERED - 1)) =*
(((doubl e) (SITE_ENTERED - 1)) / ((double)SI TE_ ENTERED)))
(rate_browse_catal ogue * ((doubl e)(SI TE_ENTERED)))

}

180 Appendix A. Case Study Model Descriptions

\transition{T2_ tagged}{
\ condi tion{
(tagged_l ocation == 1) && (SI TE_ENTERED > 0)

}

\'acti on{
next->SI TE_ENTERED = S| TE_ENTERED - 1;
next - >BROASI NG CATALOGUE = BROWSI NG CATALOGUE + 1;
next - >t agged_| ocation = 2;

}

\rate{
SI TE_ENTERED > 1
2
(rate_browse_catal ogue * ((double)(1)) * (((double)(1)) /
((doubl e) SI TE_ENTERED)))
rate_browse_cat al ogue

}

}

% sel ect _item

\transition{T3}{
\condi ti on{
(tagged_l ocation != 2 && BROWSI NG _CATALOGUE > 0) ||
(tagged_l ocation == 2 && BROWSI NG CATALOGUE > 1)

}
\'acti on{
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE - 1;
next - >l TEM SELECTED = | TEM SELECTED + 1,
}
\rate{
(tagged_I| ocation == 2)
?
(rate_select item=* ((double)(BROANSI NG CATALOGUE - 1)) =*
(((doubl e) (BROASI NG_CATALOGUE - 1)) /
((doubl e) BROASI NG_CATALOGUE)))
(rate_select _item* ((doubl e)(BROAMSI NG _CATALOGUE)))
}

}

\transition{T3_tagged}{
\condi tion{
(tagged_location == 2) && (BROASI NG CATALOGUE > 0)
}

\acti on{
next - >BRONBI NG _CATALOGUE = BROWSI NG CATALOGUE - 1;
next - >l TEM SELECTED = | TEM SELECTED + 1,
next - >t agged | ocation = 3;
}
\rate{
BROWEI NG CATALOGUE > 1
?
(rate_select _item= ((double)(1l)) * (((double)(1)) /
((doubl) BROASI NG _CATALOGUE)))

A.2. Online Transaction System Model 181

rate_select _item

}
}

% go_t o_checkout

\transition{T4}{
\ condi tion{
(tagged_l ocation != 3 && | TEM SELECTED > 0) |
(tagged_l ocation == 3 && | TEM SELECTED > 1)

}
\acti on{
next - >l TEM SELECTED = | TEM SELECTED - 1;
next - >AT_CHECKOUT = AT _CHECKOUT + 1
}
\rat ef
(tagged_ | ocation == 3)
2
(rate_go_to_checkout * ((double) (I TEM SELECTED - 1)) =*
(((doubl e) (I TEM SELECTED - 1)) / ((double)l TEM SELECTED)))
(rate_go_to_checkout * ((double) (I TEM SELECTED)))
}

}

\transition{T4_tagged}{
\condi tion{
(tagged_location == 3) && (| TEM SELECTED > 0)

}

\acti on{
next - >l TEM SELECTED = | TEM SELECTED - 1;
next - >AT_CHECKOUT = AT_CHECKOUT + 1
next - >t agged_| ocation = 4;

}

\rate{
| TEM SELECTED > 1
?
(rate_go_to_checkout * ((double)(1)) * (((double)(1)) /
((doubl e) | TEM SELECTED)))
rate_go_to_checkout

}

}

% j unp_t o_checkout

\transition{T5}{

\condi tion{
(tagged _location !'= 2 && BROWSI NG CATALOGUE > 0) |
(tagged | ocation == 2 && BROWEI NG CATALOGUE > 1)

}

\acti on{
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE - 1;
next - >AT_CHECKOUT = AT_CHECKOUT + 1

182 Appendix A. Case Study Model Descriptions

\rate{
(tagged | ocation == 2)
2
(rate_junp_to_checkout =* ((double)(BROASI NG CATALOGUE - 1)) =
(((doubl e) (BRONBI NG_CATALOGUE - 1)) /
((doubl e) BROASI NG_CATALOGUE)))
(rate_junp_to_checkout * ((double)(BROASI NG CATALOGUE)))

}

}

\transition{T5_tagged}{
\ condi tion{
(tagged_l ocation == 2) && (BROASI NG CATALOGUE > 0)

}
\action{
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE - 1;
next - >AT_CHECKOUT = AT_CHECKOUT + 1;
next - >t agged_| ocation = 4;
}
\rat ef
BROASI NG_CATALOGUE > 1
2
(rate_junp_to_checkout * ((double)(1)) * (((double)(1)) /
((doubl e) BROASI NG_CATALOGUE)))
rate_j unp_t o_checkout
}

}
% qui t _br owsi ng

\transition{T6}{
\ condi tion{
(tagged location !'= 2 && BROASI NG CATALOGUE > 0) ||
(tagged_l ocation == 2 && BROWSI NG _CATALOGUE > 1)

}
\action{
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
}
\rate{
(tagged_I| ocation == 2)
2
(rate_quit_browsing * ((doubl e)(BROMSI NG CATALOGUE - 1)) =
(((doubl e) (BROANBI NG CATALOGUE - 1)) /
((doubl e) BROASI NG_CATALOGUE)))
(rate_quit_browsing * ((double)(BROASI NG CATALOGUE)))
}

}

\transition{T6_tagged}{
\condi tion{
(tagged_location == 2) && (BROASI NG CATALOGUE > 0)
}

A.2. Online Transaction System Model 183

\acti on{
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE - 1;
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;

}
\rate{
BROWSI NG CATALOGUE > 1
2
(rate_quit_browsing = ((double)(1)) * (((double)(1)) /
((doubl e) BROABI NG_CATALOGUE)))
rate_quit_browsing
}

}

% back_to_browse_from sel ect

\transition{T7}{
\ condi tion{
(tagged_location !'= 3 && | TEM SELECTED > 0) |
(tagged | ocation == 3 && | TEM SELECTED > 1)

}

\acti on{
next - >l TEM SELECTED = | TEM SELECTED - 1;
next - >BROWASI NG_CATALOGUE = BROWSI NG CATALOGUE + 1

}

\rat ef
(tagged | ocation == 3)
2
(rate_back to _browse from select =
((doubl e) (1 TEM SELECTED - 1)) =*
(((doubl e) (I TEM SELECTED - 1)) /
((doubl e) | TEM SELECTED)))
(rate_back to _browse from select =
((doubl e) (1 TEM SELECTED)))

}

}

\transition{T7_tagged}{
\ condi tion{
(tagged_l ocation == 3) && (| TEM SELECTED > 0)

}

\acti on{
next - >l TEM SELECTED = | TEM SELECTED - 1;
next - >SBROWNSI NG_CATALOGUE = BROWSI NG CATALOGUE + 1
next - >t agged_| ocation = 2;

}

\rat ef

| TEM SELECTED > 1
?

(rate_back_to_bromse_fronlselect * ((double) (1)) =
(((double) (1)) / ((double)l TEM SELECTED)))

rate_back to _browse from sel ect

184 Appendix A. Case Study Model Descriptions

}

% back_t o_browse_from checkout

\transition{T8}{
\condi ti on{
(tagged location !'= 4 && AT _CHECKOUT > 0) |
(tagged_location == 4 && AT_CHECKOUT > 1)

}
\'acti on{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE + 1;
}
\rate{
(tagged_l ocation == 4)
?
(rate_back to _browse from checkout =
((doubl e) (AT_CHECKQUT - 1)) =
(((doubl e) (AT_CHECKOUT - 1)) /
((doubl e) AT_CHECKQOUT)))
(rate_back _to_browse_from checkout =
((doubl e) (AT_CHECKQOUT)))
}

}

\transition{T8 tagged}{
\condi ti on{
(tagged | ocation == 4) && (AT_CHECKOUT > 0)

}
\'acti on{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next - > BROASI NG_CATALOGUE = BROWSI NG_CATALOGUE + 1;
next - >t agged | ocation = 2;
}
\rate{
AT_CHECKOUT > 1
2
(rate_back to _browse from checkout * ((double)(1l)) =
(((double)(1)) / ((double)AT_CHECKQOUT)))
rate_back to_browse_from checkout
}

}
% quit_sel ecting

\transition{T9}{

\condi ti on{
(tagged location !'= 3 && | TEM SELECTED > 0) |
(tagged_l ocation== 3 && | TEM SELECTED > 1)

}

\'acti on{
next->| TEM SELECTED = | TEM SELECTED - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;

A.2. Online Transaction System Model 185

\rate{
(tagged | ocation == 3)
?
(rate_quit_selecting * ((double) (I TEM SELECTED - 1)) =*
(((doubl e) (I TEM SELECTED - 1)) /
((doubl e) I TEM SELECTED)))
(rate_quit_selecting * ((double) (I TEM SELECTED)))

}

}

\transition{T9 tagged}{
\ condi tion{
(tagged_l| ocati on==3) && (| TEM SELECTED > 0)

}
\action{
next->| TEM SELECTED = | TEM SELECTED - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;
}
\rat ef
| TEM SELECTED > 1
?
(rate_quit_selecting * ((double)(1)) * (((double)(1)) /
((doubl e) | TEM SELECTED)))
rate_quit_sel ecting
}

}
% qui t _checki ng_out

\transition{T10}{
\ condi tion{
(tagged_location !'= 4 && AT _CHECKOUT > 0) |
(tagged_l ocation == 4 && AT_CHECKOUT > 1)

}
\action{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
}
\rate{
(tagged_I| ocation == 4)
?
(rate_quit_checking_out * ((double)(AT_CHECKOUT - 1)) =
(((doubl e) (AT_CHECKOUT - 1)) / ((double)AT_CHECKQUT)))
(rate_quit_checking out = ((double)(AT_CHECKOUT)))
}

}

\transition{T10_t agged}{
\condi ti on{
(tagged_l ocation == 4) && (AT_CHECKQUT > 0)
}

186 Appendix A. Case Study Model Descriptions

\acti on{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;
}
\ratef
AT_CHECKQUT > 1
?
(rate_quit_checking_out * ((double)(1)) =
(((double) (1)) / ((double)AT_CHECKQOUT)))

rate_quit_checki ng_out
}
}

% log_in

\transition{T11}{
\ condi tion{
(tagged_location !'= 4 & AT_CHECKOUT > 0) ||
(tagged_l ocation == 4 && AT_CHECKQUT > 1)

}
\acti on{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next->LOGGED IN = LOGGED I N + 1;
}
\rat ef
(tagged_ | ocation == 4)
2
(rate_log in = ((double)(AT_CHECKOUT - 1)) =
(((doubl e) (AT_CHECKQUT - 1)) /
((doubl e) AT_CHECKQUT)))
(rate_log in * ((double)(AT_CHECKOUT)))
}

}

\transition{T11l tagged}{
\condi ti on{
(tagged_location == 4) && (AT_CHECKOUT > 0)

}

\acti on{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next->LOGGED_IN = LOGGED IN + 1;
next - >t agged | ocation = 5;

}

\rate{
AT_CHECKOUT > 1
?
(rate_log in * ((double)(1l)) * (((double)(1)) /
((doubl e) AT_CHECKOUT)))
rate log_in

}

A.2. Online Transaction System Model 187

% regi ster

\transition{T12}{
\condi ti on{
(tagged_l ocation !'= 4 & AT_CHECKOUT > 0) ||
(tagged_location == 4 & AT_CHECKOUT > 1)

}
\acti on{
next - >AT_CHECKOUT = AT_CHECKQUT - 1;
next - >REA STERED = REGQ STERED + 1;
}
\rate{
(tagged_ | ocation == 4)
?
(rate_register » ((double)(AT_CHECKQUT - 1)) =
(((doubl e) (AT_CHECKOQUT - 1)) /
((doubl e) AT_CHECKQUT)))
(rate_register * ((double)(AT_CHECKQUT)))
}

}

\transition{T12_tagged}{
\ condi tion{
(tagged_l ocation == 4) && (AT_CHECKOUT > 0)

}

\action{
next - >AT_CHECKOUT = AT_CHECKOUT - 1;
next - >REA STERED = REGQ STERED + 1;
next - >t agged_| ocati on = 6;

}

\rate{
AT_CHECKOUT > 1
2
(rate_register » ((double)(1)) * (((double)(1)) /
((doubl e) AT_CHECKQOUT)))
rate_register

}

}

% provi de_addr ess

\transition{T13}{
\ condi tion{
(tagged_location !'=5 & LOGGED IN > 0) ||
(tagged_location == 5 & LOGGED IN > 1)

}
\acti on{
next->LOGGED IN = LOGGED I N - 1;
next - >ADDRESS PROVI DED = ADDRESS PROVI DED + 1;
}
\rate{
(tagged_I| ocation == b5)
2

(rate_provide_address * ((double)(LOGGED IN - 1)) =

188 Appendix A. Case Study Model Descriptions

(((doubl e) (LOGGED_IN - 1)) / ((doubl e)LOGGED IN)))

(rate_provi de_address * ((double)(LOGGED IN)))

}
}

\transition{T13 tagged}{
\ condi tion{
(tagged_l ocation == 5) && (LOGGED IN > 0)

}

\action{
next->LOGGED_IN = LOGGED IN - 1;
next - >ADDRESS PROVI DED = ADDRESS PROVI DED + 1,
next - >t agged_| ocation = 7;

}

\rate{
LOGGED IN > 1
2
(rate_provide _address * ((double)(1)) =
(((double) (1)) / ((double)LOGGED IN)))
rate_provi de_address

}

}

% provi de_details

\transition{T14}{
\ condi tion{
(tagged_location !'= 6 && REGQ STERED > 0) ||
(tagged_l ocation == 6 & REQ STERED > 1)

}
\acti on{
next - >REG STERED = REGQ STERED - 1;
next - >ADDRESS PROVI DED = ADDRESS PROVI DED + 1,
}
\rate{
(tagged_ | ocation == 6)
?
(rate_provide details * ((double)(REG STERED - 1)) =
(((doubl e) (REG STERED - 1)) / ((doubl e) REG STERED)))
(rate_provide_details * ((double)(REG STERED)))
}

}

\transition{T14_t agged}{
\condi tion{
(tagged | ocation == 6) && (REGQ STERED > 0)
}

\action{
next - >REA STERED = REGQ STERED - 1;
next - >ADDRESS_PROVI DED = ADDRESS PROVI DED + 1;
next - >t agged_| ocation = 7;

A.2. Online Transaction System Model 189

\rate{
REG STERED > 1
?
(rate_provide details = ((double)(1)) =
(((double) (1)) / ((double)REQ STERED)))

rate_provide_details

}
}

% quit_registration

\transition{T15}{
\ condi tion{
(tagged_l ocation !'= 6 & REQ STERED > 0) ||
(tagged |l ocation == 6 & REGQ STERED > 1)

}
\action{
next - >REG STERED = REQ STERED - 1,
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
}
\rat ef
(tagged | ocation == 6)
2
(rate_quit_registration » ((double)(REA STERED - 1)) =
(((doubl e) (REA STERED - 1)) / ((doubl e) REG STERED)))
(rate_quit_registration * ((double)(REA STERED)))
}

}

\transition{T15_ tagged}{
\condi ti on{
(tagged | ocation == 6) && (REGQ STERED > 0)

}

\'acti on{
next - >REA STERED = REGQ STERED - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged | ocati on = 10;

}

\rate{
REG STERED > 1
2
(rate_quit _registration * ((double)(1)) =
(((double) (1)) / ((double)REA STERED)))
rate_quit_registration

}

}
% quit_login

\transition{T16}{
\condi tion{
(tagged location !'=5 & LOGGED IN > 0) ||
(tagged location == 5 & LOGGED IN > 1)

190 Appendix A. Case Study Model Descriptions

}
\action{
next->LOGGED IN = LOGGED I N - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
}
\ratef
(tagged | ocation == 5)
2
(rate_quit_login = ((double)(LOGGED IN - 1)) =
(((doubl e) (LOGGED IN - 1)) / ((double)LOGGED IN)))
(rate_quit _login * ((double)(LOGGED IN)))
}

}

\transition{T16_t agged}{
\condi ti on{
(tagged location == 5) && (LOGGED IN > 0)

}

\acti on{
next->LOGGED IN = LOGGED IN - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged | ocati on = 10;

}

\rate{
LOGGED IN > 1
2
(rate_quit _login * ((double)(1)) =
(((double) (1)) / ((double)LOGGED IN)))
rate_quit_login

}

}
% quit_address_info_provision

\transition{T17}{
\condi tion{
(tagged_location !'= 7 &% ADDRESS PROVI DED > 0) ||
(tagged_l ocation == 7 && ADDRESS PROVI DED > 1)

}
\'acti on{
next - >ADDRESS_PROVI DED = ADDRESS_PROVI DED - 1;
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1,
}
\rat e{

(tagged_l ocation == 7)

?

(rate_quit_address_info_provision =
((doubl e) (ADDRESS PROVI DED - 1)) =*
(((doubl e) (ADDRESS_PROVI DED - 1)) /
((doubl e) ADDRESS PROVI DED)))

(rate_quit_address_info_provision =
((doubl e) (ADDRESS_PROVI DED)))

A.2. Online Transaction System Model 191

}

\transition{T17_t agged}{
\condi ti on{
(tagged |l ocation == 7) && (ADDRESS PROVI DED > 0)

}
\action{
next - >ADDRESS PROVI DED = ADDRESS PROVI DED - 1,
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;
}
\rate{
ADDRESS PROVI DED > 1
?
(rate_quit_address_info_provision * ((double)(1)) =
(((double) (1)) / ((doubl e) ADDRESS PROVI DED)))
rate _quit_address_info_provision
}
}
% provide_billing_info

\transition{T18}{
\ condi tion{
(tagged_l ocation !'= 7 && ADDRESS PROVI DED > 0) ||
(tagged_l ocation == 7 && ADDRESS PROVI DED > 1)

}

\action{
next - >ADDRESS PROVI DED = ADDRESS PROVI DED - 1,
next - >Bl LLI NG_| NFO_PROVI DED =

Bl LLI NG_| NFO_PROVI DED + 1;

}

\rate{
(tagged_l ocation == 7)
2
(rate_provide_ billing_info *
((doubl e) (ADDRESS_PROVI DED - 1)) =
(((doubl e) (ADDRESS_PROVI DED - 1)) /
((doubl e) ADDRESS_PROVI DED)))
(rate_provide_ billing_info *
((doubl e) (ADDRESS_PROVI DED)))

}

}

\transition{T18 tagged}{
\condi tion{
(tagged_location == 7) && (ADDRESS PROVI DED > 0)
}

\acti on{
next - >ADDRESS PROVI DED = ADDRESS PROVI DED - 1;
next - >BI LLI NG_| NFO_PROVI DED =
Bl LLI NG_| NFO_PROVI DED + 1;
next - >t agged | ocation = 8;

192 Appendix A. Case Study Model Descriptions

\rate{
ADDRESS PROVI DED > 1
?
(rate_provide billing info * ((double)(1l)) =
(((double) (1)) / ((doubl e) ADDRESS PROVI DED)))

rate_provide_billing_info
}
}

% confirm order

\transition{T19}{
\ condi tion{
(tagged_l ocation !'= 8 && BI LLI NG | NFO PROVI DED > 0) ||
(tagged_l ocation == 8 && BI LLI NG_| NFO PROVI DED > 1)

}
\action{
next - >Bl LLI NG_| NFO_PROVI DED =
Bl LLI NG_| NFO_PROVI DED - 1;
next - >ORDER_CONFI RVED =
ORDER_CONFI RVED + 1;
}
\rate{
(tagged_I| ocation == 8)
?
(rate_confirmorder =
((doubl e) (BI LLI NG_I NFO_PROVI DED - 1)) =
(((doubl e) (BI LLI NG | NFO PROVI DED - 1)) /
((doubl e) Bl LLI NG _| NFO_PROVI DED)))
(rate_confirmorder =
((doubl e) (BI LLI NG_I NFO_PROVI DED)))
}

}

\transition{T19_tagged}{
\condi tion{
(tagged_location == 8) && (BILLING | NFO PROVI DED > 0)

}
\acti on{
next - >Bl LLI NG_| NFO_PROVI DED =
Bl LLI NG_| NFO_PROVI DED - 1;
next - >ORDER_CONFI RVED =
ORDER_CONFI RVED + 1;
next - >t agged_| ocation = 9;
}
\rate{
Bl LLI NG_I NFO_PROVI DED > 1
2
(rate_confirmorder * ((double)(1)) =
(((double) (1)) / ((double)BlLLING I NFO PROVIDED)))
rate_confirmorder
}

A.2. Online Transaction System Model 193

% quit_billing_info_provision

\transition{T20}{
\condi ti on{
(tagged location !'= 8 && BI LLI NG | NFO PROVI DED > 0) ||
(tagged | ocation == && Bl LLI NG | NFO PROVI DED > 1)
}
\acti on{
next - >Bl LLI NG_| NFO_PROVI DED =
Bl LLI NG_| NFO PROVI DED - 1;
next - >TRANSACTI ON_ABORTED =
TRANSACTI ON_ABORTED + 1;
}
\rate{
(tagged_I| ocation == 8)
?
(rate_quit_billing_info_provision *
((doubl e) (BI LLI NG | NFO PROVIDED - 1)) =
(((doubl e) (BILLI NG | NFO PROVIDED - 1)) /
((doubl e) BI LLI NG_| NFO_PROVI DED)))

(rate_quit _billing info_provision =
((doubl e) (BI LLI NG_I NFO_PROVI DED)))
}
}

\transition{T20_tagged}{
\ condi tion{
(tagged_l ocation == 8) && (BILLING | NFO PROVI DED > 0)

}
\action{
next - >Bl LLI NG_| NFO_PROVI DED =
Bl LLI NG_| NFO_PROVI DED - 1;
next - >TRANSACTI ON_ABORTED =
TRANSACTI ON_ABORTED + 1;
next - >t agged_| ocati on = 10;
}
\rat e{
Bl LLI NG_I NFO_PROVI DED > 1
?
(rate_quit_billing_info_provision * ((double)(1)) =
(((double) (1)) / ((double)BILLING | NFO PROVIDED)))
rate_quit_billing_info_provision
}

}

% back_to_browse fromconfirm

\transition{T21}{
\condi ti on{
(tagged_l ocation !'= 9 & & ORDER_CONFI RMED > 0) ||
(tagged_l ocation == 9 && ORDER_CONFI RVED > 1)

194 Appendix A. Case Study Model Descriptions

\acti on{
next - >ORDER_CONFI RVED = ORDER _CONFI RVED - 1;
next - >BROWSI NG_CATALOGUE = BROWSI NG _CATALOGUE + 1;

}

\rate{
(tagged | ocation == 9)
2
(rate_back to browse fromconfirm =
((doubl e) (ORDER_CONFI RVED - 1)) =
(((doubl e) (ORDER_CONFI RVED - 1)) /
((doubl e) ORDER_CONFI RVED)))
(rate_back to _browse fromconfirm =
((doubl e) (ORDER_CONFI RVED)))

}

}

\transition{T21 tagged}{
\ condi tion{
(tagged_l ocation == 9) && (ORDER_CONFI RVED > 0)

}

\action{
next - >ORDER_CONFI RVED = ORDER_CONFI RVED - 1;
next - >BROWSI NG_CATALOGUE = BROWSI NG _CATALOGUE + 1,
next - >t agged_I| ocation = 2;

}

\rat ef
ORDER_CONFI RVED > 1
?
(rate_back to_browse fromconfirm=* ((double)(1)) =
(((double) (1)) / ((doubl e) ORDER _CONFI RVED)))
rate_back to browse fromconfirm

}

}

% | eave_site

\transition{T22}{
\ condi tion{
(tagged_l ocation != 9 & ORDER_CONFI RVED > 0) ||
(tagged_l ocation == 9 && ORDER_CONFI RMED > 1)

}
\action{
next - >ORDER_CONFI RVED = ORDER _CONFI RVED - 1;
next - >NOT_AT_SITE = NOT_AT_SITE + 1;
}
\rat ef
(tagged_ | ocation == 9)
2

(.rat e leave_site * ((double)(ORDER CONFIRVED - 1)) =
(((doubl) (ORDER_CONFI RVED - 1)) /
((doubl e) ORDER_CONFI RVED)))

.(rat e leave _site * ((doubl e)(ORDER_CONFI RVED)))

A.2. Online Transaction System Model 195

}

\transition{T22_tagged}{
\condi ti on{
(tagged_ | ocation == 9) && (ORDER_CONFI RVED > 0)

}
\action{
next - >ORDER_CONFI RVED = ORDER _CONFI RVED - 1,
next - >NOT_AT_SI TE = NOT_AT_SITE + 1;
next - >t agged_| ocati on = O;
}
\rate{
ORDER_CONFI RVED > 1
?
(rate_l eave_site * ((double)(1)) * (((double)(1)) /
((doubl e) ORDER_CONFI RVED)))
rate | eave site
}

}

% go_el sewhere

\transition{T23}{
\ condi tion{
(tagged_l ocation !'= 10 && TRANSACTI ON_ABORTED > 0) ||
(tagged_l ocation == 10 &% TRANSACTI ON_ABORTED > 1)

}
\acti on{
next - >STRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED - 1;
next - >NOT_AT_SI TE = NOT_AT_SITE + 1;
}
\rate{
(tagged_l| ocation == 10)
2
(rate_go_el sewhere * ((doubl e) (TRANSACTI ON_ABORTED - 1)) =
(((doubl e) (TRANSACTI ON_ABORTED - 1)) /
((doubl e) TRANSACTI ON_ABORTED)))
(rate_go_el sewhere * ((doubl e) (TRANSACTI ON_ABORTED)))
}

}

\transition{T23 tagged}{
\ condi tion{
(tagged_l ocation == 10) && (TRANSACTI ON_ABORTED > 0)

}

\action{
next - >TRANSACTI ON_ABORTED = TRANSACTI ON_ABORTED - 1;
next->NOT_AT_SITE = NOT_AT_SITE + 1;
next - >t agged_| ocation = O;

}

\rate{

TRANSACTI ON_ABCRTED > 1
?

('rate_go_elsewhere * ((double)(1)) = (((double)(1)) /

196 Appendix A. Case Study Model Descriptions

((doubl e) TRANSACTI ON_ABORTED)))

rate_go_el sewhere

A.2.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Figaris 8iven below:

not _at_site = (enter_site, rl).site_entered

site_entered = (browse_catal ogue, r2).browsing catal ogue +
(quit_site, r3).not_at site

br owsi ng_cat al ogue = (select_item r4).itemselected +
(junmp_to_checkout, r5).at_checkout +
(quit_browsing, r6).not_at _site

itemselected = (go_to_checkout, r7).at_checkout +
(back_to_browse_from sel ect, r8).browsing_catal ogue +
(quit_selecting, r9).not_at_site

at _checkout = (log_in, rl10).logged in +
(register, rl1l).registered +
(back_to_browse from checkout, r12).browsing_catal ogue +
(quit_checking out, rl13).not_at_site

| ogged in = (provide_address, r14).address_provided +
(quit_login, r15).not_at _site

regi stered = (provide details, rl16).address_provided +
(quit_registration, rl7).not_at_site

address_provided = (provide_billing_info, r18).billing_info_provided +
(quit_address_info_provision, r19).not_at _site

billing_ info_provided = (confirmorder, r20).order_confirnmed +
(quit_billing_info_provision, r2l).not_at_site

order _confirmed = (back to browse fromconfirm r22).browsing catal ogue +
(quit_order_confirmtion, r23).not_at_site

OTS = not_at _site[C(

A.3. Hospital Accident & Emergency Unit Model 197

A.3 Hospital Accident & Emergency Unit Model

A.3.1 DNAmaca Model

The DNAmacamodel that corresponds to the GSPN model of Figure 6.22 endielow:

\ model {

\ const ant {no_of peopl e} {8}
\constant {no_of nurses}{2}

\ constant{no_of doctors}{2}

\ const ant {no_of _anbul ances}{1}

\constant{rate_fall _ill}{0.2}

\constant{rate_wal k_in_arrival }{0. 3}
\constant{rate_energency_call }{0. 6}
\constant{rate_| oad_patient}{0. 6}
\constant{rate_anbul ance_arrival }{0. 6}
\constant{rate_see_nurse}{0. 3}
\constant{rate_see_energency_nurse}{0. 6}
\constant{rate_conpl ete_assessnent }{0. 3}
\constant{rate_conpl ete_energency_assessnent }{0. 6}
\constant{rate to_doctor}{0. 3}
\constant{rate_see_doctor}{0. 3}
\constant{rate_di scharge_treated _patient}{0. 3}
\constant{rate_to_surgery}{0. 2}
\constant{rate_surgery}{0. 2}
\constant{rate_recover}{0. 2}

\constant{rate_di scharge_recovered_patient}{0.2}
\constant{rate_to_tests}{0. 4}
\constant{rate_performlab_tests}{0. 4}
\constant{rate_eval uate_resul ts}{0. 1}

\ st at evect or{
\type{short}{

WAI TI NG_ROOM TROLLEY, PATI ENT_RECOVERED, HEALTHY, ILL,
AWAI TI NG_AMBULANCE, | N_TRANSI T, AMBULANCES, PATI ENT_ASSESSED
NURSES, AMBULANCE_PATI ENT_ASSESSED, ASSESSED PATI ENTS
TEST_DONE, TREATED BY DOCTOR, DOCTORS, SURGERY_DONE,
WAI TI NG_FOR_DOCTOR, WAI TI NG_FOR_SURGERY, WAI TI NG_FOR_TESTS,
t agged_I| ocati on

}

}

\initiall{
WAl TI NG_ROOM = 0;
TROLLEY = 0;

PATI ENT_RECOVERED = 0;
HEALTHY = no_of peopl ¢;
ILL = 0O;

AWAI TI NG_AMBULANCE = O0;
IN._TRANSIT = 0;

198 Appendix A. Case Study Model Descriptions

AMBULANCES = no_of _anbul ances;
PATI ENT_ASSESSED = 0;

NURSES = no_of _nur ses;
AMBULANCE _PATI ENT_ASSESSED = 0;
ASSESSED PATI ENTS = 0;
TEST_DONE = 0;
TREATED BY DOCTOR = 0;

DOCTORS = no_of doctors;
SURGERY_DONE = 0;

WAI TI NG_FOR_DOCTOR = 0;

WAI TI NG_FOR_SURGERY = 0;

WAI TI NG_FOR_TESTS = 0;
tagged_| ocation = 3;

}

%86 see nurse %%

\transition{TO}{
\condi ti on{
(WAI TING_ ROOM > 0 & & NURSES > 0 && tagged_l ocation != 0)
(WAI TING_ ROOM > 1 && NURSES > 0 && tagged | ocation == 0)
}
\acti on{
next - >WAI TI NG_ROOM = WAI TI NG_ROOM - 1,
next - >NURSES = NURSES - 1,
next - >PATI ENT_ASSESSED = PATI ENT_ASSESSED + 1;
}
\rate{
(tagged | ocation == 0)
?
((WAI TI NG_ROOM < NURSES) ?
(rate_see_nurse * ((double)(WAI TING ROOM - 1)) =
(((doubl e) (WAI TI NG ROOM - 1)) / ((doubl e)WAI TI NG_RCOM))
(rate_see nurse * ((doubl e)(NURSES)) =
(((doubl e) (WAI TING ROOM - 1)) / ((doubl e) WAI TI NG ROOM))))

k(V\AI TI NG_ROOM < NURSES) ? (rate_see_nurse =
((doubl e) (WAI TING_ROOM))) :
(rate_see _nurse * ((doubl e) NURSES)))
}
}

\transition{TO_ tagged}{
\condi ti on{

(WAI' TING ROOM > 0 & NURSES > 0) && (tagged | ocation == 0)

}

\acti on{
next - >WAI TI NG_ROOM = WAI TI NG_ROOM - 1;
next - >NURSES = NURSES - 1;
next - >PATI ENT_ASSESSED = PATI ENT_ASSESSED + 1,
next - >t agged_| ocation = 8;

}

\rate{

WAI TI NG_ROCOM > 1
?

('rate_see_nurse * ((double) (1)) * (((double)(1)) /

A.3. Hospital Accident & Emergency Unit Model 199

((doubl e) WAI TI NG_ROOM))

rate_see_nurse

}
}

Wowal k-in arrival %%

\transition{T1}{
\condi ti on{
(ILL > 0 && tagged_l ocation !=4) ||
(ILL > 1 && tagged | ocation == 4)

}
\acti on{
next->ILL = ILL - 1;
next - >WAI TI NG_ROOM = WAI TI NG_ROOM + 1;
}
\ wei ght {
3.0
}

}

\transition{T1l tagged}{
\ condi tion{
(ILL > 0) && (tagged | ocation == 4)

}
\action{
next->lLL = ILL - 1;
next - >WAI TI NG_ROOM = WAI TI NG_ROOM + 1;
next - >t agged_| ocat i on=0;
}
\ wei ght {
3.0
}

}

%% r ecover %%

\transition{T10}{
\ condi tion{
(SURCERY_DONE > 0 && tagged |l ocation !'= 15) ||
(SURCERY_DONE > 1 && tagged_l ocation == 15)

}
\action{
next - >SURGERY_DONE = SURGERY_DONE - 1;
next - >PATI ENT_RECOVERED = PATI ENT_RECOVERED + 1,
next - >DOCTORS = DOCTORS + 1;
}
\rate{
(tagged_l| ocation == 15)
?

(.rate_recover * ((doubl e) (SURGERY_DONE - 1)) =
(((doubl e) (SURGERY_DONE - 1)) / ((doubl e) SURGERY_DONE)))

.(rate_recover * ((doubl e) (SURGERY_DONE)))

200 Appendix A. Case Study Model Descriptions

}

\transition{T10_t agged}{
\condi ti on{
(SURGERY_DONE > 0) && (tagged | ocation == 15)

}
\action{
next - >SURGERY_DONE = SURGERY_DONE - 1;
next - >PATI ENT_RECOVERED = PATI ENT_RECOVERED + 1;
next - >DOCTORS = DOCTORS + 1;
next - >t agged_| ocati on = 2;
}
\rate{
SURGERY_DONE > 1
?
(rate_recover * ((double)(1)) * (((double)(1)) /
((doubl e) SURGERY_DONE)))
rate_recover
}

}

%% eval uate results %%

\transition{T11}{
\condi ti on{
(TEST_DONE > 0 && tagged_l ocation !'= 12) ||
(TEST_DONE > 1 && tagged | ocation == 12)

}

\acti on{
next - >TEST_DONE = TEST_DONE - 1;
next - >ASSESSED_PATI ENTS = ASSESSED PATI ENTS + 1;

}

\rate{
(tagged_l ocation == 12)
?
(rate_evaluate_ results * ((double)(TEST_DONE - 1)) =
(((doubl e) (TEST_DONE - 1)) / ((doubl e) TEST_DONE)))
(rate_evaluate_results = ((double)(TEST_DONE)))

}

}

\transition{T11l tagged}{
\ condi tion{
(TEST_DONE > 0) && (tagged | ocation == 12)

}
\action{
next - >TEST_DONE = TEST_DONE - 1;
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS + 1;
next - >t agged_| ocati on=11;
}
\rate{
TEST_DONE > 1
2

('rate_eval uate results * ((double)(1)) * (((double)(1)) /

A.3. Hospital Accident & Emergency Unit Model

201

((doubl e) TEST_DONE)))

rate_eval uate_results

}
}

%% di scharge recovered patient %%

\transition{T12}{
\condi ti on{
(PATI ENT_RECOVERED > 0 && tagged_l| ocation !'= 2) ||
(PATI ENT_RECOVERED > 1 && tagged_| ocation == 2)

}

\acti on{
next - >PATI ENT_RECOVERED = PATI ENT_RECOVERED - 1;
next - >SHEALTHY = HEALTHY + 1;

}

\rate{
(tagged_l ocation == 2)
2
(rate_di scharge_recovered_patient =
((doubl e) (PATI ENT_RECOVERED - 1)) =
(((doubl e) (PATI ENT_RECOVERED - 1)) /
((doubl e) PATI ENT_RECOVERED)))
(rate_di scharge_recovered_patient =
((doubl e) (PATI ENT_RECOVERED)))

}

}

\transition{T12_t agged}{
\condi tion{
(PATI ENT_RECOVERED > 0) && (tagged | ocati on==2)

}
\acti on{
next - >PATI ENT_RECOVERED = PATI ENT_RECOVERED - 1;
next - >SHEALTHY = HEALTHY + 1;
next - >t agged_| ocati on=3;
}
\rate{
PATI ENT_RECOVERED > 1
?
(rate_di scharge_recovered patient * ((double)(1l)) =
(((double) (1)) / ((doubl e)PATI ENT_RECOVERED)))
rate_di scharge_recovered_patient
}
}
Wofall ill 9%k

\transition{T13}{
\condi ti on{
(HEALTHY > 0 && tagged_l ocation !'= 3) ||
(HEALTHY > 1 && tagged | ocation == 3)

202 Appendix A. Case Study Model Descriptions

\acti on{
next - >SHEALTHY = HEALTHY - 1;
next->ILL = ILL + 1;

}

\rate{
(tagged_l ocation == 3)
2
(rate_fall _ill = ((double)(HEALTHY - 1)) =
(((doubl e) (HEALTHY - 1)) / ((doubl e) HEALTHY)))
krate_fall_ill * ((doubl e) (HEALTHY)))

}

}

\transition{T13_tagged}{
\condi tion{
(HEALTHY > 0) && (tagged | ocation == 3)

}

\acti on{
next - >SHEALTHY = HEALTHY - 1;
next->ILL = ILL + 1;
next - >t agged_| ocati on = 4;

}

\rate{
HEALTHY > 1
?
(rate_fall _ill = ((double)(1l)) * (((double)(l)) /
((doubl) HEALTHY)))
}ate_fall_il

}

}

%% energency call %%

\transition{T14}{
\condi ti on{
(ILL > 0 && tagged_l ocation !=4) ||
(ILL > 1 && tagged | ocation == 4)}
\action{
next->ILL = ILL - 1;
next - >AWAI TI NG_AMBULANCE = AWAI TI NG_ AMBULANCE + 1

}

\ wei ght {
6.0

}

}

\transition{T14_tagged}{

\condi ti on{
(ILL > 0) && (tagged_ | ocati on==4)

}

\'acti on{
next->ILL = ILL - 1;
next - >AVWAI TI NG_ AMBULANCE = AWAI TI NG AMBULANCE + 1;
next - >t agged_| ocat i on=5;

A.3. Hospital Accident & Emergency Unit Model 203

}

\ wei ght {
6.0

}

}

%% | oad patient %

\transition{T15}{

\condi ti on{
(AVAI TI NG_AMBULANCE > 0 && AMBULANCES > 0 &&
tagged location !'=5) || (AWAI TI NG AMBULANCE > 1 &&
AMBULANCES > 0 && tagged | ocation == 5)}

\acti on{
next - >AWAI TI NG_AMBULANCE = AWAI TI NG_AMBULANCE - 1;
next - >AMBULANCES = AMBULANCES - 1;
next->N_TRANSIT = IN.TRANSI T + 1;

}
\rate{
(tagged_Il ocation == 5)
2
(rate_l oad_patient * ((double)(AWAI TI NG AMBULANCE - 1)) =
(((doubl e) (AWAI TI NG_AVBULANCE - 1)) /
((doubl e) AWAI TI NG_AMBULANCE)))
.(rat e | oad_patient *= ((double)(AWAI TI NG_AMBULANCE)))
}

}

\transition{T15_t agged}{
\condi ti on{
(AVWAI TI NG_AMBULANCE > 0 && AMBULANCES > 0) &&
(tagged_ | ocation == 5)

}

\acti on{
next - >AWAI TI NG_AMBULANCE = AWAI TI NG_AMBULANCE - 1;
next - >AMBULANCES = AMBULANCES - 1;
next->IN_TRANSIT = IN.TRANSI T + 1;
next - >t agged | ocation = 6;

}

\rate{
AWAI TI NG_AMBULANCE > 1
?
(rate_| oad_patient * ((double)(1)) * (((double)(1)) /
((doubl) AWAI TI NG_AMBULANCE)))
rate_| oad_pati ent

}

}

%0 anbul ance arrival %%

\transition{T2}{
\condi tion{
(INTRANSIT > 0 && tagged |l ocation !'= 6) ||
(INTRANSIT > 1 && tagged | ocation == 6)

204 Appendix A. Case Study Model Descriptions

}
\action{
next->IN_TRANSIT = IN.TRANSI T - 1,
next - >TROLLEY = TROLLEY + 1,
next - >AMBULANCES = AMBULANCES + 1;
}
\rate{
(tagged_| ocation == 6)
?
(rate_anmbul ance_arrival * ((double)(IN.TRANSIT - 1)) =*
(((double) (IN.TRANSIT - 1)) /
((doubl €) IN_TRANSIT)))
(rate_anmbul ance_arrival * ((double)(IN.TRANSIT)))
}

}

\transition{T2_ tagged}{
\ condi tion{
(IN_.TRANSIT > 0) && (tagged_| ocati on==6)

}

\action{
next->I N_TRANSIT = IN_.TRANSIT - 1,
next - >5TROLLEY = TROLLEY + 1;
next - >AMBULANCES = AMBULANCES + 1,
next - >t agged_| ocat i on=1;

}

\rate{
INTRANSIT > 1
2
(rate_anmbul ance_arrival * ((double)(1l)) *» (((double)(1)) /
((doubl €) IN_TRANSIT)))
rate_anbul ance_arri val

}

}

%% see energency nurse %%

\transition{T3}{
\condi ti on{
(TROLLEY > 0 &% NURSES > 0 && tagged_location !'= 1) ||
(TROLLEY > 1 &% NURSES > 0 && tagged |l ocation == 1)
}
\action{
next - >5TROLLEY = TROLLEY - 1;
next - >NURSES = NURSES - 1;
next - >AMBULANCE PATI ENT_ASSESSED =
AVBULANCE_PATI ENT_ASSESSED + 1;
}
\rate{
(tagged_l ocation == 1)
2

((TROLLEY < NURSES) ?
(rate_see_energency_nurse * ((double)(TROLLEY - 1)) =*
(((doubl) (TROLLEY - 1)) / ((doubl e) TROLLEY)))

A.3. Hospital Accident & Emergency Unit Model 205

(rate_see_energency_nurse * ((doubl e)(NURSES)) =*
(((doubl) (TROLLEY - 1)) / ((double) TROLLEY))))

((TROLLEY < NURSES) ? (rate_see_energency_nurse *
((doubl e) (TROLLEY)))
(rate_see_energency_nurse * ((doubl e) NURSES)))
}
}

\transition{T3_tagged}{
\condi tion{
(TROLLEY > 0 & & NURSES > 0) && (tagged location == 1)

}

\action{
next - >TROLLEY = TROLLEY - 1;
next - >NURSES = NURSES - 1;
next - >AMBULANCE_PATI ENT_ASSESSED =

AMBULANCE_PATI ENT_ASSESSED + 1;

next - >t agged_| ocati on=10;

}

\rate{
TROLLEY > 1
?
(rate_see_energency_nurse * ((double)(1)) * (((double)(1)) /
((doubl €) TROLLEY)))
rate_see_energency_nurse

}

}

%0 conmpl et e assessnent %%

\transition{T4}{
\ condi tion{
(PATI ENT_ASSESSED > 0 && tagged location !'= 8) |
(PATI ENT_ASSESSED > 1 && tagged_| ocation == 8)

}
\action{
next - >PATI ENT_ASSESSED = PATI ENT_ASSESSED - 1;
next - >NURSES = NURSES + 1,
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS + 1;
}
\rat ef
(tagged | ocation == 8)
2
(rate_conpl ete_assessnment * ((doubl e) (PATI ENT_ASSESSED - 1)) =
(((doubl e) (PATI ENT_ASSESSED - 1)) /
((doubl e) PATI ENT_ASSESSED)))
(rate_conpl ete_assessnment * ((doubl e) (PATI ENT_ASSESSED)))
}

}

\transition{T4_ tagged}{
\condi ti on{
(PATI ENT_ASSESSED > 0) && (tagged_| ocati on==8)

206 Appendix A. Case Study Model Descriptions

}

\action{
next - >PATI ENT_ASSESSED = PATI ENT_ASSESSED - 1,
next - >NURSES = NURSES + 1;
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS + 1;
next - >t agged | ocati on=11;

}

\rate{
PATI ENT_ASSESSED > 1
?
(rate_conpl ete_assessnment * ((double)(1l)) * (((double)(1)) /
((doubl e) PATI ENT_ASSESSED)))
rate_conpl et e_assessnent

}

}

%% conpl et e enmergency assessnment %%

\transition{T5}{
\condi tion{
(AMBULANCE_PATI ENT_ASSESSED > 0 && tagged_l ocation !'= 10) ||
(AMBULANCE_PATI ENT_ASSESSED > 1 && tagged | ocation == 10)

}
\acti on{
next - >AMBULANCE_PATI ENT_ASSESSED =
AVBULANCE_PATI ENT_ASSESSED - 1;
next - >NURSES = NURSES + 1;
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS + 1;
}
\rate{
(tagged_| ocation == 10)
?
(rate_conpl ete_energency_assessnent *
((doubl e) (AMBULANCE_PATI ENT_ASSESSED - 1)) =
(((doubl e) (AMBULANCE_PATI ENT_ASSESSED - 1)) /
((doubl e) AMBULANCE_PATI ENT_ASSESSED)))
(rate_conpl ete_energency_assessnent x
((doubl e) (AMBULANCE_PATI ENT_ASSESSED)))
}

}

\transition{T5_tagged}{
\ condi tion{
(AMBULANCE_PATI ENT_ASSESSED > 0) && (tagged_| ocati on==10)

}
\action{
next - >AMBULANCE_PATI ENT_ASSESSED =
AVMBULANCE _PATI ENT_ASSESSED - 1;
next - >NURSES = NURSES + 1;
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS + 1;
next - >t agged_| ocati on=11;
}
\rate{

AMBULANCE_PATI ENT_ASSESSED > 1

A.3. Hospital Accident & Emergency Unit Model 207

?

(rate_conpl ete_energency_assessnent * ((double)(1)) =*
(((double) (1)) / ((doubl e) AVBULANCE PATI ENT_ASSESSED)))

rate_conpl et e_energency_assessnent

}
}

%0 surgery %o

\transition{T6}{

\ condi tion{
(DOCTORS > 0 & & WAI TI NG FOR SURGERY > 0 &&
tagged_location !'= 17) ||
(DOCTORS > 0 & & WAI TI NG_FOR_SURGERY > 1 &&
tagged_Il ocati on == 17)

}

\action{
next - >DOCTORS = DOCTORS - 1;
next - >WAI TI NG_FOR_SURGERY = WAI TI NG_FOR_SURCERY - 1;
next - >SURGERY_DONE = SURGERY_DONE + 1;

}

\rate{
(tagged_l ocation == 17)
2
((WAl TI NG_FOR_SURGERY < DOCTORS) ?
(rate_surgery = ((double)(WAI TI NG FOR_ SURCGERY - 1)) =*
(((doubl e) (WAI TI NG_FOR_SURGERY - 1)) /
((doubl e) WAI TI NG_FOR_SURCERY))) :
(rate_surgery = ((doubl e)(DOCTORS)) =*
(((doubl e) (WAI TI NG_FOR_SURGERY - 1)) /
((doubl e) WAI TI NG_FOR_SURGERY))))
((WAI TI NG_FOR_SURGERY < DOCTORS) ? (rate_surgery *
((doubl e) (WAI TI NG FOR_SURCERY)))
(rate_surgery *= ((doubl e) DOCTCRS)))

}

}

\transition{T6_tagged}{

\condi ti on{
(DOCTORS > 0 && WAI TI NG_FOR_SURGERY > 0) &&
(tagged_I ocati on==17)

}

\acti on{
next - >DOCTORS = DOCTORS - 1;
next - >WAI TI NG_FOR_SURGERY = WAI TI NG FOR_SURGERY - 1;
next - >SURGERY_DONE = SURGERY_DONE + 1;
next - >t agged | ocati on=15;

}

\rate{
WAI TI NG_FOR_SURGERY > 1
?
(rate_surgery * ((double)(1)) * (((double)(1)) /
((doubl €) WAI TI NG_FOR_SURCERY)))

208 Appendix A. Case Study Model Descriptions

rate_surgery

}
}

%0 see doctor %0

\transition{T7}{

\condi ti on{
(DOCTORS > 0 && WAI TI NG_FOR DOCTOR > 0 &&
tagged_l ocation !'= 16) ||
(DOCTORS > 0 && WAI TI NG FOR DOCTOR > 1 &&
tagged_| ocation == 16)

}

\action{
next - >DOCTORS = DOCTORS - 1;
next - >WAI TI NG_FOR_DOCTOR = WAI TI NG_FOR _DOCTCR - 1;
next - >TREATED BY_DOCTOR = TREATED BY DOCTOR + 1;

}

\rate{
(tagged_l ocati on == 16)
2

((WAI TI NG_FOR_DOCTOR < DOCTORS) ?

(rate_see_doctor * ((double)(WAITI NG FOR DOCTOR - 1)) =
(((doubl e) (WAI TI NG_FOR_DOCTOR - 1)) /

((doubl e) WAI TI NG_FOR_DCCTCR)))

(rate_see_doctor * ((double)(DOCTORS)) =

(((doubl e) (WAI TI NG_FOR_DOCTOR - 1)) /

((doubl e) WAI TI NG_FOR_DOCTOR))))

((WAI TI NG_FOR_DOCTOR < DOCTORS) ? (rate_see_doctor =
((doubl e) (WAI TI NG_FOR_DOCTOR))) :
(rate_see_doctor * ((double)DOCTORS)))
}
}

\transition{T7_tagged}{
\condi ti on{
(DOCTORS > 0 && WAI TI NG_FOR_DOCTOR > 0) &&
(tagged_I| ocati on==16)

}

\acti on{
next - >DOCTORS = DOCTORS - 1;
next - >WAI TI NG_FOR_DOCTOR = WAI TI NG_FOR_DOCTOR - 1;
next - >5TREATED_BY_DOCTOR = TREATED BY_DOCTOR + 1;
next - >t agged | ocati on=13;

}

\rate{
WAI TI NG_FOR_DOCTOR > 1
?
(rate_see_doctor * ((double)(1)) * (((double)(1)) /
((doubl e) WAI TI NG_FOR _DOCTOR)))
rate_see_doct or

}

A.3. Hospital Accident & Emergency Unit Model 209

%Woperformlab tests %%

\transition{T8}{
\condi ti on{
(WAI TI NG_FOR TESTS > 0 && tagged_l ocation !'= 18) ||
(WAI TING_FOR TESTS > 1 && tagged | ocation == 18)

}

\acti on{
next - >WAI TI NG_FOR_TESTS = WAI TI NG_FOR TESTS - 1;
next - >TEST_DONE = TEST_DONE + 1;

}

\rate{
(tagged_l| ocation == 18)
2
(rate_performlab_tests =
((doubl e) (WAI TI NG_FOR_TESTS - 1)) =
(((doubl e) (WAI TI NG_FOR_TESTS - 1)) /
((doubl €) WAI TI NG_FOR TESTS)))
(rate_performlab_tests =
((doubl e) (WAI TI NG_FOR_TESTS)))

}

}

\transition{T8_ tagged}{
\ condi ti on{
(WAI TI NG_FOR_TESTS > 0) && (tagged_| ocati on==18)

}

\acti on{
next - >WAI TI NG FOR_TESTS = WAI TI NG_FOR_TESTS - 1,
next - >TEST _DONE = TEST_DONE + 1;
next - >t agged_| ocati on=12;

}

\rate{
WAI TI NG_FOR TESTS > 1
?
(rate_performlab_tests » ((double)(1)) =
(((double) (1)) / ((double)WAl TI NG FOR TESTS)))
rate_performlab_tests

}

}

%% di scharge treated patient %%

\transition{T9}{
\ condi ti on{
(TREATED _BY_DOCTOR > 0 && tagged_l ocation !'= 13) ||
(TREATED BY _DOCTOR > 1 && tagged | ocation == 13)

}

\acti on{
next - >TREATED _BY_DOCTOR = TREATED BY_DOCTOR - 1;
next - >HEALTHY = HEALTHY + 1;
next - >DOCTORS = DOCTORS + 1;

210 Appendix A. Case Study Model Descriptions

\rate{
(tagged_ | ocation == 13)
2
(rate_di scharge_treated_patient =
((doubl e) (TREATED_BY_DOCCTOR - 1)) =
(((doubl e) (TREATED_BY_DCCTOR - 1)) /
((doubl e) TREATED_BY_DOCTCR)))

(rate_di scharge_treated_patient =
((doubl e) (TREATED_BY_DOCTOR)))
}
}

\transition{T9_tagged}{
\ condi ti on{
(TREATED _BY_DOCTOR > 0) && (tagged_| ocati on==13)

}

\action{
next - >STREATED BY_DOCTOR = TREATED BY DOCTOR - 1;
next - >HEALTHY = HEALTHY + 1;
next - >DOCTORS = DOCTORS + 1;
next - >t agged_| ocati on=3;

}

\rate{
TREATED BY DOCTOR > 1
?
(rate_discharge treated patient * ((double)(1l)) =
(((double)(1)) / ((doubl e) TREATED BY DOCTOR)))
rate_di scharge_treated_patient

}

}

%% to doctor %%

\transition{T16}{
\condi ti on{
(ASSESSED PATI ENTS > 0 && tagged_l ocation != 11) |
(ASSESSED PATI ENTS > 1 && tagged | ocation == 11)

}
\acti on{
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR_DOCTOR = WAI TI NG_FOR_DOCTOR + 1;
}
\ wei ght {
3.0
}

}

\transition{T16_tagged}{
\condi ti on{
(ASSESSED PATI ENTS > 0) && (tagged_l ocati on==11)
}
\action{
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR_DOCTOR = WAI TI NG_FOR_DOCTCR + 1;

A.3. Hospital Accident & Emergency Unit Model 211

next - >t agged | ocati on=16;

}

\ wei ght {
3.0

}

}

%Woto surgery %%

\transition{T17}{
\condi tion{
(ASSESSED PATIENTS > 0 && tagged |ocation != 11) |
(ASSESSED PATI ENTS > 1 && tagged | ocation == 11)

}
\'acti on{
next - >ASSESSED_PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR_SURGERY = WAI TI NG_FOR_SURGERY + 1;
}
\ wei ght {
1.0
}

}

\transition{T17_tagged}{
\ condi tion{
(ASSESSED PATI ENTS > 0) && (tagged_l ocati on==11)

}

\acti on{
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR_SURGERY = WAI TI NG FOR_SURGERY + 1;
next - >t agged_| ocati on=17;

}

\ wei ght {
1.0

}

}

Woto tests %o

\transition{T18}{
\ condi tion{
(ASSESSED PATI ENTS > 0 && tagged_l ocation !'= 11) |
(ASSESSED _PATI ENTS > 1 && tagged_ | ocation == 11)

}
\acti on{
next - SASSESSED PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR TESTS = WAI TI NG FOR TESTS + 1
}
\ wei ght {
2.0
}

}

\transition{T18 tagged}{
\condi ti on{
(ASSESSED PATI ENTS > 0) && (tagged | ocati on==11)

212 Appendix A. Case Study Model Descriptions

}

\action{
next - >ASSESSED PATI ENTS = ASSESSED PATI ENTS - 1;
next - >WAI TI NG_FOR_TESTS = WAI TI NG FOR TESTS + 1
next - >t agged_| ocat i on=18;

}

\ wei ght {
2.0

}

}
}

A.3.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Fig@gis given below:

Heal thy = (fall ill, r1).111

[l = (walk_in_arrival, r2).Witing Room +
(ambul ance_arrival, r3).Troll ey

Wai ti ng Room = (see_nurse, r4).Patient Being Assessed
Pati ent _Bei ng_Assessed = (conpl ete_assessnent, r5).Wiiting_To Be_Treated
Trolley = (see_energency_nurse, r6).Anbul ance_Patient_ Bei hg_Assessed

Anmbul ance_Pat i ent _Bei ng_Assessed = (conpl ete_energency_assessnent, r7).
Waiting To _Be Treated

Waiting To Be Treated = (see_doctor, r8).Treated_By_ Doctor +

(surgery, r9).Surgery Done +

(performlab tests, r10).Tests_Done
Treated By Doctor = (discharge_treated patient, r11). Healthy
Surgery_Done = (recover, rl12).Patient_ Recovered
Pati ent _Recovered = (discharge_recovered_patient, r13).Healthy
Tests_Done = (evaluate results, rl1l4).Waiting To Be Treated
Nurse = (see_nurse, rd).(conplete_assessnent, r5).Nurse +

(see_enmergency_nurse, r6).(conplete_enmergency_assessnment, r7).

Nur se

Doctor = (see_doctor, r8).(discharge_treated _patient, r1l).Doctor +
(surgery, r9).(recover, r12).Doctor

Patients = Heal t hy[PP]

A.3. Hospital Accident & Emergency Unit Model 213

Nurses = Nurse[NN|

Doct ors

Doct or [DD|

AE Unit = Patients <see_nurse, conplete_assessnent,
see_energency_nurse, conpl ete_energency_assessnent,
see _doctor, discharge treated patient, surgery, recover>
(Nurses <> Doctors))

Bibliography

[Agerwala79] T. Agerwala. “Putting Petri nets to work”. IBEE Computerpp.
85-94, December 1979.

[Ajmone Marsan84] M. Ajmone Marsan, G. Conte and G. Balbo. “AsSlaf Gen-
eralized Stochastic Petri Nets for the Performance Eviakaif
Multiprocessor Systems”. IACM Transactions on Computer Sys-

temsvol. 2, no. 2:93-122, May 1984.

[Ajmone Marsan95] M. Ajmone Marsan, G. Balbo, G. Conte, S. DRelliaand
G. Franceschinis.Modelling with Generalized Stochastic Petri
Nets Series in Parallel Computing. John Wiley & Sons, 1995.
ISBN 0-471-93059-8.

[Alur91] R. Alur. Techniques for Automatic Verification of Real-Time Sys-

tems Ph.D. thesis, Stanford University, 1991.

[Argent-Katwala06] A. Argent-KatwalaA Compositional, Collaborative Performance
Pipeline Ph.D. thesis, Imperial College, London, United King-
dom, November 2006.

[Argent-KatwalaO7a] A. Argent-Katwala and J. T. Bradley.ef®ormDB: Community-
driven Performance Modelling and Analysis”.UKPEW’07, Pro-
ceedings of the 23rd Annual UK Performance Engineering Work

shop 2007.

[Argent-KatwalaO7b] A. Argent-Katwala, J. T. Bradley, A. @aand S. Gilmore.

“Location-aware Quality of Service Measurements for Smgvi

214

BIBLIOGRAPHY

215

[Au-Yeung04]

[Aziz96]

[Aziz00]

[Baier00]

[Baier03]

[Baier04]

Level Agreements”. INfGC’07, Proceedings of the 3rd Interna-
tional Conference on Trustworthy Global Computingl. 4912 of
LNCS pp. 222-239, 2007.

S. W. M. Au-Yeung, N. J. Dingle and W. J. Knotbext. “Effi-
cient Approximation of Response Time Densities and Quamtile
in Stochastic Models”. I'WOSP’04, Proceedings of the 4th In-
ternational Workshop on Software and Performgrue 151-155.
ACM, Redwood City, January 2004.

A. Aziz, K. Sanwal, V. Singhal and R. Brayton. “Verifyg
continuous-time Markov chains”. I@omputer-Aided Verificatign
vol. 1102 ofLNCS pp. 269-276, 1996.

A. Aziz, K. Sanwal, V. Singhal and R. Brayton. “Modéhecking
continuous-time Markov chains”. IACM Transactions on Com-
putational Logi¢ vol. 1, no. 1:162-170, 2000.

C. Baier, B. R. Haverkort, H. Hermanns and J.-P. Kato&dn
the Logical Characterisations of Performability Propeitie In
ICALP’00, Proceedings of the 27th International Colloquium o
Automata, Languages and Programmimngl. 1853 ofLNCS pp.
780-792, 2000.

C. Baier, B. R. Haverkort, H. Hermanns and J.-P. Kattdodel-
checking algorithms for continuous-time Markov chains'IEEE
Transactions on Software Engineerjngpl. 29, no. 6:524-541,
June 2003.

C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz and M. Siegle
“Model Checking Action- and State-Labelled Markov Chainsf. |
DSN’04, Proceedings of the 34th International Conference en D

pendable Systems and Netwonig. 701-710, June 2004.

216

BIBLIOGRAPHY

[Bause02]

[Bolchos]

[Bonet07]

[Bradley03a]

[BradleyO3b]

[Bradley03c]

[Bradley03d]

F. Bause and P. S. Kritzing&tochastic Petri Nets - An Introduc-
tion to the Theory Vieweg Verlag, Wiesbaden, Germany, 2002.
2nd edition.

G. Bolch, S. Greiner, H. de Meer and K. S. Trivedueueing
Networks and Markov Chain§Viley, August 1998.

P. Bonet, C. Llaml R. Puijaner and W. J. Knottenbelt. “PIPE v2.5:
A Petri Net Tool for Performance Modelling”. IGLEI'07, Pro-
ceedings of the 23rd Latin American Conference on Informsatic
2007.

J. T. Bradley, N. J. Dingle, S. T. Gilmore and WKdottenbelt.
“Extracting Passage Times from PEPA models with the HYDRA
Tool: a Case Study”. In S. A. Jarvis (edJKPEW’'03, Proceed-
ings of 19th Annual UK Performance Engineering Workshmp
79-90. University of Warwick, July 2003.

J. T. Bradley, N. J. Dingle, P. G. Harrison and WKadaotten-
belt. “Distributed Computation of Passage Time Quantiled an
Transient State Distributions in Large Semi-Markov Motels
PMEO-PDS’03, Proceedings of the International Workshop on
Performance Modelling, Evaluation and Optimization of &gl
and Distributed Systemg. 281. IEEE Computer Society Press,
Nice, April 2003.

J. T. Bradley, N. J. Dingle, W. J. Knottenbelt &hd5>. Harrison.
“Performance Queries on Semi-Markov Stochastic Petri Wéts

an Extended Continuous Stochastic Logic”. RNPM’03, Pro-
ceedings of the 10th International Workshop on Petri Nets and
Performance Mode|9p. 62—71. University of lllinois at Urbana-

Champaign, September 2003.

J. T. Bradley, N. J. Dingle, W. J. Knottenbelt andJ. Wilson.

“Hypergraph-based Parallel Computation of Passage Time Den

BIBLIOGRAPHY

217

[Bradley04]

[Bradley06]

[Bradley08]

[Brien08a]

[Brien08b]

sities in Large Semi-Markov Models”. In A. N. Langville and
W. J. Stewart (eds.)NSMC’03, Proceedings of the 4th Interna-
tional Workshop on Numerical Solutions of Markov Chaipp.
99-120. University of Illinois at Urbana-Champaign, Sepdiem
2003.

J. T. Bradley and W. J. Knottenbelt. “The ipc/HYDH#ol Chain

for the Analysis of PEPA Models”. In B. Haverkort et al. (ed.),
QEST'04, Proceedings of the 1st IEEE Conference on the Quanti
tative Evaluation of Systemgp. 334-335. IEEE Computer Soci-

ety Press, University of Twente, Enschede, September 2004.

J. T. Bradley, N. J. Dingle, U. Harder, P. G. Hamnsand W. J.
Knottenbelt. “Response Time Densities and Quantiles in éarg
Markov and Semi-Markov Models”. IRerformance Evaluation of
Parallel, Distributed and Emergent Systenasl. 1. Nova Science

Publishers, 2006.

J. T. Bradley, R. A. Hayden, W. J. Knottenbelt andSTito.
“Extracting Response Times from Fluid Analysis of Perforeen
Models”. In SIPEW’08, Proceedings of the SPEC International
Performance Evaluation Workshoyol. 5119 ofLecture Notes in
Computer Sciengepp. 29-43. Springer-Verlag, Darmstadt, Ger-
many, June 2008.

D. K. Brien.Performance Trees: Implementation and Distributed

Evaluation M.Sc. thesis, Imperial College London, June 2008.

D. K. Brien, N. J. Dingle, W. J. Knottenbelt, H. Ktlenga and
T. Suto. “Performance Trees: Implementation and Distetut
Evaluation”. InPDMC’08, Proceedings of the 7th International
Workshop on Parallel and Distributed Methods in Verificatipp.
67-82. Elsevier, Budapest, Hungary, March 2008.

218 BIBLIOGRAPHY

[Chiola95] G. Chiola, G. Franceschinis, R. Gaeta and M. Ribat@matSPN
1.7: Graphical Editor and Analyzer for Timed and StochaBetri
Nets”. InPerformance Evaluation — Special Issue on Performance

Modelling Toolsvol. 24, no. 1-2:47—68, November 1995.

[Ciardo94] G. Ciardo, R. German and C. Lindemann. “A Charactioza
of the Stochastic Process Underlying a Stochastic Petfi. Nat
IEEE Transactions on Software Engineeringl. 20, no. 7:506—
515, July 1994.

[Clark01] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Devisd. M.
Doyle, W. H. Sanders and P. Webster. “The&lbius Modeling
Tool”. In PNPM’01, Proceedings of the 9th International Work-
shop on Petri Nets and Performance Models. 241-250, Septem-
ber 2001.

[Clark07] A. Clark, S. Gilmore, J. Hillston and M. Tribaston&tochastic
Process Algebras”. IRormal Methods for Performance Evalua-
tion, LNCS Tutorials, pp. 132—-179. Springer-Verlag, May 2007.

[Clarke Jr.01] E. M. Clarke Jr., O. Grumberg and D. A. Pelkthdel Checking
MIT Press, 2001. ISBN 0-262-03270-8.

[Cooper81] R. B. Cooperlntroduction to Queueing ThearyElsevier North
Holland, 2nd ed., 1981. ISBN 0-444-00379-7.

[D’Aprile04] D. D’'Aprile, S. Donatelli and J. Sproston. “CSModel Check-
ing for the GreatSPN Tool”. InSCIS’04, Proceedings of the 19th
International Symposium on Computer and Information S@snc
vol. 3280 ofLecture Notes In Computer Sciengep. 543-552.
Springer-Verlag, 2004.

[Dingle03] N. J. Dingle, W. J. Knottenbelt and P. G. HarrisofHYDRA:
HYpergraph-based Distributed Response-time AnalyserH.IR.
Arabnia and Y. Man (eds.RPDPTA'03, Proceedings of the 2003

BIBLIOGRAPHY

219

[Dingle04a]

[Dingle04b]

[Dingle08a]

[Dingle08Db]

[Donatelli95]

[Grassman87]

International Conference on Parallel and Distributed Presmg
Techniques and Applicationgol. 1, pp. 215-219. Las Vegas, NV,
June 2003.

N. J. Dingle. Parallel Computation of Response Time Densities
and Quantiles in Large Markov and Semi-Markov Modd¥h.D.
thesis, Imperial College London, October 2004.

N. J. Dingle, P. G. Harrison and W. J. Knottetbé&Uniformiza-
tion and Hypergraph Partitioning for the Distributed Congiain

of Response Time Densities in Very Large Markov Models”. In
Journal of Parallel and Distributed Computingol. 64, no. 8:908—
920, August 2004.

N. J. Dingle and W. J. Knottenbelt. “Automateds@mer-Centric
Performance Analysis of Generalised Stochastic Petri Nets
ing Tagged Tokens”. IiPASM’08, Proceedings of the 3rd Inter-
national Workshop on Practical Applications of Stochasfiod-

elling. Palma de Mallorca, Mallorca, Spain, September 2008.

N. J. Dingle, W. J. Knottenbelt, H. Kulatungadah Suto. “A Par-
allel and Distributed Analysis Pipeline for Performance& Eval-
uation”. INnQEST’08, Proceedings of the 5th International Confer-
ence on the Quantitative Evaluation of SystelB&E Computer

Society, Saint Malo, France, September 2008.

S. Donatelli, M. Ribaudo and J. Hillston. “A mparison of Per-
formance Evaluation Process Algebra and generalized astich
Petri nets”. InPNPM’'95, Proceedings of the 6th International
Workshop on Petri Nets and Performance Modp[s. 158 — 169.
IEEE Computer Society, 1995.

W. Grassman. “Means and Variances of Timeafyesin Marko-
vian Environments”. InEuropean Journal of Operational Re-
searchvol. 31, no. 1:132-139, 1987.

220

BIBLIOGRAPHY

[Grunske08a]

[Grunske08b]

[Harrison02]

[Hermanns00]

[Hillston94]

[Hillston04]

[Hillston05]

[Hirel0O0]

L. Grunske. “Specification Patterns for Pbdtstic Quality Prop-
erties”. INICSE’08, Proceedings of the 30th International Confer-

ence on Software Engineeringp. 31-40. ACM, 2008.

L. Grunske, K. Winter and N. Yatapanage. “Defirthe Abstract
Syntax of Visual Languages with Advanced Graph Grammars — A
Case Study based on Behavior Trees”.Jtmurnal of Visual Lan-
guages and Computingol. 19, no. 3:343-379, 2008.

P. G. Harrison and W. J. Knottenbelt. “Pasga&ge Distributions

in Large Markov Chains”. In M. Martonosi and E. A. de Souza e
Silva (eds.)Proceedings of ACM SIGMETRICS 20@p. 77-85,
Marina Del Rey, USA, June 2002.

H. Hermanns, J.-P. Katoen, J. Meyer-KaysenSiegle. “To-
wards Model Checking Stochastic Process Algebra”IFi’00,
Proceedings of the 2nd International Conference on Integtat

Formal Methodspp. 420—-439, November 2000.

J. Hillston.A Compositional Approach to Performance Modelling
Ph.D. thesis, Department of Computer Science, Universitgdsf
inburgh, Edinburgh EH9 3JZ, United Kingdom, 1994. CST-107—-
94,

J. Hillston. “Modelling and Simulation’Lecture notesUniversity
of Edinburgh, 2004.

J. Hillston. “Fluid Flow Approximation of PE#® models”. In
QEST'05, Proceedings of the 2nd International Conferencthen
Quantitative Evaluation of SystemEEE Computer Society Press,
Italy, September 2005.

C. Hirel, R. Sahner, X. Zhang and K. S. Trivedi. “Rdliéty and
Performability Modeling Using SHARPE 2000”. ThOOLS’00,

Proceedings of the 11th International Conference on Computer

BIBLIOGRAPHY

221

[Howard71]

[Jansen05]

[Jensen53]

[Katoen01]

[Kendall53]

[Knottenbelt96]

[Knottenbelt09]

Performance Evaluation, Modelling Techniques and Towetd.
1786 ofLNCS p. 345, 2000.

R. A. Howard Dynamic Probabilistic Systems: Semi-Markov and
Decision Processesol. 2 of Series in Decision and Controlohn

Wiley & Sons, 1971.

D. N. Jansen and H. Hermanns. “QoS Modelling amalyAis
with UML-Statecharts: the StoCharts Approach”. ACM SIG-
METRICS Performance Evaluation Revjewl. 32, no. 4:28-33,
March 2005.

A. Jensen. “Markoff Chains as an Aid in the Studilafkoff
Processes”. Iitkandinavian Aktuarietidskwvol. 36:87—91, 1953.

J.-P. Katoen, M. Kwiatkowska, G. Norman and DkBa “Faster
and Symbolic CTMC Model Checking”. In L. de Alfaro and
S. Gilmore (eds.)Proceedings of Process Algebra and Probabilis-
tic Methods vol. 2165 ofLecture Notes in Computer Scien@p.
23-38. Springer-Verlag, Aachen, September 2001.

D. G. Kendall. “Stochastic Processes Occugrrim the Theory
of Queues and their Analysis by the Method of the Embedded
Markov chain”. InThe Annals of Mathematical Statistja®l. 24,

no. 3:338-354, September 1953.

W. J. KnottenbelGeneralised Markovian Analysis of Timed Tran-
sitions Systems M.Sc. thesis, University of Cape Town, South
Africa, July 1996.

W. J. Knottenbelt, N. J. Dingle and T. SuttRarallel and Dis-
tributed Evaluation of Performance Tree QueriesPARENG’09,
Proceedings of the 1st International Conference on Paralés-

tributed and Grid Computing for Engineerindg?®ecs, Hungary,

222

BIBLIOGRAPHY

[Kwiatkowska02]

[Lee94]

[Lee97]

[Lbpez-Grao04]

[Melamed84]

[MeSC]

Book Chapter Accompanying Invited Lecture, 32 pages, To Ap-
pear in April 2009.

M. Kwiatkowska, G. Norman and D. Parker. RIBM: Proba-
bilistic Symbolic Model Checker”. In A. J. Field et al. (ed.),
TOOLS’02, Proceedings of the 12th International Conferemce
Modelling Techniques and Tools for Computer Performancd-Eva
uation vol. 2324 ofLecture Notes in Computer Scien@g. 200—
204. Springer-Verlag, London, 2002.

I. Lee, P. Bremond-Gregoire and R. Gerber. “A Procdgsl#aic
Approach to the Specification and Analysis of Resource-bound
Real-Time Systems”. IProceedings of the IEEEvol. 82, no. 1,
January 1994.

I. Lee and O. Sokolsky. “A Graphical Property Speaifion Lan-
guage”. INnHASE'97, Proceedings of the 2nd High-Assurance Sys-
tems Engineering Workshppp. 42—-47. IEEE Computer Society,
Washington, DC, USA, November 1997.

J. P.&pez-Grao, J. Merseguer and J. Campos. “From UML Ac-
tivity Diagrams to Stochastic Petri Nets: Application toft3@re
Performance Engineering”. MWOSP’04, Proceedings of the 4th
International Workshop on Software and Performangp. 243—
244. Redwood City, CA, January 2004.

B. Melamed and M. Yadin. “Randomization Procedum
the Computation of Cumulative-Time Distributions Over Dis-
crete State Markov Processes”. @perations Researclivol. 32,
no. 4:926-944, July—August 1984.

MeSC. *“The Midlands e-Science Grid Cluster’http://

www. ep. ph. bham ac. uk/ cl uster/.

BIBLIOGRAPHY

223

[Meyer80]

[Miner03]

[Mitrani98]

[Molloy81]

[Molloy82]

[Muppala92]

[Murata89]

[Natkin81]

[Nelson95]

J. F. Meyer. “On Evaluating the Performability Degradable
Computing Systems”. IhEEE Transactions on Computergol.
C-29, no. 8:720-731, August 1980.

A. S. Miner. “Computing Response Time Distributsomsing Sto-
chastic Petri Nets and Matrix Diagrams”. RNPM’03, Proceed-
ings of the 10th International Workshop on Petri nets and- Per
formance Modelspp. 10-19. Urbana-Champaign, IL, September
2003.

I. Mitrani. Probabilistic Modelling Cambridge University Press,
1998. ISBN 0-521-58511-2.

M. K. Molloy. On the Integration of Delay and Throughout Mea-
sures in Distributed Processing Model®h.D. thesis, University
of California, 1981.

M. K. Molloy. “Performance Analysis using Stoahktic Petri
Nets”. InIEEE Transactions on Computergol. 31, no. 9:913—
917, September 1982.

J. K. Muppala and K. S. Trivedi. “Numerical Teaent Analysis of
Finite Markovian Queueing Systems”. In U. N. Bhat and I. V. Ba-
sawa (eds.)Queueing and Related Modelsp. 262—-284. Oxford
University Press, 1992.

T. Murata. “Petri Nets: Properties, Analysisiapplications”. In
Proceedings of the IEERvoI. 77, no. 4:541-580, April 1989.

S. Natkin.Les Reseaux de Petri Stochastiques et leur Application a
' Evaluation des Sysimes InformatiquesPh.D. thesis, University
of California, 1981.

R. Nelson. Probability, Stochastic Processes and Queueing
Theory: The Mathematics of Computer Performance Modeling
Springer-Verlag, 1995. ISBN 0-387-94452-4.

224

BIBLIOGRAPHY

[OMGO7]

[Peterson77]

[Peterson81]

[Petri62]

[PIPE]

[PNML]

[Powell02]

[Pyke6la]

[Pyke61b]

[Reibman88]

[Reisig85]

OMG. “Unified Modeling Language Specification, v.12”.
http://ww. ong. org/ spec/ UML/ 2. 1.2/, November

2007.

J. L. Peterson. “Petri Nets”. AGM Computing Surveysol. 9,
no. 3:223-252, September 1977.

J. L. PetersorPetri Net Theory and the Modeling of Systems
Prentice-Hall, 1981.

C. A. Petri.Kommunikation mit AutomaterPh.D. thesis, Univer-
sitat Bonn, 1962.

PIPE. PIPEZ Platform-Independent Petri net Editoit t p: / /

pi pe2. sour cef or ge. net.

PNML. “The Petri Net Markup Language”. http://
ww\2. i nformati k. hu-berlin.de/top/pnm/.

T. Powell. “Responsiveness vs. Performance’htt p://
www. wor | dti nzone. coni bl og/ dat e/ 2002/ 09/ 11/

responsi veness-vs- performance/, 2002.

R. Pyke. “Markov Renewal Processes: Definitions Ruedimi-
nary Properties”. InPAnnals of Mathematical Statisticsol. 32,
no. 4:1231-1242, December 1961.

R. Pyke. “Markov Renewal Processes with Finitelyni&tates”.
In Annals of Mathematical Statisticsol. 32, no. 4:1243-1259,
December 1961.

A. Reibman and K. S. Trivedi. “Numerical Transi@nalysis of
Markov Models”. InComputers and Operations Researebl. 15,
no. 1:19-36, 1988.

W. Reisig.Petri Nets: An IntroductionSpringer-Verlag, 1985.

BIBLIOGRAPHY

225

[Ross82]

[Suto05]

[Suto06a]

[Suto06b]

[Suto07]

[Suto08a]

S. M. RossStochastic processebViley Series in Probability and
Mathematical Statistics. John Wiley & Sons, 1982. ISBN 0-471
12062-6.

T. Suto. “GRAIL: Grid-Enabled Performance Anaybising Sto-
chastic Logics”. INPASTA'05, Proceedings of the 4th Workshop
on Process Algebra and Stochastically Timed Activili#sversity

of Edinburgh, Edinburgh, Scotland, United Kingdom, Sefiem
2005.

T. Suto. “Expanding the Boundaries of Performd®eguirement
Representation with Performance Trees”.PlRSTA'06, Proceed-
ings of the 5th Workshop on Process Algebra and Stochdastical
Timed Activitiespp. 108—-116. Imperial College London, London,
England, United Kingdom, June 2006.

T. Suto, J. T. Bradley and W. J. Knottenbelt. “Perfance Trees:

A New Approach to Quantitative Performance Specificatiolm’.
MASCOTS’06, Proceedings of the 14th International Symposiu
on Modeling, Analysis and Simulation of Computer and Telecom
munication Systemgp. 303-313. IEEE Computer Society, Mon-
terey, California, USA, September 2006.

T. Suto, J. T. Bradley and W. J. Knottenbelt. “Perfance Trees:
Expressiveness And Quantitative Semantics”.QEBST'07, Pro-
ceedings of the 4th International Conference on the Qudaida
Evaluation of Systemgp. 41-50. IEEE Computer Society, Edin-
burgh, Scotland, United Kingdom, September 2007.

T. Suto, J. T. Bradley, D. K. Brien, N. J. Dingle, WKhotten-
belt and H. Kulatunga. “Performance Trees: Application Dis
tributed Analysis Environment”. IhEEE Transactions on Soft-

ware Engineering2008. Submitted for review.

226

BIBLIOGRAPHY

[Suto08b]

[Tribastone07]

[Trifunovic04]

[TrivediO2]

[WangO08]

[YounesO05]

[Zhang05]

T. Suto and W. J. KnottenbeltPIPE2 A Tool for Parallel and
Distributed Performance Evaluation”. ACM SIGMETRICS Per-
formance Evaluation Reviewol. Special Issue, 2008. Invited pa-

per. To appear.

M. Tribastone. “The PEPA Plug-in Projecth QEST'07, Pro-
ceedings of the 4th International Conference on the Quaivéa
Evaluation of Systemgp. 53-54. IEEE Computer Society, Edin-
burgh, Scotland, United Kingdom, September 2007.

A. Trifunovic. Parallel Algorithms for Hypergraph Partitioning
Ph.D. thesis, Department of Computing, Imperial College loond
180 Queen’s Gate, London SW7 2AZ, United Kingdom, 2004.

K. S. Trivedi. Probability and Statistics with Reliability, Queuing
and Computer Science Application®ohn Wiley & Sons, 2002.

L. Wang, N. J. Dingle and W. J. Knottenbelt. “Naturanguage
Specification of Performance Trees”.BPEW’08, Proceedings of

the 5th European Performance Engineering Worksl2008.

H.L.S. Younes. “Ymer: A Statistical Model Checkén K. Etes-
sami and S. Rajamani (edsPxoceedings of the 17th International
Conference on Computer Aided Verificatimol. 3576 ofLecture
Notes in Computer Sciencpp. 429-433. Springer-Verlag, Edin-
burgh, Scotland, United Kingdom, 2005.

Y. Zhang, D. Parker and M. Kwiatkowska. “Grid-bleal Prob-
abilistic Model Checking with PRISM”. IPAHM’05, Proceed-
ings of the 4th All Hands MeetingNottingham, United Kingdom,
September 2005.

