
A Parallel Algorithm for Multilevel k-way Hypergraph Partitioning

Aleksandar Trifunovic William J. Knottenbelt

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ, UK

email:{at701,wjk }@doc.ic.ac.uk

Abstract

In this paper we present a coarse-grained parallel multi-
level algorithm for thek-way hypergraph partitioning prob-
lem. The algorithm significantly improves on our previ-
ous work in terms of run time and scalability behaviour by
improving processor utilisation, reducing synchronisation
overhead and avoiding disk contention. The new algorithm
is also generally applicable and no longer requires a par-
ticular structure of the input hypergraph to achieve a good
partition quality.

We present results which show that the algorithm has
good scalability properties on very large hypergraphs with
Θ(107) vertices and consistently outperforms the approx-
imate partitions produced by a state-of-the-art parallel
graph partitioning tool in terms of partition quality, by up
to 27%.

1. Introduction

e1

e2

e4

e5

e3
e1 e2

e3

v 4
v 5 v 5

v 1
v 1 v 2

v 4

v 3
v 3

v 2

Graph Hypergraph

Figure 1. An example graph and a hypergraph

A hypergraph is an extension of a graph data structure in
which edges are allowed to connect arbitrary, non-empty
sets of vertices (as shown in Fig. 1). Like graphs, hy-
pergraphs can be used to represent the structure of many

sparse irregular problems, such as data dependencies in dis-
tributed databases and component connectivity in VLSI cir-
cuits. Also like graphs, hypergraphs may be partitioned
such that a cut metric (a function of the interconnect be-
tween parts) is minimised subject to a load balancing crite-
rion. However, hypergraph cut metrics provide a more ac-
curate model than graph partitioning in many cases of prac-
tical interest. For example, in the row-wise decomposition
of a sparse matrix for parallel matrix-vector multiplication,
a hypergraph model provides an exact measure of commu-
nication cost, whereas a graph model can only provide an
upper bound [5]. It has been shown that, in general, there
does not exist a graph model that correctly represents the
cut properties of the corresponding hypergraph [12].

Whilst algorithms for sequential hypergraph partition-
ing have been studied extensively and tool support exists
(e.g. hMeTiS [15]), little work has been done in the field of
parallel algorithms for partitioning very large hypergraphs.
In [21], we proposed the first (to the best of our knowl-
edge) parallel hypergraph partitioning algorithm. However,
the partition quality was highly dependent on the structure
of the input hypergraph, processors were under-utilised (es-
pecially in the later stages of coarsening and in the early
stages of the refinement process) and, since it was a disk-
based algorithm, there was extensive disk contention. The
latter shortcomings led to large absolute parallel run times
and poor scalability.

In this paper we present a new coarse-grained parallel
algorithm for hypergraph partitioning that proceeds in three
phases: parallel coarsening, initial partitioning and parallel
refinement. The algorithm does not depend upon the un-
derlying structure of the input hypergraph to produce good
quality partitions, fully utilises the available processors and
runs entirely from memory.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines sequential multilevel hypergraph partition-
ing. Section 3 presents our new parallel algorithm and Sec-
tion 4 the experimental evaluation. Finally, Section 5 con-
cludes and suggests ideas for further research.

2. Sequential Multilevel Hypergraph Partition-
ing

Formally, we define a hypergraphH(V, E) as follows.
Let V be the set of vertices andE the set of hyperedges,
where each hyperedgeei ∈ E is a subset of the vertex set
V . The mapfw : V → Z associates an integer weight
wi with every vertexvi ∈ V . In the case of a row-wise
sparse-matrix decomposition (as used in parallel sparse-
matrix vector multiplication) the weight function is defined
by the number of hyperedges incident on each vertex (i.e.
the computational load that each row induces on a proces-
sor as given by the number of non-zeros in the row). In
addition, the mapfc : E → Z associates a costci with
each hyperedgeei ∈ E. This is unity in the case of the
row-wise sparse-matrix decomposition since it corresponds
to the cost of communicating a vector element across a pro-
cessor boundary. Furthermore, thesizeof a hyperedge is
defined as its cardinality. The sum of the sizes of the hyper-
edges in a hypergraph is referred to as the number of pins
in the hypergraph (reflecting the first application of hyper-
graph partitioning in VLSI circuit design).

The formal definition of thek-way partitioning problem
is as follows. Findk disjoint subsetsVi, (i = 0, . . . , k − 1)
of the vertex setV with part weightsWi (i = 0, . . . , k− 1)
(given by the sum of the constituent vertex weights), such
that, given a prescribed balance criterion0 < ε < 1,

Wi < (1 + ε)Wavg (1)

holds∀i = 0, . . . , k − 1 and an objective function over the
hyperedges is minimized. HereWavg denotes the average
part weight. If the objective function is thehyperedge cut
metric, then the partition cost (or cut-size) is given by the
sum of the costs of hyperedges that span more than one part.
Alternatively, when the objective fuction is the(k−1) met-
ric (as in row-wise sparse-matrix decomposition), the parti-
tion cost is given by

Pcost =
|E|−1∑

i=0

(λi − 1)ci (2)

whereλi is the number of parts spanned by hyperedgeei.
This formalizes the intuition of the row-wise sparse-matrix
decomposition that minimizes the communication cost sub-
ject to maintaining a computational load balance.

Computing the optimal bisection of a hypergraph under
the hyperedge cut metric (and hence the(k−1) metric since
k = 2 for a bisection) is known to be NP-complete [11].
Thus, research has focused on developing polynomial time
heuristic algorithms resulting in good sub-optimal solu-
tions. Because it scales well in terms of run time and so-
lution quality with increasing problem size, the multilevel

paradigm is preferred to direct solution approaches. The
likelihood of iterative improvement algorithms converging
to poor local minima rises significantly with increasing
problem size. Alternative direct approaches such as spec-
tral methods are reviewed in more detail in [1]. However,
for large problem instances these are usually incorporated
within the multilevel framework to preserve realistic run
times [2].

The following subsections describe the main phases of
the multilevel paradigm in more detail.

2.1. The Coarsening Phase

The coarsening phase approximates the original problem
instance via a succession of smaller hypergraphs that main-
tain as far as possible the structure of the original hyper-
graph.

A single coarsening step is performed by merging the
vertices of the original hypergraph together to form vertices
of the coarse hypergraph, denoted by a mapfmerge : V →
Vcoarse, where

|V |
|Vcoarse| = r, r > 1 (3)

andr is the prescribed reduction ratio. The mapfmerge is
also used to transform the hyperedges of the original hyper-
graph to the hyperedges of the coarse hypergraph. Single
vertex hyperedges in the coarse hypergraph are discarded
as they cannot contribute to the cut-size of a partition of the
coarse hypergraph. When multiple hyperedges map onto
the same hyperedge of the coarse hypergraph, only one of
the hyperedges is retained, with its cost set to be the sum of
the costs of the hyperedges that mapped onto it (thus pre-
serving the cut-size properties of the original hypergraph).

It is desirable for the coarsening phase to maintain the
natural clusters (highly connected vertices) in the original
hypergraph as clusters of coarse vertices in the coarsened
hypergraphs. In addition, coarsening aims to reduce the size
and number of hyperedges, as well as reducing theexposed
hyperedge cost, which is defined as the sum of individual
hyperedge costs and which represents the upper bound on
the cut-size of a partition. The coarsening algorithm has a
significant impact on the final solution quality. This is be-
cause a poor coarsening algorithm may only allow a par-
titioning algorithm to explore parts of the solution space
where the local minima solutions are of poor quality rela-
tive to the global minimum.

Coarsening algorithms are discussed in detail in both [1]
and [13]. In our experiments we have found that the
FirstChoice(hereafter FC) coarsening algorithm [16] and
related algorithms [5] result in balanced partitions and fast
run times for our case study hypergraphs. The FC coars-
ening algorithm proceeds as follows. The vertices of the

2

hypergraph are visited in a random order. For each ver-
tex vi, all vertices (both those already matched and those
unmatched) that are connected via hyperedges incident on
vi are considered for matching withvi. A connectedness
metric is computed between pairs of vertices and the most
strongly connected vertex tovi is chosen for the match-
ing, provided that the resultant cluster does not exceed a
prescribed maximum weight. This condition is imposed to
prevent a large imbalance in vertex weights in the coarsest
hypergraphs.

A low reduction ratio implies that many coarsening
stages may be required, thus increasing the run time of the
overall algorithm. On the other hand, a larger reduction ra-
tio may result in a poorer quality of coarsening as vertices
may be matched into sub-standard clusters in order to suf-
ficiently reduce the coarse hypergraph. In [13] the author
reports that a ratio in the range 1.5–1.8 provides a reason-
able balance between run time and solution quality. Our ex-
perience is similar with our case study hypergraphs, using
ratios in the range 1.5–2.0.

2.2. The Initial Partitioning Phase

The coarsest hypergraph is partitioned using a direct par-
titioning method such as an iterative improvement algo-
rithm. This partitioning is subsequently uncoarsened and
refined whilst being projected back through the sequence
of successively finer hypergraphs. Because the coarsest hy-
pergraph tends to be significantly smaller than the original
problem instance, direct partitioning methods are computa-
tionally feasible and the time taken to compute the initial
partitioning is usually considerably less than the time taken
by the other phases of the multilevel pipeline. As heuris-
tic algorithms are typically used, the best solution out of a
number of runs is chosen as the starting point for the un-
coarsening phase.

2.3. The Uncoarsening Phase

Here the initial partitioning is propagated up through the
successively finer hypergraphs and at each step the parti-
tion is further refined using heuristic refinement techniques.
When the overallk-way partitioning is computed via recur-
sive bisection, the refinement phase consists of a bisection
refinement algorithm. Traditionally, iterative improvement
algorithms based on the Fiduccia-Mattheyses (FM) algo-
rithm are used. These performpasses, during each of which
each vertex is moved from its starting part at most once; the
best sequence of moves found by the heuristic is actually
performed leading to the refined partition. The algorithms
operate inO(m) time per pass, wherem is the number
of pins in the hypergraph, and usually converge within a
few passes to a local minimum with respect to the heuristic

used [10]. More sophisticated refinement algorithms have
been developed, motivated by the idea of escaping from
poor local minima [19, 7, 8, 9].

Extending the FM-algorithm to compute ak-way par-
titioning at each refinement step (as opposed to using re-
cursive bisection) increases both the time complexity of the
algorithm and the likelihood that the algorithm terminates
at a relatively poor local minimum. However, good results
have been reported with agreedy refinementalgorithm, es-
pecially for increasing values ofk [16]. The greedy refine-
ment algorithm performs iterations during which the ver-
tices are visited in a random order and moved to the part
that results in the largest positive gain. Since the hypergraph
is sparse, the algorithm avoids calculating the gain to every
other of the(k−1) parts as follows. Vertices are not consid-
ered for a move if they are internal to their current part (i.e.
all adjacent vertices are also in the same part). Otherwise,
the gain of a move is only computed for neighbouring parts
(those parts that contain adjacent vertices) if the move to the
neighbouring part does not violate the balance constraint.
Experiments have showed that the algorithm typically con-
verges after a small number of iterations [16].

A more sophisticated refinement scheme repeats the
whole coarsening and refinement process on the refined par-
tition while preserving properties of the partition during the
coarsening phase. This type of refinement is called aV-
Cycle[13, 4] and is a feature of the tool hMeTiS. It attempts
to converge to a better solution than would be obtained by
simply performing the multilevel pipeline once, but can sig-
nificantly increase run time.

3. The Parallel Algorithm

This section describes our parallel multilevel partition-
ing algorithm. As the algorithms that make up the multi-
level pipeline are inherently sequential in nature, a coarse-
grained formulation is sought. We note that there are two
approaches to computing ak-way partitioning: recursive
bisection and direct partitioning. We compute thek-way
partitioning directly in parallel due to thek-way refinement
algorithm having better opportunities for concurrency, since
ways to perform the gain update calculations of the FM al-
gorithm in parallel are not readily apparent.

As the coarsest hypergraph should be small enough for
the initial partitioning phase to be performed sequentially
and multiple runs of the initial partitioning algorithm can
be carried out on the available processors in parallel, only
the coarsening and refinement phases are parallelised (as
in [21]). The parallel multilevel pipeline is illustrated in
Fig. 2. The motivation for our parallel formulation comes
from the parallelgraphpartitioning algorithm in [14]. The
sections below describe the parallel coarsening and refine-
ment phases in more detail.

3

H0

H1

H2

H1

H0

Unc
oa

rs
en

in
g

Pha
se

Coarsening Phase

Initial Partitioning Phase

IN PARALLEL
SEQUENTIAL

IN P
ARAL

LEL

SEQU
ENTI

AL

Figure 2. Parallel Multilevel Pipeline

3.1. Parallel Coarsening Phase

We consider the FC algorithm as the basis for our parallel
formulation althoughhyperedge coarseningalgorithms [13]
can also be parallelised in this fashion. Ifp denotes the num-
ber of processors, we store|E|/p hyperedges and|V |/p
vertices on each processor. We assume that each proces-
sor stores a contiguous set of vertices, although the initial
distribution of vertices is not critical because our algorithm
allows for vertex matches across processor boundaries.

At the beginning of each coarsening step, the hyperedges
adjacent to the locally held vertices are assembled at each
processor using an all-to-all personalised communication.
Then, each processori visits vertices from the local vertex
setVi in random order, computing the vertex matchings as
prescribed by the FC algorithm. Each processor also main-
tains request sets to thep− 1 remote processors. If the best
match for a local vertexv becomes a vertexw stored on
processorj, i 6= j, then the vertexv is placed into the re-
quest setSi,j . If another local vertex choosesv or w as its
best match then it is also added to the request setSi,j . Note
that a local vertex on processori can request a match with
at most one other vertex not stored on processori. The local
matching computation terminates when the ratio of the ini-
tial number of local vertices to the number of local coarse
vertices exceeds a prescribed threshold (cf. Eq. 3). When
computing the cardinality of the local coarse vertex set, we
include the potential matches with vertices from other pro-
cessors.

Now, each processori communicates its request sets to
the other processors, including the weights of the vertices
that are involved in the matching request. The processors
then concurrently decide to accept or reject matching re-
quests from other processors. Denote byMw

i,j the set of
vertices (possibly consisting of a single vertex) from the re-
mote processori that seek to match with a local vertexw
stored on processorj. Processorj considers these sets for
each of its requested local vertices in turn, handling them as
follows:

1. If w is unmatched, matched locally or already matched

remotely, then a match withMw
i,j is granted to proces-

sor i if the weight of the combined cluster (including
vertices already matched withw) does not exceed the
maximum allowed coarse vertex weight.

2. If w has been sent to a processork, k 6= i, as part of
a request for another remote match, then processorj
informs processori that the match withMw

i,j has been
rejected. This is necessary since granting this match
may otherwise result in a coarse vertex that exceeds
the maximum allowed coarse vertex weight (if the re-
mote match ofw with a vertex on processork is also
granted). When informed of the rejection by proces-
sorj, processori will locally match the setMw

i,j into a
single coarse vertex.

Now consider the case where vertexv on processori re-
quests a match with vertexw on processorj and vice versa.
This would be expected if the two vertices are strongly con-
nected; in this case it is desirable to match them together
into a single coarse vertex. However, under the scheme
above, the remote match would be rejected by both pro-
cessors since bothv andw are involved in remote requests.
We resolve this by communicating the request sets in two
stages. In the first stage, processori communicates request
setsSi,j to processorj and receives replies to its requests
from j if i > j, while in the second stage processori
communicates request setsSi,j to processorj and receives
replies to its requests fromj if i < j. During each stage,
we aggregate the communication of the request sets and also
aggregate the communication of the replies. These are sent
as all-to-all personalised communications. Note that only
the combined weight of the vertices inMw

i,j and the index of
vertexw need to be communicated from processori to pro-
cessorj, further reducing the communication requirements.
The setsMw

i,j are received as an array on processorj and
processed in order of increasingi. A randomized scheme
may also be implemented, whereby this array is traversed
in random order.

Having computed the vertex matching vector across the
processors, the coarsening step is completed by contract-
ing the hyperedges of the finer hypergraph, thus creating
the hyperedges of the coarse hypergraph. Each processor
contracts the|E|/p locally stored hyperedges. Note that
in the sequential algorithm duplicate coarse hyperedges are
replaced by a single coarse hyperedge whose weight is the
sum of the weights of the finer hyperedges that are con-
tracted onto it. We minimise the communication require-
ments of this step and load balance the hyperedge compu-
tations by using a probabilistic hash function to associate
a 64-bit key with each hyperedge. The hash function is a
64-bit variant of that given in [18] and has the desirable
property thatkey mod p scatters the hash-keys across the
processors with a near-uniform distribution, independently

4

from the nature of the hyperedge input. In order to elimi-
nate duplicate hyperedges, processors communicate the hy-
peredge hash-keys and weights to the destination processor
given bykey modp. The destination processor retains only
one copy of the hyperedge, setting its cost to be the sum
of the costs of all duplicates. The parallel coarsening step
concludes with a communication of coarse vertices so that
each processor has|Vcoarse|/p local vertices at the start of
the subsequent coarsening step.

3.2. Initial Partitioning Phase

During this phase the initial partition is computed on the
coarsest hypergraph. Each processor concurrently performs
the sequential partitioning algorithm and the best partition-
ing is selected for further refinement. Because the coarsest
hypergraph is small (typically of the order of100 × k ver-
tices, wherek is the number of desired parts), this phase
does not contribute significantly to the run time of the par-
allel algorithm.

3.3. Parallel Uncoarsening Phase

At the beginning of the parallel uncoarsening phase, the
partition of the coarse hypergraph is used to initialise the
partition of the current hypergraph. Then, the hyperedges
adjacent to the locally held vertices are assembled at each
processor using an all-to-all personalised communication.

Like the sequential greedyk-way refinement algo-
rithm [16], our parallel refinement algorithm proceeds in
passes. However, instead of moving single vertices across
a partition boundary one at a time, the parallel algorithm
moves sets of vertices. The processors then perform gain
computations for each of their local vertices in parallel. In
addition, each processor maintains sets of moved vertices
Ui,j , i 6= j, i, j = 0, . . . , k− 1. These sets contain the local
vertices whose moves from their current parti to the desti-
nation partj result in a positive gain in cut-size. In order
to prevent vertex thrashing, the refinement pass proceeds in
two stages. During the first stage, only moves from parts of
higher index to parts of lower index are permitted and vice
versa during the second stage. Vertices moved during the
first stage are locked with respect to their new part in or-
der to prevent them moving back to their original part in the
second stage of the current pass. The balance constraint on
part weights (cf. Eq. 1) is maintained as follows. At the be-
ginning of each of the two stages, the processors know the
exact part weights and maintain the balance constraint dur-
ing the local computation of the setsUi,j . The associated
weights and gains of all the non-empty setsUi,j are com-
municated to the root processor which then determines the
actual partition balance that results from the moves of the
vertices in the setsUi,j . If the balance criterion is violated,

the root processor determines which of the moves should
be taken back to restore the balance and informs the proces-
sors containing the vertices to be moved back. Currently,
this is implemented as a greedy scheme favouring taking
back moves of sets with large weight and small gain. Vertex
sets are moved from overweight parts, subject to the balance
constraint. Finally, the root processor broadcasts the up-
dated part weights before the processors proceed with the
subsequent stage. Note that, given at least one non-empty
setUi,j with positive gain on some processor, the stage is
guaranteed to yield a positive gain overall. The commu-
nication and computation on the root processor should not
affect scalability since the number of vertices moved during
any one pass is usually significantly less that the number of
vertices in the hypergraph. This is to be expected since we
are refining what is already a good partition and few vertex
moves will result in a positive gain in cut-size. As in the
sequential algorithm, the refinement procedure terminates
when the overall gain of a pass is not positive.

4. Experimental Results

4.1. Implementation and Test Environment

The three phases of our parallel multilevelk-way parti-
tioning algorithm were implemented in the C++ language
using the Message Passing Interface (MPI) standard [20] as
follows:

1. Parallel coarsening is performed using our parallel for-
mulation of the FC coarsening algorithm described in
Section 3.1.

2. The initial partitioning phase commences when
the coarsest hypergraph has100 × k vertices.
We interface with the sequential partitioning rou-
tine HMETIS PartKway() from the hMeTiS li-
brary [15]. This is used to compute several initial par-
titionings concurrently across the processors, with the
best selected for parallel refinement.

3. Finally, the output partition vector given by
HMETIS PartKway() is refined in parallel us-
ing the parallelk-way refinement algorithm described
in Section 3.3.

The hMeTiS library [15] was used for base-case se-
quential comparison, i.e. to provide the run time
and cut-size of the best sequential algorithm. We
used the HMETIS PartKway() k-way partition-
ing routine from the hMeTiS library instead of
HMETIS PartRecursive() , as the latter was not
able to consistently produce partitions within the balance
constraints. HMETIS PartKway() also provides a

5

like-for-like comparison to our parallel algorithm since it
too implements the greedyk-way refinement algorithm
from [16]. As recommended in [16], we set the partitioning
objective to SOED (the sum of external degrees) and
switched off the V-Cycle feature to obtain a fair run time
comparison with the parallel algorithm (which does not
perform V-Cycling).

When a hypergraph instance was too large to be parti-
tioned on a single workstation, a suitable comparison for
our algorithm was provided by the state-of-the-art paral-
lel graph partitioning tool ParMeTiS [17], in the absence
of other parallel hypergraph partitioning tools. Although
the optimisation objectives for the two tools are different,
ParMeTiS is used because such parallel graph partitioners
are currently the only feasible way to obtain reasonable par-
titions for many large problems, as noted in [21, 6].

The architecture used in all the experiments consisted
of a Beowulf Linux Cluster with 64 dual processor nodes.
Each node has two Intel Xeon 2.0GHz processors and 2GB
of RAM. The nodes are connected by a Myrinet network
with a peak throughput of 250 MB/s.

4.2. Case Study

The parallel algorithm was experimentally evaluated on
hypergraph representations of transition matrices derived
from a high-level Semi-Markov model of a voting system, a
full description of which can be found in [3]. In this system,
voters cast votes through polling units which in turn regis-
ter votes with all available central voting units. Both polling
units and central voting units can suffer breakdowns, from
which there is a soft recovery mechanism. If, however, all
the polling or voting units fail, then, with high priority, a
failure recovery mode is instituted to restore the system to
an operational state. The number of voters, polling units and
central voting servers is configurable, and each combination
of these parameters results in a sparse transition matrix of a
different size, as shown in Table 1.

The aim of the analysis is to find the response time den-
sity and/or quantiles of the time taken for a certain num-
ber of voters to successfully register their votes. This re-
quires the numerical inversion of the Laplace Transform of
the response-time density, which in turn requires the so-
lution of many thousands of sets of linear equations with
the same non-zero sparsity pattern. The kernel operation
in such solvers is parallel matrix-vector multiplication and
hypergraph partitioning is used to reduce the amount of
inter-processor communication in a row-wise decomposi-
tion. Note that the hypergraph partitioning need only be
performed once, but is reused several thousand times. Thus,
the quality of the resulting partition is key to scalability.

The hypergraph representing the transition matrix of the
Voting System with 175 customers (with 1 140 050 vertices)

can be partitioned on a single workstation, while the hyper-
graph representations of transition matrices from the Voting
System with 250 and 300 customers (with 5 218 300 and
10 991 040 vertices respectively) are too large for sequen-
tial partitioning. To convert the matrix into the appropriate
input files, we use the transformations presented in [5]. The
complexity of these transformations (into inputs for both
the parallel hypergraph and parallel graph tools) isO(m),
wherem is the number of non-zero elements in the matrix.

The maximum partition imbalance in Eq. 1 was set to
ε = 0.05 and results (for both run time and cut-size) were
averaged over five runs since the partitioning algortihms
are randomized (e.g. randomly visiting the vertices during
coarsening). In Tables 2 and 3 our parallel implementation
is denoted by Parkway 1.1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

Speedup Graph for Voting 175

4 partitions
8 partitions

16 partitions
32 partitions

Figure 3. Speedup results on Voting Model
with 175 customers

Table 2 shows the run times of the algorithms on the
test hypergraphs, while the speedup on Voting 175 is sum-
marised in Fig. 3. The additional communication and com-
putation overhead incurred by the parallel algorithm, as well
as the highly-optimised nature of the base case we used
(hMeTiS has been in development since 1997), means that
we observe a slowdown for a small number of processors.
However, speedups are obtained when more than four pro-
cessors are used. Furthermore, the scalable nature of our
algorithm is reflected in the linear speedup trend observed
in computing partitions with 4, 8, 16 and 32 parts.

Table 3 presents the average(k − 1) metric cut-sizes
for the test hypergraphs. We see that where comparison
with the sequential algorithmHMETIS PartKway() is
possible, our algorithm produces partitions of comparable
quality, although the quality of the partitions deteriorates
slightly as the number of processors used increases.

Where the hypergraphs are too large for

6

Hypergraph Model Parameters #Vertices #Hyperedges #Pins
Voting 175 175/45/5 1 140 050 1 140 050 6 657 722
Voting 250 250/60/10 5 218 300 5 218 300 32 986 597
Voting 300 300/80/10 10 991 040 10 991 040 69 823 797

Table 1. Characteristics of the test hypergraphs

Parkway 1.1 HMETIS PartKway() /ParMeTiS
#Processors #Parts #Parts
Voting 175 4 8 16 32 4 8 16 32

1 - - - - 50.69 53.41 57.91 67.60
2 109.1 119.5 152.2 176.4 4.36 4.36 4.51 4.59
4 61.3 69.2 83.0 92.9 2.40 2.46 2.53 2.61
8 29.8 31.9 41.4 60.0 1.48 1.49 1.56 1.61
16 15.9 16.7 22.3 27.3 1.18 1.10 1.16 1.18

Voting 250 4 8 16 32 4 8 16 32
4 560.2 594.2 636.9 782.5 12.4 12.6 13.0 13.5
8 294.9 309.6 356.5 376.1 7.30 7.44 7.88 7.92
16 148.8 159.8 169.6 229.5 4.98 5.05 5.34 5.54

Voting 300 4 8 16 32 4 8 16 32
8 - 997.4 1 084.8 1 239.5 - 16.0 16.6 17.2
16 - 496.6 538.0 608.3 - 10.6 11.1 11.7
32 - 252.9 292.4 325.1 - 8.9 9.3 9.9

Table 2. Partitioning times in seconds

Parkway 1.1 HMETIS PartKway() /ParMeTiS
#Processors #Parts #Parts
Voting 175 4 8 16 32 4 8 16 32

1 - - - - 12 907 25 459 50 052 94 762
2 12 803 25 777 50 979 97 461 16 146 32 535 68 189 113 744
4 12 833 25 570 52 079 98 067 15 897 34 800 67 016 115 356
8 13 139 26 260 53 019 98 113 16 302 33 073 68 633 114 917
16 13 057 26 762 52 579 99 282 15 955 32 528 68 872 116 765

Voting 250 4 8 16 32 4 8 16 32
4 46 378 92 026 183 104 330 472 53 671 117 354 249 415 402 681
8 46 221 93 910 185 881 356 093 54 333 111 781 228 134 407 163
16 46 155 91 986 188 179 358 162 55 014 107 488 221 735 394 156

Voting 300 4 8 16 32 4 8 16 32
8 - 169 970 334 139 612 285 - 193 720 442 387 687 659
16 - 170 810 335 624 616 313 - 196 339 401 573 689 444
32 - 164 552 332 739 613 084 - 196 803 395 332 689 992

Table 3. Partitioning k − 1 cut-sizes

7

HMETIS PartKway() to partition sequentially, our
parallel multilevel hypergraph partitioning algorithm
outperforms the parallel graph partitioning tool ParMeTiS
in terms of the(k − 1) metric on all the test configurations,
by between 11% and 27%.

5. Conclusion

We have presented a parallel multilevelk-way partition-
ing algorithm that improves substantially on our previous
work by improving processor utilisation and reducing com-
munication and synchronisation overheads. The algorithm
features novel schemes for resolving conflicts that arise dur-
ing the parallel coarsening process and for reducing vertex
thrashing during parallel refinement.

The algorithm has been implemented and our initial re-
sults on several test hypergraphs from the performance anal-
ysis domain demonstrate good scalability properties and
parallel partition quality comparable with the state-of-the-
art sequential partitioning tool hMeTiS. Further, partition
quality comfortably exceeds those produced by the parallel
graph partitioning tool ParMeTiS, by up to 27%.

Future work will include developing an analytical per-
formance model to compute the algorithm’s isoefficiency
function. This can be used to determine what increase in
problem size is necessary to maintain constant efficiency,
given an increase in the number of processors used). This
would formally complement our empirical evidence that the
algorithm is scalable. We would also like to apply our al-
gorithm to other application domains, such as VLSI circuit
partitioning. Finally, in addition to further enhancing the
current parallel algorithm, we aim to develop a parallel for-
mulation of the recursive multilevel bisection partitioning
algorithm (as opposed to the directk-way scheme consid-
ered here).

References

[1] C. Alpert, J. Huang, and A. Kahng. Recent Directions in
Netlist Partitioning. Integration, the VLSI Journal, 19(1–
2):1–81, 1995.

[2] S. Barnard and H. Simon. A Fast Multilevel Implemen-
tation of Recursive Spectral Bisection for Partitioning Un-
structured Problems.Concurrency: Practice and Experi-
ence, 6(2):101–117, April 1994.

[3] J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson.
Hypergraph-based Parallel Computation of Passage Time
Densities in Large semi-Markov Models. InProc. 4th Inter-
national Conference on the Numerical Solution of Markov
Chains (NSMC’03), pages 99–120, Urbana-Champaign IL,
USA, September 2003.

[4] A. Caldwell, A. Kahng, and I. Markov. Improved Algo-
rithms for Hypergraph Bipartitioning. InProc. 2000 Confer-
ence on Asia South Pacific Design Automation, pages 661–
666. ACM/IEEE, January 2000.

[5] U. Catalyurek and C. Aykanat. Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector
Multiplication. IEEE Transactions on Parallel and Dis-
tributed Systems, 10(7):673–693, 1999.

[6] N. Dingle, W. Knottenbelt, and P. Harrison. Uniformiza-
tion and Hypergraph Partitioning for the Distributed Com-
putation of Response Time Densities in Very Large Markov
Models. Journal of Parallel and Distributed Computing,
2004. (To appear).

[7] S. Dutt and W. Deng. A Probability-based Approach to
VLSI Circuit Partitioning. InProc. 33rd Annual Design Au-
tomation Conference, pages 100–105, June 1996.

[8] S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-
Removal Using Iterative Improvement Techniques. InProc.
1996 IEEE/ACM International Conference on Computer-
Aided Design, pages 194–200, Nov 1996.

[9] S. Dutt and H. Theny. Partitioning Around Road-
blocks: Tackling Constraints with Intermediate Relaxations.
In Proc. 1997 IEEE/ACM International Conference on
Computer-Aided Design, pages 350–355, Nov 1997.

[10] C. Fiduccia and R. Mattheyses. A Linear Time Heuristic For
Improving Network Partitions. InProc. 19th IEEE Design
Automation Conference, pages 175–181, 1982.

[11] M. Garey and D. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman
and Co., 1979.

[12] E. Ihler, D. Wagner, and F. Wagner. Modeling Hypergraphs
by Graphs with the same Mincut Properties.Information
Processing Letters, 45:171–175, March 1993.

[13] G. Karypis. Multilevel Hypergraph Partitioning. Technical
Report #02-25, University of Minnesota, 2002.

[14] G. Karypis and V. Kumar. A Coarse-Grain Parallel Formu-
lation of Multilevelk-way Graph Partitioning Algorithm. In
Proc. 8th SIAM Conference on Parallel Processing for Sci-
entific Computing, 1997.

[15] G. Karypis and V. Kumar.hMeTiS: A Hypergraph Partition-
ing Package, Version 1.5.3. University of Minnesota, 1998.

[16] G. Karypis and V. Kumar. Multilevelk-way Hypergraph
Partitioning. Technical Report #98-036, University of Min-
nesota, 1998.

[17] G. Karypis, K. Schloegel, and V. Kumar.ParMeTiS: Paral-
lel Graph Partitioning and Sparse Matrix Ordering Library,
Version 3.0. University of Minnesota, 2002.

[18] W. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, Imperial College, London,
United Kingdom, 2000.

[19] B. Krishnamurthy. An Improved min-cut Algorithm for Par-
titioning VLSI Networks.IEEE Transactions on Computers,
33(C):438–446, 1984.

[20] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI – The Complete Reference. MIT Press, Cam-
bridge, Massachussets, 2nd edition, 1998.

[21] A. Trifunovic and W. Knottenbelt. Towards a Parallel Disk
Based Algorithm for Multilevelk-way Hypergraph Parti-
tioning. In Proc. 5th Workshop on Parallel and Distributed
Scientific and Engineering Computing, Santa Fe, NM, USA,
April 2004.

8

