
University of London
Imperial College London
Department of Computing

Performance Trees:
A Query Specification Formalism

For Quantitative Performance Analysis

Tamas Suto

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of Londonand

the Diploma of Imperial College, August 2008

Abstract

Real-life systems are often plagued by unanticipated performance problems caused by

subtle bugs and bottlenecks. It is thus essential for systemdesigners and engineers to

have an understanding of their fundamental performance characteristics, both before and

after implementation. Stochastic modelling and analysis respectively provide the means

to abstract systems as mathematical descriptions and to derive quantifiable measures of

interest from them.

A major, and so far largely unaddressed, challenge is the specification of complex per-

formance queries on models in an accessible manner that doesnot sacrifice expressive-

ness. This thesis attempts to address this challenge by introducing Performance Trees,

a new formalism for the graphical specification of complex performance queries on sto-

chastic models. Performance Trees are designed to be accessible by providing a more

intuitive approach to query specification, expressive by being able to reason about a far

broader range of concepts than current alternatives, extensible by supporting additional

user-defined concepts, and versatile through their applicability to multiple modelling for-

malisms. Performance Trees are presented in the context of arigorous formal framework

that defines the syntax, typing and quantitative semantics of operators.

Prototype tool support is implemented in the form of a moduleof thePIPE2Petri net tool,

which provides graphical user interfacing and PerformanceTree query design capabilities.

Query evaluation is supported by a set of integrated parallel and distributed analysis tools,

and realised by the distribution of computations onto a dedicated Grid cluster.

The practical application of Performance Trees is demonstrated in the context of case

study analysis scenarios of an electronic voting system, anonline transaction system and

a hospital’s Accident & Emergency unit.

i

ii

Acknowledgements

I would like to express my deepest appreciation and gratitude to:

Dr William J. Knottenbelt, my supervisor, for his conscientious supervision, continuous

support, motivation and enthusiasm, and for making me have the best time of my life as a

Ph.D. student;

Dr Jeremy T. Bradley, my co-supervisor, for his generous professional guidance, support

and mentoring;

The AESOP research group, for providing such a pleasant and intellectually stimulating

social environment;

My friends and colleagues, for their support and for making this Ph.D. such a truly enjoy-

able, enriching and memorable experience;

Dalal Alrajeh, Douglas de Jager, Dorian Gaertner, Richard Hayden, Jaspreet Shaheed,

Dr David Thornley, Maria Grazia Vigliotti and Silvana Zappacosta, for being a constant

source of delightful and refreshing entertainment;

David McBride, Nick Dingle, Jay Jayasundera, Matt Johnson, Stuart McRobert, Simon

Tagg and Duncan White, for their kind help and expert technical advice throughout my

time at the Department of Computing;

The Department of Computing at Imperial College London, for providing first class facil-

ities and a well-equipped, comfortable and productive working environment;

The Engineering and Physical Sciences Research Council, for generously supporting my

research;

My family, for their never-ending support, encouragement and love, and for giving me the

opportunity to fulfill my dreams.

iii

iv

Dedication

I wish to dedicate this thesis to my parents, who are the best that a child could ever hope

for, and whom I love above all.

v

“It is an immutable law in business that words are words, explanations are explanations,

promises are promises, but only performance is reality.”

Harold S. Geneen, CEO of ITT Corporation (1959-1972)

vi

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 4

1.3 Contributions . 5

1.3.1 The Performance Tree Formalism 5

1.3.2 Formal Characterisation of Performance Trees 5

1.3.3 Tool Support for Performance Trees6

1.3.4 Application of Performance Trees in Case Study Scenarios 6

1.4 Thesis Outline . 6

1.5 Publications . 8

1.6 Statement of Originality .11

2 Background 12

2.1 Stochastic Modelling . 12

2.1.1 Markov and Semi-Markov Processes 13

2.1.2 Stochastic Petri Nets . 22

vii

viii CONTENTS

2.1.3 Stochastic Process Algebras . 28

2.1.4 Queueing Networks . 30

2.2 Performance Query Specification .. . 32

2.2.1 Performance Query Classification 33

2.2.2 Logical Specification Formalisms37

2.2.3 Graphical Approaches . 41

2.2.4 Tool-specific Specification Languages 44

2.2.5 Comparison of Techniques . 49

2.3 Techniques of Performance Analysis 52

2.3.1 Probabilistic Model Checking 52

2.3.2 Numerical Analysis . 55

2.3.3 Simulation . 62

2.3.4 Comparison of Techniques . 64

2.4 Tool Support for Performance Analysis 65

2.4.1 Tools for Performance Analysis 65

3 Performance Trees 75

3.1 A Novel Representation Formalism for Performance Queries 76

3.1.1 Motivations . 76

3.1.2 Overview . 77

3.1.3 Query Specification with Performance Trees 78

3.2 The Power of Performance Trees .80

3.2.1 Accessibility . 80

3.2.2 Expressiveness . 82

3.2.3 Extensibility . 84

CONTENTS ix

3.2.4 Versatility . 86

3.3 Performance Trees in Action .91

4 Formal Characterisation of Performance Trees 98

4.1 Syntax . 98

4.1.1 Value Node Syntax . 99

4.1.2 Operation Node Syntax . 100

4.1.3 Textual Representation . 104

4.2 Typing . 105

4.3 Quantitative Semantics .107

4.3.1 Value Node Semantics . 108

4.3.2 Operation Node Semantics . 111

5 Tool Support for Performance Trees 121

5.1 PIPE2: A Tool for GSPN-based System Modelling and Analysis 122

5.1.1 Model Editor . 122

5.1.2 Analysis Modules . 123

5.1.3 Performance Query Editor . 125

5.2 An Integrated Evaluation Environment for Performance Trees 130

5.2.1 Analysis Client . 131

5.2.2 Analysis Server . 133

5.2.3 Analysis Tools . 135

5.2.4 Analysis Cluster . 136

5.3 Parallel and Distributed Evaluation of Performance Queries 136

x CONTENTS

6 Case Studies 141

6.1 Electronic Voting System .141

6.2 Online Transaction System .147

6.3 Hospital Accident & Emergency Unit 156

7 Conclusion 167

7.1 Conceptual Contributions . 167

7.2 Practical Contributions .168

7.3 Applications . 169

7.4 Future Work . 171

A Case Study Model Descriptions 173

A.1 Electronic Voting System .173

A.1.1 DNAmacaModel . 173

A.1.2 PEPA Model . 176

A.2 Online Transaction System Model .. 177

A.2.1 DNAmacaModel . 177

A.2.2 PEPA Model . 196

A.3 Hospital Accident & Emergency Unit Model 197

A.3.1 DNAmacaModel . 197

A.3.2 PEPA Model . 212

Bibliography 213

List of Figures

2.1 A DTMC with transition probabilities 18

2.2 A DTMC with transient, absorbing and recurrent states 20

2.3 An ergodic DTMC . 20

2.4 A Place-Transition net . 22

2.5 Firing of a Place-Transition net 23

2.6 A stochastic Petri net . 24

2.7 A generalised stochastic Petri net 25

2.8 A simple open queueing network .32

2.9 A graphical representation of a logical constraint on system reliability,

using aT -formula [Bradley03c] . 40

2.10 A graphical representation of a logical constraint on response-time, using

aP-formula [Bradley03c] . 40

2.11 AnLR representation of the example TCTL query 42

2.12 A StoChart example . 43

2.13 The process of model checking .. 54

2.14 GreatSPNuser interface . 67

2.15 DNAmacamodule interaction . 69

2.16 HYDRAtool architecture . 70

2.17 SMARTAtool architecture . 71

xi

xii LIST OF FIGURES

2.18 Grid-enabledPRISMtool architecture 74

3.1 An example Performance Tree query 79

3.2 A performance measure query . 83

3.3 The performance measure query of Figure 3.2 converted into a perfor-

mance requirement query . 84

3.4 An example of Performance Tree macro expansion, used forthe calcula-

tion of the Coefficient of Variation . 85

3.5 Usage of the Coefficient of Variation macro in a performance query . . . 85

3.6 Producer-Consumer System . 86

3.7 Action label example . 87

3.8 Tagged customer query . 90

3.9 An Online Transaction System .92

3.10 A query addressing a passage time distribution 93

3.11 A query addressing the probability of a passage occurring within a time

interval . 94

3.12 A query addressing the percentile of a convolution of two passage time

densities . 95

3.13 A query addressing the transient probability of a system being in a given

state at a given time . 95

3.14 A query addressing the states that the system can occupyat a given time

with some probability . 96

3.15 A query aggregating multiple independent queries thataddress the aver-

age occurrence of an action, the steady-state probability of the system,

and states that conform to a certain steady state probability requirement . 96

3.16 A query addressing basic arithmetic operations 97

4.1 Illustration of how multiple probability values can maponto the same

time value in steady-state distributions 113

LIST OF FIGURES xiii

5.1 GSPN Model Designer Interface .123

5.2 GUI of the Performance Query Editor module 125

5.3 PQE GUI showing a newly drawn operation node 126

5.4 GUI showing a fully constructed Performance Tree query 127

5.5 Natural language-based performance query construction 129

5.6 Performance analysis environment architecture 132

5.7 Initiation of a performance query evaluation request 133

5.8 Query evaluation progress tracker interface 134

5.9 Visualisation of performance query results 134

6.1 GSPN model of an Electronic Voting System 142

6.2 A query addressing the 90th percentile of a passage from the state where

no voters have voted to the state where all voters have voted 143

6.3 Probability density of the time taken for all voters to have voted 144

6.4 A query addressing the probability with which all votershave voted within

15 minutes . 145

6.5 A query addressing the average number of broken polling units and servers

at steady-state . 146

6.6 Steady-state distribution of the number of broken polling units in the vot-

ing system . 147

6.7 Steady-state distribution of the number of broken servers in the voting

system . 147

6.8 A query addressing the expected time until two voting servers have broken

down . 148

6.9 The probability density of the time needed for two votingservers to break

down . 148

6.10 A query addressing the distribution of time taken for a customer to select

an item from the product catalogue after having entered the web site . . . 149

xiv LIST OF FIGURES

6.11 Probability density of the time taken for a customer to select an item from

the catalogue . 150

6.12 Probability distribution of the time taken for a customer to select an item

from the catalogue . 150

6.13 A query addressing the probability with which an order has been con-

firmed within 10 minutes of a customer having entered the web site 151

6.14 Passage time density for an order having been placed after a customer has

entered the site . 152

6.15 A query addressing a constraint on the 90th percentile of the convolution

of two passage time densities for a customer to enter the siteand proceed

to the checkout and to provide their billing information andleave the site

or return to the product catalogue . 153

6.16 Passage time density for a customer to have arrived at the checkout, start-

ing from the moment of their arrival at the web site 154

6.17 Passage time density for a customer to have left the web site, starting from

the moment when they have provided their billing information 154

6.18 Convolution of the passage time densities of Figure 6.16and Figure 6.17 . 154

6.19 A query addressing the average rate of occurrence of customers entering

the web site, the average number of customers browsing the catalogue,

and the average number of customers at the checkout 155

6.20 Steady-state distribution of the number of customers browsing the product

catalogue . 155

6.21 Steady-state distribution of the number of customers at the checkout . . . 155

6.22 GSPN model of a hospital’s Accident & Emergency unit 157

6.23 Compound performance query addressing percentiles of passage time den-

sities and steady-state probability distributions 159

6.24 Passage time density for walk-in patients 160

6.25 Passage time density for ambulance patients 160

6.26 Steady-state probability distribution of idle nurses. 160

LIST OF FIGURES xv

6.27 Steady-state probability distribution of idle doctors 160

6.28 Performance query addressing the average number of patients waiting for

a doctor and the average rate of occurrence of surgeries 161

6.29 Steady-state probability distribution of the number of patients waiting for

a doctor . 162

6.30 Performance query addressing a modified version of the UK Government

target for A&E units . 163

6.31 Density of the time taken for patients to enter and leavethe A&E unit . . 164

6.32 Definition of the macro representing the concept of Coefficient of Variation164

6.33 Usage of the macro for the calculation of the Coefficient of Variation with

a specified argument . 165

6.34 Passage time density for the first a patient to recover atthe A&E unit . . . 166

xvi LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Over the last few decades, we have witnessed scientific and technological advancement on

an unprecedented scale. This has had an enormous impact on humanity. We find ourselves

surrounded by complex computer systems supporting and evengoverning many aspects of

our lives. Due to this strong dependence on technology, it isa basic necessity that systems

function correctly and reliably, while also exhibiting good performance. However, due to

the inherent complexity of today’s systems, the predictionof their performance is often

difficult. Performance-related analysis provides a rigorous way to address this problem by

examining, among others, critical system characteristics, such as availability, reliability,

responsiveness and efficiency.

A system is generally considered to be available if it has notfailed and is not undergoing

maintenance. Many systems are required to be available as often and as consistently

as possible in order to serve customers who expect and rely oncontinuous availability.

Web servers and eCommerce infrastructures are good examplesof such systems. It is

imperative that measures of availability be accessible to system engineers to enable them

to anticipate and eliminate undesired service interruptions.

Reliability, the probability of a system performing a specified function without failure un-

der given conditions for a specified period of time, is particularly crucial to systems that

either support mission-critical applications or are exposed to extremely high user demand.

Nuclear power plant and airspace control systems are classic examples of the former, and

local area and telephone networks of the latter kind of systems. It is generally consid-

ered unacceptable for such systems to fail unexpectedly. Reliability-oriented analyses are

1

2 Chapter 1. Introduction

essential to gaining an insight into the likelihood of system failure.

Responsiveness is an indicator of the speed with which systems respond to requests. Users

invariably want to be able to interact with highly responsive systems in order to maximise

their perceived productivity. Often, a more responsive system can have a greater effect

on overall user satisfaction than the fast completion of an associated request. There-

fore, good system design also takes responsiveness criteria into account and benefits from

responsiveness-oriented system analysis [Powell02].

Efficiency, an indicator of the actual performance of systems compared to their possi-

ble performance, is also an important system property for designers and engineers to

consider. This is so because it is often a requirement for systems to operate at peak ef-

ficiency, especially in industry, where complex IT systems support the large majority of

business operations. Businesses often find themselves in positions where they may be in a

strategically more advantageous position than a competitor, simply because their systems

perform more efficiently. An investment bank’s electronic trading platform is a fitting

example, since even a minor difference in terms of its efficiency compared to a that of

another bank’s systems can make an big difference in earnings. Efficiency, as a measure

of performance, is also very relevant in the context of service provision, since efficient

systems have higher throughput and are as a result, on average, able to serve customers

more promptly.

Quality of Service (QoS) [Meyer80] can be thought of as a measure that represents a par-

ticular level of performance and characterises factors such as availability, reliability and

responsiveness of systems or services. QoS-oriented performance analysis has a wide

range of applications in helping service providers to guarantee certain levels of service.

Telecommunications and network providers, for instance, rely heavily on performance

analysis to ascertain whether or not expected levels of QoS are being provided to cus-

tomers, while the health care sector employs performance analysis to monitor whether

government-set QoS targets are being met consistently [Au-Yeung04].

For engineers to be able to design systems that conform to strict QoS requirements, ac-

cessible ways of modelling them and analysing their performance are necessary. Analysis

is traditionally carried out by creating a model of a system,in order to mathematically

abstract its behaviour in a way that is amenable to analysis,and constructing a query that

defines performance properties of interest. Performance queries are then evaluated on the

applicable model to obtain a quantifiable performance metric – such as that addressed by

the query“In a hospital waiting room, what is the steady-state distribution of the number

of patients waiting to be treated?”– or to determine whether the system conforms to a

1.1. Motivation 3

particular QoS requirement – as set out in the query“In a mobile communications net-

work, is the time taken to send an SMS message between two handsets less than 5 seconds

with more than 95% probability?”

In performance analysis, stochastic models (see Section 2.1) are needed to represent real-

life systems, since they are able to take into account their intrinsic probabilistic nature

and mirror their essential behaviour, while omitting details that would unnecessarily in-

crease the complexity of evaluation. An important advantage of using models for the

performance analysis of real-life systems is that if a system can be solved analytically, it

is typically relatively simple to obtain performance measures from it. This also allows

for a more accurate evaluation of performance aspects than obtainable from prototypes or

simulations. Hence, good models can provide the best opportunity for observing trends

that emerge from a system’s behaviour.

After constructing a stochastic model of a system, its performance can be analysed by

specifying and evaluating performance queries, of which there are mainly two kinds.

Queries that aim to verify conformity to QoS constraints arecalledperformance require-

mentqueries, while queries that aim to obtain metrics that characterise model performance

in some way are calledperformance measurequeries. Performance requirement queries

have traditionally been expressed in formulae of stochastic logics (see Section 2.2.2) and

evaluated by model checkers (see Section 2.4.1), while performance measure queries have

been specified in tool-specific languages (see Section 2.2.4) and evaluated by quantitative

analysers.

We have identified certain aspects of the traditional performance analysis process that

represent significant research opportunities and which have provided the motivation for

the present research:

1. There is a strict separation between the specification of performance requirement

and performance measure queries. At present, no unified environment exists for

their common specification, and certainly none for their common evaluation. Hence,

queries consisting of both performance measure-and requirement-oriented con-

cepts cannot be specified or evaluated.

2. Current performance query specification formalisms lack accessibility. That is, they

require specialist knowledge and expertise to be used effectively, which is often not

compatible with the background knowledge of typical systemdesigners and en-

gineers. This is the case with logical formalisms and tool-specific languages, for

example, as also noted by [Grunske08a]. Furthermore, prevalent logical paradigms

4 Chapter 1. Introduction

may also seem esoteric to many industrial users, and diversetool-specific specifi-

cation languages have little in common with one another. This may be one of the

reasons why many industrial users rather resort to simulations for the purposes of

performance analysis.

3. The scope of expressiveness of current performance queryspecification formalisms

is overly constrained. This is because such formalisms onlysupport the specifica-

tion of a few, relatively basic, performance properties, and do not provide the means

to reason about more advanced concepts (such as distributions, densities, convolu-

tions, moments and percentiles, for example). Logical representations are concise

and rigorous, but they are specific to performance verification, and hence not appli-

cable in a wide range of scenarios. Tool-specific languages may be able to address

performance measures, but they are limited in terms of expressiveness by the tools

that implement and support them.

1.2 Objectives

The research presented in this thesis has two main objectives:

1. To develop a novel performance query specification formalism that

• is accessible to system designers and engineers by providing a simple and

intuitive approach to query construction;

• enables the expression of performance queries utilising concepts related to

both performance requirement specificationandquantitative measure extrac-

tion;

• expands on the expressiveness of current query specification formalisms by

supporting a wider range of performance concepts than presently possible.

2. To implement an integrated performance analysis environment that provides tool

support for the accessible design of stochastic system models and performance

queries (using the newly developed specification formalism), and is able to eval-

uate them in a large-scale parallel and distributed fashionon a Grid-based com-

putational back-end that harnesses the power of a range of dedicated performance

analysis tools.

1.3. Contributions 5

1.3 Contributions

1.3.1 The Performance Tree Formalism

This thesis introducesPerformance Trees, a novel graphical performance query speci-

fication formalism that enables the expression of complex queries containing both per-

formability requirements and quantitative measures. Performance Trees support a wide

range of concepts, applicable to stochastic system models,that are likely to be familiar to

system designers and performance engineers. They represent an alternative to traditional

approaches to query specification, which have so far mostly been based on complex logi-

cal and textual formalisms. Performance Trees ease the process significantly by providing

a convenient and accessible way of specifying performance queries with their visual hier-

archical tree structure that allows performance queries tobe composed graphically.

Their abstract state specification mechanism equips Performance Trees with a certain de-

gree of versatility that other formalisms often do not have,by allowing queries to be

defined over a number of different modelling formalisms. This thesis presents Perfor-

mance Trees in the context of generalised stochastic Petri nets (GSPNs) and the stochas-

tic process algebra PEPA. The formalism is also capable of extracting customer-centric

performance measures from such models, which allow queriesto be specified that involve

reasoning about individual customers. In addition, Performance Trees do not place any

artificial constraints on the size of models that can be solved, since they are evaluated by a

set of analysis tools, whose inherent solution capacity determines the scope of evaluation.

Performance Trees are an extensible formalism. Through theuse of parameterised macros,

custom performance concepts can be incorporated into the set of available operators and

reused in other queries. Such user-defined macros are constructed from the set of basic

Performance Tree operators. New operators, representing additional performance con-

cepts distinct from the ones that are already available, canbe incorporated into the for-

malism, provided that evaluation support in the form of analysis tools is also integrated

into the underlying analysis framework.

1.3.2 Formal Characterisation of Performance Trees

We also present a formal characterisation, which includes the syntax, typing and quanti-

tative semantics of Performance Tree operators.

6 Chapter 1. Introduction

1.3.3 Tool Support for Performance Trees

Tool support for the graphical specification of PerformanceTree queries is realised by an

enhanced version of the open-source Petri net editorPIPE2, which enables the graphi-

cal specification of GSPN models. We have implemented the Performance Query Editor

module to provide an interactive graphical interface that allows users to design Perfor-

mance Tree queries on system models defined inPIPE2, submit these for evaluation,

track evaluation progress, and visualise obtained results. As such, the module also serves

as the client front-end to a sophisticated performance analysis environment that enables

the parallel and distributed evaluation of Performance Tree queries on GSPN models.

With the Performance Query Editor module,PIPE2has been extended to provide a single

point of access to Performance Tree-based query specification and evaluation.

The analysis environment’s evaluation back-end consists of a server that communicates

with PIPE2 to coordinate the evaluation of queries, and a Grid-based computational re-

source pool that integrates high performance hardware and awide range of specialised

performance analysis tools. The evaluation back-end uses caching to ensure that queries

that have been evaluated already are not processed again when evaluation is requested on

the same model. Evaluation results are stored on disk and retrieved in case of repeated

requests. Integrated smart scheduling ensures that, wherepossible, Performance Tree

queries are evaluated concurrently.

1.3.4 Application of Performance Trees in Case Study Scenarios

This thesis also presents the practical application of Performance Trees in GSPN-based

case study performance evaluation scenarios, including anelectronic voting system, an

online transaction system and a hospital’s Accident & Emergency unit.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents relevant background material. An overview of stochastic modelling

is given, describing low- and high-level formalisms for theabstract representation

of real-life systems. Traditional approaches to performance query specification are

also discussed by providing an overview of performance query classification and

1.4. Thesis Outline 7

considering logical, graphical and tool-specific languages. Classical methods of

performance analysis are then considered, with particularemphasis on probabilistic

model checking, numerical analysis methods and simulation. Finally, a summary

of the most relevant currently available tools for performance analysis is provided.

Chapter 3 introduces Performance Trees, a novel formalism for the representation of

performance queries. An introduction to the formalism, together with a description

of its structure and the set of available operators is given.Following that, the power

of Performance Trees is highlighted by discussing their accessibility, expressive-

ness, extensibility and versatility, and demonstrating their practical application on

a number of example performance analysis scenarios.

Chapter 4 details the formal characterisation of Performance Trees.We present the syn-

tax, typing and quantitative semantics of Performance Treeoperators, which to-

gether form the formalism’s theoretical framework.

Chapter 5 discusses the modelling and analysis of real-life systems in an integrated par-

allel and distributed performance analysis environment. This environment consists

of a number of interacting software and hardware components. PIPE2, a Java-based

open-source Petri net design tool, serves as the user-facing graphical interface and

provides functionality for the specification of GSPN systemmodels and Perfor-

mance Tree queries. It interacts with the Analysis Server, the coordinating compo-

nent of the analysis environment. The Analysis Server optimises query evaluations

and outsources computations to a number of specialised parallel and distributed

tools, which carry out computations on a dedicated analysiscluster. Following the

description of the analysis environment’s architecture, the analysis process is dis-

cussed in detail.

Chapter 6 presents case study evaluation scenarios to demonstrate the application of Per-

formance Trees. Analyses of an electronic voting system, anonline transaction

system and a hospital’s Accident & Emergency unit are described.

Chapter 7 concludes the thesis by summarising and evaluating the theoretical and prac-

tical contributions, discussing areas of application of the research and highlighting

opportunities for future work.

Appendix A provides detailed descriptions of the models used in the case study evalua-

tions.

8 Chapter 1. Introduction

1.5 Publications

The publications summarised below have arisen as part of theresearch carried out during

the course of this Ph.D.

1. Workshop on Process Algebra and Stochastically Timed Activities (PASTA’05)

[Suto05] describes early efforts aimed at finding an accessible and user-friendly

approach to the specification of QoS-related performance requirements. The idea

presented in this paper considers the development of an extended form of stochastic

logic, to serve as the underlying theoretical framework fora user-facing graphical

performance query specification front-end. This graphicalfront-end intends to pro-

vide a layer for visual query composition and to hide from theuser the complexities

involved in the specification of logical performance queries. Queries defined in the

graphical formalism are proposed to be translated into the stochastic logic for eval-

uation purposes. The paper also introduces the idea of utilising the greatly extended

computational power that can be provided by a Grid infrastructure for performance

analysis by distributing, parallelising and optimising applicable model-checking

computations on a dedicated Grid-based analysis cluster.

2. Workshop on Process Algebra and Stochastically Timed Activities (PASTA’06)

[Suto06a] departs from [Suto05]’s original idea of using anextended stochastic

logic for performance requirement representation, but retains and expands on the

concept of graphical performance specification. The paper introduces Performance

Trees, a novel formalism for the graphical specification of performance queries on

stochastic models. Performance Trees represent performance queries as visualised

hierarchical tree structures, and aim to provide an accessible alternative to stochas-

tic logics, the thus far prevalent means of performance requirement specification.

The range of Performance Tree operators allows the expression of performance

requirement-oriented queries and also provides the ability to specify quantitative

measures of interest on stochastic models. Material from this paper appears in

Chapter 3.

3. International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems(MASCOTS’06) [Suto06b] expands on work

presented in [Suto06a] by investigating and classifying the different kinds of per-

formance queries that may be of relevance to system designers and engineers, and

describing how Performance Trees can be used as a query specification formal-

ism that is able to express performance requirements and performance measures at

1.5. Publications 9

the same time. The paper introduces the ability of Performance Trees to reason

about passage time distributions and densities, transientand steady state measures

and moments. It also presents the syntax and type system for Performance Trees

and provides an outline mapping from concepts that can be expressed by the sto-

chastic logic CSL to Performance Tree operators. The paper also illustrates how

semi-Markov passage time computation algorithms, based onnumerical Laplace

transform inversion, can be directly applied to the resolution of a case study Perfor-

mance Tree query on a GSPN model of a voting system. Material from this paper

is used in Chapters 3, 4 and 6.

4. International Conference on the Quantitative Evaluation ofSystems(QEST’07)

[Suto07] expands on work presented in [Suto06b] by solidifying the theoretical

foundations of Performance Trees through the provision of quantitative semantics,

which define the mathematics underlying individual Performance Tree operators.

The paper also focuses on illustrating differences in termsof expressiveness be-

tween Performance Trees and CSL, and presents a case study performance query

specification on a GSPN model of a hospital’s Accident & Emergency unit. Mate-

rial from this paper forms part of Chapter 4.

5. International Workshop on Parallel and Distributed Methods in Verification

(PDMC’08) [Brien08b] describes the first realisation of an evaluation environment

for Performance Trees. In particular, the paper presents details of the architecture

and implementation of this environment, comprising of a client-side model and per-

formance query specification tool, a server-side distributed evaluation engine, and a

dedicated Grid cluster. The evaluation engine combines theanalytic capabilities of

a number of distributed tools for steady state, passage timeand transient analysis,

and also incorporates a caching mechanism to avoid redundant calculations. The

paper describes the analysis process and demonstrates in the context of a case study

of a hospital’s Accident & Emergency unit how this analysis environment allows

remote users to design models and performance queries in a sophisticated, yet easy-

to-use framework, and subsequently evaluate them by harnessing the computational

power of a Grid back-end. Material from this paper can be found in Chapter 5.

6. SPEC International Performance Evaluation Workshop(SIPEW’08) [Bradley08]

considers recent developments in the analysis of stochastic process algebra mod-

els, which allow for transient measures of very large modelsto be extracted. By

performing so-called fluid analysis of stochastic process algebra models, it is now

feasible to analyse systems ofO(101000) states and beyond. This paper extends the

type of measure that can be extracted with fluid analysis, andpresents a systematic

10 Chapter 1. Introduction

transformation of a PEPA model that enables the extraction of measures analogous

to response times. It also presents a case study, which showshow response time

measures can be extracted from a PEPA model of a health care system. Material

from this paper is presented in Chapter 3.

7. International Conference on the Quantitative Evaluation ofSystems(QEST’08)

[Dingle08b], a tool paper, builds on [Brien08b] and presentsthe evaluation of Per-

formance Tree queries on stochastic models in the context ofan integrated parallel

and distributed analysis environment. The graphical user interface to this environ-

ment is implemented in thePIPE2 tool, a Java-based open-source Petri net editor,

which provides query design capabilities and control over query evaluation. Eval-

uation is coordinated by the Analysis Server, which is responsible for the schedul-

ing of jobs on a Grid-based computational cluster that integrates a number of spe-

cialised parallel and distributed analysis tools. Material from this paper appears in

Chapter 5.

8. IEEE Transactions on Software Engineering(submitted for publication) [Suto08a]

builds on material presented in [Dingle08b] and addresses the integration of Perfor-

mance Trees into a parallel and distributed performance analysis environment. The

paper describes how support for tagged customers in system models and the ap-

plication of Performance Trees in their context is realised. It also reasons about

how Performance Trees can be used to query system models based on the stochas-

tic process algebra PEPA, and presents a case study performance evaluation of a

hospital’s Accident & Emergency unit – demonstrating some of the capabilities of

the analysis environment. Material from this paper is incorporated into Chapters 5

and 6.

9. ACM SIGMETRICS Performance Evaluation Review (Special Issue)(invited

paper) [Suto08b] builds on [Brien08b] and [Dingle08b], and discussesPIPE2, an

open-source tool for GSPN-based system modelling and analysis.PIPE2was orig-

inally developed as a platform-independent Petri net editor, to support the design of

complex GSPN-based system models. Subsequently, it has been enhanced with a

number of analysis modules and has evolved into a versatile front-end for a sophis-

ticated parallel and distributed performance evaluation environment. WithPIPE2,

users are able to design and evaluate complex performance queries – expressed in

the Performance Tree formalism – primarily aimed at performance property veri-

fication and performance measure extraction. The paper provides an overview of

PIPE2’s features and discusses details of its underlying evaluation environment.

Material from this paper is detailed in Chapters 5 and 6.

1.6. Statement of Originality 11

10. International Conference on Parallel, Distributed and Grid Computing for

Engineering (PARENG’09, invited book chapter) [Knottenbelt09] describes how

Performance Trees attempt to address the challenge of specifying complex perfor-

mance queries on models of systems in a way that is both accessible and expressive.

It elaborates on their ability to provide more intuitive query specification, to reason

about a broader range of concepts than current alternatives, to support additional

user-defined concepts, and to express queries on multiple underlying modelling

formalisms. The paper describes in detail tool support for Performance Trees, and

presents a natural language-based query builder interfacefor PIPE2. Details on par-

allel and distributed query evaluation of Performance Treequeries are given, and

their application is demonstrated in the context of a case study of an online trans-

action system. The flexibility of the formalism is further illustrated by extensions

that permit the specification and monitoring of Service Level Agreements. Material

from this paper has been used in Chapters 3 to 6 and Appendix A.

1.6 Statement of Originality

I declare that this thesis was composed by myself, and that the work it presents is my own,

except where otherwise stated.

Chapter 2

Background

This chapter provides an overview of background material that is relevant to the research

presented in this thesis. Specifically, it discusses stochastic modelling, methods and tools

for performance analysis, traditional approaches to performance query specification and

performance evaluation in Grid environments.

2.1 Stochastic Modelling

It is generally of great interest to system designers and engineers to have an understanding

of the way in which systems behave. There are two approaches that are primarily used for

the investigation of factors that have an effect on criticalsystem properties: experimen-

tation and analysis. Experimentation is generally considered expensive, time-consuming

and unreliable, due to a lack of coverage of all possible scenarios. It can, however, be

useful for thorough explorations of the effect that specificparameters have on system

behaviour. Analysis, in contrast, is cheap, effective and dependable. In order to enable

tractable analyses of systems, mathematical models that abstract system behaviour need

to be constructed. These are quantitative system descriptions that approximate reality by

making simplifying assumptions and omitting non-essential details. If a model can be

solved analytically, it is typically relatively simple to obtain performance measures from

it. Because of this, good models provide the best means for thediscovery of trends that

can provide an understanding of qualitative aspects of system performance. However, the

necessary restrictions on the level of detail embedded in models often result in inaccurate

representations of absolute performance. Nevertheless, relative performance is usually a

more than satisfactory measure, since it can be used to investigate different configurations

12

2.1. Stochastic Modelling 13

of the same system [Mitrani98].

Mathematical models come in different flavours.Deterministic modelspredict a single

outcome from a given set of possible outcomes, whilestochastic modelspredict a set of

possible outcomes, weighted by their likelihoods. Since real-life systems exhibit random-

ness, modelling tools that are needed to study them come fromthe domains of probability

theory. Stochastic models are used widely in many areas of the natural and engineering

sciences, since they can represent the behaviour of both natural and man-made systems.

2.1.1 Markov and Semi-Markov Processes

Random Variables

Most stochastic models are expressed in terms of random variables. A random variable

represents the outcome of a random experiment and is therefore characterised by its prob-

abilistic outcome. Random variables can represent, for instance, the number of customers

in a system, the time a customer takes to traverse a system, the proportion of time that

there are fewer thank customers in a system, etc. A random variable isdiscreteif it can

only have a finite number of values, andcontinuousotherwise.

Definition A random variableχ on a sample spaceS is a functionχ : S → R that

assigns a real numberχ(s) to each random outcomes ∈ S [Nelson95].

Values of random variables can be specified probabilistically using distribution functions.

For a discrete random variable,χ, theprobability mass function (pmf), fχ(x), gives the

probability of the random variable being equal to some value, x:

fχ(x) = IP(χ = x) =
∑

χ(s)=x

IP(s) (2.1)

For continuous random variables, theprobability density function (pdf), f(x), is the

derivative of a random variable’s probability distribution,F (x):

f(x) =
d

dx
F (x); (2.2)

Informally, a pdf can be thought of as a smoothed-out versionof a histogram. If enough

values of a continuous random variable are sampled, producing a histogram depicting

14 Chapter 2. Background

relative frequencies of output ranges, then this histogramwill resemble the random vari-

able’s probability density, assuming that the output ranges are sufficiently narrow. Values

of a pdf are not probabilities themselves, but instead, the integral of a pdf over a range

of possible values(a, b] gives the probability of the random variable falling withinthat

range.

The probability that a random variable,χ, takes on a value that does not exceed a given

number,x, is given by thecumulative distribution function (cdf), F (x):

F (x) = IP(χ ≤ x) =







∑

t≤x

fχ(t), if χ is discrete

∫ x

−∞

f(t) dt, if χ is continuous.

(2.3)

The pdf can also be used for the expression of the probabilityof a random variable,χ,

taking on a value in the interval(a, b]:

IP(a < χ ≤ b) =

∫ b

a

f(x) dx (2.4)

A random variable is characterised completely by its probability distribution or its prob-

ability density function. However, it is sometimes desirable, and sufficient for practical

purposes, to describe a random variable by its summary statistics [Trivedi02].

One important measure of a random variable,χ, is its expectation, E(χ), which is for-

mally defined as:

E(χ) =







∑

i

xip(xi), if χ is discrete

∫ ∞

−∞

xf(x) dx, if χ is continuous.

(2.5)

Exponential distributionsare a very important type of probability distribution, which arise

naturally when modelling the time between independent events that happen at a constant

average rate. A random variable,χ, taking on non-negative real values, is said to be

exponentially distributed if its cdf has the form:

F (x) = 1 − e−λx; x ≥ 0 (2.6)

2.1. Stochastic Modelling 15

This function depends on a single parameter,λ > 0, which is called therate. The corre-

sponding pdf is:

f(x) = λe−λx; x ≥ 0 (2.7)

Exponentially distributed random variables are commonly used to model random time

intervals with arbitrary lengths.χ may represent the service of a job, the duration of

a communication session, the interval between consecutivearrivals, etc. An important

property of the exponential distribution is that its futureprogress does not depend on its

past. This is also known as thememoryless property. Another way of expressing this

property is to say that the probability of an activity continuing for another interval of

length at leasty, given that it has already lasted for timex, is independent ofx. The

following equation [Nelson95] clarifies the reason for this:

IP(χ > x+ y | χ > x) =
1 − F (x+ y)

1 − F (x)
= e−λy = IP(χ > y) (2.8)

Stochastic Processes

Definition A stochastic processis a set of random variables{χ(t) : t ∈ T }, indexed by

the time parametert.

Typically,T represents a set of points in time, andχ(t) the value of the stochastic process

at timet, which is also referred to as itsstate. The state space of the process is the set

of all possible values thatχ(t) can assume. Stochastic processes are classified according

to time, and we say that they arediscrete-or continuous-time, depending on whetherT

is discrete or continuous. For continuous-time stochasticprocesses,T = R
+. Stochastic

processes offer a way to capture complex forms of dependencybetween sets of random

variables, which is why stochastic models make use of them. If we take the random

variableχ(t) to be the total number of customers that have arrived at a system over the

time period[0, t], χ(t) is called acounting process. A special type of such a process is a

renewal process.

Definition Let S1, S2, S3, . . . be a sequence of independent, identically distributed ran-

dom variables, such that0 < E(Si) < ∞. We refer to the random variableSi as theith

holding time. We define thenth jump timeas

16 Chapter 2. Background

Jn =
n∑

i=1

Si. (2.9)

The intervals[Jn, Jn+1] are calledrenewal intervals. Then, the random variableχt given

by
χ

t = max{n : Jn ≤ t}, t ≥ 0 (2.10)

is called arenewal process[Nelson95]. In the context of real-life systems, we may think

of the holding times{Si : i ≥ 1} as the elapsed time before a system breaks for the

ith time since the last breakdown. In this context, the jump times {Jn : n ≥ 1} record

the successive times at which the system breaks, and the renewal processχt records the

number of times the system has broken down by timet. Renewal processes are often

found embedded in other stochastic processes, most notablyMarkov processes [Pyke61a].

When attempting to build a realistic stochastic model of a physical scenario, dependencies

need to be taken into account. For example, purchases made atthe supermarket next week

may depend on the satisfaction with purchases made up until now; or a shop’s inventory

on a particular day depends on the stock level on the previousday, as well as on customer

demand; or the number of customers awaiting service at a facility depends on the number

of waiting customers in previous time periods. Dependencies ensure realistic models, but

at the same time make probability calculations very difficult or even impossible.

The more independence is exhibited by a model, the greater the possibility for explicit

calculations, but the more questionable the level of realism that is inherent to the model.

Hence, when constructing a model, the challenge lies in maintaining dependencies that

ensure sufficient realism, but which at the same time do not make mathematical tractabil-

ity infeasible. In most cases, the future behaviour of a system depends to some extent on

its past. That is, the statesχn1
andχn2

, at two different moments in time, are dependent

random variables. A particular class of stochastic process, which exhibits the Markov

property, has a limited form of state dependency [Nelson95].

Definition The Markov propertystates that given the current state of a stochastic pro-

cess,χn, the distribution of any future state,χf , does not depend on the past history of

the process,χp : p < n. In other words, the present state of the process contains all the

information about its past that is needed to determine its future evolution [Nelson95].

Formally,

IP(χn+1 = j | χn = in, χn−1 = in−1, . . . , χ0 = i0) = IP(χn+1 = j | χn = in) (2.11)

2.1. Stochastic Modelling 17

Processes that exhibit the Markov property, calledMarkov processes, are among the most

important tools of probabilistic modelling, since they make dependencies manageable.

Markov processes whose state space is discrete, are referred to asMarkov chains. The

dynamic behaviour of Markov processes is characterised by the transitions between their

states and the times spent in them. Generally, thesestate holding times, also often called

sojourn times, represent the periods where some form of processing is taking place in

the systems being modelled by the Markov processes. In contrast, transitions represent

events in the system. The Markov property ensures that at anypoint, the distribution of

time until the next state change is independent of the time ofthe previous state change.

Since the only probability distribution function that exhibits this property is the expo-

nential distribution, we know that sojourn times are exponentially distributed in Markov

processes [Mitrani98].

Discrete-Time Markov Chains

Definition A discrete-time Markov chain (DTMC)is one whose parameter space is dis-

crete, i.e. a stochastic sequence,{χn | n = 0, 1, 2, . . . }, that satisfies Equation 2.11 for

n ∈ N. The possible values ofχn form a countable setS, called the state space of the

DTMC. Changes of state occur at discrete time intervals [Bause02].

The evolution of a DTMC is described by so-calledone-step transition probabilities, pij,

of the chain moving to statej at timen+ 1, given that it is in statei at timen:

pij = IP(χn+1 = j | χn = i) (2.12)

In the case oftime-homogeneous Markov chains, the behaviour of a system does not de-

pend on when it is observed, since transition probabilitiesbetween states are independent

of the time at which transitions occur, and hence do not change over time [Hillston04]:

pij = IP(χn+1 = j | χn = i) = IP(χn+m+1 = j | χn+m = i) = pij (2.13)

wheren = 1, 2, . . . , m ≥ 0, i, j ∈ S. One-step transition probabilities can be specified

compactly in the form of a transition probability matrix,P, which completely charac-

terises a time-homogeneous DTMC:

18 Chapter 2. Background

P =












p00 p01 p02 . . .

p10 p11 p12 . . .
...

...
...

pi0 pi1 pi2 . . .
...

...
...












(2.14)

Indices range over the state space, and since the chain inevitably has to be in some state

at any observed instant, all rows ofP sum to 1:

∞∑

j=0

pij = 1; i = 0, 1, . . . (2.15)

An equivalent description of the one-step transition probabilities can be given by a di-

rected graph called thestate-transition diagram. A node labelledi in the diagram repre-

sents statei of the DTMC, and an arc going from nodei to nodej, labelledpij, implies

that the one-step transition probability ispij = IP(χn+1 = j | χn = i). An example

state-transition diagram can be seen in Figure 2.1.

Figure 2.1: A DTMC with transition probabilities

The probability of a DTMC to be in statej, n steps after being in statei, called then-step

transition probability, is given by the Chapman-Kolmogorov equation:

pn
ij = IP(χm+n = j | χm = i) =

∑

k∈S

pm
ikp

n−m
kj ; 0 ≤ m ≤ n (2.16)

To indicate that the chain can move directly from statei to statej, we write i 7→ j if

pij > 0. The operation of the chain can be envisaged as follows. It starts at time0 in some

2.1. Stochastic Modelling 19

statei0 ∈ S. At the next time unit or step, the chain moves to a neighbouring statei1 with

probabilitypi0i1 , provided thati0 7→ i1. It is possible that this move is immediately back

to the state itself, which we refer to as aself-loop. This procedure is repeated, so that at

stepn, the chain is in some statein, wherei0 7→ i1 7→ . . . 7→ in−1 7→ in. A sequence of

states satisfying this arrangement is called apath. We writei
n
; j if there exists a path of

n steps betweeni andj, andi ; j if there exists a path from statei to statej [Nelson95].

The classification of states depends on the structure of the Markov chain. A statei is

calledabsorbingif i 6; j, for any statej 6= i. Once entered, the system will stay in state

i forever. A statei is calledtransient if starting from it, there is a positive probability

that the chain will never return to it. If, for example, a state j exists, such thati ; j but

j 6; i, theni is transient. A transient state can only be visited a finite number of times

with probability1. A state is calledrecurrentif the probability of eventually returning to

it is 1. In such a case, clearly,i ; j andj ; i and we say that statesi andj communicate.

A Markov chain isirreducible if all states communicate with each other, otherwise it is

reducible.

We call a sequence of states starting and ending at statei an i-cycle. If the expected

number of steps in ani-cycle is finite, we call statei positive recurrent; otherwise statei

is said to benull recurrent. If the i-cyclei
n
; i exists only whenn = kd for some values

of k and a fixed value ofd > 1, then statei is said to beperiodic with periodd. This

indicates that the state can only return to itself after somemultiple of d steps. States that

are not periodic are calledaperiodic. States that are positive recurrent and aperiodic are

calledergodic. Models whose states are all ergodic, are themselves classified as ergodic.

Most Markovian models that arise in applications are irreducible and ergodic [Nelson95].

Figures 2.2 and 2.3 demonstrate these concepts. State 1 in Figure 2.2 is an example of

a transient state and state 3 that of an absorbing state. States 2, 4 and 5 are examples

of recurrent states, and the sub-chain consisting of these states is irreducible. The chain

shown in Figure 2.3 is positive recurrent and aperiodic, hence ergodic [Nelson95].

Continuous-Time Markov Chains

Continuous-time Markov chains (CTMCs) are used to model systems where changes of

state can occur at arbitrary moments, and where intervals between those changes can be

of arbitrary length.

Definition A continuous-time Markov chainis a stochastic sequence{χ(t) | t ≥ 0}, with
χ(t) ∈ S, whereS is the discrete state space of the process. By the Markov property, the

20 Chapter 2. Background

Figure 2.2: A DTMC with transient, ab-
sorbing and recurrent states

Figure 2.3: An ergodic DTMC

evolution of the CTMC after a given momentt depends only on the state at that moment,
χ(t), and not on the past behaviour [Mitrani98]:

IP(χ(t) = x | χ(tn) = xn, . . . , χ(t0) = x0) = IP(χ(t) = x | χ(tn) = xn) (2.17)

for any sequencet0, t1, . . . , tn, such thatt0 < t1 < · · · < tn < t. The evolution of

a CTMC is described by agenerator matrixQ, whose every elementqij represents the

infinitesimal rate of moving from statei to statej, wherei 6= j:

Q =












q00 q01 q02 . . .

q10 q11 q12 . . .
...

...
...

qi0 . . . qii . . .
...

...
...












(2.18)

The behaviour of a typical CTMC can be described as follows. The process enters a state

i, and remains in that state for a random period of time, distributed exponentially with

parameter−qii, whereqii = −
∑

i6=j

qij. At the end of that period, the process moves to a

different statej 6= i, with some probabilitypij. The Markov property implies that if at

any moment, the process is observed in statei, the time that it will sojourn in that state

is independent of the time that has already been spent in it. Similarly, the next state to

be entered depends only on the current state, and not on the time spent in it or on any

previous states.

A CTMC also has an embedded DTMC (EMC), which describes the behaviour of the

chain at state-transition instants, i.e. the probability that the next state isj, given that the

current state isi [Dingle04a]. The EMC of a CTMC has a one-step transition matrix, P,

2.1. Stochastic Modelling 21

with entries

pij =

{

0, if i = j
qij

−qii
, if i 6= j.

(2.19)

Semi-Markov Processes

Definition A semi-Markov process (SMP)[Pyke61b, Howard71] is a generalisation of a

Markov process, which allows generally distributed sojourn times. It changes states in

the same way as a Markov process, but spends time in any state described by a random

variable that depends on the state that the process currently occupies and on the state

to which the next transition will be made. Hence, the memoryless property no longer

applies to state sojourn times; however, at transition instants, SMPs behave like Markov

processes, since the choice of the next state is only based onthe current state.

Consider a Markov renewal process{(χn, Tn) : n ≥ 0}, whereTn is the time of thenth

transition andχn ∈ S the state at thenth transition. Let the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) (2.20)

wherei, j ∈ S. The continuous-time SMP{Z(t) : t ≥ 0}, defined by the kernelR, is

related to the Markov renewal process by:

Z(t) = χ
N(t) (2.21)

whereN(t) = max{n : Tn ≤ t} is the number of state transitions that have taken place

by time t. Thus,Z(t) represents the state of the system at timet. We consider only

time-homogeneous SMPs in whichR(n, i, j, t) is independent ofn:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for anyn ≥ 0

= pijHij(t)
(2.22)

wherepij = IP(χn+1 = j | χn = i) is the state transition probability between statesi and

j, andHij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i) is the sojourn time distribution

in statei when the next state isj. The state holding time is the amount of time that passes

before making a transition from one state to another.

22 Chapter 2. Background

An SMP can thus be characterised by the matricesP andH with elementspij andHij

respectively. In contrast, DTMCs have state holding times that are equal to a unit time (a

step) and independent of the next state transition [Bradley06].

2.1.2 Stochastic Petri Nets

Petri Nets

Petri nets (PNs)[Petri62,Peterson77,Agerwala79,Peterson81,Reisig85,Murata89,Bause02]

are a formalism for the description of concurrency and synchronisation in distributed sys-

tems. PNs have a convenient graphical representation (see Figure 2.4), which consists

of the following components:places, drawn as circles, model conditions or resources.

A place may represent a phase in the behaviour of a particularcomponent, for exam-

ple. Places may containtokens, drawn as black dots, which are identity-less markers, and

whose presence on a place indicates that the corresponding condition or local state holds.

Transitions, drawn as rectangles, model activities within systems thateffect a change in

system state. Transitions are enabled and can fire (see Figure 2.5) when each of the places

connected to it through unidirectional arcs contains at least one token. Tokens move be-

tween places according to the firing rules imposed by transitions. Upon firing, a transition

removes a number of tokens from each of its predecessor places and deposits a number of

tokens on each of its successor places. The number of tokens to remove and deposit by a

transition are specified by annotations on its incoming and outgoing arcs.Arcs represent

connections between places and transitions, and define the relationships between local

states or conditions and events. An arc from a place to a transition indicates the local

state in which the event can occur. An arc to a place from a transition indicates the local

transformations that will be induced by the event [Hillston04].

Figure 2.4: A Place-Transition net

2.1. Stochastic Modelling 23

Figure 2.5: Firing of a Place-Transition net

Thestate(or marking) of a system modelled by a PN is identified by the number of tokens

on each place in the net. A PN is defined by its structure and an initial distribution of

tokens, the initial marking. Thereachability setof a PN is the set of all possible markings

that it may be in, having started from the initial marking andobserving the firing rules.

The simplest type of a PN is a Place-Transition net (P-T net):

Definition A Place-Transition netis a 5-tuplePN = (P, T, I+, I−,M0), where

• P = p1, . . . , pn is a finite and non-empty set of places,

• T = t1, . . . , tm is a finite and non-empty set of transitions,

• P ∩ T = ∅,

• I−, I+ : P × T → N0 are the backward and forward incidence functions,

• M0 : P → N0 is the initial marking.

P-T nets are bipartite graphs, meaning that places can only be connected to transitions and

vice versa. Backward and forward incidence functions specify the connection between

places and transitions. IfI−(p, t) > 0, an arc leads from placep to transitiont, hence,I−

is called the backward incidence function of transitiont. It attaches a weight to the arc

leading fromp to t, which means that transitiont is only enabled when placep contains

at least as many tokens as specified by the weight. Firing destroys exactly this amount of

tokens onp. Similarly, I+(p, t) specifies the number of tokens created on placep in case

of firing t [Bause02].

Stochastic Petri Nets

PNs are useful in qualitative analysis, where functional behaviour is analysed, but since

they do not incorporate any notion of time, PN-based performance analysis of systems

24 Chapter 2. Background

is not possible. Quantitative performance analysis requires the temporal behaviour of

systems to be represented by models. Therefore, traditional PNs have been extended

to incorporate timing information. Among the most widespread of timed and stochastic

extensions of Petri nets arestochastic Petri nets (SPNs)[Natkin81,Molloy81,Molloy82].

These are PN formalisms to which random variables have been added to represent the

duration of activities or the delay until the occurrence of events.

Definition The continuous-timestochastic Petri netSPN = (PN,Λ) is formed from the

P-T netPN = (P, T, I−, I+,M0) by adding the setΛ = (λ1, . . . , λm) to the definition.

λi is the transition firing rate of transitionti. The sojourn time in a state depends on which

transitions are enabled, and is exponentially distributedwith a parameter that is the sum

of the individual firing rates of enabled transitions.

An example of a stochastic Petri net can be seen in Figure 2.6.

Transition Rate

t1 λ1

t2 λ2

t3 λ3

t4 λ4

t5 λ5

Figure 2.6: A stochastic Petri net

Generating a Markov process from an SPN is simple, since the reachability graph of

an SPN’s underlying P-T net and the state-transition diagram of a Markov process are

isomorphic, i.e. the number of states and the connection structure of both graphs are the

same. However, many SPNs can result in Markov processes thathave a very large number

of states, which can make analysis infeasible [Bause02].

2.1. Stochastic Modelling 25

Generalised Stochastic Petri Nets

Generalised stochastic Petri nets (GSPNs) [Ajmone Marsan84,Ajmone Marsan95] extend

SPNs by supporting immediate transitions, which fire in zerotime upon being enabled,

and timed transitions, which have an associated exponential delay. Enabled immediate

transitions fire before timed transitions [Hillston04].

Definition A generalised stochastic Petri netis a 4-tupleGSPN = (PN, T1, T2,W),

where

• PN = (P, T, I−, I+,M0) is the underlying P-T net,

• T1 ⊆ T is the set of timed transitions,T1 6= ∅,

• T2 ⊂ T denotes the set of immediate transitions,T1 ∩ T2 = ∅, T = T1 ∪ T2

• W = (w1, . . . , w|T |) is an array where eachwi ∈ R
+

1. is a (possibly marking-dependent) rate of an exponentialdistribution specify-

ing the firing delay when transitionti is a timed transition, i.e.ti ∈ T1, or

2. is a (possibly marking-dependent) weight, specifying the relative firing fre-

quency when transitionti is an immediate transition, i.e.t ∈ T2

An example of a GSPN can be seen in Figure 2.7, which shows timed transitions as hollow

rectangles and immediate transitions as filled rectangles.

Transition Rate / Weight

t1 w1

t2 w2

t3 λ3

t4 w4

t5 w5

t6 λ6

Figure 2.7: A generalised stochastic Petri net

GSPNs do not directly describe a CTMC, since immediate transitions fire in zero time,

and hence the sojourn time in markings that enable immediatetransitions is not expo-

nentially distributed. However, since the probability of changing from one marking to

26 Chapter 2. Background

another is independent of the time spent in a marking, GSPNs describe semi-Markov pro-

cesses. In models that contain immediate transitions, the reachability graph will contain

instantaneous transitions that have no delay. Markings that enable immediate transitions

are calledvanishing states, because they are never observed, even though the stochastic

process sometimes visits them. Markings that enable timed transitions are calledtangi-

ble states, since the stochastic process sojourns in such markings foran exponentially

distributed length of time [Bause02].

Semi-Markov Stochastic Petri Nets

Semi-Markov stochastic Petri nets (SM-SPNs) [Ciardo94, Bradley03b] are extensions of

GSPNs that support arbitrary marking-dependent holding-time distributions, and that gen-

erate an underlying semi-Markov process rather than a Markov process.

Definition A semi-Markov stochastic Petri netis a 4-tupleSMSPN = (PN,P ,W ,D),

where

• PN = (P, T, I−, I+,M0) is the underlying P-T net,

• P : T × M → Z, denotedpt(m), is a marking-dependent priority function for a

transition,

• W : T ×M → R
+, denotedwt(m), is a marking-dependent weight function for a

transition, to allow the implementation of probabilistic choice,

• D : T ×M→ (R+ → [0, 1]), denoteddt(m, r), is a marking-dependent cdf for the

firing time of a transition.

M is the set of all markings for a given net. In addition, SM-SPNs implement extended

net-enabling functions:

• εN : M → P (T) is a function that specifies net-enabled transitions of a given

marking. A transition is net-enabled if all preceding places have occupying tokens.

• εP : M → P (T) is a function that specifies priority-enabled transitions from a

given marking. It selects only those net-enabled transitions that have the highest

priority, i.e.εP (m) = {t ∈ εN(m) : pt(m) = max{pt′(m) : t′ ∈ εN(m)}}. For a

2.1. Stochastic Modelling 27

given priority-enabled transition,t ∈ εP (m), the probability that it will be the one

that actually fires after a delay sampled from its firing distributiondt(m, r), is

IP(t ∈ εP (m) fires) =
wt(m)

∑

t′∈εP (m)wt′(m)
(2.23)

The choice of which priority-enabled transition is fired in any given marking is

made by a probabilistic selection based on transition weights. This mechanism

enables the underlying reachability graph of an SM-SPN to bemapped directly

onto a semi-Markov chain.

SPNs and GSPNs can be easily expressed as SM-SPNs. To specifyan SPN in the SM-

SPN formalism, we letµt represent the exponential firing rate of a transition,t, in the

SPN. Then we have:

• pt(m) = 0 for all t,m,

• wt(m) = µt for all m,

• dt(m, r) = 1 − e−µ
P

r, whereµ
P

=
∑

t′∈εN (m) µt′, i.e. the sum of the firing rates

of the enabled transitions.

For GSPNs, the situation is very similar, except that the immediate transitions have pri-

ority over the timed transitions. The translation distinguishes between timed transitions

(t ∈ T1, having rateµt) and immediate transitions (t ∈ T2, having a probabilistic weight

ct). Then we have

pt(m) =







0 if t ∈ T1

1 if t ∈ T2

wt(m) =







µt if t ∈ T1

ct if t ∈ T2

(2.24)

dt(m, r) =







1 − e−µ
P

r if t ∈ T1

H(r, 0) if t ∈ T2

(2.25)

whereµ
P

= δt∈εP (m)

∑

t′∈εN (m) µt′ with δB = 1 if conditionB is true and 0 otherwise,

andH(r, a) is the Heaviside function with step timea.

28 Chapter 2. Background

2.1.3 Stochastic Process Algebras

Process algebras are abstract languages used for the specification and design of concurrent

systems. Systems in process algebras are modelled as collections of entities, called agents,

which execute actions. Actions are the building blocks of process algebras, and are used

to describe sequential behaviours that may occur concurrently.

The development ofstochastic process algebras (SPAs)was originally motivated by prob-

lems posed by the performance analysis of large computer andcommunication systems.

The complexity of many modern systems results in very large and complex models. This

is problematic both in terms of model construction and solution, and has led to an in-

terest in alternative approaches to modelling that enable the creation of smaller models.

Finding techniques for the solution of large Markov chains whose state spaces are finite

but exceedingly large has been a major focus of performance analysis research for many

years. Standard numerical techniques are not able to cope with very large models, which

is why compositional approaches to model construction and solution that allow the sepa-

rate solution of submodels have become popular. SPAs allow subsystems to be modelled

separately, although models must be considered as single entities for the purposes of anal-

ysis. Subsystem models can be simplified in a way that the overall integrity of the model

is not affected in order to make analysis feasible.

PEPA

The Performance Evaluation Process Algebra (PEPA)[Hillston94] was originally de-

veloped as a high-level description language for Markov processes. It extends classical

process algebras by associating exponentially distributed delays with actions. An implicit

choice is associated with each set of actions by the assumption of the race condition,

which leads to a clear relationship between a process algebra model and a Markov pro-

cess. In this manner, it is possible to extract performance measures from underlying

Markov processes.

In PEPA, a system is described as an interaction of components that engage in activi-

ties. Componentscorrespond to identifiable parts of the system, or roles in its behaviour,

and represent the active units within a system. A component’s behaviour is defined by

the activities in which it can engage. PEPA uses the termactivity to make a distinction

between the usual process algebra notion of “instantaneousaction” and the general be-

haviour of the system. Every activity in PEPA has an associated duration that is governed

by an exponentially distributed random variable and anaction type. Since an exponential

2.1. Stochastic Modelling 29

distribution is uniquely determined by its parameter, the duration of an activity may be

represented by a single real number parameter, called theactivity rate. It may be any

positive real number, or the distinguished symbol⊤, which is treated as the unspecified

rate. It is assumed that each discrete action within a systemis uniquely typed, and that

there is a countable set,A, of all possible action types. Thus, the action types of a PEPA

term correspond to the actions of the system being modelled.If there are several activ-

ities within a PEPA model that have the same action type, thenthey represent different

instances of the same action by the system. There are situations when a system is carrying

out some action (or sequence of actions), the identity of which is unknown or unimpor-

tant. To capture such situations, the distinguished actiontype τ is used. Activities of

this type are private to the component in which they occur andare also not instantaneous.

Each instance of an activity with aτ action type has an associated duration, just like any

other type. However, unlike other types, multiple instances of τ -type activities within a

PEPA model do not necessarily represent the same action by the system [Clark07].

The syntax of PEPA is defined by means of the following grammar:

P ::= (α, r).P | P +Q | P ��
L
Q | P/L | A

An activity, a ∈ Act, is described by a pair(α, r), whereα ∈ A is the type of the action

andr ∈ R
+ is the parameter of the exponential distribution describing its duration. A

small but powerful set of combinators is used to model complex behaviours [Hillston04]:

• Prefix (.): models the sequential behaviour of a component, which repeatedly

undertakes one activity after another, to eventually return to the beginning of its

behaviour.

• Choice(+): models a choice between two possible behaviours. This choice is

represented as the sum of the possibilities. A race condition is assumed to govern

the behaviour of simultaneously enabled actions. The continuous nature of the

probability distributions ensures that the actions can notoccur simultaneously. The

rates of actions are chosen to reflect their relative probabilities.

• Cooperation(��
L

): models scenarios where components need to synchronise over

a set of actions. Actions in the cooperation set require the involvement of all coop-

erating components. The parallel combinator|| is used when multiple components

behave completely independently and there is no cooperation between them.|| is

equivalent to��
∅

.

30 Chapter 2. Background

• Abstraction(/): enables the hiding of actions, in order to make them private to

the component(s) involved. The duration of hidden actions is not affected, but their

type becomes hidden, represented asτ . Components cannot synchronise onτ .

• Constant(A): is a component whose meaning is given by a defining equation

A
def
= P , which gives the constant the behaviour of the componentP . This is the

mechanism of assigning names to components or behaviours.

One of the major advantages of PEPA over standard paradigms for specifying stochas-

tic performance models is the inherent apparatus for reasoning about the structure and

behaviour of models. The formality of the process algebra approach allows us to assign

a precise meaning to every language expression, which implies that once we have a de-

scription of a given system, its behaviour can be deduced automatically. The semantics of

PEPA associate aderivation graphwith models, which describes all possible evolutions

of every component. Derivation graphs are analogous to reachability graphs of GSPNs.

Hence, the Markov process underlying a PEPA model can be obtained directly from the

derivation graph. Components in PEPA correspond to states and activities correspond to

transitions in the underlying CTMC. A state of the CTMC is associated with each node

of the graph, and transitions between states are defined by considering the rates that are

labelling arcs [Hillston04].

Solution techniques used to compute quantitative results for PEPA and GSPN models

are identical – based on the numerical solution of the underlying CTMC. Starting from

a PEPA (GSPN) model, the associated derivation (reachability) graph is obtained and

reduced to the corresponding CTMC. This CTMC is then solved numerically to compute

steady-state probabilities. State space explosion, however, is a major problem for models

in both paradigms [Donatelli95].

2.1.4 Queueing Networks

A frequent application area for probability and stochasticprocesses is queueing theory.

A queueconsists of an arrival process, a buffer where customers await service, and one

or more servers, representing a resource that is used by eachcustomer for some period

of time. Queues can be characterised by six attributes: thearrival rate, theservice rate,

thenumber of servers, thecapacity of the buffer, thecustomer populationand thequeue-

ing discipline. The first five of these characteristics may be represented concisely using

Kendall’s notation [Kendall53] for classifying queues. Inthis notation, a queue is repre-

sented asA/S/c/m/N :

2.1. Stochastic Modelling 31

• A stands for the customer arrival distribution.M denotes memoryless (exponen-

tial),G general andD deterministic distributions. Identifiers for other distributions

may also be used.

• S represents the service time distribution. Service time is the time that a server

spends serving a customer.

• c denotes the number of servers available to provide service to the queue.

• m specifies the capacity of the buffer, which customers need tojoin if a server is

not available. The buffer capacity is assumed to be infinite by default. Customers

who arrive when the buffer is full may be lost or blocked.

• N indicates the customer population, which is also infinite bydefault.

The last two classifiers may be omitted in the default case. The queueing disciplinede-

termines how a server selects a customer from the queue for next service. For example,

the discipline might befirst-come-first-served (FCFS), which serves the customer who

has been waiting for the longest time next,last-come-first-served (LCFS), which ensures

that the customer who has just joined the queue is served first, random-selection-for-

service (RSS), which selects customers for service from the queue at random, priority

(PRI), which assigns customers priorities that determine the order in which they will be

served, orprocessor sharing (PS)which shares the service capacity by all customers in

the queue [Cooper81,Hillston04].

If we are modelling interactions of devices that jobs visit sequentially, it is natural to

model the system as aqueueing network (QN). A QN is a directed graph, in which de-

vices or resources of the system are represented by nodes, called service centres, which

themselves are queues.Customers, representing the jobs in the system, flow through the

system and compete for its resources. Depending on the demand for resources and the

service rate that customers experience, contention over a resource may arise, leading to

the formation of a queue of waiting customers. It is assumed that after service at one ser-

vice centre, customers progress to other service centres, following a pattern of behaviour

that corresponds to tasks that they aim to achieve. The stateof the system is typically

represented by the number of customers occupying each of theservice centres at a given

point in time.Arcs in a QN represent the topology of the system, and together with rout-

ing probabilities, determine the paths that customers can take through the network. A

network may beopen, closedor mixed, depending on whether a fixed population of cus-

tomers remain within the system or not. Customers may arrive from or depart to some

32 Chapter 2. Background

external environment, or there may be classes of customers within the system that exhibit

open and closed patterns of behaviour, respectively [Nelson95].

Figure 2.8: A simple open queueing network

A large class of queueing networks has been shown to have a straightforward and compu-

tationally efficient solution. Although this class excludes some interesting and important

system features, when applicable, it allows performance measures to be derived without

resorting to the underlying Markov process. The solution ofsuch models, often termed

product form solutions, allows individual queues within a network to be consideredsep-

arately. Relatively simple algorithms exist for computing most performance measures

based directly on the parameters of the queueing network. Performance questions of in-

terest that may arise in such networks include the expected customer response time, the

expected amount of time waiting for service or the maximum throughput of the system,

for example.

2.2 Performance Query Specification

In the previous section, we have presented an overview of different formalisms that can

be used for the modelling of real-life systems. This sectiondiscusses the next step in

the analysis process: performance query specification. After the creation of a stochastic

model, aspects of performance need to be specified with regards to which the modelled

system is to be analysed. This is achieved by constructing a formal specification that

defines performance properties and measures of interest that are to be extracted from the

model. Such specifications are commonly referred to asperformance queries.

2.2. Performance Query Specification 33

A performance query is constructed in two stages. Initially, system designers or engi-

neers who wish to analyse some system create performance queries intuitively in natural

language. Once a query has been established in this manner, it needs to be translated

into a formal representation. Such a formal representationneeds to be able to express the

concepts that appear in the query, and has to be understood byrelevant analysis tools.

2.2.1 Performance Query Classification

Performance queries can be categorised in two ways. Firstly, a distinction can be made

regarding the type of answer that a query is aiming to obtain.In this sense, queries can

either be performance requirement or performance measure queries [Suto06b].

A performance requirementdescribes a property related to stochastic behaviour that must

be satisfied by a system model. Such requirements have traditionally been phrased in

terms of stochastic logic formulae, which can be verified by stochastic model checking

tools. These tools establish whether or not requirements are satisfied by a model, and

deliver appropriateyes/ noanswers.

A performance measurerepresents a quantitative measure that can be extracted from a

model. Such measures can include for example response time distributions and densities,

their convolutions, raw moments and percentiles, mean timeto failure, system throughput,

etc. Their evaluation is enabled by specialised quantitative analysis tools.

In addition, performance queries can be classified according to the concepts that they

express. The three main categories that are relevant for thekinds of systems that we are

considering are steady-state, transient state and passagetime queries. Queries that do not

fall into any of the above categories are classified as miscellaneous queries.

System states can be uniquely identified by state labels, which are atomic propositions

that are associated with certain constraints on the state vector of the underlying model.

Steady-State Queries

Steady-state queries target the relative frequency of state occupancy for a set of states

within a model. Long-run averages of resource-based metrics, such as availability or

utilisation, can be expressed using steady-state measures. The idea of the long-run is

based on the assumption that the system eventually reaches equilibrium. Examples of

different types of steady-state query are as follows:

34 Chapter 2. Background

“What is the steady-state probability of the system being inany one of the states identified

by labels{‘processing’, ‘processed’, ‘waiting’}?”

This query aims to obtain a distribution that represents thelong-term probability of a

system being in a set of states, while the next query seeks a set of states that satisfy a

specified constraint.

“Out of the set of states identified by labels{‘start’, ‘stop’, ‘error’ }, which have a steady-

state probability that is greater than0.12?”

A measure that can be indirectly derived from the steady-state probability distribution is

the average rate of occurrence of an action. This is expressed in the following query:

“What is the productivity of the system, defined as the sum of the mean firing rate of

action ‘processed at A’ multiplied by 100, and the average rate of occurrence of action

‘processed at B’ multiplied by 200?”

Transient State Queries

Transient state queries address the probability of a systembeing in a particular set of

states at timet. They can be used to assess system reliability, since they are able to reason

about the likelihood of systems entering a failure mode at a particular time, as shown in

the following query:

“Is the probability that the system is in one of the error states identified by labels{‘aborted’,

‘failed’} at time instant40 greater than0.87?”

This is an example of a transient state requirement query, while the following is a tran-

sient state measure query that is interested in the states that satisfy certain transient state

conditions, rather than in the probability with which the system is in a given set of states.

“What possible states can the system occupy at time instant23 with probability exceeding

0.2?”

Passage Time Queries

The power to reason about response times is an essential ingredient in providing QoS

guarantees in almost all concurrent and distributed systems, including mobile phone net-

works, Web and database servers, embedded systems, stock market trading platforms and

2.2. Performance Query Specification 35

health care systems. Passage time queries are typically useful for analysing system re-

sponsiveness, since they address the time that a system takes to move from one state to

another, and reliability, since they are able to reason about time to failure scenarios.

For passage time queries, we refer to states that a passage can begin in asstart states,

while states that it terminates in are calledtarget states. Certain specification formalisms

used for passage time queries support multiple start and target states, in which case it is of

interest to find the shortest time that a system requires to complete the passage between

the two sets of states. In case of multiple start states, the passage from each possible start

state is weighted by the relative probability of the passagebeginning in that state. The

following are examples of passage time queries:

“What is the distribution of time for the system to reach any one of the states identified by

labels{‘completed’, ‘aborted’}, given that it has started in one of the states identified by

labels{‘start’, ‘restart’}?”

This passage time measure query specifies a cdf as the performance measure of interest.

The next query addresses the expected time that the system needs to complete the passage:

“What is the expected time of the system entering one of the error states identified by

labels{‘crashed’, ‘aborted’}, given that it has started in one of the states identified by

labels{‘ready’, ‘paused’}?”

The evaluation of this passage time measure query requires the calculation of the first mo-

ment of the passage time density. The following passage timerequirement query attempts

to verify whether a passage occurs between two sets of stateswithin a given time with

certain probability:

“Having started in one of the states identified by labels{‘idle’, ‘initialised’ }, does the

system enter any of the states identified by labels{‘processed’, ‘cancelled’} within 10

time units with probability between0.9 and0.98?”

Miscellaneous Queries

It is possible to convolve multiple passages to obtain a single passage. Scenarios in which

this might be applicable in practice are of the type when a system evolves from a statea to

a stateb, which is defined by the passage froma to b, and then evolves further from stateb

to statec, defined by the passage fromb to c. The convolution of the two passages results

in a single passage froma to c. This concept is demonstrated by the following query:

36 Chapter 2. Background

“What is the average time required to complete the passage defined by the convolution

of the passage from the start state identified by label ‘system ready’ to the target state

identified by label ‘waiting’ with the passage defined by the start state that is identified by

label ‘processing’ and the target state that is identified bylabel ‘idle’?”

Of additional interest to performance engineers is the ability to reason about moments of

passage time densities and distributions in order to obtainexpected values and variances

for example. The following query illustrates these concepts:

“What is the variance of the passage time defined over the start state that is identified

by label ‘new customer’ and the target states identified by labels{‘customer processed’,

‘customer left’}?”

Queries relating to response time quantiles are particularly important, since they are in-

creasingly used as key QoS metrics in Service Level Agreements. The following query,

which corresponds to a UK Government target, involves a response time quantile:

“Is it true that patients of an Accident & Emergency unit are seen, treated and discharged

in under 4 hours98% of the time?”

Queries can be extended to include further restrictions. Since a change of state in a system

is effected by an action, it may be of interest to specify a setof includedor excluded

actions, in order to observe the dynamic behaviour of the system, provided that certain

actions do or do not occur. For example:

“What is the probability of the passage from the start state identified by label ‘customer

arrived’ to the target state identified by label ‘customer left’ completing in71 time units,

provided that action ‘customer pays’ occurs and that action‘customer does not pay’ does

not occur along the passage?”

Passage time queries can be constrained even further by the requirement that a given set

of states should be avoided during the passage. Such states are termedexcluded states.

The following query incorporates such a constraint:

“What is the probability of the passage from the start state identified by label ‘patient

admitted’ to the target state identified by the label ‘patient recovered’ completing in71

time units, provided that the states identified by labels{‘patient comatose’, ‘patient’s heart

stopped’} are avoided along the passage?”

Performance queries can consist of multiple performance requirements and measures,

and independent performance queries can be composed together into a single query. Such

compound queries could take the following form:

2.2. Performance Query Specification 37

“Is the probability of a passage from the start state identified by label ‘item ordered’ to

the target state identified by label ‘item delivered’ completing in 50 time units less than

0.88, and what is the density of time that it takes to complete this passage?”

2.2.2 Logical Specification Formalisms

Probabilistic techniques, and probabilistic logics in particular, have been popular in the

past for the specification and verification of properties of systems that exhibit uncertainty.

Probabilistic logics are widely used in model checking (seeSection 2.3.1), due to their

ability to express relevant performance properties concisely, rigorously and in a verifiable

manner, while also supporting the composition of simple queries into more complex ones.

Continuous-time probabilistic logics come in many different flavours. Among them are

CSL [Aziz96, Aziz00, Baier00, Katoen01, Baier03],aCSL [Hermanns00] andasCSL

[Baier04] for Markovian models,CSRL [Baier00] for Markov reward models,CSLand

eCSL [Bradley03c] for semi-Markov models, andaCSLfor process algebras.

Many of these logics are popular in academic circles; however, their use in industry is lim-

ited – mostly because of their obfuscating nature, steep learning curve and limitations in

terms of expressiveness with regards to quantitative performance properties. These limita-

tions are a result of stochastic logics only being able to express performance requirement

queries, but not performance measure queries. Depending onthe variant of stochastic

logic, they are also constrained to reasoning about state-,path-, action- and reward-based

concepts only. Below, we present an overview of two major stochastic logic variants.

CSL

CSL, the Continuous Stochastic Logic, is able to express performance measures by se-

lecting states and paths from Markovian systems that meet steady-state and passage time

criteria. CSL operates on CTMCs on the state level, and expresses performance require-

ments as formulae. These can be of two types: state formulae are trueor falsein a specific

state, while path formulae aretrue or falsealong a specific path of the underlying model.

The logic has the ability to express steady-state, path-based and nested constraints. The

syntax for these constructs is as follows:

σ
def
= tt | a | ¬σ | σ ∧ σ | Sρ(σ) | Pρ(ϕ)

ϕ
def
= Xτ σ | σ Uτ σ

38 Chapter 2. Background

tt represents a truth value, while atomic propositiona ∈ AP (AP being the set of atomic

propositions) holds in stateσ if σ is labelled witha. Sρ(σ) asserts that the aggregate

steady-state probability for the states satisfyingσ lies in ρ, whereasPρ(ϕ) expresses a

constraint on the probability to lie in the rangeρ with which paths satisfyϕ. Paths are

defined byϕ and can take the formXτ σ or σ1U
τ σ2. TheXτ σ path formula asserts that

a transition is made to aσ state at some time,t ∈ τ , while σ1 Uτ σ2 asserts thatσ2 is

satisfied at some time instant within the intervalτ , while σ1 holds at all preceding time

instants.

The semantics of the logic are expressed by stating the conditions under which a single

states satisfies each clause of aσ-formula. This is expressed by the satisfiability relation

s |= σ. The clausea is a label, and a states satisfies that label ifa ∈ L(s). Thus, using

the negation and conjunction clauses in combination with labelling allows whole sets of

states to be defined with aσ-formula. The set of states specified in this manner is written

Sat(σ) = {s ∈ S | s |= σ}. The formal semantics of CSL are defined as [Baier03]:

s |= tt for all s

s |= a iff a ∈ L(s)

s |= ¬σ iff s 6|= σ

s |= σ1 ∧ σ2 iff s |= σ1 ∧ s |= σ2

s |= Sρ(σ) iff ΠJ ∈ ρ whereJ = Sat(σ)

s |= Pρ(ϕ) iff IP(σ ∈ Path(s) | σ |= ϕ) ∈ ρ

whereΠJ is the steady-state probability of being in any of the statesin J , andPath(s) is

the set of all paths starting froms. Further, a pathψ satisfies a path formula,ϕ, as follows:

ψ |= Xσ iff ∃ψ[1] |= σ

ψ |= σ1 U
τ σ2 iff ∃t ∈ τ .(ψ@t |= σ2 ∧ ∀t′ < t, ψ@t′ |= σ1)

whereψ[1] is a state immediately succeeding the start state ofψ; ψ@t is the state that the

system is in at timet on the pathψ. TheX path operator is often referred to as the ‘Next

State’ operator and asserts that the next transition will bemade to aσ state. The time-

bounded Until formulaσ1 U
τ σ2 asserts thatσ2 is satisfied at some time instant within the

intervalτ and thatσ1 holds at all preceding time instants.

To illustrate how a performance query is represented in CSL, consider the following:

“Starting from states3, is the probability of a 3-processor system being down within 10

time units after having continuously operated with at least two processors at most1%?”

2.2. Performance Query Specification 39

In CSL, this query is expressed by the following formula:

s3 |= P≤0.01((up3 ∨ up2) U
[0,10]down)

An example of nested constraints is demonstrated in the following scenario. A robot is

moving in ann × n grid from the bottom left corner to the top right corner. Letc be a

Boolean state variable that istrue when the robot is communicating, and letx andy be

two integer-valued state variables recording the current location of the robot [Younes05].

We want to express and subsequently verify the following property:

“Does the robot reach the top right corner of the grid within 100 time units, with prob-

ability at least 0.9, while maintaining at least a 0.5 probability of periodically (every 9

time units) communicating with a base station?”.

This is expressed in CSL with the following formula:

P≥0.9(P≥0.5(tt U
[0,9]communicate) U [0,100]corner)

eCSL

eCSL, the extended Continuous Stochastic Logic, is an extension of CSL that operates

on SM-SPNs. In contrast to other logical formalisms, eCSL operates at the model level,

rather than at the state-transition level. It was designed to express a broader spectrum of

performance requirements than CSL, including a richer classof passage time quantities

and constraints on transient state distributions. eCSL doesnot support compound formu-

lae in order to simplify the representation mechanism, and introduces separate layers for

the specification of sets of states and of performance criteria. The power of eCSL lies

in its ability to express, in a single compound logical formula, the reliability, availability

and response time requirements of semi-Markovian systems.The syntax of eCSL is as

follows:

σ
def
= tt | ¬σ | σ ∧ σ | p[N]

ϕ
def
= tt | ¬ϕ | ϕ ∧ ϕ | Sρ(σ) | T τ

ρ (σ, σ) | Pτ
ρ (σ, σ)

p[N] identifies a marking of the SM-SPN by specifying the constraint that placep con-

tainsN tokens.Sρ(σ) holds if the steady-state probability of occupying the set of states

identified byσ lies in the rangeρ. The formulaT τ
ρ (σ1, σ2) is satisfied by a set of start

states if the probability of occupying statesσ1 at timet, while not having visited states

40 Chapter 2. Background

in the set denoted byσ2, lies in ρ for all timest ∈ τ . The expressionPτ
ρ (σ1, σ2) holds

for a set of start states if the time taken to complete the passage to the set of target states

identified byσ1, while not having passed through the set of states marked byσ2, lies in

the rangeτ with probabilityp ∈ ρ.

Figure 2.9: A graphical representation
of a logical constraint on system relia-
bility, using aT -formula [Bradley03c]

Figure 2.10: A graphical representation
of a logical constraint on response-time,
using aP-formula [Bradley03c]

Figure 2.9 shows an example of a reliability constraintT Rt

Rp
(σ1, σ2) that reasons about the

transient distribution in the shaded area. It expresses therequirement that the probability

of system failure should lie within the regionRp over the time regionRt. If any part of

the transient function overRt lies outside the regionRp, the property fails. Figure 2.10

shows an example response time constraintPRt

Rp
(σ1, σ2) which reasons about a passage

time distribution. It expresses the requirement that thereshould exist a response time

ranget′ ∈ Rt with probability of occurrencep′ ∈ Rp. This is applied to the cdf of a

passage time; thus if the shaded region does not intersect the cdf, the property is not

satisfied.

As an example of how eCSL is applied, consider the following query:

“Does the system reach the set of states that is identified by 175 tokens on placep2 within

10 seconds with at least 90% probability, given that it has started from one of the states

that is identified by 35 tokens on placep1 and 10 tokens on placep5, and has not reached

any state in the set of states that are identified by having 1 token on placep6?”

eCSL expresses this query with the following formula:

Sat(p1[35] ∧ p5[10]) |= P
[0,10)
(0.9,1](p2[175], p6[1])

Thepn[m] expressions define sets of states on the SM-SPN model. For instance, the con-

2.2. Performance Query Specification 41

straintp1[35] ∧ p5[10] selects all markings of the model that have 35 tokens on placep1

and 10 tokens on placep5. Simple formulae can be composed to form compound queries,

which can be verified on a model. The generic formula below shows how formulae can

be defined, in which availability, reliability and responsetime properties must hold simul-

taneously:

~m |= SP1
(σ1)

︸ ︷︷ ︸

availability

∧ T T2

P2
(σ2, σ3)

︸ ︷︷ ︸

reliability

∧ PT3

P3
(σ4, σ5)

︸ ︷︷ ︸

response time

2.2.3 Graphical Approaches

To our knowledge, no graphical formalism has been developedso far for performance

query specification on stochastic system models.

The closest we can get to such a formalism, purely in terms of graphical specification

ability, is LR [Lee97], a specification language for high-levelbehavioural propertiesof

real-time systems. Note thatLR is only able to address behavioural properties of systems,

and not performance properties; however, its underlying concept of representing system

properties graphically is similar to what one might expect to see in a graphical query spec-

ification language for performance properties. [Lee97] identifies a common drawback of

property specification with stochastic logics, namely thatformulae representing proper-

ties of even moderate complexity are generally hard to understand, and hence, usually

only experts in formal methods are able to apply them properly. LR has been developed

as a potential solution to this drawback. The language is able to express queries on sys-

tem models defined in the real-time process algebra ACSR [Lee94] by using a two-level

query construction mechanism. Experts create patterns of partial stochastic logic formu-

lae, which are then mapped onto graphical templates that hide certain details from users.

Users specify properties of their systems in graphical queries through the use of these

templates, and subsequently, templates are translated into their corresponding stochastic

logic equivalents during query evaluation.

To illustrate the application ofLR, consider the following behavioural property:After

eventa, we observe eventb, and then eventc. We require thatb happens between 2 and 5

time units aftera, and thatc happens between 4 and 10 time units afterb, and between 3

and 10 time units aftera. In the stochastic logic TCTL [Alur91], this property would be

42 Chapter 2. Background

expressed by the following formula:

2a⇒ x.3(b⇒ y.(x ∈ [2, 5] ∧ 3(c ∧ (x ∈ [3, 10] ∧ y ∈ [4, 10]))))

This is clearly a rather complex expression, which is only meaningful to experts.LR facil-

itates the expression of the same property with an equivalent, yet simpler representation,

as shown in Figure 2.11.

Figure 2.11: AnLR representation of the example TCTL query

There exist various approaches to graphicalperformance propertyspecification; however,

these are mostly semi-graphical in nature and formalisms that only support performance

property annotations on system specifications, rather thanthe ability to specify perfor-

mance queries directly. These approaches are based on UML, the Unified Modelling

Language [OMG07].

[L ópez-Grao04] usesUML activity diagrams for system representation and the SPTpro-

file for annotating performance requirements. Two kinds of UML behavioural diagrams

are particularly applicable to performance modelling: statechart diagrams, which model

the life cycle of objects in the system, and activity diagrams, which characterise system

behaviour by describing activities. Activity diagrams arespecialisations of UML state

machines, whose main purpose is the expression of the internal control flow of a process,

as opposed to statechart diagrams which are often driven by external events. Combining

the use of statecharts and activity diagrams, all paths of the potential system dynamics can

be modelled. In this approach, the SPT<<PAprob>> and<<PArespTime>> tags are

used, which allow the annotation of routing rates and actiondurations, respectively. Such

annotations are attached to transitions in activity diagrams, in order to allow the assign-

ment of different action durations that depend on a decision. Time annotations are added

to the model wherever an action is executed, and probabilityannotations are supplied

whenever a decision needs to be made, such as in the presence of guard conditions for

example. Systems are modelled by means of the two kinds of diagrams, and performance

requirements are specified according to the SPT profile. Eachdiagram is then trans-

lated automatically into a labelled GSPN (LGSPN), an extension of the GSPN formalism.

LGSPN models are subsequently composed, in order to obtain asingle analysable perfor-

mance model of the system for a particular scenario, which isdetermined by the diagrams

2.2. Performance Query Specification 43

that have been modelled. These scenario description modelscan then be analysed or

simulated using various well-established GSPN tools to obtain performance metrics of

interest.

[Jansen05] usesStoCharts, a QoS-oriented extension of UML statechart diagrams, which

enhances the basic statechart formalism with general time delays and probabilistic choice,

to build stochastic automata that can be analysed by simulation. The two extensions have

been added to provide software engineers with a simple way todescribe probabilistic

properties of stochastic systems. System models created with StoCharts can be reduced

to generalised SMPs (GSMPs), which are amenable to discrete-event simulation-based

evaluation. If only exponentially distributed delays are used, the models can be reduced

to CTMCs, which can then be solved with respect to steady-stateand transient mea-

sures, using efficient numerical solution techniques. Stochastic model checking is another

method that can be applied to the resulting GSMP or CTMC models, in order to verify

performance-related properties. An example StoCharts system specification is shown in

Figure 2.12. The example shows the workflow of a car damage assessor, who assesses

on behalf of an insurance company whether a damaged car should be repaired or not and

whether a garage offers an acceptable price for the repairs.Timing delays in the model

are indicated byafter annotations on transitions, and parallelism is demonstrated by the

statesRepair andReport .

Figure 2.12: A StoChart example

[López-Grao04] and [Jansen05] represent the latest developments in graphical perfor-

44 Chapter 2. Background

mance property specification, and clearly highlight the need for a new formalism that

is not only able to reason about a wide range of performance concepts, but that is also

completely independent of underlying system specifications.

2.2.4 Tool-specific Specification Languages

Most quantitative analysis tools combine the ability to model probabilistic systems and

to analyse resulting models according to a set of supported performance measures and

criteria. Many tools implement their own proprietary languages for performance query

specification; therefore we provide below a brief overview of the tool languages of a

representative range of analysis tools.

The DNAmaca Specification Language

TheDNAmacaspecification language [Knottenbelt96], used by theDNAmaca, SMARTA

andHYDRAtools (see Section 2.4.1), provides a flexible high-level model description

that is used by a state space generator as a basis for the construction of a CTMC of the

model. Functional properties, such as invariants, that areto be checked during the state

generation process can be specified with general C++ expressions, in addition to a variety

of performance measures relating to model states and transitions.

Model Specification

A model descriptionspecifies the initial state of a system, the components of a general

state, and the conditions on and effects of transitions between states.

model_description = \model {
{state_vector | initial_state | transition_declaration |
constant | help_value | invariant | state_output_function |
primary_hash_function | secondary_hash_function |
additional_headers}*}

Thestate description vectorconsists of a set of components that together describe a state

of the system. Each unique value of these components corresponds to a state. Anini-

tial statemust be specified for reachability analysis purposes through assignments to the

components of the state vector.

2.2. Performance Query Specification 45

state_vector = \statevector{
{<variable type> <identifier> {,<identifier>}*;}*

}

initial_state = \initialstate{{<assignment>}*}

Transitionsdescribe how a system changes state. Possible transitions from a particular

state are specified by describing enabling conditions, involving elements of the state vec-

tor, an action to be taken if the transition has executed, a rate for timed transitions or

relative weight for instantaneous transitions, and an optional priority, which allows tran-

sitions of the same kind (immediate or timed) to take precedence over one another.

transition_declaration = \transition{<identifier>}{
\condition{<boolean expession>}
\action{{<assignment>}*}
\rate{<real expression>} | \weight{<real expression>}
\priority{<non-negative integer>}

}

Performance Measure Specification

Performance results provide a mapping from low-level results like state probabilities and

transition rates to higher-level concepts, such as throughput or mean buffer occupancy.

Performance measurescan generally be classified as state or count measures.

performance_measures = \performance{
{state_measure | count_measure}*

}

state_measure = \statemeasure{<identifier>}{
\estimator{{mean | variance | stddev | distribution}*}
\expression{<real_expression>}

}

count_measure = \countmeasure{<identifier>}{
\estimator{mean}
\precondition{<boolean_expression>}
\postcondition{<boolean_expression>}
\transition{all | {<identifier>}*}

}

A state measureis used to determine the mean and variance of a real expression that is

defined at every state in the system, e.g. the average number of tokens on a particular

46 Chapter 2. Background

place of a GSPN or some transition’s enabling probability. The mean, variance, standard

deviation and distribution of state measures can be computed. A count measureis used

to determine the mean rate at which a particular event occurs, e.g. the rate at which a

transition fires. The occurrence of an event is specified by a precondition on the current

state, a postcondition on the next state, and transitions that fire during the transition from

the current to the next state.

The HYDRA Specification Language

The specification language of theHYDRAtool [Dingle04a] is an extended version of the

DNAmacaspecification language. Syntax has been added to allow the expression of first

passage time and transient performance measures. Forpassage timequeries, users need

to specify conditions that identify the source and target states of the passage, as well as

the time range to which the calculation should be restricted. The time range is specified

by an initial valuet, an incremental step and a maximum value. The source and target

conditions are expressed as Boolean expressions in terms of the elements of the model’s

state vector. Conditions fortransientmeasures are expressed in a similar fashion.

passage_time_measure = \passage{
\sourcecondition{<Boolean expression>}
\targetcondition{<Boolean expression>}
\t_start{<real expression>}
\t_stop{<real expression>}
\t_step{<real expression>}

}

transient_state_measure = \transient{
\sourcecondition{<Boolean expression>}
\targetcondition{<Boolean expression>}
\t_start{<real expression>}
\t_stop{<real expression>}
\t_step{<real expression>}

}

The SMARTA Specification Language

TheSMARTAspecification language [Dingle04a] is an extension ofDNAmaca’s specifi-

cation language that, in order to express semi-Markov chains, allows the specification of

2.2. Performance Query Specification 47

transitions whose state holding times are not constrained to an exponential distribution.

The specification language was designed for the descriptionof SM-SPNs, but is able to

specify any semi-Markov chain.

Transitionsare specified in the same way as weighted transitions in theDNAmacaspec-

ification language, but it is in addition also necessary to describe the firing time density

function associated with each transition. These density functions are described in terms

of their Laplace transforms. Users are also required to provide a C++ function that re-

turns the value of the firing time density function’s Laplacetransform at a givens-value.

Several macros are defined by default that encode the Laplacetransforms of common fir-

ing time distributions. Steady-state specification is as for DNAmaca, and passage time

specification is as forHYDRA.

transition_declaration = \transition{<identifier>}{
\condition{<Boolean expression>}
\action{{<assignment>}*}
\weight{<real expression>}
\priority{<non-negative integer>}
\sojourntimeLT{<function>}

}

The PRISM Specification Language

The PRISM tool (see Section 2.4.1) uses its own proprietary language for the expression

of properties on DTMCs, CTMCs and Markov decision processes. The language is very

reminiscent of CSL, and its basic syntax is defined by the following grammar:

prop ::= true | false | expr | !prop | prop & prop |
prop | prop | prop => prop |
P bound [pathprop] | S bound [prop]

bound ::= <p | <=p | >=p | >p |

pathprop ::= X prop | prop U prop | prop U time prop |
F prop | F time prop | G prop | G time prop

time ::= >=t | <=t | [t,t]

whereexpr evaluates to a Boolean;P bound [pathprop] evaluates totrue if the

probability with whichpathprop is satisfied lies within the bound represented bybound;

48 Chapter 2. Background

S bound [pathprop] evaluates totrue if the steady-state probability ofprop lies

within the bound represented bybound; p evaluates to a double in the range[0, 1]; X

prop evaluates totrue if prop holds in the next state;prop1 U prop2 evaluates

to true if prop1 holds throughout untilprop2 holds;prop1 U prop2 evaluates to

true if prop1 holds throughout within the time constraint specified bytime, after which

prop2 holds;F prop evaluates totrue if prop eventually holds;F time prop eval-

uates totrue if prop eventually holds within the time constraint specified bytime; G

prop evaluates totrue if prop always holds;G time prop evaluates totrue if prop

always holds within the time constraint specified bytime; andt evaluates to a non-

negative double or integer.

PRISM identifies states of the model that correspond to certain situations by specifying

an expression that evaluates to a Boolean value. Such an expression typically contains

references to variables and constants from the model to which it relates. The states cor-

responding to this expression are those for which the expression evaluates totrue. A

property is evaluated with respect to a single state of a model. For the syntax given above,

all properties evaluate to Boolean values, i.e. for any modelstates, a property is either

true and hence satisfied, or false and hence not satisfied. Forthe basic operators of the

logic (i.e.true, false, expr, !, &, |, =>) the semantics are as for classical

propositional logic:

• true is true in all states,

• false is not true in any state,

• expr is true if the PRISM expressionexpr evaluates to true,

• !prop is true ifprop is not true,

• prop1 & prop2 is true if bothprop1 andprop2 are true,

• prop1 | prop2 is true if eitherprop1 or prop2 is true,

• prop1 => prop2 is true ifprop1 impliesprop2.

2.2. Performance Query Specification 49

PRISM is able to specify properties of the following types:

“From an initial state, is the probability that more than 5 errors occur within the first 100
time units less than 0.1?”

"init" => P<0.1 [F<=100 num_errors > 5]

“When a shutdown occurs, is the probability of system recovery being completed in be-
tween 1 and 2 hours without further failures occurring greaterthan 0.75?”

"down" => P>0.75 [!"fail" U[1,2] "up"]

“In the long-run, is the probability that an inadequate number of sensors are operational
less than 0.01?”

S<0.01 [num_sensors < min_sensors]

“What is the probability that process 1 terminates before process 2 does?”

P=? [!proc2_terminate U proc1_terminate]

“What is the long-run probability of the queue being more than 75% full?”

S=? [queue_size / max_size > 0.75]

PRISM allows the computation of the values of such propertiesfor a range of parameters

and plot graphs of the results using experiments.

2.2.5 Comparison of Techniques

Logical Specification Formalisms

Logical property specification formalisms define performance properties over stochastic

models. They do not characterise systems themselves, as they are not modelling for-

malisms. They are processed by model checking tools that carry out a verification of their

performance specifications on models. These verifications can only either evaluate toyes

or no.

50 Chapter 2. Background

In addition to these common characteristics, each stochastic logic variant has its own

specialty.CSLexpresses state- and path-based steady-state and passage time properties

on the state level of CTMCs, whileeCSLis able to express steady-state, transient state and

passage time properties on the model level of SM-SPNs. It attempts to ease the property

specification process by aligning it with a high-level modelling formalism. However, it is

not able to reason about system actions.

Logical specification formalisms were designed for the veryspecific purpose of model

checking. Hence, their expressiveness is constrained by their area of application. Un-

like most graphical specification languages, they do not combine model specification and

performance annotations, but rather only operate as performance property specification

mechanisms. They allow sophisticated and complex performance requirement queries to

be formulated, which is not possible with graphical formalisms. In addition, they enable

query specification through concise formulae, whereas in contrast, graphical languages

can be complex and confusing, and generally need to be reduced to some intermediary

representation before they can be used for analysis.

Graphical Approaches

[Lee97] presentsLR, a graphical specification language for behavioural properties, which

attempts to alleviate the challenges involved in specifying such properties in stochastic

logics. It allows users to construct queries using high-level graphical templates. Queries

are eventually translated into stochastic logic for evaluation purposes. The strength of this

approach is its graphical specification mechanism and expressive power. It’s weakness is

that it is dependent on stochastic logics and that it is only able to reason about behavioural

properties.

[L ópez-Grao04] adapts the SPT profile to UML activity diagrams. Performance infor-

mation is integrated into the UML model description, as in the previous case, and models

are converted into LGSPNs, which can be solved for steady-state and transient measures

in the traditional manner. The same advantage and disadvantage applies as before.

[Jansen05]’s specification of system models withStoChartscontains additional timing

2.2. Performance Query Specification 51

information and probabilistic choice. Similarly to the previous two approaches, perfor-

mance information is incorporated into the model. Models are reduced to GSMPs that

allow steady-state and transient state solutions of systems. Similar arguments with re-

gards to expressiveness apply as before.

Tool-Specific Languages

The DNAmacaspecification language and its extensions forHYDRAandSMARTAde-

scribe models and performance measures concisely in C++ syntax. The main purpose of

DNAmaca’s specification language is the concise description of stochastic system models.

In addition, it provides users with the ability to specify a small number of performance

measures, which are to be obtained from the model. The language extensions forHYDRA

andSMARTAprovide support for the specification of additional performance measures.

SinceDNAmaca, HYDRAandSMARTAare command-line tools, their specification lan-

guages were primarily designed with functionality, ratherthan with user-friendliness in

mind. However, they are certainly powerful with regards to their intended purpose.

In contrast, the simplicity and relative ease of use of PRISM’s property specification lan-

guage makes it appealing to a large audience. It has syntactic similarities to stochastic

logics, but is clearer and more intuitive to understand and use. As a result, it has also been

incorporated into other tools. A great advantage lies in itsextensibility, since its syntax

can be extended to cater for additional properties that are to be integrated into tools in the

future. This is a very important characteristic, which for example stochastic logics do not

possess due to their syntactic restriction. Another advantage is the language’s concise and

rigorous nature, which is derived from stochastic logics, its original inspiration. However,

due to the similarity to stochastic logics, users have to become familiar with the language

before being able to use it comfortably and effectively.

When contrasting tool-specific languages with stochastic logics, one usually finds that

tool-specific languages either tend to be in some form based on stochastic logics, or that

they share no commonalities with them. PRISM’s property specification language is a

good example of one that was inspired by stochastic logics, andDNAmaca’s specification

52 Chapter 2. Background

language that of one that was not. Tool-specific languages often tend to be more intuitive

than stochastic logics, since they have more freedom in the specification of properties,

and as such can make the syntax more digestible to users. Model checkers that use sto-

chastic logics for property specification purposes invariably have their own tool-specific

languages for specifying stochastic logic formulae.

At present, tool-specific languages have an inherent advantage when compared to graphi-

cal approaches in that they allow for greater expressiveness, due to their ability to specify

as much detail as needed, whereas graphical approaches are bound to performance anno-

tations on system models that impose a serious restriction on their level of expressiveness.

2.3 Techniques of Performance Analysis

In the previous sections, we have seen popular methods used in performance modelling for

the mathematical representation of real-life systems, andapproaches to the specification

of performance queries on stochastic system models. This section provides an overview

of the most widely-used methods for the evaluation of performance queries on stochastic

models.

2.3.1 Probabilistic Model Checking

Verification is the process of ensuring the correctness of systems. It is a major challenge

in the process of system development, and hence also an important part of performance

analysis. Simulation and testing are the two most widely-used methods for system verifi-

cation, but in the case of complex asynchronous systems, these techniques are only able to

analyse a limited number of possible behaviours. Simulations and test runs are often very

time-consuming and may need to be carried out a number of times before informative

conclusions can be reached [Clarke Jr.01].

An attractive alternative isformal verification, which carries out an exhaustive analysis

of all possible behaviours of a system, and leaves no errors or design flaws undiscov-

2.3. Techniques of Performance Analysis 53

ered. There are numerous approaches to formal verification;however, model checking

in particular has found widespread acclaim and adoption.Model checkingis the process

of verifying a behavioural property of a system over a given model through the exhaus-

tive enumeration of all reachable system states and the behaviours that result in them.

Compared to other approaches, model checking has a number of distinct advantages:

• The verification process is fully automated and requires no user intervention. Users

are only required to provide a description of a system in the form of a stochastic

model, together with a performance query that specifies properties to be checked.

Equipped with these, a model checker is able to perform computations to obtain

results indicating whether or not the properties are satisfied by the model.

• If properties are satisfied, the model checker terminates with the answertrue. Oth-

erwise, a counterexample is produced, which highlights a scenario where the prop-

erty does not hold. Such error traces are useful to modellers, since they may provide

insights into the root causes of unexpected behaviour.

• It is possible to check partial specifications for system correctness, which makes

it possible to avoid the modelling of complete systems, if this is desirable in an

evaluation scenario.

However, model checking suffers from the same problem as allMarkovian systems: state

space explosion. This problem occurs when the model has manycomponents that perform

transitions in parallel. In such a case, the number of statesof the model usually grows ex-

ponentially with the number of components. Hence, the main challenge in model check-

ing is the tackling of the state space explosion problem. Theprocess of model checking a

system is shown in Figure 2.13, and can be summarised as follows:

1. System Modelling:A system firstly needs to be represented mathematically in the

form of a model.

2. Property Specification:Before verification can commence, the model checker has

to be informed of the properties of interest that are to be verified. They are generally

54 Chapter 2. Background

Figure 2.13: The process of model checking

specified in some logical formalism. For hardware and software systems, temporal

logics are used, which are able to express the behavioural evolution of systems over

time.

3. Verification: The verification process is automatic; however, it does involve some

degree of human interaction, mostly in the form of analysingverification results.

Formally, verification can be stated as follows: given a particular property, ex-

pressed as a temporal logic formulap, and a modelM with initial states, decide if

M, s |= p.

While model checking is a powerful tool for designers and engineers wishing to verify

their systems, it is not the method of choice for purely quantitative performance analysis,

since model checkers are unable to provide direct quantitative results that relate to system

performance. Realising this, the model checking community has attempted to diversify

the process to also support a limited form of quantitative analysis by investigating qualita-

tive and quantitative model checking algorithms for probabilistic systems. In a qualitative

setting, the aim is to check whether a property holds with probability 0 or 1, whereas in a

quantitative setting, it is to be verified whether the probability of a certain property being

satisfied meets given lower or upper bounds, which are different from0 and1.

Much research has been carried out on verification methods for probabilistic logics. Prob-

abilistic extensions of modal and temporal logics and automatic procedures for verifying

the satisfaction for such logics have been developed. Theseare mainly based on reducing

the calculation of the probability of formulae being satisfied to a linear algebra problem.

2.3. Techniques of Performance Analysis 55

2.3.2 Numerical Analysis

Steady-State Analysis

Performance analysis is often concerned with the behaviourof systems over an extended

period of time. Hence, the primary objective of a modeller isthe calculation of the prob-

ability distribution of a model of a system over the state spaceS as it settles into a reg-

ular pattern of behaviour. Intuitively, this means that thesystem has been running for a

long time and its behaviour no longer exhibits any trends. This probability distribution

is commonly referred to as thesteady-state distributionand is very useful for deriving

performance measures based on subsets of states where some conditions hold.

Since we may have to choose an initial state for a model randomly, by considering the

long-term probability distribution we can balance out any form of bias that could possibly

have been introduced by the chosen start state. Under certain conditions, the more steps

the system takes, the less it matters what state it was in at the time when it started. We

assume that when the effects of initial bias have worn off, the system is insteady state.

This does not imply that it is stuck in a particular state and no longer evolves; rather that it

is assumed to exhibit regularity and predictability in its behaviour. It continues to change

state, but the probability of observing it in any given stateis no longer a function of time.

This is reflected by the absence of change in the probability distribution. Systems that are

able to reach steady state are said to be stable [Hillston04,Mitrani98].

Let πj(t) denote the probability that an irreducible, aperiodic and time-homogeneous

Markov process{χ(t)} is in statej at timet. In the limit, when the observation instant

is infinitely far removed from the starting point, the probability of finding the system in

statej is independent of the initial state. Steady state has been reached at timet when for

all statesj and allτ > 0 we have thatπj(t+ τ) = πj(t), i.e. the time at which the system

is observed does not influence the probability of it being in aparticular state. Therefore,

we denote steady-state probabilities without the time variable byπj:

πj = lim
t→∞

IP(χ(t) = j | χ(0) = i) (2.26)

56 Chapter 2. Background

for i, j = 0, 1, When the limiting probabilitiesπj exist, they represent the steady-

state distribution of the Markov process. A steady-state distribution,{πj : j ∈ S}, exists

for every time-homogeneous, finite and irreducible Markov process [Hillston04].

In steady state,πj is the proportion of time that the process spends in statej. Hence, at

a moment in time, the probability of a transition occurring that moves the system from

statei to statej is given by the probability that the model is in statei, multiplied by the

instantaneous probability of the system making a transition from statei to statej, πiqij,

which is also called theprobability fluxfrom statei to statej. In order for equilibrium to

be maintained, the total probability flux into a state has to be equal to the total probability

flux out of the state. Otherwise, the probability distribution over the set of states would

change. Hence, for any statei, we have:

∑

j

πjqji = πi

∑

j

qij (2.27)

The left hand side of Equation 2.27 represents the flux into statei, while the right hand

side represents the flux out of it. Equations of this form for all statesi ∈ S are collec-

tively calledglobal balance equations. Since the the sum of elements in every row of the

generator matrixQ is zero, i.e.
∑

j

qij = 0, Equation 2.27 can also be written as:

∑

j

πjqji = 0 (2.28)

Together, theπj values represent the steady-state probability distribution and are not

known in advance. If there aren states in the state space,n such equations need to

be solved to find then unknowns. However, due to redundancy inherent in the equations,

not enough information is available to solve them uniquely.Forming a row vector out of

theπi values, we can express Equation 2.28 in matrix equation formas:

πQ = 0 (2.29)

Since{πj} represents a probability distribution, we also know that the normalisation con-

2.3. Techniques of Performance Analysis 57

dition applies:
∑

xj

πj = 1 (2.30)

Together with Equation 2.30, we now haven+1 equations forn unknowns, which enables

us to obtain a unique solution. When the state space of an irreducible Markov process is

finite, the process is always recurrent non-null, and therefore, Equations 2.29 and 2.30

always have a solution [Ross82].

There are mainly two types of solution methods for calculating the steady-state distri-

bution. Direct methodsobtain an exact solution after a finite number of steps, whereas

iterative methodsproduce approximate solutions. Direct methods are generally appropri-

ate when the state space of the model is not particularly large and when the corresponding

state transition matrix is not sparse. Direct methods also have the advantage that they im-

pose an upper bound on the time taken to obtain a solution. In contrast, iterative methods

are appropriate when the state transition matrix is large and sparse, since the methods pre-

serve the sparsity of the matrix. Iterative methods requireless storage and computational

resources, but at the same time often require a long time to converge towards a solution.

From the steady-state solution, several measures of interest can be calculated.State-based

measuresare those that correspond to the probability of a system being in a particular

state, or a set of states, that satisfy some condition. Good examples of state-based mea-

sures are utilisation or the distribution of the number of customers in a system.Rate-based

measuresare those that correspond to the predicted rate at which events occur. An exam-

ple of such a measure is throughput.

Transient Analysis

Another important class of performance analysis istransient analysis, which aims to find

the probability of a system being in a certain state at timet.

Steady-state probabilities refer to system behaviour in the long run, while transient prob-

abilities consider the system at a fixed time instant. Transient analysis is more meaningful

than steady-state analysis when systems need to be evaluated with respect to their short-

58 Chapter 2. Background

term behaviour. In the analysis of systems that have to remain operational during a certain

period of time, such as on-board navigational computers found on airplanes or satellite

control systems, for example, possible questions may relate to the probability of systems

failing at some point. In scenarios like these, modellers have to calculate measures within

a relatively short time interval. Results obtained from the steady-state solution, which

characterise system behaviour in the long run, are not useful approximations for the de-

sired measures and could lead to substantial errors. Measures that can be derived from

transient state probabilities are often referred to asinstantaneous measures.

The process ofuniformisationhas classically been used to conduct transient analyses of

CTMCs [Jensen53,Grassman87,Reibman88]. The transient statedistribution of a CTMC

is defined as the probability of the process being in one of theset of statesJ at timet,

given that it has started in statei at time 0:

πiJ(t) = IP(χ(t) ∈ J | χ(0) = i) (2.31)

whereχ(t) denotes the state of the CTMC at timet. Transient uniformisation takes ad-

vantage of the fact that for any given ergodic CTMC a corresponding DTMC can be

constructed, which yields a steady-state probability vector that is identical to that of the

CTMC. In a uniformised CTMC, the probability that the CTMC is in a state inJ at time

t is calculated by conditioning onN(t), the number of transitions that occur in a given

time interval[0, t] in a DTMC [Bolch98,Bradley06]:

πiJ(t) =
∞∑

m=0

IP(χ(t) ∈ J | N(t) = m)IP(N(t) = m) (2.32)

Other approaches for the calculation of transient measuresexist, such as Laplace transform–

based methods (see [Dingle04a] for details), but we do not consider them further here.

Passage Time Analysis

Passage(or response) timesare important QoS metrics of stochastic systems that describe

the time that systems take to enter for the first time one of a set of target statesJ , given

2.3. Techniques of Performance Analysis 59

that they have started in one of a set of start statesI.

Passage time analysis empowers modellers to ask a wide rangeof relevant and informa-

tive performance questions that address the evolution of systems between two distinct

moments in time. Some of the most important areas of its application are reliability test-

ing, efficiency analysis and the verification of conformity to SLAs. During reliability

testing, system engineers query models to obtain probability measures representing the

likelihood of their systems failing within certain periodsof time by entering an error state.

Efficiency analysis addresses the amount of time that a system takes to perform a partic-

ular task, and considers these times an indicator of system responsiveness. In Markovian

models, passage times are mainly calculated using two distinct approaches. The first is

based on uniformisation, and the second on a Laplace transform method.

Uniformisation-based Analysis

Uniformisation has classically been applied to the transient analysis of CTMCs, but it can

also be used for the calculation of passage time densities, as described in [Melamed84,

Muppala92, Bolch98, Miner03]. It transforms a CTMC’s states tohave the same mean

holding time by allowing invisible transitions from statesto themselves. The interval

between a moment where a CTMC enters statei, and the first subsequent moment when

it enters one of the states inJ is called thefirst passage timefrom i to J and is defined as:

PiJ = inf{t > 0 : χ(t) ∈ J,N(t) > 0, χ(0) = i} (2.33)

whereN(t) denotes the number of state transitions that have occurred by time t. Note

that this approach only calculates the first passage time density, and does not consider

repeated visits to target states. The density of the passagetime between statesi andj

in the uniformised chain can be expressed as the sum ofm n-stage Erlang state holding

time densities, weighted by the probability of the CTMC moving from statei to statej

in exactlyn hops, such that1 ≤ n ≤ m. This result can also be generalised for multiple

start states, by additionally providing a probability distribution across them. The pdf of

the response time between the non-empty set of source statesI and the non-empty set of

60 Chapter 2. Background

target statesJ in the uniformised chain is given by [Bradley06]:

fIJ(t) =
m∑

n=1

(qntn−1e−qt

(n− 1)!

∑

k∈J

π
(n)
k

)

(2.34)

where

π(n+1) = π(n)P ′ (2.35)

with

π
(0)
k =







πk
∑

j∈I πj

if k ∈ I

0 otherwise
(2.36)

P ′ is a modified transition probability matrix with all target states made absorbing. The

πk values are the steady-state probabilities of the corresponding statek from the CTMC’s

embedded Markov chain.

Laplace Transform-based Analysis

Similarly to the uniformisation-based approach, the first step in the Laplace transform-

based method is the calculation of the first passage time density of the system that has

started in statei entering any state out of the set of target statesJ . Hence, it is necessary

to calculate the convolution of state holding time densities over all possible paths from

statei to J . This approach takes advantage of the favourable properties of theLaplace

transform. For a given real-valued functionf(t), t ≥ 0, the Laplace transform, denoted

byL{f(t)}, f ∗(s) orL(s), is defined as [Nelson95]:

L{f(t)} = f ∗(s) = L(s) =

∫ ∞

0

e−stf(t)dt (2.37)

In essence, the Laplace transform converts a function from the real-valued time domain

(t space) to the complex-valued Laplace domain (s-space). Due to its algebraic prop-

erties, operations that are complex int-space become simple ins-space. The following

properties of Laplace transforms are particularly useful:

• The differentiation of a function int-space corresponds to the multiplication of the

2.3. Techniques of Performance Analysis 61

Laplace transform of the function bys in s-space:

L{f ′(t)} = sf ∗(s) (2.38)

• The integration of a function int-space corresponds to the division of the Laplace

transform of the function bys in s-space:

L{

∫ t

0

f(τ)dτ} =
f ∗(s)

s
(2.39)

• The convolution of two functions int-space corresponds to the product of their

individual Laplace transforms ins-space:

L{(f ◦ g)(t)} = f ∗(s) ∗ g∗(s) (2.40)

• Thenth moment of a probability density functionf(t) of the continuous random

variableχ in t-space can be obtained ins-space by calculating:

E(χn) = (−1)nf ∗(n)(0) (2.41)

After carrying out Laplace transform-based calculations,results need to be numerically

inverted, in order to convert them back intot-space. The calculation of the passage time

density function is therefore achieved by calculating the Laplace transform of the con-

volution of the state holding time densities over all paths betweeni and J , and then

numerically inverting the resulting function [Harrison02]:

LiJ(s) =
∑

k 6∈J

(qik
s− qii

)

LkJ(s) +
∑

k∈J

(qik
s− qii

)

(2.42)

When there are multiple source states, denoted byI, the Laplace transform of the passage

time density at steady state is [Bradley03d]:

LIJ(s) =
∑

k∈I

αkLkJ(s) (2.43)

62 Chapter 2. Background

where the weightαk is the probability at equilibrium that the system is in statek ∈ I at

the starting instant of the passage, and is given by:

αk =







πk∑

j∈I

πj

if k ∈ I

0 otherwise

(2.44)

Comparison of Approaches

Uniformisation is generally much faster than the Laplace transform-based method, ex-

cept in the case of very small models. However, the Laplace transform method is easier

to extend to semi-Markov systems with generally distributed state holding times, and it

preserves the ability to reason about vanishing source and target states. Uniformisation

is unable to support the latter kind of reasoning, since vanishing states are assumed to be

eliminated during state space generation.

2.3.3 Simulation

The simulation approach of analysing a model is an alternative to the analytical approach,

where system analysis is purely theoretical. Stochastic models, which are solved analy-

tically for performance measures, are mathematical abstractions of systems. In contrast,

stochastic simulation models can be regarded as algorithmic abstractions, which repro-

duce the behaviour of systems that they represent when executed. Modelling complex

systems theoretically requires many simplifications, and emerging models are often not

accurate representations of reality.

Simulation, on the other hand, does not require as many simplifying assumptions, which

eliminates this problem. As simulation models are run rather than solved, performance

measures are observed rather than derived. However, a single observation is generally

not sufficient, and multiple simulation runs are often required for results to be conclusive.

Simulation models may in certain circumstances offer greater freedom in the modelling

of important aspects of system behaviour than other approaches, and they also enable

2.3. Techniques of Performance Analysis 63

models to be considered whose state space exceeds analytical tractability.

Simulation models allow the modeller in theory to representsystems at arbitrary levels

of detail; however, in practice there is a trade-off betweenthe realism of the model and

the time that it takes to produce a statistically significantrun. In simulation models, the

state space is generated during execution by the models themselves, which eliminates

the need to store it all at once, as is often required by the analytical approach. At the

same time, simulation models can sometimes be very time-consuming to create, since the

specification process involves writing and debugging potentially complex code. Simula-

tion models are also expensive to evaluate, because simulation runs require substantial

computational resources, and a number of them are usually necessary in order to obtain

relevant metrics [Hillston04].

Simulation models are complex computer programs, which canbe developed in any pro-

gramming language. Most often, a system model is constructed either in the form of a

computer program or as some kind of input to simulator software. The process of simu-

lation usually takes place in the following order:

1. Problem definition:Inputs and constraints on decision variables are identified; then,

the measure of system performance is defined, followed by thedevelopment of a

preliminary model structure that relates inputs and the measure of performance.

2. Data collection and analysis:A method used for the collection of data is defined,

taking into account the fact that regardless of the chosen method, the decision of

how much data to collect effects a trade-off between cost andaccuracy.

3. Development of simulation model:Sufficient knowledge of a system needs to be

acquired in order to develop an appropriate conceptual and logical model. This is

then followed by a more detailed simulation model.

4. Model validation, verification and calibration:Validation ensures that models cor-

respond to reality, and verification establishes whether their implementation corre-

sponds to the conceptual model. Thus, validation addressesthe question“Is the

right system being built?”, whereas verification is concerned with the question“Is

64 Chapter 2. Background

the system being built right?”Finally, calibration ensures that data generated by

the simulation matches actual observed data.

5. Input and output analysis:Discrete event simulation models typically have stochas-

tic components that replicate the probabilistic behaviourof systems. Accurate input

modelling requires a close match between an input model and the underlying prob-

abilistic mechanism of a system. Input data analysis modelsan element (e.g. an

arrival process or service times) in a discrete event simulation, given a data set that

was collected on the element of interest. Error checking is performed on input data,

and simulation experiments are carried out to derive conclusions from simulated

system behaviour.

6. Sensitivity estimation:Provides the means for modellers to understand which rela-

tionships are meaningful in complicated models.

7. Reporting:Ensures the provision of relevant simulation results to modellers.

2.3.4 Comparison of Techniques

Probabilistic Model Checking

The main purpose of probabilistic model checking is the verification of behavioural prop-

erties of system models. Systems are modelled as Markovian processes, which are the-

oretical abstractions that are solved in order to obtain performance results. Models are

generally solved with numerical analysis techniques, according to criteria defined in per-

formance queries. Queries are expressed in formulae of stochastic logics, and are able to

reason about state- and path-based constraints, as well as steady-state measures. Proba-

bilistic model checking is interested in obtainingyes / noanswers, which indicate whether

or not certain properties defined in performance queries aresatisfied by the model. Spe-

cialised model checkers support and automate the verification process. One of the main

limitations of probabilistic model checking is that very large models cannot be verified,

due to the state space explosion problem, and that quantitative performance measures

cannot be extracted from models.

2.4. Tool Support for Performance Analysis 65

Numerical Analysis

Numerical analysis applies mathematical solution techniques to Markovian and semi-

Markovian models in order to derive performance measures ofinterest. Similarly to prob-

abilistic model checking, systems are modelled and subsequently solved. Unlike proba-

bilistic model checking, numerical analysis is not restricted to verification-style analyses,

but is able to extract a wide range of performance metrics from models. Some assump-

tions about systems are required, especially with respect to the timing of events, but the

resulting models are relatively easy to solve, as they only rely on simple linear algebra

techniques. A number of dedicated analysis tools exist thatimplement numerical solution

techniques, and they can be used in many diverse applicationscenarios. On the down-

side, complex models with very large state spaces can often not be analysed by currently

available numerical algorithms due to the state space explosion problem that imposes

computational resource requirements that exceed availability.

Simulation

Simulation differs from the previous two approaches mainlyin that it abstracts systems

algorithmically, and observes results of runs to obtain estimates. Simulation models are

generally speaking less sensitive to the size of the state space and allow for less simplified

models to be analysed than other approaches, which makes simulation models widely ap-

plicable and very powerful. However, their design and execution can be time-consuming,

and the evaluation of the trustworthiness of results is required through the calculation of

confidence intervals.

2.4 Tool Support for Performance Analysis

2.4.1 Tools for Performance Analysis

Below, we present some of the more well-known tools for performance analysis. Some

of the tools are exclusively model checkers or quantitativeanalysers, while others are

66 Chapter 2. Background

equipped for a more versatile application by featuring support for both model checking

and quantitative analysis.

GreatSPN

GreatSPN, the Graphical Editor and Analyser for Timed and StochasticPetri Nets [Chi-

ola95], is a software package for the modelling, validationand performance evaluation of

distributed systems, represented by GSPNs and their coloured extension, stochastic well-

formed nets. The tool provides a framework for timed Petri net-based modelling, and

implements efficient algorithms to enable the analysis of complex large-scale systems.

GreatSPNconsists of a number of separate tools that collaborate in the construction and

analysis of Petri net models. Different analysis modules can be run on different machines

in a distributed environment, and the modular structure of the tool makes it receptive to

the addition of new analysis modules.GreatSPN’s main features are:

• Thegraphical user interface(see Figure 2.14) enables the graphical editing of Petri

net models and the representation of structural properties. It enables the defini-

tion of timing and stochastic specifications, parameters and performance measures,

provides menu-driven interaction with individual analysis modules, and presents

performance results in a graphical fashion. In addition, itfeatures an interactive

simulation and token game for Petri nets with priorities andinhibitor arcs.

• It allowsstructural propertiesfor nets with priorities and inhibitor arcs to be checked.

• It useslinear programmingfor the calculation of performance bounds of GSPNs.

• Its integratedMarkovian solversfor steady-state and transient performance evalua-

tion exploit efficient sparse matrix-based numerical techniques.

• It featuressimulation modulesfor interactive event-driven simulation. In coopera-

tion with the GUI, they provide graphical model animation, real-time updating of

performance measures and arbitrary rescheduling of events.

• The well-formed coloured net modulesupports the construction of coloured and

2.4. Tool Support for Performance Analysis 67

symbolic reachability graphs, and their conversion into lumped Markov chains. The

module supports steady-state and transient analysis, as well as simulation.

• Support for CSL model checking on GSPN modelsis realised by interfaces toPRISM

andETMCC [D’Aprile04]. Interfacing withPRISMis realised by a translation of

GSPNs into the state-basedPRISMinput language on the net level. CSL formulae

that express performance requirements are specified inPRISM’s graphical inter-

face. When interfacing withETMCC, model checking is realised by the translation

of GSPN models to CTMCs. A translator creates a CTMC from the GSPNmodel

in the format that is expected byETMCC, and users specify properties inETMCC.

Figure 2.14:GreatSPNuser interface

DNAmaca

DNAmaca[Knottenbelt96] is a Markov chain steady-state analyser that is able to solve

models with up toO(108) states. It features model and performance measure specifica-

tion in its input language, and provides support for the complete performance analysis

sequence by enabling model specification, state space generation, functional and steady

68 Chapter 2. Background

state analysis and the computation of performance measures. The tool consists of a num-

ber of components, whose interaction is also illustrated inFigure 2.15:

• Theparser moduletranslates high-level model descriptions into C++ classes.

• A state space generatoris formed for each model by linking the corresponding C++

class with common library routines. The state space generator uses a probabilis-

tic exploration algorithm, incorporating vanishing stateelimination, to generate all

reachable tangible states. The infinitesimal generator matrix, describing transition

rates between tangible states, is also generated.

• The functional analyserchecks the generator matrix for Markov chain irreducibil-

ity, which is a necessary precondition for a stationary distribution solution.

• Thesteady-state solverdetermines the stationary distribution by solving the set of

global balance equations for the model.

• Theperformance analyseris formed by linking user code with common library rou-

tines. It uses the steady-state solution in combination with state space information

to calculate performance measures.DNAmacais able to calculate state and count

measures. A state measure is used to determine the mean and variance of a real

expression that is defined at every state of a system. A count measure is used to

determine the mean rate at which a particular event occurs.

HYDRA

HYDRA[Dingle04a] facilitates the parallel and distributed analysis of very large Markov

models for passage time and transient state measures through the use of uniformisa-

tion [Grassman87,Reibman88].HYDRAbuilds onDNAmacatechnology, and in addition

supports parallelised performance measure computation using state-of-the-art hypergraph

partitioning algorithms [Trifunovíc04], which enable the efficient distribution of sparse

matrix-vector operations across a number of processors.

2.4. Tool Support for Performance Analysis 69

Figure 2.15:DNAmacamodule interaction

Figure 2.16 showsHYDRA’s architecture. At the beginning of the analysis process, a

high-level model is specified inDNAmaca’s model specification language. Following that,

HYDRA’s state generator produces the generator matrix of the underlying Markov chain,

together with a list of start and target states in the case of apassage time analysis run.

Uniformisation is then applied to transform the generator matrix, which is subsequently

partitioned using hypergraph algorithms. Distributed passage time and transient analysis

modules are then invoked to calculate desired performance metrics.

SMARTA

SMARTA[Dingle04a] is a parallel and distributed MPI-based semi-Markov response time

analyser that incorporatesDNAmacatechnology. It performs iterative numerical analyses

of passage times in very large semi-Markov models (including GSPNs), using Laplace

transform inversion and hypergraph partitioning techniques.

SMARTA’s tool architecture is shown in Figure 2.17. The passage time analysis process

70 Chapter 2. Background

Figure 2.16:HYDRAtool architecture

is similar to that ofHYDRA. Passage time results are provided in the form of text files,

which can be parsed by GNUplot for graph visualisation.

SHARPE

SHARPE, the Symbolic Hierarchical Automated Reliability and Performance Evaluator

[Hirel00], supports the construction and analysis of performance, reliability, availability

and performability models. Among others,SHARPEsupports Markov and semi-Markov

chains and GSPNs, and large models can be constructed elegantly by using hierarchical

model composition. It also provides flexible mechanisms forcombining results, so that

models can be used in hierarchical combinations.

SHARPEhas a graphical user interface, whose major components are amodel editor that

allows graphical model definitions, and an extensive collection of visualisation routines

to analyse output results. The interface also provides a high-level input format to the

SHARPEsyntax. Users are able to create Markov chain-based models by defining un-

derlying probability matrices. The GUI provides a way to plot results, and supports the

exporting of data into Excel spreadsheets. The interface was written in Java to make the

tool architecture-independent and portable.

2.4. Tool Support for Performance Analysis 71

Figure 2.17:SMARTAtool architecture

Möbius

Möbius [Clark01] is a tool for modelling the behaviour of complex computer and net-

work systems and for studying their reliability, availability and performance. Its funda-

mental assumption is that no modelling formalism can ever bethe single best approach

to constructing all different kinds of system models. Many domain-specific modelling

languages and techniques for analysing models, such as simulation, state space explo-

ration and analytical solution, are needed to study important system behaviour. Therefore,

Möbiusdefines a broad framework into which new modelling formalisms and model solu-

tion methods can be integrated to collaborate with the set ofalready supported formalisms

and techniques. This flexibility allows engineers and scientists to represent systems with

modelling languages that are appropriate to their specific problem domains, and accu-

rately and efficiently solve systems using solution techniques that are best suited to their

size and complexity. Time- and space-efficient discrete event simulation and numerical

72 Chapter 2. Background

solution, operating on Markov processes, are both supported. Möbius’ main features are:

• Support for multiple graphical and textual modelling languages. Model types in-

clude SPNs, CTMCs with extensions and SPAs. Models are constructed with the

appropriate level of detail and customised to the specific behaviour of the system of

interest.

• Ability to define customised system measuresin the form of detailed expressions,

based on nodes and activities in models. Such measures can relate to reliability,

availability, performance and security. Measurements canbe conducted at specific

time points, over periods of time, or when systems have reached steady state.

• Study of system behaviour under a variety of operating conditionsis possible, since

system functionality can be defined by model parameters. These can be observed

across a wide range of values in order to study system behaviour that could be

challenging to measure with prototypes.

• Distributed discrete event simulationenables the evaluation of custom measures us-

ing efficient simulation algorithms. Systems are executed repeatedly as simulation

runs, either locally or across remote clusters in a distributed manner, and statistical

results of measures are gathered.

• Numerical solution techniquesare used for obtaining exact solutions for many

classes of models. Advances in state space computation and generation techniques

enable the solution of models with tens of millions of states, which could previously

only be solved by simulation.

PRISM

PRISM[Kwiatkowska02] is a tool for the formal modelling and analysis of probabilistic

systems, defined by DTMCs, CTMCs, Markov decision processes, their cost- and reward-

based extensions, PEPA and SBML, the Systems Biology Markup Language. It enables

the automated analysis of a wide range of quantitative properties of such models. Sym-

bolic data structures and algorithms, based on Binary Decision Diagrams (BDDs) and

2.4. Tool Support for Performance Analysis 73

Multi-Terminal Binary Decision Diagrams (MTBDDs) are used for efficient model repre-

sentation, enabling the analysis of large-scale models. Inaddition,PRISMalso supports

discrete event simulation for generating approximate quantitative results.

Models are described using the state-basedPRISMlanguage, a probabilistic variant of the

Reactive Modules language. Its fundamental components are modules and variables, and

a model is composed of a number of modules that can interact with each other. A module

contains a number of local variables, and the values of thesevariables at any given time

constitute the state of the module. The global state of the model is determined by the local

state of all modules. The behaviour of each module is described by a set of commands,

which take the following form:

[] guard -> prob_1 : update_1 + ... + prob_n : update_n;

A guard is a predicate over all variables in the model. Updates describe transitions that

the module can make if the guard conditions are satisfied, andtransitions are performed

by updating variables in the affected module. Each update isalso associated with a prob-

ability or rate which is assigned to the corresponding transition. The following example

shows the description of a module:

module M1
x : [0..2] init 0;
[] x=0 -> 0.8:(x’=0) + 0.2:(x’=1);
[] x=1 & y!=2 -> (x’=2);
[] x=2 -> 0.5:(x’=2) + 0.5:(x’=0);

endmodule

PRISM’s property specification language (see Section 2.2.4) allows the expression of

PCTL and CSL formulae, as well as cost- and reward-based quantitative properties. The

tool takes as input a description of a system, from which it constructs a model and com-

putes the set of reachable states, and a property specification file that defines which prop-

erties need to be verified on the model. Model construction and reachability calculation

are implemented with space-efficient symbolic representations. Model checking is car-

ried out using a combination of reachability-based computation and the solution of linear

equation systems.

74 Chapter 2. Background

PRISMhas been extended to interface with Grid clusters and carry out computations on

them [Zhang05]. After the calculation of the probability matrix and initial vector for a

model, they are exported to files and transferred to remote systems. Following this, the

job submission component submits a model checking job to theremote system. Users

are able to monitor job progress through a dedicated monitoring component. Once a job

completes remotely, the result vector is transferred back.PRISMuses the Globus Toolkit

as the basis of its Grid middleware, which implements file transfer, job management and

monitoring. The Midlands eScience Cluster [MeSC] serves asPRISM’s underlying Grid

computational infrastructure. Figure 2.18 showsPRISM’s enhanced Grid-enabled archi-

tecture.

Figure 2.18: Grid-enabledPRISMtool architecture

PRISM’s high-level modules, such as the GUI and parser, are written in Java, while low-

level code and libraries were implemented in C++. The tool canbe run with a GUI or

from the command line.

Chapter 3

Performance Trees

Systems engineers are faced with high expectations to design and build systems that meet

end-user operational performance requirements. This is a particularly challenging task for

large-scale, high-throughput distributed systems, such as cluster computers and telecom-

munication networks for example. An established pipeline for determining whether a

given system meets its expected performance is to

(a) construct a mathematical model that replicates its behaviour, using some stochastic

modelling formalism (as presented in Section 2.1),

(b) express applicable performance-related queries in terms of requirements and mea-

sures, using a stochastic logic or other methodology (see Section 2.2), and

(c) apply specialised stochastic model checking or quantitative analysis software (see

Section 2.4) to resolve queries.

This chapter addresses step (b) of the process by introducing Performance Trees, a graphi-

cal formalism for the specification of performance requirement- and quantitative measure-

based queries on stochastic system models.

We begin by presenting the motivations for the development of the formalism and give

a brief overview of its main features. We then discuss the structure of Performance Tree

75

76 Chapter 3. Performance Trees

queries, and introduce the set of currently available operators. Once the fundamentals

have been established, we highlight the power of Performance Trees by elaborating on

their accessibility, expressiveness, extensibility and versatility. Finally, we provide exam-

ples of Performance Tree query specification to demonstratethe use and applicability of

the formalism.

3.1 A Novel Representation Formalism for Performance

Queries

3.1.1 Motivations

To study the behaviour and observe various interesting properties of real-life systems,

engineers construct stochastic models that represent systems mathematically, in a man-

ner that is amenable to analysis. To analyse system models, engineers need to construct

performance queries that specify performance properties and/or measures of interest.

As Section 2.2 has shown, a number of different approaches can be taken for the spec-

ification of performance queries. For a number of reasons, stochastic logics have been

among the most widely-used methods for performance requirement specification. Due to

their logical nature, they have well-defined syntactic structures and semantics, and their

formulae are able to express performance properties in a concise, rigorous and systemat-

ically verifiable manner. However, their use among system designers is rather limited in

practice, due to their inherent complexity and restricted expressive power. The concise-

ness and nested nature of stochastic logic formulae has a tendency to obscure questions

being asked. In addition, an expert understanding is often required to translate perfor-

mance requirements expressed in natural language into logical formulae. For these rea-

sons, stochastic logics are perceived as esoteric by many industrial users and have not

gained wide acceptance in such circles.

Modern Service Level Agreements (SLAs) include increasingly complex performance

properties. Hence, system designers need to establish already at design-time whether

3.1. A Novel Representation Formalism for Performance Queries 77

their systems are going to meet QoS requirements set out by SLAs. With current ap-

proaches to performance query specification, such as stochastic logics for example, many

performance properties of interest cannot be addressed dueto limitations in expressive-

ness. Such properties often relate to quantitative performance measures that need to be

extracted from system models directly.

Traditionally, it has only been possible to reason about performance measures with tool-

oriented and graphical query specification languages. Toollanguages were developed for

individual quantitative analysers, and are therefore veryspecific and limited in terms of

their expressiveness and application. Generally, they arenot exclusively query specifica-

tion languages, but ones that also incorporate model specification capabilities. The same

applies to most graphical languages, which generally only annotate system specifications

with performance information.

In summary, no single formalism has been available so far that would enable the concise

and accessible expression of performance requirementsand performance measures in a

single query. As such, the combined expressive power of current approaches to perfor-

mance query specification is not sufficient for many of the more sophisticated analysis

scenarios.

3.1.2 Overview

To cater for these requirements and to overcome the aforementioned shortcomings of cur-

rent approaches to query specification, we have developedPerformance Trees[Suto06a,

Suto06b, Suto07], a graphical formalism for compositionalperformance query specifica-

tion that enables the reasoning about performance requirements and the direct extraction

of quantitative performance measures. Performance Trees support elegant query composi-

tion, are easily visualised as hierarchical tree structures, and provide a general framework

that allows for the expression of a wide range of performanceproperties in a uniform

manner. In addition, they are applicable in the context of several modelling formalisms,

including SPNs, QNs and SPAs, due to the use of an abstract state specification mech-

anism. Moreover, Performance Trees are extensible, eitherby a parameterised macro

78 Chapter 3. Performance Trees

mechanism that uses existing operators to construct user-defined performance concepts,

or by the incorporation of new operators. Hence, Performance Trees represent an acces-

sible, powerful and versatile alternative for performancequery specification.

Performance Tree queries are constructed from a rich selection of operators, visualised

graphically as tree nodes, which represent performance concepts and properties that are

familiar to users with an engineering background. The core set of operators can be ex-

tended dynamically to include support for additional user-defined concepts.

Currently, Performance Trees are able to reason about steady-state and passage time prop-

erties by specifying applicable probability distributions and densities. Queries are able to

address properties that are derived from these distributions and densities, such as mo-

ments, percentiles and convolutions. In addition, probabilities with which passages take

place in a given amount of time and the transient probabilityof systems being in a set of

states at a given point in time can also be expressed. Performance Trees allow the rea-

soning about mean rates of occurrence of system actions, about states that have certain

steady state probabilities, and about states that a system can occupy at a given point in

time with a certain probability. In addition to performance-related concepts, it is also pos-

sible to specify Boolean and arithmetic operations and comparisons, as well as macros,

which condense possibly very complex user-defined performance properties into single

Performance Tree nodes.

The power of Performance Trees is provided without sacrificing computational tractabil-

ity, since all operators either impose a trivial computational burden or are backed up by

known numerical algorithms that are amenable to scalable parallel implementation.

3.1.3 Query Specification with Performance Trees

While Performance Tree queries can also be expressed in a textual form, the formalism

was primarily designed for graphical user-level specification. A visualised instance of a

Performance Tree query consists of a set of nodes that form a hierarchical tree structure

when connected by arcs, as shown in Figure 3.1.

3.1. A Novel Representation Formalism for Performance Queries 79

Figure 3.1: An example Performance Tree query

Nodes in a Performance Tree query can be of two kinds: operation or value nodes.Op-

eration nodesrepresent performance concepts and behave like functions,taking one or

more child nodes as arguments and returning a result. Child nodes can be other operation

nodes that return a value of an appropriate type orvalue nodes, which usually represent

states, functions on states, actions, numerical values, numerical ranges and Boolean val-

ues. Complex queries can be easily constructed from basic concepts by linking nodes

together and forming query trees.

Arcsconnect nodes and represent hierarchical orderings between them. Arcs emanating

from a node are referred to as that node’s ‘outgoing arcs’, and by connecting a node’s

outgoing arc to another node, a parent-child relationship is formed. In general, only oper-

ation nodes have outgoing arcs, since only they require input parameters to be supplied,

which are represented by the nodes that connect to them. Suchinput parameters can

either be required or optional, which is determined by the operation node that they are

assigned to. Since every performance concept or operation represented by an operation

node requires an input to operate on, operation nodes alwayshave at least one outgoing

arc. Nodes that are connected to operation nodes through their outgoing arcs are called

‘child nodes’. Value nodes (with the exception of the Range node, which is a special case)

have no outgoing arcs. Arcs are annotated with labels, whichrepresent roles that child

nodes have for their parent nodes.

The top node of a Performance Tree query represents the overall result of the query. The

result’s type is determined by the output type of the top node’s child node. Table 3.1 pro-

80 Chapter 3. Performance Trees

vides an overview of the currently available Performance Tree operators, further details

of which will be discussed in Chapter 4.

3.2 The Power of Performance Trees

The power of Performance Trees can be summarised by the following four attributes:

3.2.1 Accessibility

One of the main motivations for the development of Performance Trees was the need

for an accessible performance query specification mechanism. Accessibility implies intu-

itive ease of use that enables users to specify performance properties in a straightforward

manner.

Due to the area of application of Performance Trees, a certain amount of statistical and

engineering background is necessary for the understandingand use of the formalism;

however, such a background is normally characteristic of the target audience of system

designers and engineers. Performance Tree queries are constructed from a set of operators

that represent well-known performance concepts, and the abstract resemblance of oper-

ation nodes to functions in a programming language and valuenodes to their arguments

contributes to making the use of Performance Tree operatorsmore natural.

Performance Trees ensure ease of use through their graphical nature, which allows for

convenient visual composition of performance queries. Their hierarchical tree structure

provides a pleasant alternative to the obfuscating nature of stochastic logic formulae, and

simplifies the interpretation of queries. The ability to represent Performance Tree queries

in natural language is an additional aid to the visual construction and intuitive verifica-

tion of performance queries. Section 5.1 introduces a natural language-based translation

mechanism that is featured in the tool supporting Performance Tree-based query specifi-

cation. It provides users with continuous feedback on the natural language equivalent of

queries that are in the process of construction. Due to the structure of Performance Tree

3.2. The Power of Performance Trees 81

Textual GraphicalDescription

? The result of a performance query.

Mult Concurrent evaluation of multiple independent queries.

PTD Passage time density, calculated from a given set of start and target states.

Dist Passage time distribution obtained from a passage time density.

Perctl Percentile of a passage time density or distribution.

Conv Convolution of two passage time densities.

ProbInInterval Probability with which a passage takes place in a certain amount of time.

ProbInStates Transient probability of a system being in a given set of states at a given point
in time.

Moment Raw moment of a passage time density or distribution.

FR Mean occurrence of an action (mean firing rate of a transition).

SS:P Probability mass function yielding the steady-state probability of each possi-
ble value taken on by a StateFunc when evaluated over a given set of states.

SS:S Set of states that have a certain steady-state probability.

StatesAtTime Set of states that the system can occupy at a given time.

InInterval Boolean operator that determines whether a numerical valueis within an in-
terval.

Macro User-defined performance concept composed of other operators.

⊆ Boolean operator that determines whether a set is included in or corresponds
to another set.

∨/∧ Boolean disjunction or conjunction of two logical expressions.

¬ Boolean negation of a logical expression.

⊲⊳ Arithmetic comparison of two numerical values.

⊕ Arithmetic operation on two numerical values.

Num A real number.

Range A range of real numbers, defined by a lower and an upper bound.

Bool A Boolean value.

States A set of system states.

StateFunc A real-valued function on a set of states.

Actions A set of system actions.

Table 3.1: Description of Performance Tree operators

82 Chapter 3. Performance Trees

queries, it is also relatively simple to translate a performance query expressed in natural

language into Performance Tree form. Section 5.1 provides details of a query construc-

tion mechanism supported by the tool, which allows users to define queries step-by-step

in natural language, and construct the equivalent Performance Tree queries automatically.

3.2.2 Expressiveness

Perhaps the most distinctive advantage that Performance Trees have over other approaches

to performance query specification is their ability to express both performance require-

ments and performance measures in a single query. Performance Trees are able to reason

about a wide range of performance concepts from the realms ofproperty verification and

measure extraction. At present, no other formalism is able to offer similar levels of ex-

pressiveness.

As summarised in Table 3.1, Performance Trees are able to express a wide range of

performance-related concepts and operations in their queries. Modellers are able to aggre-

gate multiple independent query trees into single queries to enable parallelised evaluation

that results in a significantly reduced overall computationtime when compared to indi-

vidual sequential query evaluations.

Performance Tree queries allow modellers to reason about response times by extracting

full passage time densities and corresponding distributions from system models. Beyond

the information that they already provide, passage time densities and distributions can be

used to calculate percentiles, convolutions and raw moments. Operators are available that

address the probabilities with which passages occur in given amounts of time, the proba-

bilities with which systems are in sets of states at certain points in time, and the states that

systems can be in at given points in time with given probabilities. Steady-state probability

distributions for sets of states can be extracted from system models, and it is also possible

to reason about system states that satisfy certain steady-state probability constraints. In

addition, mean rates of occurrence of actions (mean firing rates of transitions in a Petri

net context) can also be extracted from system models. Standard arithmetic operations

and comparisons can be performed on operators that represent numerical values. Boolean

3.2. The Power of Performance Trees 83

operations, such as conjunctions, disjunctions and negations, can be applied to nodes that

represent Boolean values, while membership operators checkwhether numerical values

are contained within intervals, and whether sets are included in or correspond to other

sets. Together, these operators ensure a high degree of sophistication in terms of reason-

ing ability provided to modellers.

Every performance measure query whose result is a numericalvalue can be transformed

into a performance requirement query by inserting a relative comparison operator between

the Result node and its sub-node. This has the effect of changing the return type of the

query from a numerical to a Boolean value. To visualise this concept, consider the perfor-

mance measure query of Figure 3.2, which considers the expected amount of time taken

for some passage to occur. Figure 3.3 shows how this is converted into a performance

requirement query by using theInIntervaloperator.

Figure 3.2: A performance measure query

Performance Trees are able to replicate most of the expressiveness of the stochastic logics

CSL and eCSL through their ability to reason about model states. Paths in CSL can

be represented as passages in Performance Trees by specifying start, target and excluded

states. Steady-state measures can be expressed with standard Performance Tree operators.

Thus, Performance Trees are able to cater for the needs of most stochastic logic-oriented

users, and offer in addition significantly broader expressiveness through the availability

of a wide range of miscellaneous operators.

84 Chapter 3. Performance Trees

Figure 3.3: The performance measure query of Figure 3.2 converted into a performance
requirement query

3.2.3 Extensibility

The Performance Tree formalism can be extended in two ways: either through the use of

a macro mechanism or by the definition of new operators.

A Performance Tree macro is a shorthand representation of a user-defined performance

concept. Since certain performance properties that systemmodellers may wish to express

are not supported by the standard set of operators, Performance Trees offer the means to

define such properties using a combination of standard operators. The formalism includes

a special Macro operator that represents user-defined macros. In this way, performance

properties that are defined by complex hierarchical tree structures can be represented by a

single node in a Performance Tree query. Since macros represent performance concepts,

they can be parameterised according to the needs of different analysis scenarios. The

PIPE2 tool stores macro definitions alongside model descriptions, which allows Macro

nodes to be reused multiple times within the same query, or even among multiple queries

on the same model. Figure 3.4 shows an example macro definition, which represents the

concept of “Coefficient of Variation”.

The Coefficient of Variation is defined as the ratio of the standard deviation to the mean.

3.2. The Power of Performance Trees 85

Figure 3.4: An example of Performance Tree macro expansion,used for the calculation
of the Coefficient of Variation

The X node, labelled “density”, is the argument that needs tobe supplied to the macro.

This needs to be a passage time density, from which the standard deviation and the mean

can be calculated. This argument is substituted in place of the argument nodes in the

macro during evaluation. Figure 3.5 illustrates the usage of the macro in a performance

query.

Figure 3.5: Usage of the Coefficient of Variation macro in a performance query

Another way of extending the expressiveness of PerformanceTrees is to incorporate op-

erators representing new concepts into the set of standard operators. The formalism can

be extended in this way without any restrictions; however, for analysis of performance

queries that use such operators to be successful, tool-based evaluation support needs to be

integrated into the supporting Performance Tree analysis environment (see Section 5.2).

86 Chapter 3. Performance Trees

3.2.4 Versatility

Abstract State and Action Specification

Performance Tree queries are not restricted to a single underlying modelling formalism,

unlike a number of other query specification languages, suchas stochastic logics for in-

stance. Modelling formalisms reason about system states and actions differently. To

ensure versatility, Performance Trees feature an abstractstate specification mechanism

that supports the reasoning about system states in performance queries throughstate la-

bels. A state label is a user-defined string that identifies sets ofsystem states through a set

of associated constraints on the underlying system that areappropriate to the modelling

formalism used.

Figure 3.6: Producer-Consumer System

To visualise this concept, consider the States nodes in Figure 3.5 that have state labels

‘start’ and‘target’. For the GSPN model of a Producer-Consumer System in Figure 3.6,

the modeller could define the state labels for the start and target states with the following

constraints:

‘start’ := (#(producers) == 4) ∧ (#(consumers) == 2)

‘target’ := (#(products) == 3)

For GSPNs, a set of states can be specified using conjunctionsand disjunctions of con-

structs of the form(#(placename) ⊲⊳ x), where#(placename) represents the number of

3.2. The Power of Performance Trees 87

tokens on place ‘placename’ and⊲⊳ ∈ {<,≤,==,≥, >}. Hence, in the above state label

definitions, the set of system states in which there are four tokens on place ‘producers’

and two tokens on place ‘consumers’ is identified by the statelabel ‘start’ , while the set

of states in which there are three tokens on place ‘products’is identified by the state label

‘target’.

System actions are identified byaction labels. The difference between state and action

labels is that action labels correspond to the actual names of actions (or transitions in the

context of SPNs) of the underlying system models. Hence, they do not use constraints for

the unique identification of actions. Figure 3.7 shows how the mean rate of occurrence of

action ‘produce’ is represented. The Actions node identifies the transition in the model

through the action label‘produce’.

Figure 3.7: Action label example

This kind of state and action selection can be adapted to different modelling formalisms

by changing constraints appropriately. This is presented in the next section in the context

of SPAs.

Application to Stochastic Process Algebras

As an example of how Performance Trees can be used with modelling formalisms other

than GSPNs, we present their application on a system model defined in the stochastic

process algebra PEPA (see Section 2.1.3). Both GSPNs and PEPAhave the ability to

accurately reflect the behaviour of real life systems, with the slight difference that GSPNs

are state-based, while PEPA is action-oriented. GSPNs are very good at representing the

evolution of systems, while PEPA is useful when systems needto be constructed from

88 Chapter 3. Performance Trees

a set of sub-components that interact in some way. A GSPN is a visual representation,

while PEPA is not.

A number of Performance Tree operators reference the underlying system model directly

through their sub-nodes, which can represent sets of statesor individual actions. In or-

der for Performance Tree queries to be applicable to PEPA models, they need to be able

to reference states and actions unambiguously. States of PEPA models can be identi-

fied through state vectors whose elements are the counts of currently enabled compo-

nents. Since PEPA is action-oriented, referencing actionsin Performance Tree queries is

straightforward. They can be addressed by referring to model definitions directly.

To provide an example, consider the Producer-Consumer System model of Figure 3.6.

Let us translate this GSPN into PEPA by making PEPA components correspond to places

of the GSPN:

producers
def
= (produce, r1).produced

produced
def
= (pause producer, r2).producer idle

producer idle
def
= (reset producer, r3).producers

products0
def
= (produce, r4).products1

productsn
def
= (produce, r4).productsn+1

productsn
def
= (consume, r5).productsn−1

consumers
def
= (consume, r6).consumed

consumed
def
= (pause consumer, r7).consumer idle

consumer idle
def
= (reset consumer, r8).consumers

The system equation is given by:

(producers[4] || consumers[2]) ��
{produce,consume}

products0

We can now identify a set of states uniquely by defining a statevector that contains all

3.2. The Power of Performance Trees 89

enabled components of the model, as shown in the example below:

(producers, producers, produced, producer idle, consumers, consumer idle, products1)

This state vector identifies a set of states in which twoproducers, oneproduced, one

producer idle, oneconsumers, oneconsumer idleand oneproducts1 components are en-

abled. Since potentially there may be a large number of enabled components in a PEPA

model, it is possible to use a more convenient alternative notation for specifying sets of

states for PEPA models. In line with the approach presented in [Hillston05], we aggre-

gate the model and represent its states in numerical vector form. Such a vector is of length

equal to that of the state vector, i.e. the total number of components of the system, and has

integer elements, each of which indicates the number of a particular enabled component.

Given that the state vector(producers, produced, producer idle,. . .) contains all compo-

nents that can possibly be enabled, the corresponding numerical vector for the example

above would be(2, 1, 1, . . .).

Support for Customer Tracking

The dynamic behaviour of GSPNs is characterised by the creation and destruction of to-

kens representing customers and resources in systems. Tokens are indistinguishable from

one another, which implies that it is often not possible to express performance properties

that reason about individual customers. However, it is important to be able to express

such properties, since questions of the type“Is the probability of a customer being served

within 1 minute greater than 95%?”often arise in QoS requirements.

For GSPN-based system analyses, Performance Trees offer the ability to reason about

tagged customers [Dingle08a] by using an approach derived from the QN tagged tokens

technique of [Mitrani98]. To use tagged tokens in GSPNs, certain arcs of the GSPN need

to be tagged to indicate the permissible flow of tagged tokens. In a GSPN, there can

only ever be a single tagged token, which represents the individual customer that is being

observed. A GSPN with a tagged token contains two types of arcs: regular and tagged

arcs. Tagged tokens may only flow along tagged arcs, whereas normal tokens can be

90 Chapter 3. Performance Trees

transported along both regular and tagged arcs. Additionalstructural restrictions require

that tagged arcs only have weights of 1, and that any transition that has a tagged input arc

should also have a tagged output arc in order to preserve the tagged token. To incorporate

into performance queries properties that relate to the position of the tagged token, the

(tag@(placename))construct is used in the definition of state labels to identify all system

states in which the tagged token is located at place ‘placename’. Analysis tools forming

part of the evaluation environment (see Section 5.2) for Performance Trees incorporate

tagged token-based analysis capabilities.

Figure 3.8: Tagged customer query

For our running example, consider a simple passage time density query of the form of

Figure 3.8. Here, we wish to express the query“In the Producer-Consumer System, what

is the density of time taken to reach a system state where a tagged producer is idle and

there are no consumers available, provided that the system has started in a state where

the tagged producer was available, along with three other producers, as well as two

consumers?” This query necessitates the ability to reason about an individual customer.

Hence, we define appropriate start and target states for the passage as follows:

‘start’ := (tag@(producers))∧ (#(producers) = 4) ∧ (#(consumers) = 2)

‘target’ := (tag@(producer idle))∧ (#(consumers) = 0)

Section 4.3 provides a detailed explanation of the abstractstate specification mechanism

during the discussion of the States and StateFunc operators. See [Dingle08a] for a full

description of the semantics for and analysis of tagged tokens in GSPN models.

Customer tracking in PEPA is realised by adding location-awareness to stochastic probe

specifications [Argent-Katwala07a], which provides the ability to identify individual model

3.3. Performance Trees in Action 91

components within PEPA models for selective instrumentation. Details of this technique

are given in [Argent-Katwala07b].

3.3 Performance Trees in Action

To demonstrate the applicability of Performance Trees in practice, let us consider an on-

line transaction system that serves as a company’s electronic retailing platform for selling

products through their corporate web site. A GSPN model of this system is shown in

Figure 3.9 and operates as follows.

Customers arrive at the web site with a certain rate, and proceed to browse the online

product catalogue. At any point, they can decide to leave theweb site and navigate to an

unrelated page on the Web. While browsing the catalogue, customers can select items or

jump straight to the checkout page, in case they are returning customers who have already

selected an item previously. Once an item has been selected,customers can either proceed

to the checkout or continue to browse the catalogue.

At the checkout, they are either required to register if theyare visiting the web site for the

first time, or to log in if they happen to be returning customers. Alternatively, they can

decide to return to the product catalogue to search for more items before proceeding to

the placement of an order. Once customers have registered orlogged in, they are asked

to provide the address to which the order is to be delivered, as well as the billing details.

Once an order has been confirmed, customers are taken back to the product catalogue.

Below, we demonstrate the expressive power of Performance Trees by posing a number

of performance queries in natural language and expressing them as Performance Trees.

92 Chapter 3. Performance Trees

Figure 3.9: An Online Transaction System

3.3. Performance Trees in Action 93

NL Query: “From the moment that a customer has entered the web site for the first

time, what is the distribution of time required for them to select an item

from the product catalogue?”

PT Query: Shown in Figure 3.10, with relevant state labels defined as:

‘start’ := (tag@(site entered))

‘target’ := (tag@(item selected))

‘excluded’ := (tag@(transaction aborted))

Figure 3.10: A query addressing a passage time distribution

NL Query: “What is the probability of some product having been orderedwithin 20

minutes after 4 customers entering the site at the same time,and none

having left in the meantime?”

PT Query: Shown in Figure 3.11, with relevant state labels defined as:

‘start’ := (#(site entered) == 4)∧ (#(order confirmed) == 0)

‘target’ := (#(order confirmed)≥ 1)

‘excluded’ := (#(transaction aborted)≥ 1)

94 Chapter 3. Performance Trees

Figure 3.11: A query addressing the probability of a passageoccurring within a time
interval

NL Query: “Is the 97th percentile of the convolution of two passage time densities

less than 4.71 minutes, where the first passage is considered from the

point when a customer has entered the web site to when they are at the

checkout, and the second passage is considered from the moment that a

user has provided their address to when they have confirmed theorder,

assuming that all throughout the user has not aborted the transaction?”

PT Query: Shown in Figure 3.12, with relevant state labels defined as:

‘start1’ := (tag@(site entered))

‘target1’ := (tag@(at checkout))

‘start2’ := (tag@(address provided))

‘target2’ := (tag@(order confirmed))

‘excluded’ := (tag@(transaction aborted))

NL Query: “Is the probability of at least 2 customers being at the checkout at time

instant 14 minutes greater than 74%, provided that 4 customers have

entered the site at time 0?”

PT Query: Shown in Figure 3.13, with relevant state labels defined as:

‘start’ := (#(site entered) == 4)

‘target’ := (#(at checkout)≥ 2)

3.3. Performance Trees in Action 95

Figure 3.12: A query addressing the percentile of a convolution of two passage time
densities

Figure 3.13: A query addressing the transient probability of a system being in a given
state at a given time

NL Query: “Are the states that the system can be in at time instant 36 minutes with

at least 80% probability contained within the set of states inwhich there

are no customers browsing other web sites?”

PT Query: Shown in Figure 3.14, with relevant state labels defined as:

‘all customers on web site’ := (#(not at site) == 0)

96 Chapter 3. Performance Trees

Figure 3.14: A query addressing the states that the system can occupy at a given time with
some probability

NL Query: “What is the average rate of customers entering the site; whatis the

steady-state probability distribution of the number of customers at the

checkout; and which states of the system have a steady-state probability

greater than 0.2, given that the system has started in a statein which 4

customers were browsing other web sites at time 0?”

PT Query: Shown in Figure 3.15

Figure 3.15: A query aggregating multiple independent queries that address the average
occurrence of an action, the steady-state probability of the system, and states that conform
to a certain steady state probability requirement

This query makes use of the Mult operator to combine multipleindependent performance

3.3. Performance Trees in Action 97

queries into one. The notation ‘#(at checkout)’ annotatingthe StateFunc node represents

the number of tokens on place ‘at checkout’ in the context of the GSPN model of the

Online Transaction System. Details of its use are given along with the explanation of the

semantics of the StateFunc node in Section 4.3.

To demonstrate that Performance Trees are also able to specify basic arithmetic queries,

consider the following:

NL Query: “What is 5 minus 3 multiplied by 6 and raised to the power of 2?”

PT Query: Shown in Figure 3.16

Figure 3.16: A query addressing basic arithmetic operations

Chapter 4

Formal Characterisation of

Performance Trees

In this chapter, we present a formal characterisation of thePerformance Tree formalism.

We describe its syntax, which defines the valid use of Performance Tree operators, and

provide a textual representation framework that serves as an alternative to graphical query

specification. We discuss the typing of Performance Tree operators, used to verify the type

safety of node assignments within queries, and detail quantitative semantics, which define

the mathematical interpretation of operators. This chapter does not aim at suggesting or

describing specific solution strategies or algorithms for implementers, but rather serves

the purpose of rigorously clarifying the semantics of Performance Tree operators in the

context of (semi-)Markovian modelling formalisms. It builds on material presented in

[Suto06b] and [Suto07].

4.1 Syntax

The syntax describes the nature of Performance Tree value nodes and defines possible

sub-node types for Performance Tree operators, thereby establishing rules according to

which performance queries are constructed. In the textual notation, individual sub-nodes

98

4.1. Syntax 99

of operators are separated by commas, multiple instances ofsub-nodes are represented by

the ’n’ superscript notation, and choice is indicated by ’| ’.

4.1.1 Value Node Syntax

TheNum node represents a real value. Depending on which operation node is its parent

within a query, the value it represents is interpreted differently. It can represent a real

number, a percentile, the rank of a moment, a probability or atime value.

TheRangenode represents a range of real numbers. It is an exception tothe convention

of value nodes not having sub-nodes, as it requires two sub-nodes to define the range that

it represents. Nevertheless, it is considered a value node,due to the fact that it is simply a

basic type consisting of a pair of real numbers.

Range := (Num)2

TheBool node represents a Boolean value, i.e.trueor false.

The Statesnode represents a set of states. State labels are used for identifying sets of

states of the model. Section 4.3 also gives details on the state labelling mechanism.

TheStateFuncnode represents a user-defined real-valued function on a setof states. As

a sub-node of the SS:P operator, it is used to define criteria based on which a steady-state

probability distribution is to be calculated.

TheActions node represents a set of actions. As mentioned earlier, action labels are used

for the identification of individual actions within the model. Details of the action labelling

mechanism are given in Section 4.3.

100 Chapter 4. Formal Characterisation of Performance Trees

4.1.2 Operation Node Syntax

The? operator represents the result of a performance query, and is the topmost node of

every query tree. If its sub-node is an operation or value node, it represents whatever the

sub-node evaluates to. However, in case its sub-node is a Mult node, it represents the set

of values to which the Mult node’s sub-nodes evaluate.

? := Mult | PTD | Dist | Perctl | Conv | ProbInInterval| ProbInStates

| Moment | FR | SS:P | SS:S | StatesAtTime| InInterval | Macro

| ⊆ | ∨/∧ | ¬ | ⊲⊳ | ⊕ | Num | Range | Actions | States| Bool

TheMult operator allows multiple independent queries to be defined simultaneously and

combined into a single performance query. It represents theset of results that these queries

evaluate to individually. The operator requires at least two, but can have arbitrarily many,

sub-nodes.

Mult := (PTD | Dist | Perctl | Conv | ProbInInterval | ProbInStates|

Moment | FR | SS:P | SS:S | StatesAtTime| InInterval | Macro

| ⊆ | ∨/∧ | ¬ | ⊲⊳ | ⊕ | Num | Range | Actions | States |

Bool)2..∗

The PTD operator represents the density of time that elapses duringa passage between

two sets of states. To specify the passage, the set of start and the set of target states need

to be provided as sub-nodes. Optionally, a further sub-nodemay be provided to represent

the set of states that are excluded from the passage.

PTD := (States| SS:S | StatesAtTime)2..3

The Dist operator represents the cumulative distribution functioncorresponding to an

underlying density function. The distribution is obtainedfrom the passage time density

or convolution of two passage time densities (which in termsof its type is also a density)

that is represented by the sub-node.

Dist := PTD | Conv

4.1. Syntax 101

ThePerctl operator represents a percentile of a passage time density or distribution. The

operator requires two sub-nodes: one sub-node specifying which percentile is to be cal-

culated, and the other sub-node representing a density, distribution or convolution of two

passage time densities.

Perctl := Num, (PTD | Conv | Dist)

The Conv operator represents the convolution of two independent probability density

functions into a single density function. The operator has two sub-nodes, which can

either be passage time densities or convolutions themselves.

Conv := (PTD, PTD) | (Conv, PTD) | (Conv, Conv)

The ProbInInterval operator represents the probability with which a passage iscom-

pleted in a certain amount of time. The operator has two sub-nodes: a passage time

density or a convolution, which defines the passage, and a time range, which defines the

time interval during which the passage is to be completed.

ProbInInterval := (PTD | Conv), Range

TheProbInStatesoperator represents the probability of a system being in a set of states

at a particular instant in time, given that it has started in some initial state at time 0. The

operator has two sub-nodes, the first of which represents theset of states that the system

occupies at the observation instant, and the second of whichrepresents the time instant of

interest.

ProbInStates := (States| SS:S | StatesAtTime), Num

The Moment operator represents a raw moment of a passage time density. Amoment

generating function can provide us with multiple metrics, since we can derive any number

of central moments, which can provide valuable insight intothe nature of the passage.

The operator has two sub-nodes. The first sub-node specifies which moment is to be

102 Chapter 4. Formal Characterisation of Performance Trees

calculated (e.g. the3rd moment), while the second sub-node specifies the passage time

density, distribution or convolution that the moment is calculated from.

Moment := Num, (PTD | Conv | Dist | SS:P)

TheFR operator represents the average rate of occurrence of a set of actions. The opera-

tor’s sub-node specifies the actions of interest.

FR := Actions

TheSS:Poperator represents a probability mass function yielding the steady-state prob-

ability of each possible value taken on by a StateFunc when evaluated over a given set of

states. The operator has one required and one optional sub-node. The required sub-node

represents a state function, which imposes constraints on the calculation of the steady-

state distribution. The optional argument represents the set of states, over which the

distribution is to be calculated. If this sub-node is not provided, the calculation defaults

to the entire state space of the model.

SS:P := StateFunc, (States| SS:S | StatesAtTime)

TheSS:Soperator represents the set of states whose steady-state probability lies within a

certain range. The operator has a single sub-node, which defines the acceptable range for

the steady-state probability.

SS:S := Range

The StatesAtTime operator represents the set of states that the system can occupy at a

given time instant with probability lying within a certain range, given that it has started

in an initial state at time 0. The operator has two sub-nodes:one representing the time

instant of interest and one representing the probability range of relevance.

StatesAtTime := Num, Range

4.1. Syntax 103

The InInterval operator represents the Boolean value that determines whether a numeri-

cal value is within a certain interval. It has two sub-nodes:one representing the numerical

value that is to be tested, and one representing the numerical range that is to be tested

against.

InInterval := (Perctl | ProbInInterval | ProbInStates | Moment | FR | ⊕),

Range

TheMacro operator represents a user-defined performance concept that is defined by the

composition of basic Performance Tree operators. A Macro node has as many arguments

as the macro that it represents. Whenever Macro nodes represent concepts that are appro-

priate as arguments to other operators, they can be used as sub-nodes.

Macro := (PTD | Dist | Perctl | Conv | ProbInInterval | ProbInStates|

Moment | FR | SS:P | SS:S | StatesAtTime| InInterval | Macro

| ⊆ | ∨/∧ | ¬ | ⊲⊳ | ⊕ | Num | Range | Actions | States |

Bool)0..∗

The ⊆ operator represents a Boolean value that expresses whether aparticular set of

states is included in or corresponds to another set of states. Therefore, it has two sub-

nodes, both of which represent sets of states.

⊆ := (States| SS:S | StatesAtTime)2

The ∨/∧ operator represents a Boolean disjunction or conjunction operation. It has two

sub-nodes, both of which represent Boolean values.

∨/∧ := (InInterval | ⊆ | ∨/∧ | ¬ | ⊲⊳ | Bool)2

The ¬ operator represents a Boolean negation. It has a single sub-node, which represents

the Boolean value that is to be negated.

¬ := InInterval | ⊆ | ∨/∧ | ¬ | ⊲⊳ | Bool

104 Chapter 4. Formal Characterisation of Performance Trees

The ⊲⊳ operator represents an arithmetic comparison.⊲⊳ ∈ {<,≤,==,≥, >}. The

operator has two sub-nodes, both of which represent the numerical values that are to be

compared.

⊲⊳ := (Perctl | ProbInInterval | ProbInStates| Moment | FR | ⊕ |

Num)2

The ⊕ operator represents an arithmetic operation.⊕ ∈ {+,−, ∗, /,̂ }. Therefore, both

sub-nodes of the operator represent numerical values.

⊕ := (Perctl | ProbInInterval | ProbInStates| Moment | FR | ⊕ |

Num)2

4.1.3 Textual Representation

Performance Tree queries are mainly specified graphically,but they can also be repre-

sented in a textual manner. A textual representation can be practical when writing out

queries, in which case graphical query descriptions may be impractical. Performance

Tree nodes are represented textually as tuples of the form:

(role, node(. . .))

wherenodeis the textual form of the Performance Tree node being represented, as spec-

ified in Table 3.1. Every node has an associated role, which isrepresented by the string

role. Roles are used by operator nodes to classify sub-nodes. If, for example, a PTD node

has multiple sub-nodes of type States, a distinction needs to be made regarding the sub-

node representing the set of start states, and the node representing the set of target states.

In the graphical representation, the label of an arc connecting two nodes indicates the role

that the sub-node has from its parent node’s point of view. The only operator node that

does not have a role is the ? node.

In the case of operation nodes, hierarchies apparent in the graphical representation are

translated into textual form by using the above notation andspecifying sub-nodes within

enclosing brackets of a node:

4.2. Typing 105

(role, opnode((role, subnode(. . .)),. . .))

For value nodes, the textual form is as follows:

(role, valnode(value))

wherevalue represents the numerical or Boolean value, state or action label, or state

function that is represented by the value node. The Range node, however, is an exception.

Even though it is considered a value node, it requires sub-nodes to define the numerical

range. Therefore, it is represented in the same way as an operation node.

To visualise this concept, consider the Performance Tree query of Figure 3.15. It can be

expressed in textual form as:

?(query, Mult(

(query1, FR((action, Actions(enter site)))),

(query2, SS:P((state function, StateFunc(#(at checkout))))),

(query3, SS:S((prob. range, Range((from, Num(0.87)),

(to, Num(1.0))))))))

4.2 Typing

Every Performance Tree node within a query has a type, and thestructure of Performance

Tree queries is dependent on type compatibility between nodes. It is therefore important

to have formal typing defining the rules according to which queries can be constructed.

The following domains are used for the description of Performance Tree operators:

S : the state space (set of all states) of a model

A : the set of actions of a model

AP : the set of atomic propositions

B = {true, false}

106 Chapter 4. Formal Characterisation of Performance Trees

We consider the following basic types for Performance Trees:

num : x ∈ R, i.e. a real value

range : [x, y] ∈ R×R, i.e. a range of real values

bool : b ∈ B, i.e. a Boolean value

actions : {a : A}, i.e. a set of actions

states : {s : S}, i.e. a set of states

statefunc : (AP → R), i.e. a real-valued function on a set of states identified bya

state label

probfunc : (R → R), i.e. a probability distribution or density function

mult : {(num | range | bool | actions | states | probfunc)2..∗}

With these basic types in mind, we introduce the notation:

node ⊢ (subnodetype): nodetype

which expresses that a valid sub-node of the Performance Tree operatornodehas the type

subnodetype, and thatnoderepresents an operation whose result has the typenodetype.

Using this notation, we define the typing for Performance Trees as follows:

? ⊢ (num | range | bool | actions | states | probfunc | mult) : (num

| range | bool | actions | states | probfunc | mult)

Mult ⊢ (num | range | bool | actions | states | probfunc)2..∗ : mult

PTD ⊢ (states)2..3 : probfunc

Dist ⊢ (probfunc): probfunc

Perctl ⊢ (num× probfunc): num

Conv ⊢ (probfunc)2 : probfunc

ProbInInterval ⊢ (probfunc× range): num

ProbInStates ⊢ (states× num): num

Moment ⊢ (num× probfunc): num

FR ⊢ (actions): num

4.3. Quantitative Semantics 107

SS:P ⊢ (statefunc× states): probfunc

SS:S ⊢ (range): states

StatesAtTime ⊢ (num× range): states

InInterval ⊢ (num× range): bool

Macro ⊢ (num | range | bool | actions | states | probfunc)0..∗ :

(num | range | bool | actions | states | probfunc)

⊆ ⊢ (states)2 : bool

∨/∧ ⊢ (bool)2 : bool

¬ ⊢ (bool) : bool

⊲⊳ ⊢ (num)2 : bool

⊕ ⊢ (num)2 : num

Num ⊢ () : num

Range ⊢ (num)2 : range

Bool ⊢ () : bool

Actions ⊢ () : actions

States ⊢ () : states

StateFunc ⊢ () : statefunc

4.3 Quantitative Semantics

This section describes the formal mathematical meaning underlying Performance Tree

operators. This meaning is presented in the context of (semi-)Markov models and Laplace

transforms where applicable. Efficient and/or scalable algorithmic implementations are

available for most operators, and are presented in [Knottenbelt96, Dingle03, Dingle04b,

Bradley03a,Bradley03b,Bradley03d,Bradley04,Au-Yeung04].

Throughout this section, we will adhere to the following notational conventions:

• Scalar values are denoted by lowercase and sets by uppercaseletters.

• Eval(node) is a function that evaluatesnode, a Performance Tree node, and returns

the result.

108 Chapter 4. Formal Characterisation of Performance Trees

• LS : S → 2AP is a labelling function that assigns atomic proposition labels from

AP to a state fromS, i.e.L(s) returns the set of labels that are associated with state

s.

• LA : A → AP is a labelling function that assigns a label (an atomic proposition)

from AP to an action fromA, i.e. L(a) returns the label that is associated with

actiona.

• Rng(R) is a function that converts the numerical rangeR = [x, y] into the Perfor-

mance Tree representation “Range((from, Num(x)), (to, Num(y)))”.

4.3.1 Value Node Semantics

Num operator

The Num operator represents a real value. Its evaluation yields:

Eval(Num(numVal)) = numVal

wherenumVal∈ R.

Range operator

The Range operator represents a range of real values. Its evaluation yields:

Eval(Range((from,subnode1(A)), (to, subnode2(B)))) = [r1, r2]

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We also have thatEval(subnode1(A)) = r1 andEval(subnode2(B)) = r2.

Bool operator

The Bool operator represents a Boolean value. Its evaluation yields:

4.3. Quantitative Semantics 109

Eval(Bool(boolVal)) = boolVal

whereboolVal∈ B.

States operator

The States operator represents a set of system states.

A number of Performance Tree operators have sub-nodes that represent sets of states.

Therefore, an elegant and formalism-independent way of specifying model states is needed.

Our approach to state identification uses atomic propositions that can be combined with

Boolean connectives. A valid compositionα of atomic propositions is given by:

α
def
= true | a | ¬ α | α ∧ α

wherea ∈ AP is used as a state label (see Section 3.2.4). The conjunctionand/or dis-

junction of state labelsL identifies a set of states for which{s ∈ S : s |= L}, given that

the semantics ofs |= L are defined as:

s |= true for all s s |= ¬A iff s 6|= A

s |= A iff A ∈ LS(s) s |= A ∧B iff s |= A ∧ s |= B

Thus, the evaluation of the operator yields:

Eval(States(stateLabel)) = {s}

wheres ∈ S ands |= stateLabel.

StateFunc operator

The StateFunc operator represents a user-defined function on a set of states, which returns

a real value.

The syntax of state function A is defined as:

110 Chapter 4. Formal Characterisation of Performance Trees

A
def
= r | f(A) | A op A

wherer ∈ R, f : (R → R) is a user-defined real-valued function andop ∈ {+,−, ∗, /,

<,≤,==,≥, >}. The semantics of a state function A are defined in terms of thefunction

sfEval(A, s), which calculates the value of state function A for a particular states:

sfEval(r, s) = r for all s

sfEval(f(A), s) = f(sfEval(A, s))

sfEval(A1 op A2, s) = sfEval(A1, s) op sfEval(A2, s)

The expression#(a), wherea represents an expression derivable from a state vector, as

appropriate to the modelling formalism used, is a special instance off(A) that is inter-

preted slightly differently, depending on the underlying modelling formalism. Its context-

dependent evaluation is defined as:

sfEval(#(a), s) = the number of tokens on placea in states

(if model is a GSPN)

sfEval(#(a), s) = the number ofa components in states

(if model is PEPA)

sfEval(#(a), s) = the number of customers in the queue at servera in states

(if model is a QN)

Thus, the evaluation of the operator yields:

Eval(StateFunc(statefunction)) = sfEval(statefunction, s)

• for all s ∈ S in the context of SS:P((state function, StateFunc(statefunction)))

• for all s ∈ Eval(States(states)) in the context of SS:P((state function,

StateFunc(statefunction)), (states, States(states)))

Actions operator

The Actions operator represents a set of system actions. Actions are identified by action

labels, and the evaluation of the operator yields:

4.3. Quantitative Semantics 111

Eval(Actions(actionLabel)) = {a}

wherea ∈ A andactionLabel= LA(a).

4.3.2 Operation Node Semantics

? Operator

Unlike other Performance Tree operators (with the exception of the Mult operator), the ?

operator does not represent an operation, but rather the value that its subnode evaluates

to. Evaluation of the operator yields:

Eval(?((query,subnode(A)))) = Eval(subnode(A))

wheresubnodeis a valid subnode of the operator, according to the syntax ofSection 4.1.

Mult Operator

Similarly to the ? operator, the Mult operator does not represent an operation, but rather

a vector of the values that its sub-nodes evaluate to. Evaluation of the operator yields:

Eval(Mult((query1,subnode1(A)), (query2,subnode2(B)), . . .)) =

(Eval(subnode1(A)), Eval(subnode2(B)), Eval(. . .))

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1.

PTD Operator

The PTD operator represents a passage time density function. Its evaluation yields:

Eval(PTD((start,subnode1(A)), (target,subnode2(B)), (excluded,subnode3(C)))) =

fIJK(t)

112 Chapter 4. Formal Characterisation of Performance Trees

wheresubnode1andsubnode2are required sub-nodes of the operator, andsubnode3is

an optional subnode of the operator, according to the syntaxof Section 4.1.fIJK(t) is

the probability density function ofPIJK , the first passage time from a set of source states

I = {s ∈ S : s |= A} to a set of target statesJ = {s ∈ S : s |= B}, provided that the

set of excluded statesK = {s ∈ S : s |= C} is not encountered along the passage. That

is, the first time the system enters a state inJ , given that it has started in one of the states

in I and has not been in any state inK, and at least one transition has occurred. In the

context of (semi-)Markov processes, this is defined as:

PIJK = inf{t > 0 : Z(t) ∈ J, Z(0) ∈ I,∀k.0 < k ≤ t(Z(k) 6∈ K), N(t) > 0}

whereZ(t) is a Markov renewal process, andN(t) is the number of state transitions that

have taken place by timet.

Dist operator

The Dist operator represents a passage time distribution function corresponding to a pas-

sage time density. Its evaluation yields:

Eval(Dist((density,subnode(A)))) = F (t) =

∫ t

0

fA(τ) dτ

wheresubnodeis a valid subnode of the operator, according to the syntax ofSection 4.1,

andfA(t) is the pdf ofPA, the random variable corresponding to the first passage timeof

the passage defined by A.

Perctl operator

The Perctl operator represents a percentile of a passage time density or distribution. Its

evaluation yields:

Eval(Perctl((percentile,subnode1(A)), (density/distribution,subnode2(B)))) = x

4.3. Quantitative Semantics 113

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1.

Eval(subnode1(A)) = p is the percentile that is to be calculated (e.g. when seekingthe

95th percentile,p = 95).

If subnode2is of type PTD or Conv thenEval(subnode2(B)) = fB(t), wherefB(t) is

the probability density function ofPB, the random variable corresponding to the first

passage time of the passage defined by B. Then,F (x) =

∫ x

0

fB(t) dt =
p

100
, where

F (x) represents a probability value at timex – the time value that represents thepth

percentile of the probability distribution.

Alternatively, if subnode2is of type Dist or SS:P thenEval(subnode2(B)) = F (t), where

F (t) is a probability distribution function. Whensubnode2is of type Dist, we have that

F (t) =
p

100
, whereF (t) represents a probability value at timet, t being the time value

that is thepth percentile of the probability distribution. When calculating a percentile of

a steady-state probability distribution, in casesubnode2is of type SS:P, the distribution’s

non-continuous nature can result in the same time value being returned for a number of

probability values (see Figure 4.1). Hence, we haveF (t) = p1 wherep1 ≤ F (t) ≤ p2

andp1 ≤
p

100
≤ p2.

Figure 4.1: Illustration of how multiple probability values can map onto the same time
value in steady-state distributions

Conv operator

The Conv operator represents the convolution of two passage time densities. Its evaluation

114 Chapter 4. Formal Characterisation of Performance Trees

yields:

Eval(Conv((density1,subnode1(A)), (density2,subnode2(B)))) =

f ◦ g =

∫ t

0

f(τ)g(t− τ) dτ

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1,Eval(subnode1(A)) = f(t), andEval(subnode2(B)) = g(t).

ProbInInterval operator

The ProbInInterval operator represents the probability with which a passage takes place

in a certain amount of time. Its evaluation yields:

Eval(ProbInInterval((density,subnode1(A)), (time range,subnode2(B)))) =
∫ t2

t1

f(t) dt

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1,Eval(subnode1(A)) = f(t), andEval(subnode2(B)) = [t1, t2].

ProbInStates operator

This operator represents the probability of a system occupying a set of states at a particular

moment in time, having started in an initial state at time 0. Evaluation of the operator

yields:

Eval(ProbInStates((observed states,subnode1(A)), (time instant,subnode2(B)))) =

πIJ(t)

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We haveI = {s}, wheres is the initial state of the system ,Eval(subnode1

(A)) = J , andEval(subnode2(B)) = t. πIJ is the transient state distribution of the system,

and is defined asπIJ = IP(χ(t) ∈ J | χ(0) ∈ I), whereχ(t) is the state of the system at

time instantt.

4.3. Quantitative Semantics 115

Moment operator

The Moment operator represents a raw moment of a passage timedensity or distribution.

Thenth moment of a real-valued functionf(x) of a real variable about a valuec is defined

as:

µn =

∫ ∞

−∞

(x− c)nf(x) dx

The moments about zero are usually referred to simply as theraw momentsof a function.

Thenth raw moment of a probability distribution functionf(x) is the expected value of

the random variableχn. The moments about its mean,µ, where

µn =

∫ ∞

−∞

(x− µ)nf(x) dx

are calledcentral moments, and they describe the shape of the function. Raw moments

can be used to calculate central moments. The first central moment is zero, the second

central moment is the variance, and its square root is the standard deviation. Further

measures, such as skewness and kurtosis, can be calculated from the third and fourth

central moments.

Evaluation of the operator uses the Laplace transform method from [Dingle04a] and

yields:

Eval(Moment((moment,subnode1(A)), (density/distribution,subnode2(B)))) =

(−1)nL(n)(0)

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We have thatEval(subnode1(A)) = n, Eval(subnode2(B)) = f(t) and

L(s) = L{f(t)} is the Laplace transform off(t).

116 Chapter 4. Formal Characterisation of Performance Trees

FR operator

The FR operator represents the average rate of occurrence ofa set of system actions. In

the context of SPNs, this corresponds to the average firing rate of a transition. Evaluation

of the operator yields:

Eval(FR((actions,subnode(A)))) =
∑

a∈B

∑

s:enablesa

Ra(s)πs

wheresubnodeis a valid subnode of the operator, according to the syntax ofSection 4.1,

Eval(subnode(A)) = B, andRa(s) is the rate of occurrence of actiona in states.

SS:P operator

The SS:P operator represents the probability mass functionyielding the steady-state prob-

ability of each possible value taken on by a StateFunc when evaluated over a given set of

states.

Given a state function A, which associates a real value with every state of the system, the

SS:P operator represents the steady-state probability distribution with which A takes on

particular values.

The operator has a required and an optional subnode. The required subnode is an operator

that represents state function A, and the optional subnode represents a set of states that

are to be considered. If the optional subnode is not provided, the steady-state distribution

is calculated over all the states of the system. If, however,it is provided, the distribution

is calculated only over the set of states represented by the optional subnode. Evaluation

of the operator yields:

Eval(SS:P((state function,subnode1(A)), (states,subnode2(B)))) = IP(ZA = r)

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

4.3. Quantitative Semantics 117

of Section 4.1.ZA represents the value of state functionA on a state, and

IP(ZA = r) =







∑

s : s |=B,

sfEval(A,s)=r

πs iff r ∈ {sfEval(A, s) : s |= B}

0 otherwise

πs is the steady-state probability of states. If the optional subnode has not been provided,

B represents the set of all states of the model, i.e. B= S. sfEval(A, s) is defined by the

semantics of the StateFunc operator.

SS:S operator

The SS:S operator represents the set of states that have a certain steady-state probability.

Its evaluation yields:

Eval(SS:S((prob. range,subnode1(A)))) =
{

s : S | p1 ≤ πs ≤ p2

}

wheresubnode1is a valid subnode of the operator, according to the syntax ofSection 4.1;

Eval(subnode1(A)) = [p1, p2] andπs is the steady-state probability of states. Due to our

assumption that models have irreducible state spaces, the specification of the set of start

states is not required, as these have no impact on the result.

StatesAtTime operator

The StatesAtTime operator represents the set of states thatthe system can occupy at a

given time instant with a certain probability. The evaluation of the operator yields:

Eval(StatesAtTime((time instant,subnode1(A)), (prob. range,subnode2(B)))) =
{

s : J | p1 ≤ πIJ(t) ≤ p2

}

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1,

• Eval(subnode1(A)) = t,

118 Chapter 4. Formal Characterisation of Performance Trees

• Eval(subnode2(B)) = [p1, p2],

andπIJ is the transient state distribution of the system, and is defined asπIJ = IP(χ(t) ∈

J | χ(0) ∈ I), whereI = {s}, with s being the initial state of the system at time 0, and

χ(t) being the state of the system at time instantt.

InInterval operator

The InInterval operator represents a Boolean value that determines whether a numerical

value lies within a given interval. Evaluation yields:

Eval(InInterval((num. value,subnode1(A)), (range,subnode2(B)))) =






true iff r1 ≤ n ≤ r2

false otherwise

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1, and we also have thatEval(subnode1(A)) = n, andEval(subnode2(B))

= [r1, r2].

Macro operator

The Macro operator defines custom performance concepts as compositions of other oper-

ators.

In this way, it is able to represent a large number of diverse user-defined concepts. Its

semantics are similar to that of the ? operator, since the Macro operator represents an

entire hierarchy of operators. Thus, its evaluation yields:

Eval(Macro((macro,subnode(A)))) = Eval(subnode(A))

wheresubnodeis the topmost operator of the hierarchy represented by the Macro operator.

Evaluation of the operator takes place recursively.

4.3. Quantitative Semantics 119

⊆ operator

The⊆ operator represents a Boolean value that determines whethera set is a subset of

another set. Its evaluation yields:

Eval(⊆((set 1,subnode1(A)), (set 2,subnode2(B)))) =







true iff s1 ⊆ s2

false otherwise

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We have thatEval(subnode1(A)) = s1, andEval(subnode2(B)) = s2.

∨/∧ operator

The∨/∧ operator represents the logical disjunction or conjunction of two Boolean values.

For the case when it represents a logical disjunction, its evaluation yields:

Eval(∨((bool value 1,subnode1(A)), (bool value 2,subnode2(B)))) =






true iff b1 == true or b2 == true

false otherwise

For the case when it represents a logical conjunction, its evaluation yields:

Eval(∧((bool value 1,subnode1(A)), (bool value 2,subnode2(B)))) =






true iff b1 == true and b2 == true

false otherwise

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1, and in both casesEval(subnode1(A)) == b1, andEval(subnode2(B)) ==

b2.

¬ operator

The¬ operator represents the logical negation of a Boolean value.Its evaluation yields:

120 Chapter 4. Formal Characterisation of Performance Trees

Eval(¬((bool value,subnode(A)))) =







true iff b = false

false otherwise

wheresubnodeis a valid subnode of the operator, according to the syntax ofSection 4.1,

andEval(subnode(A)) = b.

⊲⊳ operator

The⊲⊳ operator represents a Boolean value that is the result of the arithmetic comparison

of two numerical values with standard numerical comparisonoperators. Its evaluation for

the various cases yields:

Eval(⊲⊳((num. value 1,subnode1(A)), (num. value 2,subnode2(B)))) =






true iff n1 ⊲⊳ n2

false otherwise

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We also have thatEval(subnode1(A)) = n1, Eval(subnode2(B)) = n2, and

⊲⊳ ∈ {<,≤,==,≥, >}.

⊕ operator

The⊕ operator represents a numerical value that is the result of an arithmetic operation on

two numerical values, using standard arithmetic operators. Its evaluation for the various

cases yields:

Eval(⊕((num. value 1,subnode1(A)), (num. value 2,subnode2(B)))) = n1 ⊕ n2

wheresubnode1andsubnode2are valid sub-nodes of the operator, according to the syntax

of Section 4.1. We also have thatEval(subnode1(A)) = n1, Eval(subnode2(B)) = n2, and

⊕ ∈ {+,−, ∗, /,̂ }.

Chapter 5

Tool Support for Performance Trees

This chapter introduces tool support for Performance Tree-based query specification and

evaluation by describing a prototype performance analysisenvironment that enables the

graphical creation and parallel and distributed evaluation of GSPN-based system models

and Performance Tree queries. We introducePIPE2, a platform-independent open-source

Petri net tool, which serves as the graphical front-end to this environment. We discuss

how PIPE2 facilitates the convenient creation of GSPN-based system models, and how

we implement support for the interactive graphical and natural language-based specifi-

cation of Performance Tree queries in a new analysis module.We also describe a range

of state-of-the-art parallel and distributed performanceanalysis tools, which supply per-

formance query evaluation capabilities to the analysis environment. We conclude with

a discussion of how we distribute performance queries to applicable analysis tools for

evaluation on a dedicated Grid-based analysis cluster. Material from [Brien08b,Suto08a,

Suto08b,Bradley08,Dingle08b] is incorporated into this chapter.

121

122 Chapter 5. Tool Support for Performance Trees

5.1 PIPE2: A Tool for GSPN-based System Modelling

and Analysis

PIPE2 [PIPE, Bonet07, Suto08b] is a Java-based open-source tool for stochastic sys-

tem modelling and performance analysis. It was originally developed as a platform-

independent Petri net editor to support the creation and manipulation of potentially com-

plex GSPN models through a simple and intuitive graphical user interface. Subsequently,

it has been further enhanced by the integration of a number ofanalysis modules, and has

as a result of our work evolved into a versatile front-end foran integrated parallel and dis-

tributed performance evaluation environment. WithPIPE2, users are now able to design

system models, visually create complex queries that address models in terms of perfor-

mance properties of interest, and evaluate them to obtain relevant performance metrics or

to establish the validity of certain performance properties.

5.1.1 Model Editor

PIPE2provides a graphical user interface (shown in Figure 5.1) that allows the creation,

editing, saving and loading of GSPN models that conform to the Petri Net Mark-up Lan-

guage (PNML) [PNML] document interchange format. PNML enablesPIPE2 to import

and manipulate models created externally, and allows otherPNML-based tools to do so

with models created inPIPE2.

Models are drawn on a canvas using features from a drawing toolbar. GSPN models are

constructed from graphical components representing places, transitions, arcs and tokens.

Nets of arbitrary complexity can be drawn and annotated withadditional user information.

Besides basic model design functionality, the designer interface also provides additional

visual features, such as zoom, export, tabbed editing and animation. The animation mode

is particularly useful for aiding users in the intuitive verification of the behaviour of their

models, since it enables them to visualise models in action.

5.1. PIPE2: A Tool for GSPN-based System Modelling and Analysis 123

Figure 5.1: GSPN Model Designer Interface

5.1.2 Analysis Modules

PIPE2 is equipped with a number of specialised analysis modules that perform structural

and performance-related analyses on GSPN models. A panel tothe left of the canvas en-

ables users access to the currently available modules. Structural analyses examine models

in terms of their topology, and are able to verify whether some aspects of their qualitative

behaviour are in accordance with expectations derived fromthe real-life systems that are

to be modelled. Performance analyses are aimed at investigating models from their op-

erational point of view, and are therefore able to provide deeper insights into quantitative

aspects of their behaviour. At present, modules exist for the classification and compar-

ison of SPN models, for the derivation of their reachabilitygraphs, for the analysis of

their state spaces, invariants, incidence matrices and markings, and for simulation and

interfacing with theDNAmacatool (see Section 2.4.1).

124 Chapter 5. Tool Support for Performance Trees

Structural Analysis Modules

Model Classification Module: Classifies GSPN models based on their structure into the

following categories: state machine, marked graph, free choice net, extended free choice

net, simple net and extended simple net.

Model Comparison Module: Compares two GSPN models based on attributes determined

by users as comparison criteria.

State Space Module: Constructs a graph of all reachable states, which is used to determine

properties of GSPN models, such as liveness, boundedness and existence of deadlocks.

Incidence & Marking Module: Determines and displays the forward and backward in-

cidence matrices, the marking matrix, and the set of enabledtransitions of the GSPN

model.

Reachability Graph Module: Provides a visual representation of all possible transition

firing sequences of the GSPN model, and informs users about possible states that the

model can enter.

Performance Analysis Modules

Simulation Module: Studies the performance of models by investigating the average num-

ber of tokens per place, using a Monte Carlo simulation-basedapproach.

Steady-State Analysis Module: Calculates state and count measures from the steady-state

distribution via an interface to theDNAmacasteady state analyser.

Passage Time Analysis Module: Calculates probability densities for the time taken for a

system represented by a model to complete a user-defined passage via an interface to the

SMARTApassage time analyser.

GSPN Analysis Module: Calculates analytically the average number of tokens on places,

token density and the throughput of timed transitions.

5.1. PIPE2: A Tool for GSPN-based System Modelling and Analysis 125

5.1.3 Performance Query Editor

As part of our present work,PIPE2has been extended with thePerformance Query Ed-

itor (PQE) module [Brien08b, Suto08b, Dingle08b], which allows the graphical design

and subsequent parallel and distributed evaluation of complex performance queries, ex-

pressed as Performance Trees. It implements an easy-to-usegraphical user interface for

the construction of performance queries, which is shown in Figure 5.2.

Figure 5.2: GUI of the Performance Query Editor module

Graphical Query Specification

Like the model editor, the largest part of the PQE’s GUI is occupied by the canvas, the

drawing area that serves as a container for the graphical components of a performance

query. Users construct Performance Tree queries on the canvas using the functionality

of the query designer toolbar, which is located below the canvas. When a toolbar button

126 Chapter 5. Tool Support for Performance Trees

representing a Performance Tree node is selected, it becomes highlighted, indicating that

an instance of the node it represents is to be drawn onto the canvas at the location of the

mouse click. This is illustrated in Figure 5.3.

Figure 5.3: PQE GUI showing a newly drawn operation node

When an operation node is drawn onto the canvas, a number of arcs are also created, which

emanate from the bottom of the node. Arcs either appear as solid or dashed lines, and are

annotated by labels. A solid arc indicates that a required sub-node is to be provided to the

operation node via the arc connection. A dashed arc indicates that an optional sub-node

can be provided to the operation node in addition by connecting it to the arc. An arc label

represents the role that the sub-node connected to the arc has for the operation node. In

the case of Figure 5.3, the node that will be connected to the arc with the label ‘state

function’ will be considered by the SS:P node to represent a state function. As a further

illustration of the concept, consider the left-bottommostStates node in Figure 5.4, which

is connected to an arc with label ‘start states’. This connection indicates that its PTD

5.1. PIPE2: A Tool for GSPN-based System Modelling and Analysis 127

parent node considers the states represented by the States node to define the start states of

the passage.

Queries can be rearranged at will, as each individual graphical component on the canvas

can be manipulated independently. Nodes can be repositioned, disconnected from arcs

or deleted. The PQE is initialised with a canvas that by default contains a single Result

node with an outgoing arc, as illustrated by Figure 5.2. Queries are constructed by linking

nodes together, with the hierarchy eventually terminatingin the Result node. Each query

has a single Result node. Figure 5.4 shows a fully constructedPerformance Tree query

on the PQE GUI.

Figure 5.4: GUI showing a fully constructed Performance Tree query

To provide additional support for query specification, the PQE module also incorporates

an automatic query interpretation mechanism that translates Performance Tree queries

into their natural language equivalent on-the-fly, as queries are being constructed. This

is a particularly useful feature for users of the tool who arenot fully accustomed to Per-

128 Chapter 5. Tool Support for Performance Trees

formance Trees. The natural language representation enables them to intuitively verify

whether the performance query that they are constructing corresponds to the query that

they have originally intended to express. On the GUI, a pane located above the canvas

displays the query’s natural language equivalent. This pane also serves as a general infor-

mation interface, which provides users with usage instructions for individual Performance

Tree nodes when they are selected. The natural language representation is colour-encoded

to represent the hierarchy within the query, which is immediately apparent in Performance

Tree form.

To ensurevalid performance queries, on-the-fly type compatibility validation is carried

out during the construction of Performance Tree queries whenever node assignments are

attempted. When users want to assign a node as a sub-node to an operation node, they

attempt to connect the operation node’s outgoing arc to the node. At this point, a compar-

ison between the type of the node and the types of acceptable sub-nodes is performed. If

the node’s type forms part of the set of acceptable sub-node types, the node assignment is

considered valid and the arc connection is established. If it does not, the node cannot be

assigned to the operation node.

To ensurecompleteperformance queries, a complete structural validation of aperfor-

mance query is effected when users have finished its construction and have requested its

evaluation. At this point, it may be the case that a structurally valid Performance Tree

has been constructed, but that certain required arguments have not been specified. Thus,

a validation mechanism needs to verify whether a valid tree hierarchy exists, whether all

operation nodes’ required sub-nodes have been provided, and whether value nodes have

been properly defined. Only when all of these validation criteria have been satisfied do

performance queries proceed to evaluation.

Natural Language-based Query Specification

The construction of Performance Tree queries becomes routine once users are accustomed

to the hierarchical tree structure-based representation and have become comfortable with

the concepts that Performance Tree nodes represent. Nevertheless, it may initially be more

5.1. PIPE2: A Tool for GSPN-based System Modelling and Analysis 129

convenient and intuitive to new users to specify performance queries in natural language.

[Grunske08a] and [Grunske08b] introduce the idea of using apattern system for com-

mon probabilistic properties, together with a structured English grammar for aiding users

in the query specification process. We have devised a similarapproach and implemented

a guided query specification mechanism in the PQE module thatis based on a structured

grammar and that allows Performance Tree queries to be constructed incrementally in

natural language [Wang08]. Figure 5.5 shows the natural language query specification

interface located below the canvas. Here, a drop-down menu and a text area take the place

of the query builder toolbar, which is provided to users as the default option for Perfor-

mance Tree query construction. The drop-down menu is the main point of interaction

for users, and is updated dynamically to continuously offera selection of currently valid

expressions that can be used to further extend the partiallyconstructed query. Once a

selection has been made, the Performance Tree query is updated accordingly.

Figure 5.5: Natural language-based performance query construction

130 Chapter 5. Tool Support for Performance Trees

This mechanism provides users with the comfort of a very simple and straightforward

query specification mechanism. At the same time, due to the automatic construction of

Performance Trees that correspond to the specified natural language queries, users are

aided in their familiarisation with the direct graphical specification of Performance Tree

queries.

5.2 An Integrated Evaluation Environment for Perfor-

mance Trees

To provide users with a complete toolset that is able to design system models, specify

performance queries on them in the form of Performance Trees, and evaluate these in

order to obtain relevant results, we have developed a sophisticated performance analysis

environment that supports all of this functionality in an integrated manner.

Our analysis environment consists of a number of interacting software components.PIPE2

serves as a graphical front-end to users, which allows them to carry out model design,

performance query specification and evaluation tasks in a convenient manner. For query

evaluation purposes,PIPE2 interfaces with an analysis server, which collectively coor-

dinates a number of parallel and distributed analysis tools, each of which specialises in

different types of analyses. From a user’s perspective, allanalysis functionality is handled

by PIPE2, and the seamlessness of its integration with the analysis environment creates

the illusion of all analysis functionality being a feature of the tool. Computations are

carried out by the analysis tools on a dedicated analysis cluster, which is configured as

a Grid resource. The advantage of using a Grid cluster for analysis purposes is that it

can incorporate a large number of heterogeneous resources –thereby enabling it to sup-

port large-scale computations – and that it can be easily extended. Most importantly,

however, a Grid cluster is administered by sophisticated middleware, which provides a

complete suite of cluster and job management capability.

At present, we are able to analyse models whose size does not exceedO(108) states.

Overall evaluation capacity is ultimately determined and hence constrained by the indi-

5.2. An Integrated Evaluation Environment for PerformanceTrees 131

vidual capacities of the analysis tools that implement evaluation support. As tools with

enhanced solution capacity are introduced into the environment, its overall evaluation

capacity increases accordingly.

Figure 5.6 illustrates the individual components of the analysis environment and their

interactions. The analysis environment consists of two main parts. One part encom-

passes client-side components that users are directly exposed to and that are implemented

in PIPE2, and another part contains server-side components that perform analysis tasks

and that users are not directly aware of. These include the Analysis Server, which deals

with requests fromPIPE2and interacts with analysis tools, the analysis tools themselves,

which carry out a range of specialised analyses, and the analysis cluster, which provides

the underlying computational hardware infrastructure.

5.2.1 Analysis Client

PIPE2has the role of the client within the analysis environment, and is its only user-facing

component. It is the gateway to the functionality provided by the analysis environment’s

other components, and allows users to create system models and applicable Performance

Tree queries. It initiates query evaluation by communicating model and query data to the

Analysis Server for further processing. As soon as the Analysis Server has obtained eval-

uation results,PIPE2obtains and presents them to users in a visually accessible manner.

Figure 5.7 illustrates how users can initiate the evaluation of a fully constructed Perfor-

mance Tree query by clicking on the ‘Evaluate Query’ button on the GUI. Figure 5.8

depicts the performance query evaluation tracker interface, which shows a replica of the

query tree, in which every node is annotated with a status indicator that follows a conven-

tional traffic light colouring scheme. On initial submission, the status indicator of every

node of the tree is red, indicating that the nodes have not been scheduled for evaluation

yet. Once evaluation has commenced, the indicators pulse inyellow, signalling that their

nodes have been submitted to the analysis tools for processing. As results for nodes are

obtained byPIPE2, the status indicators of the respective nodes turn green. This indicates

to users that they can click on nodes to visualise results. This is possible while other eval-

132 Chapter 5. Tool Support for Performance Trees

Figure 5.6: Performance analysis environment architecture

5.2. An Integrated Evaluation Environment for PerformanceTrees 133

uations are still in progress. Using an example of a percentile of a passage time density,

Figure 5.9 shows how graph-based results are visualised byPIPE2.

Figure 5.7: Initiation of a performance query evaluation request

5.2.2 Analysis Server

The Analysis Server is responsible for the processing of evaluation requests issued by

PIPE2, and the coordination of the subsequent performance query evaluation process. It

is deployed at the analysis cluster’s primary host, and is continuously available to accept

incoming analysis requests. The Analysis Server processesthese requests by decompos-

ing performance queries into subtrees and sending these to specialised analysis tools for

evaluation. The Analysis Server is also responsible for passing on evaluation results to

PIPE2for visualisation.

134 Chapter 5. Tool Support for Performance Trees

Figure 5.8: Query evaluation progress tracker interface

Figure 5.9: Visualisation of performance query results

5.2. An Integrated Evaluation Environment for PerformanceTrees 135

5.2.3 Analysis Tools

The evaluation of quantitative measures defined in Performance Tree queries is ultimately

carried out by a set of analysis tools that are invoked by the Analysis Server. At present,

tools are available for the calculation of steady-state andtransient measures, passage time

densities and distributions, as well as their convolutions, moments and percentiles. It is the

integration of these analysers with the evaluation environment that enables the evaluation

of Performance Tree nodes. Tools currently forming part of the analysis environment are:

DNAmaca[Knottenbelt96] – a Markov chain steady-state analyser that can solve models

with up toO(108) states. It supports model and performance measure specification in its

proprietary input language, performs functional and steady-state analyses, and computes

performance statistics, such as the mean, variance and standard deviation of expressions

computed on system states. In addition, it also calculates mean rates of occurrence of

actions. The raw distribution from which these performancestatistics are calculated can

also be obtained.DNAmacais used for the evaluation of the SS:P and FR Performance

Tree operators.

SMARTA[Dingle04a] – a distributed MPI-based semi-Markov response time analyser

that performs iterative numerical analyses of passage times in very large semi-Markov

models (including GSPNs), using hypergraph partitioning and numerical Laplace trans-

form inversion techniques.SMARTAis suitable for the analysis of the PTD and Dist

operators on GSPN models where start and target states are vanishing.

HYDRA[Dingle04a] – a distributed Markovian passage time analyser that uses hyper-

graph partitioning and uniformisation techniques.HYDRAis suitable for the evaluation

of the PTD and Dist Performance Tree operators, and also features transient analysis capa-

bilities that are useful for the evaluation of the ProbInStates and StatesAtTime operators.

MOMA [Brien08a] – annth order raw moment calculator for GSPN models that uses

a Laplace transform-based method.MOMA is used for the evaluation of the Moment

Performance Tree operator.

CONE [Brien08a] – a performance analyser that, together withSMARTA, evaluates

136 Chapter 5. Tool Support for Performance Trees

the convolution of two passage time densities using a Laplace transform and Laguerre

inversion-based approach.CONE is used for the evaluation of the Conv Performance

Tree operator.

PERC[Brien08a] – a performance analyser that calculates percentiles of passage time

distributions and densities, and works in conjunction withSMARTA. PERCis used for the

evaluation of the Perctl Performance Tree operator.

PROBI [Brien08a] – a performance analyser that calculates the probability of a passage

time lying within a certain interval, and borrows functionality from SMARTA. PROBI is

used for the evaluation of the ProbInInterval Performance Tree operator.

For more details on the individual performance analysis tools, consult Section 2.4.1.

5.2.4 Analysis Cluster

Camelot, the computational cluster forming the backbone of the analysis environment,

consists of 16 dual-processor dual-core nodes, each of which is a Sun Fire x4100 with

two 64-bit Opteron 275 processors and 8GB of RAM. Nodes are connected with both

Gigabit Ethernet and Infiniband interfaces. The Infiniband fabric runs at 2.5Gbit/s, and

is managed by a Silverstorm 9024 switch. Job submission is handled by Sun GridEngine

(SGE), a Grid management middleware that configures and exposesCamelotas a compu-

tational Grid resource. Clients submit sequential and parallel (MPI) jobs to SGE via the

Distributed Resource Management Application API (DRMAA).

5.3 Parallel and Distributed Evaluation of Performance

Queries

Users interact withPIPE2 to design system models and performance queries. The tool

also enables them to initiate the automatic evaluation of performance queries through the

5.3. Parallel and Distributed Evaluation of Performance Queries 137

single click of a button, and provides them with a convenientevaluation progress tracking

and visual result feedback mechanism.

When a user requests a query’s evaluation,PIPE2establishes a connection with the Anal-

ysis Server in the background, which resides on the analysiscluster’s primary host and

is responsible for the coordination of the distributed evaluation of performance queries.

The Analysis Server delegates the processing of individualqueries to dedicated analysis

threads, in order to be able to serve multiple simultaneous requests without delay.

Analysis threads process serialised versions of system models and performance queries

that have been submitted to the Analysis Server byPIPE2. They construct an internal

representation of the data, based on input formats requiredby the analysis tools that need

to be invoked for the evaluation of query nodes. All of our tools use theDNAmacainput

language (see Section 2.2.4), together with tool-specific extensions. Hence, models are

translated intoDNAmacamodel files, which are then extended with tool-specific syntax

that specifies performance criteria according to which evaluation is to be carried out.

Analysis threads decompose queries into a set of subtrees, each of which consists of a

single query node. They subsequently create individual helper threads for each subtree to

initiate and coordinate their evaluation. Once a helper thread has been created, it submits

the subtree that it is responsible to process for evaluationin the form of an analysis job

to SGE. Analysis jobs consist of analysis tool invocation requests. As already discussed

in Section 5.2.3, different analysis tools are invoked on the analysis cluster, based on the

type of subtrees. Threads communicate with SGE via a DRMAA interface. SGE has

built-in scheduling algorithms that are used to distributejobs onto available processors on

the analysis cluster.

Once evaluation jobs have been scheduled on the analysis cluster and analysis tools have

been provided with the required input data, evaluation commences. Analysis tools parse

the supplied model files that also contain performance evaluation criteria, and compute

the requested performance measures. In case the evaluationof a subtree is conditional on

results to be obtained from the evaluation of other subtrees, the job is suspended until all

required inputs have become available. Performance Tree queries have the advantage that

they can be evaluated in a distributed fashion. During evaluation, parallelism takes place

138 Chapter 5. Tool Support for Performance Trees

on two levels. Firstly, certain tools are able to carry out the evaluation of Performance

Tree nodes in a parallelised manner. Secondly, if two nodes within the query tree are

independent of one another, they can be evaluated by tools inparallel.

To avoid redundant work and thus reduce response time, the Analysis Server incorporates

a disk-based caching mechanism that stores performance query evaluation results, so that

subsequent evaluation requests for already evaluated queries on the same model can be

served with results immediately. In order to differentiatebetween multiple queries on

the same model, a hash of the model description and the performance query specification

is calculated for each query, using an algorithm with a very low probability of clashes

(e.g. MD5). This hashing is used to create a two-level structure in which the computed

performance measures can be stored. Before any computation takes place, a cache look-

up for the hash of the given model is performed. If a match is found, the hash of the

current query is compared to all hashes of queries in the cache that have been evaluated

on that particular model. A match indicates that the query results can be retrieved from

the cache. No match means that the query needs to be evaluated. Users can configure the

analysis with regards to the number of processors that are tobe used during evaluation

and also whether or not caching should be enabled. For more details of this mechanism,

see [Harrison02,Brien08a,Brien08b].

Passage time analysis on a GSPN model is performed as described in Section 2.3.2. When

PTD and Dist nodes are to be evaluated,SMARTAis invoked to calculate applicable pdfs

and cdfs. For the computation of passage time densities, distributions and convolutions,

an interesting issue arises when displaying graphs. Result graphs are often required to

show data only within time ranges of relevance, i.e. only within the time bounds in which

relevant probability fluctuations occur. An algorithm for the automatic determination of

the time range of interest over which pdfs and cdfs should be plotted has been devised.

The algorithm establishes at what time valuet cdfs approach 1 within someǫ bound. In

the context of passage time queries, the probability of not reaching target states is nearly

0 beyond this point, and not likely to be of interest. Oncet has been found, pdfs and cdfs

are plotted between 0 andt.

Steady-state performance statistics for the GSPN model arederived byDNAmacathrough

5.3. Parallel and Distributed Evaluation of Performance Queries 139

generating and solving a CTMC that corresponds to the model’sbehaviour at the state-

transition level. Steady-state probability distributions and high-level performance mea-

sures, such as throughput and mean buffer occupancy can be derived from these CTMCs,

as shown in Section 2.3.2. These measures correspond to the FR and SS:P Performance

Tree operators.

The calculation of raw moments of passage time densities anddistributions, which is used

for the evaluation of the Moment operator, is performed byMOMA. Percentiles of pas-

sage time densities and distributions are calculated byPERC, while their convolutions are

determined byCONE. PROBIis used for obtaining the probability of a passage occurring

in a given time period, as represented by the ProbInIntervaloperator.

Trivial computations, such as arithmetic and boolean operations and comparisons do not

require dedicated analysis tools; therefore support for them has been integrated into the

Analysis Server. At present,PIPE2allows the use of the ProbInStates, SS:S and States-

AtTime operators in the specification of performance queries; however, analysis function-

ality catering for their evaluation has yet to be integratedinto the analysis environment.

When jobs have completed, threads forward their results toPIPE2for visualisation to the

user.

To give an indication of the overall performance of the evaluation environment, Table 5.1

provides a comparison of observedSMARTArun times for the calculation of passage time

densities on two models of differing sizes, as originally presented in [Dingle04a]. These

run times are appropriate indicators, as passage time density calculations are generally the

most time-consuming of query evaluation operations, and hence contribute most signifi-

cantly to overall evaluation time. Calculations may be carried out by a varying number

of processors, and Table 5.2 shows the observed gain in evaluation speed, based on the

actual number of processors used. It is apparent that the most significant improvement in

terms of evaluation performance can be achieved with modelsthat have a large number of

states.

140 Chapter 5. Tool Support for Performance Trees

Model No. of Run times
Name States 1 Proc. 2 Proc. 4 Proc. 8 Proc. 16 Proc. 32 Proc.

Courier 29 010 542.7 293.6 170.6 145.6 166.6 232.8
FMS 2 519 580 27 593.8 13 790.2 6 961.3 3 548.9 1 933.4 1 079.7

Table 5.1: Run times in seconds for the evaluation of passage time densities using
SMARTA

Model Gain in evaluation speed
Name 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

Courier 0% 45.9% 68.6% 73.2% 69.3% 57.1%
FMS 0% 50% 74.8% 87.1% 93% 96.1%

Table 5.2: Percentage-wise gains in evaluation speed when compared to query evaluation
with a sigle processor

Chapter 6

Case Studies

This chapter explores the applicability of Performance Trees by presenting a number of

performance evaluation case studies. We specify Performance Tree queries on models

of an electronic voting system, an online transaction system and a hospital’s Accident &

Emergency unit. We evaluate them and discuss obtained results.

6.1 Electronic Voting System

Below, we present a model of an electronic voting system with breakdowns and repair

[Bradley03c]. The voting system is modelled by a GSPN, as shown in Figure 6.1.

In the model, voters are processed by polling units, and votes are processed by voting

servers. Voters can only vote when a polling unit is available, and a vote can only be

counted if a voting server is ready. Once a vote has been processed, the polling unit that

has dealt with the voter casting the vote becomes available,as does the voting server that

has processed the vote. Polling units and voting servers cansuffer breakdowns, but can

also be repaired.

We will now specify a number of performance queries to obtaininsight into various per-

formance aspects of the system, with parameters of the modelbeing 100 voters (CC =

141

142 Chapter 6. Case Studies

Figure 6.1: GSPN model of an Electronic Voting System

100), 10 polling units (MM = 10) and 10 servers (NN = 10). GSPN transition rates are

specified in theDNAmacamodel description in Section A.1.1.

Query 1

With this query, we attempt to gain an appreciation of the speed with which the voting

system processes voters. To this end, we are interested in knowing how many minutes it

takes for the system to process all voters with 90% probability, provided that nobody has

voted yet at time 0.

The Performance Tree that corresponds to this query is shownin Figure 6.2. We represent

the evolution of the system from the moment when no voter has voted yet to the moment

when all voters have voted as a passage with the PTD operator,representing a passage

time density. This operator requires start and target states to be supplied as arguments,

defined by state labels. We use‘no voters have voted’as the label for the set of start states

and‘all voters have voted’as the label for the set of target states. The constraints that are

associated with these state labels, and through which the sets of states are identified, are

as follows:

6.1. Electronic Voting System 143

‘no voters have voted’ := (#(not voted) == 100)∧ (#(polling units) == 10)∧

(#(servers) == 10)

‘all voters have voted’ := (#(voted) == 100)

Figure 6.2: A query addressing the 90th percentile of a passage from the state where no
voters have voted to the state where all voters have voted

This query can at present not be expressed by any other query specification formalism.

This is due to the fact that the sought result is a percentile of a passage time density, which

is a quantitative measure that only Performance Trees are able to express.

Evaluation of the query results in the generation of a state space of 218 526 states and

1 132 483 transitions. Once evaluation has completed, we obtain the probability density

function of the passage between the start and target states,as shown in Figure 6.3. During

the evaluation of the Perctl operator, this density is used to calculate the 90th percentile,

which is found to be17.5 minutes. That is, 90% of the time, it takes17.5 minutes until all

voters have voted.

144 Chapter 6. Case Studies

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time (minutes)

Passage time density

Figure 6.3: Probability density of the time taken for all voters to have voted

Query 2

Having already obtained an indication of the performance ofthe voting system, we would

like to further assess its efficiency by specifying a performance query that is interested in

obtaining the probability with which all voters have successfully voted within 15 minutes

of the opening of the polling stations.

In Performance Tree form, this query is represented as shownin Figure 6.4. In this query,

we use the same passage as in the previous query to represent the system transitioning

from the initial state to the state in which all voters have voted.

This query cannot be expressed in other specification formalisms, due to the need to

reason about a passage time density, which at present only Performance Trees are able to.

During evaluation, the passage time density for all voters to have voted is calculated,

which is the same as for the previous query (shown in Figure 6.3). If this query were to be

evaluated after the previous query has already been evaluated, the Analysis Server would

realise that the passage time density that is to be calculated is identical to the density that

has already been calculated for the previous query, and hence results would be retrieved

from the cache. During the evaluation of the ProbInIntervaloperator, the probability with

which all voters have voted within 15 minutes is calculated from the passage time density.

This probability is found to be0.483. Given that 15 minutes is a very short period of time

to process 100 voters, the fact that all voters can be processed by the system almost 50%

6.1. Electronic Voting System 145

Figure 6.4: A query addressing the probability with which all voters have voted within 15
minutes

of the time indicates that it is rather efficient.

Query 3

To assess the reliability of the voting system, we are interested in the average number of

broken polling units and broken servers on the long run.

We specify this as a Performance Tree query as shown in Figure6.5. In this query, we

make use of the Mult operator, which allows us to specify compound performance queries.

This query cannot be expressed in other specification formalisms, due to the need to

compute the expectation of a steady-state probability distribution, which at present is not

supported by any other formalism.

This is the first performance query in our case study so far that can be evaluated in parallel.

The Mult operator combines two independent queries into one, which implies that they

146 Chapter 6. Case Studies

Figure 6.5: A query addressing the average number of broken polling units and servers at
steady-state

can safely be evaluated in parallel, since there are no dependencies between them. During

evaluation of the query, we obtain the steady-state probability distribution for the number

of broken polling units, as shown in Figure 6.6. From this distribution, we also obtain

the average number of broken polling units, which is found tobe0.567. Evaluation also

produces the steady-state probability distribution for the number of broken servers, which

is shown in Figure 6.7. The average number of broken servers is found to be0.196.

Considering these results, we can confidently claim that the voting system is reliable,

since on average, a low number of polling units and servers fail.

Query 4

To obtain another indication of system reliability, we formulate a performance query that

aims to obtain the expected time until two voting servers have broken down.

The Performance Tree equivalent of this query is shown in Figure 6.8; relevant state labels

6.2. Online Transaction System 147

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

Number of broken polling units

Figure 6.6: Steady-state distribution of
the number of broken polling units in the
voting system

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

Number of broken voting servers

Figure 6.7: Steady-state distribution of
the number of broken servers in the vot-
ing system

are defined as:

‘all servers operational’ := (#(not voted) == 100)∧ (#(servers) == 10)∧

(#(polling units) == 10)

‘2 servers broken down’ := (#(serverbroken) == 2)

In the performance query, we represent with a passage time density the moving of the

system from the state where all voting servers are operational to a state where two voting

servers are broken. This is shown in Figure 6.9. This function represents the probability

density of the time it takes for two servers to break down, given that all servers have been

operational at the time when observation has commenced. From the density we can obtain

the expected time until two voting servers break down. This value is found to be43.33

minutes, which indicates that the system is fairly robust.

6.2 Online Transaction System

In this case study, we revisit the Online Transaction Systemof Section 3.3, the GSPN

model of which is shown in Figure 3.9. We will evaluate some ofthe queries presented

earlier, along with several new queries. We parameterise the model with eight customers,

all of whom are initially assumed to be browsing randomly on the Internet. Transition

rates for the GSPN are specified in theDNAmacamodel description in Section A.2.1.

148 Chapter 6. Case Studies

Figure 6.8: A query addressing the expected time until two voting servers have broken
down

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Time (minutes)

Passage time density

Figure 6.9: The probability density of the time needed for two voting servers to break
down

6.2. Online Transaction System 149

Query 1

In our first query, we are interested in the distribution of time for a customer to select an

item from the catalogue, starting from the moment when they have entered the web site,

and assuming that they have not left in the meantime. This canbe useful for assessing the

design quality of the web site, from the point of view of how easily customers are able to

navigate to the product catalogue.

The Performance Tree corresponding to the query is shown in Figure 6.10, and applicable

state labels are defined as:

‘customer entered’ := (tag@(site entered))

‘item selected’ := (tag@(item selected))

‘aborted’ := (tag@(transaction aborted))

Figure 6.10: A query addressing the distribution of time taken for a customer to select an
item from the product catalogue after having entered the website

This query cannot be expressed by other specification formalisms at present, due to the

need to reason about a probability density and distribution, as well as individual customers

150 Chapter 6. Case Studies

in the system.

Evaluation of the query yields a state space of 213 928 statesand 2 580 864 transitions. To

obtain the distribution that we are interested in (see Figure 6.12), the passage time density

needs to be calculated first. This is shown in Figure 6.11.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.11: Probability density of the
time taken for a customer to select an
item from the catalogue

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time distribution

Figure 6.12: Probability distribution of
the time taken for a customer to select an
item from the catalogue

Query 2

With this query, we are aiming to assess the speed with which customers make purchases

at the web site by obtaining the probability of an order beingplaced within 10 minutes of

a customer having entered the web site, provided that they have not left and returned in

the meantime.

The Performance Tree equivalent of this query is shown in Figure 6.13, and relevant state

labels are defined as:

‘customer entered’ := (tag@(site entered))

‘order confirmed’ := (tag@(order confirmed))

‘aborted’ := (tag@(transaction aborted))

This query can also not be expressed using other formalisms,due to the need to obtain

the probability with which a passage occurs in a given amountof time, and the necessity

to reason about a single customer’s flow through the system. These features are only

supported by Performance Trees at present.

Evaluation obtains the passage time density of an order being placed by a customer after

6.2. Online Transaction System 151

Figure 6.13: A query addressing the probability with which an order has been confirmed
within 10 minutes of a customer having entered the web site

having entered the web site. This is shown in Figure 6.14. From this density, we find

that the probability of the order being placed by a customer within 10 minutes is0.176.

The fact that only 17.6% of visitors complete an order within10 minutes may indicate

that either most visitors only browse the web site without purchasing anything or that

customers generally take a while to browse the catalogue before committing themselves

to a purchase.

Query 3

With this query, we want to find out whether in 90% of the cases,the time that it takes

a single customer to enter the web site and proceed to the checkout, and to provide their

billing information for the order to complete and either leave the site or return to the

catalogue is less than 15 minutes, provided that they have not aborted the transaction in

the meantime.

152 Chapter 6. Case Studies

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.14: Passage time density for an order having been placed after a customer has
entered the site

The Performance Tree equivalent of this query is shown in Figure 6.15, and state labels

used in the query are defined as:

‘start1’ := (tag@(site entered))

‘target1’ := (tag@(at checkout))

‘start2’ := (tag@(billing info provided))

‘target2’ := (tag@(not at site))∨ (tag@(browsing catalogue))

‘aborted’ := (tag@(transaction aborted)))

This query cannot be reproduced by any other specification formalism, since it requires

the ability to reason about passage time densities, their percentiles and convolutions,

which are features specific to Performance Trees at the moment.

When the aim is to focus only on parts of a particular passage and disregard a period of

time in between, convolutions are useful. In this query, we are only interested in how long

it takes the customer to reach the checkout from the moment when they have entered the

web site and how long it takes them to either leave or return tothe catalogue after they

have provided their billing information. We are not interested in the amount of time that

elapses between them reaching checkout and providing theirbilling information.

Hence, during evaluation we calculate the passage time density for a customer to arrive

at the checkout, starting from their arrival at the site, as shown in Figure 6.16. We also

calculate the passage time density for the same customer to have left the web site or

6.2. Online Transaction System 153

Figure 6.15: A query addressing a constraint on the 90th percentile of the convolution of
two passage time densities for a customer to enter the site and proceed to the checkout and
to provide their billing information and leave the site or return to the product catalogue

returned to the product catalogue from the moment when they have provided their billing

information, as shown in Figure 6.17. These calculations can be carried out in parallel,

since they are independent. We convolve the two densities torepresent the combined

passage time density of the two independent passages. This is shown in Figure 6.18. We

then calculate the 90th percentile of this convolved density, which we find to be22.16.

This indicates that 90% of the time, it takes a customer more than 15 minutes to enter the

site and proceed to the checkout, and to provide their billing information and leave the

site or return to the product catalogue. Therefore, the result of the query isfalse.

Query 4

With this query, we aim at assessing the popularity of the website by looking at the

average rate at which visitors enter the site. We also want tofind out how many of the vis-

itors are not only looking around, but are in fact searching for a product in the catalogue.

154 Chapter 6. Case Studies

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.16: Passage time density for a
customer to have arrived at the checkout,
starting from the moment of their arrival
at the web site

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.17: Passage time density for a
customer to have left the web site, start-
ing from the moment when they have
provided their billing information

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.18: Convolution of the passage time densities of Figure 6.16 and Figure 6.17

Hence we are also interested in the average number of customers browsing the catalogue.

In addition, to find out how many customers make purchases after browsing the catalogue

on average, we are also interested in obtaining the average number of customers at the

checkout. The Performance Tree that represents this query is shown in Figure 6.19.

No other specification formalisms are currently able to express this query, due to the need

to reason about the average throughput of a transition and the expected values of steady-

state probability distributions.

As the query consists of three independent sub-queries thatare linked together by the

Mult operator, it can be evaluated in parallel. Its evaluation finds the average number of

visitors entering the web site to be0.404 persons per minute.

Considering the size of our model’s population (there are eight people in the system at

6.2. Online Transaction System 155

Figure 6.19: A query addressing the average rate of occurrence of customers entering
the web site, the average number of customers browsing the catalogue, and the average
number of customers at the checkout

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Number of customers browsing the catalogue

Figure 6.20: Steady-state distribution of
the number of customers browsing the
product catalogue

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Number of customers at the checkout

Figure 6.21: Steady-state distribution of
the number of customers at the checkout

any given time), this appears in relative proportion to be a reasonable approximation of

the traffic that a web site on the Internet might experience. The steady-state distribution

of the number of visitors browsing the catalogue is shown in Figure 6.20, from which

156 Chapter 6. Case Studies

the average is calculated to be1.432 persons per minute. Similarly, Figure 6.21 shows

the steady-state distribution of customers at the checkout, which produces an average of

0.913 persons per minute. This shows that the majority of visitorswho are browsing the

catalogue also end up purchasing something eventually. Thus, revisiting our interpretation

of the results for Query 2, we can now see that most visitors dopurchase goods; however,

it takes them more than 10 minutes to browse the product catalogue and place an order.

6.3 Hospital Accident & Emergency Unit

In this case study, we will construct and analyse performance queries on a modified ver-

sion of the hospital Accident & Emergency (A&E) unit model first introduced in [Suto07].

The GSPN model of the A&E unit is shown in Figure 6.22. The model describes a system

with the following behaviour. An initial number of healthy individuals fall ill at a certain

rate, and it is pessimistically assumed that they will need to visit an A&E unit at a local

hospital. Individuals who have fallen ill either go to the hospital themselves, in which

case they are categorised as walk-in patients, or place an emergency call in acute cases

to request an ambulance. In this case, they are classified as ambulance patients. After

having entered A&E, walk-in patients are asked to wait untilthey can be seen by a nurse

for initial assessment. Ambulance patients are loaded ontoa trolley, on which they wait

until a nurse becomes available to attend to them. Nurses assess ambulance patients with

priority. After initial assessment, patients proceed to wait to either be seen by a doctor, be

taken for emergency surgery, or be sent for laboratory tests. Once a patient is discharged,

they are optimistically assumed to be healthy.

The model is parameterised withP , N , D andA, which denote the number of tokens on

placeshealthy, nurses, doctorsandambulances, respectively. For our case study scenario,

we use the configurationP = 8, N = 2, D = 2 andA = 1. GSPN transition rates are

specified in theDNAmacamodel description in Section A.3.1.

6.3. Hospital Accident & Emergency Unit 157

Figure 6.22: GSPN model of a hospital’s Accident & Emergencyunit

158 Chapter 6. Case Studies

Query 1

With this query, we aim to compare treatment times between walk-in and ambulance

patients. Ambulance patients receive prioritised attention during the first stages of their

stay at the A&E unit, as indicated by higher rates for certaintransitions in the model that

deal with ambulance patients, e.g.emergency call, load patient, ambulance arrival, see

emergency nurseandcomplete emergency assessment(see Section A.3.1). We would like

to ascertain whether this initial prioritisation has a prolonged effect on patient treatment

times. If it does, most ambulance patients would be discharged from the hospital more

promptly than regular walk-in patients. Hence, we specify aperformance query to address

the 90th percentile of the density of time taken for a walk-in patientto leave the hospital,

considering from the moment of arrival. The query also addresses the same percentile of

the density of time taken for an ambulance patient to leave the hospital, considering from

the moment when they have called for an ambulance. If it is thecase that the time value

that is the 90th percentile for walk-in patients is greater than that for ambulance patients,

we know that ambulance patients receive prioritised care throughout their stay at the A&E

unit. In addition, to assess the efficiency of the A&E unit, weare also interested in the

steady-state probability distribution of idle nurses and doctors.

The Performance Tree equivalent of this query is given in Figure 6.23. To obtain the

passage time density for a single patient to proceed throughA&E, we need to tag an

individual customer in our model to track their progress. Relevant state labels for the

model are defined as:

‘patient in waiting room’ := (tag@(waiting room))

‘patient awaiting ambulance’ := (tag@(awaiting ambulance))

‘patient healthy’ := (tag@(healthy))

This query cannot be expressed by any other specification formalism, since Performance

Trees are currently the only formalism able to reason about the performance concepts

forming part of this query.

Parallelisation is possible when evaluating the arithmetic comparison operator, since its

two sub-trees are independent of each other, and also when evaluating the SS:P operators

6.3. Hospital Accident & Emergency Unit 159

Figure 6.23: Compound performance query addressing percentiles of passage time densi-
ties and steady-state probability distributions

that are connected by the Mult operator, since they are independent sub-queries.

The evaluation of this query results in the generation of a state space of 1 355 166 states

and 5 483 010 transitions for the model. Evaluation determines the result of the first part

of the query to befalse, indicating that ambulance patients do not benefit from prioritised

care throughout their stay at the A&E unit. This is the case because the 90th percentile

of the passage time density for walk-in patients (see Figure6.24) was found to be72.764

minutes, while the 90th percentile of the passage time density for ambulance patients (see

Figure 6.25) evaluated to73.986 minutes. This result implies that an initial prioritisation

has no overall effect on how patients are dealt with on the long run. This conclusion can

also be derived intuitively by comparing the two densities and noting that there is only a

marginal difference between them.

The result of the second part of the query is the steady-stateprobability distribution of

idle nurses (see Figure 6.26), while the result of the third sub-query is the steady-state

160 Chapter 6. Case Studies

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Time

Passage time density

Figure 6.24: Passage time density for
walk-in patients

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Time

Passage time density

Figure 6.25: Passage time density for
ambulance patients

probability distribution of idle doctors (see Figure 6.27). These results indicate that both

nurses are idle more than half of the time, while doctors are kept fairly busy. Given that

the number of patients is somewhat modest, this outcome is not unexpected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

Number of idle nurses

Figure 6.26: Steady-state probability dis-
tribution of idle nurses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

Number of idle doctors

Figure 6.27: Steady-state probability dis-
tribution of idle doctors

Query 2

With this query, we would like to gain an appreciation of the efficiency of doctors at the

A&E unit by assessing the average number of patients that arewaiting for a doctor. In

addition, we are also interested in the average rate of surgeries to assess how frequently

critical care is provided at the A&E unit. The Performance Tree equivalent of this query

is shown in Figure 6.28.

This query can at present only be expressed by Performance Trees, due to the need to

reason about a steady-state distribution and its mean.

6.3. Hospital Accident & Emergency Unit 161

Figure 6.28: Performance query addressing the average number of patients waiting for a
doctor and the average rate of occurrence of surgeries

The query can be evaluated in parallel, as the Mult operator connects two independent

sub-queries. Hence, the evaluation of the mean of the steady-state distribution can take

place at the same time as the evaluation of the average rate ofsurgeries.

During the evaluation of the query, a state space of 698 922 states and 5 863 182 tran-

sitions was generated. The reason for the state space being smaller than that generated

previously is that for this query it is not necessary to tag customers. Figure 6.29 shows

the steady-state distribution of the number of patients waiting for a doctor, whose average

was calculated to be1.25. It appears that the average number of patients waiting for a

doctor is relatively low, which indicates that doctors are dealing with patients efficiently,

since waiting patients are not accumulating. Results for thesteady-state distribution of

idle doctors that we have obtained during the evaluation of the previous query (see Fig-

ure 6.27), show that doctors are kept relatively busy. This supports our interpretation of

the results of this query. From the evaluation of the second part of the query, we find that

162 Chapter 6. Case Studies

the average rate of occurrence of surgeries is0.059 operations per hour. The fact that the

average rate of surgeries is very low might be an indication for the fact that only a small

proportion of hospital patients have injuries severe enough to require immediate surgery.

Therefore, we conclude that critical care only needs to be provided in a very small number

of cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Number of patients waiting for doctors

Figure 6.29: Steady-state probability distribution of thenumber of patients waiting for a
doctor

Query 3

In this query, we establish a requirement for the A&E unit, stating that 98% of the time,

all patients should be seen, treated and discharged within an hour. The Performance Tree

equivalent of this query is shown in Figure 6.30, with applicable state labels defined as:

‘patient admitted’ := (tag@(waiting room))∨ (tag@(trolley))

‘patient discharged’ := (tag@(healthy))

Other query specification formalisms are not able to expressthis query, as it requires

reasoning about a passage time density and the probability with which a passage occurs

within a given time period.

Due to the requirement of this query to reason about tagged customers, state space gener-

ation results in the same number of states and transitions asfor the first query. Evaluation

of the query yields a probability density function for the time taken for patients to enter

A&E, be seen, treated and discharged. This is shown in Figure6.31. The probability with

which this passage takes place within one hour (i.e. 60 minutes) is calculated to be0.863,

6.3. Hospital Accident & Emergency Unit 163

Figure 6.30: Performance query addressing a modified version of the UK Government
target for A&E units

which does not lie within the probability interval[0.98, 1], as set out by the query. Hence,

the result of the query isfalse, since patients are not seen, treated and discharged within

an hour 98% of the time.

Query 4

With this query, we aim at obtaining the Coefficient of Variation (the ratio of the standard

deviation to the mean) of the time that it takes for the first person to recover from surgery

at the A&E unit.

This query can be specified using the Performance Tree macro mechanism. The macro

definition for the concept of Coefficient of Variation is shownin Figure 6.32, and its

usage with the argument applicable to this query is presented in Figure 6.33. Relevant

state labels are defined as:

164 Chapter 6. Case Studies

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.31: Density of the time taken for patients to enter and leave the A&E unit

‘everyone healthy’ := (#(healthy) == 8)∧ (#(nurses) == 2)∧

(#(doctors) == 2)∧ (#(ambulances) == 1)

‘first patient recovered’ := (#(patient recovered) == 1)

Figure 6.32: Definition of the macro representing the concept of Coefficient of Variation

This query can only be expressed by Performance Trees, due tothe need to reason about

concepts that only they are able to express.

6.3. Hospital Accident & Emergency Unit 165

Figure 6.33: Usage of the macro for the calculation of the Coefficient of Variation with a
specified argument

This query is a good example of how caching can be used to increase evaluation speed,

since the mean of the passage time density is used twice. Onceit has been evaluated, the

result can be retrieved from the cache when it is be calculated the second time. During

the evaluation of the query, the same number of states and transitions were generated as

for the first query. The density of time for the first patient tohave recovered is shown in

Figure 6.34. Its mean and variance are found to be27.4982 minutes and1005.51 minutes2,

respectively. From these values, we obtain the Coefficient ofVariation as being0.5743.

166 Chapter 6. Case Studies

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

Time (in minutes)

Passage time density

Figure 6.34: Passage time density for the first a patient to recover at the A&E unit

Chapter 7

Conclusion

7.1 Conceptual Contributions

The main contribution of the work presented in this thesis isthe introduction and de-

velopment of the Performance Tree formalism – a new approachto the specification of

performance queries on models of real-life systems.

Until recently, performance queries have mostly been specified with complicated textual

languages that require specialist knowledge to be used correctly. Performance Trees offer

an accessible graphical alternative that assumes only a basic engineering background and

that enables users to specify performance queries intuitively, without the need to learn

complicated syntax or sophisticated abstract concepts. Performance queries are specified

as hierarchical tree structures, consisting of a set of nodes that represent performance

concepts and values, and a set of arcs that connect them. The hierarchical node structure

resembles that of a computer program in the way in which nodesrepresenting perfor-

mance concepts behave like functions that take inputs and produce an output, and the way

in which nodes representing values are interpreted as inputs to such functions. This hi-

erarchical structure makes the specification of Performance Tree queries rather intuitive,

and also allows queries to become arbitrarily complex, while at the same time maintaining

a reasonable level of clarity and manageability from a user’s point of view.

167

168 Chapter 7. Conclusion

The Performance Tree formalism incorporates a wide range ofoperators, which allow

performance queries to express concepts used in classical stochastic property verification

and to address quantitative performance measures of relevance. Currently, Performance

Trees are able to reason about passage time densities and distributions, their convolutions,

moments and percentiles, steady-state distributions, transient probability measures, sets

of states that satisfy certain steady-state or transient probability constraints, mean rates of

occurrence of actions, and standard logical and arithmeticoperations and comparisons. To

the best of our knowledge, Performance Trees are the first query specification formalism

to support this level of expressiveness, which can be further extended by using a macro

mechanism to define custom performance concepts as combinations of basic Performance

Tree operators, or by incorporating new stand-alone operators.

Performance Trees are versatile in terms of the models that they can express queries on.

Due to their abstract state and action specification mechanism, Performance Trees can be

used with a wide range of modelling formalisms that are basedon state-transition systems.

We have introduced the Performance Tree formalism togetherwith a syntax that defines

the appropriate use of its operators, a framework that defines operator types and pre-

scribes applicable compatibility requirements, and quantitative semantics that rigorously

establish their underlying mathematical meaning.

7.2 Practical Contributions

To enable the use of Performance Trees in real-life analysisscenarios, we have incorpo-

rated software support for the formalism intoPIPE2, a model specification tool that forms

part of a parallel and distributed performance analysis environment to provide accessible

performance query specification and scalable automated evaluation capabilities.

PIPE2is an open-source platform-independent Petri net editor, which supports the design

and analysis of GSPN-based system models. We have implemented a Performance Tree

query editor in the form of aPIPE2 module to enable the graphical and textual speci-

fication of performance queries. This module serves at the same time as a front-end to

7.3. Applications 169

the analysis environment, which allows users to submit analysis jobs for evaluation, and

which visualises obtained results. We have also implemented a natural language-based

query translation mechanism, which aids users in the intuitive verification of their queries

during the specification process. In addition, a guided natural language-based query spec-

ification mechanism that constructs query trees automatically is also available.

Alongside extensions toPIPE2, we have developed an integrated analysis environment

to enable the fully automated analysis of system models, without requiring manual in-

tervention. The environment consists of a number of different components:PIPE2,

which provides the graphical interface and single point of access to users; the Analy-

sis Server, which manages and coordinates analysis jobs; a set of specialised parallel

and distributed analysis tools, which perform numerical analyses to calculate requested

performance measures; and a Grid-based analysis cluster, which provides the supporting

computational infrastructure.

To illustrate the applicability of Performance Trees in real-life analysis scenarios, we have

presented a number of case studies in which we have specified and evaluated complex

performance queries on system models with the help of our analysis environment. We

have analysed models of an electronic voting system, an online transaction system and a

hospital’s Accident & Emergency unit.

7.3 Applications

Performance Trees represent an accessible and versatile alternative to existing approaches

to performance query specification. Their broad expressiveness, which combines a wide

range of performance concepts from a number of specificationformalisms, and their ex-

tensibility, which allows them to be adapted to custom analysis requirements and scenar-

ios, makes them an attractive choice and a valuable asset to system engineers.

Performance Trees can be used for the specification of performance queries on stochastic

models in scenarios where systems can be represented by state-based stochastic modelling

formalisms, such as stochastic Petri nets, stochastic process algebras and closed queueing

170 Chapter 7. Conclusion

networks. It is also often necessary to evaluate the efficiency of processes represented

as workflows. Since workflows can be modelled stochastically, Performance Trees lend

themselves to their analysis very naturally.

Numerous industries depend on the reliable operation and near-optimal performance of

systems that support their activities, such as computer andbusiness-specific systems.

Manufacturing, for example, is heavily reliant on machinery, whose efficiency and relia-

bility are of strategic importance. Hence, performance analysis is essential. The telecom-

munications industry, as a further example, is governed by QoS guarantees that are agreed

upon with customers in Service Level Agreement contracts. It is therefore important to be

able to predict compliance with SLAs. Similarly, financial institutions critically depend

on the reliability and performance of their systems (especially databases and trading plat-

forms), and thus consider performance analysis to be of utmost importance. Public health

care institutions, furthermore, require response time analyses of patient flow models to

help improve patient-perceived QoS amidst ever-growing service demand.

Performance Trees also have the potential to not only provide a way of verifying com-

pliance with SLA-related QoS requirements on models beforeimplementation, but to

provide a way to monitor compliance with QoS requirements during system operation.

It is possible to extract performance properties from running systems directly by assign-

ing monitoring agents to them, which are self-contained software components that act as

passive measurement data collectors. By sampling performance information in this way,

instead of deriving it through numerical analysis, resultsof performance queries represent

a significantly more accurate reflection of actual system behaviour. Ambiguity is often

a considerable problem in QoS requirement specification, and it is often unclear during

analysis what system properties are being observed. Performance Trees have the potential

to serve as a unifying framework that supports the (also natural language-based) specifi-

cation of performance properties on real-life systems and their model representations at

the same time. The problem of ambiguity will be overcome by the ability of Performance

Trees to define in an unambiguous manner what exactly is beingmeasured. This enables

system designers to compare real-life systems with corresponding models in an accessible

way in order to locate possible performance bottlenecks.

7.4. Future Work 171

These are only a few selected examples of areas in which Performance Trees could be

used effectively, but they give a good indication of the potential for the application of

Performance Trees in other industrial scenarios.

7.4 Future Work

For the near future, we envisage the implementation of analysis tools for the evaluation

of the ProbInStates, SS:S, StatesAtTime, Macro and⊆ operators. Although they form

part of the set of basic Performance Tree operators, they canpresently not be evaluated,

due to a lack of tool support. Performance queries that reason about individual tagged

customers can already be evaluated manually; however,PIPE2’s graphical Performance

Tree constraint specification mechanism for sets of states needs to be extended to enable

the automated evaluation of queries addressing tagged customers.

The extension of the current level of expressiveness of Performance Trees will also need

to be addressed, to cater for analysis scenarios that require the ability to reason about

concepts of performance that are currently not supported byexisting operators. Such

extensions will require minor enhancements ofPIPE2 to support the graphical specifica-

tion of queries that use the new operators, and supporting analysis tools will need to be

integrated into the analysis environment to cater for theirevaluation.

To provide users with more flexibility in terms of the models that they can query with

Performance Trees, the Analysis Server will be integrated with other front-ends, such

as thePEPA Plug-in [Tribastone07], for example. Furthermore, in an effort to sup-

port global collaboration, our analysis environment will be integrated withPerformDB

[Argent-Katwala06, Argent-Katwala07a], an online database of performance models and

related performance results. This will facilitate the automated storage and retrieval of

models specified inPIPE2, and enable users to globally share their models and results.

In addition, existing analysis tools will be further enhanced to support the evaluation

of performance queries on models of even greater complexitythan presently possible.

An expansion of the hardware infrastructure that provides the computational resources

172 Chapter 7. Conclusion

to our analysis environment will also take place. This will be realised by interlinking

our analysis cluster with multiple globally dispersed resources to increase the analysis

environment’s ability to cope with very large system modelsthat necessitate extremely

resource-intensive computations.

Appendix A

Case Study Model Descriptions

A.1 Electronic Voting System

A.1.1 DNAmaca Model

TheDNAmacamodel that corresponds to the GSPN model of Figure 6.1 is given below:

\model{

\constant{no_of_voters}{100}
\constant{no_of_pollers}{10}
\constant{no_of_servers}{10}

\constant{rate_t1}{1.0}
\constant{rate_t2}{1.0}
\constant{rate_t3}{0.03}
\constant{rate_t4}{0.2}
\constant{rate_t5}{0.3}
\constant{rate_t6}{0.01}
\constant{rate_t7}{0.2}
\constant{rate_t8}{0.3}
\constant{rate_t9}{0.00001}

\statevector{\type{short}{
NOT_VOTED, VOTED, POLLING_UNITS, VOTE_TAKEN, SERVERS,
SERVERS_BROKEN, POLLERS_BROKEN}

}

\initial{
NOT_VOTED = no_of_voters;
VOTED = 0;

173

174 Appendix A. Case Study Model Descriptions

POLLING_UNITS = no_of_pollers;
VOTE_TAKEN = 0;
SERVERS = no_of_servers;
SERVERS_BROKEN = 0;
POLLERS_BROKEN = 0;

}

\transition{t1}{
\condition{

NOT_VOTED > 0 && POLLING_UNITS > 0
}
\action{

next->NOT_VOTED = NOT_VOTED - 1;
next->VOTED = VOTED + 1;
next->POLLING_UNITS = POLLING_UNITS - 1;
next->VOTE_TAKEN = VOTE_TAKEN + 1;

}
\rate{

(NOT_VOTED < POLLING_UNITS) ?
(rate_t1 * (double)NOT_VOTED) :
(rate_t1 * (double)POLLING_UNITS)

}
}

\transition{t2}{
\condition{

VOTE_TAKEN > 0 && SERVERS > 0
}
\action{

next->VOTE_TAKEN = VOTE_TAKEN - 1;
next->POLLING_UNITS = POLLING_UNITS + 1;

}
\rate{

rate_t2 * (double)SERVERS
}

}

\transition{t3}{
\condition{

POLLING_UNITS > 0
}
\action{

next->POLLING_UNITS = POLLING_UNITS - 1;
next->POLLERS_BROKEN = POLLERS_BROKEN + 1;

}
\rate{

rate_t3 * (double)POLLING_UNITS
}

}

\transition{t4}{
\condition{

POLLERS_BROKEN > 0
}
\action{

next->POLLING_UNITS = POLLING_UNITS + 1;

A.1. Electronic Voting System 175

next->POLLERS_BROKEN = POLLERS_BROKEN - 1;
}
\rate{

rate_t4 * (double)POLLERS_BROKEN
}

}

\transition{t5}{
\condition{

POLLERS_BROKEN > PP-1
}
\action{

next->POLLERS_BROKEN = POLLERS_BROKEN - PP;
next->POLLING_UNITS = POLLING_UNITS + PP;

}
\rate{

rate_t5
}

}

\transition{t6}{
\condition{

SERVERS > 0
}
\action{

next->SERVERS = SERVERS - 1;
next->SERVERS_BROKEN = SERVERS_BROKEN + 1;

}
\rate{

rate_t6 * (double)SERVERS
}

}

\transition{t7}{
\condition{

SERVERS_BROKEN > 0
}
\action{

next->SERVERS_BROKEN = SERVERS_BROKEN - 1;
next->SERVERS = SERVERS + 1;

}
\rate{

rate_t7 * (double)SERVERS_BROKEN
}

}

\transition{t8}{
\condition{

SERVERS_BROKEN > SS-1
}
\action{

next->SERVERS_BROKEN = SERVERS_BROKEN - SS;
next->SERVERS = SERVERS + SS;

}
\rate{

rate_t8

176 Appendix A. Case Study Model Descriptions

}
}

\transition{t9}{
\condition{

VOTED > VV-1
}
\action{

next->VOTED = VOTED - VV;
next->NOT_VOTED = NOT_VOTED + VV;

}
\rate{

rate_t9
}

}
}

A.1.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Figure 6.1 is given below:

not_voted = (vote, r1).voted

voted = (reset, r2).not_voted

vote_taken = (process_vote, r3).polling_units

polling_units = (vote, r1).vote_taken +
(polling_unit_breakdown, r4).pollers_broken

pollers_broken = (polling_unit_repaired, r5).polling_units +
(all_polling_units_repaired, r6).polling_units

servers = (process_vote, r3).servers +
(server_breakdown, r7).servers_broken

servers_broken = (server_repaired, r8).servers +
(all_servers_repaired, r9).servers

voters = not_voted[CC]

pollers = polling_units[MM]

voting_servers = servers[NN]

Voting_System = (voters <vote> pollers) <>
(voting_servers <process_vote> vote_taken)

A.2. Online Transaction System Model 177

A.2 Online Transaction System Model

A.2.1 DNAmaca Model

TheDNAmacamodel that corresponds to the GSPN model of Figure 3.9 is given below:

\model{

\constant{no_of_customers}{8}

\constant{rate_enter_site}{0.6}
\constant{rate_quit_site}{0.03}
\constant{rate_go_elsewhere}{0.8}
\constant{rate_browse_catalogue}{0.7}
\constant{rate_quit_browsing}{0.02}
\constant{rate_select_item}{0.7}
\constant{rate_jump_to_checkout}{0.1}
\constant{rate_back_to_browse_from_select}{0.2}
\constant{rate_quit_selecting}{0.02}
\constant{rate_go_to_checkout}{0.6}
\constant{rate_back_to_browse_from_checkout}{0.1}
\constant{rate_quit_checking_out}{0.01}
\constant{rate_log_in}{0.3}
\constant{rate_register}{0.5}
\constant{rate_provide_address}{0.9}
\constant{rate_quit_login}{0.01}
\constant{rate_provide_details}{0.9}
\constant{rate_quit_registration}{0.01}
\constant{rate_provide_billing_info}{0.9}
\constant{rate_quit_address_info_provision}{0.01}
\constant{rate_confirm_order}{0.9}
\constant{rate_quit_billing_info_provision}{0.01}
\constant{rate_back_to_browse_from_confirm}{0.5}
\constant{rate_leave_site}{0.5}

\statevector{
\type{short}{
NOT_AT_SITE, SITE_ENTERED, BROWSING_CATALOGUE,
ITEM_SELECTED, AT_CHECKOUT, LOGGED_IN, REGISTERED,
ADDRESS_PROVIDED, BILLING_INFO_PROVIDED,
ORDER_CONFIRMED, TRANSACTION_ABORTED, tagged_location

}
}

\initial{
NOT_AT_SITE = no_of_customers;
SITE_ENTERED = 0;
BROWSING_CATALOGUE = 0;
ITEM_SELECTED = 0;
AT_CHECKOUT = 0;
LOGGED_IN = 0;
REGISTERED = 0;

178 Appendix A. Case Study Model Descriptions

ADDRESS_PROVIDED = 0;
BILLING_INFO_PROVIDED = 0;
ORDER_CONFIRMED = 0;
TRANSACTION_ABORTED = 0;
tagged_location = 0;

}

% enter_site

\transition{T0}{
\condition{

(tagged_location != 0 && NOT_AT_SITE > 0) ||
(tagged_location == 0 && NOT_AT_SITE > 1)

}
\action{

next->NOT_AT_SITE = NOT_AT_SITE - 1;
next->SITE_ENTERED = SITE_ENTERED + 1;

}
\rate{

(tagged_location == 0)
?
(rate_enter_site * ((double)(NOT_AT_SITE - 1)) *
(((double)(NOT_AT_SITE - 1)) / ((double)NOT_AT_SITE)))
:
(rate_enter_site * ((double)(NOT_AT_SITE)))

}
}

\transition{T0_tagged}{
\condition{

(tagged_location == 0) && (NOT_AT_SITE > 0)
}
\action{

next->NOT_AT_SITE = NOT_AT_SITE - 1;
next->SITE_ENTERED = SITE_ENTERED + 1;
next->tagged_location = 1;

}
\rate{

NOT_AT_SITE > 1
?
(rate_enter_site * ((double)(1)) * (((double)(1)) /
((double)NOT_AT_SITE)))
:
rate_enter_site

}
}

% quit_site

\transition{T1}{
\condition{

(tagged_location != 1 && SITE_ENTERED > 0) ||
(tagged_location == 1 && SITE_ENTERED > 1)

}

A.2. Online Transaction System Model 179

\action{
next->SITE_ENTERED = SITE_ENTERED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 1)
?
(rate_quit_site * ((double)(SITE_ENTERED - 1)) *
(((double)(SITE_ENTERED - 1)) / ((double)SITE_ENTERED)))
:
(rate_quit_site * ((double)(SITE_ENTERED)))

}
}

\transition{T1_tagged}{
\condition{

(tagged_location == 1) && (SITE_ENTERED > 0)
}
\action{

next->SITE_ENTERED = SITE_ENTERED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

SITE_ENTERED > 1
?
(rate_quit_site * ((double)(1)) * (((double)(1)) /
((double)SITE_ENTERED)))
:
rate_quit_site

}
}

% browse_catalogue

\transition{T2}{
\condition{

(tagged_location != 1 && SITE_ENTERED > 0) ||
(tagged_location == 1 && SITE_ENTERED > 1)

}
\action{

next->SITE_ENTERED = SITE_ENTERED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;

}
\rate{

(tagged_location == 1)
?
(rate_browse_catalogue * ((double)(SITE_ENTERED - 1)) *
(((double)(SITE_ENTERED - 1)) / ((double)SITE_ENTERED)))
:
(rate_browse_catalogue * ((double)(SITE_ENTERED)))

}
}

180 Appendix A. Case Study Model Descriptions

\transition{T2_tagged}{
\condition{

(tagged_location == 1) && (SITE_ENTERED > 0)
}
\action{

next->SITE_ENTERED = SITE_ENTERED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;
next->tagged_location = 2;

}
\rate{

SITE_ENTERED > 1
?
(rate_browse_catalogue * ((double)(1)) * (((double)(1)) /
((double)SITE_ENTERED)))
:
rate_browse_catalogue

}
}

% select_item

\transition{T3}{
\condition{

(tagged_location != 2 && BROWSING_CATALOGUE > 0) ||
(tagged_location == 2 && BROWSING_CATALOGUE > 1)

}
\action{

next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->ITEM_SELECTED = ITEM_SELECTED + 1;

}
\rate{

(tagged_location == 2)
?
(rate_select_item * ((double)(BROWSING_CATALOGUE - 1)) *
(((double)(BROWSING_CATALOGUE - 1)) /
((double)BROWSING_CATALOGUE)))
:
(rate_select_item * ((double)(BROWSING_CATALOGUE)))

}
}

\transition{T3_tagged}{
\condition{

(tagged_location == 2) && (BROWSING_CATALOGUE > 0)
}
\action{

next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->ITEM_SELECTED = ITEM_SELECTED + 1;
next->tagged_location = 3;

}
\rate{

BROWSING_CATALOGUE > 1
?
(rate_select_item * ((double)(1)) * (((double)(1)) /
((double)BROWSING_CATALOGUE)))
:

A.2. Online Transaction System Model 181

rate_select_item
}

}

% go_to_checkout

\transition{T4}{
\condition{

(tagged_location != 3 && ITEM_SELECTED > 0) ||
(tagged_location == 3 && ITEM_SELECTED > 1)

}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->AT_CHECKOUT = AT_CHECKOUT + 1;

}
\rate{

(tagged_location == 3)
?
(rate_go_to_checkout * ((double)(ITEM_SELECTED - 1)) *
(((double)(ITEM_SELECTED - 1)) / ((double)ITEM_SELECTED)))
:
(rate_go_to_checkout * ((double)(ITEM_SELECTED)))

}
}

\transition{T4_tagged}{
\condition{

(tagged_location == 3) && (ITEM_SELECTED > 0)
}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->AT_CHECKOUT = AT_CHECKOUT + 1;
next->tagged_location = 4;

}
\rate{

ITEM_SELECTED > 1
?
(rate_go_to_checkout * ((double)(1)) * (((double)(1)) /
((double)ITEM_SELECTED)))
:
rate_go_to_checkout

}
}

% jump_to_checkout

\transition{T5}{
\condition{

(tagged_location != 2 && BROWSING_CATALOGUE > 0) ||
(tagged_location == 2 && BROWSING_CATALOGUE > 1)

}
\action{

next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->AT_CHECKOUT = AT_CHECKOUT + 1;

}

182 Appendix A. Case Study Model Descriptions

\rate{
(tagged_location == 2)
?
(rate_jump_to_checkout * ((double)(BROWSING_CATALOGUE - 1)) *
(((double)(BROWSING_CATALOGUE - 1)) /
((double)BROWSING_CATALOGUE)))
:
(rate_jump_to_checkout * ((double)(BROWSING_CATALOGUE)))

}
}

\transition{T5_tagged}{
\condition{

(tagged_location == 2) && (BROWSING_CATALOGUE > 0)
}
\action{

next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->AT_CHECKOUT = AT_CHECKOUT + 1;
next->tagged_location = 4;

}
\rate{

BROWSING_CATALOGUE > 1
?
(rate_jump_to_checkout * ((double)(1)) * (((double)(1)) /
((double)BROWSING_CATALOGUE)))
:
rate_jump_to_checkout

}
}

% quit_browsing

\transition{T6}{
\condition{

(tagged_location != 2 && BROWSING_CATALOGUE > 0) ||
(tagged_location == 2 && BROWSING_CATALOGUE > 1)

}
\action{

next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 2)
?
(rate_quit_browsing * ((double)(BROWSING_CATALOGUE - 1)) *
(((double)(BROWSING_CATALOGUE - 1)) /
((double)BROWSING_CATALOGUE)))
:
(rate_quit_browsing * ((double)(BROWSING_CATALOGUE)))

}
}

\transition{T6_tagged}{
\condition{

(tagged_location == 2) && (BROWSING_CATALOGUE > 0)
}

A.2. Online Transaction System Model 183

\action{
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

BROWSING_CATALOGUE > 1
?
(rate_quit_browsing * ((double)(1)) * (((double)(1)) /
((double)BROWSING_CATALOGUE)))
:
rate_quit_browsing

}
}

% back_to_browse_from_select

\transition{T7}{
\condition{

(tagged_location != 3 && ITEM_SELECTED > 0) ||
(tagged_location == 3 && ITEM_SELECTED > 1)

}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;

}
\rate{

(tagged_location == 3)
?
(rate_back_to_browse_from_select *
((double)(ITEM_SELECTED - 1)) *
(((double)(ITEM_SELECTED - 1)) /
((double)ITEM_SELECTED)))
:
(rate_back_to_browse_from_select *
((double)(ITEM_SELECTED)))

}
}

\transition{T7_tagged}{
\condition{

(tagged_location == 3) && (ITEM_SELECTED > 0)
}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;
next->tagged_location = 2;

}
\rate{

ITEM_SELECTED > 1
?
(rate_back_to_browse_from_select * ((double)(1)) *
(((double)(1)) / ((double)ITEM_SELECTED)))
:
rate_back_to_browse_from_select

}

184 Appendix A. Case Study Model Descriptions

}

% back_to_browse_from_checkout

\transition{T8}{
\condition{

(tagged_location != 4 && AT_CHECKOUT > 0) ||
(tagged_location == 4 && AT_CHECKOUT > 1)

}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;

}
\rate{

(tagged_location == 4)
?
(rate_back_to_browse_from_checkout *
((double)(AT_CHECKOUT - 1)) *
(((double)(AT_CHECKOUT - 1)) /
((double)AT_CHECKOUT)))
:
(rate_back_to_browse_from_checkout *
((double)(AT_CHECKOUT)))

}
}

\transition{T8_tagged}{
\condition{

(tagged_location == 4) && (AT_CHECKOUT > 0)
}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;
next->tagged_location = 2;

}
\rate{

AT_CHECKOUT > 1
?
(rate_back_to_browse_from_checkout * ((double)(1)) *
(((double)(1)) / ((double)AT_CHECKOUT)))
:
rate_back_to_browse_from_checkout

}
}

% quit_selecting

\transition{T9}{
\condition{

(tagged_location != 3 && ITEM_SELECTED > 0) ||
(tagged_location== 3 && ITEM_SELECTED > 1)

}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}

A.2. Online Transaction System Model 185

\rate{
(tagged_location == 3)
?
(rate_quit_selecting * ((double)(ITEM_SELECTED - 1)) *
(((double)(ITEM_SELECTED - 1)) /
((double)ITEM_SELECTED)))
:
(rate_quit_selecting * ((double)(ITEM_SELECTED)))

}
}

\transition{T9_tagged}{
\condition{

(tagged_location==3) && (ITEM_SELECTED > 0)
}
\action{

next->ITEM_SELECTED = ITEM_SELECTED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

ITEM_SELECTED > 1
?
(rate_quit_selecting * ((double)(1)) * (((double)(1)) /
((double)ITEM_SELECTED)))
:
rate_quit_selecting

}
}

% quit_checking_out

\transition{T10}{
\condition{

(tagged_location != 4 && AT_CHECKOUT > 0) ||
(tagged_location == 4 && AT_CHECKOUT > 1)

}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 4)
?
(rate_quit_checking_out * ((double)(AT_CHECKOUT - 1)) *
(((double)(AT_CHECKOUT - 1)) / ((double)AT_CHECKOUT)))
:
(rate_quit_checking_out * ((double)(AT_CHECKOUT)))

}
}

\transition{T10_tagged}{
\condition{

(tagged_location == 4) && (AT_CHECKOUT > 0)
}

186 Appendix A. Case Study Model Descriptions

\action{
next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

AT_CHECKOUT > 1
?
(rate_quit_checking_out * ((double)(1)) *
(((double)(1)) / ((double)AT_CHECKOUT)))
:
rate_quit_checking_out

}
}

% log_in

\transition{T11}{
\condition{

(tagged_location != 4 && AT_CHECKOUT > 0) ||
(tagged_location == 4 && AT_CHECKOUT > 1)

}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->LOGGED_IN = LOGGED_IN + 1;

}
\rate{

(tagged_location == 4)
?
(rate_log_in * ((double)(AT_CHECKOUT - 1)) *
(((double)(AT_CHECKOUT - 1)) /
((double)AT_CHECKOUT)))
:
(rate_log_in * ((double)(AT_CHECKOUT)))

}
}

\transition{T11_tagged}{
\condition{

(tagged_location == 4) && (AT_CHECKOUT > 0)
}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->LOGGED_IN = LOGGED_IN + 1;
next->tagged_location = 5;

}
\rate{

AT_CHECKOUT > 1
?
(rate_log_in * ((double)(1)) * (((double)(1)) /
((double)AT_CHECKOUT)))
:
rate_log_in

}
}

A.2. Online Transaction System Model 187

% register

\transition{T12}{
\condition{

(tagged_location != 4 && AT_CHECKOUT > 0) ||
(tagged_location == 4 && AT_CHECKOUT > 1)

}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->REGISTERED = REGISTERED + 1;

}
\rate{

(tagged_location == 4)
?
(rate_register * ((double)(AT_CHECKOUT - 1)) *
(((double)(AT_CHECKOUT - 1)) /
((double)AT_CHECKOUT)))
:
(rate_register * ((double)(AT_CHECKOUT)))

}
}

\transition{T12_tagged}{
\condition{

(tagged_location == 4) && (AT_CHECKOUT > 0)
}
\action{

next->AT_CHECKOUT = AT_CHECKOUT - 1;
next->REGISTERED = REGISTERED + 1;
next->tagged_location = 6;

}
\rate{

AT_CHECKOUT > 1
?
(rate_register * ((double)(1)) * (((double)(1)) /
((double)AT_CHECKOUT)))
:
rate_register

}
}

% provide_address

\transition{T13}{
\condition{

(tagged_location != 5 && LOGGED_IN > 0) ||
(tagged_location == 5 && LOGGED_IN > 1)

}
\action{

next->LOGGED_IN = LOGGED_IN - 1;
next->ADDRESS_PROVIDED = ADDRESS_PROVIDED + 1;

}
\rate{

(tagged_location == 5)
?
(rate_provide_address * ((double)(LOGGED_IN - 1)) *

188 Appendix A. Case Study Model Descriptions

(((double)(LOGGED_IN - 1)) / ((double)LOGGED_IN)))
:
(rate_provide_address * ((double)(LOGGED_IN)))

}
}

\transition{T13_tagged}{
\condition{

(tagged_location == 5) && (LOGGED_IN > 0)
}
\action{

next->LOGGED_IN = LOGGED_IN - 1;
next->ADDRESS_PROVIDED = ADDRESS_PROVIDED + 1;
next->tagged_location = 7;

}
\rate{

LOGGED_IN > 1
?
(rate_provide_address * ((double)(1)) *
(((double)(1)) / ((double)LOGGED_IN)))
:
rate_provide_address

}
}

% provide_details

\transition{T14}{
\condition{

(tagged_location != 6 && REGISTERED > 0) ||
(tagged_location == 6 && REGISTERED > 1)

}
\action{

next->REGISTERED = REGISTERED - 1;
next->ADDRESS_PROVIDED = ADDRESS_PROVIDED + 1;

}
\rate{

(tagged_location == 6)
?
(rate_provide_details * ((double)(REGISTERED - 1)) *
(((double)(REGISTERED - 1)) / ((double)REGISTERED)))
:
(rate_provide_details * ((double)(REGISTERED)))

}
}

\transition{T14_tagged}{
\condition{

(tagged_location == 6) && (REGISTERED > 0)
}
\action{

next->REGISTERED = REGISTERED - 1;
next->ADDRESS_PROVIDED = ADDRESS_PROVIDED + 1;
next->tagged_location = 7;

}

A.2. Online Transaction System Model 189

\rate{
REGISTERED > 1
?
(rate_provide_details * ((double)(1)) *
(((double)(1)) / ((double)REGISTERED)))
:
rate_provide_details

}
}

% quit_registration

\transition{T15}{
\condition{

(tagged_location != 6 && REGISTERED > 0) ||
(tagged_location == 6 && REGISTERED > 1)

}
\action{

next->REGISTERED = REGISTERED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 6)
?
(rate_quit_registration * ((double)(REGISTERED - 1)) *
(((double)(REGISTERED - 1)) / ((double)REGISTERED)))
:
(rate_quit_registration * ((double)(REGISTERED)))

}
}

\transition{T15_tagged}{
\condition{

(tagged_location == 6) && (REGISTERED > 0)
}
\action{

next->REGISTERED = REGISTERED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

REGISTERED > 1
?
(rate_quit_registration * ((double)(1)) *
(((double)(1)) / ((double)REGISTERED)))
:
rate_quit_registration

}
}

% quit_login

\transition{T16}{
\condition{

(tagged_location != 5 && LOGGED_IN > 0) ||
(tagged_location == 5 && LOGGED_IN > 1)

190 Appendix A. Case Study Model Descriptions

}
\action{

next->LOGGED_IN = LOGGED_IN - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 5)
?
(rate_quit_login * ((double)(LOGGED_IN - 1)) *
(((double)(LOGGED_IN - 1)) / ((double)LOGGED_IN)))
:
(rate_quit_login * ((double)(LOGGED_IN)))

}
}

\transition{T16_tagged}{
\condition{

(tagged_location == 5) && (LOGGED_IN > 0)
}
\action{

next->LOGGED_IN = LOGGED_IN - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

LOGGED_IN > 1
?
(rate_quit_login * ((double)(1)) *
(((double)(1)) / ((double)LOGGED_IN)))
:
rate_quit_login

}
}

% quit_address_info_provision

\transition{T17}{
\condition{

(tagged_location != 7 && ADDRESS_PROVIDED > 0) ||
(tagged_location == 7 && ADDRESS_PROVIDED > 1)

}
\action{

next->ADDRESS_PROVIDED = ADDRESS_PROVIDED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 7)
?
(rate_quit_address_info_provision *
((double)(ADDRESS_PROVIDED - 1)) *
(((double)(ADDRESS_PROVIDED - 1)) /
((double)ADDRESS_PROVIDED)))
:
(rate_quit_address_info_provision *
((double)(ADDRESS_PROVIDED)))

}

A.2. Online Transaction System Model 191

}

\transition{T17_tagged}{
\condition{

(tagged_location == 7) && (ADDRESS_PROVIDED > 0)
}
\action{

next->ADDRESS_PROVIDED = ADDRESS_PROVIDED - 1;
next->TRANSACTION_ABORTED = TRANSACTION_ABORTED + 1;
next->tagged_location = 10;

}
\rate{

ADDRESS_PROVIDED > 1
?
(rate_quit_address_info_provision * ((double)(1)) *
(((double)(1)) / ((double)ADDRESS_PROVIDED)))
:
rate_quit_address_info_provision

}
}

% provide_billing_info

\transition{T18}{
\condition{

(tagged_location != 7 && ADDRESS_PROVIDED > 0) ||
(tagged_location == 7 && ADDRESS_PROVIDED > 1)

}
\action{

next->ADDRESS_PROVIDED = ADDRESS_PROVIDED - 1;
next->BILLING_INFO_PROVIDED =

BILLING_INFO_PROVIDED + 1;
}
\rate{

(tagged_location == 7)
?
(rate_provide_billing_info *
((double)(ADDRESS_PROVIDED - 1)) *
(((double)(ADDRESS_PROVIDED - 1)) /
((double)ADDRESS_PROVIDED)))
:
(rate_provide_billing_info *
((double)(ADDRESS_PROVIDED)))

}
}

\transition{T18_tagged}{
\condition{

(tagged_location == 7) && (ADDRESS_PROVIDED > 0)
}
\action{

next->ADDRESS_PROVIDED = ADDRESS_PROVIDED - 1;
next->BILLING_INFO_PROVIDED =

BILLING_INFO_PROVIDED + 1;
next->tagged_location = 8;

}

192 Appendix A. Case Study Model Descriptions

\rate{
ADDRESS_PROVIDED > 1
?
(rate_provide_billing_info * ((double)(1)) *
(((double)(1)) / ((double)ADDRESS_PROVIDED)))
:
rate_provide_billing_info

}
}

% confirm_order

\transition{T19}{
\condition{

(tagged_location != 8 && BILLING_INFO_PROVIDED > 0) ||
(tagged_location == 8 && BILLING_INFO_PROVIDED > 1)

}
\action{

next->BILLING_INFO_PROVIDED =
BILLING_INFO_PROVIDED - 1;

next->ORDER_CONFIRMED =
ORDER_CONFIRMED + 1;

}
\rate{

(tagged_location == 8)
?
(rate_confirm_order *
((double)(BILLING_INFO_PROVIDED - 1)) *
(((double)(BILLING_INFO_PROVIDED - 1)) /
((double)BILLING_INFO_PROVIDED)))
:
(rate_confirm_order *
((double)(BILLING_INFO_PROVIDED)))

}
}

\transition{T19_tagged}{
\condition{

(tagged_location == 8) && (BILLING_INFO_PROVIDED > 0)
}
\action{

next->BILLING_INFO_PROVIDED =
BILLING_INFO_PROVIDED - 1;

next->ORDER_CONFIRMED =
ORDER_CONFIRMED + 1;

next->tagged_location = 9;
}
\rate{

BILLING_INFO_PROVIDED > 1
?
(rate_confirm_order * ((double)(1)) *
(((double)(1)) / ((double)BILLING_INFO_PROVIDED)))
:
rate_confirm_order

}
}

A.2. Online Transaction System Model 193

% quit_billing_info_provision

\transition{T20}{
\condition{

(tagged_location != 8 && BILLING_INFO_PROVIDED > 0) ||
(tagged_location == 8 && BILLING_INFO_PROVIDED > 1)

}
\action{

next->BILLING_INFO_PROVIDED =
BILLING_INFO_PROVIDED - 1;

next->TRANSACTION_ABORTED =
TRANSACTION_ABORTED + 1;

}
\rate{

(tagged_location == 8)
?
(rate_quit_billing_info_provision *
((double)(BILLING_INFO_PROVIDED - 1)) *
(((double)(BILLING_INFO_PROVIDED - 1)) /
((double)BILLING_INFO_PROVIDED)))
:
(rate_quit_billing_info_provision *
((double)(BILLING_INFO_PROVIDED)))

}
}

\transition{T20_tagged}{
\condition{

(tagged_location == 8) && (BILLING_INFO_PROVIDED > 0)
}
\action{

next->BILLING_INFO_PROVIDED =
BILLING_INFO_PROVIDED - 1;

next->TRANSACTION_ABORTED =
TRANSACTION_ABORTED + 1;

next->tagged_location = 10;
}
\rate{

BILLING_INFO_PROVIDED > 1
?
(rate_quit_billing_info_provision * ((double)(1)) *
(((double)(1)) / ((double)BILLING_INFO_PROVIDED)))
:
rate_quit_billing_info_provision

}
}

% back_to_browse_from_confirm

\transition{T21}{
\condition{

(tagged_location != 9 && ORDER_CONFIRMED > 0) ||
(tagged_location == 9 && ORDER_CONFIRMED > 1)

}

194 Appendix A. Case Study Model Descriptions

\action{
next->ORDER_CONFIRMED = ORDER_CONFIRMED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;

}
\rate{

(tagged_location == 9)
?
(rate_back_to_browse_from_confirm *
((double)(ORDER_CONFIRMED - 1)) *
(((double)(ORDER_CONFIRMED - 1)) /
((double)ORDER_CONFIRMED)))
:
(rate_back_to_browse_from_confirm *
((double)(ORDER_CONFIRMED)))

}
}

\transition{T21_tagged}{
\condition{

(tagged_location == 9) && (ORDER_CONFIRMED > 0)
}
\action{

next->ORDER_CONFIRMED = ORDER_CONFIRMED - 1;
next->BROWSING_CATALOGUE = BROWSING_CATALOGUE + 1;
next->tagged_location = 2;

}
\rate{

ORDER_CONFIRMED > 1
?
(rate_back_to_browse_from_confirm * ((double)(1)) *
(((double)(1)) / ((double)ORDER_CONFIRMED)))
:
rate_back_to_browse_from_confirm

}
}

% leave_site

\transition{T22}{
\condition{

(tagged_location != 9 && ORDER_CONFIRMED > 0) ||
(tagged_location == 9 && ORDER_CONFIRMED > 1)

}
\action{

next->ORDER_CONFIRMED = ORDER_CONFIRMED - 1;
next->NOT_AT_SITE = NOT_AT_SITE + 1;

}
\rate{

(tagged_location == 9)
?
(rate_leave_site * ((double)(ORDER_CONFIRMED - 1)) *
(((double)(ORDER_CONFIRMED - 1)) /
((double)ORDER_CONFIRMED)))
:
(rate_leave_site * ((double)(ORDER_CONFIRMED)))

}

A.2. Online Transaction System Model 195

}

\transition{T22_tagged}{
\condition{

(tagged_location == 9) && (ORDER_CONFIRMED > 0)
}
\action{

next->ORDER_CONFIRMED = ORDER_CONFIRMED - 1;
next->NOT_AT_SITE = NOT_AT_SITE + 1;
next->tagged_location = 0;

}
\rate{

ORDER_CONFIRMED > 1
?
(rate_leave_site * ((double)(1)) * (((double)(1)) /
((double)ORDER_CONFIRMED)))
:
rate_leave_site

}
}

% go_elsewhere

\transition{T23}{
\condition{

(tagged_location != 10 && TRANSACTION_ABORTED > 0) ||
(tagged_location == 10 && TRANSACTION_ABORTED > 1)

}
\action{

next->TRANSACTION_ABORTED = TRANSACTION_ABORTED - 1;
next->NOT_AT_SITE = NOT_AT_SITE + 1;

}
\rate{

(tagged_location == 10)
?
(rate_go_elsewhere * ((double)(TRANSACTION_ABORTED - 1)) *
(((double)(TRANSACTION_ABORTED - 1)) /
((double)TRANSACTION_ABORTED)))
:
(rate_go_elsewhere * ((double)(TRANSACTION_ABORTED)))

}
}

\transition{T23_tagged}{
\condition{

(tagged_location == 10) && (TRANSACTION_ABORTED > 0)
}
\action{

next->TRANSACTION_ABORTED = TRANSACTION_ABORTED - 1;
next->NOT_AT_SITE = NOT_AT_SITE + 1;
next->tagged_location = 0;

}
\rate{

TRANSACTION_ABORTED > 1
?
(rate_go_elsewhere * ((double)(1)) * (((double)(1)) /

196 Appendix A. Case Study Model Descriptions

((double)TRANSACTION_ABORTED)))
:
rate_go_elsewhere

}
}

}

A.2.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Figure 3.9 is given below:

not_at_site = (enter_site, r1).site_entered

site_entered = (browse_catalogue, r2).browsing_catalogue +
(quit_site, r3).not_at_site

browsing_catalogue = (select_item, r4).item_selected +
(jump_to_checkout, r5).at_checkout +
(quit_browsing, r6).not_at_site

item_selected = (go_to_checkout, r7).at_checkout +
(back_to_browse_from_select, r8).browsing_catalogue +
(quit_selecting, r9).not_at_site

at_checkout = (log_in, r10).logged_in +
(register, r11).registered +
(back_to_browse_from_checkout, r12).browsing_catalogue +
(quit_checking_out, r13).not_at_site

logged_in = (provide_address, r14).address_provided +
(quit_login, r15).not_at_site

registered = (provide_details, r16).address_provided +
(quit_registration, r17).not_at_site

address_provided = (provide_billing_info, r18).billing_info_provided +
(quit_address_info_provision, r19).not_at_site

billing_info_provided = (confirm_order, r20).order_confirmed +
(quit_billing_info_provision, r21).not_at_site

order_confirmed = (back_to_browse_from_confirm, r22).browsing_catalogue +
(quit_order_confirmation, r23).not_at_site

OTS = not_at_site[CC]

A.3. Hospital Accident & Emergency Unit Model 197

A.3 Hospital Accident & Emergency Unit Model

A.3.1 DNAmaca Model

TheDNAmacamodel that corresponds to the GSPN model of Figure 6.22 is given below:

\model{

\constant{no_of_people}{8}
\constant{no_of_nurses}{2}
\constant{no_of_doctors}{2}
\constant{no_of_ambulances}{1}

\constant{rate_fall_ill}{0.2}
\constant{rate_walk_in_arrival}{0.3}
\constant{rate_emergency_call}{0.6}
\constant{rate_load_patient}{0.6}
\constant{rate_ambulance_arrival}{0.6}
\constant{rate_see_nurse}{0.3}
\constant{rate_see_emergency_nurse}{0.6}
\constant{rate_complete_assessment}{0.3}
\constant{rate_complete_emergency_assessment}{0.6}
\constant{rate_to_doctor}{0.3}
\constant{rate_see_doctor}{0.3}
\constant{rate_discharge_treated_patient}{0.3}
\constant{rate_to_surgery}{0.2}
\constant{rate_surgery}{0.2}
\constant{rate_recover}{0.2}
\constant{rate_discharge_recovered_patient}{0.2}
\constant{rate_to_tests}{0.4}
\constant{rate_perform_lab_tests}{0.4}
\constant{rate_evaluate_results}{0.1}

\statevector{
\type{short}{
WAITING_ROOM, TROLLEY, PATIENT_RECOVERED, HEALTHY, ILL,
AWAITING_AMBULANCE, IN_TRANSIT, AMBULANCES, PATIENT_ASSESSED,
NURSES, AMBULANCE_PATIENT_ASSESSED, ASSESSED_PATIENTS,
TEST_DONE, TREATED_BY_DOCTOR, DOCTORS, SURGERY_DONE,
WAITING_FOR_DOCTOR, WAITING_FOR_SURGERY, WAITING_FOR_TESTS,
tagged_location

}
}

\initial{
WAITING_ROOM = 0;
TROLLEY = 0;
PATIENT_RECOVERED = 0;
HEALTHY = no_of_people;
ILL = 0;
AWAITING_AMBULANCE = 0;
IN_TRANSIT = 0;

198 Appendix A. Case Study Model Descriptions

AMBULANCES = no_of_ambulances;
PATIENT_ASSESSED = 0;
NURSES = no_of_nurses;
AMBULANCE_PATIENT_ASSESSED = 0;
ASSESSED_PATIENTS = 0;
TEST_DONE = 0;
TREATED_BY_DOCTOR = 0;
DOCTORS = no_of_doctors;
SURGERY_DONE = 0;
WAITING_FOR_DOCTOR = 0;
WAITING_FOR_SURGERY = 0;
WAITING_FOR_TESTS = 0;
tagged_location = 3;

}

%% see nurse %%

\transition{T0}{
\condition{

(WAITING_ROOM > 0 && NURSES > 0 && tagged_location != 0) ||
(WAITING_ROOM > 1 && NURSES > 0 && tagged_location == 0)

}
\action{

next->WAITING_ROOM = WAITING_ROOM - 1;
next->NURSES = NURSES - 1;
next->PATIENT_ASSESSED = PATIENT_ASSESSED + 1;

}
\rate{

(tagged_location == 0)
?
((WAITING_ROOM < NURSES) ?
(rate_see_nurse * ((double)(WAITING_ROOM - 1)) *
(((double)(WAITING_ROOM - 1)) / ((double)WAITING_ROOM))) :
(rate_see_nurse * ((double)(NURSES)) *
(((double)(WAITING_ROOM - 1)) / ((double)WAITING_ROOM))))
:
((WAITING_ROOM < NURSES) ? (rate_see_nurse *
((double)(WAITING_ROOM))) :
(rate_see_nurse * ((double)NURSES)))

}
}

\transition{T0_tagged}{
\condition{

(WAITING_ROOM > 0 && NURSES > 0) && (tagged_location == 0)
}
\action{

next->WAITING_ROOM = WAITING_ROOM - 1;
next->NURSES = NURSES - 1;
next->PATIENT_ASSESSED = PATIENT_ASSESSED + 1;
next->tagged_location = 8;

}
\rate{

WAITING_ROOM > 1
?
(rate_see_nurse * ((double)(1)) * (((double)(1)) /

A.3. Hospital Accident & Emergency Unit Model 199

((double)WAITING_ROOM)))
:
rate_see_nurse

}
}

%% walk-in arrival %%

\transition{T1}{
\condition{

(ILL > 0 && tagged_location != 4) ||
(ILL > 1 && tagged_location == 4)

}
\action{

next->ILL = ILL - 1;
next->WAITING_ROOM = WAITING_ROOM + 1;

}
\weight{

3.0
}

}

\transition{T1_tagged}{
\condition{

(ILL > 0) && (tagged_location == 4)
}
\action{

next->ILL = ILL - 1;
next->WAITING_ROOM = WAITING_ROOM + 1;
next->tagged_location=0;

}
\weight{

3.0
}

}

%% recover %%

\transition{T10}{
\condition{

(SURGERY_DONE > 0 && tagged_location != 15) ||
(SURGERY_DONE > 1 && tagged_location == 15)

}
\action{

next->SURGERY_DONE = SURGERY_DONE - 1;
next->PATIENT_RECOVERED = PATIENT_RECOVERED + 1;
next->DOCTORS = DOCTORS + 1;

}
\rate{

(tagged_location == 15)
?
(rate_recover * ((double)(SURGERY_DONE - 1)) *
(((double)(SURGERY_DONE - 1)) / ((double)SURGERY_DONE)))
:
(rate_recover * ((double)(SURGERY_DONE)))

}

200 Appendix A. Case Study Model Descriptions

}

\transition{T10_tagged}{
\condition{

(SURGERY_DONE > 0) && (tagged_location == 15)
}
\action{

next->SURGERY_DONE = SURGERY_DONE - 1;
next->PATIENT_RECOVERED = PATIENT_RECOVERED + 1;
next->DOCTORS = DOCTORS + 1;
next->tagged_location = 2;

}
\rate{

SURGERY_DONE > 1
?
(rate_recover * ((double)(1)) * (((double)(1)) /
((double)SURGERY_DONE)))
:
rate_recover

}
}

%% evaluate results %%

\transition{T11}{
\condition{

(TEST_DONE > 0 && tagged_location != 12) ||
(TEST_DONE > 1 && tagged_location == 12)

}
\action{

next->TEST_DONE = TEST_DONE - 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;

}
\rate{

(tagged_location == 12)
?
(rate_evaluate_results * ((double)(TEST_DONE - 1)) *
(((double)(TEST_DONE - 1)) / ((double)TEST_DONE)))
:
(rate_evaluate_results * ((double)(TEST_DONE)))

}
}

\transition{T11_tagged}{
\condition{

(TEST_DONE > 0) && (tagged_location == 12)
}
\action{

next->TEST_DONE = TEST_DONE - 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;
next->tagged_location=11;

}
\rate{

TEST_DONE > 1
?
(rate_evaluate_results * ((double)(1)) * (((double)(1)) /

A.3. Hospital Accident & Emergency Unit Model 201

((double)TEST_DONE)))
:
rate_evaluate_results

}
}

%% discharge recovered patient %%

\transition{T12}{
\condition{

(PATIENT_RECOVERED > 0 && tagged_location != 2) ||
(PATIENT_RECOVERED > 1 && tagged_location == 2)

}
\action{

next->PATIENT_RECOVERED = PATIENT_RECOVERED - 1;
next->HEALTHY = HEALTHY + 1;

}
\rate{

(tagged_location == 2)
?
(rate_discharge_recovered_patient *
((double)(PATIENT_RECOVERED - 1)) *
(((double)(PATIENT_RECOVERED - 1)) /
((double)PATIENT_RECOVERED)))
:
(rate_discharge_recovered_patient *
((double)(PATIENT_RECOVERED)))

}
}

\transition{T12_tagged}{
\condition{

(PATIENT_RECOVERED > 0) && (tagged_location==2)
}
\action{

next->PATIENT_RECOVERED = PATIENT_RECOVERED - 1;
next->HEALTHY = HEALTHY + 1;
next->tagged_location=3;

}
\rate{

PATIENT_RECOVERED > 1
?
(rate_discharge_recovered_patient * ((double)(1)) *
(((double)(1)) / ((double)PATIENT_RECOVERED)))
:
rate_discharge_recovered_patient

}
}

%% fall ill %%

\transition{T13}{
\condition{

(HEALTHY > 0 && tagged_location != 3) ||
(HEALTHY > 1 && tagged_location == 3)

}

202 Appendix A. Case Study Model Descriptions

\action{
next->HEALTHY = HEALTHY - 1;
next->ILL = ILL + 1;

}
\rate{

(tagged_location == 3)
?
(rate_fall_ill * ((double)(HEALTHY - 1)) *
(((double)(HEALTHY - 1)) / ((double)HEALTHY)))
:
(rate_fall_ill * ((double)(HEALTHY)))

}
}

\transition{T13_tagged}{
\condition{

(HEALTHY > 0) && (tagged_location == 3)
}
\action{

next->HEALTHY = HEALTHY - 1;
next->ILL = ILL + 1;
next->tagged_location = 4;

}
\rate{

HEALTHY > 1
?
(rate_fall_ill * ((double)(1)) * (((double)(1)) /
((double)HEALTHY)))
:
rate_fall_ill

}
}

%% emergency call %%

\transition{T14}{
\condition{

(ILL > 0 && tagged_location != 4) ||
(ILL > 1 && tagged_location == 4)}

\action{
next->ILL = ILL - 1;
next->AWAITING_AMBULANCE = AWAITING_AMBULANCE + 1;

}
\weight{

6.0
}

}

\transition{T14_tagged}{
\condition{

(ILL > 0) && (tagged_location==4)
}
\action{

next->ILL = ILL - 1;
next->AWAITING_AMBULANCE = AWAITING_AMBULANCE + 1;
next->tagged_location=5;

A.3. Hospital Accident & Emergency Unit Model 203

}
\weight{

6.0
}

}

%% load patient %%

\transition{T15}{
\condition{

(AWAITING_AMBULANCE > 0 && AMBULANCES > 0 &&
tagged_location != 5) || (AWAITING_AMBULANCE > 1 &&
AMBULANCES > 0 && tagged_location == 5)}

\action{
next->AWAITING_AMBULANCE = AWAITING_AMBULANCE - 1;
next->AMBULANCES = AMBULANCES - 1;
next->IN_TRANSIT = IN_TRANSIT + 1;

}
\rate{

(tagged_location == 5)
?
(rate_load_patient * ((double)(AWAITING_AMBULANCE - 1)) *
(((double)(AWAITING_AMBULANCE - 1)) /
((double)AWAITING_AMBULANCE)))
:
(rate_load_patient * ((double)(AWAITING_AMBULANCE)))

}
}

\transition{T15_tagged}{
\condition{

(AWAITING_AMBULANCE > 0 && AMBULANCES > 0) &&
(tagged_location == 5)

}
\action{

next->AWAITING_AMBULANCE = AWAITING_AMBULANCE - 1;
next->AMBULANCES = AMBULANCES - 1;
next->IN_TRANSIT = IN_TRANSIT + 1;
next->tagged_location = 6;

}
\rate{

AWAITING_AMBULANCE > 1
?
(rate_load_patient * ((double)(1)) * (((double)(1)) /
((double)AWAITING_AMBULANCE)))
:
rate_load_patient

}
}

%% ambulance arrival %%

\transition{T2}{
\condition{

(IN_TRANSIT > 0 && tagged_location != 6) ||
(IN_TRANSIT > 1 && tagged_location == 6)

204 Appendix A. Case Study Model Descriptions

}
\action{

next->IN_TRANSIT = IN_TRANSIT - 1;
next->TROLLEY = TROLLEY + 1;
next->AMBULANCES = AMBULANCES + 1;

}
\rate{

(tagged_location == 6)
?
(rate_ambulance_arrival * ((double)(IN_TRANSIT - 1)) *
(((double)(IN_TRANSIT - 1)) /
((double)IN_TRANSIT)))
:
(rate_ambulance_arrival * ((double)(IN_TRANSIT)))

}
}

\transition{T2_tagged}{
\condition{

(IN_TRANSIT > 0) && (tagged_location==6)
}
\action{

next->IN_TRANSIT = IN_TRANSIT - 1;
next->TROLLEY = TROLLEY + 1;
next->AMBULANCES = AMBULANCES + 1;
next->tagged_location=1;

}
\rate{

IN_TRANSIT > 1
?
(rate_ambulance_arrival * ((double)(1)) * (((double)(1)) /
((double)IN_TRANSIT)))
:
rate_ambulance_arrival

}
}

%% see emergency nurse %%

\transition{T3}{
\condition{

(TROLLEY > 0 && NURSES > 0 && tagged_location != 1) ||
(TROLLEY > 1 && NURSES > 0 && tagged_location == 1)

}
\action{

next->TROLLEY = TROLLEY - 1;
next->NURSES = NURSES - 1;
next->AMBULANCE_PATIENT_ASSESSED =

AMBULANCE_PATIENT_ASSESSED + 1;
}
\rate{

(tagged_location == 1)
?
((TROLLEY < NURSES) ?
(rate_see_emergency_nurse * ((double)(TROLLEY - 1)) *
(((double)(TROLLEY - 1)) / ((double)TROLLEY))) :

A.3. Hospital Accident & Emergency Unit Model 205

(rate_see_emergency_nurse * ((double)(NURSES)) *
(((double)(TROLLEY - 1)) / ((double)TROLLEY))))
:
((TROLLEY < NURSES) ? (rate_see_emergency_nurse *
((double)(TROLLEY))) :
(rate_see_emergency_nurse * ((double)NURSES)))

}
}

\transition{T3_tagged}{
\condition{

(TROLLEY > 0 && NURSES > 0) && (tagged_location == 1)
}
\action{

next->TROLLEY = TROLLEY - 1;
next->NURSES = NURSES - 1;
next->AMBULANCE_PATIENT_ASSESSED =

AMBULANCE_PATIENT_ASSESSED + 1;
next->tagged_location=10;

}
\rate{

TROLLEY > 1
?
(rate_see_emergency_nurse * ((double)(1)) * (((double)(1)) /
((double)TROLLEY)))
:
rate_see_emergency_nurse

}
}

%% complete assessment %%

\transition{T4}{
\condition{

(PATIENT_ASSESSED > 0 && tagged_location != 8) ||
(PATIENT_ASSESSED > 1 && tagged_location == 8)

}
\action{

next->PATIENT_ASSESSED = PATIENT_ASSESSED - 1;
next->NURSES = NURSES + 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;

}
\rate{

(tagged_location == 8)
?
(rate_complete_assessment * ((double)(PATIENT_ASSESSED - 1)) *
(((double)(PATIENT_ASSESSED - 1)) /
((double)PATIENT_ASSESSED)))
:
(rate_complete_assessment * ((double)(PATIENT_ASSESSED)))

}
}

\transition{T4_tagged}{
\condition{

(PATIENT_ASSESSED > 0) && (tagged_location==8)

206 Appendix A. Case Study Model Descriptions

}
\action{

next->PATIENT_ASSESSED = PATIENT_ASSESSED - 1;
next->NURSES = NURSES + 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;
next->tagged_location=11;

}
\rate{

PATIENT_ASSESSED > 1
?
(rate_complete_assessment * ((double)(1)) * (((double)(1)) /
((double)PATIENT_ASSESSED)))
:
rate_complete_assessment

}
}

%% complete emergency assessment %%

\transition{T5}{
\condition{

(AMBULANCE_PATIENT_ASSESSED > 0 && tagged_location != 10) ||
(AMBULANCE_PATIENT_ASSESSED > 1 && tagged_location == 10)

}
\action{

next->AMBULANCE_PATIENT_ASSESSED =
AMBULANCE_PATIENT_ASSESSED - 1;

next->NURSES = NURSES + 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;

}
\rate{

(tagged_location == 10)
?
(rate_complete_emergency_assessment *
((double)(AMBULANCE_PATIENT_ASSESSED - 1)) *
(((double)(AMBULANCE_PATIENT_ASSESSED - 1)) /
((double)AMBULANCE_PATIENT_ASSESSED)))
:
(rate_complete_emergency_assessment *
((double)(AMBULANCE_PATIENT_ASSESSED)))

}
}

\transition{T5_tagged}{
\condition{

(AMBULANCE_PATIENT_ASSESSED > 0) && (tagged_location==10)
}
\action{

next->AMBULANCE_PATIENT_ASSESSED =
AMBULANCE_PATIENT_ASSESSED - 1;

next->NURSES = NURSES + 1;
next->ASSESSED_PATIENTS = ASSESSED_PATIENTS + 1;
next->tagged_location=11;

}
\rate{

AMBULANCE_PATIENT_ASSESSED > 1

A.3. Hospital Accident & Emergency Unit Model 207

?
(rate_complete_emergency_assessment * ((double)(1)) *
(((double)(1)) / ((double)AMBULANCE_PATIENT_ASSESSED)))
:
rate_complete_emergency_assessment

}
}

%% surgery %%

\transition{T6}{
\condition{

(DOCTORS > 0 && WAITING_FOR_SURGERY > 0 &&
tagged_location != 17) ||
(DOCTORS > 0 && WAITING_FOR_SURGERY > 1 &&
tagged_location == 17)

}
\action{

next->DOCTORS = DOCTORS - 1;
next->WAITING_FOR_SURGERY = WAITING_FOR_SURGERY - 1;
next->SURGERY_DONE = SURGERY_DONE + 1;

}
\rate{

(tagged_location == 17)
?
((WAITING_FOR_SURGERY < DOCTORS) ?
(rate_surgery * ((double)(WAITING_FOR_SURGERY - 1)) *
(((double)(WAITING_FOR_SURGERY - 1)) /
((double)WAITING_FOR_SURGERY))) :
(rate_surgery * ((double)(DOCTORS)) *
(((double)(WAITING_FOR_SURGERY - 1)) /
((double)WAITING_FOR_SURGERY))))
:
((WAITING_FOR_SURGERY < DOCTORS) ? (rate_surgery *
((double)(WAITING_FOR_SURGERY))) :
(rate_surgery * ((double)DOCTORS)))

}
}

\transition{T6_tagged}{
\condition{

(DOCTORS > 0 && WAITING_FOR_SURGERY > 0) &&
(tagged_location==17)

}
\action{

next->DOCTORS = DOCTORS - 1;
next->WAITING_FOR_SURGERY = WAITING_FOR_SURGERY - 1;
next->SURGERY_DONE = SURGERY_DONE + 1;
next->tagged_location=15;

}
\rate{

WAITING_FOR_SURGERY > 1
?
(rate_surgery * ((double)(1)) * (((double)(1)) /
((double)WAITING_FOR_SURGERY)))
:

208 Appendix A. Case Study Model Descriptions

rate_surgery
}

}

%% see doctor %%

\transition{T7}{
\condition{

(DOCTORS > 0 && WAITING_FOR_DOCTOR > 0 &&
tagged_location != 16) ||
(DOCTORS > 0 && WAITING_FOR_DOCTOR > 1 &&
tagged_location == 16)

}
\action{

next->DOCTORS = DOCTORS - 1;
next->WAITING_FOR_DOCTOR = WAITING_FOR_DOCTOR - 1;
next->TREATED_BY_DOCTOR = TREATED_BY_DOCTOR + 1;

}
\rate{

(tagged_location == 16)
?
((WAITING_FOR_DOCTOR < DOCTORS) ?
(rate_see_doctor * ((double)(WAITING_FOR_DOCTOR - 1)) *
(((double)(WAITING_FOR_DOCTOR - 1)) /
((double)WAITING_FOR_DOCTOR))) :
(rate_see_doctor * ((double)(DOCTORS)) *
(((double)(WAITING_FOR_DOCTOR - 1)) /
((double)WAITING_FOR_DOCTOR))))
:
((WAITING_FOR_DOCTOR < DOCTORS) ? (rate_see_doctor *
((double)(WAITING_FOR_DOCTOR))) :
(rate_see_doctor * ((double)DOCTORS)))

}
}

\transition{T7_tagged}{
\condition{

(DOCTORS > 0 && WAITING_FOR_DOCTOR > 0) &&
(tagged_location==16)

}
\action{

next->DOCTORS = DOCTORS - 1;
next->WAITING_FOR_DOCTOR = WAITING_FOR_DOCTOR - 1;
next->TREATED_BY_DOCTOR = TREATED_BY_DOCTOR + 1;
next->tagged_location=13;

}
\rate{

WAITING_FOR_DOCTOR > 1
?
(rate_see_doctor * ((double)(1)) * (((double)(1)) /
((double)WAITING_FOR_DOCTOR)))
:
rate_see_doctor

}
}

A.3. Hospital Accident & Emergency Unit Model 209

%% perform lab tests %%

\transition{T8}{
\condition{

(WAITING_FOR_TESTS > 0 && tagged_location != 18) ||
(WAITING_FOR_TESTS > 1 && tagged_location == 18)

}
\action{

next->WAITING_FOR_TESTS = WAITING_FOR_TESTS - 1;
next->TEST_DONE = TEST_DONE + 1;

}
\rate{

(tagged_location == 18)
?
(rate_perform_lab_tests *
((double)(WAITING_FOR_TESTS - 1)) *
(((double)(WAITING_FOR_TESTS - 1)) /
((double)WAITING_FOR_TESTS)))
:
(rate_perform_lab_tests *
((double)(WAITING_FOR_TESTS)))

}
}

\transition{T8_tagged}{
\condition{

(WAITING_FOR_TESTS > 0) && (tagged_location==18)
}
\action{

next->WAITING_FOR_TESTS = WAITING_FOR_TESTS - 1;
next->TEST_DONE = TEST_DONE + 1;
next->tagged_location=12;

}
\rate{

WAITING_FOR_TESTS > 1
?
(rate_perform_lab_tests * ((double)(1)) *
(((double)(1)) / ((double)WAITING_FOR_TESTS)))
:
rate_perform_lab_tests

}
}

%% discharge treated patient %%

\transition{T9}{
\condition{

(TREATED_BY_DOCTOR > 0 && tagged_location != 13) ||
(TREATED_BY_DOCTOR > 1 && tagged_location == 13)

}
\action{

next->TREATED_BY_DOCTOR = TREATED_BY_DOCTOR - 1;
next->HEALTHY = HEALTHY + 1;
next->DOCTORS = DOCTORS + 1;

}

210 Appendix A. Case Study Model Descriptions

\rate{
(tagged_location == 13)
?
(rate_discharge_treated_patient *
((double)(TREATED_BY_DOCTOR - 1)) *
(((double)(TREATED_BY_DOCTOR - 1)) /
((double)TREATED_BY_DOCTOR)))
:
(rate_discharge_treated_patient *
((double)(TREATED_BY_DOCTOR)))

}
}

\transition{T9_tagged}{
\condition{

(TREATED_BY_DOCTOR > 0) && (tagged_location==13)
}
\action{

next->TREATED_BY_DOCTOR = TREATED_BY_DOCTOR - 1;
next->HEALTHY = HEALTHY + 1;
next->DOCTORS = DOCTORS + 1;
next->tagged_location=3;

}
\rate{

TREATED_BY_DOCTOR > 1
?
(rate_discharge_treated_patient * ((double)(1)) *
(((double)(1)) / ((double)TREATED_BY_DOCTOR)))
:
rate_discharge_treated_patient

}
}

%% to doctor %%

\transition{T16}{
\condition{

(ASSESSED_PATIENTS > 0 && tagged_location != 11) ||
(ASSESSED_PATIENTS > 1 && tagged_location == 11)

}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_DOCTOR = WAITING_FOR_DOCTOR + 1;

}
\weight{

3.0
}

}

\transition{T16_tagged}{
\condition{

(ASSESSED_PATIENTS > 0) && (tagged_location==11)
}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_DOCTOR = WAITING_FOR_DOCTOR + 1;

A.3. Hospital Accident & Emergency Unit Model 211

next->tagged_location=16;
}
\weight{

3.0
}

}

%% to surgery %%

\transition{T17}{
\condition{

(ASSESSED_PATIENTS > 0 && tagged_location != 11) ||
(ASSESSED_PATIENTS > 1 && tagged_location == 11)

}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_SURGERY = WAITING_FOR_SURGERY + 1;

}
\weight{

1.0
}

}

\transition{T17_tagged}{
\condition{

(ASSESSED_PATIENTS > 0) && (tagged_location==11)
}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_SURGERY = WAITING_FOR_SURGERY + 1;
next->tagged_location=17;

}
\weight{

1.0
}

}

%% to tests %%

\transition{T18}{
\condition{

(ASSESSED_PATIENTS > 0 && tagged_location != 11) ||
(ASSESSED_PATIENTS > 1 && tagged_location == 11)

}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_TESTS = WAITING_FOR_TESTS + 1;

}
\weight{

2.0
}

}

\transition{T18_tagged}{
\condition{

(ASSESSED_PATIENTS > 0) && (tagged_location==11)

212 Appendix A. Case Study Model Descriptions

}
\action{

next->ASSESSED_PATIENTS = ASSESSED_PATIENTS - 1;
next->WAITING_FOR_TESTS = WAITING_FOR_TESTS + 1;
next->tagged_location=18;

}
\weight{

2.0
}

}
}

A.3.2 PEPA Model

The PEPA model that corresponds to the GSPN model of Figure 6.22 is given below:

Healthy = (fall_ill, r1).Ill

Ill = (walk_in_arrival, r2).Waiting_Room +
(ambulance_arrival, r3).Trolley

Waiting_Room = (see_nurse, r4).Patient_Being_Assessed

Patient_Being_Assessed = (complete_assessment, r5).Waiting_To_Be_Treated

Trolley = (see_emergency_nurse, r6).Ambulance_Patient_Being_Assessed

Ambulance_Patient_Being_Assessed = (complete_emergency_assessment, r7).
Waiting_To_Be_Treated

Waiting_To_Be_Treated = (see_doctor, r8).Treated_By_Doctor +
(surgery, r9).Surgery_Done +
(perform_lab_tests, r10).Tests_Done

Treated_By_Doctor = (discharge_treated_patient, r11).Healthy

Surgery_Done = (recover, r12).Patient_Recovered

Patient_Recovered = (discharge_recovered_patient, r13).Healthy

Tests_Done = (evaluate_results, r14).Waiting_To_Be_Treated

Nurse = (see_nurse, r4).(complete_assessment, r5).Nurse +
(see_emergency_nurse, r6).(complete_emergency_assessment, r7).
Nurse

Doctor = (see_doctor, r8).(discharge_treated_patient, r11).Doctor +
(surgery, r9).(recover, r12).Doctor

Patients = Healthy[PP]

A.3. Hospital Accident & Emergency Unit Model 213

Nurses = Nurse[NN]

Doctors = Doctor[DD]

AE_Unit = Patients <see_nurse, complete_assessment,
see_emergency_nurse, complete_emergency_assessment,
see_doctor, discharge_treated_patient, surgery, recover>
(Nurses <> Doctors))

Bibliography

[Agerwala79] T. Agerwala. “Putting Petri nets to work”. InIEEE Computer, pp.

85–94, December 1979.

[Ajmone Marsan84] M. Ajmone Marsan, G. Conte and G. Balbo. “A Class of Gen-

eralized Stochastic Petri Nets for the Performance Evaluation of

Multiprocessor Systems”. InACM Transactions on Computer Sys-

tems, vol. 2, no. 2:93–122, May 1984.

[Ajmone Marsan95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and

G. Franceschinis.Modelling with Generalized Stochastic Petri

Nets. Series in Parallel Computing. John Wiley & Sons, 1995.

ISBN 0-471-93059-8.

[Alur91] R. Alur. Techniques for Automatic Verification of Real-Time Sys-

tems. Ph.D. thesis, Stanford University, 1991.

[Argent-Katwala06] A. Argent-Katwala.A Compositional, Collaborative Performance

Pipeline. Ph.D. thesis, Imperial College, London, United King-

dom, November 2006.

[Argent-Katwala07a] A. Argent-Katwala and J. T. Bradley. “PerformDB: Community-

driven Performance Modelling and Analysis”. InUKPEW’07, Pro-

ceedings of the 23rd Annual UK Performance Engineering Work-

shop, 2007.

[Argent-Katwala07b] A. Argent-Katwala, J. T. Bradley, A. Clark and S. Gilmore.

“Location-aware Quality of Service Measurements for Service

214

BIBLIOGRAPHY 215

Level Agreements”. InTGC’07, Proceedings of the 3rd Interna-

tional Conference on Trustworthy Global Computing, vol. 4912 of

LNCS, pp. 222–239, 2007.

[Au-Yeung04] S. W. M. Au-Yeung, N. J. Dingle and W. J. Knottenbelt. “Effi-

cient Approximation of Response Time Densities and Quantiles

in Stochastic Models”. InWOSP’04, Proceedings of the 4th In-

ternational Workshop on Software and Performance, pp. 151–155.

ACM, Redwood City, January 2004.

[Aziz96] A. Aziz, K. Sanwal, V. Singhal and R. Brayton. “Verifying

continuous-time Markov chains”. InComputer-Aided Verification,

vol. 1102 ofLNCS, pp. 269–276, 1996.

[Aziz00] A. Aziz, K. Sanwal, V. Singhal and R. Brayton. “Model checking

continuous-time Markov chains”. InACM Transactions on Com-

putational Logic, vol. 1, no. 1:162–170, 2000.

[Baier00] C. Baier, B. R. Haverkort, H. Hermanns and J.-P. Katoen.“On

the Logical Characterisations of Performability Properties”. In

ICALP’00, Proceedings of the 27th International Colloquium on

Automata, Languages and Programming, vol. 1853 ofLNCS, pp.

780–792, 2000.

[Baier03] C. Baier, B. R. Haverkort, H. Hermanns and J.-P. Katoen.“Model-

checking algorithms for continuous-time Markov chains”. In IEEE

Transactions on Software Engineering, vol. 29, no. 6:524–541,

June 2003.

[Baier04] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz and M. Siegle.

“Model Checking Action- and State-Labelled Markov Chains”. In

DSN’04, Proceedings of the 34th International Conference on De-

pendable Systems and Networks, pp. 701–710, June 2004.

216 BIBLIOGRAPHY

[Bause02] F. Bause and P. S. Kritzinger.Stochastic Petri Nets - An Introduc-

tion to the Theory. Vieweg Verlag, Wiesbaden, Germany, 2002.

2nd edition.

[Bolch98] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi.Queueing

Networks and Markov Chains. Wiley, August 1998.

[Bonet07] P. Bonet, C. Llad́o, R. Puijaner and W. J. Knottenbelt. “PIPE v2.5:

A Petri Net Tool for Performance Modelling”. InCLEI’07, Pro-

ceedings of the 23rd Latin American Conference on Informatics,

2007.

[Bradley03a] J. T. Bradley, N. J. Dingle, S. T. Gilmore and W. J.Knottenbelt.

“Extracting Passage Times from PEPA models with the HYDRA

Tool: a Case Study”. In S. A. Jarvis (ed.),UKPEW’03, Proceed-

ings of 19th Annual UK Performance Engineering Workshop, pp.

79–90. University of Warwick, July 2003.

[Bradley03b] J. T. Bradley, N. J. Dingle, P. G. Harrison and W. J. Knotten-

belt. “Distributed Computation of Passage Time Quantiles and

Transient State Distributions in Large Semi-Markov Models”. In

PMEO-PDS’03, Proceedings of the International Workshop on

Performance Modelling, Evaluation and Optimization of Parallel

and Distributed Systems, p. 281. IEEE Computer Society Press,

Nice, April 2003.

[Bradley03c] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt andP. G. Harrison.

“Performance Queries on Semi-Markov Stochastic Petri Netswith

an Extended Continuous Stochastic Logic”. InPNPM’03, Pro-

ceedings of the 10th International Workshop on Petri Nets and

Performance Models, pp. 62–71. University of Illinois at Urbana-

Champaign, September 2003.

[Bradley03d] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt andH. J. Wilson.

“Hypergraph-based Parallel Computation of Passage Time Den-

BIBLIOGRAPHY 217

sities in Large Semi-Markov Models”. In A. N. Langville and

W. J. Stewart (eds.),NSMC’03, Proceedings of the 4th Interna-

tional Workshop on Numerical Solutions of Markov Chains, pp.

99–120. University of Illinois at Urbana-Champaign, September

2003.

[Bradley04] J. T. Bradley and W. J. Knottenbelt. “The ipc/HYDRATool Chain

for the Analysis of PEPA Models”. In B. Haverkort et al. (ed.),

QEST’04, Proceedings of the 1st IEEE Conference on the Quanti-

tative Evaluation of Systems, pp. 334–335. IEEE Computer Soci-

ety Press, University of Twente, Enschede, September 2004.

[Bradley06] J. T. Bradley, N. J. Dingle, U. Harder, P. G. Harrison and W. J.

Knottenbelt. “Response Time Densities and Quantiles in Large

Markov and Semi-Markov Models”. InPerformance Evaluation of

Parallel, Distributed and Emergent Systems, vol. 1. Nova Science

Publishers, 2006.

[Bradley08] J. T. Bradley, R. A. Hayden, W. J. Knottenbelt and T.Suto.

“Extracting Response Times from Fluid Analysis of Performance

Models”. In SIPEW’08, Proceedings of the SPEC International

Performance Evaluation Workshop, vol. 5119 ofLecture Notes in

Computer Science, pp. 29–43. Springer-Verlag, Darmstadt, Ger-

many, June 2008.

[Brien08a] D. K. Brien.Performance Trees: Implementation and Distributed

Evaluation. M.Sc. thesis, Imperial College London, June 2008.

[Brien08b] D. K. Brien, N. J. Dingle, W. J. Knottenbelt, H. Kulatunga and

T. Suto. “Performance Trees: Implementation and Distributed

Evaluation”. InPDMC’08, Proceedings of the 7th International

Workshop on Parallel and Distributed Methods in Verification, pp.

67–82. Elsevier, Budapest, Hungary, March 2008.

218 BIBLIOGRAPHY

[Chiola95] G. Chiola, G. Franceschinis, R. Gaeta and M. Ribaudo.“GreatSPN

1.7: Graphical Editor and Analyzer for Timed and StochasticPetri

Nets”. InPerformance Evaluation – Special Issue on Performance

Modelling Tools, vol. 24, no. 1–2:47–68, November 1995.

[Ciardo94] G. Ciardo, R. German and C. Lindemann. “A Characterization

of the Stochastic Process Underlying a Stochastic Petri Net”. In

IEEE Transactions on Software Engineering, vol. 20, no. 7:506–

515, July 1994.

[Clark01] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M.

Doyle, W. H. Sanders and P. Webster. “The Möbius Modeling

Tool”. In PNPM’01, Proceedings of the 9th International Work-

shop on Petri Nets and Performance Models, pp. 241–250, Septem-

ber 2001.

[Clark07] A. Clark, S. Gilmore, J. Hillston and M. Tribastone.“Stochastic

Process Algebras”. InFormal Methods for Performance Evalua-

tion, LNCS Tutorials, pp. 132–179. Springer-Verlag, May 2007.

[Clarke Jr.01] E. M. Clarke Jr., O. Grumberg and D. A. Peled.Model Checking.

MIT Press, 2001. ISBN 0-262-03270-8.

[Cooper81] R. B. Cooper.Introduction to Queueing Theory. Elsevier North

Holland, 2nd ed., 1981. ISBN 0-444-00379-7.

[D’Aprile04] D. D’Aprile, S. Donatelli and J. Sproston. “CSLModel Check-

ing for the GreatSPN Tool”. InISCIS’04, Proceedings of the 19th

International Symposium on Computer and Information Sciences,

vol. 3280 of Lecture Notes In Computer Science, pp. 543–552.

Springer-Verlag, 2004.

[Dingle03] N. J. Dingle, W. J. Knottenbelt and P. G. Harrison. “HYDRA:

HYpergraph-based Distributed Response-time Analyser”. InH. R.

Arabnia and Y. Man (eds.),PDPTA’03, Proceedings of the 2003

BIBLIOGRAPHY 219

International Conference on Parallel and Distributed Processing

Techniques and Applications, vol. 1, pp. 215–219. Las Vegas, NV,

June 2003.

[Dingle04a] N. J. Dingle. Parallel Computation of Response Time Densities

and Quantiles in Large Markov and Semi-Markov Models. Ph.D.

thesis, Imperial College London, October 2004.

[Dingle04b] N. J. Dingle, P. G. Harrison and W. J. Knottenbelt. “Uniformiza-

tion and Hypergraph Partitioning for the Distributed Computation

of Response Time Densities in Very Large Markov Models”. In

Journal of Parallel and Distributed Computing, vol. 64, no. 8:908–

920, August 2004.

[Dingle08a] N. J. Dingle and W. J. Knottenbelt. “Automated Customer-Centric

Performance Analysis of Generalised Stochastic Petri Netsus-

ing Tagged Tokens”. InPASM’08, Proceedings of the 3rd Inter-

national Workshop on Practical Applications of StochasticMod-

elling. Palma de Mallorca, Mallorca, Spain, September 2008.

[Dingle08b] N. J. Dingle, W. J. Knottenbelt, H. Kulatunga and T. Suto. “A Par-

allel and Distributed Analysis Pipeline for Performance Tree Eval-

uation”. InQEST’08, Proceedings of the 5th International Confer-

ence on the Quantitative Evaluation of Systems. IEEE Computer

Society, Saint Malo, France, September 2008.

[Donatelli95] S. Donatelli, M. Ribaudo and J. Hillston. “A comparison of Per-

formance Evaluation Process Algebra and generalized stochastic

Petri nets”. InPNPM’95, Proceedings of the 6th International

Workshop on Petri Nets and Performance Models, pp. 158 – 169.

IEEE Computer Society, 1995.

[Grassman87] W. Grassman. “Means and Variances of Time Averages in Marko-

vian Environments”. InEuropean Journal of Operational Re-

search, vol. 31, no. 1:132–139, 1987.

220 BIBLIOGRAPHY

[Grunske08a] L. Grunske. “Specification Patterns for Probabilistic Quality Prop-

erties”. InICSE’08, Proceedings of the 30th International Confer-

ence on Software Engineering, pp. 31–40. ACM, 2008.

[Grunske08b] L. Grunske, K. Winter and N. Yatapanage. “Defining the Abstract

Syntax of Visual Languages with Advanced Graph Grammars – A

Case Study based on Behavior Trees”. InJournal of Visual Lan-

guages and Computing, vol. 19, no. 3:343–379, 2008.

[Harrison02] P. G. Harrison and W. J. Knottenbelt. “Passage-time Distributions

in Large Markov Chains”. In M. Martonosi and E. A. de Souza e

Silva (eds.),Proceedings of ACM SIGMETRICS 2002, pp. 77–85,

Marina Del Rey, USA, June 2002.

[Hermanns00] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. “To-

wards Model Checking Stochastic Process Algebra”. InIFM’00,

Proceedings of the 2nd International Conference on Integrated

Formal Methods, pp. 420–439, November 2000.

[Hillston94] J. Hillston.A Compositional Approach to Performance Modelling.

Ph.D. thesis, Department of Computer Science, University ofEd-

inburgh, Edinburgh EH9 3JZ, United Kingdom, 1994. CST–107–

94.

[Hillston04] J. Hillston. “Modelling and Simulation”.Lecture notes, University

of Edinburgh, 2004.

[Hillston05] J. Hillston. “Fluid Flow Approximation of PEPA models”. In

QEST’05, Proceedings of the 2nd International Conference onthe

Quantitative Evaluation of Systems. IEEE Computer Society Press,

Italy, September 2005.

[Hirel00] C. Hirel, R. Sahner, X. Zhang and K. S. Trivedi. “Reliability and

Performability Modeling Using SHARPE 2000”. InTOOLS’00,

Proceedings of the 11th International Conference on Computer

BIBLIOGRAPHY 221

Performance Evaluation, Modelling Techniques and Tools, vol.

1786 ofLNCS, p. 345, 2000.

[Howard71] R. A. Howard.Dynamic Probabilistic Systems: Semi-Markov and

Decision Processes, vol. 2 ofSeries in Decision and Control. John

Wiley & Sons, 1971.

[Jansen05] D. N. Jansen and H. Hermanns. “QoS Modelling and Analysis

with UML-Statecharts: the StoCharts Approach”. InACM SIG-

METRICS Performance Evaluation Review, vol. 32, no. 4:28–33,

March 2005.

[Jensen53] A. Jensen. “Markoff Chains as an Aid in the Study ofMarkoff

Processes”. InSkandinavian Aktuarietidskr., vol. 36:87–91, 1953.

[Katoen01] J.-P. Katoen, M. Kwiatkowska, G. Norman and D. Parker. “Faster

and Symbolic CTMC Model Checking”. In L. de Alfaro and

S. Gilmore (eds.),Proceedings of Process Algebra and Probabilis-

tic Methods, vol. 2165 ofLecture Notes in Computer Science, pp.

23–38. Springer-Verlag, Aachen, September 2001.

[Kendall53] D. G. Kendall. “Stochastic Processes Occurring in the Theory

of Queues and their Analysis by the Method of the Embedded

Markov chain”. InThe Annals of Mathematical Statistics, vol. 24,

no. 3:338–354, September 1953.

[Knottenbelt96] W. J. Knottenbelt.Generalised Markovian Analysis of Timed Tran-

sitions Systems. M.Sc. thesis, University of Cape Town, South

Africa, July 1996.

[Knottenbelt09] W. J. Knottenbelt, N. J. Dingle and T. Suto.“Parallel and Dis-

tributed Evaluation of Performance Tree Queries”. InPARENG’09,

Proceedings of the 1st International Conference on Parallel, Dis-

tributed and Grid Computing for Engineering. Pécs, Hungary,

222 BIBLIOGRAPHY

Book Chapter Accompanying Invited Lecture, 32 pages, To Ap-

pear in April 2009.

[Kwiatkowska02] M. Kwiatkowska, G. Norman and D. Parker. “PRISM: Proba-

bilistic Symbolic Model Checker”. In A. J. Field et al. (ed.),

TOOLS’02, Proceedings of the 12th International Conferenceon

Modelling Techniques and Tools for Computer Performance Eval-

uation, vol. 2324 ofLecture Notes in Computer Science, pp. 200–

204. Springer-Verlag, London, 2002.

[Lee94] I. Lee, P. Bremond-Gregoire and R. Gerber. “A Process Algebraic

Approach to the Specification and Analysis of Resource-bound

Real-Time Systems”. InProceedings of the IEEE, vol. 82, no. 1,

January 1994.

[Lee97] I. Lee and O. Sokolsky. “A Graphical Property Specification Lan-

guage”. InHASE’97, Proceedings of the 2nd High-Assurance Sys-

tems Engineering Workshop, pp. 42–47. IEEE Computer Society,

Washington, DC, USA, November 1997.

[L ópez-Grao04] J. P. Ĺopez-Grao, J. Merseguer and J. Campos. “From UML Ac-

tivity Diagrams to Stochastic Petri Nets: Application to Software

Performance Engineering”. InWOSP’04, Proceedings of the 4th

International Workshop on Software and Performance, pp. 243–

244. Redwood City, CA, January 2004.

[Melamed84] B. Melamed and M. Yadin. “Randomization Procedures in

the Computation of Cumulative-Time Distributions Over Dis-

crete State Markov Processes”. InOperations Research, vol. 32,

no. 4:926–944, July–August 1984.

[MeSC] MeSC. “The Midlands e-Science Grid Cluster”.http://

www.ep.ph.bham.ac.uk/cluster/.

BIBLIOGRAPHY 223

[Meyer80] J. F. Meyer. “On Evaluating the Performability ofDegradable

Computing Systems”. InIEEE Transactions on Computers, vol.

C-29, no. 8:720–731, August 1980.

[Miner03] A. S. Miner. “Computing Response Time Distributions using Sto-

chastic Petri Nets and Matrix Diagrams”. InPNPM’03, Proceed-

ings of the 10th International Workshop on Petri nets and Per-

formance Models, pp. 10–19. Urbana-Champaign, IL, September

2003.

[Mitrani98] I. Mitrani. Probabilistic Modelling. Cambridge University Press,

1998. ISBN 0-521-58511-2.

[Molloy81] M. K. Molloy. On the Integration of Delay and Throughout Mea-

sures in Distributed Processing Models. Ph.D. thesis, University

of California, 1981.

[Molloy82] M. K. Molloy. “Performance Analysis using Stochastic Petri

Nets”. In IEEE Transactions on Computers, vol. 31, no. 9:913–

917, September 1982.

[Muppala92] J. K. Muppala and K. S. Trivedi. “Numerical Transient Analysis of

Finite Markovian Queueing Systems”. In U. N. Bhat and I. V. Ba-

sawa (eds.),Queueing and Related Models, pp. 262–284. Oxford

University Press, 1992.

[Murata89] T. Murata. “Petri Nets: Properties, Analysis and Applications”. In

Proceedings of the IEEE, vol. 77, no. 4:541–580, April 1989.

[Natkin81] S. Natkin.Les Reseaux de Petri Stochastiques et leur Application a

l’ Évaluation des Systèmes Informatiques. Ph.D. thesis, University

of California, 1981.

[Nelson95] R. Nelson. Probability, Stochastic Processes and Queueing

Theory: The Mathematics of Computer Performance Modeling.

Springer-Verlag, 1995. ISBN 0-387-94452-4.

224 BIBLIOGRAPHY

[OMG07] OMG. “Unified Modeling Language Specification, v. 2.1.2”.

http://www.omg.org/spec/UML/2.1.2/, November

2007.

[Peterson77] J. L. Peterson. “Petri Nets”. InACM Computing Surveys, vol. 9,

no. 3:223–252, September 1977.

[Peterson81] J. L. Peterson.Petri Net Theory and the Modeling of Systems.

Prentice-Hall, 1981.

[Petri62] C. A. Petri.Kommunikation mit Automaten. Ph.D. thesis, Univer-

sität Bonn, 1962.

[PIPE] PIPE. “PIPE2: Platform-Independent Petri net Editor”.http://

pipe2.sourceforge.net.

[PNML] PNML. “The Petri Net Markup Language”. http://

www2.informatik.hu-berlin.de/top/pnml/.

[Powell02] T. Powell. “Responsiveness vs. Performance”.http://

www.worldtimzone.com/blog/date/2002/09/11/

responsiveness-vs-performance/, 2002.

[Pyke61a] R. Pyke. “Markov Renewal Processes: Definitions andPrelimi-

nary Properties”. InAnnals of Mathematical Statistics, vol. 32,

no. 4:1231–1242, December 1961.

[Pyke61b] R. Pyke. “Markov Renewal Processes with Finitely Many States”.

In Annals of Mathematical Statistics, vol. 32, no. 4:1243–1259,

December 1961.

[Reibman88] A. Reibman and K. S. Trivedi. “Numerical Transient Analysis of

Markov Models”. InComputers and Operations Research, vol. 15,

no. 1:19–36, 1988.

[Reisig85] W. Reisig.Petri Nets: An Introduction. Springer-Verlag, 1985.

BIBLIOGRAPHY 225

[Ross82] S. M. Ross.Stochastic processes. Wiley Series in Probability and

Mathematical Statistics. John Wiley & Sons, 1982. ISBN 0-471-

12062-6.

[Suto05] T. Suto. “GRAIL: Grid-Enabled Performance Analysis Using Sto-

chastic Logics”. InPASTA’05, Proceedings of the 4th Workshop

on Process Algebra and Stochastically Timed Activities. University

of Edinburgh, Edinburgh, Scotland, United Kingdom, September

2005.

[Suto06a] T. Suto. “Expanding the Boundaries of PerformanceRequirement

Representation with Performance Trees”. InPASTA’06, Proceed-

ings of the 5th Workshop on Process Algebra and Stochastically

Timed Activities, pp. 108–116. Imperial College London, London,

England, United Kingdom, June 2006.

[Suto06b] T. Suto, J. T. Bradley and W. J. Knottenbelt. “Performance Trees:

A New Approach to Quantitative Performance Specification”.In

MASCOTS’06, Proceedings of the 14th International Symposium

on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems, pp. 303–313. IEEE Computer Society, Mon-

terey, California, USA, September 2006.

[Suto07] T. Suto, J. T. Bradley and W. J. Knottenbelt. “Performance Trees:

Expressiveness And Quantitative Semantics”. InQEST’07, Pro-

ceedings of the 4th International Conference on the Quantitative

Evaluation of Systems, pp. 41–50. IEEE Computer Society, Edin-

burgh, Scotland, United Kingdom, September 2007.

[Suto08a] T. Suto, J. T. Bradley, D. K. Brien, N. J. Dingle, W. J.Knotten-

belt and H. Kulatunga. “Performance Trees: Application in aDis-

tributed Analysis Environment”. InIEEE Transactions on Soft-

ware Engineering, 2008. Submitted for review.

226 BIBLIOGRAPHY

[Suto08b] T. Suto and W. J. Knottenbelt. “PIPE2: A Tool for Parallel and

Distributed Performance Evaluation”. InACM SIGMETRICS Per-

formance Evaluation Review, vol. Special Issue, 2008. Invited pa-

per. To appear.

[Tribastone07] M. Tribastone. “The PEPA Plug-in Project”.In QEST’07, Pro-

ceedings of the 4th International Conference on the Quantitative

Evaluation of Systems, pp. 53–54. IEEE Computer Society, Edin-

burgh, Scotland, United Kingdom, September 2007.

[Trifunović04] A. Trifunović. Parallel Algorithms for Hypergraph Partitioning.

Ph.D. thesis, Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2AZ, United Kingdom, 2004.

[Trivedi02] K. S. Trivedi. Probability and Statistics with Reliability, Queuing

and Computer Science Applications. John Wiley & Sons, 2002.

[Wang08] L. Wang, N. J. Dingle and W. J. Knottenbelt. “Natural Language

Specification of Performance Trees”. InEPEW’08, Proceedings of

the 5th European Performance Engineering Workshop, 2008.

[Younes05] H. L. S. Younes. “Ymer: A Statistical Model Checker”. In K. Etes-

sami and S. Rajamani (eds.),Proceedings of the 17th International

Conference on Computer Aided Verification, vol. 3576 ofLecture

Notes in Computer Science, pp. 429–433. Springer-Verlag, Edin-

burgh, Scotland, United Kingdom, 2005.

[Zhang05] Y. Zhang, D. Parker and M. Kwiatkowska. “Grid-enabled Prob-

abilistic Model Checking with PRISM”. InAHM’05, Proceed-

ings of the 4th All Hands Meeting. Nottingham, United Kingdom,

September 2005.

