A. Trifunovie, W.J. Knottenbelt 1

Towards a Parallel Disk-Based Algorithm for
Multilevel k-way Hypergraph Partitioning

Aleksandar Trifunovic* and
William J. Knottenbelt

Department of Computing,

Imperial College London, United Kingdom
E-mail: {at701,wjk}@doc.ic.ac.uk
*Corresponding author

Abstract:

In this paper we present a high-capacity, application-specific disk-
based parallel multilevel k-way hypergraph partitioning algorithm. Our
parallel algorithm provides the capability to partition very large hy-
pergraphs that hitherto could not be partitioned because the memory
required exceeds that available on a single workstation. The algorithm
has three main phases: parallel coarsening, serial partitioning of the
coarsest hypergraph and parallel uncoarsening. At each step of the par-
allel coarsening and parallel uncoarsening phases, disk is used to min-
imise memory usage. We apply the algorithm to very large hypergraphs
with ©(107) vertices from the domain of performance modelling and
show that the quality of partition is approximately 20% better in terms
of the (k — 1) partitioning objective than that produced by an approxi-
mate graph partitioning-based approach using a state-of-the-art parallel
graph partitioning tool.

Keywords: hypergraph partitioning; sparse matrix decomposition;
load balancing for parallel computing; parallel sparse matrix—vector
multiplication.

1 Introduction

A hypergraph is a set system, which (in a set-theoretic sense) means it is a
collection of subsets of a given set of objects. The objects in this set are called
vertices and the subsets within the collection are called hyperedges. Note that a
hypergraph is also a generalisation of a graph, because in a graph each subset in
the collection must have cardinality two, whereas in the hypergraph, there is no
such restriction. An example of a graph and an example of a hypergraph are shown
in Fig. 1.

A hypergraph may also be considered a data structure that represents a set of
related objects. The objects are represented by the vertices of the hypergraph. The
existence of a relationship between objects is represented by a hyperedge. Because
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Figure 1 An example of a graph and a hypergraph

the cardinality of a hyperedge is not restricted, hypergraphs are more expressive
than graphs. A scalar weight is assigned to each hyperedge to capture the degree
of association between the vertices that the hyperedge connects; a scalar weight is
also assigned to each vertex to quantify the size, area or computational load of the
object that it models.

Graph and hypergraph models are useful in solving partitioning problems with
hypergraphs being preferred in many applications of practical interest, such as
load balancing for parallel computations (the allocation of work to processors) [12]
and VLSI Computer-Aided Design (VLSI CAD) [2]. An important load balanc-
ing application is parallel sparse matrix—vector multiplication, where hypergraphs
can model the interprocessor communication volume exactly (unlike graphs, which
can only provide an approximation). In both load-balancing and VLSI CAD, a
system decomposition into a number of subsystems that minimises the subsystem
interconnect is sought. This is usually achieved by first partitioning the graph or
hypergraph model into parts to minimise a partitioning objective function, sub-
ject to a partitioning constraint on the part weights. In the context of hypergraph
models for parallel sparse matrix—vector multiplication, the k — 1 objective function
exactly quantifies the interprocessor communication volume [8].

It is known that computing the optimal partitions for many objective functions
(including the k — 1 objective) is NP-complete [18]. Thus, research has focused
on developing polynomial time heuristic algorithms that give good sub-optimal
solutions. Much work has been done on serial algorithms and a survey of these
algorithms in the context of VLST CAD is presented in [2]. Recently, the most
successful heuristic algorithms (in terms of partition quality and runtime) have
been those based on the multilevel paradigm [20, 7]. Multilevel algorithms form
a pipeline consisting of three phases. During the coarsening phase, a sequence of
successive smaller (coarser) hypergraphs is constructed by merging together selected
vertices to form a single vertex in the coarser hypergraph. The initial partitioning
phase then computes a sub-optimal partition of the smallest (coarsest) hypergraph
in the sequence. Finally, during the uncoarsening phase, this partition is projected
through the sequence of hypergraphs constructed during the coarsening phase and
is further refined at each level.

Computing a k-way partition (where k > 2) can be done either via the recursive
bisection approach (analogous to divide-and-conquer) or by computing the k-way
partition directly. In [24], Karypis and Kumar empirically demonstrate that the
direct partitioning approach may be superior both in terms of runtime and the k—1
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partitioning objective to the recursive bisection approach, for larger values of k.

In [5, 6, 13], hypergraph partitioning is applied to the parallel computation of
response time densities in Markov and semi-Markov chains. Hypergraph partition-
ing is a pre-processing step to the parallel sparse matrix—vector multiplications that
are the kernel operations in iterative solvers. A good partition can greatly reduce
the amount of interprocessor communication incurred, which is especially impor-
tant when the ratio of network latency to processor speed is high (such as is the
case in commodity workstation clusters). In [5, 6, 13], the computed partition is
reused many thousands of times, making the quality of the partitioning algorithms
key to the scalability of these algorithms. The sparse matrices that need to be par-
titioned may have upwards of ©(107) rows and ©(10%) non-zeros, so that in these
cases the partitioning problem becomes intractable by sequential computation. By
comparison, the largest hypergraph in the current VLSI CAD benchmark suite has
just 184752 vertices and 860036 pins (non-zeros in its incidence matrix) [1].

In the absence of a parallel hypergraph partitioner, a graph model and a parallel
graph partitioner were used in [5, 6, 13] to distribute the matrix across the proces-
sors for those cases where the hypergraph model could not be partitioned serially.
However, while superior to a random partition, graph partitioning schemes do not
accurately represent the actual interprocessor communication volume incurred dur-
ing parallel matrix—vector multiplication, but merely provide (and thus attempt to
minimize) an upper bound [8].

In this paper, we present an application-specific disk-based parallel formulation,
built upon a sequential multilevel k-way partitioning algorithm for hypergraphs
[24]. The disk-based approach is motivated by the successful use of out-of-core
techniques to solve large systems of linear equations [29]. Our target application
is parallel sparse matrix—vector multiplication. Specifically, we use the hypergraph
model for one-dimensional row-wise sparse matrix decomposition, first described
by Catalyurek and Aykanat in [8], to partition a Markov or semi-Markov transition
matrix across the processors. We note that hypergraph models for two-dimensional
sparse matrix decomposition have also been developed [9, 32].

The target architecture for our algorithm is a cluster of commodity workstations
connected by a switched ethernet network. The algorithm is evaluated on a number
of sparse hypergraphs modelling transition matrices arising from response time
density computations and it is shown to consistently outperform an approximate
graph-based method using the leading parallel graph partitioning tool ParMeTiS
[27] by up to 27% in terms of the k — 1 objective function.

The remainder of this paper is organized as follows. Section 2 describes serial
multilevel hypergraph partitioning in more detail. Section 3 presents our parallel
disk-based multilevel hypergraph partitioning algorithm and Section 4 the exper-
imental evaluation. Finally, Section 5 concludes and describes possible directions
for further research.
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2 Serial Multilevel Hypergraph Partitioning

2.1 Problem Definition

Formally, a hypergraph H(V, &) is a set system on the set of vertices, V. & is
the set of hyperedges, such that for all e € £, e C V. The incidence matrix of a
hypergraph H(V, &), with V = {vy,...,v,} and &€ = {e1,...,en}, is the n x m
matrix A = (a;;), with entries

= lif v; € €;
77" 1 0 otherwise

The hypergraph model for one-dimensional row-wise sparse matrix decompo-
sition assigns integer weights to the vertices and hyperedges as follows [8]. Each
vertex v € V has a weight w(v) equal to the number of hyperedges incident on
v. This corresponds to the number of non-zeros in the row (i.e. the computational
load that each row induces on the processor to which it is assigned). Each hyper-
edge e € £ has its weight w(e) set to unity since this corresponds to the volume
of communication when a vector element is communicated between two processors.
We define the size of a hyperedge to be its cardinality.

The k-way hypergraph partitioning problem is to find %k disjoint subsets (or
parts) V; of the vertex set V with corresponding weights W; such that, given a
prescribed balance criterion 0 < € < 1,

W; < (1 + E)Wavg (1)

holds for all : =0, ...,k — 1 and the objective function over the hyperedges is min-
imized. Here, Wy,4 denotes the average part weight. When the k& — 1 partitioning
objective function is used, the partition cost is given by

Peost = Z ()‘e - 1)’(1}(6) (2)

{e€&:A>1}

where A, is the number of parts spanned by hyperedge e € £. This formalizes
the intuition of the sparse matrix decomposition that minimizes the volume of
interprocessor communication of the parallel sparse matrix—vector multiplication,
subject to maintaining a computational load balance.

The multilevel paradigm is preferred to flat partitioning approaches (i.e. those
that do not attempt to approximate the original hypergraph) because it scales bet-
ter in terms of runtime and partition quality with increasing problem size. Flat
partitioning algorithms are more likely to get trapped in relatively poor local min-
ima as problem size increases [2]. We note that the multilevel paradigm uses flat
partitioning algorithms during the initial partitioning and the uncoarsening phases.

The following subsections describe the multilevel partitioning pipeline in more
detail.

2.2  The Coarsening Phase

The aim of the coarsening phase is to reduce the original hypergraph problem
instance H(V, &) via a succession of smaller hypergraphs H;(V;,&;), i = 1,...,¢,
that maintain as far as possible the structure of the original hypergraph H(V, ).
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Coarsening is performed by merging vertices of hypergraph H;(V;, £;) together to
form a vertex of the successive coarser hypergraph H;11(V;11,E+1). This clustering
of vertices is represented by a map ¢; : V; — V1. The hyperedge set of the
successive coarser hypergraph &; ;1 is constructed from &; by applying g; to every
vertex in each hyperedge e € &;. Single vertex hyperedges in &; 11 are discarded as
they cannot contribute to the objective function of a partition of H;1(Viy1,Eir1).
If more than one hyperedge maps onto the same hyperedge of the coarse hypergraph,
only one copy of the hyperedge is retained, with its weight set to the sum of the
weights of the hyperedges that mapped onto it.

It is desirable for the coarsening phase to maintain the natural clusters (highly
connected vertices) in the original hypergraph as clusters of coarse vertices in the
successive coarser hypergraphs. In addition, the coarsening should substantially
reduce the size and number of hyperedges, because this will make the heuristic
partitioning algorithms more effective during the initial partitioning phase.

The coarsening algorithm has a significant impact on the final partition quality
since most heuristic algorithms tend to terminate at local minima with respect to
the heuristic. A poor coarsening algorithm may only allow a partitioning algorithm
to explore parts of the solution space where the local minima solutions are of poor
quality relative to the global minimum.

Coarsening algorithms are discussed in detail in both [2] and [20]. During our
experiments, we have found that the first choice coarsening algorithm [24] and
related algorithms (such as heavy connectivity clustering [8]) yield balanced parti-
tions and fast runtimes for our case study hypergraphs. The first choice coarsening
algorithm proceeds as follows. The vertices of the hypergraph H;(V;, &;) are visited
in a random order. For each vertex v € V;, all vertices u € V; (both those already
matched and those unmatched) that are connected via hyperedges incident on v
are considered for matching with v. A connectivity metric is computed between
each pair of vertices v and v, and the most strongly connected vertex to v is chosen
for the matching, provided that the resulting cluster does not exceed a prescribed
maximum weight. This condition is imposed to prevent a large imbalance in vertex
weights in the coarsest hypergraphs. Note that more than two vertices may map
to the same cluster in the coarse hypergraph. The vertex connectivity metric used
in [24] is shown in Eqn. 3 below:

conn(u,v) = Z ! (3)

le] =1
{e€&;:u€e,vee}

Another family of algorithms, known as hyperedge coarsening algorithms [20], seek
a maximal independent set of hyperedges in &£;. The vertices that belong to each of
the hyperedges in the independent set are collapsed together to form vertices in the
coarse hypergraph. In order to find the maximal independent set, the hyperedges
are sorted in decreasing order of hyperedge weight. Ties are broken in increasing
order of hyperedge size. The hyperedges are now visited in this prescribed order
and for each hyperedge that consists of solely unmatched vertices, its vertices are
mapped to a single cluster in the coarse hypergraph. The remaining vertices may
then be mapped as singleton clusters in the coarse hypergraph or the hyperedges
may once again be visited in the above order and groups belonging to the same
hyperedges may be mapped to the same clusters. In our experiments, hyperedge
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coarsening often led to less tightly balanced partitions while not resulting in im-
provements in the objective function value over first choice coarsening.

An important parameter of the coarsening algorithm is the rate r at which a
hypergraph is reduced in successive coarsening steps. It is given by Eqn. 4 below:

Vil

" Vil W
A low value of r implies that many coarsening steps may be required, thus increasing
the runtime of the overall algorithm. On the other hand, a larger value of r may
result in a poorer quality of coarsening as vertices are matched into sub-standard
clusters in order to reduce the size of the hypergraph. In [20], Karypis reports that
values of 7 in the range 1.5-1.8 provide a reasonable balance between runtime and
solution quality. Our experience is similar with our case study hypergraphs, using
values of r in the range 1.5-2.0.

2.8 The Initial Partitioning Phase

The initial partitioning phase computes a partition of the coarsest hypergraph
H.(V.,E.). This partition will be subsequently refined during the uncoarsening
phase, as it is being projected through the successive finer hypergraphs. Because
the coarsest hypergraph tends to be significantly smaller than the original prob-
lem instance, the time taken to compute the initial partitioning phase is usually
considerably less than the time taken by the other phases of the multilevel pipeline.

In [24], the authors use recursive bisection to compute the initial k-way parti-
tion. We also adopt this approach, but note that it is possible to use a direct k-way
method to produce an initial partition of similar quality in a similar order of time
since the coarsest hypergraph is very small (of the order of a few hundred nodes).
Bisection is typically performed using the greedy growing algorithm [8, 26]. This
algorithm begins with a randomly selected vertex and grows a single part around it
by assigning the most highly connected vertex to the part from the remaining ver-
tices until the desired part size is achieved. The remaining unassigned vertices are
allocated to the complement part. Because the algorithm is randomized, a number
of initial bipartitions are computed and the best is retained for the uncoarsening
phase.

2.4 The Uncoarsening Phase

Here, we propagate the initial partition back up through the successive finer hy-
pergraphs and at each step further refine the partition using a heuristic refinement
algorithm (in essence, a flat iterative improvement algorithm [2]). When the overall
k-way partition is computed via recursive bisection, the uncoarsening phase requires
a bisection refinement algorithm. Traditionally, iterative improvement algorithms
based on the Fiduccia-Mattheyses (FM) algorithm are used. These perform passes,
during each of which each vertex is moved from its starting part at most once; the
best sequence of moves found by the heuristic is actually performed leading to the
refined partition. The algorithms operate in O(z) time per pass, where z is the
number of pins in the hypergraph (or the number of non-zeros in its incidence ma-
trix), and usually converge within a few passes [17] to local minima with respect to
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the heuristic used. More sophisticated refinement algorithms have been developed,
motivated by the idea of escaping from poor local minima [30, 14, 15, 16].

Extending the FM algorithm to refine a k-way partition directly at each uncoars-
ening step increases both the time complexity of the algorithm and the likelihood
that the algorithm terminates at a relatively poor local minimum [11, 24]. How-
ever, good results have been reported with a greedy refinement algorithm, especially
for increasing values of k [24]. The greedy refinement algorithm performs passes,
during each of which the vertices are visited in a random order and moved to the
part that yields the largest positive gain in the objective function. Since the hyper-
graph is sparse, the algorithm avoids calculating the gain to each of the k — 1 other
parts as follows. Vertices are not considered for a move if they are internal to their
current part (i.e. all adjacent vertices are also in the same part). Otherwise, the
gain of a move is only computed for neighbouring parts (those parts that contain
adjacent vertices) if the move to the neighbouring part does not violate the balance
constraint. Experiments have showed that the algorithm typically converges after
a small number of iterations [24].

A more sophisticated refinement scheme iteratively repeats the coarsening and
refinement phases, such that during subsequent applications of the coarsening
phase, vertices are matched together only if they have been assigned to the same
part in the partition; this preserves the cut properties of the partition during the
coarsening phase [21, 7]. Such multi-phase refinement is implemented in the state-
of-the-art serial tools hMeTiS [23] and PaToH [10]. It attempts to converge to a better
solution than would be obtained by simply performing the multilevel pipeline once,
but can significantly increase runtime.

3 Parallel Multilevel Hypergraph Partitioning

This section describes the main contribution of our paper, namely the application-
specific disk-based parallel multilevel k-way hypergraph partitioning algorithm.

8.1 Approaches to Parallel Multilevel Hypergraph Partitioning

We note that the algorithms making up the multilevel pipeline are inherently
sequential in nature, making it difficult to find opportunities for concurrency. More-
over, whereas parallel multilevel graph partitioning algorithms have been developed
[22, 25, 3, 33], none have yet been forthcoming for multilevel hypergraph partition-
ing.

It has been shown that, in general, there does not exist a graph model that
correctly represents the cut properties of the corresponding hypergraph [19]. Thus,
it is not possible to directly minimise an objective function on a hypergraph by
constructing a graph model and applying a parallel graph partitioning algorithm,
although this may give reasonable approximations in some cases.

Here, it is worth noting the main difference between graphs and hypergraphs:
whereas the cardinality of every edge in a graph is two, the cardinality of a hyper-
edge in a hypergraph can vary from one to an upper bound given by the number
of vertices. This difference is significant in the context of the main obstacle to
parallelism in graph and hypergraph partitioning: the presence of adjacent vertices
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Figure 2 Parallel multilevel pipeline

on different processors.

Firstly, consider a move-based partitioning algorithm. Concurrent movement of
adjacent vertices on different processors potentially causes a conflict because the
gain of each vertex move, as computed by the respective processor, is conditional
upon its adjacent vertices remaining fixed in their respective parts.

Secondly, consider the edge coarsening algorithm [21]. Serially, it matches an
unmatched vertex with the most strongly connected neighbouring unmatched ver-
tex that maximises the connectivity metric from Eqn. 3. In parallel, suppose that
processors compute vertex matches concurrently. A processor may match an un-
matched local vertex with (what it thinks) is another unmatched vertex on another
processor; however, this remote vertex may have already been matched by its owner
processor.

In [22], in the context of parallel graph partitioning, Karypis and Kumar coloured
the vertices of the graph to identify groups of vertices that did not share any com-
mon edges. In any given step, the algorithm would operate concurrently only on
vertices corresponding to the same colour, avoiding the conflicts outlined above.
Identifying groups of vertices that do not share any common hyperedges in the hy-
pergraph may be achieved by first constructing a (graph) clique model by replacing
each hyperedge with a vertex clique and then colouring the resulting graph. How-
ever, because large hyperedges will induce large cliques in the graph, its chromatic
number is also likely to be large®.

In the absence of obvious fine-grained parallelism, a coarse-grained formulation
is sought. We note that only the coarsening and uncoarsening phases need to be
parallelised. During the initial partitioning phase, the coarsest hypergraph should
be small enough to be partitioned serially on a single processor and the time-
complexity of this serial component should be dominated by the time-complexities

2The number of colours used is the chromatic number of the graph. Suppose that in a graph
G(V,&) the largest vertex clique has d vertices. Then, d is (trivially) a lower bound on the
chromatic number x(G).
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Figure 3 An example of a semi-Markov transition matrix generated by a breadth-first
state traversal

of the parallel coarsening and parallel uncoarsening phases. The proposed parallel
multilevel pipeline is illustrated in Fig. 2. The sections below describe the data
distribution strategy, parallel coarsening and parallel refinement phases of our disk-
based algorithm in more detail.

3.2  Data Distribution

The natural way to store a hypergraph H;(V;,&;) at stage i in a multilevel
algorithm across p processors is to store |V;|/p vertices and |&;|/p hyperedges on
each processor. The processors are assigned non-overlapping sets of vertices; V,"’
on processor pj, such that |J; V"’ = V;.

In order to eliminate the communication overhead that would arise when lo-
cating remote vertices that are adjacent to a local vertex v € Vip 7 on processor
p;, all hyperedges incident on vertices in Vip 7 are assigned to Sf 7 (i.e. allocated to
Processor pj).

Note that this hyperedge-to-processor allocation may result in some hyperedges
being replicated across several processors, since vertices incident on such hyperedges
will be assigned to different processors. We refer to these as frontier hyperedges.
To increase capacity, the algorithm only stores in memory the hypergraph corre-
sponding to the current stage in the multilevel pipeline; the remaining hypergraphs
are stored on disk and loaded into memory as required.

8.8 Parallel Coarsening Phase

The serial coarsening algorithm chosen for parallelisation is the first choice coars-
ening algorithm. In a naive parallel formulation, if the processors were to apply
the serial first choice algorithm to their local vertex sets concurrently during coars-
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| Hypergraph || #vertices | #hyperedges | #pins || Size (MB) |

voting100 249760 249760 1391617 8.2
voting125 541280 541280 3044557 18
voting150 778850 778850 4532947 26
votingl75 1140050 1140050 6657 722 39
voting250 5218300 5218300 32986 597 186
voting300 10991 040 10991 040 69 823 797 392

Table 1 Characteristics of hypergraphs used in the paper

ening stage 4, potentially excessive interprocessor communication may result (since
adjacent vertices may be located across several processors).

We note that transition matrices of Markov and semi-Markov chains exhibit an
approximate lower-triangular structure when generated by a breadth-first search
of the state-space [28]. An example of such a matrix, taken from [28], is shown
in Fig. 3. In the belief that the approximate lower-triangular structure of the
transition matrix can ensure a sufficient number of strongly connected local vertex
clusters, our parallel coarsening algorithm only matches together vertices local to
a processor. This avoids interprocessor communication during the vertex matching
computation.

We first perform an experiment in order to indicate whether restricting the par-
allel coarsening algorithm in this manner still yields a sufficient number of good
vertex matches, when compared to the unrestricted coarsening algorithm. To this
end, the edge coarsening algorithm [21] was applied to hypergraphs derived from
transition matrices of a semi-Markov model of a voting system [4, 6]. A detailed
description of this model can be found in Appendix A while the main characteristics
of the voting hypergraphs are shown in Table 1. It was conjectured that two ver-
tices close in terms of their index (corresponding to two rows that are close in the
transition matrix) would form good matches. This is because the upper triangular
part of the matrix is mostly zero, while the diagonal region is the densest part of
the matrix.

We performed the experiment as follows. The vertex set V' was partitioned into a
number of subsets, each of which contained vertices with contiguous index. During
the edge coarsening procedure, whenever unmatched vertices are matched with
unmatched vertices within the same subset, the match was called a local match.
When vertices are matched with others from a different subset, the match was
called a remote match. Finally, vertices that were simply copied over to the coarser
hypergraph were denoted singleton matches. Table 2 shows the average percentages
of the above match types over ten runs of the algorithm on the voting hypergraphs.

The results of the experiment indicate that vertices tend to seek matches with
their immediate neighbours (defined in terms of their indices) in hypergraphs rep-
resenting Markov and semi-Markov transition matrices. Our parallel coarsening
algorithm exploits this property by allocating vertices of contiguous index to the
set Vip 7 on processor p; (this corresponds to allocating contiguous rows of the tran-
sition matrix to p;).

Once the map g; has been computed across the processors, we construct the
hypergraph H;11(Viq1,E&i+1) using H;(V;, &) and g;. A b-bit hash key is associ-
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| Hypergraph || partition size [ % local | % remote | % singleton |

voting100 2 90.1 0.9 9.0
voting100 4 88.1 2.9 9.0
voting100 8 84.4 6.7 8.9
voting100 16 77.2 13.9 8.9
voting100 32 62.8 28.2 9.0
voting125 2 90.4 0.7 8.9
voting125 4 88.8 2.3 8.9
voting12b 8 85.9 5.2 8.9
voting125 16 79.9 11.2 8.9
voting125 32 68.6 22.5 8.9
voting150 2 91.5 0.7 7.8
voting150 4 90.2 2.0 7.8
voting150 8 87.5 4.7 7.8
voting150 16 82.4 9.8 7.8
voting150 32 72.4 19.8 7.8
votingI175 2 91.6 0.6 7.8
votingl75 4 90.5 1.7 7.8
votingl75 8 88.2 4.0 7.8
votingI175 16 83.8 8.4 7.8
votingI175 32 75.1 17.1 7.8

Table 2 Percentages of match types in the edge coarsening algorithm during the vertex
connectivity analysis

ated with each hyperedge e € &; and used to assign “ownership” of hyperedges to
processors. This hash key is computed using a hash-function A : N* — N, where
a is the maximum hyperedge cardinality in &;. It posesses the desirable property
that for an arbitrary set of hyperedges E, h(e) mod p, e € E, is near-uniformly
distributed [28]. In our experiments, we set b = 64.

Each processor only contracts those hyperedges that have been assigned to it
by the hash function. This ensures that only one copy of a given hyperedge is
contracted (as potentially multiple copies of the given hyperedge exist across pro-
cessors). Each processor first contracts the local hyperedges using its portion of
the map g;, then communicates this portion of the vector representation of g; to
the other p — 1 processors. This enables every processor to fully contract its hyper-
edges. There is no need for explicit removal of duplicate hyperedges following the
hyperedge contraction, because this is done when the hyperedges are read in from
disk by the processors at the beginning of the subsequent coarsening step.

Motivated by [25], we use a smaller number of processors as the hypergraph
is reduced in successive coarsening steps. In our implementation, we only use
processor numbers that are powers of two. When the hypergraph is considered to
be small enough to fit on a single processor, a serial multilevel algorithm is used; in
our implementation, we require that the hypergraph has been reduced by a factor
of p before using a serial algorithm.

3.4 Initial Partitioning Phase

During this phase, a partition of the coarse hypergraph is computed serially on
a single processor. In principle, any serial algorithm may be used, as this is the
least time-critical phase in the parallel multilevel algorithm. For our experiments,
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we used the HMETIS PartKway () routine from the hMeTiS library [23].

8.5 Parallel Uncoarsening Phase

During the " level in the uncoarsening phase, each processor is responsible
for vertices from k/p parts and the hyperedges incident on these vertices. As in
the coarsening phase, some hyperedges are replicated across multiple processors
(frontier hyperedges). The parallel refinement algorithm proceeds in a number of
steps. During each step, each processor performs local refinement on the parts it
currently owns (using serial FM when k& = 2p, and using the serial greedy k-way
refinement [24], if k > 2p). If p = k, the processors pair-up and only one processor
performs serial FM refinement on the two parts.

A round-robin communication of vertices and incident hyperedges is then per-
formed, in order for subsequent steps to consider different directions of vertex move.
The partition balance constraint is enforced locally, since each processor refines an
independent set of parts. As in the parallel coarsening phase, fewer processors are
used at the coarser levels.

4 Implementation and Experimental Evaluation

The disk-based parallel algorithm was implemented in the C++ language using
the Message Passing Interface (MPI) standard [31] for interprocessor communica-
tion, forming the Parkwayl.0 tool. This experimental implementation consisted of
three phases:

1. Parallel coarsening using the parallel formulation of the first choice coarsening
algorithm from Section 3.3. A coarsening reduction ratio of 2.0 (cf. Eqn. 4)
was enforced on each processor.

2. Serial initial partitioning performed by the HMETIS PartKway() routine of
the hMeTiS library. This is called on a single processor when the coarse
hypergraph has O(n/p) vertices.

3. Parallel refinement on the partition output by HMETIS PartKway () using the
parallel refinement algorithm described in Section 3.5.

The architecture used in the experiments consisted of a cluster of commodity PC
workstations, connected by a switched 100 Mbps ethernet network. Each PC was
equipped with a 2.8GHz Pentium 4 CPU and 1GB RAM.

The experimental evaluation was carried out on hypergraph representations
of transition matrices from the voting model with 250 and 300 voters [4, 5, 6],
yielding the voting250 and voting300 hypergraphs, respectively. The voting model
is described in more detail in Appendix A. The hypergraphs were constructed
from the sparse matrices according to the hypergraph model for one-dimensional
row-wise sparse matrix decomposition [8]; their main characteristics can be found
in Table 1. The minimum information required to store a hypergraph consists
of the weights of the vertices and the costs of the hyperedges, in addition to the
list of constituent vertices from each of the hyperedges (the pins). The sizes of
hypergraphs on disk in Table 1 assume 32-bit integer types with no compression.
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voting250 results using 4 processors
Parkwayl.0 ParMeTiS
Partition size || £ — 1 objective | time(s) | £ — I objective | time(s)
8 91511 1309 117354 25
16 182206 1393 249415 27
32 354561 1495 402681 32
64 525 856 1777 610597 33
\ total: I 1154134 [ 5974 ] 1380047 [ 117 ]

Table 3 Parkwayl.0 and ParMeTiS: runtime and partition quality results on the vot-
ing250 hypergraph

voting300 results using 8 processors
Parkwayi.0 ParMeTiS
Partition size || £ — 1 objective | time(s) | £k — I objective [ time(s)
16 322737 4827 442387 85
32 529763 4762 687659 61
64 874652 5007 1033312 80
\ total: [ 1727152 [ 14596 | 2163 358 [ 246 |

Table 4 Parkwayl.0 and ParMeTiS: runtime and partition quality results on the vot-
ing300 hypergraph

In order to quantify the communication volume of parallel sparse matrix—vector
multiplication exactly, the partitioning objective used in the experiments was the
k — 1 metric (cf. Eqn. 2). A partitioning balance constraint of 5% was imposed,
equivalent to setting € = 0.05 in Eqn. 1.

Both problem instances were too large to be partitioned on a single worksta-
tion, so a suitable comparison was provided by the state-of-the-art parallel graph
partitioning tool ParMeTiS [27]. The transition matrices were converted into ap-
propriate input for ParMeTiS according to the transformations described in [8]. We
used default parameter values in ParMeTiS. Note that it is not possible to explicitly
enforce the balance constraint on partitions produced by ParMeTiS; however, the
vast majority of partitions produced satisfied the 5% balance constraint.

Table 3 presents the experimental results for the voting250 hypergraph and Ta-
ble 4 results for the voting300 hypergraph. The results indicate that the proposed
parallel hypergraph partitioning algorithm significantly dominates the approxima-
tion given by parallel graph partitioning in terms of partition quality. On average,
the algorithm produces partitions with k — 1 objective values 20% lower than those
produced by ParMeTiS on the voting300 hypergraph and 16% lower on the smaller
voting250 hypergraph. In turn, ParMeTiS significantly dominates our disk-based
algorithm in terms of runtime.

There are a number of reasons for the large difference in the respective run-
times. Firstly, hypergraph partitioning is an inherently more “difficult” problem
than graph partitioning. Secondly, the implementation experienced slow disk ac-
cess time due to high disk contention; this may partly be due to our use of disk
storage on a shared departmental file server. Thirdly, the parallel refinement algo-
rithm explicitly communicated vertices and the corresponding incident hyperedges
in order to consider the different directions of vertex move. The volume of this
communication was observed to be very large and increased with the number of
processors used.
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5 Conclusion

We have devised a high-capacity parallel formulation of the multilevel k-way
hypergraph partitioning algorithm and have demonstrated its ability to partition
very large hypergraphs arising from semi-Markov chain models with ©(107) ver-
tices by combining the memory and processing power of several workstations. To
the best of our knowledge, this is the first time that hypergraphs of this size have
been successfully partitioned, since previously no parallel hypergraph partitioners
existed and these hypergraphs are too large to be partitioned in the memory of a
single workstation. We have further demonstrated that the quality of the hyper-
graph partitions produced by our parallel tool comfortably exceeds the approximate
partitions produced by existing parallel graph partitioning tools.

However, there are also some shortcomings in the current implementation which
we will address as part of our future work. In particular we note that, while the
extensive use of disk has minimised the amount of memory used, as well as re-
duced the number of communication operations required, it has also resulted in
relatively poor runtimes. It is possible to significantly improve the parallel runtime
by reducing the number of disk-based operations and by using a better hardware
configuration that reduces contention for shared disks. We also note that partition-
ing runtime is not a significant factor for many problem instances where a single
partition may be reused several hundred thousand times (e.g. in the parallel Laplace
Transform-based response time analyser described in [4, 5, 6]).
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Figure 4 Semi-Markov Stochastic Petri net Voting System Model

The hypergraphs used in this paper are derived from a high-level semi-Markov
model of a voting system shown in Fig. 4. A full description of this model can be
found in [4, 5, 6]. In this system, voters cast votes through polling units which
in turn register votes with all available central voting units. Both polling units
and central voting units can suffer breakdowns, from which there is a soft recovery
mechanism. If, however, all the polling or voting units fail, then, with high priority,
a failure recovery mode is instituted to restore the system to an operational state.
The numbers of voters, polling units and central voting servers are configurable,
and each combination of these parameters results in a sparse transition matrix of
a different size, as shown in Table 5.

The aim of the analysis performed on these models is to find the response time
density of the time taken for a certain number of voters to successfully register



A. Trifunovie, W.J. Knottenbelt 17

| Voting model parameters | Transition matrix/hypergraph |

100/30/4 voting100
125/40/4 voting125
150/40/5 voting150
175/45/5 votingl75
250/60/10 voting250
300/80/10 voting300

Table 5 Voting model parameters that yield hypergraph representations of sparse tran-
sition matrices used in the paper

their votes. This requires the numerical inversion of the Laplace Transform of the
response-time density, which in turn requires the solution of many thousands of
sets of linear equations with the same non-zero sparsity pattern. Each set of lin-
ear equations requires hundreds of iterations to convergence. The parallel sparse
matrix—vector multiplication time dominates the per-iteration time when solving a
set of linear equations. Hypergraph partitioning is used to reduce the amount of
inter-processor communication and hence, the per-iteration time. Note that hyper-
graph partitioning need only be performed once and is “reused” several hundred
thousand times.



